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Abstract 

This paper reports on one aspect of a collaborative project exploring 
applications of AI to Nondestructive Evaluation (NDE). The goal of NDE 
is to determine whether parts under evaluation are "good" or "defective" 
without damaging the parts. Piezoelectric probes are often used to pro­
duce ultrasonic signals that indicate the existence of cracks and other 
defects inside solid materials. This paper shows how knowledge-intensive 
explanatory reasoning can be used to construct an interpretation of the 
signals, simultaneously classifying the material under evaluation. 

1 Export Authority: 22 CFR 125.4(b) {13). 
2Research supported in part by National Science Foundation grant number IRI-8813048, 

Douglas Aircraft Company, and the University of California MICRO Program. 
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1 Introduction 

The goal of nondestructive evaluation (NDE) is to determine whether parts under eval­
uation are "good" or "defective" without damaging the parts. Piezoelectric probes are 
often used to produce ultrasonic signals that indicate the existence of cracks and other 
defects inside solid materials. Ultrasound is widely used to test materials during manu­
facturing and service. For example, aircraft manufacturers use NDE techniques during 
the production of aircraft and airline operators also employ NDE techniques to maintain 
and inspect their fleets in service. 

In (Amirfathi, Morris, O'Rorke, Bond & St. Clair, 1991; O'Rorke, Morris, Amirfathi, 
Bond &St. Clair, 1991; St. Clair, Bond & Sabharwal, 1990), we reported on methods for 
applying techniques from AI research on learning and vision to NDE. These techniques 
were aimed at the automatic construction of systems associating symptoms observed in 
NDE signals with classifications of parts (e.g., "nominal" or "defective"). The resulting 
decision methods are subject to the well-known limitations of first generation expert 
systems (Partridge, 1987). 

This paper presents an alternative (second generation) knowledge-based approach to 
the interpretation of signals resulting from nondestructive tests. The new approach uses 
knowledge about the physical situation including knowledge about the structure of the 
part being tested. This will enable the system to make distinctions currently made only 
by human NDE technicians. 

2 Representing NDE Knowledge 

The approach requires rules associating characteristics of observed NDE signals and phys­
ical scenarios with diagnoses. The first step is to determine the relevant knowledge to 
represent and a suitable representation language. 

We want to talk about signals, signal sources and sinks (transducers). We need a 
language for discussing parts under evaluation (e.g., test blocks, their top surface, interior, 
bottom surface, cracks, etc.). Some knowledge of the physics of signal propagation is 
necessary. We also need a language for describing NDE signals qualitatively. 

We illustrate the kind of knowledge and representation necessary for an abductive 
approach to NDE in terms of some test blocks used for calibrating ultrasonic probes. 
Figure 1 is a sketch of a testing scenario using a standard test block. In this pulse-echo 
"A-scan" testing scenario, a piezo-electric quartz transducer is used to send ultrasonic 
pulses into the block. The transducer is both signal source and sink; it sends and later 
receives pulses. 
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2.1 Geometry 

In this paper, we describe a theory that covers a set of nine test blocks. Each block is 
an aluminum cylinder 2 inches in diameter. The blocks are different sizes, but each block 
has a 3/64 in. diameter hole extending 3/4 in. up from the bottom of the block. The 
top of the (air filled) hole simulates a crack. The hole is plugged with sealant (probably 
no more than 1/4 in.) to prevent corrosion. The block shown in figure 1 has a crack . 25 
inches deep (so the block is .75+.25=1.0 inches high). 

The beam of sound is collimated and approximately 1/4 inch in diameter. Because of 
impedance mismatch at the crack, almost all sound energy incident on the crack (on the 
top of the hole) is reflected back to the transducer. Little or no energy is reflected back 
from the sealant. Some energy is reflected back from the bottom of the cylinder, however, 
since the transducer and the beam of sound are wider than the crack. 

We can represent relevant geometrical features of the test block using facts: 

depth_l(front(Block), 0). 
depth_l(back(block31, 0.8125). 
depth_l(back(block32, 0.875). 
depth_l(back(block33, 1.0). 
depth_l (back(block34, 1.125). 
depth_l(back(block35, 1.25). 
depth-1(back(block36, 1.375). 
depth_l (back(block37, 1. 5). 
depth_l(back(block38, 1.625). 
depth_l(back(block39, 1. 75). 

