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Microbial Communities Associated 
with Primary and Metastatic Head 
and Neck Squamous Cell Carcinoma 
– A High Fusobacterial and Low 
Streptococcal Signature
Jae M. Shin1,2, Ting Luo1, Pachiyappan Kamarajan3,4, J. Christopher Fenno2, Alexander H. 
Rickard1 & Yvonne L. Kapila3,4

Given the potential relationship between head and neck squamous cell carcinoma (HNSCC) and 
microbial dysbiosis, we profiled the microbiome within healthy normal and tumorous (primary and 
metastatic) human tissues from the oral cavity, larynx-pharynx, and lymph nodes using 16S rRNA 
sequencing. Alpha and beta diversity analyses revealed that normal tissues had the greatest richness 
in community diversity, while the metastatic populations were most closely related to one another. 
Compared to the normal, the microbiota associated with tumors supported altered abundances in 
the phyla Fusobacteria, Firmicutes, Actinobacteria and Proteobacteria. Most notably, the relative 
abundance of Fusobacterium increased whereas Streptococcus decreased in both primary and 
metastatic samples. Principal coordinate analysis indicated a separation and clustering of samples by 
tissue status. However, random forest analysis revealed that the microbial profiles alone were a poor 
predictor for primary and metastatic HNSCC samples. Here, we report that the microbial communities 
residing in the tumorous tissues are compositionally distinct compared to the normal adjacent tissues. 
However, likely due to the smaller sample size and sample-to-sample heterogeneity, our prediction 
models were not able to distinguish by sample types. This work provides a foundation for future studies 
aimed at understanding the role of the dysbiotic tissue microbiome in HNSCC.

With greater than 48,000 new cases each year in the United States and >500,000 cases diagnosed annually world-
wide, head and neck squamous cell carcinoma (HNSCC) levies a major public health burden1, 2. Furthermore, 
the prognosis and the five-year survival rate of HNSCC have been constant for decades3. The known primary risk 
factors for HNSCC include tobacco and alcohol use, and infection by certain human papillomavirus (HPV) gen-
otypes4–6. However, these risk factors alone have not been sufficient to explain the incidence and the mechanisms 
of tumorigenesis, and it is likely that other undescribed factors are playing important roles in HNSCC tumor 
development, progression and metastasis.

The human microbiome maintains a dynamic relationship with the human host7. For example, if the microbi-
ome experiences an ecological imbalance, also known as dysbiosis, disease processes can emerge8, 9. Alternatively, 
changes in the human host, such as changes in the host adaptive immunity, can alter the associated microbiome10. 
Numerous studies have now reported that microbial dysbiosis is linked to cancer11–14. For example, imbalances 
in the gut microbiota promote altered host-microbial interactions that mediate colorectal cancer (CRC) tum-
origenesis15–17. Genomic analysis of the microbiome of CRC patients have revealed a significant enrichment in 
Fusobacterium species with depletion in species from the phyla Bacteroidetes and Firmicutes relative to the normal 
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healthy controls15, 18. Furthermore, Schmidt and colleagues reported that alterations in the oral microbiota were 
strongly associated with oral cancer19.

Close interactions between host cells and the microbiota will cause a variety of physiological responses in both 
the host and the host’s microbial inhabitants, including changes in individual microbes or in the collective micro-
bial community. These interactions can be beneficial, neutral, or detrimental to the host. For example, bacterial 
communities within the gut maintain a mutually beneficial relationship with the human intestinal cells but in 
CRC, the increased abundance of certain bacteria (ie. Fusobacterium nucleatum) and their metabolic byproducts 
can potentiate and promote tumor growth by eliciting tumor promoting immune and host cell responses17, 20, 21. 
Accordingly, studies have suggested that local or distant cancer-associated microbiota can influence the cancer 
cells to exhibit cancer-specific inflammatory, immune and metabolic responses, or vice versa22, 23. In this study, we 
hypothesized that the local microbiota of HNSCC tissues have a distinct bacterial community profile compared to 
the healthy normal tissues. To understand whether bacterial organisms contribute to HNSCC development and 
progression or whether the abundance of bacterial organisms is altered in response to HNSCC development and 
progression, it is important to identify and analyze the associated microbial communities. If the tumor environ-
ment favors a specific microbial population or vice versa, further research is warranted to better understand these 
interactions in the development and progression of HNSCC.

