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Abstract

A Measurement of the proton-proton inelastic scattering cross-section at
√
s = 7 TeV with

the ATLAS detector at the LHC

by

Lauren Alexandra Tompkins

Doctor of Philosophy in Physics

University of California, Berkeley

Professor B. H. Heinemann, Chair

The first measurement of the inelastic cross-section for proton-proton collisions at a center

of mass energy
√
s = 7 TeV using the ATLAS detector at the Large Hadron Collider is

presented. From a dataset corresponding to an integrated luminosity of 20 µb−1, events are

selected by requiring activity in scintillation counters mounted in the forward region of the

ATLAS detector. An inelastic cross-section of 60.1 ± 2.1 mb is measured for the subset

of events visible to the scintillation counters. The uncertainty includes the statistical and

systematic uncertainty on the measurement. The visible events satisfy ξ > 5×10−6, where

ξ = M2
X/s is calculated from the invariant mass, MX , of hadrons selected using the largest

rapidity gap in the event. For diffractive events this corresponds to requiring at least one

of the dissociation masses to be larger than 15.7 GeV. Using an extrapolation dependent

on the model for the differential diffractive mass distribution, an inelastic cross-section

of 69.1 ± 2.4(exp) ± 6.9(extr) mb is determined, where (exp) indicates the experimental

uncertainties and (extr) indicates the uncertainty due to the extrapolation from the limited

ξ-range to the full inelastic cross-section.
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PREFACE

For the General Reader

On March 30th, 2010, the highest-energy man-made proton collisions to date occurred

at the Large Hadron Collider (LHC) in Geneva, Switzerland, ushering in a new era of

discovery for high-energy particle physics. The LHC is poised to answer some of the most

fundamental questions of nature: what is the origin of mass? is our current understanding

of elementary particle interactions a complete description of nature? and, possibly, what

is the nature of dark matter? The work in this thesis concerns the first steps along the

road to discovery. It aims for an understanding of the most abundant and inclusive of LHC

processes, proton-proton inelastic collisions.

The LHC is a proton collision factory, churning out millions of collisions per second. It

takes hydrogen atoms from a tank of gas, strips the atoms of their electrons, and accelerates

the remaining protons to 99.999996% of the speed of light. The protons revolve around the

LHC in two beams traveling in opposite directions, and are brought to collide at four points

along the 27 km ring in a region no larger than a strand of hair. Each beam is divided into

multiple bunches of 100 billion protons to maximize the probability that the protons will

interact when the beams cross each other; even at those beam densities, only a few proton

interactions occur per beam crossing.

Garden-variety proton-proton interactions happen 10 billion times more frequently than

theorists predict interactions which produce the fabled Higgs boson should occur. Yet,

the theorists cannot calculate from first principles how often protons interact with each

other. By contrast, they can predict with relatively high accuracy how often a proton-

proton interaction will yield a Higgs Boson. The reason that the rare Higgs production rate

is easier to calculate than the total proton-proton interaction rate is because of what inside

the proton is interacting. To produce a Higgs boson, which is a heavy particle, a large

amount of energy is needed so very energetic parts of the proton must interact. However,

only a small part of the proton carries significant energy, the rest is a teeming, low energy

mess.Think of the proton as a ball of jello with a few BBs embedded inside of it. Most of
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the time when two protons collide the jello makes a mess, but the BBs don’t contact each

other. However, on rare occasions a BB from one proton will hit one from the other proton

head on and the result with be a clean interaction, like the collision of two billiard balls.

Calculating the interaction of jello with jello is intractable, but calculating the interaction

of two BBs is simple. Higgs boson production occurs in the rare “BB” collisions, the vast

majority of LHC collisions, such as the one shown in Figure 1, are made of “jello”.

Figure. 1 A proton-proton collision event from the first day of 7 TeV collisions at the LHC. The outermost

blue segments indicate the muon detectors. The pink and green regions indicate the hadronic and electromag-

netic calorimeters, respectively. The grey shaded region shows the inner tracking detectors. The colored lines

are the traces of charged particles, as determined from the energy deposits left in the detector by the particle,

indicated by the grey dots. The left view is transverse to the beam direction, the upper right view is along the

beam direction.

One of the most interesting features of proton-proton interactions is how the rate of

interaction changes with different proton collision energies. How quickly the interaction

rate increases sheds light on what mechanisms are involved in the interactions at different

energies. Because the rate of proton interactions is so difficult to calculate, experimental

measurements are critical to distinguishing which models of the interactions best describe

nature. Measurements at past colliders mapped out the dependence of the interaction rate

at low proton energies and found a slow dependence on the energy. Once data were taken

at higher energies, the situation got murkier. For example, two experiments at the Fermilab

accelerator in Batavia, Illinois, which has proton energies three and a half times lower than

at the LHC, yielded discrepant results. At very high energies, cosmic ray data have been

used to infer the proton-proton interaction rate. When cosmic ray protons bombard the



vi

upper atmosphere they interact with atoms in the air. These interactions are measured by

experiments, and are related to proton-proton interactions through approximate theoretical

models. However, because these measurement rely on models and approximations, they

have large uncertainties. Therefore, they provide little information on the high energy

behavior of proton-proton interactions.

The measurement presented in this thesis uses the ATLAS detector at the LHC to mea-

sure the rate of proton-proton interactions at the highest energy man-made collisions in the

world. Events are detected and counted using scintillator discs which sit 3.6 m from the

center of ATLAS and have an inner radius of 14 cm and an outer radius of 88 cm from

beam-pipe. The scintillators are made of a special plastic which emits light when traversed

by a charged particle. The light signals that a proton-proton interaction has occurred.

beam-line

pp

Particle furthest 

from beam-line

Scintillator Detectors

(a)

beam-line

pp

Particle furthest 

from beam-line

Scintillator Detectors

(b)

Figure. 2 Cartoon sketch of an event illustrating which events are visible to the detector. The yellow discs

indicate the scintillator detectors, the red and blue dashed arrows represent particles created in a proton-proton

interaction. In Figure (a) the event is detected because the particles intersect the scintillators. In Figure (b) it

is not detected.

What distinguishes this measurement from measurements in the past is that it is re-

stricted to only the subset of proton-proton interactions which the detector can observe.

Most proton-proton interactions look like Figure 1. They are easily detectable because par-

ticles are produced in all directions. However, in some interactions the protons exchange
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only a bit of energy and the new particles created in the interaction are emitted at small

angles to the beam-line. Sometimes the new particles are so close to the beam-line that

the detector cannot measure them. Figure 2 illustrates two events. In Figure P.2a the par-

ticles produced intersect the scintillator detectors and the event is observed. In Figure P2b

the particles are too close to the beam-line and do not traverse the scintillators. Normally

experiments use models of how often this happens to correct for these undetected events.

The measurement in this thesis is defined as the rate of proton interactions in which the

particle furthest from the beam line intersects the innermost edge of the detector. Therefore

there is no large model-dependent correction for the undetected events. Because it is so

well-defined, the measurement has very small uncertainties. In order to compare with past

experiments and other models, this thesis also presents the interaction rate with a model-

dependent correction for the undetected events.

The measurement presented in this thesis is highest energy direct measurement of the

proton-proton interaction rate. The measurement does not show a dramatic rise of the

interaction rate at LHC energies, indicating that no new mechanism is involved in the

proton-proton interactions. Some models predict that at higher energies protons will inter-

act through new channels not present at lower energies and that these additional channels

will increase the interaction rate. The data suggest that this hypothesis is incorrect.
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CHAPTER 1

Introduction

On March 30th, 2010, the highest-energy man-made proton collisions to date occurred

at the Large Hadron Collider in Geneva, Switzerland, ushering in a new era of discovery

for high-energy particle physics. The LHC is poised to answer some of the most funda-

mental questions of nature: what is the origin of mass? is the Standard Model a complete

description of nature? and, possibly, what is the nature of dark matter? The work in this

thesis concerns the first steps along the road to discovery. It aims for an understanding of

the most abundant and inclusive of LHC processes, proton-proton inelastic collisions.

The physics of inclusive proton interactions is simultaneously the most basic and com-

plex phenomenon at the LHC. Since the earliest days of hadron collider physics, total

proton-proton cross-sections have been measured and puzzled over. Quantum chromody-

namics (QCD), the theory of strong interactions, is currently unable to describe the inelas-

tic cross-section, and therefore, myriad models are used to describe this high-energy, low

momentum transfer phenomenon. Typically, proton inelastic interactions are divided into

two categories: diffractive interactions, in which the final state protons or their dissocia-

tion products have no QCD color connection (pp → pX , pp → XY , pp → ppX) and

non-diffractive processes in which color flow is present (pp → X). Non-diffractive events

make up the bulk of the inelastic cross-section and are modeled reasonably well by tuned

Monte Carlo generators. Diffractive events are poorly understood, and their understanding

is critical to an understanding of the inelastic cross-section.

Existing data on the total (elastic + inelastic) proton-proton and proton-antiproton cross-

sections are shown in Figure 1.1. The majority of the data are from measurements at

colliders. The first measurements were made at fixed target experiments at the CERN Low

Energy Antiproton Ring (LEAR), Synchro-Cyclotron (SC) and Proton Synchotron (PS)

colliders. They were followed by colliding beams measurements at the Intersecting Storage

Ring (ISR) and Super Proton Synchotron (SPS). Several TeVatron experiments measured

the cross-section at a center-of-mass energy of 1.8 TeV. However, there is a long-standing

2.6σ discrepancy between the measurement of the CDF [2] experiment and of E710 and
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Figure 1.1. Proton-proton and proton-antiproton total cross-section as a function of
√

s. Data from [1]. The

cosmic-ray measurements are of σp−air which is translated to σpp via Glauber theory.

E811 [3, 4] experiments1.

Many of the collider-based data are obtained by measuring the forward elastic cross-

section and using the optical theorem to obtain the total cross-section:

σ2
Tot =

16π

1 + ρ2

1

L
dNel

dt
|t=0 (1.1)

where ρ is the ratio of the real to imaginary parts of the scattering amplitude, L is the lumi-

nosity and dNel

dt
|t=0 is the forward elastic scattering rate extrapolated to 0 momentum trans-

fer. The optical theorem is discussed in detail in Appendix B. The CDF and E710/E811

experiments used a luminosity independent version of Equation 1.1 which required a mea-

surement of the number of inelastic events as well as the elastic events. The difference in

these two experiments has not been resolved.

The highest energy measurements in Figure 1.1 are from cosmic-ray experiments, which

measure the proton-air cross-section, σp−air, and use Glauber theory [5] to translate to

σtot
p−p [6]. However, these extrapolations have large uncertainties and provide relatively lit-

tle information on the high-energy behavior of the total cross-section. If both of the Teva-

tron measurements are considered, then the data on proton interactions are poor constraints

on fits above
√
s > 550 GeV. Therefore, well-defined measurements of proton-proton in-

teractions at the LHC will be important for testing models of hadronic scattering and of

cosmic-ray air-showers.

1E811 was the successor to the E710 experiment. It used more sophisticated detectors and techniques.
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The work in this thesis uses data collected with the ATLAS experiment on the second

day of LHC collisions at a center-of-mass energy,
√
s, of 7 TeV to shed light on the sub-

ject. Simple, robust scintillator detectors, the Minimum Bias Trigger Scintillators (MBTS),

are used to select inelastic interactions with high efficiency and minimal bias. The mea-

surement is restricted to the acceptance of the scintillator detectors, which translates into a

requirement on the invariant mass of the proton dissociation products,X , of
M2

X

s
> 5×10−6

or equivalently, MX > 15.7 GeV. Additionally, the dataset is used to constrain the relative

contribution of diffractive processes for a variety of models. In order to compare with

previous experiments and analytic predictions, the measurement is extrapolated to the full

inelastic cross-section using Monte Carlo generators and analytic models. A summary of

the results can be found in [7].

This thesis is structured as follows. First, a discussion of the theoretical and phe-

nomenological underpinnings of proton-proton interactions is presented in Chapter 2. The

inelastic cross-section measurement is outlined in Chapter 3. Descriptions of the LHC and

the ATLAS experiment follow in Chapters 4 and 5, respectively. Chapter 6 explains the

event reconstruction and Chapter 7 outlines the datasets and Monte Carlo simulation used

in the analyses presented here. Chapter 8 details the detector performance and modeling

relevant to this measurement. The backgrounds are presented in Chapter 9. Chapter 10

describes the determination of the luminosity via beam separation scans. Studies of the

Monte Carlo modeling of diffractive event dynamics are presented in Chapter 11. Finally,

the inelastic cross-section measurement is detailed in Chapter 12 and conclusions are drawn

in Chapter 13.
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CHAPTER 2

pp Interactions: Models and

Monte Carlo Models

2.1 Overview and Historical Development

Proton-proton interactions play an important role in the narrative of modern particle

physics. The first formulation of a theory of hadronic interactions was proposed by Yukawa

in 1935 who suggested that the exchange of a 100 MeV particle, now called the pion,

mediated the interactions between two hadrons [8]. A host of mesons and baryons were

subsequently discovered, but the simple picture of exchange of these particles was unable

to explain the existing experimental data on hadron-hadron interactions. In the late 1950s T.

Regge solved the non-relativistic scattering equation and analytically continued the partial

wave amplitudes of the solutions such that imaginary values of the angular momentum were

possible [9]. The ensemble of the imaginary and real solutions to the equations were called

a Regge trajectory. The real solutions described known mesons and baryons, and, once the

imaginary solutions were included, the Regge trajectory could reproduce the dependence

of the hadronic cross-section on the center-of-mass Mandelstam variable1, s.
Yet, while Regge theory was adequate to explain the low energy scattering data, as

the center-of-mass of experiments increased, it could not explain the dependence of the

cross-section on higher s. In the 1960s, proton-proton scattering data showed the pp cross-

section becoming constant. Motivated by these data, I. Pomeranchuk proved a theorem

which, under certain assumptions, proved that the hadron-hadron and hadron-antihadron

cross-sections would become asymptotically equal with increasing s [10]. This theorem

necessitated the concept of the pomeranchukon or Pomeron, a Regge trajectory with the

quantum numbers of the vacuum, which dominates scattering at high energies. A Regge de-

scription with a Pomeron trajectory was very successful at describing the experimental data

on hadronic interactions. In particular, it was able to describe the rise of the cross-section

at even higher s. Figure 1.1 shows the proton and antiproton cross-section measurements,

1The Mandelstam variables s, t, and u are described in Appendix A.
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illustrating the rise of the cross-section as well as the equivalence of the proton-proton and

proton-antiproton data at high
√
s.

In the late 1960s and early 1970s the theory of strong interactions entered a phase of

rapid development with the introduction of the quark model and the formulation of QCD.

QCD and quarks described well “hard interactions” in which there are large momentum

transfers between the interacting particles. Preliminary attempts to integrate Regge theory

and Pomeron trajectories into a QCD framework failed, and, while certain aspects of hadron

scattering can be described by QCD, the theory is unable to explain many features of Regge

phenomena, e.g. the dependence of the cross-section on s. The fundamental problem lies in

the fact that strong coupling constant is large at low momentum transfer and consequently

perturbation theory is not applicable.

Today, proton-proton interactions are understood to consist of three interaction types:

elastic interactions in which no quantum numbers are exchanged between the initial and

final state and there is no additional production of particles; diffractive events in which a

Pomeron trajectory is exchanged and new particles are produced but no QCD color connec-

tion exists between the interacting protons, and non-diffractive (ND) events, the remainder

of the inelastic interactions. Generally, the non-diffractive processes are described as in-

teractions involving QCD color exhange. The diffractive interactions are subdivided into

single- and double-diffractive dissociation (SD, DD) events in which one or both protons

dissociate, respectively. These interactions are shown schematically in Figure 2.1. The

events with Pomeron exchange typically are characterized by a large rapidity2 gap between

the proton systems due to the colorless exchange. In reality, this picture is a simplification

of the rich and complex phenomena of hadron-hadron collisions, however it is a convenient

description of the most salient features of the interactions.

This chapter takes a historical approach and begins by discussing Regge theory and

Pomeron trajectories in Section 2.2. QCD and the parton model are reviewed in Section 2.3.

Partonic descriptions of the Pomeron are described in Section 2.4. The chapter ends with a

discussion of the current models of proton-proton interactions, starting with analytic mod-

els of cross-section in Section 2.5 and Monte Carlo models in Section 2.6.

2.2 Regge Theory and Pomeron Trajectories

Regge discovered that the non-relativistic scattering equation of a spherically-symmetric

potential could be solved for non-integer, non-real values of angular momentum [9]. The

singularities of the partial wave amplitudes of the solutions are a function of the Mandel-

stam variable for momentum transfer, t:

l = α(t). (2.1)

2The rapidity of a particle is defined as 1
2

ln E+|p|c
E−|p|c , where E is the particle total energy and |p| is the

magnitude of the four-momentum.



2.2 Regge Theory and Pomeron Trajectories 6

(a) (b)

(c) (d)

Figure 2.1. Sketches of proton-proton interaction types for elastic events (a), single-diffractive dissocia-

tion (b), double-diffractive dissociation (c), and non-diffractive dissociation (d). In these diagrams p indicates

protons, the blue

Equation 2.1 defines the Regge trajectories. Each trajectory is associated with a family of

particles with the same quantum numbers; the values of t for which α(t) is a non-negative

integer correspond to the mass of physical particles. By including all of the known Regge

trajectories, the scattering cross-section can be reproduced. The relation between l and t
for particles with the same quantum numbers is given by

α(t) = α0 + α′t. (2.2)

where α0 is the Regge trajectory intercept and α′ is the slope. Figure 2.2, a Chew-Frautschi

plot, shows four Regge trajectories: that of the ρ, ω, f2,and a2 particles. The trajectories

are degenerate, which did not necessarily have to happen.

As can be seen in the plot, the trajectory has a (nearly) universal slope and intercept,

independent of the particle family from which it originates.

Each of the Regge trajectories contributes to the total cross-section with the following

depedence on s:
σab(s) ∝ sα(0)−1 (2.3)

where σab is the total interaction cross-section of particles a and b, and α(0) is the value

of the Regge trajectory at t = 0. In Figure 2.2 α(0) is roughly 0.5, which indicates a

cross-section decreasing with s. At
√
s less than 10 GeV the observed total scattering
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Figure 2.2. A Chew-Frautschi plot showing the relationship between mass and spin, or equivalently, the

Regge trajectory for mesons. Reproduced with permission from [11].

cross-section for proton-proton and proton-antiproton interaction decreases with energy, as

is predicted by the Regge trajectories. However, above 10 GeV the cross-section rises for

both pp and pp̄ scattering, as shown in Figure 1.1, which can not be accounted for by any

known physical particles.

While Regge theory was developing, I. Pomeranchuk proved a theorem [10] stating that

at sufficiently high center-of-mass energies, particle-particle interaction cross-sections be-

come asymptotically equal to particle-antiparticle cross-sections. This statement was true

under the assumptions that the cross-sections are asymptotically constant and that the ratio

of the real to imaginary part of the forward scattering amplitude does not increase more

rapidly than ln s. Gribov introduced a Regge trajectory which assures this behavior [12].

This trajectory, which when summed is called the Pomeron, carries the quantum numbers

of the vacuum and does not have any known particles corresponding to the integer spin

values. In QCD terms, the Pomeron trajectory is thought to correspond to “glueballs”, col-

orless multi-gluon objects [13]. Sections 2.4 and 2.5 further discuss attempts to reconcile

Regge theory with QCD.

The addition of the Pomeron trajectory adds a term to the total cross-section formula:

σab(s) ∝ Y absη +Xabsǫ. (2.4)

here η = αIR(0) − 1 refers to the Regge trajectory intercept corresponding to the ρ, ω, f2,
and a2 particles and it is negative. The parameter ǫ = αIP(0)− 1 refers to the Pomeron tra-

jectory intercept and is positive. The coefficients ǫ and η are universal coefficients whereas

Y ab andXab depend on the interacting hadrons, a and b. The Pomeron trajectory is assumed
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to behave the same as the ρ, ω, f2, a2 trajectory, therefore it is assumed that

αIP(t) = 1 + ǫ+ α′
IPt. (2.5)

Fits to existing data prefer values of

η = −0.45; ǫ = 0.081; α′
IP = 0.25 GeV−2. (2.6)

The variable α′
IP is determined from fits [14] to small t data from the (ISR). Data from small

t elastic scattering of pp (ISR) and pp̄ (Tevatron) are shown in Figure 2.3 [15, 16]. The

variables ǫ and η are determined from global fits to existing cross-section data [17, 18, 19].

10
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Figure 2.3. Elastic scattering data from pp 53 GeV [15] and pp̄ 1800 GeV[16] with fits corresponding to

α′
IP = 0.25 GeV−2. Reproduced with permission from [11].

Equation 2.4 violates one of the few analytic constraints on hadron-hadron interactions:

the Froissart-Martin bound [20, 21]. In 1961 Marcel Froissart proved, using general con-

straints of unitarity and analyticty3, that the total cross-section could not rise faster than

σtot(s) ≤ ln2 (
s

s0
). (2.7)

where s0 is some unknown scale. The theorem can be understood intuitively when con-

sidering the fact that the interaction cross-section of two particles is negligible beyond a

certain impact parameter due to the time-energy uncertainty relation. Froissart showed

that the impact parameter is determined by the natural log of the center-of-mass energy.

The scattering cross-section cannot rise faster than the impact parameter squared, i.e. the

cross-sectional area, and therefore the cross-section is bounded by ln2 (s).
Further discussion of cross-section models which modify the basic Regge theory to

obey the Froissart bound are discussed in Section 2.5.

