UC San Diego

Technical Reports

Title
Reengineering Cocoon with Aspect]

Permalink
https://escholarship.org/uc/item/4m35v57X

Author
Bent, Leeann

Publication Date
2001-09-04

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4m35v57x
https://escholarship.org
http://www.cdlib.org/

Reengineering Cocoon with Aspect]J

Leeann Bent

Abstract

Aspect] is a new Aspect Oriented extension to Java. This study attempts to quantify how
appropriate Aspect] is for a large body of open source code (the Cocoon project) by
reengineering it. In the process we discovered a number of things. The first is a set of
patterns or templates for creating new or converting to Aspect] code. These are outlined
and evaluated in the paper. The second is that Aspect] fundamentally changes and
simplifies the "Knows About" relationship in a body of code. This simplification has the
benefit of fixing the "Reverse Inheritance" problem found in real code. With Aspect],
"Knows About" relationships are localized, and often reduced. This localization removes
the need for classes to "Know About" and import secondary behavior. It was also found
that Aspect] is a good tool for the expression of Layered programming [5]. This is shown
in the implementation of the Layered Aspect type. Finally, it appears that the Cocoon
code base was designed with "Aspects" in the abstract, even though they were
implemented using Java functionality. This is made especially apparent by the prevalence
of reverse inheritance in the code.

1 Introduction

Aspect] [1] has proven to be a valuable programming tool for developers. It has been
used in the Apache system [7], as well as in other work [2, 3]. However, questions still
remain about the use of Aspect] in existing systems, including how and when to use
Aspect]. To answer these questions an existing project was re-engineered. The qualitative
and quantitative impact of Aspect] on modularity was measured, and the original code
was examined for existing crosscutting concerns. These were used to characterize when
and how Aspect] might be helpful. A secondary goal of this project was to utilize the
tools available (compiler, development environment, visualization tools, etc.), both
exercising them, and attempting to assess their contribution to design and
implementation. The code base that was chosen for reengineering is Cocoon [6], an open
source web-publishing framework. Cocoon is a moderate sized project in later stages of
development, well suited to reengineering.

Over the course of this project a total of nine aspects were created. These aspects were
often easy to find, and reduced tangling significantly. We discovered that these nine
aspects could be divided into three different structural types: the Reverse Inheritance (RI)
type, the Layer type, and the Filter type (these names refer to the Aspect] solution). All of
these structural types convert easily to Aspect]. The most common of these Aspects was
the Reverse Inheritance type. The prevalence of this type made it easy to convert much of
Cocoon's functionality to Aspect] code and revealed that the designers of Cocoon
designed Cocoon with aspects in mind.

Focus and Scope of the Paper

This paper will focus on the three different Aspect types. At least one example of each
will be given, as well as an explanation of the original design problem that motivated the
change. We will define the design problem, discuss the Aspect] design/implementation,
and evaluate the implementation. We will attempt to quantify the changes by measuring
several things. These measures are designed to assess tangling and code size. The first is
size or the number of classes in the original object. This is simply a measure of coding
effort. The second is modularization (or lack thereof), or the number of parts involved in
implementing the original design not within their module. This is a traditional measure of
code tangling -- how a module's code is spread across non-implementing classes. The
third is localization, or the number of objects that reference the original object. This is
another measure of tangling, but it refers to tangling in the "Knows About" relationship
(or "Knows About" tangling). All of these measures are compared with the same
measures for the Aspect] version of the code. Additional measures that cannot be easily
quantified, but are nonetheless important, are reuse of original code, and the reusability of
the Aspect] code. These are discussed in a qualitative fashion.

The rest of the paper is organized as follows. Section three introduces Cocoon and
motivates the decisions for aspectizing the code. Sections four through six discuss the
different aspect types. Section seven summarizes and concludes.

2 Cocoon

Cocoon [6] is an open source web-publishing framework from the Apache group. Cocoon
is a moderately sized project (197 Classes, 19KLOC) that is well supported. The current
release is version 1.7.4, and development is in process for Cocoon 2. Because of the
extensive restructuring in version 2, we focused our efforts on Cocoon 2, pre-beta.
Cocoon's basic functionality is to turn XML content into web palatable formats, including

U 2 U U

HTTP Request ', o> 1°395 Format PDF Document
S

Figure 1: Cocoon serving a PDF document with Java code inserted using XSP.

HTML, XHTML, and PDF. Cocoon does this using other Apache modules. A sample use
would transform some XML content into HMTL format. To read in this XML content,
Cocoon would use the Xerces XML processor. To format this document in HMTL,
Cocoon would use the Xalan stylesheet formatter, along with a stylesheet written in XSL.
Cocoon has more complicated functionality, as well. It uses a variant of XML called XSP
to allow Java code to be inserted into the original XML document. This Java code is
compiled and executed, with the code's output inserted back into the XML before the
document is served. The XSP Processor module in Cocoon takes care of this. Cocoon is
also able to format output for PDF, using the FOP module. See Figure 1 for a picture of
Cocoon 2 serving a request for a PDF document with dynamic Java content.