Materials and Methods
Study Design and Human Subject Information. Normal and HNSCC human tissue specimens were 
obtained from ProteoGenex (ProteoGenex, USA). All clinical specimens were obtained with informed consents 
following standard protocols and with appropriate Institutional Review Board/Independent Ethics Committee 
(IRB/IEC) approval by the University of Michigan and ProteoGenex. Tissue samples were acquired based on 
availability. Tissues were snap-frozen in liquid nitrogen immediately following surgical removal and preserved at 
−80 °C until needed. In total, 72 tissue samples (normal, primary, metastatic) originating from the oral cavity, lar-
ynx, pharynx and lymph nodes of 34 HNSCC subjects (32 males and 2 females with an age range of 48–83 years 
and mean age of 59 ± 5.6 years) were used for this study. Among the collected tissue samples, i) matched normal 
adjacent, primary and metastatic HNSCC tissues were obtained from 14 subjects, ii) matched normal adjacent 
and primary HNSCC tissues were obtained from 10 subjects, and metastatic-only tissues were obtained from 10 
subjects. We used each human subject as his/her own control (except the 10 metastatic non-matched samples). 
The subject specific information, including gender, age, tumor anatomic location, clinical diagnosis, TNM stag-
ing (extent of the tumor (T), extent of spread to the lymph nodes (N), the presence of distant metastasis (M) and 
tumor grade as established by histopathological evaluation), are included in Table 1.

RNA Extraction and cDNA Synthesis. Total RNA was isolated from the tissue samples using the RNeasy 
mini, RNA isolation kit (Qiagen, Germany) according to the manufacturer’s instructions. The cDNA was then 
synthesized using the high-capacity cDNA reverse transcription kit according to the manufacturer’s instructions 
(Applied Biosystems, USA).

Microbiome Sequencing and Analysis. cDNA was normalized to 5 ng/μl per sample prior to running 
polymerase chain reactions (PCR). Targeted amplification and sequencing of the V4 variable region of the 16S 
rRNA gene was conducted in a single-step 30 cycle PCR using PCR primers 51/80625. The HotStarTaq Plus Master 
Mix Kit (Qiagen, Valentia, CA, USA) was used at the following conditions: 94 °C for 3 minutes, followed by 28 
cycles (5 cycle used on PCR products) of 94 °C for 30 seconds, 53 °C for 40 seconds and 72 °C for 1 minute, after 
which a final elongation step at 72 °C for 5 minutes was performed. Genome sequencing was performed at MR 
DNA (www.mrdnalab.com, USA) on an Ion Torrent Personal Genome Machine (PGM) following the manufac-
turer’s guidelines.

Raw 16S data sequences were processed with QIIME 1.9.0. Samples with read counts less than 3000 pre-
processing were excluded for microbiome analysis. Of 72 total samples collected, 71 samples had read counts 
over 3000. Sample M32 was excluded. Sequences with any ambiguous base calls, average Phred quality score 
below 25, max homopolymer length of >6, primer mismatch exceeding 0, or sequence length below 200 bp were 
discarded. All sequences that remained after filtering had primers, adaptors, and linker sequences truncated. 
Operational taxonomic units (OTUs) were clustered by 97% identity using the Uclust method. An open-reference 
OTU picking strategy was used where sequences that do not cluster against a reference database of sequences 
are clustered de novo. GreenGenes 13.8 was used as the 16S reference database. Sequences were aligned with 
GreenGenes-aligned sequences as template using PyNast. Taxonomy was assigned using the RDP Classifier in 
QIIME26. Singleton OTUs were filtered out as part of the default QIIME parameters. Additionally, OTUs con-
stituting less than 0.05% of total reads were filtered out. The final OTU table was analyzed with QIIME and the 
Phyloseq package in R27, 28.

Downstream analytics included Shannon alpha diversity, community relative abundance, weighted UniFrac 
beta diversity, differential OTUs between HNSCC and healthy tissue samples. Outcomes were measured within 
the Phyloseq package and graphical output generated with R’s ggplot package. Additionally, beta diversity 
was visualized in 2-dimensional space with principal coordinate analysis using R’s built-in prcomp function. 
Log-transformed read counts of the OTU table was used as input for principal coordinate analysis.

Random Forest Analysis. Random forest analysis (RFA) was used to predict normal or HNSCC status. 
The random forest regression modeling is a nonparametric approach, which accounts for the nonlinearities and 
interactions within the dataset to identify a subset of OTUs that are predictive of HNSCC. Another advantage of 
this approach is that cross-validation is built into the model generation procedure to limit the risks of over-fitting 
the model to the data29. Both primary and metastatic HNSCC tissues were considered different sample types that 
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can be predicted by RFA. Ten RFA iterations were performed with random seeds 1–10 for each dataset where each 
iteration selected a random subset of 2/3 of the 41 samples to designate as the training dataset. The remaining 
1/3 of the samples were designated as the testing dataset where random forest makes its best predictions on the 
sample types based on the training dataset.