3Unitarity states the probabilities cannot exceed one, and analyticity means that functions cannot have

discontinuous jumps in their values.
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2.3 QCD and the Parton Model

While Regge theory developed as a viable model for hadronic interactions, a new the-

ory pioneered by Gell-Mann and Zweig [22, 23] proposed an organizing principle for the

multitudes of recently discovered hadrons. It began with Gell-Mann’s eightfold way [22]

which used the symmetry group SU(3)4 to describe the masses and decays of the known

hadrons. The success of the SU(3) description led Gell-Mann and Zweig to propose that

hadrons were comprised of three fractionally charged fundamental particles, dubbed quarks

by Gell-Mann. In symmetry group terms, these quarks form the fundamental representa-

tion of the SU(3) group. Today these particles are known as u, d and s quarks and the

symmetry described by this approximate SU(3) theory is known as a “flavor symmetry”

and is valid in the limit of equal mass quarks.

Flavor SU(3) was challenged, however, by the discovery of the ∆++ baryon, which

had spin +3
2

and consisted solely of u quarks. Because quarks were believed to be spin
1
2

fermions they could not simultaneously be in the same state as would be necessary to

produce a +3
2

particle. To solve this violation of the Pauli exclusion principle, Han, Nambu

and Greenberg proposed [24, 25] that the quarks had an additional SU(3) degree freedom,

which is now called color. All quarks carried color charge and the hadrons were composed

of combinations of which made the hadrons color singlets. The quark model had one prob-

lem: no quarks had ever been isolated in the laboratory and fractionally charged particles

had never been observed. Therefore many, including Gell-Mann, believed quarks were

only an abstract way of understanding nature.

Simultaneously, Feynman created the parton model, in which hadrons were composed

to quasi-free point-like particles he called partons [26]. He developed the theory in re-

sponse to results from the deep inelastic scattering experiments at the Stanford Linear Ac-

celerator (SLAC), in which 20 GeV electron beams were scattered off of liquid hydrogen

and liquid deuterium targets. These experiments were conceptually similar to the Ruther-

ford scattering experiment in which the structure of the atom was determined. A Feynman

diagram of the electron-proton interaction is shown in Figure 2.4. The electron emits a

photon5 with momentum four-vector q, which interacts with a parton carrying momentum

fraction, xp, of the proton. Measurements of the outgoing electron momentum translate

into measurements of the charge distribution and in the proton, called structure functions.

Higher order corrections give information about the gluon content of the proton.

At the same time as Feyman was developing the parton model, Bjorken postulated that

the structure functionsmeasured in inelastic scattering depended only on the dimensionless

ratio of the four-momentum transfer, q2, to the electron energy loss [27]. This behavior,

now called Bjorken scaling, is a consequence of a parton-like model, where the probe

particle, in this case an electron, acts incoherently on the proton constituents. A more

detailed discussion of deep-inelastic scattering experiments is given in Section 2.4. These

4SU(3) is the group of 3×3 matrices with unit determinant.
5More generally, it emits an electroweak boson.
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measurements determined the parton distribution functions or PDFs which describe the

momentum faction of the proton carried by its constituent quarks and gluons.

Figure 2.4. Feynman diagram of deep inelastic scattering. The electron interacts with a valence quark via

a boson with four-vector q. The quark has a momentum fraction xp of the proton and by measuring the

scattered electron, xp can be determined.

Once Gross, Wilczek and Polizter [28, 29] showed that SU(3) leads to asymptotically

free gauge theories, i.e. the interactions between constituents becomes arbitrarily weak

for asymptotically large energies, SU(3) QCD became a viable and accepted theory of

strong interactions. In particular, asymptotic freedom allowed perturbation theory to be

used in the calculation of QCD processes, and lead to the factorization theorem which

states that the partonic scattering cross-section can be factorized from the PDFs [30, 31].

With factorization, cross-sections can be calculated via:

σ(P1, P2 → X) =
∑

i,j

∫

dx1dx2fi(x1, Q
2)fj(x2, Q

2)σ̂(i, j → X; x1P1, x2P2, Q
2) (2.8)

where fi,j are the parton distribution functions for partons i and j, x1 and x2 are the momen-

tum fractions of parton i and j in proton 1 and 2, respectively, σ̂ is the partonic cross-section

for X to be produced and Q2 is the momentum scale of the hard partonic interaction. Fac-

torization is not explicitly proven for all cross-sections, but it is currently one of the most

powerful tools for calculating cross-sections involving hadrons.

Asymptotic freedom and factorization are useful only in the large momentum transfer

limit. They do not provide calculational tools for low momentum transfer hadron-hadron

interactions. In fact, the opposite regime of arbitrarily low energy interactions gives rise to

the phenomena of quark confinement. Because QCD interactions become arbitrarily strong

at low energies, quarks and gluons cannot be observed individually, which is the principle

of confinement. This statement is not rigorously proven but it is generally accepted.

In Equation 2.8, both the PDFs and σ̂ depend on the QCD coupling constant, αs. The

statement that QCD interactions become strong or weak is another way of saying that αs
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becomes large or small. The coupling depends on the momentum transfer of the interaction,

Q2, by the following expression at leading order in perturbation theory:

αs(Q
2) =

12π

(33 − 2nf) ln (Q2/Λ2
QCD)

(2.9)

where nf is the number of quark flavors with masses less than Q2, and ΛQCD is extracted

from fits to measurements of αs. The scale ΛQCD is considered to be the scale at which

QCD is non-perturbative. It is roughly 200 MeV, the same scale as the pion mass or hadron

size. For the majority of hadron-hadron scattering processes, Q2 in Equation 2.8 is the

momentum transfer between the protons. It is roughly ΛQCD and, consequently, αs ∼ 1.

When the expansion parameter, in this case αs, is & 1, perturbation theory is not applicable.

Because of these difficulties, QCD is unable to supply predictions for hadron-hadron cross-

sections.

2.4 Partonic Descriptions of the Pomeron

Since QCD was established as the theory of strong interactions, attempts have been

made to describe the Pomeron and Regge trajectory in terms of partons. The Pomeron

trajectory has no known associated particles, unlike the Regge trajectory of the ρ, ω, f2, and

a2. However, it can be described most simply as a two-gluon exchange process [32, 33, 34],

with higher order corrections arising as a ladder of gluon exchange, as shown in Figure 2.5.

Calculation of the Pomeron intercept, α(0), in this model [35] leads to a value of 1.0 which

is in reasonable agreement with the measured value of 1.08.

(a) (b)

Figure 2.5. Feynman of two-gluon exchange between partons at leading order (a) and with a ladder of higher

order gluon interactions (b).

High center-of-mass energy deep inelastic scattering experiments offer the opportunity

to directly probe the partonic description of the Pomeron. The HERA collider at the DESY

laboratory in Hamburg, Germany collides electrons and protons at a center of mass energy

of 318 GeV with the primary goal of precise measurements of the proton DPFs. At the

HERA experiments H1 and Zeus, events of the form p+ e→ e+X+ p as well as p+ e→
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e +X + Y with a large rapidity gap between X and Y , were observed [36, 37, 38]. Both

the intact proton and large rapidity gap are hallmarks of a diffractive interaction because

both signal the exchange of a color-less object. These events were selected and analyzed to

determine the diffractive parton distribution functions (DPDF).

Figure 2.6 shows an illustration of the p+ e→ e+X+ p, highlighting different factor-

ization schemes. Figure 2.6(a) shows a case where the diagram can be factorized based on

a hard scattering QCD collinear factorization theorem [39, 40]. This theorem states that for

a fixed final state proton momentum the DPDF can be obtained. In this case the DPDF is

dependent on the distribution of Pomerons in the proton, termed the Pomeron flux, and the

momentum transfer in the interaction. The Figure shows the momentum transfer q of the

probe particle, which interacts with a parton from a Pomeron with momentum fraction xIP

of the proton with a Pomeron flux, fIP/p. In this case the DPDF describing the probability

to find a parton with momentum fraction xp in the Pomeron is dependent on the Pomeron

momentum fraction of the proton, xIP. Figure 2.6(b) shows further factorization, which

has been determined empirically, where the proton vertex factorizes as well. When this

occurs, which the existing data suggest is applicable for low fractional proton losses, the

shape of the DPDF is independent of the proton four-momentum. In other words, xIP is in-

dependent of p and xp is independent of xIP. In this regime diffraction can be described by

the exchange of a Pomeron “parton” with universal parton densities [41]. The dependence

of these DPDFs on x and q2 can be determined using perturbative QCD as in the case of

standard PDFs.

(a) (b)

Figure 2.6. Illustration of p + e → e + X + p. (a) shows the the point of QCD collinear factorization and

(b) shows proton-vertex factorization.

The DPDFs determined at HERA fail badly at describing the Tevatron data on diffrac-

tive events [42], which would indicate their non-universality. However, reasonable agree-

ment is achieved once multiple parton interactions are taken into account via a ’rapidity gap

survival probability’, i.e. the probability that the rapidity gap in the diffractive interaction is

not spoiled by the non-diffractive interactions of other partons [42]. Due to the necessity of

adding a rapidity gap survival probability, the DPDFs cannot be used to predict the hadron-
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hadron cross-sections, however, they are useful in describing multi-particle production in

diffractive events, as discussed in Section 2.6.

2.5 Analytic Cross-Section Models

2.5.1 Total Cross-Sections

The simplest model of the total cross-section is given by Equation 2.4, which includes a

Regge and Pomeron contribution. However, as mentioned in Section 2.2, this equation vio-

lates the Froissart bound. Data from elastic scattering and total cross-section measurements

can be fit well by the following function [1]

σab = Zab +B log2(s/s0) + Y ab
1 (s1/s)

η1 − Y ab
2 (s1/s)

η2 (2.10)

where Zab, B, s0, Y
ab
1 , s1, η1, Y

ab
2 , and η2 are all parameters in the fit. The particles

a and b are protons, photons, neutrons, pions, and kaons. Equation 2.10 is the standard

parametrization. These terms are well-motivated, with Zab +B log2(s/s0) deriving from

double and triple Pomeron exchange, and Y ab
1 (s1/s)

η1 − Y ab
2 (s1/s)

η2 arising from the ex-

change of the a, ω, f, and a Regge trajectories. Equation 2.10 has the added benefit of

explicitly obeying the Froissart bound. However, the equation has many free parameters,

including several unknown scales (s0, s1), therefore it is useful to consider simpler models.

Donnachie and Landshoff argue [43] that Equation 2.4 with the interpretation of ǫ
and η as effective values gives a reasonable and simple prediction for the dependence of

the cross-section on s. They fit the pp and pp̄ in the region
√
s > 10 GeV to 1.8 TeV and

obtain

σpp̄ = 21.70s0.0808 + 98.39s−0.4525 (2.11)

σpp = 21.70s0.0808 + 56.08s−0.4525 (2.12)

The Pomeron term, 21.70s0.0808 is universal, while the a, ω, f, and a exchange term con-

stant depends upon the initial state particles. The significant digits reflect the precision of

the fits. They note this fit is dominated by the measurements at
√
s < 100 GeV there-

fore it is a success of the parametrization to fit the higher s data. The value of ǫ that they

obtain does not correspond to a simple, single Pomeron pole. It is an effective intercept

incorporating the effects of multiple Pomeron exchange.

The most common model for multiple Pomeron exchange uses the so-called eikonal

representation6. The assumption is made that there are multiple Pomeron trajectories ex-

changed leading to a combined intercept of

αc(t) = αc(0) + α′
ct. (2.13)

6The following discussion follows [11].
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In the case of two exchanges αc(0) and α′
c are given by

αc(0) = α1(0) + α2(0) − 1 (2.14)

α′
c =

α′
1α

′
2

α′
1 + α′

2

. (2.15)

This αc(t) corresponds to a partial wave amplitude,A, of the solution of the Yukawa poten-

tial, which can be expressed in terms of the impact parameter b and s. This is the eikonal

representation. The amplitude is then expressed as a Fourier transform back to momentum

transfer space, and expanded in a Taylor series

A(s,−q2) = 2is

∫

d2b e−iq·b

(

χ− χ2

2!
+
χ3

3!
· · · −χ

n

n!
· ··
)

(2.16)

where the nth χ term corresponds to n Pomeron exchanges. Then, with a guess on the form

of χ, or the eikonal, motivated by the exact expression for single Pomeron exchange, the

optical theorem can be used to relate A at t = 0, the forward scattering cross-section, to

σtot:

σtot ∝ log2(s/s0). (2.17)

Donnachie and Landshoff argue [43] that the effect of the multiple Pomeron exchanges

is weak because

• The same power of ǫ fits all available hadron-hadron and hadron-antihadron cross-

sections.

• A single Pomeron contribution satisfies the additive quark rule [44] which states that

Xab ∝ nanb (2.18)

where na and nb are the number of valence quarks in a and b, respectively. It is

observed that Xπp : Xpp ≈ 2 : 3.

There are several additional models to mention:

• Engel: This model is implemented in the PHOJET Monte Carlo [45, 46], discussed

in more detail in Section 2.6. It is based on the Dual Parton Model (see [47] for a re-

view) which employs topological expansion to calculate interaction cross-sections [48].

Topological expansion tackles the non-perturbative nature of QCD by taking the large

N limit, where N refers to either the number of colors or quark flavors in the theory,

and using 1/N as the expansion parameter. The resulting diagrams are associated

with various topologies (plane, cylinder, torus, etc.) which correspond directly to

diagrams used in Reggeon Field Theory (RFT) [49]. Using RFT, the cross-sections

for collisions of Pomerons with hadrons and Pomerons with Pomerons can be cal-

culated. This description is valid in the regime where s is large compared to t. To
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Figure 2.7. Proton-proton and proton-antiproton total cross-section as a function of
√

s and fits. Single

Pomeron Pole refers to the standard Donnachie and Landshoff parametrization, Double Pomeron Pole refers

to the Donnachie and Landshoff model with the addition of a hard Pomeron. The Standard parametrization

uses a multiPomeron exchange approach. The Block and CDF parametrization are explained in the text. Data

from [1].

explain the rising cross-section and kinematic distributions, PHOJET uses an eikon-

alized hard and soft Pomeron with an explicit pT cutoff between the two of approx-

imately 3 GeV [50]. This description, with the explicit addition of Pomeron loops

and triple Pomeron exchanges, automatically leads to a cross-section which obeys

the Froissart bound.

• Khoze, Martin and Ryskin: This model [51] uses perturbative QCD in the high

parton transverse momentum, kt, region. BKFL [52, 53] evolution is used to evolve

the parton densities, which orders the partons in terms of log 1
x

where x is Bjorken

x. The BKFL approach gives a candidate for a Pomeron in terms of multiple gluon

exchange. The model is then extended to the low kT region where multiple Pomeron

interactions are included using RFT. In this approach, the hard Pomeron contribution

can be smoothly matched to the soft Pomeron contribution.

• Block: In [54] two models are used to fit existing total cross-sections which yield

comparable results. The first is an eikonal fit inspired by QCD. In this model, the

dominant eikonal term is given by a factorized eikonal

χ(s, b) = ξqq(s, b) + ξqg(s, b) + ξgg(s, b) (2.19)

= i[σqq(s)W (b;µqq) + σqg(s)W (b;
√
µqqµgg)

+σgg(s)W (b;µgg)] (2.20)
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where σij(s) are the partonic cross-sections for ij and W (b;µij) is the dipole form

factor of the proton.

The second fit model uses real analytic amplitudes which require that the ampli-

tudes used to calculate high-energy scattering cross-section are real functions which

map smoothly onto low-energy amplitudes. This is a classic, model independent

method [55]. It results in a cross-section of

σpp = B1 + C1E
−ν1 +B2ln

γs− C2E
−ν2 (2.21)

where B1(2), C1(2), ν1(2) and γ are fit parameters. The fits parameters are fixed by

low-energy scattering data.

• CDF parametrization: This expression [56] is a refit of the simple single-Pomeron

pole, using only the CDF measurement at 1.8 TeV and excluding the E710 measure-

ment.

σtot = 24.36 mb ·
( s

GeV2

)ǫ

with ǫ = α(0)− 1 = 0.0808. This yields a cross section of σtot(7 TeV) = 101.9 mb.

• Donnachie and Landshoff Double Pomeron: Donnachine and Landshoff revisited

the possibility of a hard Pomeron after analyzing the HERA diffractive deep inelastic

scattering data [57]. Their new parametrization [58], which gives similar results to

the simple single pole, parametrizes the cross-section using both a soft and a hard

Pomeron

σtot = 24.22 mb ·
( s

GeV2

)0.0667

+ 0.0139 mb ·
( s

GeV2

)0.452

This formulation yields a cross section of σtot(7 TeV) = 120.5 mb. Although this

model has two Pomeron poles, it does not account for multiple-Pomeron interactions.

Figure 2.7 shows a subset of the predictions compared with the existing total cross-

section data. Most of the predictions only vary by 10% at LHC energies, however the

Double Pomeron diverges with respect to the other models at high energy. It is inconsistent

with the cosmic-ray data, but these data are model-dependent and have large errors so they

are not used in the fit.

2.5.2 Inelastic and Diffractive Cross-sections

Most predictions of the inelastic cross-section from analytic models are obtained by

applying the optical theorem to the total cross-section prediction to obtain the elastic cross-

section and then calculating

σinel = σtot − σel. (2.22)
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Applying the optical theorem to the single Regge pole model yields the following elastic

differential cross-section

dσel

dt
(pp→ pp) =

σ2
tot(pp)

16π
e2(b

el
0 +α′

IP ln s)t. (2.23)

Using Mueller’s generalization of the optical theorem [59], the single-diffractive dissocia-

tion cross-section can also be derived from the elastic cross-section

d2σSD

dtdM2
(pp→ Xp) ∝ 1

M2
X

(

s

M2
X

)2(αIP(0)−1)

e2(b
SD
0 +α′

IP ln s

M2 )t (2.24)

where bSD
0 is the slope parameter describing the t-dependence of the cross-section and

M is the invariant mass of the products of the dissociated proton, or diffractive mass. This

equation is the standard Donnachie and Landshoff formulation of the differential diffractive

cross-section and is the baseline for which most other models are compared to.

In the following the main features of the analytic models for the inelastic cross-section

predictions used in this thesis are briefly described. Some models are used for their predic-

tions of the inelastic cross-section, others for the differential diffractive event cross-section

and some for both. The existing data and several of the models are shown in Figure 2.8.
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Figure 2.8. Proton-proton and proton-antiproton inelastic cross-section as a function of
√

s and fits. Data

from [1].

• Schuler-Sjöstrand: This model [60] directly uses Equation 2.4 as the total cross-

section. The elastic cross-section is derived using the optical theorem. It begins with
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Equation 2.24 but notes that it is only valid in a limited parameter space: M2
X−m2

p <
0.15s, where mp is the mass of the proton. It is also limited to small values of

t. In order to obtain a prediction of all t and MX it introduces “fudge factors” to

suppress production near the kinematic limits listed above. It also modifies the slope

parameter for double-diffractive dissociation to keep it from becoming too small.

In this approach the asymptotic behaviors of the diffractive cross-sections have the

following energy dependence

σSD ∝ ln (ln s) (2.25)

σDD ∝ ln s(ln (ln s)) (2.26)

• Khoze, Martin and Ryskin: The details of the total cross-section predictions for

this model [51] are discussed in the previous subsection. The inelastic cross-section

is obtained by the optical theorem. The differential diffractive cross-sections are

calculated explicitly. In the intermediate diffractive mass range, the diffractive cross-

section is similar to a standard Donnachie and Landshoff approach like in Equa-

tion 2.24. There is a suppression at low diffractive mass from the absorption of

soft-kt partons, which decreases the probability of dissociation. At high mass there

is an increase of high-kt partons, leading to an increase in the cross-section. This

model is used for inelastic cross-section predictions.

• Achilli et. al.: This model [61] provides an explicit calculation of the inelastic cross-

section. It is calculated on the assumption that hadron-hadron scattering arises from

independently-distributed multiple-parton interactions. The inelastic cross-section is

then dependent on the average number of collisions, n̄(b, s), which is calculated in

an eikonalized model as a function of the impact parameter b and s. n̄ is divided into

a hard and soft component where the hard component is calculated in perturbative

QCD, giving rise to mini-jets. The soft component is modeled in two different frame-

works; one Regge-inspired, the other based on soft gluon kt resummation. There is

no separate differential diffractive event cross-section.

• Berger and Streng: This model [62, 63] is only used to give a prediction for the

differential diffractive mass distribution. It uses a power law dependence of the cross-

section on the diffractive mass, similar to the Donnachie and Landshoff model, with

α(0) > 1. Unlike the Donnachie and Landshoff model, the t-dependence of the

differential cross-section is an exponential depending on MX .

• Bruni and Ingleman: This model [64] is only used for a prediction of the differential

diffractive mass spectra. It predicts a Pomeron with α(0) = 1, leading to a strictly

flat dependence of the cross-section on M2
X , i.e. dσSD

dM2
X

= const.. The t-dependence

of the cross-section is the sum of two exponential functions.

In this thesis the dimensionless unit ξ =
M2

X

s
is used to describe the differential diffrac-

tive cross-section. In the case of double-diffraction, ξ refers to the larger mass dissociation
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system. Figure 2.9 shows the ξ distributions7, normalized to unit area, for SD and DD
events as predicted by the models listed above which have differential diffractive cross-

sections. In addition, there are four variations of ǫ and α′ in the Donnachie and Landshoff

models. Although ǫ and α′ are relatively well constrained by previous cross-section mea-

surements, the large uncertainty in the diffractive event dynamics justifies varying them

for the purposes of the acceptance calculations. Figures 2.9(a) and 2.9(b) show that the

Engel and Schuler-Sjöstrand models predict higher average diffractive mass than the other

models. The power-law based models with α(0) > 1 are strongly peaked towards low

diffractive mass. Figures 2.9(c) and 2.9(d) show that the variations in ǫ and α′ have rel-

atively little effect on the diffractive mass spectra relative to the variations with the other

models.

