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ABSTRACT OF THE THESIS  

Model Selecting Upon Cell Differentiation Shows Minor Changes in Modularity in the Gene 

Networks 

by  

Shea B. Summers 

 Master of Science in Biology  

University of California San Diego, 2019  

Professor Scott Rifkin, Chair  

   

       It is difficult to research the evolution of cell differentiation in nature because of the 

unavailability of a suitable model organism and the advanced time since the divergence of single 

and multicellular organisms. Instead of looking at a natural model we decided to explore this 

issue with a computer model. We based our model on the one proposed by Andreas Wagner in 

1994 to look at the evolution of gene networks. We modified the model to account for selection 

goals that promoted cell differentiation. Because of the prevalence of modular components in 

more advanced biological systems we expected modularity to form in the evolved gene  



 

 x 
  

networks. Therefore, we tested the gene networks for modularity using the K-Means clustering 

test.  The model was completed after many editions that swapped between concepts introduced 

in previous scientists’ adaptations of the Wagner model. Increased modularity was observed in 

the evolved populations of the model over the unevolved populations, 0.149 over 0.136 p < 2.2e-

16. However, this change was so minor there may be no biological significance. Additionally, 

whether the model evolved towards one fitness goal then the other or both at the same time was 

tested and found to be both. Finally, whether connectivity increased when selecting for 

differentiation was tested and the results are inconclusive at best. 
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 Life on earth presents itself in a variety of ways. From fish to fowl, animals roam the 

earth, plants take root, and bacteria survive pretty much anywhere. There are many clear divides 

in the tree of life, but few are as obvious as the divide between multicellular and unicellular 

organisms. Somewhere deep into the past, life made a huge jump changing from being one cell 

holistically doing all the organism needed to live, to a collection of cells that separated functions 

and combined formed one working organism. How did this happen? No one really knows and 

there are many problems with studying it. The biggest is that the evolution of multicellularity for 

the common ancestor of the plants and animals that we have today happened too long ago into 

the past to study with our DNA analyzing techniques (Miller 2010). This is mostly due to with so 

many changes happening to the genomes that the development of multicellularity is hard to 

pinpoint. There are some organisms that could be used to model the development of cell 

differentiation and multicellularity, Volvox and Dictyostelium discoideum. The volvox are a 

type of algae that have developed to have only two distinct cell types, somatic cells and 

reproductive cells (Gilbert 2000). They seem to be the simplest multicellular organism 

discovered, while Dictyostelium discoideum are unicellular organisms on the cusp of 

multicellularity. They are a unicellular organism that reproduces with binary fission, but when 

nutrients are exhausted in their environment thousands of them congregate to form a slug like 

colony that consists of cells used to move the colony, dying off later, and cells that will go on to 

reproduce at the new habitat (Gilbert 2000). These organisms seem to be on either side of the 

differentiation divide, but even using them as models it is hard to find the bridge between the 

two. Therefore, we turn to computer modeling to do so. 

Introduction
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 Computer modeling has been important to science since the advent of computing, helping 

humans recreate things they can’t understand or don’t see in the real world. Therefore, it is a 

great solution to a problem of trying to understand a phenomenon that we know to have 

happened like the development of cell differentiation and multicellularity. Rather than build a 

completely new model for this project we decided to adapt an existing model, the Wagner model. 

The Wagner model is a simple mathematical model made by Andreas Wagner that was originally 

used to model the effects of gene duplications effects on a gene network (Wagner 1994). He 

would go on to adapt the model for use in an investigation into evolutionary plasticity (Wagner 

1996). It is a very easy to understand model that mainly consists of a gene network matrix and an 

expression vector being used to simulate the development of an organism (Wagner 1996). This 

simplicity in design and focus on gene networks has caused it to be a staple in evolutionary 

modeling and to be commandeered and adapted for many unique purposes. It has been used to 

investigate developmental stability (Siegal & Berman 2002), network robustness (Sevim & 

Rivkold), genetic assimilation (Masel 2004), and the effect of sexual dimorphism on gene 

networks (Fierst 2011). Using the Wagner model as a basis and the many offshoot models as 

inspiration for changes we set out to create a model that would simulate as simply as possible the 

evolution of a gene network that was under selective pressures to differentiate its cell type 

according to outside stimuli.  