Statistical Analysis. Differences in Shannon alpha diversity as well as Euclidean distance for beta diversity 
between groups were tested using a non-parametric Kruskal-Wallis test. Differences in phyla abundances were 
evaluated using a non-parametric Mann-Whitney U test. Differential OTUs were detected using a Wald negative 
binomial test with the DEseq. 2 package in R. An α significance threshold of 0.05 used for the Kruskal-Wallis 
test and an α significance threshold of 0.01 was used for the Wald negative binomial test. A more conserva-
tive α threshold was selected for differential OTU tests to reduce the number of false positives that would be 
expected testing a large quantity of OTUs. To test whether microbial communities differ by HNSCC tissue type, 
an Adonis test that fits linear models to weighted UniFrac distance matrices was performed with R’s vegan pack-
age. Significance threshold indicating dissimilar communities was set at an α level of 0.05.

Data Availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Subject Gender Age Location TNM* Grade Sample type**
20 M 64 Larynx, Lymph node T2N2bM0 G3 N, P, M

21 M 53 Larynx, Lymph node T2N2bM0 G2 N, P, M

22 M 56 Larynx, Lymph node T2N2M0 G3 N, P, M

23 M 54 Larynx, Lymph node T3N2M0 G1 N, P, M

24 M 59 Oral cavity, Lymph node T4aN1M0 G3 N, P, M

25 M 63 Laryngopharynx, Lymph 
node T3N2M0 G3 N, P, M

26 M 71 Larynx, Lymph node T4aN2bM0 G2 N, P, M

27 M 60 Pharynx, Lymph node T3N2bM0 G3 N, P, M

28 M 53 Larynx, Lymph node T4aN2cM0 G3 N, P, M

29 M 61 Larynx, Lymph node T3N2cM0 G2 N, P, M

30 M 60 Larynx, Lymph node T4aN2bM0 G3 N, P, M

31 M 57 Larynx, Lymph node T3N2aM0 G2 N, P, M

32 M 54 Larynx, Lymph node T4aN2cM0 G1 N, P, M

33 M 56 Larynx, Lymph node T4aN2bM0 G3 N, P, M

2 M 62 Oral cavity T3N0M0 G2 N, P, M

9 M 57 Oral cavity T4N0M0 G1 N, P

10 F 83 Oral cavity T3N0M0 G3 N, P

11 M 59 Larynx T3N0M0 G2 N, P

12 M 50 Larynx T3N0M0 G3 N, P

13 M 70 Larynx T3N0M0 G2 N, P

14 M 59 Larynx T3N0M0 G1 N, P

15 M 67 Larynx T1N2bM0 G2 N, P

16 M 67 Larynx T3N1M0 G2 N, P

18 M 60 Larynx T3N0M0 G3 N, P

M1 M 51 Lymph node T3N1M0 G2 M

M2 M 68 Lymph node Recurrent G2 M

M3 M 59 Lymph node T3N1M0 G2 M

M4 M 48 Lymph node T2N1M0 G1 M

M5 M 58 Lymph node Recurrent N/A M

M6 M 58 Lymph node Recurrent N/A M

M7 M 64 Lymph node Recurrent N/A M

M8 M 62 Lymph node Recurrent N/A M

M9 M 61 Lymph node T3N2cM0 G2 M

M10 F 61 Lymph node T2N2bM0 G1 M

Table 1. Human Subject Information. All head and neck tumor samples examined in the study were clinically 
diagnosed and confirmed as squamous cell carcinoma. The numbers in the ‘Subject’ column are for sample 
identification without any special meaning. *TNM – TNM classification of malignant tumors is a cancer staging 
notation system; T describes the size of the original tumor and whether it has invaded nearby tissue; N describes 
the extent of lymph node involvement; M describes the presence of distant metastasis24. **N – normal; P – 
primary tumor; M – metastatic tumor.
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Results
Alpha and Beta diversity of Normal, Primary and Metastatic Tissue Samples. To compare the 
diversity captured from our samples, we conducted alpha and beta diversity analyses. Alpha diversity was cal-
culated based on the Shannon diversity index, which measures the ecosystem biodiversity. The Shannon alpha 
diversity algorithm accounts for species richness and species evenness. Normal adjacent tissues had the greatest 
richness in community diversity compared to the primary and metastatic HNSCC tissue samples (Fig. 1A). The 
Kruskal-Wallis rank sum p-value was 0.005, indicating at least one pairwise comparison for Shannon alpha diver-
sity was significant. The pairs driving significance were normal versus primary and normal versus metastatic 
(Fig. 1A).

For beta diversity, samples were clustered by each category level based on sample groups (normal, primary, 
metastatic) and each pairwise sample-to-sample dissimilarity was measured using Euclidean distance. Comparing 
across three sample types, the metastatic microbial taxa populations were more closely related to each other than 
to those in both the normal versus normal, and the primary versus primary HNSCC tissue samples (Fig. 1B). The 
p-values comparing within normal versus within primary, within normal versus within metastatic, and within 
primary versus within metastatic were all <0.001 (Fig. 1B).