The first statement says that the front surfaces of all the test blocks are at depth zero. 
The remaining statements give the depths of particular test blocks. For example, block33 
is one inch deep. 3 The depths of internal features (such as manufactured holes, known 
defects, etc.) could be specified similarly. 

2.2 Signals 

A NDE signal derived from a test block is shown in figure 2. Qualitative descriptions can 
be derived from this sort of NDE time-series data using techniques from machine vision. 
(See (O'Rorke, et al., 1991) for details.) An example is: 

3 So the crack is 1- .75 = .25 in. deep in block33. Note that the first two depths and cracks are 0.0625 
in. apart but after that the depth increases in regular increments of 0.125 inches. 
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Figure 1: A Nondestructive Evaluation Scenario 
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Figure 2: An NDE Signal 
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signal(d35,block35). 
peaks(d35,3). 

peak(d35,1,d35p1). 
ptime(d35p1,13.5). 
amplitude(d35p1,115.26). 

peak(d35,2,d35p2). 
ptime(d35p1,116.5). 
amplitude(d35p1,14.33). 

peak(d35,3,d35p3). 
ptime(d35p3,273). 
amplitude(d35p1,18.93). 

2.3 Associations 

Given representations of the geometry of the test situation and of the signals that result, 
we need some theory associating features of the signals and the geometry of the part 
under evaluation. It turns out that it is useful to make this association at several levels 
of abstraction, first mapping individual features of the signal to their interpretations, 
gradually working toward an interpretation of the entire signal. 

The following theory covers ideal signals derived from the test blocks. 

normal(Block) : - signal(S, Block), peaks(S, 2), 
peak(S, 1,P1), reflection(P1, front(Block)), 
peak(S, 2, P2), reflection(P2, back(Block)). 

cracked(Block) signal(S, Block), peaks(S, 3), 
peak(S, 1, P1), reflection(P1, front(Block)), 
crack(C, Block), peak(S, 2, P2), reflection(P2, C). 
peak(S, 3, P3), reflection(P3, back(Block)). 

According to this theory, a block is normal if its ND E signal has two significant peaks; the 
first peak is a reflection from the front of the block and the second peak is a reflection from 
the back of the block. A block is cracked if the corresponding signal has three significant 
peaks; the first peak is a reflection from the front, but the second peak is a reflection from 
a crack in the block, and the third peak is the reflection from the back end. 

A lower level of the theory associates individual features of the signal with their phys­
ical interpretations. There are two ways to do this. We illustrate them in terms of 
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constraints on reflections from the front and back walls. The "shallow" approach is illus­
trated: 

reflection(P,front(Block)) ptime(P, T), ampli tude(P, A), 

reflection(P, back(block34)) 
between(O, T, 30), between(100,A, 130). 
ptime(P, T), ampli tude(P, A), 
between(240, T, 250), between(10, A, 30). 

The first statement says that a feature in a qualitative description of a NDE signal is a 
reflection from the front of a block if it occurs between times 0 and 30 and its amplitude is 
between 100 and 130. This statement is true of all the test blocks. The second statement 
says that a pulse is a reflection from the back wall of block34 if it occurs between times 
240 and 250 and has an amplitude between 10 and 30. This statement is only true for 
block34. 

This "shallow" approach associates observations directly with their interpretations. 
The weakness of this approach is that it leads to excessive numbers of ad hoc interpretation 
rules. For example, since the depths of the test blocks are all different, the reflections from 
the back walls will occur at different times, and the shallow approach requires separate 
rules for each block and time. 

A relatively "deep" approach exploits underlying regularities to achieve a more com­
pact theory. Ifwe add general facts such as feature(front(B) ,B) and feature(back(B) ,B), 
then the following theory of reflections covers all features of all the test blocks. 

reflection(P, F) peak(S, N, P), signal(S, B), feature(F, B), 

requal (X, Y) 
between(X, Y, Z) 

depth_c(P, D) 

depth_c (P, DP), depth_l (F, DF), requal (DP, DF). 
Diff is abs(X - Y), between(O, Diff, 0.05). 
X<Y,Y<Z. 
ptime(P, T), D is 0.00499 * T - 0.0902. 

The idea behind this theory is to tell the system the speed of ultrasound in aluminum so 
it can determine automatically whether a spike is a reflection from a feature at a given 
depth. A pulse Pis a reflection of a feature F of block B if Pis the Nth spike in the signal 
S derived from block B and the depth calculated from the peak is roughly equal to the 
depth of the feature. 