Cocoon is partitioned into two different packages: the Avalon package and the Cocoon
package. The Avalon framework does component management within both packages,
while the Cocoon package implements Web functionality. Consequently, objects often
inherit from many interfaces and objects to get aspects of behavior from Avalon and
Cocoon. This leads to two different types of tangling: code tangling and "Knows About"
tangling. An example of this is shown in Figure 2.

public class ProgramGeneratorImpl
implements ProgramGenerator, Composer, Configurable {

protected ComponentManager manager;
public void setComponentManager(ComponentManager manager) {

this.manager = manager;
this.factory = (NamedComponentManager);
this.manager.getComponent("factory");

}
-

Figure 2: ProgramGeneratorImpl inheriting from ProgramGenerator, Composer,
and Configurable.

As shown, ProgramGeneratorImpl inherits behavior from ProgramGenerator (Cocoon),
Composer (Avalon), and Configurable (Avalon). This is an example of the "Reverse
Inheritance" problem. Every subclass of ProgramGeneratorImpl must "Know About"
Composer and Configurable, even though the functionality of these modules is different
from the functionality of ProgramGeneratorImpl and ProgramGenerator. (Additionally,
these are services provided by ProgramGeneratorImpl to the Avalon package) We would
prefer that there be a "Reverse Inheritance" instead, that the Composer object could
impose its behavior on ProgramGeneratorlmpl, without ProgramGeneratorImpl knowing
about Composer. The code in Figure 2 exhibits the second type of tangling: "Knows
About" tangling. In addition, this example code exhibits the first type of tangling as well:
code tangling. ProgramGeneratorlmpl must implement functionality for Composer and
Configurable. The actual implementation (or code) for Composer and Configurable is

spread into ProgramGeneratorlmpl. This is shown in Figure 3. The Composer code is
shown in blue, while the Configurable code is shown in green. This is an example where
the designers of Cocoon have used the Avalon framework (of which Composer and
Configurable are both a part) to capture "Aspects" of behavior. These "Aspects"
implement unrelated behavior, but are tied to class implementation because of Java's
inheritance hierarchy.

Figure 3: ProgramGeneratorImpl. The blue is Composer code; the green
is Configurable code.

3 Reverse Inheritance Aspects

The Reverse Inheritance type (Figure 4) is the most common found in Cocoon 2. An
example Aspect of the Reverse Inheritance type is the Aspect] version of the Composer
interface from Figure 2. The Composer interface is responsible for tracking an object's
manager. Because of the semantics of interfaces, Composer must be implemented in the
subtype. This results in generic code that is tangled across many classes and has a couple

SitemapProcessor . ImageSerializer S ComposerGenerator .

\V Ly
o

Figure 4: The Reverse Inheritance Type problem. Every object (33 of
them) that needs Composer functionality must know about Composer. In

addition. came nhiecte mav need ta imnlement Camnancer hehaviar.

of negative effects. The tangling foils independent maintenance of the two functionalities.
In addition, this inheritance means that subtypes must know about Composer, even if
their use of Composer is minimal. Thus, Composer shows two types of tangling: tangling
of code implementation and tangling of "Knows About" relationships. While the
Composer object is inherited into many objects, the behavior of Composer is almost
always independent of the behavior of the subtype. Composer's functionality is weakly
related to the subtype. This structure, a secondary behavior that must be implemented in a
tangled fashion, is ideal for conversion to Aspects.

It is the "Know About" tangling that characterizes the Reverse Inheritance (RI) Aspect
type. Rather than requiring an object to know about and (possibly) implement desired
(yet unrelated) behavior, it would be preferable to have the behavior pushed out into the
object. This is reverse inheritance, and can be implemented using Aspect]. We can
remedy both the case where code and "Knows About" tangling exist.

Composer: Code Tangling and ''"Kno ws About'' Tangling
Description of Composer

The Composer Aspect is an example of an Aspect that fixes both code tangling and
"Knows About" tangling. In the original Cocoon code, the Composer interface is used by
classes that provide access to their manager (frequently necessary for reusing instantiated
components). Since it is the client of an object that requires access to the manager,

the client or the manager is the best-suited to impose the management. In Java, the object
squeezes it in because the language makes it hard for the client or manager to impose
management behavior. This manager (stored through the Composer interface) is
subsequently used to set up object fields and reference other objects. Thus, the Composer
interface in Avalon simply declares the abstract method setManager; the implementing
classes declare the manager variable and define this method. In most cases, setManager
simply sets the manager. This is shown in Figure 5. In other cases this method was
much more complex, including code that set up object fields dependent on the manager
variable. An example of this type of code is shown in Figure 6. Both of these behaviors
must be captured in the Aspect design.

public class XalanTransformer extends DocumentHandlerWrapper
implements Transformer, Composer, {

protected Comp onentManager manager;

public void setComponentManager(ComponentManager manager) {
this.manager = manager;

}

Figure 5: A generic implementation of Composer with variable manager and
method setComponentManager.