 With the goal of evolving differentiation set the next question would be what do we 

expect to happen to the gene network? For this we looked at somethings held common in 

evolving more complex organisms, modules (Wagner & Mezey 2001). Modules are the 

clustering of elements in a network or development that are relatively autonomous in function. A 

good example of this is the development of limb buds in embryos (Wagner & Mezey 2001). 
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Complex organisms have a multitude of these modular structures in their genomes and 

development (Wagner 2007). There is also some mystery around the origin of modularity in 

biological systems, and whether the mechanisms from which it arises (Wagner 2001, 2007 

Kahstan 2005). Therefore, we hypothesis if a model based on the 1996 Wagner model is built 

that selects for cell differentiation then the resultant gene network will become more modular 

because of it. 

 

 

Figure 1: Model Flow Chart 
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Mutation
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Model: 

The model begins with creating a population of x individuals each having n genes. The genes 

can be thought of as all genes that make up the organism’s genome or just a small subsect of 

genes concerning a function that needs to be differentiated between cell types. in the final cell 

differentiation model x = 1000 and n =20. All individuals are denoted by their gene network. 

This gene network is a matrix with n rows and n columns. Each value denotes the effect of the 

row gene on the column gene (Figure 1). In our model these values are randomly chosen 

between -1 and 1. However not all genes affect the expression of other genes therefore some 

values in the gene network are changed to 0. The percentage of which is denoted by the variable 

Figure 2: Representation of a Gene Network, n = 4 
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c, c 

 

Figure 3: Visual Representation of a Gene Network, n =4 

= 0.6 in the final model.  Each individual has one expression vector, a vector of length n whose 

values, either 0 or 1, denote the expression level of each pertinent gene at the start of the 

organism’s life cycle. The individual develops by a series of cross products between their gene 

network and the expression vector. The starting expression vector is crossed with the gene 

network and a vector of length n. All vector values greater than 0 are then changed to 1 and the 

rest are changed to 0. This vector is the new expression vector of the individual and is then 

crossed with the individual’s gene network, repeating I ±6 times, I = 80 in the final model. This 

model structure is consistent with the original Wager Model and most of its off shoots.  

However, to look at cell differentiation one major change was made. Instead of one 

expression vector there are two. The second expression vector is nearly identical to the first 

except for one value being changed from either 1 to 0 or vice versa. This is to simulate a change 
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in environment or an initial difference between two cells that acts as a signal to the organism to 

have two specific and different expression patterns in two cells at the end of development. This 

means that after development every individual is defined by three objects, their gene network, 

the final expression vector resulting from the original starting expression vector (final expression 

vector 1), and the final expression vector resulting from the modified expression vector (final 

expression vector 2) (Figure 4). 

 

After going through development, the individuals’ finesses will be evaluated. Because the 

model is trying to evolve cell differentiation two different fitness goals are set. The individual is 

then evaluated by how closely each final expression matches the fitness goals. We used target 

expression patterns as our fitness goals,  (0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1) was the goal for 

one vector and (1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0) was the goal for the second. The number 

of matching values between final expression value 1 and fitness goal 1 were added to the number 

of matches between final expression value 2 and fitness goal 2. These combined matches, m, 

Figure 4: Example of Development n=2 
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were then divided by 2 * n, m /2 * n. The resulting value is taken as the fitness for that 

individual in the population. 

With the fitness evaluated the population then goes through selection. At this point there 

is a population of x individuals each with a fitness value between 0 and 1. The next generation 

will also have a population of x. To choose which individuals “leave offspring” (have their gene 

networks moved to the next generation) the fitness must be a strong factor, but some randomness 

will still be introduced. To accomplish this for each position in the next generation an individual 

from the current generation is randomly selected and a random number between 0 and 1 is 

generated. The fitness value is compared to this random number, if the fitness value is higher 

than the random number then a copy of that individual’s gene network is placed in that position 

for the next generation. If the fitness value is lower than the randomly generated value then the 

individual from the current generation does not get a copy of its gene network placed at that 

position in the next generation, instead a new random individual from the current generation is 

selected and a new random number is generated. Once the entire next generation is filled, it is 

mutated. 