In the case of known features, their depths are known and can be "looked up" using 
the predicate depth_l. The predicate depth_c is used to calculate depths from times. 4 

4Normally, Depth=Speed*Time. It turns out that the technicians collecting our data calibrated their 
instrument so that the time values were not measured in standard units. So the linear equation Depth= 
0.00499 x Time - 0.0902 encoded in the theory was derived using function finding techniques. See 
(O'Rorke, et al., 1991). 
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3 Abductive Interpretation of NDE Signals 

Abduction is the construction and evaluation of explanations. In this section, we show 
how abduction can be used to classify parts by interpreting their corresponding ND E 
signals. 

The abduction methods we use are based on logic programming. Our abduction 
engine (implemented in a PROLOG program called AMAL) essentially backward chains 
attempting to reduce observations to known facts by way of general laws. When it is 
impossible to prove the observation by grounding out in known facts, AMAL is capable of 
making assumptions along lines first proposed by Pople (Pople, 1973) and explored more 
recently in research such as (Ng & Mooney, 1991; O'Rorke, Morris & Schulenburg, 1990). 

Figure 3 shows an explanation produced by AMAL. The explanation is a proof tree. 
The root of the tree is the conclusion of the diagnosis. Here, AMAL concludes that 
block34 is normal on the basis of its interpretation of NDE signal n34 taken from block34. 
The details of the interpretation support the conclusion. The indentation in the figure 
shows additional detail corresponding to lower levels of the proof tree. 

The explanation is essentially as follows. The block is normal since the corresponding 
signal has two peaks. The first peak is interpreted as a reflection from the front of 
the block and the second peak is interpreted as a reflection from the back of the block. 
Most of the leaves of the tree (indented two levels in the figure) were given to AMAL as 
facts about the geometry of the block and the qualitative description of the signal. For 
example, the depth of the front wall is given as zero. But some leaves represent PROLOG 
computations at a hidden level of detail. For example, the predicates requal and depth_c 
are computed using PROLOG clauses but no trace is recorded in the explanation. In EBL 
terms, (DeJong & Mooney, 1986; Mitchell, Keller & Kedar-Cabelli, 1986), these predicates 
are considered to be "operational." 

Figure 4 shows an interpretation of a signal from a cracked block. Note the underlined 
emboldened lines in the figure. These are hypotheses that AMAL has introduced in order 
to complete the explanation. They are not provable from the knowledge given initially. 5 

This interpretation identifies the first peak in the signal as the reflection from the 
front surface and the third peak as the reflection from the back surface. It hypothe­
sizes the existence of a crack and assumes that the second peak is a reflection from this 
hypothetical defect. This assumption is made using "predicate-based abduction." An 
"assumability" predicate is used to automatically decide whether goals unprovable by 
unification with known facts or backward chaining are acceptable assumptions. This as­
sumability predicate could be replaced with a query of the user. Alternatively, statistical 
information about the locations of cracks could be used to evaluate the likelihood that 
such assumptions are correct. 

5unless closure assumptions are employed. See (Konolige, 1991). 
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normal(block34) 
signal(n34, block34) 
peaks(n34, 2) 
peak(n34, 1, n34p1) 
reflection(n34p1, front(block34)) 

peak(n34, 1, n34p1) 
signal(n34, block34) 
feature(front(block34), block34) 
depth_c(n34p1, -0.022835) 
depth_l(front(block34), -0 .02533) 
requal(-0.022835, -0.02533) 

peak(n34, 2, n34p2) 
reflection(n34p2, back(block34)) 

peak(n34, 2, n34p2) 
signal(n34, block34) 
feature(back(block34), block34) 
depth_c(n34p2, 1.129855) 
depth_l(back(block34), 1.125) 
requal(1.129855, 1.125) 

Figure 3: An Explanation Produced by AMAL 

cracked (block33) 
signal(d33, block33) 
peaks(d33,3) 
peak(d33, 1, d33p1) 
reflection(d33p1, front(block33)) 

peak(d33, 1, d33p1) 
signal(d33, block33) 
feature(front(block33), block33) 
depth_c(d33p1, -0.022835) 
depth_l(front(block33), -0.02533) 
requal(-0.022835, -0.02533) 

crack( 539.block33) 
peak(d33, 2, d33p2) 
reflection(d33p2. 539) 
peak(d33, 3, d33p3) 
reflection(d33p3, back(block33)) 

peak(d33, 3, d33p3) 
signal(d33, block33) 
feature(back(block33), block33) 
depth_c(d33p3, 1.00261) 
depth_l(back(block33), 1) 
requal( 1.002 61 , 1) 

Figure 4: An Explanation Involving a Hypothetical Defect 
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4 Advantages 

A strength of the method advocated here is that it is can handle situations that would 
be difficult or impossible without abduction. The signal shown earlier was a nearly ideal 
signal. Typically, one must interpret more complex signals containing noise that survives 
the mapping from raw time series data to a qualitative description of the signal. 