Aspect Design

The Aspect design was intended to capture the basic functionality of a Composer. The
manager variable itself is moved into the Aspect (Composer), and this variable is set
when the object is created using the Aspect's setManager method. Creating a pointcut for
setManager presented some difficulties because the manager variable is set during object
initialization using an argument from the constructor. Since Aspect] does not allow
pointcuts before constructors, a pointcut on the creator of the object was used. A second
aspect was used to encapsulate the pointcut that sets the manager. This design reflects the
fact that the manager is an aspect of each Composer inheritor object, while setting the
manager is an aspect of those objects that initialize Composer objects. Additionally, it is
the pointcut aspect that imposes the manager behavior on objects.

public void setComponentManager (ComponentManager manager) {

this.manager = manager;
Enumeration t = this.types.elements () ;
while (t.hasMoreElements()) {
Hashtable components = (Hashtable) t.nextElement ();
Enumeration ¢ = components.elements () ;
while (c.hasMoreElements()) {
NamedComponent component = (NamedComponent)

c.nextElement () ;
if (component instanceof Composer) {
((Composer) component).
setComponentManager (this.manager) ;

Figure 6: An implementation of Composer where setComponentManager
does more than set the manager variable.

Implementation

While the original design confined manager to the aspect, in the implementation
introduction was used to move it back into the classes; setManager was moved back into
the classes using introduction as well. This allows us to reintroduce the Composer
interface to allow for type checking. Figure 7 shows this.

When an object that requires Composer functionality is created (using new,
newlInstance, or load) the pointcut in the caller checks for the Composer type. If the
object being created is a Composer type, setManager is called. This pointcut is shown in
Figure 8.

This aspect now looks very similar to the original code. The Composer interface contains
the declaration of setManager. The introduction aspect (AComposer) then defines

aspect AComposer of eachobject (instanceof(SitemapProcessor ||
Block || ImageSerializer ||
Sitemap ||...)) |

introduction (SitemapProcessor ||
Block || ImageSerializer || Sitemap || ...) {

implements ComposerO;

private ComponentManager my_manager;

public ComponentManager getManager () { return my_manager; }
public void setManager (ComponentManager manager)
{ my_manager = manager;}

Figure 7: AComposer introduces the Composer interface into classes directly.

setManager, and declares the manager. Finally, AComposerSetter contains the pointcut
that imposes manager behavior.

Code from the original setManager that was not directly involved in setting the manager
(such as that in Figure 6) was moved into initialization methods. These are also
introduced into classes using introduction. These are called (depending on type) after
setManager.

aspect AComposerSetter of eachobject (instanceof (Sitemap ||

) A

pointcut setupComponentManager (Object cs) returns Object:

instanceof (cs) && calls(*, new(..)) || .

around (Object cs) returns Object:
setupComponentManager (cs) {
Object o = thisJoinPoint.runNext (cs) ;

if (o instanceof Composer) {
this.setupManager (cs, o);
}

return o;

Figure 8: Pointcut on calls of new(), newInstance() and load() used to set the
manager for Composer objects. setupManager() calls setManager() and init().

Evaluation

This implementation changed one interface into one Aspect composed of two Aspect]
aspects and one interface. There were 9 uses of getManager() outside the Aspect, where
referencing the manager was necessary. This aspect eliminated 33 classes that inherited
or implemented Composer interface. In addition to a decrease in size, this reduction
indicates that this Aspect fixes the code tangling problems discussed in the introductory
section. There is no longer any code tangling, because all of the Composer code is

implemented in one place. The Aspect] code is also fairly localized, with only 9
references to the manager object outside of the aspect itself. In addition, redundant code
has been eliminated though the use of one setManager function, used for all Composers.

The "Knows About" tangling has been removed as well. In the Aspect] version, only
AComposerSetter must know which classes require Composer behavior. This localizes
the "Knows About" relationship, and introduces a "Reverse Inheritance" where the
Composer functionality is imposed on a class. Figure 9 shows both of these
improvements (over Figure 4).

This implementation turned out to be fairly similar to the original Avalon design, except
that the "Knows About" relationship has been simplified, allowing the code to be
localized and condensed. Because the implemented behavior was identical to the original
code, refactoring from Java to Aspect] was very easy. While almost every method was
changed, the majority of lines (33 of 36) in the (often redundant) original code's method
bodies went unchanged. Because of the similarity to the original code, refactoring from
Java to Aspect] was very easy. Additional refactoring will also be easy due to the new

SitemapProcessor ImageSerializer e ComposerGenerator

\'7,

Composer

Figure 12: Now only Composer ‘“Knows About” the 33 objects. The uses
of Composer are localized, and behavior is separately encapsulated.

design's encapsulation. Now that the Composer functionality has been distilled out, it can
be introduced into any class. Additiomally, any class may be reused with or without
Composer functionality.