2.6 Monte Carlo Models

By necessity, Monte Carlo models divide inelastic proton-proton interactions into three

or four categories: non-diffractive events and two or three types of diffractive events. These

classifications allow the generators to give predictions of exclusive quantities such as the

final state particle multiplicities and momenta. The analysis presented in this thesis is sen-

sitive to the dynamics of diffractive events, therefore predictions of the final state properties

of these events is necessary.

Two Monte Carlo generators are used: PYTHIA and PHOJET [45, 46]. Additionally,

two different versions of PYTHIA, 6.421 [65] and 8.135 [66], are considered. They use the

same Schuler-Sjöstrand cross-section model for the diffractive processes, but differ in the

fragmentation once a value of M2
X(Y ) and t are chosen. The cross-sections implemented

in PYTHIA and PHOJET for the individual processes are given in Table 2.1. It can be seen

that there are significant differences in the diffractive contributions. PHOJET additionally

includes central diffractive (CD) events where the protons do not dissociate but a central

system of particles is created by the Pomeron interactions.

The PYTHIA generator models non-diffractive pp interactions by first calculating a par-

tonic cross-section at leading order (2→2) in perturbation theory. The parton momentum

are picked using the proton PDFs, as indicated in Equation 2.8. Then it uses parton showers

to evolve the final state partons from the scale used in the partonic cross-section calculation

to a low scale cut-off. The evolution models the radiation of gluons (q → qg) and gluon

splitting (g → gg, g → qq̄) in the soft and collinear emission regime. This emission is

also modeled in the initial state via the parton PDFs. Once the emission reaches the cut-

off scale, which is a tunable parameter in the Monte Carlo generator, phenomenological

models are used to form the partons into color singlet hadrons. PYTHIA uses the Lund

7For technical reasons, which are described in more detail in Chapter 3, the ξ values plotted in Figure 2.9

are calculated from the final state particles produced by a Monte Carlo model. The particle production for

different Monte Carlo generators is discussed in detail in Section 2.6, but differences in the modeling of the

particle production have little effect on the resulting ξ distributions.
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Figure 2.9. ξ distribution for SD (left) and DD (right) events at
√

s = 7 TeV comparing different ξ spectra as

described in the text. (a) and (b) compare the distributions for the basic models used to assess the dependence

of the cross-section of diffractive mass. (a) and (b) show variations of the Donnachie and Landshoff model

when varying ǫ and α′.

string model [67], in which color flux tubes are stretched between quark and anti-quark

pairs and are broken by the formation of a new qq̄ pair; if the energy of the system is low

enough mesons are formed, otherwise new flux tubes are stretched between the q(q̄) from

the old pair and the q̄(q) of the new pair. Diquarks and anti-diquark pairs can also be pro-

duced to form baryons. Once all of the partons have been combined into color singlets,

fragmentation is finished.

PYTHIA uses QCD 2 → 2 processes to model non-diffractive interactions for both

PYTHIA 8 and PYTHIA 6. The two generators differ in some of the treatment of the color

connection between the initial and final states and in the tuning of the modeling parameters.

For diffractive processes, fragmentation for a particular value of M and t are very different

between the two.

• PYTHIA 6 only allows for “soft”, i.e. non-perturbative, fragmentation of diffractive
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Process cross-section (mb)

PYTHIA PHOJET

non-diffractive 48.5 61.6

single-diffractive dissociation 13.7 10.7

double-diffractive dissociation 9.3 3.9

central-diffractive dissociation - 1.1

inelastic 71.5 77.3

fractional contribution (%)

fD 32.2 20.3

fSD 59.6 68.2

Table 2.1. Cross sections, fD and fSD values for PYTHIA and for PHOJET for
√

s = 7 TeV.

events. If the mass of the diffractive system is less than 1 GeV then it decays isotrop-

ically to a two-body system. If the mass is greater than 1 GeV, a valence quark or

gluon is extracted from the proton. If a quark is extracted, a string is stretched be-

tween the quark and the remnant diquark. If a gluon is chosen, a string is stretched

from the quark to the gluon and back to a diquark. The ratio of these two processes

is a free parameter. In both cases, the string fragmentation proceeds as described

above.

• PYTHIA 8 allows for both “soft” processes and “hard” perturbative process [68] in

diffractive events. For diffractive masses less than 10 GeV the same string fragmen-

tation is used as in PYTHIA 6. The probability for a perturbative description as a

function of the diffractive mass M is given by

Ppert = 1 − exp[(M −mmin)/mwidth] (2.27)

where mmin and mwidth are free parameters. An anzatz for a leading order Pomeron

DPDF set is used. The HERA DPDFs are not used because they are next-to-leading

order which is inconsistent with the leading order PYTHIA calculations. The differ-

ential cross-section is given by

dσ(pp→ p+X)

dxIPdx1dx2dt̂
= fIP/p(xIP, Q

2)
dσ(pIP → X)

dx1dx2dt̂
(2.28)

where xIP is the momentum fraction of the parton relative to the proton it interacted

with

xIP =
EPom

Ep
. (2.29)

fIP/p(xIP, Q
2) is the Pomeron flux, essentially the probability for a proton to emit a

Pomeron.
dσ(pIP→X)

dx1dx2dt̂
is the Pomeron-proton differential cross-section and it is given

by
dσ(pIP → X)

dx1dx2dt̂
= fp1/p(x1, Q

2)fp1/IP(x2, Q
2)
dσ̂

dt̂
(2.30)
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where fp1/p(IP)(x1(2), Q
2) is the proton (Pomeron) PDF for parton 1(2), with momen-

tum fraction x1(2) of the proton (Pomeron) and dσ̂
dt̂

is the partonic cross-section for the

two extracted partons. Figure 2.10 illustrates these quantities. In order to normalize

the Pomeron flux, an effective Pomeron-proton cross-section, σIPp is needed. It is

a tunable parameter in the event generation which controls the number of multiple

interactions in the event.

Figure 2.10. A single-diffractive dissociation event. pi,j are the momenta of the initial state protons. A

Pomeron with momentum fraction xIP is extracted from pi. A parton from pj is extracted with momentum

fraction xp1
and interacts with a gluon from the Pomeron with a momentum fraction xg of the Pomeron. X

is the dissociation system and p′i is the momentum of the scattered proton.

Once the parton interaction has been described, parton showering and fragmentation

proceed as in the non-diffractive case.

The PHOJET model uses the Dual Parton Model, as mentioned in Section 2.5 for “soft”

interactions and perturbative QCD for “hard” interactions. The two are separated by a

momentum cut-off, pcut−off
T . The perturbative treatment is similar to PYTHIA for non-

diffractive events. The “soft” interactions are treated using Reggeon Field Theory. The

number of soft and hard interactions in an event is given by

σ(ns, nh, s) =

∫

d2B
(2χs)

ns

ns!

(2χh)
nh

nh!
e−2(χs+χh) (2.31)

where the χs and χh eikonals are functions of s and B, the impact parameter representation

of the soft and hard Pomeron. In RFT, the multiplicity of an event is obtained by using the

optical theorem to “cut” the diagram associated with the Pomeron exchange. The cross-

section for a particular number of cuts is given by the Gribov-Regge calculus [69]. In this

formulation there are few free parameters and it naturally leads to “hard” interactions in

diffractive events by the inclusion of the hard Pomeron.

Figures 2.11, 2.12, and 2.13 show the multiplicity, η distribution and pT distributions

of the three generators for each subprocess. It can be seen that for the non-diffractive pro-

cesses, PYTHIA 6 has the highest peak multiplicity and hardest pT spectrum of the three
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generators. PHOJET has a distinctly lower average multiplicity and a relatively similar pT

spectrum to PYTHIA 8 for the non-diffractive events. Large differences between the gen-

erators are evident in the single-dissociation events. In the multiplicity plots, the PYTHIA

generators have two distinct populations, although the PYTHIA 8 generator has a signifi-

cantly higher multiplicity. PHOJET has a smooth distribution of multiplicities. PYTHIA 6

has approximately half as many particles per unit η. The momentum spectrum plots show

a striking difference between PYTHIA 6 and the other two generators, which shows that

the addition of a perturbative description of diffractive events drastically changes the event

kinematics. The double-dissociation plots show many of the same trends as the single-

dissociation plots. In particular the difference in the shape of the η distribution between the

generators is notable.

parN

0 50 100 150 200

p
a
r

d
N

e
v

d
N

 
e
v

N
1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014 Pythia 8

Pythia 6

Phojet

ND

(a)

parN

0 50 100 150 200

p
a
r

d
N

e
v

d
N

 
e
v

N
1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Pythia 8

Pythia 6

Phojet

SD

(b)

parN

0 50 100 150 200

p
a
r

d
N

e
v

d
N

 
e
v

N
1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035 Pythia 8

Pythia 6

Phojet

DD

(c)

Figure 2.11. Number of particles with pT >100 MeV per event for for ND (a), SD (b), and DD (c) events

comparing the PYTHIA 8, PYTHIA 6 and PHOJET generators at
√

s = 7 TeV.

It is worth mentioning that the modeling of the non-diffractive process has been studied

in the context of measurements of charged particle multiplicities [70]. In these studies,

tuned PYTHIA 6 Monte Carlo events were seen to give the best agreement with the data.
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Figure 2.12. Inclusive η distributions for particles with pT >100 MeV for ND (a), SD (b), and DD (c) events

comparing the PYTHIA 8, PYTHIA 6 and PHOJET generators at
√

s = 7 TeV. The η is defined such that the

dissociated proton always has an η of 1̃0.

PHOJET under-predicted the multiplicity and momentum spectra of the charged particles.

Several alternative tunes of the PYTHIA 6 parameters have been made to describe minimum

bias measurements at previous colliders. In this analysis the ATLAS collaboration MC09

tune [71] of PYTHIA6 is used but the tunes Perugia0 [72], DW [73], and variations the

initial and final state radiation parameters were also studied. The difference between these

various PYTHIA6 tunes were studied but are much smaller than those between the various

generators.
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Figure 2.13. Inclusive pT distributions for ND (a), SD (b), and DD (c) events comparing the PYTHIA 8,

PYTHIA 6 and PHOJET generators at
√

s = 7 TeV.
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CHAPTER 3

Inelastic Cross-Section Measurement

Overview

The general cross-section formula for the inelastic cross-section measurement is given

by:

σinel =
N −NBG

ǫ× Ainel × L (3.1)

where N is the number of observed events, NBG is the number of background events,

Ainel is the acceptance, ǫ is the efficiency to select an event in the acceptance and L is

the luminosity. The particular event selection used in this analysis simply requires at least

two of the 31 MBTS counters to collect a charge of at least 0.15 pC. Events satisfying this

selection are collectively referred to as the inclusive sample.

As will be discussed in Chapter 10, the luminosity is measured using the beam scan-

ning technique first proposed by Simon van der Meer [74]. The uncertainty is at present

3.4% [75]. The determination of the number of selected events and the background is

straight-forward. However, the major challenge of the analysis is the determination of the

acceptance Ainel.

Ainel can be decomposed into the individual contributions to the inelastic cross section

as follows:

Ainel =
AND

inclσND + ASD
inclσSD + ADD

inclσDD + ACD
inclσCD

σinel

(3.2)

= AND
incl

σND

σinel
+ ASD

incl

σSD

σinel
+ ADD

incl

σDD

σinel
+ ACD

incl

σCD

σinel
(3.3)

= AND
incl(1 − fD) + fD[ASD

inclfSD + ADD
inclfDD + ACD

inclfCD] (3.4)

where

• AND
incl, A

SD
incl, A

DD
incl and, in the case of PHOJET, ACD

incl, are the acceptances of the event

selection for the ND, SD, DD and CD processes.
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• fD is the fractional contribution of diffractive events to the inelastic cross-section:

fD = σSD+σDD+σCD

σinel
. PYTHIA predicts 32% for fSD and PHOJET predicts 20%.

• fSD, fDD and fCD are the fractional contribution of SD, DD and CD to the diffractive

cross-section, e.g. fSD = 1 − fDD − fCD = σSD

σSD+σDD+σCD
. PYTHIA predicts 60% for

fSD and PHOJET predicts 69%.

A priori,AND
incl, A

SD
incl, andADD

incl, as well as fD and fSD are unknown. Monte Carlo models

give predictions for these values but they depend upon the underlying model assumed by

each generator. In order to reduce the impact of these unknown quantities, the analysis

takes two steps:

• First, the model dependence of the acceptance correction is limited by quoting the

measurement for a restricted ξ-range. In Chapter 2 ξ was defined as being equal to
M2

s
where M was the invariant mass of the proton dissociation products. Because the

detector has finite resolution and acceptance, we cannot measure M (equivalently ξ)

directly, however the presence of an MBTS hit gives a lower limit on ξ. Therefore, ξ
is calculated for only the Monte Carlo models, which give access to the four-vectors

of all primary particles produced in an interaction. Primary particles are defined as

particles with a lifetime τ > 0.3 × 10−10s.

In order to avoid ambiguities in assigning a final state particle to an initial proton sys-

tem in the case of double diffractive dissociation, this measurement uses a modified

diffractive mass. After ordering all primary particles in pseudorapidity, the largest

pseudorapidity gap between adjacent particles is found. The mean pseudorapidity of

the two particles which define the gap is used to assign all particles with greater pseu-

dorapidity to one system and all particles with smaller pseudorapidity to the other.

This variable will correspond to the true diffractive mass except for rare cases where

the fluctuations in particle production produce a larger rapidity gap in the decay prod-

ucts of one system than between the two diffractive systems, which we term X and

Y . The system with the largest mass is by definition X , and ξ is defined to be M2
X/s.

In the case of single-dissociationX is the system from the dissociated proton. In the

case of double-dissociation, ξ is defined by the larger of the two dissociation systems.

Figure 3.1 illustrates the definition.

Because ξ is defined using final state particles, it is slightly dependent on the under-

lying fragmentation model of the generator with which it was calculated. PYTHIA

6 and PYTHIA 8 have very different fragmentation models, but, as can be seen in

Figure 3.2, the differences lead to small discrepancies at high ξ.

ξ is closely related to the η of the particle in a dissociation system which starts the

rapidity gap. This value, ηmin, is shown in Figure 3.3 for all three generators. It can

be seen that in each case the dependence is linear with log ξ and that there is very

little difference in the dependence between generators. The average η−ξ relationship
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Figure 3.1. A schematic illustration of MX , MY and ηmin in a double-dissociation event. The blue dashed

arrows indicate the smaller mass dissociation system, the solid red arrows indicate the higher mass system.

The two systems are defined by the largest rapidity gap in the event.
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Figure 3.2. ξ distribution for SD (a) and DD (b) events at
√

s = 7 TeV comparing the three Monte Carlo

generators. The difference in PYTHIA 6 and PYTHIA 8 is solely due to the difference in fragmentation

between the two models.

is given by

ln ξ = −∆η (3.5)

where ∆η is the difference between ηmin and η of the initial state proton system.

Equation 3.5 arises because the dissociation systems are highly boosted along z,

therefore the mass is related to the opening angle in θ. The maximum η-value of

the MBTS coverage of 3.84 restricts the measurement to the kinematic range of ξ >
5 × 10−6.

• The second step the analysis takes to limit model-dependence is to use the data to

constrain fD by measuring the ratio of the number of events in a diffraction-enhanced

to inclusive event sample. The diffraction-enhanced sample is obtained by creating

a single-sided sample containing events with at least two hits on one side of the
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Figure 3.3. ξ versus the η of the particle which defines the rapidity gap between the intact proton and

dissociation system in SD events(ηMin). PHOJET (a), PYTHIA8 (b) and PYTHIA6 (c) are shown.

MBTS in z and none on the other. This sample is expected to be dominated by

SD events, and DD events in which only one of the two dissociation systems has

ξ > 5 × 10−6. For example, PYTHIA predicts the fractional contribution of non-

diffractive events to the single-sided sample to be 1%, while PHOJET predicts 8%.

In the inclusive sample the non-diffractive process contributes about 74% and 80%

for PYTHIA8 and PHOJET, respectively. The acceptances are presented in detail

in Section 12.2. By taking the ratio of the single-sided to inclusive sample, and

comparing the measured value to the MC predictions, the allowed values of fD for

each MC model are constrained. The ratio, RSS, is given by

RSS =
NSS

Nincl
(3.6)

=
Ainel

SS Ninel

Ainel
inclNinel

(3.7)

=
Ainel

SS

Ainel
incl

(3.8)
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=
AND

SS
σND

σinel
+ ASD

SS
σSD

σinel
+ ADD

SS
σDD

σinel
+ ACD

SS
σCD

σinel

AND
incl

σND

σinel
+ ASD

incl
σSD

σinel
+ ADD

incl
σDD

σinel
+ ACD

incl
σCD

σinel

(3.9)

=
AND

SS (1 − fD) + fD[ASD
SS fSD + ADD

SS fDD + ACD
SS fCD]

AND
incl(1 − fD) + fD[ASD

inclfSD + ADD
inclfDD + ACD

inclfCD]
(3.10)

where the SS subscript indicates the single-sided event selection and the incl indicate

the inclusive event sample, as defined in Equation 3.2. To determine the relative

contribution of diffractive events, the A terms are taken from the models, as well as

fSD and fCD, and fD is adjusted until the model prediction matches the measured

value in data. Because the distinction between diffractive and non-diffractive events

varies model-by-model, fD is determined for each model separately.

Placing a cut on the diffractive mass modifies Equation 3.1 to

σ(ξ > 5 × 10−6) =
(N −NBG)(1 − fξ<5×10−6)

ǫtrig × ǫsel ×L (3.11)

where 1 − fξ<5×10−6 corrects for the fraction of events in the inclusive sample which

have ξ < 5 × 10−6 , ǫsel is the event selection efficiency for events with ξ > 5 × 10−6, and

ǫtrig is the trigger efficiency with respect to the offline selection.

Using the tuned Monte Carlo simulation, ǫsel and fξ<5×10−6 are taken directly from the

MC and Equation 3.11 becomes

σ(ξ > 5 × 10−6) =
(N −NBG)

ǫtrig × L × CMC (3.12)

where

CMC =
1 − fξ<5×10−6

ǫsel
. (3.13)

CMC is taken from Monte Carlo simulation (corrected for the MBTS efficiency mea-

sured in data), while the corrections for the trigger and backgrounds are determined from

data. The Donnachie and Landshoff model with ǫ = 0.085 and α′ = 0.25 GeV−2, hence-

forth referred to as the default model, is used to determine CMC and a variety of other

models, listed in Chapter 2.5, are used to determine any residual model uncertainty in these

correction factors.

The measurement of σinel(ξ > 5 × 10−6) is presented in Chapter 12. It is additionally

extrapolated to the full σinel using Ainel taken from the Donnachie and Landshoff model,

with a large uncertainty due to the model dependence.
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CHAPTER 4

The Large Hadron Collider

The Large Hadron Collider (LHC) [76] was first conceived in the early 1990s and ap-

proved in preliminary form by the CERN council in 1994 on the heels of the US Super-

conducting Super Collider (SSC) failure. The appeal of the LHC was tied to the fact that it

was a bargain discovery machine; there was no need for a costly tunnel excavation because

one of a suitable size already existed for the CERN electron-positron collider, LEP. This

chapter reviews the motivation, design of the LHC and the running conditions from 2010.

4.1 Motivation

By the late 1980s, fundamental interactions of particles had revealed themselves to

be relatively simple and elegant. Nearlly all known phenomena could be explained by

SU(2)⊗U(1) electroweak theory and SU(3) QCD. The electroweak theory had once miss-

ing piece – a mechanism to break the symmetry and generate boson masses. The scale

associated with the symmetry breaking was calculated to be a few 100 GeV and in the

absence of a Higgs mechanism, in which a scalar field broke the symmetry, the weak in-

teractions were calculated to be come strong and violate unitarity at approximately 1 TeV.

And, while the fundamental particles had given no hint of substructure yet, if there were to

be substructure it was calculated that it would appear at 10−17 cm or ∼1 TeV. Therefore,

it was argued [77] that the next generation of collider needed to be in the multi-TeV scale,

ideally with a center-of-mass energy of 10 to 50 TeV for a proton-(anti)proton collider.

The SSC was proposed as a proton-antiproton collider with a
√
s of 40 TeV but it would be

relatively low luminosity. The LHC was put forward as a high luminosity machine at lower

energy. 14 TeV was roughly what could be expected given realistic magnet field strengths

and the diameter of the LEP tunnel. When the SSC was canceled in 1994, the LHC became

the next energy frontier machine.
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4.2 Design

The LHC is composed of over 1600 superconducting magnets arranged in a 26.7 km

tunnel under France and Switzerland. The tunnel, which was built in the late 1980s for

the Large Electron-Positron Collider (LEP), lies between 45m and 170m below the surface

of the earth. The original design, which has been preserved for the LHC, divided the ring

into eight arcs and eight straight sections to minimize energy loss from bremstralung by the

original electron and positron beams. There are eight possible interaction points on the ring,

four of which are in use for LHC experiments. ATLAS and CMS sit opposite each other

on the ring and are the designated discovery experiments. LHCb and ALICE are “low”

luminosity experiments investigating flavor physics and heavy ion collisions, respectively.

The LHC is designed to operate at a luminosity of 1034s−1cm−2 and a center of mass

energy,
√
s, of 14 TeV. The machine is filled with bunches of protons with a minimum

spacing of 25 ns. The revolution frequency of a bunch of protons is 11,245 Hz and there are

roughly 3600 possible bunch slots in the machine. When the bunch-spacing is 75 ns or less,

the beams are brought to collision at a crossing angle to reduce beam-beam interactions at

points other than the nominal collision point.