Mutations are simulated in the model by creating an array of values the same dimensions 

as the run’s population, x * n2 or 1000*202, then each value is assigned a randomly generated 

number from 0 to 1. A mutation rate r is set (in our case it was 0.0005) and if that randomly 

assigned value is under r, then that position in the population gets a mutation. The mutation 

replaces the value at the determined index with a new value between -1 and 1. When all 

mutations are carried out the population is returned to the start of its life cycle and begins 

development again. This goes on for a pre-determined number of generations, g, or until any 

increase in fitness from generation to generation flatlines. 
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Tests 

K-Means 

 To determine whether a gene network forms modular structures we used the kmeans 

function in R. This the R function that runs K-Means clustering analysis on a data set. This 

clustering method tries to separate a data set into k groups such that the sum of squares from any 

point in that group to the groups center is minimized. Two outputs of this function were 

important to our analysis, the totss and betweenness of the kmeans groups. The totss is the total 

sum of squares, and the betweenness is the sum of squares outside of the group. The large that 

value is in comparison to the totss, the better grouped the data is in the kmeans analysis, the more 

modular it is. We took this analysis and simplified it into one value betweenness/totss which we 

will refer to as the k-means value.  

Index Weight 

 To test if there were any indices within the network that were more sensitive to changes 

in value then others a test was run.400 copies of the network were cloned. In each one, one value 

within the network was replaced with -0.9. The networks were then evaluated for fitness. The 

value was then replaced with 0.-8 and repeated with intervals of 0.1 until 0.9. 

 

Past Models 

This model has gone through many changes, and this section will review some of the more 

important changes. 
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Continuous Expression 

 The first model that we designed had continuous expression values. This feature differs 

from the original Wagner model (Wagner 1996) which used -1 and 1 to denote gene expression 

being either on or off, however when first constructing the model we felt that continuous 

expression values were more characteristic of life and had seen other successful examples of the 

model being changed in such a way (Siegal 2006).Therefore we set the gene expression levels to 

be between 0 and 1. This resulted in a smoother fitness curve and a longer generational time to 

reach near perfect fitness. We reverted the model back to an on/off expression model for three 

reasons, first to try and force a more modular structure, second to simplify the output to more 

easily interpret the data, and third to return to the original form of the Wagner model instead of 

an offshoot.  

 

No c 

 Connectivity, or what percentage of the gene networks values are not 0, was a basic 

component of the Wagner model. However previous studies demonstrated that a higher 

connectivity or c will cause higher evolutionary stability and robustness (Siegal & Berman 2002). 

Therefore, we justified having a network fully connected to increase said attributes without 

selecting for it. However, we later felt that having a fully connected network would be an 

assumption too far from reality to justify adding to the model. Additionally, breaking up the gene 

networks with random 0 values would inherently make it more modular, and hopefully force 

more noticeable modularity in evolved networks than we had seen. 
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Summed Fitness/All Zero or All One 

 The original Wagner model was used to simulate, and test how gene networks changed 

due to duplication (Wagner 1994) and evolutionary plasticity (Wagner 1996). The original model 

and many of the variations have a set optimum fitness goals for after development. Other papers 

in that attempt to evolve modularity into a network note that adding such optimums increases the 

likelihood for modules to occur (Kashtan 2005). Therefore, we knew we needed clearly defined 

fitness goals that were centered around differentiation. We first followed the example of Emilia 

Huerta-Sanchez and her version of the Wagner model and set one fitness goal to be all fully 

expressed genes (Huerta-Sanchez & Durrett 2007), (1,1,1,1,1….), and have the other goal as no 

gene expression from any of the genes, (0,0,0,0,0…..). To simplify this further fitness was tested 

by comparing the sum of an individual’s final expressions and a fitness goal of n or 0. However 

we worried about the effects of having an all 0-expression optimum on the gene network and the 

simplicity of achieving all 1 or zeros as expressions. Therefore, the expression goals were 

changed to be perfectly dissimilar but equally complex expression vectors of alternating ones 

and zeros, (1,0,1,0…) and (0,1,0,1…). 
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Exact Development 

Originally the model had a fixed end point in development. Instead of having individuals 

develop over 80 ± 6 iterations, every individual developed for exactly 80. Stability is a large 

component of both papers explaining the Wager model (Wagner 1994, Wagner 1996) and has 

been tested in many papers since (Bergman & Siegal 2003, Sevim & Rivkold 2008, Pinho 2012, Masel 

2004). Initial testing with our model seemed to show a higher frequency of stable networks than 

previously seen (Bergman & Siegal 2003). Therefore, stability was not initially tested. However, 

after many changes to the model that were largely a return to the original proposed by Wagner 

stability became an issue. To test it we tracked fitness of individuals during development. We 

found the fitness of the individuals fluctuated constantly during development and the finesses we 

observed after iteration 80 often bore no resemblance to the fitness at iteration 79 or, if we 

extended development, at iteration 81. There needed to be a change in development that would 