There are some unresolved details regarding this aspect. Moving the initialization code
into a separate method (init()) does not appear to be an optimal solution. While it is true
that the original design mixed the functionality of setting the manager and initializing the
object variables, there are other alternatives to a simple initialization method. The first is
to create another aspect with initialization and hang it on the setManager method. This
aspect would take care of the additional setup. The second is to create a setManager
method for each different object type. This would require typing the pointcut (to avoid
casts) which in turn would require creating an aspect for all types that have managers
(plus exception types). I have not implemented either of these due to time constraints. A
second potential problem is the use of the Composer type. While using the Composer

interface defines the behavior of management, the use of the Composer interface could
have been avoided by using hasAspect to check if objects have the manager aspect
(o.hasAspect(AComposer)). This design would have simplified the Aspect, and decreased
the number of classes involved.

NamedComponent: '"Knows About' Tangling

The NamedComponent is an example of an Aspect where only "Knows About" tangling
is present in the original code. Aspectizing NamedComponent does not decrease the
number of unrelated classes that implement functionality, and gives no noticeable
decrease in program size or references. Instead, the "Knows About" relationship is
localized and simplified, again providing Reverse Inheritance that imposes
NamedComponent functionality.

The NamedComponent is an interface in Avalon that defines an access method (getName)
for the name of an object. NamedComponent is introduced into components in order to
give them "names"; it introduces a second functionality orthogonal to an object's primary
behavior. The inheritance is trickier than in Composer however, because the introduced
name is object dependent (one name per object), and should not collide with any other
object name. This means that each implementation of NamedComponent must be
specialized according to its class.

Like in Composer, the object requiring a name must "Know About" NamedComponent to
have that behavior. The "Knows About" relationship is further tangled by the requirement
that names be unique. Each object that implements NamedComponent must "Know
About" every other object that implements NamedComponent. This relationship is shown
in Figure 13.

~ ‘A~ 3

XSPMarkuplLanguage SitmapMarkupLanguage P ProgramminglLanguage

R AR R
\ DV Ly

NamedComponent

Figure 13: The original ""'Knows About" relationship for
NamedComponent. All components that use Named Component must
know about Named Component and each other.

Aspect Design

NamedComponent's Aspect design is also very simple. The inheritance from
NamedComponent is removed explicitly, and reintroduced using introduction. A String

variable for name and its access method for each object are placed into one large aspect.

Implementation

This aspect was implemented using introduction to preserve the NamedComponent

object. NamedComponent was preserved, with the abstract definition of getName (). This
was dore so that the calls to getName () do not need to be typed. The NamedComponent

aspect Introductions of eachdVM() {

introduction XSPMarkupLanguage {

private String name = "xsp";

public String getName () { return this.name; }
}
introduction SitemapMarkupLanguage {

private String name = "map";

public String getName () { return this.name; }
}
introduction JavascriptLanguage {

private String name = "javascript";

public String getName () { return this.name; }
}
introduction JavalLanguage {

private String name = "java";

public String getName () { return this.name; }

}

introduction (MarkupLanguage | |
ProgrammingLanguage) {
extends NamedComponent;

Figure 14: Introductions for NamedComponent aspect, including
specific string names. Because we're only using this aspect for

introductions, we only require one. Thus eachJVM() is used.

interface was introduced to each class that originally inherited from NamedComponent.
Then introductions were used to define the value the name String would have, and the
getName () method for the different types. These were all grouped into one aspect, as
shown in Figure 14.

Evaluation

10

Evaluations according to the first two metrics (code size, and external implementations)
defined in the introduction do not provide a clear view of the advantages of this Aspect.
This is because they measure code tangling. Still, we state them for completeness. The
NamedComponent aspect changed one interface into two Aspect] aspects (the
introductions shown in Figure 14 and the NamedComponent interface that we have
retained). We have succeeded in localizing the NamedComponent: the nine different
places where NamedComponent was inherited or implemented have now been
consolidated into one area. However, this aspect still has five different implementations
for each class that needs a different string. There are also five different classes that inherit
the NamedComponent interface (either directly, or through other classes). Additionally,
there are still 22 classes with 50 references to getName () interspersed the code, even
though getName () itself is "hidden" in an aspect. These calls cannot be removed because
they are used in very diverse locations: from accessing components to printing error
messages.

In spite of this, the detangling has succeeded. Now, the only component that needs to
know how NamedComponent works is the Aspect. This is a change in the "Knows
About" relationship shown in Figure 15. The "Knows About" relationship has been
localized, and NamedComponent now imposes its behavior onto other objects. Again, we
have introduced a kind of Reverse Inheritance. Not only does this eliminate the need for
other components to "Know About" NamedComponent, but they also do not need to
"Know About" each other. This detangling also helps reuse. Classes can be used with or
without NamedComponent functionality (for example reusing SitemapMarkupLanguage
without the name). None of the behaviors defined in the introductions can be reused,
however, because they are class specific. This Aspect is a great examp le of how Aspects
can simplify the "Knows About" relationship tremendously (by order n*2), through the
use of Reverse Inheritance.

