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Maximization Problems on Graphs with
Edge Weights Chosen from a Normal Distribution

Abstract

We consider optimization problems on complete graphs with edge
weights chosen from identical but independent normal distributions. wWe
show some very general techniques for obtaining upper and lower bounds
on tne asymptotic behavior of these problems. Often, but not always,
these bounds are equal, enabling us to state the asymptotic behavior of
the maximum. Problems in whicn the bounds are tight include finding the
optimum traveling salesman tour, finding a minimum cost spanning tree,
ana finaing a neaviest cligue on k vertices. We then discuss some
greedy heuristic algorithms for these problems.

1. Introduction

Many results have been proven about the properties of random
graphs. Same of these [AV77, BE75, ER59, ER68, ER66, GM75, Ma7@, Po76,
Wa77a] deal with graphs constructed by letting edges be present or
absent according to some distribution; one then tries to estimate the
probability that a subgraph of a given type will be present. We will
call such a problem a subgraph existence problem. Another area of

interest is algorithms on graphs in which all edges are present, but
weights are assigned to the edges according to some random distribution;
one tnen tries to find the heaviest (or lightest) subgraph of a given

type. We will call such problems subgraph optimization problems. For

example, if a traveling salesman problem is constructed using the
buclidean distance between n points chosen from a uniform distribution
in tnhe unit square, tnen asymptotically the maximum solution is
proportional to V/;‘[BHHS9]; a very efficient algorithm has been
designed whose expected behavior is asymptotically optimal [Ka76]. The
assignment problem for the case in which weights are chosen from a
uniform distribution has been studied by several people [Do69, Ku62,
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wa77b]; Donath [Do69] has also considered the case in which the edge
weights have a value x in |[@,1] with probability proportional to xK for
some kK. In this paper we investiyate the behavior of a number of
optimization problems on complete graphs with edge weights chosen
inuepenuently from a normal distribution.

Throughout this paper, Gn wili be a random variable which is a
camplete, undirecteda, weighted, labeled graph on n vertices; we will
assume the vertices are labeled 1,2,...,n. Weights are chosen,
independently, from a normal distribution with mean # and variance 1.
(All of the results proved in this paper can immediately be generalized
to the case in which some other mean and variance are specified,
provided these quantities are the same for all edges; we assume zero
mean and unit variance to minimize notation.) G will denote some
particular weighted complete graph. The weight of the edge connecting
vertex v and w will be denoted d(v,w).

Let Sn be a set of labeled graphs on n vertices; again, the
vertices are labeled 1,2,...,n, so there is a natural one-to-one
correspondence between the vertices of an element of Sn and the vertices
of Gh' All elements of S, are assumed to have the same number of

eages; call this number m . For any H in S}, and any weighted graph G,

let w(G,H) be the number found by summing, o;er all edges in H, the
weight of the corresponding edge in G. For a given G, we wish to choose
H in sn SO as to maximize W(G,H); this maximum will be called Wmax(G)‘
Note tnat, for example, if Sn is the set of the (n-1)!/2 cycles on n
vertices, Wmax(G) gives the solution to the traveling salesman problem.
We wish to investigate the expected behavior of Wmax(Gn)' (Often in an
optimization problem, we wish to minimize some quantity; for
uniformity, however, we will always assume that we are maximizing
quantities. The results obtained here will, by symmetry, immediately

carry over to the corresponding minimization problem.)

In section 2, we will discuss some simple but useful facts about
normal distributions. 1In section 3, we will present a very general
technique for obtaining upper bounds on the expected values of maximum
solutions to such problems. The method used is to examine the tail of
the distribution of total weights of a subgraph from Sn in G,. A




Page 3

similar icea was used by Donath in obtaining a lower bound on the
solution to the assignment problem over n by n matrices whose columns
are random permutations of the integers 1 to n [Do69]. There it was
viewed as an enumeration argument; here the random elements are drawn
fram a continuous distribution so the argument has a somewhat different
flavor. Section 4 discusses a very general technique for obtaining
lower bounds on these expected values; the method is to relate a
subgraph optimization problem to the corresponding subgraph existence
problem. (Walkup [Wa77b] independently expoited a similar relationship,
in estimating the optimum solution to random assignment problems with
edge weights chosen from a uniform distribution.) It turns out that
cambining the bounds of sections 3 and 4 often enables us to make rather
precise statements about the asymptotic behavior of the expected
maximum, as will be shown in section 5. In section 6 we will
investigate the behavior of some simple algorithms for some of these
proolenms.