On September 19th, 2009 the LHC had an accident which caused extensive damage

to one sector of the ring and had significant implications for machine safety and beam

energy [78]. It delayed the start of the LHC for a year and limited the center-of-mass

energy to 7 TeV until improvements can be made to the machine. The incident is discussed

further in Section 4.2.3. Full energy (14 TeV) will be achieved in 2014.

4.2.1 Accelerator Chain

The CERN accelerator complex, shown in Figure 4.1, begins with a bottle of hydrogen

and ends with multi-TeV collisions. It uses a four accelerators to bring the protons from

rest to 450 GeV, the injection energy of the beam into the LHC. All of the pre-accelerators

were in use for physics programs at some point in CERN’s 50+ year history.

To start, electrons are stripped from the hydrogen atoms and the remaining protons

undergo the first stage of acceleration in the LINAC2, a linear accelerator commissioned

in 1978 to produce 50 MeV protons for the Proton Synchrotron Booster. The Booster

accelerates the protons to 1.4 GeV. It was built in 1972 and its RF system was recently

upgraded to accommodate the needed bunch frequency of the LHC. Ultimately, it sets the

bunch structure for the LHC because it is the first stage of bunched injection. The Booster

delivers its protons at 324 ns spacing to the Proton Synchrotron (PS), which is CERN’s

first synchrotron. Constructed in 1959, it uses conventional electromagnets to accelerate

protons to 26 GeV. The final stage in the chain is the Super Proton Synchrotron (SPS), a

450 GeV accelerator which was home to the W and Z bosons discoveries in the 1980s.

The SPS is filled with 72 bunches at a time from the PS. It accelerates the protons to 450

GeV and sends up to 72 bunches at a time in the form of a bunch-trains into the LHC. Once

all of the bunches are in the LHC the current is ramped in the magnets, until the beams are
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Figure 4.1. The CERN accelerator complex.[79]

at collision energy.

4.2.2 Magnets

The heart of the LHC is its enormous superconducting magnet system, consisting pri-

marily of 15 m long dipole and quadrupole magnets. The dipole magnets are responsible

for the bending of the beams, while quadrupole magnets provide focusing. Higher mul-

tipole corrector magnets are interspersed along the beamline. Acceleration is achieved

through superconducting 400 MHz RF cavities.

The design of the magnets was driven by two factors, one physics based, the other con-

struction constrained. To achieve the high luminosity needed to produce the rare processes

the LHC intends to find, a proton anti-proton machine is not feasible due to the difficulty of

accumulating a significant number of anti-protons. Proton beams cannot counter-circulate

in the same vacuum chamber or beam-pipe as proton and anti-proton beams can, therefore

separate magnetic fields and vacuum chambers are needed. However, the LEP tunnel is too

narrow to fit two separate magnet systems, therefore a twin-bore design was adopted [80].

The LHC dipole design is shown in Figure 4.2. Two magnets and beam-pipes sit in the

same cryostat and cold-mass which is cooled by superfluid helium to a temperature of
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1.7K. The LHC constitutes the largest, coldest cryogenic system in the world.

The magnets are made of niobium titanium (NbTi) cables and have fields of up to 8 T at

a current of nearly 12 kA. The total stored energy of the beams and current in the magnets

is over 1 GJ which can be dangerous to the machine if it is relased in an uncontrolled way,

such as through a quench. A quench occurs when the normally superconducting magnets

loose their superconductivity, suddenly causing a large build up of resistance where the

quench began. A quench protection system (QPS) based on monitoring changes in volt-

age between (nominally identical) magnets is in place to safegaurd the machine. When a

quench is detected it usies heaters mounted on the magnet coils to raise the temperature and

create an extended normally conducting zone along the length of the entire magnet and its

neighbors. This process safely dissipates the energy in a large volume. In order to protect

the machine and the detectors in the event of loss of control of the beam, a beam dump

system is in place to extract the beam quickly and safely. It is triggered by beam conditions

monitors at multiple points along the ring which look for an excess of interactions near the

beamline. The beam can be extracted in O(100 µs).

Figure 4.2. A cross section of the LHC dipole illustrating the twin-bore design.

Near the interaction regions, inner triplet magnets, which are a series of three quadrupole

magnets with alternating gradients, bring the beams into collisions. The optics at the inter-

action region can be adjusted for different beam sizes and energies.
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4.2.3 The September 19th Incident

Commissioning of the LHC began in the fall of 2008 with the establishment of single

beam circulation at injection energy on September 10th. Shortly thereafter problem with

a transformer suspended beam tests for several days. While the transformer was being re-

placed, experts performed powering tests in a section of the machine, Sector 3-4, to ramp

the current in the magnets up to 9.3 kA, the current associated with 5 TeV beams. During

the test a quench developed between two magnets in a region called a bus bar splice. An

electrical arc occurred, which dissipated more the 4 MW in one second [78]. Part of the bus

bar was vaporized and the helium enclosure was punctured, allowing the the superfluid he-

lium to enter the cryostat vacuum insulation volume. The cyrostat subsequently punctured,

leading to a rapid increase in the helium pressure. The pressure in the insulation volume

rose as high as 0.8 MPa, ripping some of the 35 ton magnets from their support jacks and

blowing off the door of the tunnel in that sector. In total, 755m of the tunnel was damaged.

Reports after the incident [78] indicated that the initial arc was caused by poor soldering in

the bus bar which failed. The QPS did not monitor the bus bars, which is why the quench

developed undetected.

Recovery from this incident took over a year. In addition to replacing or refurbishing the

damaged magnets, the QPS system was upgraded to include monitoring of the splices, more

pressure release valves were installed and other potentially problematic bus bar splices

were identified and fixed. However, it was determined [81] that until significant upgrade

to the machine to fix more splices and further improve the machine protection systems, the

machine energy would be limited. In January, 2011 it was decided [82] that the LHC would

run at 7 TeV until the end of 2012, after which there would be a 1.5 year shutdown to make

the improvements. In 2014 the LHC will come online at 14 TeV.

4.3 2010 Run Conditions

Because 2010 was largely a commissioning period, the LHC running conditions were

significantly different than the design parameters discussed above. Due to machine safety

concerns in the wake of the September 19th incident, the center-of-mass energy was limited

to 7 TeV. The initial running period in March and April, which this thesis primarily con-

cerns, saw instantaneous luminosities of 1027cm−2s−1, while the peak luminosity, which

was achieved in November, was 2.1×1032cm−2s−1. Figure 4.3 shows the evolution of both

the peak instantaneous and integrated luminosity over the 2010 7 TeV run period. Com-

missioning began with only one colliding bunch pair in ATLAS; in the fall the LHC was

operating with bunch trains with 75 ns bunch spacing and a total of 368 colliding bunches.

Table 4.1 compares the LHC machine parameters in the early 2010 7 TeV running, late

2010 running and nominal 14 TeV running. It is notable that the machine is already running

at full bunch intensity. The increase to 1034 cm−2s−1 will come from increasing the number

of bunches in the machine and narrowing the bunch size. The bunch size is determined in
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Early 2010 Late 2010 Nominal√
s [TeV] 7 7 14

nb 1-2 348 2808

Np 1.1×1010 1.1× 1011 1.15× 1011

L[cm−2s−1] 1028 1032 1034

β∗ [m] 11 3.5 0.6

Crossing angle [µrad] 0 200 285

Table 4.1. Comparison of the LHC machine conditions in early 2010, late 2010 and nominal design pa-

rameters. Early 2010 conditions were the same as for the run for the cross-section measurement. nb is the

number of colliding bunches in the machine, Np is the number of protons per bunch or bunch intensity, and

L is the average instantaneous luminosity. β∗ is related to the amplitude function of the beam envelope at the

interaction point. The crossing angle refers to the angle of the beams with respect to the nominal beamline at

the collision point.

part by β∗, which determines the amplitude function of the beams at the interaction point.

Initially beams collided head-on with no crossing angle at the interaction point, but once

the bunch spacing became small with respect to the region that the two beams share the

same beam-pipe, a crossing-angle was introduced to reduce beam-beam interactions.
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Figure 4.3. Peak luminosity by day (a) and total integrated luminosity by day (b) in 2010.
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CHAPTER 5

The ATLAS Detector

The ATLAS detector is one of four multi-purpose detectors at the LHC. It is a modern,

hermetic collider detector built to measure final states elucidating the nature of electroweak

symmetry breaking. The largest of the four experiments, ATLAS is defined by its signature

muon spectrometer which consists of a large superconducting air-core toroid and preci-

sion tracking chambers. The spectrometer encases two layers of calorimeter, a lead and

scintillator based hadronic calorimeter and a liquid argon electromagnetic calorimeter. Sit-

uated closest to the beam-pipe inside a 2T magnetic field is a three-part tracking detector

using silicon pixel, silicon strip and transition radiation technologies. ATLAS, shown in

Figure 5.1, uses a right-handed coordinate system with an origin at the nominal interaction

point. It is oriented such that z is aligned along the beam-pipe, +x points to the center of

the LHC ring, and +y is directed upwards. Cylindrical coordinates are used, with φ denot-

ing the azimuthal angle in the transverse plane. Pseudorapidity, η = − ln (tan θ
2
) where θ

is the polar coordinate, is typically used as the angular coordinate with respect to the polar

axis.

This chapter describes the sub-components of the ATLAS detector, beginning with the

trigger and data acquisition system. Then, the active detector elements are described, start-

ing with the inner tracking detector, followed by the calorimeter system, the muon spec-

trometer, and finally, the luminosity detectors.

5.1 Trigger and Data-Acquisition System

The ATLAS trigger and data acquisition system (TDAQ) is responsible for selecting and

recording interesting events out of the nominal 40 MHz stream of inelastic interactions. A

three-level staged approach is taken, with simple hardware based decisions at Level 1 to

reduce the rate from O(MHz) to 75 kHz. A subset of the detector information is used to

partially reconstruct the event at the Level 2 software based trigger which reduces the rate

to 2.5 kHz. Lastly, the full detector information is used at Level 3 or the Event Filter (EF),

which selects and writes events to storage at approximately 200 Hz. Collectively, Level 2
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Figure 5.1. A diagram of the ATLAS detector indicating its sub-components [83].

and the EF are known as the High Level Trigger (HLT).

For the data used in this thesis, only the Level 1 trigger was used. The HLT was run in

“pass-through mode” where the algorithms ran and recorded their decisions, but all events

passing the Level 1 triggers were written to storage. At Level 1 algorithms implemented in

the calorimeter trigger (L1Calo) hardware identify electron, photon, tau and jet-like objects

and muon-like signatures are found in the muon trigger (MUCTP) hardware. At this point

only information from the calorimeters, muon system and forward detectors is used. When

a Level 1 object, is found a signal is sent to the workhorse of the Level 1 trigger, the Central

Trigger Processor (CTP). The CTP collates the trigger signals from all of the parts of the

detectors and forms multiplicities of objects. It additionally distributes the LHC clock,

event number and bunch-crossing identifier to the data acquisition system.

Using a trigger menu, the CTP either selects an event or rejects it. Rejection can occur if

a trigger menu item is not satisfied (e.g. the lowest muon threshold is not in the menu) or if

an item is satisfied but it is prescaled. Prescaling limits the bandwidth of a particular trigger

signature by only accepting every N th event, where N is the prescale. In the meantime, the

data acquisition system keeps the event information waiting for a trigger decision in buffers

in the detector readout electronics.

If the event is selected, the CTP sends a signal to the L1Calo and MUCTP which re-

tains information about the position of trigger objects, called regions-of-interest (ROI). A

software farm partially builds the event using the data stored in buffer in the ROI and the

Level 2 criteria are applied. If the Level 2 bit is passed then the data are taken off the
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buffers for the entire detector and sent for full event building at the EF level. If an EF bit is

set, then the data are written to storage.

5.2 The Inner Detector

The Inner Detector (ID) provides charged-particle tracking in a 2T solenoidal field up

to |η| < 2.5. It is constrained by the following physics requirements:

• High quality momentum resolution for charged particles over a wide range of mo-

menta.

• Excellent position resolution for primary vertex finding and secondary vertex identi-

fication.

In order to achieve these requirements the following additional design requirement are

applied:

• Strong, uniform magnetic field - to make precise momentum measurements

• Minimal amount of material in the detector - to reduce multiple scattering and nuclear

interactions

• Radiation hard technologies - to withstand the radiation dose sustained at close radii

to the interaction point

• Low occupancy - to improve pattern recognition and detector performance in a high

multiplicity environment

• Mechanical stability - to ensure that the detector alignment does not vary significantly

with time.

ATLAS chose to satisfy these requirements using three technologies employed at different

radii of the detector, each of which has a specific purpose. Closest to the beam-pipe at

small radii is the three-layer Pixel detector, which provides the finest granularity measure-

ments and is crucial for precise vertex finding. The intermediate layer of the ID consists

of a four-layer silicon strip detector, which provides tracking through double-sided stereo-

axial layers. This design allows for high-quality tracking at lower cost than silicon pixels.

The outermost layer is a transition radiation tracker which uses thin tubes to provide, on

average, 32 additional measurements per track as well as electron-pion separation through

analysis of transition radiation. Figure 5.2 show the active elements of the barrel (|η| . 1).

Carbon fiber support structures are used throughout the detector to provide stability at low

material cost. Lastly, the detector is immersed in a 2T magnetic field generated by a thin,

superconducting solenoid. The field axis is along the z direction. Table 5.1 summarizes the

dimensions of each part of the Inner Detector system and 5.3 graphically illustrates them.
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Figure 5.2. Cutaway of the ATLAS Inner Detector showing transverse barrel view. [83]

The material budget of the Inner Detector is shown in Figure 5.4 in both interaction

lengths, λ, and radiation lengths, X0. It can be seen that λ is dominated by the support

structures for most of the η range, while X0 is dominated by external services such as

cooling and electrical connections. The amount of material is significant, totaling almost 1

λ and 2.5 X0 at |η| =1.5. The region which is most important for the work in this thesis

is between |η| of 2 and 4. It is dominated by pixel detector cabling, cooling, and other

services.

5.2.1 Pixel Detector

The pixel detector is at the closest radius to the beam and therefore has the strictest

requirements on radiation hardness, occupancy, and precision. All of these requirements

are met, at least partially, by the use of a highly granular technology such as silicon pixels.

The effects of radiation damage are mitigated by the small leakage current of pixels. The

high granularity ensures low occupancy even at high charged particle multiplicities and

translates into more precise measurements, improving track parameter resolution.

The detector consists of three barrel layers and two three-layer end-caps. Each layer is

made of overlapping, identical silicon sensors mounted on modules, which are the building

blocks of the pixel detector. In total, 1744 modules are used in the full detector. In the

barrel, the modules have intrinsic resolutions of 10 µm in the plane transverse to the beam-

line and 115 µm in the longitudinal coordinate. In the end-caps, the precision coordinates

are in the z − φ direction and there is lower accuracy in the r direction.
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Detector Radius (mm) Length (mm)

ID envelope 0 < R < 1150 0 < |z| < 3512

Beam-pipe 29 < R < 36

Pixel Package 45.5 < R < 242 0 < |z| < 3092

Barrel 50.5 < R < 122.5 0 < |z| < 400.5

End-caps 88.8 < R < 149.6 495 < |z| < 650

SCT Package 255 < R < 610 0 < |z| < 2797

Barrel 299 < R < 514 0 < |z| < 749

End-caps 275 < R < 560 839 < |z| < 2735

TRT Package 554 < R < 1106 0 < |z| < 2744

Barrel 563 < R < 1066 0 < |z| < 712

End-caps 644 < R < 1004 848 < |z| < 2710

Table 5.1. Summary of the dimensions of the Inner Detector subdetectors, divided by detector package

(including services and support structures) and active layers (Barrel and End-caps).

Figure 5.5(a) shows an exploded view of a pixel module. Front-end (FE) chips are

bump-bonded to the silicon sensors. There are 16 FEs per module, each consisting of 2880

50 x 400 µm2 pixels. Each pixel reads out the sensor charge and determines if it passes a

threshold set by a comparator. The pixels are read-out in column pairs and the time-over-

threshold (TOT) and hit timestamp are stored in a buffer until a trigger request signal is

received. The TOT is proportional to the amount of charge deposited the the sensor and

is used to improve the position resolution when a particle produces multiple pixels over

threshold in a single layer.

The sensors, which constitute the active region of the pixel detector, are made of 250 µm

thick oxygenated n-bulk silicon. A p-n junction is generated by n+ implant bump-bonded

to the FEs on one side of the sensor and p+ implants on the other side. The depletion region

is operated in reverse-bias. The implants are arranged in 144 columns and 328 rows; most

pixels have a pitch of 400×50 µm2, however, there are some long pixels which have a

600×50 µm2 pitch. The intrinsic resolution of the sensors is 10 µm. For more information

on the sensor design see [84].

The sensors are glued to a printed circuit board called the flex-hybrid. It contains the

module control chip, which distributes the trigger and timing information, formats the data,

and checks its integrity. It additionally sends data to the off-detector read-out system when

a trigger request is received. More detail on the pixel electronics is found in [84].

5.2.2 Semi Conductor Tracker

The Semi Conductor Tracker (SCT) must meet nearly as stringent radiation dose and

measurement precision requirements at the pixel detector, however, because it is further

from the interaction point, the same occupancy constraints do not apply. In order to balance

precision, radiation hardness and cost, a silicon micro-strip technology was chosen. The

SCT consists of 15912 sensors arranged on 4088 modules which occupy four double-sided
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Figure 5.3. An r − z view of a quarter of the Inner Detector, indicating the dimensions of each part of the

detector. PP1,PPB1 and PPF1 indicate the patch panels for the Inner Detector services [83].

barrel layers and two nine-layer end-caps. In the barrel, the modules [85] are arranged in

coaxial staves and the end-caps are perpendicular to the beam-line. A barrel module is

shown in Figure 5.5(b).

The sensors are based on a standard p-n junction in oxygenated silicon with AC-coupled

read-out strips. They are 6 cm long with a strip pitch of 80 µm. In the barrel, two sensors

are daisy-chained together, creating a single 12 cm unit. Each module has two 12 cm sensor

units glued to opposite sides of a base-board. The sensors are rotated at ±20 mrad around

the center of the module (40 mrad with respect to each other). This design results in 16 µm

position resolution in the r − φ plane. The end-cap modules have a very similar design.

Unlike the pixel read-out, which contains the TOT analog information, the SCT features

binary read-out. The hybrids consist of an integrated circuit with a pre-amplifier, signal

shaper and a discriminator which determines whether or not the charge collected in a strip

is over threshold. The hybrid also distributes the trigger and timing information as well as

sends the compressed and serialized data to the off-detector read-out system. More detail

on the SCT sensors and electronics is found in [85].

5.2.3 Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the outermost component of the Inner Detec-

tor and provides continuous tracking out to a radius of 1 m, improving the track resolution

considerably at low cost. It additionally provides electron-pion separation. It is separated
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Figure 5.4. Material distributions at the exit of the ATLAS Inner Detector as a function of |η|. Shown in

terms of interaction length (top) and radiation length (bottom) for both the detector subsystems(left) and the

type of material(right). External refers to external services [83].

into a barrel (|η| . 0.8) and two end-caps (1.0 . |η| . 1.9) with a transition region in

between. In the barrel region a particle will traverse at least 36 straws, and have a position

measurement in the R − φ plane. In the end-caps a variable number of straws are crossed

and the position measurement is in the φ− z plane.

The TRT is built out of straw tubes filled with a Xe/CO2/O2 gas mixture in a carbon

fiber frame. A barrel module is shown in Figure 5.6. The 4 mm diameter tubes are made

out of polyimide, with a thin layer of aluminium on one side and polyurethane on the

other. In the center of each tube is a tungsten wire which is at ground with respect to

the tubes which are at ∼-150V. Particles are tracked via ionizing radiation, and additional

information is gained by transition radiation, which produces a much larger signal. The

transition radiation is generated by polypropylene fibers in the barrel and polypropylene

foils in the end-caps, which are interleaved with the straw tubes.

The TRT is read out at the end of each straw. The signal is amplified and shaped and

then passed to two discriminators: one with a low threshold to detect minimum ionizing

radiation and the other with a high threshold to detect transition radiation. The drift time
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(a) (b)

Figure 5.5. An exploded view of a barrel pixel module (b) and a SCT barrel module (b) [83].

of the signal is additionally measured, which improves the position resolution of the hit.

More details on the TRT can be found in [86, 87].

5.3 The Calorimeters

The ATLAS calorimeter system is designed for precise measurements of particle en-

ergies over a wide dynamic range. It also needs to distinguish between electrons/photons

and jets and contain hadronic showers for precise missing energy measurements. It is di-

vided into an electromagnetic calorimeter, a central hadronic calorimeter, and two forward

hadronic calorimeters. All the detectors except for the central hadronic calorimeter use

liquid argon as the active material. The central hadronic calorimeter uses lower cost scin-

tillator. In the following each of the three systems is described.

5.3.1 Liquid Argon Electromagnetic Calorimeters

The Liquid Argon electromagnetic calorimeter [88] is a non-compensating, ionization-

based, sampling detector using lead passive material and liquid argon active material. It

is divided into a barrel (|η| < 1.5) and two end-caps (1.4 < |η| < 3.2). Each region is

housed in a separate cryostat, which thermally isolates the detector and keeps it at ≈88.5K

with a temperature dispersion of less than 100 mK [89]. The precise temperature control is

necessary because the liquid argon response varies with temperature.
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Figure 5.6. A schematic of barrel TRT module showing the straw and radiator structure. [83]

The calorimeter has an accordion-shaped geometry, shown in Figure 5.7, which pro-

vides full coverage in φ with no gaps. Each lead absorber is sandwiched between two

sheets of stainless steel to provide structural support. In between absorber layers are copper

electrodes [90] which are formed from three sheets of copper separated by a thin insulating

layer of polyimide. The outer two layers are held at a high voltage with respect to the inner

layer, which reads out the signal via capacitive coupling. The copper is etched into cells

which define the granularity.