XSPMarkupLanguage SitmapMarkuplLanguage CEEI ProgramminglLanguage
NamedComponent

Figure 15: The '""Knows About' relationship after Aspect]J
modification. Now, only NamedComponent must know about other
components.

11

4 Layered Aspects

The PGICache Aspect is an example of a Layer aspect. The PGICache was created by
layering the behavior previously found in ProgramGeneratorImpl (PGI). The PGI object
is responsible for loading code from disk (using load()). However, the PGI also has a
local cache for code that has been generated recently, and a check for out-of date
programs (which must be regenerated). The cache is checked before the program is
loaded, and an out-of-date check is performed after the program is loaded. If the code is
out of date, it is regenerated. Thus, PGI has several functionalities, some of which are
special cases of others. The PGI method load() is primarily responsible for loading code
from disk. Layered on top of this functionality are the check for the cache and the check
for out of date code. Because these functionalities are all implemented in one function,
they must all "Know About" each other. This relationship is shown in Figure 16.

Cache

PGl

Reload

Y/A\"

Figure 16: Because the cache, load from disk, and reload are implemented
in the same method, every functionality must know about every other.

This Aspect was less prevalent in Cocoon 2. The PGICache is the only implemented
Aspect of this type, though it appears that there may be others (including the high level
architecture of Cocoon itself). This Aspect type is defined by its layered functionality.
In PGI's case, we found like PGI to implement a primary behavior (loading from disk),
and allow special case behavior to impose itself when necessary, without requiring PGI's
knowledge. The amalgamation of these special cases into one method is also a form of
code tangling. This tangling has effects similar to the Reverse Inheritance, pre- Aspect
code above. PGI is now responsible for implementing all of the cache and recompilation
logic, as well as its own loading logic. It is required to "Know About" these
functionalities and implement them. Additionally, no part of PGI can be removed or
reused without the other parts. This means that the cache cannot removed from PGI
without modification of PGI, and program invalidation and recompilation cannot be
reused in another part of the code. Again, using Aspect] we can improve upon this,
creating a layered system that is not entangled and allows component reuse.

Description of ProgramGeneratorImpl
ProgramGeneratorImpl originally contained all of the logic for caching, loading, and

regenerating code in the body of the load(..) method. The cache check was performed
before loading, and the out-of-date check was performed after loading. Since multiple

12

Cocoon threads could be running, all of this code is protected by a synchronize block --
meaning only one thread can access code storage at any instant. This implied that all
advice needed to be placed within this synchronize block, which presented additional
constraints in the Aspect design. Figure 17 contains a condensed version of the original
load method.

public Object load(File, String, String) throws Exception {
Object program = null; Object programInstance = null;

synchronized (filename.intern()) {

// Cache check
program = this.cache.get (filename);

// Load check
if (program == null) {
program = proglang.load(normalizedName, repositoryName) ;
this.cache.store(filename, program);

// Modified check
if ((Modifiable)

programInstance) .modifiedSince (file.lastModified()) {
proglang.unload(program, normalizedName, repositoryName);
program = null;

// Regenerate
if (program == null) {
Document document = DOMUtils.DOMParse (new InputSource (
new FR(file)));

repository.store(sourceFilename, code);
program =
programmingLanguage.load(normalizedName, repositoryName) ;
this.cache.store(filename, program);
}
programInstance = programmingLanguage.instantiate (program);
}

return programInstance;

Figure 17: Condensed version of original ProgramGeneratorImpl code.

Aspect Design

The Aspect design attempted to strip PGI down to its most basic functionality: loading.
Then, two pointcuts are added: one for checking whether the cache has the requested
code and one for checking whether a program instance is out of date. Both have advice
that imposes the appropriate action should either check be true. Note that the cache
storage is moved into the aspect. The actual implementation is discussed below.

13

Implementation

public Object load(File file, String markupLanguageName, String
programmingLanguageName) throws Exception {

Object program = null;
Object programInstance = null;

synchronized (filename.intern()) {
program = proglang.load(normalizedName,
repositoryName) ;
programInstance =
proglLang.instantiate (program) ;
}

return programInstance;
}

Figure 18: Revised load method. Variable initialization condensed.