Consider the following qualitative signal description. 

signal(d33,block33). 
peaks(d33,4). 

peak(d33,1,d33p1). 
ptime(d33p1,13.5). 
amplitude(d33p1,115.26). 

peak(d33,2,d33p2). 
ptime(d33p2,71.5). 
amplitude(d33p2,19.71). 

peak(d33,3,d33p3). 
ptime(d33p3,219). 
amplitude(d33p3,14.29). 

peak(d33,4,d33p4). 
ptime(d33p4,426.5). 
amplitude(d33p4,6.65). 

The fourth peak is noise that survives the mapping to a qualitative description. This 
signal is easily explained: the anomolous fourth pulse is an echo of the original reflection 
from the back wall. Our approach handles this difficulty if we add the following statements 
about echoes to the theory of signal propagation. 

cracked(Block) : - signal(S, Block), peaks(S, 4), 
peak(S, 1, Pi), reflection(P1, front(Block)), 
crack(C, Block), peak(S, 2, P2), reflection(P2, C). 
peak(S, 3, P3), reflection(P3, back(Block)). 
peak(S, 4, P4), echo(P4, back(Block)). 

echo(P, back(Block)) : - depth_c(P, DP), depth_l(back(Block), DB), requal(DP, 2 *DB). 

The idea behind this extension of the idealized theory is that, while much of an initial 
reflection from the back wall is absorbed by the transducer, some energy may reflect off 
the front wall and again off the back wall. The echo of the initial reflection will arrive 
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twice as late as the initial reflection. (It is as if the echo comes from a "phantom" back 
wall twice as deep as the depth of the block.) The theory of echoes above is based on 
simple physics of signal propagation. It is general in the sense that it works for any of 
the nine blocks. It should be trivial to extend this theory to cover an arbitrary number 
of echoes. 

5 Related Work, Limitations, and Future Work 

Our work is closely related to earlier studies of signal interpretation in medical domains. 
The most important relevant work is the KARDIO study (Bratko, Mozetic & Lavrac, 
1989). It involved the development of a theory relating faults in a model of the electrical 
system of the heart to qualitative descriptions of ECG waveforms. 

One limitation of the work described here is that only one spatial dimension (depth) 
is taken into account. This is sufficient for many diagnostic situations (e.g., pulse-echo 
"A-scans"), but not for others (e.g., "C-scans"). See (Gallagher, Giessler, Berens & Engle, 
1984; McMaster, 1959). Additional dimensions could be used to help produce additional 
explanations. Adding width information, for example, could be useful even in interpreting 
"A-scans." Note that the width of the transducer (and of the ultrasonic pulse) is larger 
than the width of the simulated defect in the test block shown in Figure 1. This accounts 
for the fact that the A-scan data shown in Figure 2 shows a reflection from the back wall 
in addition to the reflection from the simulated crack. (Normally, cracks are wider than 
pulses, so the pulses are completely reflected by the cracks and there is no reflection from 
the back wall.) A two-dimensional NDE theory could be used to compute the widths of 
small cracks from the known width of the pulse and the amplitude of the reflections from 
cracks and back walls. 

Another limitation that we are interested in addressing is the possibility of ambiguous 
interpretations. Some signals can give rise to several explanations. We would like to 
have some way of evaluating competing interpretations. Work on theories of explanatory 
coherence (Thagard, 1989) and on methods for finding most probable explanations seems 
relevant. Techniques for incorporating probabilities could be useful in NDE since cracks 
tend to occur more frequently in known locations and orientations due to stress patterns 
in the materials of interest. 

In addition, we would like to explore the use of hypothetico-deductive reasoning to 
suggest additional measurements that could resolve ambiguous NDE readings. In scanning 
parts that have regularly spaced holes indistinguishable from cracks, it would be useful 
if the ND E program suggested taking another measurement a fixed distance away to 
distinguish between the two possible interpretations of an identical signal. Hypothetico­
deductive reasoning also would be useful in suggesting alternative testing scenarios. For 
example, a spacer helps discriminate hypothetical cracks near the surface from noise due 
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to "near-field effects." Wedges are sometimes used to determine whether a weak spike in 
the signal actually corresponds to large cracks at an oblique angle. Or a C-scan might be 
called for in order better to interpret results of an initial A-scan. 