Figure 5: Fitness over Development after Change 
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cause the expression vectors to stabilize by maturity as we added, variation to the development 

time. This lack of stability clearly showed that the model would do what we told it to do and 

nothing more. The added variation would force the gene networks to evolve in such a way that 

the expression values were stable and at highest fitness at all possible maturation points. This 

resulted in stabilizing the expression vectors to a level we felt was acceptable for the model. We 

are not as concerned with stability it is not up to the level of (Bergman & Siegal 2003) but as 

seen in Figure 5 the fitness values seem to be consistent for the average individual in a 

population, and there seems to be a clear developmental trajectory after the change. 

 

Unique Individuals 

 The original Wagner model does not have unique individuals in the population at the start 

of the simulation and this is a common trait to the offshoot models as well. We attempted to add 

more genetic diversity to the initial population by having every individual in the population be a 

completely different constructed network. In tracking the progress of these populations, it 

became obvious that the initial genetic diversity was quickly consumed by one superior 

individual and their offspring. We felt that because of these results there was little point in 

adding another variable to the model that would be quickly rendered insignificant after 100 

generations. particularly since mutation seemed enough to generate diversity for selection to act 

upon. The populations in our model start with clones of one individual 
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Additive Mutations 

 There are two theories on how to simulate mutations. The first is the way the original 

Wagner model does, and our current model follows. The mutation is thought to be separate from 

the gene networks initial value. Therefore, a mutation will replace that value with a new 

completely random value that is still within the constraints of the initial assignment of value 

(Hodgin-Davis 2015). If the mutated index has a value of 0.5 the mutated value can be any 

number between -1 and 1. There is another school of thought that assumes that a mutation builds 

from the current expression/network value of the gene (Zeng & Cockerham 1993). If the mutated 

index has a value of 0.5 then the mutated value can be 0.5 ± (0-1). This thought process was 

what we ascribed to when initially forming the differentiation model, and the mutations were 

additive. One major problem came up in the model, with additive mutations the gene network 

would occasionally get values that were significantly higher than the initial formation allowed. 

For example, one evolved gene network had an interaction value of approximately 8. This led to 

the decision to change the way mutations worked in our model to more closely resemble the 

original Wagner model. Another option to correct this could have been adding more constraints 

to the additive mutation mechanism so that the gene network values could not go beyond set 

boundaries, but we felt that a return to form of a model was necessary. 

 

Expressions Represented by -1 and 1 

 In the original model expression of a gene is noted as being either on or off, in the 

expression vector this is noted by -1 for off and positive 1 for on. There appears to be no 

reasoning for these values other than to denote an active an inactive gene as -1, and many papers 
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change the model to have the inactive/off state be represented by a 0 instead (Masel 2004, 

Espinosa-Soto 2011). They reason that 0 being the representation of no gene expression is a more 

biologically accurate interpretation than using -1. We agree with this thought process and have 

implemented it in our model. However, we have implemented the -1 and 1 notation in past 

editions and see no real difference in output, so it is an arbitrary decision. 

Variable Explanation 

Variable Function Value in Final Model Runs 

x Number of individuals in a 

population 

1000 

n Number of genes selected 

upon 

20 

c Connectivity, fraction of 

nonzero values in a gene 

network 

0.6 

I Iterations performed during 

development 

80 

g Number of generations 

carried out in a run 

40,000 

r Mutation Rate 0.0005 

 

 

 

Table 1: List of Variables 
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Results 

Evolution 

 The first result we were concerned with was whether the model would actually evolve a 

population that reaches the set fitness goals, or at least comes close enough to show that we are 

evolving populations towards differentiation. This seems to have been accomplished as shown in 

Figure 6. The average fitness of the population will always lag the best fit because of the high 

mutation rate, but over all the two lines seem to match each other’s progress. There is one 

individual more fit than the others that survives drift and proceeds to have its offspring take over 

the population The Best Fit line also has many peaks that fall off by the next couple generations, 

which shows that some more fit individuals are lost to drift. As that as the fitness increases so 

Figure 6: Graph of Complete Model Fitness across Generations 
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does the number of generations it takes till the next jump in fitness. The graph shows a pattern of 

evolution expected from the model. 