The detector has three levels of segmentation, which vary in η and radial depth. The

innermost layer has the finest granularity and is designed for photon/pion separation and for

precise η measurements of neutral particles. It has a depth of 6X0 and an η segmentation

of 3.125×10−3. The second layer varies from 6 to 24X0 and is designed to contain photon

showers. It has an η segmentation of 0.025. The final layer is used to help measure high

energy showers and separate between electromagnetic and hadronic showers. It has a depth

of at least 2X0 everywhere and an η segmentation of 0.05.

The electrodes are read-out by front-end boards (FEBs) which are located at the cryostat

feed-throughs. The FEBs amplify, shape and digitize the signal and then send it to the off-

detector electronics. In parallel, amplified signals from multiple channels are summed for

the Level 1 trigger.

The high granularity and variable segmentation allows for detailed shower shape anal-

yses. In particular, there is good photon/pion separation and electron identification. The
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Figure 5.7. A diagram of an electromagnetic calorimeter segment. [83]

electromagnetic calorimeter is designed to have an energy resolution of

σE

E
=

10%√
E

⊕ 0.7%

where E is the energy of the primary electromagnetic objects, e.g. electron or photon.

This design goal gives precise measurements of not only electromagnetic objects but of

jet energies as well [83]. Approximately two-thirds of the energy of a jet is lost in the

electromagnetic calorimeter therefore the high precision of the electromagnetic calorimeter

contributes to good jet energy resolution [91].

5.3.2 The Tile Hadronic Calorimeter

The Tile calorimeter is a non-compensating sampling calorimeter made of steel ab-

sorbers and plastic1 scintillator active material. It consists of a barrel (|η| < 1.0) and two

extended barrels (1.0 < |η| < 1.7) which surround the electromagnetic calorimeter. With

a depth of 7.4λ0, it is designed to contain high energy hadronic showers at low cost. Addi-

tionally, the steel provides the flux return for the inner detector solenoid [92].

1Polystyrene doped with 1.5% PTP (p-terphenyl) and 0.044% POPOP(C24H16N2O2) as the primary and

secondary fluors, respectively.
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Each section of the detector is divided up into 64 modules in φ; a schematic of a mod-

ule is shown in Figure 5.8. Scintillator tiles are inserted into a periodic structure of steel

plates. Wavelength-shifting read-out fibers run along the tile edges to photomultiplier tubes

(PMTs) which are at the top (largest R) of the module. The PMTs are housed in drawers

along with the front-end electronics.

The front-end electronics for the Tile Calorimeter are bundled in the drawers with the

PMTs, magnetic shielding and the 3-in-1 cards [93]. The 3-in-1 cards shape the PMT signal

into a pulse with a 50 ns width and sum the signals of several cells for the Level 1 trigger.

They also provide a calibration system using a cesium source. The shaped PMT pulse is

sent to a 10-bit analog-to-digital converter (ADC) which samples the signal at the 25 ns

bunch-crossing rate. The samples are then sent to the off-detector back-end electronics.

The back-end electronics are common to all calorimeters and are described in Section 6.2.

The hadronic calorimeter is designed to have an energy resolution of

σE

E
=

50%√
E

⊕ 3%

[83] and contain multi-TeV hadronic showers.

5.3.3 Forward Calorimeters

The ATLAS Forward Calorimeters consist of a copper and liquid-argon hadronic end-

cap (HEC) calorimeter and a combination copper-tungsten and liquid-argon forward calorime-
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ter (FCAL). The HEC covers 1.5 < |η| < 3.2 and the FCAL covers 3.1 < |η| < 4.9 and

they are both housed in the same cyrostat as the electromagnetic endcap calorimeters. The

arrangement of the calorimeters is shown in Figure 5.9(a). The design of these detectors

differs from the previously mentioned calorimeters because they need to withstand the high

flux of particles in the forward direction.

The HEC is conceptually similar to the liquid argon calorimeter described above. Scin-

tillator would not withstand the radiation damage it would accrue at small radii to the

beam-line, therefore liquid argon is used instead. The copper takes the place of the lead

absorbers and the detector has a flat plate design, perpendicular to the beam-line, instead

of the accordion structure.
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Figure 5.9. (a): Layout of the forward calorimeters. (b): cross-sectional sketch of the FCAL showing the

electrode structure as well as the Molière radius, RM [83].

The FCAL was designed to provide both electromagnetic and hadronic calorimetry in

an intense radiation environment. The electrodes are formed of coaxial copper rods and

tubes with a very small liquid argon gap in between for fast signal extraction. The gap is

maintained by a radiation hard plastic wire wrapped around the tubes. The electrodes are

held in a copper matrix in the first compartment and a tungsten matrix in the second and

third compartments. The matrix is formed by drilling holes into the passive material plates.

A cross-section of the FCAL is sketched in Figure 5.9(b).

5.4 The Muon Spectrometer

The ATLAS Muon System, shown in Figure 5.10, consists of several different track-

ing technologies arranged around a massive superconducting air-core toroid system. The

toroid consists of a barrel and two end-caps providing 1 to 7.5 Tm in bending power. AT-

LAS chose an air-core design to minimize multiple scattering of the muons so that 10%
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momentum resolution could be achieved at 1 TeV.

Figure 5.10. A cutaway view of the ATLAS muon system indicating the locations of the various tracking

technologies. [83]

Four different tracking technologies are used. In the barrel, resistive plate chambers

(RPCs) are used for triggering. They consist of parallel resistive plates separated by 2mm

with a potential difference across them. Avalanches are triggered by particles ionizing the

gas (C2H2F4/Iso-C4H10/SF6) in between the plates and are subsequently read-out. These

provide a fast response so that triggering on muons can occur at Level 1. The trade-off

is low position resolution: 10 mm in both z and φ. They are complimented by precision

monitored drift tubes (MDTs) which are built out of pressurized tubes filled with Ar/CO2

gas. Each tube has a coaxial tungsten wire that collects the ionizing charge. The timing

of the signal is used to achieve a z position resolution of 35 µm. In the end-caps, thin gap

chambers (TGCs), which are similar to multi-wire proportional chambers, take the place of

the trigger chambers. Cathode strip chambers (CSCs) provide the precision measurements

in the end-caps. CSCs are multi-wire proportional chambers with segmented cathodes to

improve position resolution.
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5.5 The Luminosity Detectors

ATLAS uses several detectors for luminosity measurements. In this section only the

detectors relevant to this thesis are discussed.

5.5.1 Minimum Bias Trigger Scintillators

The Minimum Bias Trigger Scintillators (MBTS) are the primary detectors used in this

measurement. They consist of 2 cm thick polystyrene scintillators behind a 3 cm boronated

polyethylene moderator mounted 3.6 m from the interaction point on either side of the

detector. Each side is divided into counters, consisting of an inner (2.09< |η| <2.82,

43 cm < R <88 cm ) and outer( 2.82< |η| <3.84 , 14 cm < R <43 cm ) ring in η and

eight sections in φ, leading to 16 possible measurements per side. In 2010 one of the inner

counters on the C-side (z < 0) was dead, resulting in only 31 total possible measurements.

Each counter is made of two pieces of scintillator glued down the middle. Wavelength

shifting fibers embedded in a machined groove in each half of the scintillator and down the

center of the detector collect the emitted light. The structure of the MBTS detector is shown

in Figure 5.11(a). The wavelength shifting fibers are welded to normal optical fibers which

transmit the signal to the Tile calorimeter PMTs and the readout proceeds exactly as for the

tile calorimeter. The only difference is that the high gain output of the amplifier is sent to

the trigger rather than the low gain, which is the default for tile calorimeter operation.

The MBTS is designed to provide simple and efficient triggering during early data

taking. Each counter’s Tile 3-in-1 card sends a trigger signal. On each side of the detector,

the 16 signals are passed to an amplifier set to minimal gain. There are 2×16 outputs from

the amplifier. One group of 16 is sent to a leading edge (LE) discriminator, the other is

sent to a constant fraction discriminator (CFD). The LE output is then sent to the central

trigger processor which determines how many MBTS counters were over threshold. It then

sets the Level 1 trigger bits L1 MBTS X and L1 MBTS X X, which indicates X MBTS

counters were over threshold or X counters were over threshold on each side, respectively.

The CFD is not currently used. Figure 5.11(b) shows the Level 1 trigger logic.

For the early part of the 2010 running period L1 MBTS 1 was the primary trigger.

As will be shown in Chapter 8.2, it was highly efficient at selecting inelastic interactions.

The MBTS scintillators are not radiation hard, and therefore they will yellow and become

unusable sometime during the 2011-2012 run.

5.5.2 LUCID

LUCID (LUminosity measurement using Cerenkov Integrating Detector2) is ATLAS’s

primary luminosity detector. It is located 17 m from the interaction point and covers 5.5<
|η| <5.9. It functions as a relative luminosity detector, with the calibration for absolute

2Perhaps one of the worst reverse-engineered acronyms ever.
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Figure 5.11. (a) The MBTS detector design showing the positions of the wavelength shifting fibers. (b)

Schema of the MBTS trigger logic.

luminosity coming from machine parameters as described in Chapter 10 or measurements

by the ALFA detector3, once ALFA is operational.

LUCID consists of twenty 1.5 m in length, 15 mm in radius, highly-polished aluminum

tubes filled with C4F10. Particles traversing a tube emit Cerenkov radiation which is re-

flected on average 3 times in the tube before it is read out by PMTs. The PMTs relay

the signal to a constant fraction discriminator which has a preset threshold. The bunch-

crossing-by-bunch-crossing luminosity is calculated on the read-out board by a Field Pro-

grammable Gate Array (FPGA). Every time a level-1 accept is recorded this information

is sent to the ATLAS data acquisition system. This design is crucial for determining a lu-

minosity independent of the ATLAS data acquisition system, which can suffer from dead-

time.

Because LUCID is a very forward detector, it must contend with high occupancy and

large radiation doses. At nominal LHC luminosities the PMTs will be replaced by quartz

fibers coupled to the Cerenkov tubes by Winston cones, which will transmit the signal to

shielded PMTs off-detector. Figure 5.12 shows a closeup of the connection between the

tubes and PMTs, as well as the future coupling of the Winston cones to the quartz fibers.

3The ALFA detector is a far forward roman pot detector which will be used during special LHC runs to

measure the forward elastic cross-section. It will simultaneously measure σtot and L, from which the LUCID

calibration will be derived.
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Figure 5.12. View of the coupling between the LUCID detector Cerenkov tubes and PMTs, as well as the

future coupling via Winston cones to quartz readout fibers. [83].
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CHAPTER 6

Event Reconstruction

6.1 Track Reconstruction

This Chapter details elements of the ATLAS event reconstruction relevant to this thesis.

Specifically, the track reconstruction and the calorimeter signal processing are described.

This section concerns aspects of event reconstruction which relate to Inner Detector track-

ing. The ATLAS muon system also provides tracking but it is not discussed here.

6.1.1 Reconstruction Algorithms

Inner Detector reconstruction encompasses track, vertex and beam-spot reconstruction.

The process begins with track reconstruction and concludes with primary vertex finding.

Primary vertices are defined as the locations of proton-proton interactions, and there can

be multiple primary vertices in an event if there are multiple proton interactions. The

primary vertices are used to determine the luminous region, or beam-spot, roughly every

two minutes during data-taking. Each of these steps is detailed below.

Track Reconstruction

The objective of charged particle tracking is to reconstruct a charged particle’s tra-

jectory from the energy it deposits in a detector. Because the detector is immersed in a

magnetic field, the particle will take a helical path which will contain information about

the particle’s momentum vector. Any particle path can be represented by the following five

parameters

d0, z0, φ0, cot θ, q/pT (6.1)

modulo distortions due to energy loss and multiple scattering in the detector. The transverse

impact parameter, d0, is the distance of closest approach of the trajectory to the origin of

the detector in the transverse (x − y) plane. The point of closest approach is referred to

as perigee. The longitudinal impact parameter, z0, is the z coordinate of the trajectory at
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perigee. φ0 is the angle at perigee of the trajectory in the transverse plane. The polar angle,

θ, is the angle with respect to the z axis made by the trajectory. The final parameter of the

trajectory is the charged inverse of the particle’s transverse momentum. It is given by the

curvature of the track, ρ = Bq/pT, where B is the magnetic field strength, q is the particle

charge and pT is its momentum in the transverse plane1. A sketch of the parameters in the

transverse and longitudinal planes is shown in Figure 6.1. These parameters can also be

expressed with respect to the point of closest approach to the interaction vertex (primary

vertex), or the beam-spot, indicated by the superscript “PV” and “BS”, respectively.
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Figure 6.1. An illustration of track parameters in the transverse (a) and longitudinal (b) planes expressed

with respect to the origin of the detector and the primary vertex.

The challenges of track reconstruction can be divided into two categories: track-finding

and track-fitting. In the first, detector hits, .e.g. pixel clusters, SCT clusters, or TRT hits,

are associated to form tracks. In the second, the hits are used to determine the parameters

of the charged particle which created the track. The efficiency to find tracks is discussed in

Section 6.1.2, and the parameter resolution is discussed in Section 6.1.3.

The ATLAS tracking suite is named New Tracking (NEWT) [94] and uses a modular,

multi-stage approach to track reconstruction. A Kalman filter [95] is used as the primary

track fitting algorithm. The tracking begins with an inside-out reconstruction algorithm

which starts with hits in the silicon detectors. The inputs to track finding are spacepoints,

consisting of:

• Pixel clusters, which are formed by clustering neighboring hits in the pixel detector.

The local cluster position and radius of the pixel layer are used to determine a single

three-dimensional point.

1Expressed in natural units assuming a uniform magnetic field.
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• Double-sided SCT clusters, which are formed by clustering neighboring hit strips

in the SCT detector. Clusters on opposing sides of each double-sided detector layer

are then associated and the stereo position information is used to provide a single

three-dimensional point.

TRT hits, which provide only two dimensional position information, are used in later parts

of the reconstruction.

The first step of reconstruction creates track seeds, which are formed out of three space-

points on separate layers. All possible combinations of hits from the first pixel layer to

the first layer of the SCT are considered. Then the three measurement points are used to

uniquely determine a circle which gives the seed parameters in the transverse plane, assum-

ing a uniform magnetic field an neglecting multiple scattering. A cut on the pT and d0 of the

seeds is applied to reject bad seeds and speed up the reconstruction. Next, the spacepoints

are discarded and the algorithm uses the seed to define a road to search for hits. Practically

this means that single-sided SCT clusters are used in addition to double-sided ones. It then

proceeds to associate clusters to the track seeds. Each time a hit is associated, the fit is

updated to include its information. A simplified model of the ATLAS detector geometry

is used to predict each step of the filtering, taking into account the material crossed by the

particle.

The hit association phase allows for hits to be shared by multiple tracks or creates fake

tracks out of a random assortment of hits, resulting in a significant fraction of poor quality

tracks. In order to clean up the found tracks, ambiguity solving [96] is used to select good

quality tracks. First, the track is refit with a more sophisticated version of the ATLAS

geometry to better estimate material effects. Second, the track is given a score, taking into

account the χ2/Ndof of the fit, the number and quality of hits from each subdetector and

the number of holes2 associated to the track. An iterative procedure is used to reduce the

hit-sharing between tracks by assigning the shared hit to the track with the higher score and

then refitting both tracks and re-evaluating their score. Once the ambiguity solving step is

finished a quality cut is applied and only tracks passing a configurable threshold are kept.

Lastly, the selected tracks are extrapolated to the TRT to define a road from which to attach

TRT hits. Figure 6.2 illustrates the various steps of track finding. The track reconstruction

process reconstructs tracks up to an |η| of 2.5 and a pT as low as 100 MeV.

After the inside-out tracking is run, the unassociated hits are used to do outside-in

tracking, starting with the TRT. The outside-in tracking must be run last so that the pos-

sible combinations do not overwhelm the pattern recognition. TRT drift circles only give

information in two directions: the r− φ plane in the barrel and φ− z plane in the endcaps.

In the r − φ plane tracks with pT of 500 MeV or greater are nearly straight lines over the

length of the TRT detector and in the φ − z plane they are truly straight lines because the

magnetic field does not produce any bending in that plane. A Hough transform [98] is used

to reconstruct tracks. The transform works by mapping each hit in the r − φ (φ− z) plane

2A hole is defined as an instance when a track is extrapolated through a detector layer but no hit is

associated to it.
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Figure 6.2. Schematic of the different stages of track reconstruction. Spacepoints are represented by the

yellow dots and blue lines indicate track seeds. The dashed blue line is a seed which shares a single hit and

the green line illustrates a seed which was rejected prior to hit association. The green dashed line indicates

a track candidate which failed the impact parameter cuts. The red line represents a silicon-only track. The

black line indicates a track including TRT hits. Figure reproduced from [97] with permission of the author.

into the space of straight lines intersecting the point, φ0 − cT(z), where cT(z) is 1/pT (z):

cT(z) = r(z) · cos(φ0) + φ · sin(φ0) (6.2)

If all hits arise from a single line, the lines in the φ0 − cT (z) plane will intersect at a single

φ0, cT (z) value. Practically, the transform fills a histogram in several η bins for each event

and the local maxima indicate the track segments.

Once a track segment is formed, it is used to define a road into the silicon detector. The

algorithm searches for hits not already associated to an inside-out track. The same track

fitting and scoring is performed as in the inside-out case, although with different criteria for

the scoring. This track finding is powerful for finding electrons from photon conversions

and other secondary particles from decays which are displaced a significant distance from

the primary vertex.
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Primary Vertex Reconstruction and Beam Spot Determination

After track-finding is completed, the tracks are used to find the primary event vertex.

Immediately after the data is collected, a 36-hr calibration loop is run on a subset of the

data in which the beam-spot is determined using primary vertices found without knowledge

of the beam-spot. Then the bulk reconstruction is run and primary-vertex finding is rerun

with the constraint of the beam-spot position. The following section describes how the

primary-vertices are reconstructed.

The primary-vertex reconstruction [99] is divided into a finding and a fitting phase, as

in the case of the track reconstruction.

The inputs to the primary vertex finding are tracks satisfying

• pT > 100 MeV

• |d0| < 4 mm

• σ(d0) < 5 mm

• σ(z0) < 10 mm

• NSCT ≥ 4 and NSCT +Npix ≥ 6

where σ(d0)(σ(z0)) is the uncertainty on the d0(z0) measurement. These cuts are used to

reduce the fraction of tracks from secondary particles which are considered for the vertex

finding.

An iterative vertex-finding algorithm is used. First, a vertex seed is determined by his-

tograming the z0 of all of the selected tracks. If the beam-spot has already been determined,

the impact parameter with respect to the beam-spot, zBS
0 , is used. The seed position and

nearby tracks are passed to an adaptive vertex fitting [100] algorithm which is χ2 based.

Tracks which are incompatible with the vertex are used to find additional primary vertices

in the event. If the beam-spot has already been determined, the beamspot position is used

as an additional constraint in the vertex fit. In the case of multiple primary vertices in an

event, the vertex with the highest Σp2
T of the tracks in the event is the vertex associated

with the hard interaction in the event. The vertex-finding efficiency was found to be over

90% efficient for events with at least two tracks with pT > 100 MeV and fully efficient for

events with at least six tracks with pT > 100 MeV [70].

To determine the beam-spot, vertices with at least four tracks are considered. The

position of the vertices are input to an unbinned maximum likelihood fit which extracts the

beam-spot position in x,y, and z, as well as the width in each coordinate, and any tilt of the

luminous region in the x− z and y − z planes. Typical sizes in the transverse planes were

≈ 0.05 mm and ≈ 40mm in the longitudinal plane in the early 2010 runs.
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6.1.2 Tracking Efficiency

The charged particle tracking efficiency is dependent upon many factors such as the

particle type, momentum and the amount of material a particle traverses. Muons, which

have small interaction cross-sections in the 1 GeV to 1 TeV range, have very high track-

ing efficiency. Conversely, pions and protons interact strongly and therefore have lower

tracking efficiency. The amount of material traversed by a particle determines the prob-

ability of having a nuclear interaction, which reduces the tracking efficiency. Electrons

are even more difficult to reconstruct because bremstralung changes the momentum mid-

flight. Lower momentum particles suffer from higher interaction rates and more multiple-

scattering, making track-finding difficult. This section discusses the absolute tracking effi-

ciency as well as studies of the relative efficiency of the silicon based tracking with respect

to the TRT tracking.

Absolute Tracking Efficiency

The absolute tracking efficiency of all particle species can only be determined through

Monte Carlo simulation studies. Generally the efficiency can be described by

ǫ(η, pT, ...) =
NTrkMatch(η, pT, ...)

Ngen(η, pT, ...)
(6.3)

Where Ngen(η, pT, ...) is the number of generated charged particles as a function of the

η, pT, and any other variables, and NTrkMatch(η, pT, ...) is the subset of those generated

particles which are matched to a track. There are also fake tracks, which are reconstructed

tracks not matched to any generated particles. The definition of a track match is dependent

on the criteria used to do the matching. For example, generated particles can be matched

to tracks by requiring that there be a track within a cone, ∆R =
√

∆η2 + ∆φ2 of the

generated particle at perigee. Alternatively, the Monte Carlo simulation information about

which generated particles produced each hit on the track can be used to assign a probability

that the track was created by a particular generated particle.