2. Some facts about normal distributions

We shall often use random variables chosen from a normal
distribution with mean @ and variance 1. Such a variable will be called
a unit normal variable. For convenience, we shall let f (respectively

F) be the corresponding probability density function (respectively
probability distribution function). Thus

2
(211)_1/2 e-x /2

X
J/’ £(t) dt
-]

-

]

f(x)

F(x)

we will often be making statements about the asymptotic behavior of
functions. The foilowing aefinitions will be assumed.

g(x) 7 n(x) <==> g(x)-h(x) = o(h(x))

g(x) < n(x) <==> max(g(x)-h(x),0) = o(h(x))

g(x) > n(x) <==> max(h(x)=g(x),d) = o(h(x))

Note that
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9(x) < h(x) and g(x) > h(x) <==> g(x) ~ h(x).

Also we will frequently discuss probabilities and expected values.
If X is a random variable and A anda B are events, let P{A} be the
probapility of A, P{A|B} be the probability of A given B, E[X] be the
expectea value of X, ana E|X|A] be the expected value of X given A.

Ine following few observations, which are well-known or easily
establishea, are useful.

Fact 1. Asr - @,

a) t71(r) - +v 2 log £t
b) Fl(r) ~ - v 2 log rL
¢) Fla-r) ~ v'2 1og r1

Proof sketch. Part (a) is easily established; parts (b) and (c)
follow from (a) and well-known facts about the relationship between £
and F. (See [Fe68, p. 175].) B

Fact 2. ILet X be a unit normal variable and let A be an event
which happens with probability p. Then as p-> 0,

a) IEIX | A]l <V 2 log p2.
o) ELIX| | A] < 2 log p L,

Proot sketch. For part (a), clearly the quantity in question will
be maximizea if the event A has the form "X>a" for some a; it is not

harua to show tnat even in this case the bouna holds. A similar argument
holas for part (b). B

Fact 3. Let X be a random variable which is formed by taking
max
the maximum of n unit normal variables. Then E[Xmax] ~v2logn.
Moreover, for any e>g@,

\ /2
PX . <vV2(-e) logn}¢e™ . (1)
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proof sketch. First we prove that (1) holds. Let
M(x) = P{X  <x}. Then M(x) = [F(x)]". Let a=+v 2(l-e)log n . As
n->® (and hence a->®), we have

Fa) =1-at fa) (1+0(@3)
(See [Fe68, p. 175].) Thus,

M@ " [1-at f@) @ +o0@?))"

-n al f(a) (1 + O(a'z))

<e
- a-l (2ﬂ)—1/2 o~ (1-e) log n (1 + O(a_z))
= e
a7l (209712 1€ (1 4 0@@2)
=e
e/2
<e™

Next we establish the asymptotic behavior of E[Xmax]. First we

show blxmaxj >v 2103 n. Choose any e>d. Let OK be the event that
xmax > Vv 2(1-e) log n'. Then we may write

Elxmaxj = P{OK} E[xmaxloxj + P{not COK} E[Xmaxlnot OK] . (2)

By the results of the preceeding paragraph, P{OK} - 1; also clearly

EIX 10Kl > ¥ 2(1-¢) log n .

Thus, the first term on the right of (2) is > ¥ 2(1-e) log n .

Fur ther, E[Xmaxlnot OK] is surely less than the sum of the expectations
of the magnitudes of the n random variables. Using Fact 2, we see that
the second term on the right of (2) is

-1 Y
O(P{not 0K} n v 2 log P~L{not OK} ),
which goes to zero, since
B2
Pinot OK} < ™™

Thus (2) pecomes

ELX ] > V2 (l-e) logn .

Since e was cihosen arbitrarily, the desired result follows.
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Next we show that

E[X ] <v21logn. (3)

max

Note that, by symmetry,

ElXax] = BlX oy | Xy = max(Xq,Xy, 00 X )]

= Elxl | X, = max(xl,xz,...,xn)J.

bBut clearly Xl is the maximum witn probability n-l, so (3) follows by
Fact 2. 5

3. An upper bound.

Let Mn = Isnl; throughout this paper, we assume that

n%;%o M = @. For example, if we are dealing with the traveling
salesman problem, then Mn = (n-1)!/2. (Note that since our graphs are
labeled, we can distinguish the elements of S even though they are all
isomorphic.) The result of this sectlon will establlsh that E[W ]

cannot be much less than v’i m log M

Let Hn be a new random variable which is formed by choosing an
element of Sn; each element is chosen with equal probability. When

both Hn and G, appear in an expression, we assume they are chosen
indepenaently.