Acknowledgments 

This research is part of a larger collaborative research project involving the University of 
California, Irvine, Douglas Aircraft Company, the University of Missouri-Rolla, Graduate 
Engineering Center, and McDonnell Douglas Research Laboratories. Earlier results of 
this research were reported in (Amirfathi, et al., 1991; O'Rorke, et al., 1991; St. Clair, et 
al., 1990). The authors gratefully acknowledge M. R. Collingwood and D. J. Hagemaier of 
Douglas Aircraft Company for providing NDE domain knowledge and test data. Thanks 
also to John Gross and Michael Amirfathi of the Douglas Aircraft AI Group for supporting 
and for actively participating in this research. Thanks to Deepak Kulkarni at NASA 
Ames for informing us about methods for mapping signals into qualitative descriptions, 
and to Kiriakos Kutulakos at the Univ. of Wisconsin, Madison, for scale-space code he 
developed at NASA Ames. Discussions with Igor Mozetic on the KARDIO methodology 
helped provide the initial impetus for this line of research. 

10 



References 

Amirfathi, M. M., Morris, S., O'Rorke, P., Bond, W. E., & St. Clair, D. C. (1991). 
Pattern recognition for nondestructive evaluation. In L. Mallette (Ed.), Proceedings 
of the 1991 IEEE Aerospace Applications Conference. Crested Butte, CO: IEEE 
Computer Society Press. 

Bratko, I., Mozetic, I., & Lavrac, N. (1989). KARDIO: a study in deep and qualitative 
knowledge for expert systems. Cambridge, MA: The MIT Press. 

DeJong, G. F., & Mooney, R. (1986). Explanation-based learning: An alternative view. 
Machine Learning, 1(2), 145-176. 

Gallagher, J. P., Giessler, F. J., Berens, A. P., & Engle, R. M. (1984). USAF Dam­
age Tolerant Design Handbook: Guidelines for the Analysis and Design of Damage 
Tolerant Aircraft Structures (Technical Report Air Force Report No. AFWAL-TR-
82-3073). Wright-Patterson Air Force Base. 

Konolige, K. (1991). Abduction vs. closure in causal theories (Technical Report 505). 
SRI International. 

McMaster, R. C. (1959). Ultrasonic Test Principles, Section 43. Nondestructive Testing 
Handbook 

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based gen­
eralization: A unifying view. Machine Learning, 1(1), 47-80. 

Ng, H. T., & Mooney, R. J. (1991). An efficient first-order Horn-clause abduction system 
based on the ATMS. Proceedings of the Ninth National Conference on Artificial 
Intelligence (pp. 494-499). Anaheim: MIT Press/ AAAI Press. 

O'Rorke, P., Morris, S., Amirfathi, M. M., Bond, W. E., & St. Clair, D. C. (1991). 
Machine learning for nondestructive evaluation. In L.A. Birnbaum, & G. C. Collins 
(Ed.), The Eighth International Workshop on Machine Learning (pp. 620-624). 
Evanston, IL: Morgan Kaufmann. 

O'Rorke, P., Morris, S., & Schulenburg, D. (1990). Theory formation by abduction: A 
case study based on the chemical revolution. In J. Shrager, & P. Langley (Eds.), 
Computational models of scientific discovery and theory formation (pp. 197-224). 
San Mateo, CA: Morgan Kaufmann. 

Partridge, D. (1987). The scope and limitations of first generation expert systems. 
Future Generation Computer Systems, 3(1), 1-10. 

11 



l 

~Ill Ill Ill I II Ill Ill Ill I Ill I Ill II llll lllll Ill Ill Ill I II Ill l/1111 
3 1970 00882 6528 

Pople, H. E. (1973). On the mechanization of abductive logic. Proceedings of the Third 
International Joint Conference on Artificial Intelligence (pp. 147-152). Stanford, 
CA: Morgan Kaufmann. 

St. Clair, D. C., Bond, W. E., & Sabharwal, C. L. (1990). Measuring concept strength 
in classification trees. Proceedings of the Fifth International Symposium on Method­
ologies for Intelligent Systems. . 

Thagard, P. (1989). Explanatory coherence. The Behavioral and Brain Sciences, 12(3), 
435-502. 

12 