The following metric is used to assign the probability a track came from a specific

particle:

prob. =
10 ·Ngen

pix + 5 ·Ngen
SCT +Ngen

TRT

10 ·N rec
pix + 5 ·N rec

SCT +N rec
TRT

(6.4)

where Ngen
det is the subset of the hits on the reconstructed track, N rec

det , which come from

the generated particle. The pixel hits have a larger weight than the SCT hits because there

are less than half as many pixel hits as SCT hits on track. The same reasoning applies

to explain why the TRT hits have much lower weight. A single track can have matches

to multiple generated particles. Therefore, a cutoff of prob =0.55 is applied to determine

whether a generated particle was matched to a track.
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The efficiency is determined as a function of pT and η, although the dependence on

other variables was also examined. Figure 6.3 shows the tracking efficiency as a function

of pT and η, as determined in [70].
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Figure 6.3. Tracking efficiency as a function of η (a) and pT (b) determined with non-diffractive minimum-

bias Monte Carlo events [70].

In order to validate that the simulation accurately describes the tracking quantities and

to give confidence that the efficiencies are correctly modeled, many distributions were stud-

ied. Figure 6.4 shows the average number of pixel and SCT hits on associated to a track as

a function of η for tracks with 100 < pT < 500. This distribution is very sensitive to how

well the Monte Carlo models the tracking in the data, and excellent agreement is found.

However, in Section 11, track distributions for a diffraction-enhanced subset of events is

examined and the agreement between data and MC simulation is worse than shown here.

Relative Silicon Tracking Efficiency

The absolute tracking efficiency used in early tracking analyses must come from the

Monte Carlo simulation as methods for measuring the absolute efficiency require high

statistics and are only applicable to specific particle species. However, constraints can

be placed on the accuracy with which the simulation describes the tracking efficiency with

data-driven techniques. This section describes a technique for measuring the silicon pattern

recognition efficiency.

The combined tracks used for analysis are built from silicon track seeds. Therefore,

it is important to understand the efficiency for the pattern recognition to create a silicon

track, ǫSi. Standalone TRT tracking, in which tracks are formed with a pattern recognition

algorithm which is independent from the inside-out tracking and uses no information from

the silicon detectors, provides a suitable denominator to measure the silicon pattern recog-

nition efficiency. In this study the standalone TRT Tracks are formed using an algorithm
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Figure 6.4. Average number of pixel (a) and SCT (b) hits as a function of η, comparing data and non-

diffractive minimum-bias Monte Carlo events [70]. Only tracks with 100 < pT < 500 MeV are used.

developed for the combined test beam (CTB)3 which has been modified to work in a colli-

sion environment. Unfortunately this algorithm only works in the TRT barrel. At the time

of the first LHC collisions, the default Hough transform-based Standalone TRT tracking,

which includes the endcaps, was not sufficiently robust to do this analysis.

Comparisons of the TRT and Silicon tracks cannot determine the absolute efficiency,

but a relative efficiency, ǫrSi, of the silicon tracking with respect to the TRT tracking can

be examined by measuring the fraction of good quality TRT tracks for which a matching

silicon track is found. The relative efficiency is defined as

ǫrSi =
Nobs

Si+Trt

Nobs
Trt

(6.5)

(6.6)

where NTrt is the number of TRT tracks and NSi+Trt is subset of TRT tracks matched

to a silicon track. The definition can be expanded using the following equations:

ǫrSi =
Nobs

Si+Trt

Nobs
Trt

(6.7)

Nobs
Si+Trt

Nobs
Trt

=
ǫmǫTrtǫSiN

ǫTrtN + fTrtNobs
Trt

(6.8)

Nobs
Si+Trt

Nobs
Trt

=
ǫpmǫ

p
Trtǫ

p
SiN

p + ǫsmǫ
s
Trtǫ

s
SiN

s

ǫpTrtN
p + ǫsTrtN

s + fTrtNobs
Trt

(6.9)

3The combined test beam refers to a period in 2004 when a slice of the Atlas detector was tested at a

beamline at CERN.
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where ǫm is the efficiency of the matching parameter, ǫTrt is the TRT tracking efficiency,

N is the number of charged particles and fTrt is the fake rate for TRT tracks. The efficiency

for primaries and secondaries is denoted by the p or s superscript. Primaries are defined

as tracks coming from from the primary vertex or prompt decays. Secondaries come from

decays of long lived particles, nuclear interactions and electrons from photon conversions.

The physics efficiency of interest is the primary efficiency, ǫpSi, and consequently, cuts are

used to limit the contribution from secondaries and fakes.

In the ideal case without secondaries and fakes, the relative efficiency would simplify

to

ǫrSi =
Nobs

Si+Trt

Nobs
Trt

(6.10)

= ǫmǫSi (6.11)

allowing a measurement of the “true” efficiency, up to the efficiency of the matching pa-

rameter. It will be shown that both ǫrSi and the matching parameter distribution agree well

within uncertainties between data and simulation, giving us confidence that the pattern

recognition efficiency for silicon tracks, ǫSi, is described by the simulation.

This study requires that the TRT tracks are in the TRT barrel and have a d0 < 10mm.

The requirement on d0 is looser than that typically used to select primary tracks to allow

for the broader d0 resolution of the TRT. No requirement is placed on the impact parameter

in the z-direction because no measurement of this quantity is provided in the TRT barrel.

In order to ensure that the tracks are well measured they are required to be formed from at

least 20 TRT hits. No requirements are placed on the silicon tracks matched to the TRT

tracks.

The difference in φ0, the azimuthal angle expressed at perigee, between the TRT track

and the closest silicon track is used as the matching parameter, δφTRT−Si. The δφTRT−Si

distributions for both data and simulation are shown in Figure 6.5. The data and MC agree

well and it is notable that there is not a significant difference in the δφTRT−Si distributions

for the nominal geometry and a Monte Carlo sample with extra material in the detector

description, indicating that the method is largely insensitive to the amount of material in

the detector. The matching cut is chosen to be δφTRT−Si < 0.04 radians. The efficiency of

this cut varies with momentum due to the change in resolution with momentum, but a fixed

cut was chosen for simplicity.

Figure 6.6 and Figure 6.7 show the relative silicon tracking efficiency ǫrSi for both data

and simulation. In general, the data and the nominal MC agree well. When looking at

the efficiency as a function of momentum, as in Figure 6.6, deviations between the data

an MC are significantly less than 0.5%. The efficiency is lowest in the 0.5 GeV bin, at

86%. It reaches a plateau near 1 GeV at 96%. By dividing the MC into its primary and

secondary contributions, it is apparent that the shape of the turn on curve is dictated by the

secondary contribution. The primary contribution is nearly fully efficient by 0.6 GeV. The

relative efficiency is lower for the secondaries partly due to the fact that the secondaries are

significantly displaced from the primary vertex and often times do not leave enough hits to
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be reconstructed. Additionally, the matching is done using the perigee parameters which

are inappropriate for secondaries since they do not originate from the primary vertex.

The efficiency as a function of d0, shown in Fig. 6.7(a), is flat for a wide range of

impact parameter values. Data and MC agree very well up to values of ± 12 mm, where

the efficiency drops rapidly and the disagreement is up to a few percent. In the plateau

region the total efficiency is approximately 97% for both data and MC.

Figure 6.7(b) shows the efficiency as a function of the other cut variable, the number

of TRT hits on track NTRT. Data and MC disagree up to a few percent for low values

of NTRT but in general agree very well. For very low numbers of TRT hits the relative

efficiency is low. However, those TRT track are poorly measured and it is unsurprising that

they don’t match well to silicon tracks. As in the other distributions the primary efficiency

is very high. The secondary efficiency continues to rise as a function of NTRT, reaching

a maximum value of 80% before the statistics become too poor to quote a number for the

efficiency.

The systematic uncertainty, shown in Table 6.1, is divided into two components. The

first is due to the level of data and MC agreement, and the second encompasses uncertainties

in the method itself. The data-MC agreement systematic is taken as the raw difference

between the data and MC and is found to be 0.1% for tracks with pT < 1 GeV and neglible

for tracks with higher momentum. In order to obtain a systematic uncertainty on the method

we vary the cuts on the denominator such as the d0 cut and the number of TRT hits cut,

as well as the δφ cut, and then take the spread in the difference in the ratio of data to

MC multiplied by the efficiency in MC as the systematic. This definition captures how

strongly the characterization of the agreement between data and Monte Carlo simulation
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Additional the MC efficiency was divided into primary(blue) and secondary(pink) contributions.

depends upon the specific tracks used to measure the efficiency and the defintion of a match.

As is shown in the table, the variations in the cut values do not significantly effect the

efficiency or the agreement between data and simulation and all variations are at the 0.5%

level or less. In total we measure an uncertainty of a 0.73% on the tracks with 500 MeV <
pT <1 GeV and 0.26% for tracks with pT >1 GeV . The uncertainty is higher for the lower

momentum range because the efficiency is changing rapidly in this region, allowing small

discrepancies to have a greater weight than in the plateau region.
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Tracking Efficiency Systematic Uncertainties

The systematic uncertainties on the tracking efficiency arise from several sources which

are listed below.

• Material: The ability of the Monte Carlo simulation to reproduce the true tracking

efficiency crucially depends on the accuracy of the material modeling in the simula-

tion. The agreement was studied using many methods. One method examined the

reconstructed K0
S invariant mass from charged pion decays as a function of the posi-

tion in the detector. A complimentary method looked at the length of tracks which is

sensitive to the nuclear interaction modeling. Additional methods included looking

at the width of hit residuals for low momentum tracks and looking at the efficiency

for a track reconstructed with the pixel detector to be reconstructed in the SCT. The

last method was particularly powerful for assessing the material budget in the for-

ward regions of the detector. It was determined that the material is known to within

10% in the central region of the detector and up to 30% in the highest η regions of

the tracker [70]. This leads to a ± 2 − 15 % uncertainty on the tracking efficiency,

depending on the η and pT of the track.

• Seed Resolution: The tracking resolution effects the tracking efficiency at low mo-

mentum because mismeasured tracks with momentum greater than 100 MeV will

either fall below the minimum track momentum cut of 100 MeV or tracks with lower

momentum will migrate into the track sample. This leads to a ±5% uncertainty be-

tween 100 and 150 MeV.

• Track Selection: The agreement between data and MC on the track selection effi-

ciency was determined by varying the track selection requirements and comparing

the data and MC agreement. This leads to a flat ±1% uncertainty.

6.1.3 Track Resolution

The tracking resolution is a measure of how well the track reconstruction reproduces

the parameters of the particle which created it. At low momenta, the track resolution is

degraded by multiple-scattering. At high momenta, the resolution is driven by how well

the detector is aligned.

Prior to first LHC collisions, the ATLAS inner detector took data with a cosmic ray

trigger with the solenoid on and off. The solenoid-on data provided a unique opportunity to

measure the tracking resolution in-situ with muons. The resolution was measured directly

by splitting the tracks, which pass through both the top and bottom halves of the detector,

into an upper and lower track. The difference of the measured track parameters of the upper

and lower tracks were related to the tracking resolution via the following

δv = vup − vlow (6.12)
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σ(δv) =
√

σv
up + σv

low (6.13)

=
√

2σv (6.14)

where v is the parameter of interest, such as pT, d0, etc. and σv
up(low) is the track parameter

resolution for the upper(lower) half-track. Equation 6.14 states that the width of the δv
distribution is determined by the error on the upper and lower half-tracks and, assuming

that the resolution is the same for both halves of the detector, gives the collision-like track

resolution on v. Figure 6.8 sketches the procedure.

Figure 6.8. Toy example of half-tracks. The dashed black line indicates the particle trajectory. The yellow

dots represent the hits created by the particle. The red (blue) line is the reconstructed track in the upper(lower)

detector half. δv is the difference in the track parameter v at perigee.

Figure 6.9 shows the curvature ( q
p
) and transverse impact parameter (d0) resolutions

and biases as measured with the 2009 cosmic ray data [101]. In these plots tracks were

required to have at least 2 pixel hits and 6 SCT hits and the full ID tracks were required to

also have 25 TRT hits. Additionally they were required to have |d0| < 40 mm in order to

make the tracks as collision-like as possible without sacrificing too many statistics. These

plots show that the inclusion of the TRT hits helps the momentum resolution considerably

at high momenta. Additionally it shows momentum dependent curvature biases as well

as a flat impact parameter bias, indicating that the alignment of the detector has weak

misalignment modes. These plots were made with a preliminary alignment which has

improved considerably since then.

With collision data the momentum resolution can be monitored using muon resonances

such as the J/ψ and Υ mesons and the Z boson.

6.2 MBTS And Calorimeter Signal Reconstruction

The ATLAS calorimeters, while using a range of different technologies, have the same

basic procedure for signal reconstruction: optimal filtering. The optimal filtering algo-

rithm [103] used by ATLAS was first developed for liquid ionization calorimeters. How-

ever, it has been proven to accomodate scintillator based calorimters as well [104].
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Figure 6.9. q
p

(a) and d0 (b) resolution versus pT. q
p

(c) and d0 (d) resolution bias versus pT. All plots using

cosmic ray data collected in 2009 [102].

The Liquid Argon calorimeters and the Tile Calorimeter share the same basic back-end

electronics to do the signal processing. The MBTS uses Tile PMTs and is fully integrated

into the Tile read-out chain. Read-out drivers (RODs) on the back-end electronics board

contain Digital Signal Processors (DSP) which recieve the samples of the detector signals

from the front-end electronics. The shape of the signal and the number of samplings vary

depending on the detector, but the procedure for fitting for the total charge or energy col-

lected and time of arrival of the signal are the same. This fitting is done by the DSPs for

the Level 2 triggering or in the offline reconstruction.

Each sample can be expressed in terms of the pulse shape function g(t):

Si = p+ Ag(ti + τ) + ni (6.15)

where p is the pedestal, A is the amplitude of the signal, τ is the phase of the signal rela-

tive to the pulse shape function and ni is the noise. If the pulse shape function and noise

are known, then A, τ and p can be determined using a taylor expansion the above equa-
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tion [104]:

A =
n
∑

i=1

aiSi; Aτ =
∑n

i=1 biSi; p =
n
∑

i=1

ciSi (6.16)

where ai, bi, ci are constants which are precalculated for each channel and stored on the

ROD DSPs or in the offline reconstruction database. Knowing A and τ gives the charge

deposited in the detector as well as the time of arrival of the signal. The fit results are

then used for Level 2 trigger decisions. Figure 6.10 shows a toy model of a signal and

samplings. The quality of the fit is also computed and is determined by

χ2 =

n
∑

i=1

|(Si − p) −Agi| (6.17)

taking the absolute value is used online instead of squaring each term to reduce compuation

time in the DSPs.

The optimal filtering procedure is performed again during the offline reconstruction,

resulting in a more precise determination of the charge and time of the signal. Figure 6.11

shows the difference in the A- and C-side MBTS signal times for the offline and online

algorithms in collision data [105]. Proton interactions from colliding beams have a ∆t of

0, whereas beam-gas and beam-halo are at ± 25ns. The largest difference in the online

and offline determinations are for the beam-gas and beam-halo events, which are signifi-

cantly out-of-time. The peaks at ± 75ns in the offline are artificial. The differences in the

background peak positions between the online and offline methods are due to biases in the

online signal reconstruction.

The following sections detail the specifics of the Liquid Argon and Tile signals.

6.2.1 Liquid Argon Calorimeters

The Liquid Argon calorimeter signal consists of ionization charge collected by elec-

trodes in the accordian structure. The signal has a very short rise-time and is followed by

a linear decay, but it is shaped by the front end electronics into a bipolar distribution. The

shaped signal as measured with cosmic rays is shown in Figure 6.12(a). The liquid argon

signal is slow, lasting approximately 450 ns. Although sampling every 25 ns is possible,

during normal data-taking only five samples are read-out.

6.2.2 Tile Calorimeter and the MBTS

The Tile Calorimeter signal output are scintillation pulses from PMTs which are shaped

by the analog 3-in-1 card. Figure 6.12(b) shows the analog signal response after shaping in

the high and low gain channels as determined from pion test beams. The shaping stretches

the signals so that the samplings can be made at reasonable intervals. They are sampled
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Figure 6.10. Toy representation of a PMT pulse in the black line, the yellow dots represent the sampling

points. (a) represents an in-time pulse, (b) represents a pulse with phase τ .

seven times by the digitizer, as described in Section 5.3.2. The MBTS uses Tile PMTs

and the full Tile readout chain. Therefore, the signals are very similar. Typical charges

collected under the 2010 running conditions by the MBTS are 0.7 pC for a single particle.

The MBTS offline performance is studied in detail in Chapter 8.
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Figure 6.12. (a): Liquid argon pulse shape with the data (red points) and prediction(blue points) for cosmic

ray muons. The green points indicate the fractional difference between the data and prediction. (b): Tile

PMT signal shapes determined from pion testbeams for the low gain (solid line) and high gain (dashed line)

channels [106].



71

CHAPTER 7

Collision and Monte Carlo Datasets

Nearly all of the work presented in this thesis used common datasets. This chapter

describes both the collision data and the Monte Carlo data samples.

7.1 Data

The majority of the results presented here come from the second day of 7 TeV colli-

sions: LHC fill 1013, ATLAS run 152221. This run consists of approximately 1.4 million

events taken by the L1 MBTS 1 trigger described in Chapter 5.5.1. This trigger was run

without a prescale and there were no requirements applied in addition to the single MBTS

trigger hit. Two other runs are used for consistency checks: the first run at 7 TeV and a

later run with a higher 〈µ〉, the average number of proton interactions per crossing. The

integrated and instantaneous luminosities as well as 〈µ〉 are listed in Table 7.1 for each

considered run.

These runs all have low 〈µ〉 . In the first two runs considered the effect of multiple

interactions in a single crossing (pile-up) is negligible. In the third run, 154817, 〈µ〉 is a

non-negligible 0.1, and it is corrected for following the procedure outlined in Chapter 10.

All of the data were reconstructed with the same version of the reconstruction software

and detector geometry1. The reconstruction algorithms used in this analysis are described

1The data were processed in the “May Reprocessing” using AtlasProduction-15.6.9.8, and the ATLAS-

GEO-10-0-0 geometry tag.

LHC Fill ATLAS Run Peak L [1027 cm−2s−1] Integrated L[µb−1] 〈µ〉
1005 152166 0.9 7.0 0.007

1013 152221 1.2 20.3 0.008

1089 154817 18.0 541.0 0.11

Table 7.1. Summary of the data used in this analysis. Shown is the LHC Fill number, the ATLAS run number,

the peak and integrated luminosities and the average number of interactions per crossing, µ.
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in Chapter 6.

7.2 Monte Carlo Models

Three primary Monte Carlo simulations are used: PYTHIA 6, PYTHIA 8 and PHOJET.

The details of the physics modeling behind these generators is described in Chapter 2.6.

Several million events were generated for each of the ND, SD, DD and CD (where appli-

cable) processes for each generator. In this document generator-, hadron-, particle- and

truth-level distributions refer to quantities calculated or determined from the four-vectors

of particles produced by the Monte Carlo generators. The term Fully simulated-events

refers to generated events which were passed through the detector simulation [107]. The

detector simulation uses a description of the detector geometry and material implemented

in Geant4 [108] to simulate the interactions of the generated particles with the detector. The

events are then passed through the same software chain as the data. Because the beam-spot

longitudinal width is different in the MC than in the data, the MC events are weighted to

the data beam-spot distribution.

In addition to the three generators mentioned above, a fourth fully simulated sample

is considered to understand the effect of variations in the detector simulation. To obtain

the samples, generated events from the PYTHIA 6 sample were passed through the detector

simulation with a different version of the detector geometry. The events were reconstructed

with the default version of the geometry description, thereby mimicking the effects of hav-

ing an inaccurate material description. The description used2 has a 20% increase in the

radiation length of the Pixel and SCT services. Figure 7.1 compares the total radiation

length of the nominal geometry with the geometry used for the extra material sample and

the “best guess” of the material distribution3 which was determined after the samples were

fully simulated.

When considering alternate models of the diffractive mass spectrum, PYTHIA 8 is used

to generate events according to the alternate spectrum. Then, either the truth information

from those events is used or the fully simulated PYTHIA 8 events are re-weighted to the

truth spectrum. Table 7.2 lists the models considered for the cross-section measurement

Unless otherwise indicated, the PYTHIA relative cross-sections are used to combine the

SD, DD, and ND process for all models except PHOJET.

2ATLAS-GEO-10-00-04
3ATLAS-GEO-16-00-00
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Figure 7.1. The material distribution in radiation lengths of the inner detector comparing the nominal geome-

try (Geo-10-00-00) with the geometry used for the extra material sample (Geo-10-00-04) and the “best guess”

of the material distribution (Geo-16-00-00) which was determined after the samples were fully simulated.

Generator Cross-section Model Full Sim. ?

PHOJET Engel yes

PYTHIA 6 Schuler-Sjöstrand yes

PYTHIA 8 Schuler-Sjöstrand yes

Donnachie and Landshoff ǫ = 0.085 α
′

= 0.25 GeV−2 no

ǫ = 0.06 α
′

= 0.25 GeV−2 no

ǫ = 0.10 α
′

= 0.25 GeV−2 no

ǫ = 0.085 α
′

= 0.10 GeV−2 no

ǫ = 0.085 α
′

= 0.40 GeV−2 no

Bruni and Ingelman no

Berger and Streng no

Table 7.2. Summary of the models used in this analysis. The table indicates the generator was used for the

modeling of exclusive properties, the cross-section model and whether or not fully simulated were available.
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CHAPTER 8

MBTS Detector Response and Efficiency

Measurements

The validity of the work presented in this thesis depends crucially on the understand-

ing of the MBTS detectors. In particular, the determination of the agreement between the

data and Monte Carlo simulation on the MBTS performance is one of the most critical

experimental aspects of the work. Additionally, the simulation must accurately describe

the material between the interaction point and the MBTS detector because it determines

what fraction of the particles interact before reaching the MBTS. This chapter comprehen-

sively examines the MBTS performance with a particular emphasis on the offline charge

reconstruction and additionally constrains the agreement of the data and simulation on the

material budget in the forward region of the detector. First, the offline noise profiles are de-

termined. Next the trigger efficiency is determined. A data-driven approach to measuring

the MBTS counter offline efficiency follows and the Monte Carlo simulation is tuned to re-

produce the observed efficiency. Lastly, the agreement between the ability of the simulation

to reproduce the material in the ATLAS detector in the MBTS acceptance is assessed.