1
Theorem 1. E[hmax(gh)j < V/Z mn log Mn .

Proof. We begin by showing that
E[wmax(GE)] i
E[W(Gn,ﬂn) IW((;n,un)=wmax G )1. (4)
To see this, note that
E(W(G, 8 ) IW(G, B )=H__ (G,)]

= EW . (G) IW(G B )=W (G )] ()
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Now clearly for any G, at least one H € Sn satisfies
W(G =W (G,); on the other hand, the set of G for which more than
one # € b is maximal forms a space of measure zero. Thus for almost
any G, tne probability of W(G,H )—w (G) is precisely M l Since
this is indepenaent of G, it follows tnat the right side of (5) is
simply L[Whax(Gn)]'

For any H in § ne W(G ,H) is simply the sum of m . unit normal
variables; hence W(G +H) has a normal distribution w1th mean @ and
variance m . Since th1s is true for any H, W(e, +H ) must have this
same distribution. Now W(G M) = Wiax (6,) is an event which, as
noticed before, has probablllty M 1, thus by (4) and the obvious
generalization of Fact 2 to normal variables which have nonunit

variance, the theorem is established. ]

4. A lower bound.

In tnis section we obtain an upper bound on L[W ]. Many results
have been obtainea which demonstrate tnat for suff1c1ently dense graphs,
certain properties are very likely to occur. More formally, define a
random variable G noep to be a graph on n vertices, where each edge is
present with probability Py independently of the others. Given a real
sequence p and a sequence S of classes of subgraphs, let Q be the
probablllty that the graph G n,pp fails to contain an element of S,

Then, for example, it is known [AV77 Po76] that for any i, we can
choose a ¢ large enough so

e

Qn=0(n )

if Sn is the set of hamiltonian cycles on n vertices, and
= (¢ log n)/n.

In this section, we establish a theorem which relates results of
this form to the optimization problems we are considering.

Theorem 2. Suppose Qn goes to zero rapidly enough so that

l‘l '

. . =1"_ ~1
< men log g = = o (m, v/log Py

ihen
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EM_ .1 >m v 2 log pn‘l

max- =~

Proof. Consider the following algorithm for choosing an element of

1. Leta-= F-l(l—pn), and let H be some fixed element of S,

2. Let E be the set of edges in G whose weight is greater than a.

3. Let H be any eiement of Sn all of whose edges are in E, and
stop. If no such H can be found, go on to step 4.

4. LetH=nrn

Note tnat if this algorithm stops at step 3, we surely have

W(G,H) > a m_,

so by Fact 1,

/ -1
W(G,H) > mn 2 1log pn "

We must also consider the possibility that H is set to H in step
4, that is, that no element of Sn can be constructed from the edges in
E; call this event FAIL. Now note that distribution of graphs obtained
by choosing all edges of weight greater than F‘l(l = B is identical to
Gh,pn' Thus the probability of FAIL is just Q,- By Fact 2, and the
fact that W(G ,H) is normally distributed with variance m [\, We may
conclude that tne expected weight of H in the event FAIL is
O(v m. log Qn ). Tnen by the hypotheses of the theorem, the error we
cammit by ignoring the possibility of event FAIL is negligible. &

5. Some examples.

We now consider several examples of the applications of Theorems 1
and 2. We shall often observe a happy occurence--the upper and lower
bounds coincide, enabling us to determine the asymptotic behavior of the
maximum solution.
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We begin by considering the traveling salesman problem; Wﬁiﬁ(c)
will denote the maximum weight traveling salesman tour in a weighted
graph G. Theorem 1 easlily gives an asymptotic upper bound of
nv21loyg n. On tne other hand, it is known [AV77, Po76] that the
probability that Gn,pn fails to contain a hamiltonian cycle can be made
to be 0(n™%), tor any &, by letting P, = (c log n)/n, where c is large
enough. Thus, by Theorem 2,

\J

EIW>0(G )] > n v/ 2 log ((c log n)/m)

“"nv21logn.