Phylum Distribution of the Normal, Primary and Metastatic HNSCC Tissue Samples. Tissues 
were harvested from the oral cavity (lip and tongue), larynx and pharynx, and the mandibular lymph node 
(Table 1). To account for the differences in the microbiome profiles based on anatomic locations, community 
analyses were conducted by sample type and location (Fig. 2). Compared to the normal tissues from the oral 
cavity, primary HNSCC tissues showed increased abundance in Bacteroidetes, Proteobacteria, Spirochaetes and 
Fusobacteria (Fig. 2A). In addition, Firmicutes and Actinobacteria showed a marked decrease in abundance 
in the tumor tissues compared to the normal controls (Fig. 2A). Larynx and pharynx also exhibited promi-
nent differences between the normal and the tumorous tissues, where Fusobacteria increased and Firmicutes 
decreased in relative abundance (Fig. 2A). As for the metastatic lymph node samples, the increased abundance 
in Fusobacterium species belonging to the phyla Fusobacteria and decreased abundance in Streptococcus species 
belonging to the phyla Firmicutes was consistent with that in tumor tissues from other locations. However, met-
astatic tissues selectively exhibited a higher prevalence of Proteobacteria (Fig. 2A). The community composition 

Figure 1. Alpha and Beta diversity of Normal, Primary and Metastatic Tissue Samples. (A) Alpha diversity 
based on the Shannon diversity index is shown for normal, primary and metastatic HNSCC tissue samples. (B) 
Beta diversity was measured by Euclidean distance for normal, primary and metastatic HNSCC tissue samples.
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of the oral cavity (n = 8) and the larynx-pharynx (n = 40) region differed significantly, since Firmicutes and 
Actinobacteria flourished much more in the oral cavity (Fig. 2A). However, the power to detect statistical sig-
nificance in the normal versus primary tumor group was hampered by the smaller sample size for each group. 
Overall, the microbiota of the tissues collected from the oral cavity exhibited greatest OTU richness (data not 
shown).

Based on the analysis conducted by tissue status, microbial species from Firmicutes and Actinobacteria were 
less abundant in both primary and metastatic HNSCC tissues compared to normal adjacent tissues (Fig. 2B). The 
relative abundance of Firmicutes was significantly lower in both primary and metastatic samples compared to the 
normal tissue samples (Table 2). The relative abundance of Actinobacteria was only significantly lower in primary 
HNSCC samples when compared to the normal samples (Table 2). The abundance of Fusobacterial populations 
was increased in both primary and metastatic tumor tissues compared to normal tissues (Fig. 2B); however, only 
the primary versus normal comparison was statistically significant (Table 2). Statistically significant differences 
in the abundance of Proteobacterial populations was present when comparing primary and metastatic tumor 
samples but not when comparing normal and primary tissue samples (Fig. 2B; Table 2). There was no signifi-
cant difference in Spirochaetes abundance in each pairwise comparison by tissue type. The phyla Tenericutes, 
Synergistetes, SR1 and Thermi represented less than 1% of the overall composition and their relative abundances 
were most disparate when comparing metastatic versus normal tissue samples (Table 2).

Figure 2. Phylum and Genus Distribution of the Normal, Primary and Metastatic HNSCC Tissue Samples. (A) 
The relative distribution of phyla based on anatomical locations is shown for normal, primary and metastatic 
HNSCC tissue samples. Matched samples were used for analysis. (B) The relative distribution of phyla based on 
tissue status. Matched and non-matched samples were pooled for analysis. (C) The relative distribution of genus 
based on anatomical locations is shown for normal, primary and metastatic HNSCC tissue samples. Matched 
samples were used for analysis. (D) The relative distribution of genus based on tissue status. Matched and non-
matched samples were pooled for analysis. Rothia, Peptoniphilus, Aggregatibacter were detected in the top 20 
genera by site and status not by status alone (Panel C), whereas, Peptostreptococcus, Peptococcus and Helicobacter 
were in the top 20 genera by status alone but not by site and status (Panel D).
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Genus Distribution of the Normal, Primary and Metastatic HNSCC Tissue Samples. Notable 
genus groups that increased in abundance in the oral cavity HNSCC tumor samples compared to the normal 
samples included Fusobacterium and Treponema (Fig. 2C). A marked decrease in Streptococcus and Actinomyces 
were observed in the HNSCC tissues (Fig. 2C). For larynx and pharynx samples, an increase in Fusobacterium, 
Prevotella, Neisseria and Capnocytophaga was observed, while a decrease in Streptococcus was observed (Fig. 2C). 
Furthermore, the genus Lactobacillus, Parvimonas, Peptoniphilus, Rothia and Veillonella were differentially abun-
dant in the primary HNSCC samples collected from the larynx and pharynx compared to the normal samples 
(Table 2).