The first, and most difficult problem, encountered in this aspect is the fact that programs
are cached, loaded, and regenerated via different references (i.e. file ids, explicit
filenames, relative filenames). Since this Aspect accesses both the cache and the disk (to
regenerate code), all of these references must be stored in the Aspect with a minimum of
overhead. A PGICache object was created to store web code on a per PGI basis, and a
cflow reception (See Figure 19) was used to capture the state information on a per PGI
load request basis. This state information included all of the necessary references. PGI
load was reduced to its simplest functionality, loading (See Figure 18). The CFlow
captures the call of load and all control flow from the entry to the exit of load(...). Within
the cflow aspect, state (e.g. a stored filename) is available and valid throughout load's
execution on a per load-call basis. Thus, there is no concern about potential cross-
contamination of the references. By intersecting this cflow with pointcuts, we can use the

static public aspect loadInterface of
eachcflow (loadInterface.loader (ProgramGeneratorImpl, File,
String, String)) {
MarkupLanguage markuplanguage;
ProgramminglLanguage programmingLanguage;
FilesystemStore repository;
String filename;
String normalizedName;
String sourceExtension;
Object program;
File file;

pointcut loader (ProgramGeneratorImpl pgi, File file,
String markuplLanguageName, String
programmingLanguageName) returns Object
instanceof (pgi) &&
receptions (Object load(file, markupLanguageName,
programmingLanguageName)) ;

Figure 19:CFlow aspect (loadInterface) and pointcut (loader) used to store load
request information in cflow local variables (i.e. markupLanguage). The static

keyword is used because this aspect is inside the PGICache aspect.

stored state information for a particular call for different behaviors.

pointcut plLoadCall() returns Object
instanceof (ProgramGeneratorImpl) &&
calls (ProgrammingLanguage, Object load(String,
String, String));

around () returns Object : plLoadCall() {
program = cache.get (filename);
if (program == null) {
program = thisJoinPoint.runNext () ;
cache.store(filename, program);
}

return program;

Figure 20: Code to check and update the cache, wrapped around
programminglL.anguage.load. Note that program and filename are cflow local
variables.

pointcut aroundInstantiate (ProgramGeneratorImpl pgi)
returns Object : instanceof (pgi) &&
calls (ProgrammingLanguage, Object instantiate (Object));

around (ProgramGeneratorImpl pgi) returns Object
aroundInstantiate (pgi) {

Object programInstance = thisJoinPoint.runNext (pgi);

if ((Modifiable)

programInstance) .modifiedSince (file.lastModified())) {
proglLang.unload (program, normalizedName, repositoryName) ;
program = null;
}
if (program == null) {
Document document = DOMUtils.DOMParse (new
InputSource (new FR(file)));

repository.store(sourceFilename, code);
program=

programminglLanguage.load (normalizedName, repositoryName) ;
this.cache.store(filename, program);

}
programInstance =
programminglLanguage.instantiate (program) ;

}

return programlInstance;

Figure 21: Code to check for programlInstance validity is wrapped around
programminglLanguage.instantiate. file, normalizedName, repositoryName,
sourceFilename, filename, and program are local to the cflow aspect.

15

The cache is checked and updated by using advice on the call to programminglLanguage
load. This advice is intersected with the cflow, allowing it to use the information stored in
the cflow to access (look up and update) the program in the cache. See Figure 20 for this
pointcut.

The validity of each programlInstance is checked on return from instantiation. Around
advice is again intersected with the cflow to allow the return value of
programminglanguage.instantiate to be checked. If this programlnstance is out of date, it
is reparsed and recompiled using values stored in the cflow. See Figure 21 for an
example of this.

Evaluation

This implementation changed one class (in the original) into one class and one Aspect in
the Aspect] version. Because the ProgramGeneratorImpl is already localized, there are no
localization effects. The same number of objects reference PGICache and PGI as did
before the aspectization.

While it appears that Aspectization has changed little about this design, in actuality both
code tangling and "Knows About" tangling has been removed. This is because in the
original design one object implemented several functions. The different function's code
was tangled into one object. Though the cache and re-parse from disk are currently
implemented together (to save effort), it would be a simple matter to separate these into
two aspects. Once they are separated, the three different components are no longer
tangled. Any component of this functionality could be reused, or left unused. This aspect
also changes the "Knows About" relationship (See Figure 22), decreasing the number of
"Knows About" relations, and limiting them to the aspects. This means that once again
the Aspect imposes the behavior. The PGI component is no longer required to "Know
About" caching and re-parsing from disk, and the Aspects are unaware of each other.

Cache

PGI (
~

Reload

Figure 22: After reengineering, only Cache and Reload must know
where they are placed with respect to PGI.

Additionally, this aspect showcases a technique that can be used to store state information
on a per function call basis: the use of cflow. CFlow provides a mechanism that captures
information on a functional basis, rather than an object basis, allowing this information to

16

be accessible deeper in the call tree. The cflow allows access to PGI load's local variables;
cflow local information stores method scoped information. This requires some care, since
variables in the cflow must mirror those in load to remain valid over the course of the
method. In this case, cflow allows access to variables that would otherwise be hidden to
the Aspect.

A final note about this aspect is that the "default" behavior of the original PGI was
difficult to ascertain. I chose loading from disk, but the default behavior could easily be
considered checking the cache, or re-compiling from code. It would be fairly straight-
forward to code either of these in a similar fashion using Aspect].

5 Filter Aspect

PGl \
)

ProgramminglLanguage

Figure 23: PGI, and potentially other callers, must know about the
format for arguments to Programming Language.