Thus we easily obtain

Corollary 1. The expected maximum for the traveling salesman

problem is given by E[ngs(cn)] “~nv 21log n.

A very similar result is very easily established for the expected
welght of the maximum cost spanning tree in G, denoted Wﬁzx(g)

Corollary 2. ElWﬁZX(Gn)] “nv 21logn.

Actually, the examples considered so far have not fully tested the
power or Theorems 1 ana 2. For both the TSP and the maximum cost
spanning tree proolem, tne upper bounda could have been obtained by
simply calculating the expectea total weight of the heaviest n or n-1
edges. Also, as we shall see in Section 6, the lower bound can be
achieved by a very simple algorithm. The bounds achieved in the next
example do not appear to be obtainable by such simple arguments.
Consider the problem of finding the weight of the heaviest k-clique in a
graph G, denoted ngio(k)(G). (In the asymptotic statements which
follow, we assume that both k and n tend to infinity, but n goes to
infinity much faster than k.) First note that the number of edges in a
k-clique is ~ k2/2. Further, the number of distinct k-cliques is
C(n,k). Thus an upper bound is

LIQ(K) 2 k:
EWCIK) 6 )] ¢ ¥2(k%/2) log C(n,k)

~k¥2 ¢ 1og n . (6)
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Now the proof of Theorem 1 in [GM75] can easily be adapted to show

that if we let P, = n—2/(k+2)’ then the probability that G, p fails to
- r¥n
contain a k-clique is O(n 3/2). Thus Theorem 2 gives

E[ngio(k)(ch)] > (k2/2) ¥ 2 log n?/ (kK+2)’
~ (k%/2) V' 2 (2/(k+2)) log n

- k3/2 Vv log n (7)

Combining (6) with (7), we get the following.

Corollary 3:
CLIQ(K) - N P B T, |
Elwmax G )1 "k log n .

Finally, we give an example in which the upper and lower bounds
guaranteed by Theorems 1 and 2 a0 not coincide. We will say a graph H
nas property X(k) if

a) H has a clique of size k, and

b) H has k2 edges.

Let Sn be the set of all n vertex graphs with property X(k). Also, let
C(a,b) denote the number of combinations of a things taken b at a time.

First consider the upper bound of Theorem 1. To obtain a simple

lower bound on Mn' imagine we first select a fixed set of k vertices to
: . a ;

be the clique; now choose the remaining k-C(k,2) edges in any way from

the remaining n-k vertices. This gives a lower bound of

log M_ > log C(C(n-k,2),k?~C(k,2))

2

2 k® 1og n

On tne other hanau, Mn 1s surely less than the number of ways of choosing
k vertices times the numwber of ways of choosing any kz—C(k,Z) edges
joining the n vertices. Thus an upper bound is

log M < log C(n,k) + log C(C(n,2) k*~C(k,2))
“k log n + k2 log n

~ k2 log n.
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Cambining these upper and lower bounds, we obtain

2

log Mn ~ k® log n

The upper bouna of Theorem 1 becomes

X (K) 72
Bl (g ) <v k%2 k% log n

= k% ¥ 2 log n. (8)

Now consider the lower bound provided by Theorem 2. In order to
get as strong a result from this theorem as possible, we wish to let B
go to @ as fast as possible. We will show that even if we let it go to
@ too fast, the bound is not tight. In particular, if we let P, be as

small as n-2(1te)/k

, for any e>@, then the probability that G n,pn, has
a subgraph with property X(k) goes to zero, since the probablllty of
having a clique on k vertices goes to zero. (Again, this is an easy
consequence of the proof in [GM75].) Thus we are letting pn go to zero
faster than the conditions of the theorem allow. Even with this choice

of b, s however, Theorem 2 gives a lower bound of

k2 V/Z log n2(l+e)/k

=2 k3/2 v log n (l+e)

Letting e go to zero would give a lower bouna of

s 6 )] 2 2 k¥2 1og n' 9)

Note that the upper and lower bounas do not coincide. 1In fact, we can
show that neither is tight, by determining E[Wx(k)(G )]. Let
WHLAV(k)(G) be the weight of the heaviest kz—C(k 2) edges in G. It
is not hard to see that

e @)1 - (%/2) V2 109 n (10)
and
(k) EAV (k)
WS (6] » BV k) (@ ), (11)

On the other hana, an upper bound is

B (6] < Bt ®) (6 )] + BEVK) (g ) (12)
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since by choosing the clique and extra edges independently we can
certainly do as well as when we must avoid duplication of edges.
Combining (12), (19), and Corollary 3 we obtain

EWE)) < k2/2) ¥'2 109 n + k¥2 ¢ 10g n

~ (k%2/2) ¥ 2 1og n (13)

Then (10), (11), and (13) give
E[WIXn;::)] ~ k%/2) V2 log n .