When the samples were pooled by status, compared to the normal to the primary HNSCC samples, the 
abundance of Fusobacterium, Prevotella, and Capnocytophaga increased whereas, Streptococcus, Veillonella, 
Parvimonas, Lactobacillus and Rothia significantly decreased (Fig. 2D, Table 2). In comparison to the normal 
metastatic samples, the abundance of Fusobacterium, Neisseria and other unknown genus groups increased, and 
Streptococcus, Veillonella, Parvimonas and Lactobacillus decreased (Fig. 2D; Table 2). In addition, other signifi-
cantly altered genus included Bacteroides, Campylobacter, Capnocytophaga and Rothia (Table 2).

Phylum
Normal Vs. 
Primary

Normal Vs. 
Metastatic

Primary Vs. 
Metastatic

Normal Vs. 
Primary 
(Oral Cavity)

Normal Vs. 
Primary 
(Larynx-
Pharynx)

[Thermi] 0.0672 0.0338* 0.7808 N/Aa 0.0640

Actinobacteria 0.0045* 0.1290 0.1134 0.2000 0.0094*
Bacteroidetes 0.9593 0.0459* 0.0298* 0.6857 0.8831

Firmicutes 0.0021* 0.0138* 0.2666 0.1143 0.0042*
Fusobacteria 0.0337* 0.1086 0.6351 0.4857 0.0634

Proteobacteria 0.3514 0.1345 0.0372* 0.3429 0.1738

Spirochaetes 0.4552 0.1334 0.3221 0.4857 0.2423

SR1 0.0655 0.0044* 0.4072 10.000 0.0385*
Synergistetes 0.1662 0.0260* 0.2746 0.8857 0.0923

Tenericutes 0.4258 0.0225* 0.1443 0.8857 0.4886

Genus

[Prevotella] 0.6903 0.9580 0.7121 0.8857 0.5648

Actinomyces 0.0271 0.8398 0.0527 0.2000 0.0375

Aggregatibacterb 0.8930 0.6153 0.4999 0.3094 0.9675

Bacteroides 0.1904 0.0017 0.0345 0.8857 0.1478

Campylobacter 0.4803 0.0077 0.3922 0.0571 0.2012

Capnocytophaga 0.1472 0.0102 0.1474 0.8857 0.1022

Fusobacterium 0.0533 0.0022 0.2951 0.4857 0.0965

Helicobacterc 0.6609 0.8574 0.5445 0.4533 0.4989

Lactobacillus 0.0401 0.7738 0.1032 0.4857 0.0498

Neisseria 0.0926 0.0683 0.8726 0.3429 0.2034

Parvimonas 0.0302 0.4795 0.0535 0.6857 0.0283

Peptococcusc 0.8524 0.3385 0.2519 0.4857 0.9567

Peptoniphilusb 0.0832 0.8555 0.0700 0.8845 0.0285

Peptostreptococcusc 0.2199 0.5198 0.0866 0.4857 0.2977

Porphyromonas 0.1253 0.0508 0.6053 10.000 0.0634

Prevotella 0.9756 0.7438 0.8744 0.3429 0.8410

Pseudomonas 0.9753 0.4628 0.4125 0.6857 0.8181

Rothiab 0.0003 0.0186 0.3312 0.4857 0.0002

Staphylococcus 0.3514 0.1039 0.0094 0.4857 0.1572

Streptococcus 0.0002 0.1521 0.0088 0.2000 0.0014

Treponema 0.4188 0.2130 0.5160 0.4857 0.2211

Veillonella 0.0182 0.0719 10.000 0.4857 0.0210

Table 2. The p-value matrix indicates the differential abundance of each phylum and genus between tissue 
samples by status and site. The average phylum and genus abundance for each tissue sample compared to 
average phylum and genus abundance for each status (normal, primary and metastatic) and site is shown. 
Differences in abundance were examined using the Mann-Whitney U-test in R. Boldface* indicates a 
p-value < 0.05. aIndicates no reads belonging to the phylum [Thermi] in both comparison groups. bTop 20 
genera when stratified by site and status, but not by status alone. cTop 20 genera when stratified by status alone, 
but not by site and status.
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Relative Abundance of Fusobacterial and Streptococcal Populations by Sample Types. The 
relative abundance of Fusobacterium and Streptococcus was compared by sample types. Matched samples were 
divided into two groups, 20 (N, P) samples and 41 (N, P, M) samples (Fig. 3). Ten non-matched samples were 
metastatic tissue samples (Fig. 3). In both matched groups, normal samples expressed greater abundance of 
Streptococcus species than primary HNSCC samples (Fig. 3). In both matched groups, the relative abundance of 
Fusobacterium species in primary HNSCC samples was much greater than the normal samples (Fig. 3). Matched 
metastatic samples exhibited more Streptococcus species than the primary samples, but were much less than the 
normal samples (Fig. 3). Both matched and non-matched metastatic samples exhibited lower abundance for both 
genera compared to the normal and primary samples (Fig. 3).