8.1 Noise Profiles

The noise signal in the MBTS is generated by dark current in the PMTs as well as by

intrinsic noise in the read out electronics which are shared with the Tile Calorimeter. It is

typically well described by a double Gaussian centered at 0 pC. The noise was measured

in the empty LHC bunches using events triggered by the zero bias trigger. The zero bias

trigger randomly selects 25 ns window bunch-crossings with no LHC beam, therefore no

particle signals, apart from exceedingly rare cosmic rays, are expected to contaminate this

sample.

The noise distribution was plotted for each counter in Figure 8.1. All of the coun-

ters have similar noise profiles, and only a few counters have hits greater than ± 0.12 pC.

Counters A5, A14 and C9 have slightly wider distributions. Counter A6 has one hit above
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Figure 8.1. MBTS noise distribution measured in empty bunches for all counters on the A-side outer (a) and

inner (b) ring and on the C-side outer (c) and inner (d) ring.

0.2 pC which could be from cosmic rays or “afterglow”, a background described in Chap-

ter 9. Overall, the noise is contained to less than 0.14 pC to the 10−4 level at the time this

data was taken. The noise distribution is expected to widen as the counters accrue radiation

damage. When fit with a double Gaussian, the typical model of the Tile Calorimeter read

out electronics noise, the primary Gaussians have widths of 0.02 pC, while the secondary

widths are generally slightly larger. However, the amplitudes of the second Gaussians are

generally quite small, therefore a single Gaussian is an adequate description of the noise

profile.

In the version of the detector simulation used for the Monte Carlo data processing in

this document, the noise in the MBTS was artificially set to zero. Because new samples

were unavailable at the time of this work, the noise was emulated in the simulation via an

ad hoc smearing to all MBTS signals of a 0.02 pC width Gaussian centered at 0 pC.
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8.2 Trigger Efficiency

The MBTS detector is primarily used by the ATLAS experiment for its highly effi-

cient triggering on inelastic interactions. Its trigger capabilities are described in detail in

Chapter 5.5.1.

In order to measure the trigger efficiency with respect to the offline event selection

requirements, a reference trigger is used. The inelastic cross-section measurement counts

the number of events with at least two offline MBTS hits, where a hit is defined as a counter

with a charge greater that 0.15 pC. To measure the trigger efficiency with respect to that

selection a purely random trigger is used as the reference. It randomly selects bunch-

crossings when both beams are passing through ATLAS. Events from recorded by this

trigger with at least two MBTS offline hits over threshold form the denominator of the

efficiency measurement. The numerator is given by the subset of those event which also

have the L1 MBTS 1 trigger bit set.
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Figure 8.2. Trigger efficiency as a

function of the number of MBTS

cells with an offline charge of at least

0.15 pC. Shown are the efficiencies

as determined using events triggered

by the random trigger with (triangle)

and without (closed circle) subtraction

of unpaired bunches, and using events

triggered by the LUCID trigger (open

circle).

The effect of background was studied by subtracting events in the unpaired bunches

passing a trigger which randomly selects bunch-crossings where a single beam is passing

through ATLAS. No statistically significant effect was found. The trigger efficiency is

measured to be 99.98+0.02
−0.12%. A second reference trigger which requires at least one hit

in the LUCID detector (5.6 < |η| < 6.0) is used to set the systematic uncertainty. It is

sufficiently independent from the MBTS trigger because there is no overlap in η between

the two detectors. This method yields an efficiency of 99.91%.

Figure 8.2 shows the efficiency as a function of the number of offline hits. Because

of the low interaction rate of less than 0.01 interactions per crossing, the random trigger

is inefficient at selecting inelastic interactions. For this reason, the trigger efficiency mea-

surement is statistics limited.

In addition to the inelastic cross-section measurement, studies of tracks in a diffraction-

enhanced minimum bias sample are also considered in this document. To measure the

trigger efficiency in a sample with tracks, the efficiency of the L1 MBTS 1 trigger was

studied as a function of the number of tracks in the event. For this measurement, the ran-

dom trigger was used at Level 1 and additionally four pixel and four SCT spacepoints were
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required at Level 2. This second requirement increased the efficiency to select inelastic

interactions in the reference trigger. No requirement was made on the offline MBTS coun-

ters. In [109] the efficiency was measured as a function of the number of selected tracks

with a pT of 500 MeV or greater, and in [70] the efficiency was measured as a function

of the number of selected tracks with a pT of at least 100 MeV. The plots of the efficiency

as a function of the number of tracks over threshold are shown in Figure 8.3. The impact

parameter cuts of these tracks are with respect to the beam-spot, as indicated by the “BS”

superscript.
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Figure 8.3. Trigger efficiency as a function of the number selected tracks with a pTgreater than 500 MeV (a)

or 100 MeV (b). The green band indicates the systematic uncertainty due to the track selection and correla-

tions between the reference trigger and the MBTS 1 trigger. [109, 70]

It is seen that the trigger efficiency is high, even for events with few, low momentum

tracks.

8.3 Offline Efficiency Studies

The redundancy of the ATLAS detector can be used to investigate the MBTS counter

efficiency in both data and Monte Carlo simulation. The basic premise of the studies pre-

sented in this section is to use measurements in other detectors which overlap with the

MBTS acceptance to tag counters as having been traversed by a particle. For each tag the

MBTS counter charge is plotted and evaluated to see if it passes the hit threshold. Specifi-

cally, tracks are used to probe the outer counters and calorimeter cells are used to probe the

inner counters. Because the noise is negligible above 0.15pC, that value defines the signal

threshold. This section first describes the track based studies and then the calorimeter based

studies.
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8.3.1 Efficiency Measurement with Tracks

The Inner Detector and the MBTS overlap in the region 2.09< |η| < 2.5, therefore the

tracking can probe the performance of the outer counters in that region. Tracks with pT of at

least 100 MeV are extrapolated to the MBTS and used to select counters. Only those MBTS

counters intersected by exactly one track are considered to reduce multiplicity dependence

of the distributions. The dependence on particle multiplicity cannot be completely removed

because there is no way to veto on particles in the region 2.5 < |η| < 2.8, which is outside

of the track reconstruction range. After the additional track veto the extrapolated track is

further required to have a momentum of at least 200 MeV to reduce multiple scattering

effects and it must have at least 7 SCT hits and 1 Pixel hit in order to select tracks which do

not undergo nuclear interactions before exiting the Inner Detector. There is no requirement

on TRT hits because the TRT only extends to |η| of 2.0.
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Figure 8.4. Typical counter charge distributions for MBTS counters tagged by tracks. (a) shows good agree-

ment, while (b) shows poor agreement.

Figure 8.4 shows typical track-tagged counter charge distributions. These plots show

a counter with good data and MC agreement and a counter with poor agreement. The

variability is representative of the variations of the level of agreement between data and

MC for all counters. It is evident that there is some physics dependence of the counter

charge distribution by the difference between PHOJET and the PYTHIA based generators.

PHOJET has a lower multiplicity than either of the PYTHIA generators therefore it is not

surprising that it is peaked towards lower charge. But it should be noted that PYTHIA 8

has a higher multiplicity than PYTHIA 6 and there is little difference in those distributions.

The data spectrum is softer and a larger fraction of the signal is contained in the 0.1pC to

0.5 pC range. The lower response can be attributed to an overall scale differences in the

response between data and MC and to inefficiencies in the detector which are not modeled

in the simulation. For example, it is known that the simulation does not model the loss of

light collection efficiency at the edges of the detector. Another visible feature of the plot is
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the small peak at 0 pC. It is primarily due to extrapolation error, i.e. cases where, due to

measurement error, the particle which created the track did not actually intersect the tagged

counter.

Using this distribution three quantities are defined: the fraction of tagged counters with

a charge greater than 0.15 pC, termed the signal fraction (fsig), the fraction of tagged coun-

ters with charge less than 0 pC, termed the zero fraction (fzero), and the efficiency (ǫ) which

is the number of tagged counters with charge greater than 0.15 pC divided by the total num-

ber of tagged counters less twice fzero. The variable fzero is the fraction of counters which

record negative noise. Because the noise is symmetric about 0 pC, twice fzero is the frac-

tion counters recording noise hits. By subtracting twice fzero from the denominator of ǫ,
the contribution to the “inefficiency” from cases of extrapolation error is removed.

fsig =
NQ>0.15

Ntot

(8.1)

fzero =
NQ<0.0

Ntot
(8.2)

ǫ =
NQ>0.15

Ntot − 2.0 ·NQ<0.0
(8.3)

(8.4)

Figure 8.5 shows these quantities for each counter on the A and C side of the detector.

The PYTHIA MCs all have an fsig of approximately 98%, while PHOJET is roughly 0.5%

lower. This can be understood in the context of multiplicity. PHOJET has lower multiplicity,

therefore in the case of extrapolation error, it is less likely that another charged particle

traverses the counter in the region that the tracking does not cover (2.5< |η| <2.8) and

gives an appreciable signal. The data are 1 to 2% lower than the PYTHIA-based Monte

Carlo simulation on average.

fzero is consistent between the data and MC. There are differences of at most 0.4%, but

the overall value agrees well, indicating that the extrapolation error is well modeled in the

MC, as expected. The good agreement suggests that differences in fsig between the data

and the MC are due to inefficiencies in the counters. The plots of the efficiency support

this claim. The PYTHIA-based MC have an average value of 99.4% whereas the data are

closer to 98.5%. Table 8.1 shows fsig, fzero and ǫ averaged over all counters. The C-side

has a slightly higher average efficiency than the A-side in the data.

The excellent angular resolution of the tracks can be used to map the MBTS response

as a function of position in the counter. Figure 8.6 shows fsig, as well as ǫ as a function of φ
and η. The ǫ versus φ plots varies significantly from counter to counter and also within the

counters. In several instances the efficiency of one half of a counter is substantially different

than the other half. The discrepancy is likely due to differences in the light collection

efficiency of the two pieces of scintillator which comprise each counter. In the fsig plots

both the data and MC exhibit distinct drops in between counters. These drops, which are
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fsig fzero ǫ
Data Side A 96.99 ± 0.05 1.32 ± 0.03 98.29 ± 0.04

Data Side C 97.37 ± 0.05 1.41 ± 0.04 98.76 ± 0.04

PYTHIA 6 98.07 ± 0.04 1.38 ± 0.04 99.44 ± 0.02

PYTHIA 8 98.15 ± 0.04 1.30 ± 0.03 99.45 ± 0.02

PHOJET 97.60 ± 0.08 1.71 ± 0.07 99.30 ± 0.04

Extra Material 98.12 ± 0.04 1.35 ± 0.04 99.46 ± 0.02

Table 8.1. Comparison of fsig, fzero, ǫ for data and Monte Carlo simulation for the outer counters as deter-

mined using track tagging.

largely due to extrapolation error, are more pronounced in the data. In the ǫ plots the

MC no longer shows dips between counters, but the effect partially remains in the data.

Near the counter edges the counter light collection efficiency decreases but the losses are

not modeled in the MC, therefore the decrease in efficiency for the data but not the MC

is expected. Additionally there are slight drops in the center of the counters which are

present in the signal fraction in both the data and the MC which are largely absent in the

efficiencies. This effect is not yet understood. There is little dependence of the efficiency

versus η. The data fall off more rapidly at low η than in the MC which is likely due to light

loss at the counter boundaries.

In order to achieve the same efficiencies in the MC as in the data, the MC threshold was

raised until it achieved the data value, separately for each side. The results were consistent

whether fsig or ǫ was used. It was found that the A-side outer counter threshold needed

to be increased to 0.28 pC and the C-side outer counter threshold needed to be raised to

0.26pC.

8.3.2 Efficiency Measurement with the Calorimeters

The calorimeters can be used in the same spirit as the track to probe the counter effi-

ciency. The forward calorimeter (FCAL) spans 3.1 < |η| < 3.8 while the electromagnetic

end-cap (EMEC) covers 2.5 < |η| < 3.2, allowing for studies of the inner counters and

for consistency checks between the outer and inner counters. In this case, exactly one

calorimeter cell above 1 GeV is required to tag a counter. This threshold was chosen to be

above the noise of both the data and the MC.

Examples of counter charge distributions for counters tagged by FCAL and EMEC

cells are shown in figure 8.7. Notably, the distributions from the FCAL tagged counters

shows a significantly lower average charge than those tagged by the EMEC, indicating that

the EMEC selects counters with higher multiplicity than the FCAL because its cell size is

larger.

In both cases the peak at zero charge takes on greater importance than in the track

tagged distributions due to the fact that the calorimeters detects neutral particles while the

MBTS does not. The rate of neutrals, or equivalently, the size of the peak at 0 pC, is
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fsig fzero ǫ
Data side A 90.84 ± 0.07 7.02 ± 0.06 97.69 ± 0.04

Data side C 89.97 ± 0.07 7.38 ± 0.06 97.14 ± 0.04

PYTHIA6 90.05 ± 0.07 8.73 ± 0.06 98.66 ± 0.03

PYTHIA8 91.14 ± 0.06 7.69 ± 0.06 98.73 ± 0.03

PHOJET 88.88 ± 0.13 9.74 ± 0.13 98.48 ± 0.05

Extra Material 90.91 ± 0.07 7.96 ± 0.06 98.78 ± 0.03

Table 8.2. Comparison of fsig, fzero, and ǫ for data and Monte Carlo simulation as determined by FCAL-

tagging.

determined by both the particle multiplicity and the material between the interaction point

and the MBTS detector. fzero is examined in detail in Section 8.4.

Efficiencies determined with the FCAL

Figures 8.8 shows fsig, fzero, and ǫ for the FCAL tagged counters. The fsig plots show

variations of 3% among the Monte Carlo simulations and the data appear to agree with

the PYTHIA 8 and the extra material PYTHIA 6 sample. fsig increases with increasing

multiplicity for the Monte Carlo simulations. Also, the extra material sample has a higher

fsig than the nominal PYTHIA 6 sample, indicating that the agreement of the data with the

MCs does not lead to a trivial interpretation.

Figures 8.8(c) and 8.8(d) show the data to have a lower fzero than any of the Monte

Carlo simulations. The interpretation of these results are discussed in the context of the

material description in Section 8.4.

Figures 8.8(e) and 8.8(f) show that the gross dependencies on multiplicity and material

are removed in the ǫ plots. All of the PYTHIA based MCs have the same efficiency, approx-

imately 98.7%, and PHOJET has a slightly lower efficiency, at most 0.5% below PYTHIA.

The data are 1 to 3% less efficient on average. One problematic counter is 4% lower than

the Monte Carlo simulation.

Table 8.2 compares the average fsig, fzero, and ǫ of the Monte Carlo simulation and

of the data on the A-side and C-side separately. There is no difference in the simulation

averages between the A- and C-sides. In order to obtain the same average efficiencies in

the MC as in data the A-side inner counter threshold must be increased to 0.32 pC and the

C-side inner counter threshold must be increased to 0.38 pC.

Efficiencies determined with the EMEC

The EMEC is used as a cross check for both the track and FCAL based methods because

it spans both the inner and outer counters. Its bias towards higher multiplicity makes it less

sensitive to the efficiency of the counters, however it is still useful to confirm the general

trends seen using the other detectors.
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Figure 8.9 shows fsig, fzero, and ǫ for EMEC tagged counters. The counter by counter

variations are the same as found with the track and FCAL analyses. In general these distri-

butions show slightly better agreement of the data with the PYTHIA based simulation, but

this can be attributed to the overall higher multiplicity of the sample.

8.4 Material

The amount of material between the interaction point and the MBTS detector plays

a significant role in this analysis, primarily due to its effect on photon conversions. As

explained in Section 8.3, greater amounts of material lead to higher rates of conversions,

which in turn produces a higher charged particle multiplicity in the MBTS acceptance. The

nominal simulation for the MC samples used in this analysis is known to have too little

material in the Pixel services region as well as in other Inner Detector services. The extra

material sample described in Chapter 7 is used for estimation of the material effects. It has a

20% increase in the pixel services radiation length. This is believed to be an underestimate

for 2.2 < |η| < 2.8, an overestimate for 2.8 < |η| < 3.3 and is close to the experiment’s

best guess at the material budget for |η| > 3.3. In the region |η| > 3.3, where material

effects are the most important for the acceptance, the extra material sample has a 15%

increase in total radiation length over the nominal geometry.

In the central region of the detector, |η| < 2.5, the material distribution has been studied

using conversion electrons andK0
s → π+π− decays, and is known to better than ±5% up to

|η| < 2.2 and to ±30% for 2.2 < |η| < 2.5 [70]. The large uncertainty in the forward region

is due to lack of statistics as well as known mis-modeling in the geometry description in

that region.

In the forward region of the detector, the material description is assessed using fzero,

which is sensitive to the fraction of converted photons. For two different descriptions of

the material between the interaction point and MBTS detector, the description with more

material will have less events with 0 pC, and consequently a lower fzero, because photons,

primarily from neutral pion decays, are more likely to undergo electron conversion. It

is important to note that fzero is also sensitive to the particle multiplicity. For a given

detector description and two Monte Carlo simulations with different particle multiplicity,

the simulation with higher multiplicity will see less events at 0 pC because it is more likely

that a charged and neutral particle hit the detector at the same time, rather than just a neutral

particle. Both of these effects (higher multiplicity, higher material) lower fzero.

Figures 8.8(c) and 8.8(d) show fzero as measured with the FCAL. PHOJET has the high-

est fzero at nearly 0.1, followed by PYTHIA 6 at 0.09. The PYTHIA 6 extra material sample

has an fzero of roughly 10% less than that of the nominal sample. PYTHIA 8 samples has

an fzero of roughly 0.08. The data value is 0.07 which can be understood in the context of

both the material and multiplicity. The minimum bias measurements [109, 70] indicate that

PYTHIA 8 best reproduces the per-event normalization of the charged particle multiplicity

distribution. Studies for those publications also suggest that the extra material sample is a
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better description of the real material budget than the nominal sample in the forward region

of the detector. Therefore it is expected that the data be approximately 0.01 lower than the

PYTHIA 8 fzero value, which is approximately observed. However, if a lower multiplicity,

as predicted by PYTHIA 6, is assumed then 40% more material is needed in the forward

region. The PHOJET Monte Carlo badly under-predicts the average charged particle mul-

tiplicity in inclusive events, therefore it is not used as a baseline from which to assess the

material.
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Figure 8.5. fsig (a,b), fzero (c,d), and ǫ (e,f) for the inner counters tagged by tracks. In all cases A side is on

the left and the C side is on the right.



8.4 Material 85

 [rad]φ

­3 ­2 ­1 0 1 2 3

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(a)

 [rad]φ

­3 ­2 ­1 0 1 2 3

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(b)

 [rad]φ

­3 ­2 ­1 0 1 2 3

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(c)

 [rad]φ

­3 ­2 ­1 0 1 2 3

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(d)

η

2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(e)

η

2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

∈
M

B
T

S
 c

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

Data 2010

Pythia 6
Track Tagged Counters

 = 7TeVs

PreliminaryATLAS 

(f)

Figure 8.6. fsig (a,b), ǫ versus φ (c,d) and ǫ versus η (e,f) determined with tracks of data compared with

PYTHIA 6 Monte Carlo simulation. In all cases A side is on the left, C side is on the right.
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Figure 8.7. Typical counter charge distributions for MBTS counters tagged by calorimeter cells. FCAL

tagged charged distributions for counter 7 on the A (left) and C (right) sides are on top, EMEC for the same

counters are on bottom.
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Figure 8.8. Top: fsig, Middle: fzero, Bottom: ǫ for the inner counters tagged by FCAL cells. In all cases A

side is on the left, C side is on the right.



8.4 Material 88

MBTS Counter Number

0 2 4 6 8 10 12 14

s
ig

f

0.9

0.92

0.94

0.96

0.98

1

EMEC tagged counters

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material

(a)

MBTS Counter Number

2 4 6 8 10 12 14

s
ig

f

0.9

0.92

0.94

0.96

0.98

1

EMEC tagged counters

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material

(b)

MBTS Counter Number

0 2 4 6 8 10 12 14

z
e
ro

f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

EMEC tagged counters

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material

(c)

MBTS Counter Number

2 4 6 8 10 12 14

z
e
ro

f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

EMEC tagged counters

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material

(d)

MBTS Counter Number

0 2 4 6 8 10 12 14

∈
M

B
T

S
 C

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material EMEC tagged counters

(e)

MBTS Counter Number

2 4 6 8 10 12 14

∈
M

B
T

S
 C

o
u
n
te

r 

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Data 2010

Pythia 6

Pythia 8

Phojet

Pythia 6 + Ad. Material EMEC tagged counters

(f)

Figure 8.9. (a),(b): fsig, (c),(d): fzero, (e),(f): ǫ for the inner counters tagged by EMEC cells. In all cases A

side is on the left, C side is on the right.
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CHAPTER 9

Backgrounds

The measurements in this thesis aim to be as inclusive as possible, therefore there are

no collision backgrounds that need to be modeled as would be the case in an exclusive

measurement, e.g. jets faking electrons in a Z → e+e− measurement. All of the back-

grounds considered here are considered “non-collision” backgrounds and are determined

directly from the data. They fall into two categories: beam-related backgrounds and non

beam-related backgrounds. The beam-related backgrounds include collisions of the beam

with material upstream from the detector or gas in the beam-pipe, as well as the diffuse

radiative background from the interactions of collision remnants with material in the de-

tector called afterglow. Afterglow has two sources, in-time which affects the same bunch-

crossing as when the collision occurred, and out-of-time where the afterglow was produced

by a collision in a different bunch-crossing. Non beam-related backgrounds include noise

and cosmic-rays. Each of these background sources is described in detail in this chapter.