Comparing this with the bounds in (8) and (9), we conclude that neither
bound is tight.

Thus there are sets Sn such that the bounds of Theorem 1 and
Theorem 2 are not asymptotically tight.

6. Some algorithms.

In this section we investigate the expected behavior of some simple
heuristic algoritims for the traveling salesman problem and the heaviest
clique problem. Since both of the corresponding subgraph existence
problems are NP-complete [Ka72], it is likely that there is no efficient
algorithm which produces exact answers all of the time. Nonetheless, we
shall see that some simple fast algorithms have average behavior which
is close to the average behavior of the optimum. (Since a fast exact

algorithm for the spanning tree problem is well-known [Kr56], we will
not discuss heuristic approaches for it.)

It is not hard to show that a very simple greedy algorithm for the
TSP, wnich constructs a tour by starting at an arbitrary vertex and
iteratively walking to the closest unvisited vertex, achieves the
expectea asymptotic behavior described in Corollary 1.

Ihe problem of finding the heaviest clique on k vertices is

consicerably more interesting. Consider the following greeay approach.
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procedure CLIQ GREEDY(G);
begin
C <~ {an arbitrary vertex of G};
while |C| < k do
begin
let v be the vertex not in C
which maximizes the sum, over
all win C, of d(v,w);
ada v to C;
end
return the total weight of all edges
joining vertices of C;

Sety

Lemma 1:

E[CLIQ_GREEDY(G )] » ¥ 8/9 k¥ V'log n .

Proof. Note that if we consider, for some fixed i, the ith pass
through the loop, we are choosing the maximum of n-i sums of i unit
normal variables. Unfortunately, the ith pass through the loop is
affected by the previous passes, which complicates the analysis
somewhat. However, an idea similar to tnat used in [ES74,GS76] is
useful here--we can simply eliminate all cases in which things don't
work out as we Like. More formally, let us choose an e > § and
consider the probability that for any set C of vertices, |C|<k,

»
max 2, d(v,w) < ¥ 2 [Cl (1-e) log (n-IC|)
VEC weC
Using Fact 3, we see that for any fixed choice of C, this probability

goes to zero fast enough to swallow polynomials. But, for fixed k,
there are only polynomially many choices for C, so the sum of this
probability, over all possible C with |C|<k, must go to zero fast enough
to swallow polynomials; call this probability P(n,k). (Recall that we
are letting n go to infinity much faster than k.) Accordingly, we
conclude that the algorithm produces a clique of weight at least

k-1!
> v/2 i (1-e) log (n—i)7
i=1
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~¥8/9 k¥% ¢ (1-e) log n

except with probability P(n,k). But since P(n,k) vanishes so rapidly an
argument like that in the proof of Theorem 2 tells us that the result is

E[CLIQ GREEDY(G )]
> v 8/9 k3/2 v/(l - e) log n‘.

Since e may be arbitrarily small, we conclude that

E[CLIQ_GREEDY(G )] 3 v 8/9 k2 ¢'log n . ]

Next we will show that this is in fact a tight description of the
benavior of the algorithm. The following lemma will be useful.

Lemma 2. Let V  be a column vector of m independent real random
variables chosen with a continuous distribution function G. Let g be a

real-vaiued function of m-vectors which is monotonic nondecreasing, in
the sense that

V) <V, == g(vy) < gV,

(Vl is said here to be less than or equal to vy if the inequality holds
camponentwise.) Finally, let B be an r by m matrix of nonegative reals,
and b be a column vector of r reals. Then

Elg(V)IB vV, < b] < E[g(V)].