Differential OTUs Detected between Normal, Primary and Metastatic HNSCC Tissue Samples.  
Wald negative binomial testing was performed to detect differentially abundant OTUs in 71/72 samples that con-
tained more than 3,000 reads. In the primary versus normal tissue samples, there were 37 differentially abundant 

Figure 3. Relative Abundance of Fusobacterium and Streptococcus Population by Sample Types. The relative 
abundance of Fusobacterium and Streptococcus is shown for matched and non-matched samples. Matched 
groups are divided into two groups, one containing (N, P) and other (N, P, M) samples. The non-matched group 
contains only the metastatic samples. The red bars represent the abundance of Fusobacterium and the blue bars 
represent the abundance of Streptococcus.
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OTUs detected, with most belonging to the genera Streptococcus (24), Fusobacterium (4) and Neisseria (3). The 
direction of change was consistent across these 3 genera: Normal tissue samples had more Streptococcus, less 
Fusobacterium, and less Neisseria.

In the primary versus metastatic tissue samples, there were 60 differentially abundant OTUs. Streptococcus 
(26), Actinomyces (7), and Fusobacterium (5) genera constituted a significant portion of the differential OTUs. All 
of the Streptococcus and all of the Actinomyces OTUs were differentially abundant in the same direction: all were 
more abundant in the metastatic tissue samples. Fusobacterium OTUs (4/5) were less abundant in the metastatic 
samples. There was 1 Fusobacterium OTU that was more abundant in the metastatic tissue samples compared to 
primary tissue samples.

The comparison between normal versus metastatic tissue samples was the most disparate in terms of quantity 
of differential OTUs, which resulted in 104 OTUs. Some genera of note were Streptococcus (23 OTUs, and all of 
them were more abundant in normal samples), Fusobacterium (10 OTUs, with 8 that were more abundant in 
metastatic samples), and Actinomyces (6 OTUs, with all 6 more abundant in normal samples).

Principal Coordinate Analysis (PCoA) Based on OTUs. Forty-one matched samples (normal, primary, 
metastatic) were used for the PCoA. A clustering pattern exhibited a left to right transition for a normal to pri-
mary then to a metastatic tissue status (Fig. 4). Across the sample population, the greatest clustering of commu-
nities was observed in the metastatic group, where the distances between samples were the smallest (Fig. 3). The 
ellipsoid boundaries of all 3 types of samples overlapped with one another. However, there was more substantial 
overlap in the microbial communities with most of the metastatic samples, such that the metastatic samples’ 
ellipsoid co-localized within the primary samples’ ellipsoid (Fig. 4). The separation between the normal versus 
primary (p = 0.11), normal versus metastatic (p = 0.194), and primary versus metastatic samples (p = 0.966) was 
not statistically significant as assessed by the Adonis test.

Random Forest Regression Model to Predict HNSCC Using Microbial OTUs. The predictive accu-
racy of the random forest analysis was 39% (54/140). The majority of misclassifications were metastatic samples 
misclassified as primary tumor samples and primary tumor samples misclassified as metastatic samples (Table 3). 
When we categorized primary-metastatic samples as unhealthy, random forest analysis was able to better differ-
entiate between the two groups. The predictive accuracy of correctly identifying an unhealthy (primary and meta-
static) and normal sample increased to 76% and 59%, respectively. In aggregate, the predictive accuracy increased 
to 98/140 (70%) when the primary and metastatic tumors were combined under one umbrella as “tumor” tissue 
samples. Based on the RFA results, the outcomes coincided with the intersecting normal, primary and metastatic 
samples’ ellipsoids shown in the PCoA plot (Fig. 4).

Discussion
Bacteria in the human host often exist as compositionally diverse biofilm communities30. The environment cre-
ated by the host influences the composition of the bacterial community, which is further shaped by other param-
eters, including temperature, oxygen tension, pH, substratum properties, nutrient availability, and exposure to 
cell and immune signaling7, 31. In this study, we evaluated the microbial communities of HNSCC tissues and their 
normal tissue counterparts. Analysis of alpha diversity revealed that normal tissues are significantly more diverse 
compared to the tumorous (primary and metastatic) tissues (Fig. 1A). Recently, Guerrero-preston and others 
reported that the saliva of HNSCC patients had significantly lower bacterial richness and diversity32. In this study, 
the beta diversity was greater in the primary HNSCC tissue samples and lower in the metastatic tissue samples 
(Fig. 1B). However, since the primary tumor tissues were harvested from different anatomic locations compared 
to the metastatic samples (lymph node), the greater beta diversity may partly reflect the differences in the micro-
biome profiles based on different biofilm habitats.