Modularity 

 Throughout the building and refining of our model we have been searching for the 

development of modularity within the gene network. To do this we would take a newly generated 

population and get their k-means value for each individual in that population. The population 

would then go through 39,000 generations of evolution to meet the differentiation fitness goals. 

The mean value for both the evolved and un-evolved networks were compared and showed no 

change in modularity. Figure 7 shows a violin plot of 370 runs using the variables listed in Table 

Figure 7: Violin Graph of K-Means for Evolved and Un-Evolved 

Populations 
Evolved Pre-Evolved 
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1 showing these results. When a t-test was run on the data the p value <2.2e-16, with mean 

values of 0.1362998 for the pre-evolved and 0.1496850 for the evolved. Therefore, we can 

conclude that through the evolution of a population selecting upon cell differentiation modularity 

does form in the population’s gene networks. However, we expected more of a difference in 

mean than seen, therefore we can only call this a minor change in modularity and have doubts on 

its biological significance. Though not as numerous as tests done to make the figure above every 

edition of the model was tested for modularity using k-means clustering and came up with 

similar values to the means for both evolved and un-evolved individuals. Graphical 

representations of the gene networks were also made to better visualize the data similar to Figure 

3 and use some of the graphical clustering tests in R. Specifically cluster_walktrap was used, 

which is a function that through random pathing in a graph network tries to find highly 

connected portions of the graph known as communities. This test yielded no significant 

difference in modularity of the gene networks from evolution. The index weight tests were then 

preformed to try to find any other forms of structure in the gene networks besides modularity. 

The results of this were a seemingly random set of indices that caused major change in fitness if 

altered. They were not the indices with the most negative or most positive values, nor was the 

replacement value that caused the most extreme change in the network the one that caused the 

most extreme change in fitness. The columns were even normalized to see if it was the values 

with the highest effect on their respective genes that were being highlighted, and that also 

showed no similarities to the seemingly fitness important indicis. 

 

 

 



 

18 
 

Development 

 After seeing minor change in modularity from un-evolved to evolved networks we 

decided to investigate the evolutionary mechanics to see whether the model evolved to reach one 

fitness goal and then the other or both at the same time. To do this we took the previous 370 runs 

of the model and looked at the fitness values for each fitness goal every 100 generations. To 

more easily analyze the data only 1000 individuals from those runs were formed into a 2-

dimensional histogram. the results of which are in Figure 8. The lighter the area the more 

individuals that have a difference of fitness of that magnitude in that generation. The figure 

shows at the start of the runs the difference is at its maximum for most of the population, and as 

time progresses that difference steadily decreases. This seems to indicate that they seemed to 

evolve mostly together with one goal being slightly more fit at any given time.  

Figure 8: 2D Histogram of Fitness Differences Between the Two Fitness goals over Time in 

Generations 
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Connectivity 

 Finally, we decided to look at how selecting for differentiation would affect the 

connectivity if the starting population had individuals with different connectivity values, c. To do 

this we edited the model so that the original population created unique individuals with a 

randomly chosen c normally distributed around 0.5. This can be seen in Figure 9, in the first 

graph for a pre-evolved population. The population then went through 1000 generations selection 

in the model. 100 of these runs were performed. For each individual in the starting populations a 

c value was obtained, and a histogram was made to examine the connectivity distribution and 

mean, which was 0.5. The same was done to for the populations that went through 1000 

generations of evolution, with a mean of 0.496. The data shows that there is a noticeable change 

from the normal distribution at the start of the runs to values skewed towards a lower c value and 

a smaller range than the original distribution, as seen in the second graph of Figure 9. 
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Figure 9: Connectivity Graphs 
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Future Directions 

 I believe that this model has further unexplored potential, that will be realized in future 

experimentation. Though there was little significance to be found in searching for modularity in 

gene networks of evolved individuals from the simulation, some sort of structure or at least 

collection of weighted values seems to be present in the networks. A further examination of this 

aspect could yield more answers on the general structuring of gene networks in more advanced 

multicellular organisms. Exploration into the effects of selection for differentiation on the 

development of the individuals would also be an aspect of the model that was not explored in 

depth but could yield interesting results. Finally, I hope that sexual recombination and gene 

duplication could be added into the model, to more closely resemble the original Wagner models, 

and make the cell differentiation model add vital evolutionary components that could bring out 

the structure we had been searching for throughout our experimentation. 
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