Proof. We prove the lemma by induction on m. For m=@ it is
trivial. Suppose it holds for m=k-l. We may decompose Vk as

vk = Vk_l Il VI

where || denotes concatenation, V.1 is the first k-1 components of
Wk, and V is the last component of V.. Then

EI9(V,) | BV, < b]

k
= Elg(V, _; 11 v) | By Vi1 + By V<D (14)

where Bl ana 82 are appropriate suunatrices of B. Let G' be the
aistribution function of V. Then we may write the right hand side of
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(14) as

fdG'(x) BIg(V_;11x) | By ¥, ) <b=-Byx] h(x

fdG' (x) h(x)

where
h(x) = FiB, v _, <b- B, x}.
NOw Ly tne inductive nypotnesis, for any x,
B9V, _, 11 x) | By V1 <b-B,x] < Elg(V,_;11x))

Thus an upper bound is

fdG'(X) h(x) E[g(V,_;1Ix)]

fdG' (x) h(x)

But since h(x) is easily seen to be monotonic decreasing, while

E[g(Vk_lllx)] is monotonic increasing, this ratio is bounded above by

Joor w0 i@, 111,

which is precisely E[Q(Vk)]. This completes the induction. [ ]
Lemma 3:
E[CLIQ GREEDY(G)] < ¥ 8/9 k2 ¥log n . (15)

Proof. Note that this lemma asserts that the lower bound of Lemma
1l is also an upper bounu. If, on any given pass through the main loop
of tne algoritnm, tne edge weight probabilities were not conditioned by
previous passes, it woula be a simple matter to analyze the expected
welght ot the new edges adaed to the clique. We begin the proof by
showing that the conuitioning of edge weights which has taken place can
only hurt the average behavior of the algorithm.

Assume that the vertices of G are labeled Vl'VZ""’Vn‘ Suppose we
have campleted r-1 iterations. Then |C| = r. If L is a list of r
vertices, let A(L) be the event that L contains the vertices of C, in
the order in which they were added to C, and that no ties were present
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during tune selection of maxima. For the time being, consider the case

L = Vl’VZ""’Vr’

Then to determine the contribution of the next vertex to the total
clique weight, we must evaluate
r

E[r?fgn jil d(vi,vj) | A(L)]. (16)
Now since the choice of vertices to add to C is determined by
camparisons of sums of edge weights, the event A(L) can be phrased as a
set of inequalities on the edge weights. In particular, the
inequalities which must be satisfied are

vm with 1 <m < r-1,

Vi with m2 < i < n,
Ay ™
jil a(vm+l,vj) >
If G is the weignted graph on n vertices, let V1(G) be a vector
wnicn contains the weights of edges Joining vertices numbered r or
lower, in some arbitrary oraer; let VZ2(G) be a vector which contains
the remaining euge weights. we will use V1 (respectively ¥2) as an

abbreviation for Vl(Gn) (respectively V2(Gn)).

d(vi,vj) (17)

Note that we can finda matrices Bl ana B,, with all elements of B
positive, such that (17) can be written as

2

BZ V2(G) < B, V1(G)

1
: Thus if we let

P
= max i
g(v2(G)) r<i<n -z d(vi,vj),

we may rewrite (16) as
Elg(v2) | B, v2 < B, V1] (18)

By an application of Lemma 2, this can be seen to be bounded above by
Elg(¥2)]. But this is just the expected value of the maximum of n-r
inaepencent sums of r unit normal variables, so

E[g(V2)] ~V 2 r logn .




Page 17

Thus far we have shown that

r
E[ max 7 d(vi,vj) | A(L)] < ¥ 2r logn
j=1

r<i<n g
Now by symmetry, the choice of L does not affect the analysis;
moreover, the events A(L), over all possible L, together with the space
of measure @ in which ties are present during the selection of maxima,
exactly cover the entire probability space. Thus, the expected weight
of the set of edges added at the rth iteration is at most asymptotic to

V' 2r logn . Summing from r equalling 1 to k-1, we obtain the lemma.

g
Theorem 3:
E[CLIy GREEDY] ~ v 8/9 k¥2 ¢ 1og n .
Proof. This follows immediately from Lemmas 1 ana 3. L&

Thus the algorithm has an average result which is less than 6
percent away irom the average optimum.

Conclusion *

We have examined the problem of finding a heaviest instance of a
subgraph, fram a given set, in an n-vertex weighted complete graph.
Assuming that the edge weights are chosen from a normal distribution, we
have investigated the expected behavior of this optimization problem.
Two very general theorems were discussed, one of which gave an upper
bound and one of which gave a lower bound. In a number of interesting
problems, these bounds turned out to be tight, enabling us to state the
asymptotic behavior of the optimum; these problems included the
traveling salesman problem, the maximum weight spanning tree problem,
ana the problem of rinding the heaviest clique on k vertices, where
1<<k<<n. However, an example showed that in some cases neither bound
was tight; it woulu be interesting to obtain good sufficient conditions
unuer which either cound was tight.