Figure 4. Distinguishing Normal and HNSCC Samples. Principal Coordinate Analysis (PCoA) was conducted 
based on the log-transformed read counts of the OTUs. Matched samples (Normal, Primary, Metastatic) were 
used for the PCoA.
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Based on our community analyses, the two major differences that were detected in these tissues were related 
to the abundance of members of the phyla Fusobacteria and Firmicutes (Fig. 2A and B). Compared to the nor-
mal tissue samples, an alteration of these two phyla was clearly observed within primary and metastatic tissue 
samples regardless of tissue status and location (Fig. 2A and B; Table 2). In both primary and metastatic HNSCC 
samples, Fusobacteria levels were increased, whereas Firmicutes and Actinobacteria were decreased compared to 
the normal samples (Fig. 2B; Table 2). In addition, a significant increase in Proteobacteria was observed in the 
metastatic samples (Fig. 2B). These data demonstrate that the host tumor microenvironment (TME) supports or 
is influenced by an altered microbial community.

Members of the genera Fusobacterium and Streptococcus are both highly abundant in the oral cavity33. In 
addition, Fusobacterium species are highly associated with periodontal disease34. Fusobacterium nucleatum, a 
Gram-negative anaerobe, is well known to coaggregate with both aerobic and obligate anaerobic bacterial spe-
cies35. This strong coaggregative behavior elicited by Fusobacterium species is likely to provide additional benefits 
to the interacting species, beyond assisting with adherence and facilitating multi-species biofilm formation36. 
For example, F. nucleatum has the ability to adhere to and invade human gingival epithelial cells and help other 
bacteria to enter host cells by altering endothelial integrity37, 38. In solid tumors such as HNSCC, Fusobacterium 
species may play a role in providing protection for the tumor cells from the circulating immune cells. Gur and 
colleagues demonstrated that the presence of F. nucleatum inhibited tumor cell killing through inhibitory 
protein-receptor interactions with the immune cells39. The bacteria and tumor relationship is multifactorial and 
studies are starting to reveal clues about the specific role of bacteria in cancer. With the significant enrichment of a 
Fusobacterial population in primary HNSCC, these bacteria may be i) providing tumor cell immunity, ii) shaping 
the microbial community structure, and iii) providing benefits to the tumor cells by residing in the TME through 
bacteria-tumor cell interactions. Currently, studies are ongoing in our lab to further investigate the cellular mech-
anism of Fusobacterium species such as F. nucleatum in promoting HNSCC tumorigenesis.

Microbial community structure in a habitat is determined by the available nutrients, environmental condi-
tions and the available colonizing species36. A hypoxic and pro-inflammatory TME may promote increases in 
abundance of certain bacterial populations, such as Fusobacteria and Bacteroidetes, while limiting the abundance 
of others like Firmicutes and Actinobacteria (Fig. 1A). In this study, an inverse relationship in the abundance 
of Fusobacterium and Streptococcus species was observed in the tumor tissues versus normal controls (Fig. 3). 
Schmidt and colleagues also demonstrated that this relationship was present in oral swab samples collected 
from oral cancer patients19. A significant reduction in the abundance of Streptococcus species and an increase 
in the abundance of Fusobacterium species was observed in oral cancer samples relative to the anatomically 
matched clinical normal samples19. In contrast, Gong and colleagues reported that Streptococcus dominated over 
Fusobacterium in the mucosa samples of laryngeal SCC patients40. Although these studies used different sample 
types (oral swabs, mucosal tissues, complex tissues) and different sequencing platforms (MiSeq, pyrosequencing, 
PGM), the inverse relationship relative to abundance between Fusobacterium and Streptococcus appears to remain 
robust.

In this study, we hypothesized that HNSCC tissues have distinct microbial communities compared to their 
normal healthy counterparts. If this community change occurs as the tissue transition from pre-malignant to 
malignant, these distinct microbial phenotypes might serve as risk indicators or predictors of disease status. For 
example, Treponema denticola is an oral Spirochaete that is normally found in low abundance in the oral cavity. 
In this study, the Treponema species were selectively increased in the primary tumor samples of the oral cavity 
(Fig. 2C). Frequent and preferential abundance of T. denticola has been associated with periodontal disease and 
esophageal tumor tissues41, 42. The oral treponemes are known to be resistant to host antimicrobial peptides (ie. 
human β-defensins), which can enhance the initial adhesion of other bacterial species to form the multi-species 
biofilm structures43. In addition, Treponema species are capable of inducing destruction of the host basement 
membrane structures through their innate proteases, which can further contribute to the tumor development 
and progression44.