A filter aspect is used to replace translation routines, where a method is expecting to
receive information in a specific format, but it is available to the caller in another format.
An example is shown in Figure 24. One String type, filename, is translated into another
String type of a different format, normalizedFilename. The caller only has available
filename therefore it must translate filename into a normalized filename. The difficulty
with this type of implementation is shown in Figure 23. Every module that wishes to call
load must know the format required by Programmingl.anguage. This conversion can be
made transparent however, using Aspects. While the only example of this Aspect type in
Cocoon is Filename translation, it has been seen in other work [4], and thus deserves
mention.

program = programmingLanguage.load (
repository.normalizedFilename (filename),
this.repositoryName, encoding);

Figure 24: An example of where a filter aspect is appropriate. The caller has
filename, however programmingLanguage.load expects a normalized

filename.

Filter Aspects do not suffer from the code tangling problems discussed with some of
the other Aspects. It is easy to reuse the transformational method and, assuming the

17

format is correct, programminglLanguage.load can be reused. The problem with Filter
Aspects is that the caller is required to know that programminglanguage.load requires a
normalized filename. The caller is also required to know about the conversion routine.
This is a burden on the caller, and constitutes “"Knows About" tangling. It would be better
to make this conversion automatic and transparent to the caller. Then the conversion
could happen when and where appropriate as dictated by the Aspect.

Aspect Design

The design of this aspect was rather simple: simply remove the translation call, capture
the original filename with a pointcut, transform it to normalizedFilename, and pass this
on to the method that required it, using runNext. Originally, I planned to perform this
type of filtering on other calls as well. This turned out to be infeasible, because type
conversions were required for some of these calls (e.g. File to String).

Implementation

public aspect PGIFileUtils dominates PGICache
of eachobject (instanceof (ProgramGeneratorImpl)) {

FilesystemStore repository;
pointcut catchRepository ()

instanceof (ProgramGeneratorImpl) &&
calls (FilesystemStore, new(..));

after () returning (FilesystemStore fss)
catchRepository () {
repository = fss;

pointcut normalizeFilename (String name) returns Object
instanceof (ProgramGeneratorImpl) &&
calls (ProgramminglLanguage, Object load(name, String,
String));

around (String name) returns Object
normalizeFilename (name) {
String normalizedName =
repository.normalizedFilename (name) ;
Object program =
thisJoinPoint.runNext (normalizedName) ;
return program;

Figure25: Around advice on load captures the filename and transforms it into a
normalized filename. Note that a copy of the repository must also be captured for
filename lookup.

18

The implementation of this aspect was also rather simple. The translation call was
removed, and a pointcut was inserted to capture the call to load, and perform the
translation.

One complication with this code is that the repository is needed to transform the
filename. A variable to reference the repository is added to the aspect, and a pointcut is
added to capture and set it. This is also shown in Figure 25. The filter Aspect takes care
of the translation, including the use of repository for lookup. For each class that needed
filename conversion one aspect was created. This could have easily been implemented as
only one aspect, however.

Evaluation

Because I chose to have one filename conversion per conversion type, this
implementation required two aspects on two different calls of load. This actually
increased the size of the code base, since no classes were removed for this aspect (the
filtering was previously handled by a method in repository). However, the effects of
filename translation are now completely transparent. The burden of the "Knows About"
relationship has been removed from the caller of load and potentially other methods that
require filename conversion. The "Knows About" relationship has been pushed into the
aspect (See Figure 27), which imposes the transformation when it is required to.

ProgramminglLanguage

e 4

Filter

Figure 27: After reengineering, only Filter must know the required format,
regardless of the number of classes that call ProgramminglLanguage.load.

This aspect was implemented as one aspect per conversion for convenience. These two
aspects share a repository though, and these two filter aspects could have been
implemented as one. This would have simplified the design by allowing fewer pointcuts,
and allowing all load calls to be checked for conversion. The two-class design is more
reusable, however, since it does not require a shared repository.

7 Conclusion

The original goal of this project was to reengineer the Cocoon code to gain insight, both
quantitative and qualitative, into the effect of Aspect] on modularity. During this process

19

a total of nine aspects were created, and these were grouped into three different
categories. In all of these cases, modularity was improved and the resultant code showed
less code tangling and "Knows About" tangling.

I. Aspect] Patterns

An important result of this paper is that the Aspects in the reengineered Cocoon code fit
into three generic categories. These three categories provide patterns for the use of
Aspect] in other systems, and guidance to Aspect] programming.

The Reverse Inheritance (RI) type should be used when functionality separate
from the object's functionality is desired. When this behavior is fairly generic
across a body of code, a large reduction in complexity and code size can be
gained. This is because the Reverse Inheritance type fixes both code tangling
and "Knows About" tangling.

The Layered type should be used for optional or special case behavior. When
this behavior has been amalgamated with the standard behavior, Aspect] can
be used to separate the special cases into Aspects. This type of Aspect also
fixes both code tangling and "Knows About" tangling.