Next some ygreedy approximation algorithms were discussed. For the
travelling salesman problem, a very simple greedy algorithm gave results
whose average was the same as the average optimum. For the clique
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problem, a simple greedy algorithm was analyzed and found to produce an
average result which was about 6 percent lower than the average optimum.

It woula be interesting to find an algorithm with even better average
benavior.




[AV77]

[BHH59]

[BE75]

[Do69]

[LK59]

|ER60 ]

LER66]

[ES74]

[Fe68]

[GM75]

[GS76]

lka72j

Page 19

References

Dana Angluin and Leslie G. Valiant, "Fast Probabilistic
Algorithms for Hamiltonian Circuits and Matchings," Proceedings
of the Ninth Annual ACM Symposium on Theory of Computing, 1977,
pp. 30-41.

Jillian Beardwood, J. H. Halton, and J. M. Hammersley, "The
Shortest Path Through Many Points," Proceedings Camb. Phil.
Society 55 (1959), pp. 299-327.

B. Bollab&s and P. Erdds, "Cliques in Random Graphs," Math.
Proc. Camb. Phil. Soc. 86 (1976), pp. 419-427.

W. E. Donath, "Algorithm and Average-value Bounds for Assignment
Problems," IBM J. Res. Develop. 13 (1969), pp. 380-386.

P. Era8s ana A. Rényi, "On Ranaom Graphs I," Publicationes
Mathematicae 6 (1959), pp. 296-297.

P. Era8s anu A. Rényi, "On the Evolution of Random Graphs, "
Publ. Math. Inst. Hung. Acad. Sci. 5A (1966) , pp. 17-61.

P. Erd8s ana A. Rényi, "On the Existence of a Factor of Degree
One of a Connected Random Graph," Acta Math. Acad. Sci. Hung. 17
(1966) , pp. 359-368.

P. Erdds and J. Spencer, Probabilistic Methods in
Combinatorics, Academic Press, New York, 1974.

William Feller, An Introduction to Probability Theory and Its
Applications, Vol. I, Third Edition, John Wiley and Sons, New
York, 1968.

G. R. Grimmett and C. J. H. McDiarmid, "On Coloring Random
Graphs," Math. Proc. Camb. Phil. Soc. 77 (1975) , pp. 313-324.

Leo J. Guibas and Endre Szemeredi, "The Analysis of Double
Hashing," Proceedings of the Eighth Annual ACM Symposium on
Theory of Computing, 1976, pp. 187-191.

Richara M. Karp, "Reducibility among Combinatorial Problems," in
Complexity of Computer Computations, R. E. Miller and J. W.

Thatcher, eds., Plenum Press, N. Y., 1972, pp. 85-104.




[Ka76]

|Kr56]

|Ku62j

[Ma7up)

[PO76]

[Wa77a]

[Wa77b]

Page 20

Richard M. Karp, "The Probabilistic Analysis of Some
Cambinatorial Search Algorithms," Algorithms and Complexity:
New Directions and Recent Results, J. F. Traub, ed., Academic
Press, New York, 1976, pp. 1-19.

J. B. Kruskal, Jr., "On the Shortest Spanning Subtree of a Graph
anu the Traveling Salesman Problem," Proc. Amer. Math. Soc. 7
(1956) , pp. 48-50.

Jerome M. Kurtzberg, "On Approximation Methods for the
Assignment rroblem,“ JACM 9 (1962), pp. 419-439.

Davia W. Matula, "On the Complete Subgraphs of a Random Graph,"
Proc. 2nd Chapel Hill Conference on Combinatorial Math. and its
Applications, University of North Carolina, Chapel Hill, May,
1970, pp. 356-369.

L. Pbsa, "Hamiltonian Circuits in Random Graphs," Discrete
Mathematics 14 (1976), pp. 359-364.

David W. Walkup, "Matchings in Random Regular Bipartite Graphs,"
draft, December, 1977.

David W. Walkup, "On the Expected Value of a Random Assignment
Problem," draft, December, 1977.