Over the years, identification of strong risk factors, such as tobacco and alcohol use, and HPV infection, has 
proven to be useful indicators for HNSCC. Smoking can alter the bacterial acquisition and colonization of oral 
biofilms, and alter the composition of bacterial communities in saliva and biofilms in the subgingival pockets45, 46. 
In addition, Thomas and colleagues reported that bacterial richness was significantly reduced as a consequence 
of tobacco or alcohol use47. Recently, strong evidence has pointed to microbial dysbiosis as a causative or contrib-
uting factor to different types of cancer12. Alternatively, this dysbiosis may be the result of tumor development 
and progression. According to our PCoA plot, although not statistically significant, a microbial transition from 

48 Primary Samples 43 Metastatic Samples 49 Normal Samples 140 Total Samples

9 (19%) predicted correctly 16 (37%) predicted correctly 29 (59%) predicted correctly 54 (39%) predicted correctly

21(44%) misclassified as metastatic 23 (53%) misclassified as primary 14 (29%) misclassified as primary 86 (61%) misclassified

18 (37%) misclassified as normal 4 (10%) misclassified as normal 6 (12%) misclassified as metastatic

91 Unhealthy Samples 49 Normal Samples 140 Total Samples

69 (76%) predicted correctly 29 (59%) predicted correctly 98 (70%) predicted correctly

22 (24%) misclassified as Normal 20 (41%) misclassified as unhealthy 42 (30%) misclassified

Table 3. Random forest analysis (RFA) was conducted to predict the tissue status by OTUs. Matched samples 
(Normal, Primary, Metastatic) were examined to assess the accuracy of using microbial diversity to predict 
normal and HNSCC tissue conditions.
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a healthy to ‘HNSCC’ status can be seen with ellipsoids moving from a left to right direction along the PCoA 1 
axis (Fig. 4). The primary and metastatic HNSCC samples pooled together with a tighter clustering pattern com-
pared to the normal samples, and the greatest clustering was noted within the metastatic samples (Fig. 4). Further 
research is warranted to more closely examine the potential relationship between microbial shifts and HNSCC, 
and the specific role of microbial dysbiosis in HNSCC.

Recently, in a colon cancer mouse model system, RFA was successfully used to predict the behaviors of 
colon tumors. Specifically, Zackular and others predicted the final number of tumors based on the changes that 
occurred in the composition of the gut microbiota48. In this study, we utilized RFA to determine if we can predict 
the HNSCC (primary or metastatic) outcome by using the tissue microbiome data. Our results demonstrated 
that the accuracy was low in predicting primary and metastatic samples (19%, 37%), but greatly improved when 
we grouped the primary and metastatic samples into a single group as ‘unhealthy’ (76%; Table 2). The use of 
differential OTUs to predict the HNSCC outcome might not be sufficient, since the majority of the OTUs were 
shared between the normal and the HNSCC tissue types. In addition, unlike the Zackular study that generated 
predictions from a controlled animal model scenario, the current analysis was applied to human samples, which 
exhibit a greater level of heterogeneity, and therefore likely explain the lower predictive accuracy. However, it has 
been demonstrated that differential OTUs can successfully discriminate HNSCC tumor from control samples32.

The ideal clinical approach to improve the poor prognosis of HNSCC is through prevention and early detection 
and treatment. HNSCC is a complex multifactorial disease that is often only detected at advanced stages3. Hence, 
understanding the changes that occur in the microbiome associated with HNSCC tumors may provide a foundation 
for discovering new risk factors for early detection and diagnosis. In addition, a variety of omics biomarkers may be 
useful as early diagnostic tools for HNSCC49. In this study, we report on the alterations in microbial communities 
observed in primary and metastatic HNSCC tissues. Limitations of this study were i) relatively small sample size, ii) 
limited subject diversity and patient health history (specifically for tobacco usage, alcohol consumption and HPV sta-
tus), and iii) heterogenic nature of microbial community based on tissue geography. In this study, we present findings 
that can serve as a key baseline data for future validation studies. If the altered microbiome is an important risk factor 
for HNSCC, it will be critical to understand its contributions along with those of other known risk factors. Although 
it is unclear whether the changes in the microbial composition cause or promote HNSCC or are the result of changes 
in the cellular activity of cancer cells, more comprehensive analyses involving tissue transcriptomics, proteomics, 
metabolomics and the microbiome will help better understand the role of host-microbial interactions in cancer.
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