The Filter type can be used to make type to type transformations transparent.
This decreases the complexity of code by making the Aspect, instead of the
objects, responsible for the transformation. This type of aspect fixes "Knows
About" tangling.

Another pattern was discovered over the course of this project as well: a usage pattern for
cflow. In the PGICache, cflow was used to mirror method local variables for use in the
Aspect. Aspect] only allows access to object variables but using cflow, the Aspect gained
access to method local variables. Thus, cflow can be used to capture method local
variables, and Aspect] can behave in a functional capacity, creating objects and executing
code on a per- method-call basis.

I1. Aspect]J provides Reverse Inheritance

The successful use of Aspect] for the Reverse Inheritance highlights another discovery.
Aspect] classes can be used to introduce behavior into a class without tangling the
"Knows About" relationship. This is because Reverse Inheritance can be used to impose
behavior on an object, confining the "Knows About" relationship to the Aspect
introducing the behavior.

In searching for aspects in Cocoon, it was discovered that many classes inherited
behavior from multiple sources. Secondary behavior was often transparent and unrelated
to the behavior of the inheriting (and sometimes implementing) class. Using Aspect], we
can change the implementation so that there is no code tangling (because code is
implemented in the Aspect), and no "Knows About" tangling (because it is the Aspect
that contains the "Knows About" relationship.

20

II1. Changing the Knows About Relationship

This project also verified that Aspect] is successful in improving the "Knows About"
relationship in a project. Aspect] both improves the directionality (leading to Aspects
"Knowing About" and introducing behavior), and localizes the "Knows About"
relationship. This is especially pronounced in the NamedComponent Aspect where
potentially N "Knows About" relationships are removed, in addition to other
improvements. However, even in Aspects with fewer gains, the "Knows About"
relationship is pushed into the Aspect. This leads to a reduction in "Knows About”
tangling. Components are no longer required to know about behaviors unrelated to their
own.

IV. Layered Programming

Another discovery was the ease with which Aspect] allows layered extension
programming [5], or subset programming. This is seen in the Layered Aspect. Once the
minimal subset is found and coded, the other behaviors can be layered on using Aspect].
The Layered Aspect in this project also highlighted the difficulties one can encounter in
finding the minimal subset of behavior. In the Layered Aspect, it was unclear whether the
cache, disk, or regeneration of code should be the default behavior. While this difficulty
was not resolved, it is clear that Aspect] provides a mechanism for implementing any of
these as default behavior.

Several other observations were made during the course of this project that are mentioned
only briefly here. The first is that Aspects were easy to find. Several mechanisms used in
the code pointed to easy conversion to Aspect]. Examples of these are the use of many
interfaces, trivial abstract classes whose behaviors were implemented many times (often
with the same functionality), and the division of Cocoon into a management package
(Avalon) and a functional package (Cocoon). Interfaces were used to introduce
tangential behaviors (defined by trivial abstract classes), or "Aspects" of an object. Most
of these interfaces were candidates for conversion to RI Aspects, though not all were
simple candidates (i.e. mixed functionality made it hard to separate out the functionality
of the abstract class alone). Even where interfaces were not used, the layout of code and
method calls clearly indicates that some behaviors are "Aspects", and not primary
functionality. It appears that Aspects are an abstract structure in the minds of the
programmers, even if they cannot be explicitly implemented. The second observation is
that Aspect] often allowed the conversion of existing code into Aspects with minimal
effort. This appears to be both because Aspects were easy to find and because they were
simply re-implementing behavior. The final observation is that the tools for Aspect]
works well for "real" code bases. This includes the compiler itself (though slow), as well
as the development environment (AJDE Emacs) and the Aspect Browser.

Acknowledgements

The author would like to thank William G. Griswold, Cristina Videira Lopes, the Aspect]
group, and Xerox PARC.

21

References

1. Recent Developments in Aspect]J™

Cristina Videira Lopes and Gregor Kiczales

In ECOOP'98 Workshop Reader, Springer-Verlag LNCS 1543.
Corresponding Aspect] version*: pre 0.1

2. A Study on Exception Detection and Handling Using Aspect-Oriented
Programming

Martin Lippert and Cristina Videira Lopes

In proceedings of ICSE'2000. Limmerick, Ireland. Corresponding Aspect] version*: 0.4

3. Atlas: A Case Study in Building a Web-based Learning Environment using
Aspect-oriented Programming

Mik Kersten and Gail C. Murphy

In OOPSLA'99 proceedings. Denver, CO, USA. ACM Press, pp. 340-352, 1999.
Corresponding Aspect] version*: 0.2

4. Personal Conversation with Jeff Palm
Jeffery Palm
Xerox PARC Summer 2000

5. The Structure of the ~"THE''-Multiprogramming System
E.W. Dijkstra,.
Communications of the ACM, 11(5), 1968.

6. The Cocoon Project
The Apache Software Foundation
http://xml.apache.org/cocoon/index.html

7. The Apache Project

The Apache Software Foundation
http://www.apache.org

22