9.1 Beam-Related Backgrounds

Beam-related backgrounds are generally determined from events recorded when only

one beam was passing through ATLAS, termed unpaired bunches. This method is sufficient

for determining the contributions beam-gas, beam-halo and out-of-time afterglow, but is

inadequate for in-time afterglow. Therefore these two categories are treated separately

below.

9.1.1 Beam-Gas, Beam-Halo, Out-of-time Afterglow

Beam-gas, beam-halo, and out-of-time afterglow make up the tradition beam-related

backgrounds. Beam-gas refers to interactions of the beams with gas particles in the beam-

pipe in the interaction region. The ATLAS vacuum is very clean and is able to be evacuated

pressures of 10−11 mbar [110], therefore there are few beam-gas events. However, these

events look very similar to diffractive collision events. Figure 9.1 shows the reconstructed
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vertex position for a run prior to the first 7 TeV collisions when there was a single beam

in the LHC. As it can be seen in the figure, the beam-gas vertex distribution is Gaussian in

the x- and y-coordinates but is flat in the z-distribution. The statistics are poor because the

quality of the ATLAS vacuum leads to few beam-gas events.

(a) (b)

(c) (d)

(e) (f)

Figure 9.1. 1-D and 2-D vertex position distributions from beam-gas events in run 152164.

Beam-halo occurs when particles from the beam interact with material upstream from

the detector, causing a “halo” of particles traversing with the beam, but at large enough

radii to beam-line that they leave hits in the detector. They can be identified by looking

at the difference in the time of hits between the A- and C-sides of the detector. Collision

events have an average time difference of 0 ns while beam-halo events peak around ±25 ns,
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as was shown Figure 6.11.

Both beam-halo and beam-gas events produce hits in the MBTS detectors as well as

tracks in the Inner Detector. As will be shown in Section 11.1.5, the track-based back-

grounds are small and are significantly reduced once a track with pT of 500 MeV is re-

quired.

Afterglow is a poorly understood background which is believed to be due to photons

released by slow neutron capture. The neutrons are produced when collision products

interact with the material in the detector. There is a time-constant associated with the

background of 100s of µs [111], but in high luminosity fills it is still seen hours after the

fill has ended. Figure 9.2(a) the rate of L1 MBTS C triggers are plotted as a function of

the bunch-crossing identifier (BCID) in run 152221. L1 MBTS C consists of the OR of

all individual MBTS counter triggers on the C-side of the detector. There was only one

colliding bunch in ATLAS at BCID 1, which is seen as the large peak in the plot. However,

an exponentially decaying trigger rate is seen for many BCIDs later which is due to the

afterglow. The rate reaches a plateau value of approximately 0.5 Hz. This plateau is due to

noise in the MBTS trigger system as well as long timescale afterglow.
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Figure 9.2. Rate of MBTS triggers on the C side of the detector as a function of BCID for run 152221. In

this run the colliding bunch was at BCID=1, and unpaired bunches were present at BCID=892 (from beam

2) and BCID=1786 (from beam 1). The left plots shows all BCID on a log scale, the right zooms in on the

unpaired bunches on a linear scale.

8

Run 152221 had two unpaired bunches traversing ATLAS at BCIDs 1786 (beam 1)

and BCID 892 (beam 2). Figure 9.2(b) is a zoom of the BCID axis in this range. There

are clear peaks of the unpaired bunches over the afterglow background. Therefore the

unpaired bunches are used to estimate the background due to the beam-gas and beam-halo.

Only beam 1 is used because it is less contaminated by afterglow than beam 2. The exact

procedure used for the cross-section analysis is described in detail in Chapter 12.1. For this

thesis, afterglow is a concern only for the MBTS detector.
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9.1.2 In-time Afterglow

Figure 9.2(a) suggests that if there is no turn-on behavior, afterglow affects the bunch

in which the collision occurs. This is termed in-time afterglow. The Geant4 simulation

does not model this effect, therefore the data events could have additional MBTS hits not

present in the simulated Monte Carlo events. In-time afterglow is hard to quantify, therefore

a conservative approach is taken. The MBTS has fairly good individual hit time-resolution,

therefore the fraction of late hits, e.g. hits inconsistent with the interaction time, can be

estimated as the afterglow contribution.

Figure 9.3 shows the counter time distribution for events with exactly 1, 2 and 3 coun-

ters above threshold as well as with at least 20 counters above threshold. The Ncounters = 1
plots clearly shows the out-of-time afterglow as the component which is flat in time. In the

other plots the unpaired bunches show the beam halo and beam gas events which match

well with features seen in the paired bunches. In the paired bunches the time distribution is

asymmetric, showing a tail at positive times. It is assumed that this tail is attributed solely

to afterglow and, after subtracting off the beam background contribution using the unpaired

bunches, the fraction of hits in the high tail is calculated. The resulting fraction is termed

the ‘hit purity’ and is calculated as

h.p.(Ncounters) = 1 − Ncounters(T > 0) −Ncounters(T < 0)

Ncounters(all T )
.

For run 15221 a hit purity of 0.83 is measured for the Ncounters = 2 and Ncounters = 3
events. The Ncounters ≥ 20 events have a hit purity of 0.72, most likely due to the fact that

higher multiplicity events will have higher rates of afterglow. The hit purity is a luminosity-

dependent quantity and needs to be determined separately for each run.

9.2 Other Backgrounds

Other backgrounds include spurious hits due to noise as well as cosmic rays. The noise

background can be measured using the BCIDs when there is no beam passing through

ATLAS. As shown in Chapter 8.1, the noise is symmetric about 0 pC, therefore the noise

can also be measured in the paired bunches by looking at the number of counters which

have a charge less than -0.15 pC. Because the threshold is 7σ above the noise, there are no

events recorded.

ATLAS sits 100 m under the earth’s surface, therefore the low energy cosmic ray flux is

significantly attenuated. During cosmic ray data taking the flux through the pixel detector

was measured to be approximately 0.5 Hz. The MBTS horizontal cross-section is consid-

erably smaller, therefore the flux is roughly two orders of magnitude smaller. In the runs

considered there was only one colliding bunch, therefore only one 25ns window every 9 µs

in which a trigger can be recorded. Therefore the cosmic-ray flux is negligible.

In any case, measuring the number of event passing in the unpaired bunches would also

account for the noise and cosmic ray backgrounds, were they significant.
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Figure 9.3. MBTS counter time distributions for events with 1,2,3 and ≥20 counters over threshold in run

15221. The colliding bunches are shown by the black histogram and the unpaired bunches in the blue and red

histograms. In all histograms there is one entry per counter above threshold in the event.
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CHAPTER 10

Luminosity Determination

The determination of the delivered luminosity during the data-taking period used in this

analysis provides the dominant experimental uncertainty. This chapter describes how the

luminosity is measured and how its uncertainties are determined.

10.1 Introduction to Luminosity and Beam Separation Scans

Luminosity is a measure of the total possible interactions per unit area per unit of time

produced by an accelerator [112]. It is the process-independent coefficient relating the

cross-section to observed rate of events

dN

dt
= L · σ. (10.1)

Luminosity can be measured in several ways. If σ is well-known, either by previous mea-

surements or by theoretical calculation, and if N can be determined to high accuracy, then

L can be deduced by event-counting. However, the unruly nature of hadron collisions leads

to large uncertainties on σ for all but relatively rare electro-weak processes such as W and

Z production.

Luminosity can also be determined directly from beam parameters through the relation-

ship

L =
N1N2fr

Aeff
(10.2)

whereN1 andN2 are the number of protons in beam 1 and beam 2, fr is the beam revolution

frequency and Aeff is the effective transverse area in which the two beams overlap [113].

The challenge in this method is to know accurately the number of protons per beam and

the beam sizes, which determines Aeff . For a collider with nb colliding bunches in the ring,

Eqn. 10.2 becomes

L = nbfrn1n2

∫

ρ1(x, y)ρ2(x, y)dxdy (10.3)
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where n1,2 are the number of particles per bunch for beam 1 and 2, respectively and

ρ1,2(x, y) is the particle density for each beam in the transverse plane [114]. When the

beam densities are uncorrelated in x and y then Equation 10.3 becomes

L = nbfrn1n2

∫

ρ1(x)ρ2(x)dx

∫

ρ1(y)ρ2(y)dy. (10.4)

∫

ρ1(x)ρ2(x)dx
∫

ρ1(y)ρ2(y)dy describes the beam-overlap or luminous region and is equiv-

alent to 1
Aeff

in Equation 10.3.

In 1968 Simon van der Meer introduced the concept of beam separation scans, now

called van der Meer (vdM) scans, as a means of measuring the size of the luminous region,

and consequently the luminosity, at CERN’s Intersecting Storage Ring (ISR) [74].

He began with a variable defined by Darriulat and Rubbia [115], the effective beam

height, which is sensitive to the overlap of the beams. It is defined as

beff =

∫

ρ1(x)dx
∫

ρ2(x)dx
∫

ρ1(x)ρ2(x)dx
. (10.5)

which is the charge of the two beams divided by the charge overlap integral. Because the

density profiles can be expressed as a function of unit area times a constant normalization

factor, this is equivalent to the inverse of the overlap fraction of the two beams.

Van der Meer proposed displacing the two beams in x (or y) and measuring the counting

rate as a function of the displacement in order to measure beff . The counting rate, R,

must be proportional to the overlap of the beams and the constant of proportionality, A,

should be independent of the relative beam displacement. Therefore, the counting rate at

displacement h in the x direction is given by

Rx(h) = A

∫

ρ1(x)ρ2(x− h)dx. (10.6)

Van der Meer defined a new variable bnew which is the area under the counting rate integral,

divided by the counting rate at zero displacement. He showed that independently of the

beam shape, this variable is equal to the effective beam height:

bnew =

∫

Rx(h)dh

Rx(0)
(10.7)

=

∫ (∫

A · ρ1(x)ρ2(x− h)dx
)

dh

A ·
∫

ρ1(x)ρ2(x)dx
(10.8)

=

∫

(
∫

ρ1(x)ρ2(x− h)dh)dx
∫

ρ1(x)ρ2(x)dx
(10.9)

=

∫

ρ1(x)dx
∫

ρ2(x)dx
∫

ρ1(x)ρ2(x)dx
(10.10)

= beff . (10.11)

(10.12)
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Once the beff is known,
∫

ρ1(x)ρ2(x)dx is easily determined:

∫

ρ1(x)ρ2(x)dx =

∫

ρ1(x)dx
∫

ρ2(x)dx

beff
(10.13)

=
n1n2

beff
(10.14)

=
n1n2Rx(0)
∫

Rx(h)dh
. (10.15)

Before substituting for
∫

ρ1(x)ρ2(x)dx in Equation 10.4 the variables Σx,y are defined such

that

Σx,y =
1√
2π

∫

Rx,y(h)dh

Rx,y(0)
. (10.16)

Then Equation 10.4 can rewritten as

L =
nbfrn1n2

2πΣxΣy

. (10.17)

L now corresponds to the peak instantaneous luminosity which was achieved at zero beam-

displacement.

Knowing L at zero beam-displacement allows for a determination of σ for any given

process:

σvis =
dNvis(h = 0)

dt

1

Lh=0
. (10.18)

where σvis indicates the visible (i.e. detectable) cross-section for the process of interest.

Therefore dedicated scans are performed to determine σvis for a variety of different pro-

cesses and the resulting cross-sections are used in all other runs to determine the run-by-run

luminosity. The run-by-run luminosity is measured in two-minute intervals, referred to as

’luminosity blocks’.

As will be discussed in Section 10.2, multiple interactions can occur in a single bunch-

crossing. An alternative way of defining the luminosity is

L =
µvisnbfr

σvis

. (10.19)

where µvis is the average number of visible interactions of the process of interest [111].

σvis and µvis are related to the total inelastic cross section by σvis = ǫσinel and µvis = ǫµinel

where ǫ is the efficiency to detect an inelastic interaction.

10.2 Charged Particle Event Counting and Other Meth-

ods

The ATLAS experiment uses a number of different detectors and algorithms to deter-

mine the luminosity.
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10.2.1 Luminosity Detectors

There is one dedicated luminosity detector, LUCID, which is described in detail in

Section 5.5.2. Other detectors used for online luminosity measurements include the Zero

Degree Calorimeter which sits at ±140m from the interaction point and is sensitive to

forward neutrons and photons, the MBTS, and diamond detectors close to the beam-pipe

at ± 184 cm from the interaction point called beam conditions monitors. There are also

several other detectors used in offline luminosity analyses, including timing information

from the MBTS, timing information for the liquid Argon calorimeters, and charged particle

tracks and primary vertices reconstructed in the Inner Detector. The charged particle track

method will be discussed in detail in Section 10.2.3.

10.2.2 Luminosity Algorithms

Luminosity is currently determined in ATLAS using event counting, although hit count-

ing in specific detectors is also possible. Most online luminosity detectors have two meth-

ods for counting events: OR and AND. OR event counting requires at least one hit in the

detector. AND event counting requires a coincidence of hits in the detector on both sides

of the interaction point. OR has a higher event rate but is more susceptible to backgrounds,

while AND has extremely low background rates. However, the AND algorithm has a

more complicated relationship between the number of observed events and µvis. Offline

methods generally only have one method.

In all cases the luminosity is determined using Equation 10.19. The event counting is

used to determine µvis and σvis is taken from the vdM calibration. Because there can be

more than one interaction per bunch-crossing, a relationship is needed between the number

of observed events and µvis. There are two assumptions made to determine the relation-

ship. First, it is assumed that the average number of interactions per crossing is Poisson

distributed. Second, we assume that the probability for an interaction to be detected is in-

dependent of the presence of a second interaction in the event. This latter assumption is not

strictly true for all of the methods, however it holds for our purposes.

With these two assumptions in hand, the Poisson probability for observing no event

in a given bunch crossing for the OR algorithms is P0(µvis) = e−µvis . It follows that the

probability of observing at least one event is

POR(µvis) =
NOR

NBC
(10.20)

= 1 − P0(µvis) (10.21)

= 1 − e−µvis . (10.22)

It follows that

µvis = − ln (1 − NOR

NBC
). (10.23)
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where NOR is the number of events and NBC is the number of bunch-crossings. For an

accelerator with nb number of bunches and a revolution frequency of fr, the number of

events per second, ncorr
ev , is given by

ncorr
ev = −nbfr · ln (1 − nev

nbfr

). (10.24)

where nev is the number of observed events per second.

The case of AND algorithms is more complicated. The relationship between the num-

ber of events observed and µvis is not analytically invertible. Therefore, look-up tables are

used to translate from observed events to µvis. The offline algorithms are all treated as OR
algorithms. The ATLAS preferred method is the LUCID OR algorithm.

10.2.3 Charged Particle Event Counting

One of the offline methods used by ATLAS is charged particle event counting. It uses

the number of events with at least one charged particle with pT > 500 MeV and |η| <
0.8 to determine the luminosity. This phase space was chosen by the Rate Normalization

Working Group 1 as a phase space accessible to the ALICE, ATLAS and CMS experiments

to facilitate inter-experiment luminosity comparisons.

Practically, the charged particle event rate is determined by counting the number of

events with at least one track in the designated phase space. The track is required to satisfy

the following:

• be associated with a beam-constrained primary vertex with at least two tracks of

pT > 150 MeV.

• |dPV| < 1.5 mm

• |zPV sin θ| < 1.5 mm

• NPix ≤ 0

• NSCT ≥ 5

where dPV and zPV are the transverse and longitudinal distances of closest approach to the

primary vertex, respectively, and NPix(SCT) are the number of Pixel(SCT) hits associated

with the track. Additionally the event must have passed the L1 MBTS 1 trigger.

In order to obtain the number of events with at least one charged particle in the phase

space from the number of events with at least one selected track, event loss due to trigger,

vertex and tracking inefficiency must be corrected for. The corrections are done following

1A working group formed by the LHC Physics Center consisting of members of all four major LHC

experiments and theorists.
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the procedure outlined in [116]. Each event is given a weight, wev, to correct for the trigger

and vertex inefficiencies:

wev(n
BS
sel ) =

1

ǫtrig(nBS
sel )

· 1

ǫvtx(nBS
sel )

(10.25)

where nBS
sel is the number of tracks passing selection requirements when the impact param-

eter cuts are with respect to the beam-spot rather than the primary vertex. ǫtrig(n
BS
sel ) and

ǫvtx(n
BS
sel ) are measured in data and found to be high. ǫtrig is nearly 100% for all multiplic-

ities and ǫvtx is 95% for events with nBS
sel = 1 and nearly 100% for all others. Both the

trigger and vertex efficiency are 100% for nBS
sel ≥ 4.

To correct for loses due to tracking inefficiency, a Monte Carlo simulation-based Bay-

seian unfolding [117] is necessary. First, the ability of the simulation to reproduce the the

tracking efficiency and the fraction of secondary particles passing the track selection is val-

idated extensively as described in [118, 116] and in Section 6.1.2 of this thesis. Then, fully

simulated minimum bias Monte Carlo events2, including mixed ND, SD and DD compo-

nents, are used determine the number of produced primary charged particles, nch, from the

number of selected tracks, nsel. The Monte Carlo events are used to populate a matrix,

Mch,sel with nch as the row position and nsel as the column position. Mch,sel is normalized

such that the total event number does not change, except when nsel > nch which is rare.

The matrix is applied to the nsel distribution in data. The resulting nch distribution is used

to reweight the Mch,sel and this procedure is repeated iteratively until the change between

iterations was less than 1%. Once the nch distribution is obtained, each bin is corrected for

event loss due to tracking inefficiency using the following factor

C(nch) =
1

1 − (1 − 〈ǫ(nch)〉)nch
(10.26)

where < ǫ(nch) > is the average tracking efficiency in the nch bin. In practice, this correc-

tion is only applied to the first six bins, after which it becomes negligibly small. To obtain

the total number of events with at least one charged particle in the desired phase space,

the corrected nch is integrated. The correction factor from the Ntrk to Nch, where N is the

number of events, is found to be 1.039±0.017. The error includes systematic error on the

tracking efficiency, vertex and trigger efficiencies and on the Monte Carlo-based correction

procedure. The dominant uncertainty is due to the material knowledge uncertainty for the

tracking efficiency. Figure 10.1 shows the nch distribution in a MC closure test.

When determining the charged particle event rate for a particular run, Equation 10.2.2

is used to determine the number of events per second on a lumiblock-by-lumiblock basis.

The charged particle analysis uses the L1 MBTS 1 trigger which, when prescaled, accepts

every s event, where s is the prescale. The error on the number of events passing the

MBTS 1 trigger, s · nMBTS 1, is the Poisson error on s · nMBTS 1 modulo the rounding

error on s. The rounding error is taken into account by adding s/2 to the event count and

2Pythia 6.421 with the ATLAS MC09 Monte Carlo tune was used.
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Figure 10.1. MC closure test of the cor-

rection procedure. The green band indi-

cates the total systematic uncertainties on

the measurement.

s/
√

12 to the statistical error. The number of selected events has the additional binomial

uncertainty on the efficiency to select an event given the event passed the trigger. Therefore

the total error on the number of recorded events is given by

σ(nobs) =

√

ǫ · nMBTS 1 · (1 − (1 − 1

s
)ǫ) ⊕ ǫ · s√

12
(10.27)

Once the µ-correction is applied the error on the corrected number of events is given by

σ(ncorr
ev ) = s · σ(nobs) ·

nbfr

nbfr − nev
(10.28)

Fig. 10.2 shows the resulting raw and corrected rates of events as a function of UTC

time for LHC Fill 1089. The gaps in the run correspond to the second and third van der

Meer scans and times when the ATLAS detector was not taking data.
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|η| < 0.8) versus UTC time corrected

(red circles) and uncorrected (black

circles) for multiple interactions.

10.3 Beam Separation Scan Analysis

10.3.1 Scan Descriptions

In 2010 there were five van der Meer scans performed for ATLAS. The first occurred

on April 26th, the second and third on May 9th, and the fourth and fifth on October

1st. Table 10.1 gives parameters of each scan. [111] provides the full details of scans

I through III, [75] details scans IV and V.

In scans I-III there was only one colliding bunch in ATLAS and the beam currents were

relatively low. In scans IV and V there were 6 colliding bunches in ATLAS, which allowed

for a bunch-by-bunch luminosity determination. Additionally, scans IV and V are the only

scans with a crossing angle (200 µrad) and had a significantly higher average number of

interactions per crossing than the previous scans.

For each scan the beams were centered at the nominal interaction point with a three

point mini-scan in both the horizontal (x) and vertical (y) planes. The mini-scans were

performed by using a closed orbit bump, in which the beams are displaced ±1σb by dis-

turbing the beam orbit using pairs of steering dipoles located on either size of the IP. σb

is the nominal transverse beam size. Then the beams were displaced by 3σb in opposite

directions and scanned through ±3σb, leading to a relative displacement of ±6σb. For scan

I this was done first in x and then in y. For scans II and III the beams were taken from

positive to negative nominal separation, followed by a hysteresis cycle where the full ±6σb

separation was run, followed by a scan from negative to positive nominal separation. This

was done first in the x and then in the y direction. In all three of these scans, 27 steps

were taken for scan direction. In IV and V x and y scans were performed sequentially as

in Scan 1, and then repeated to test the reproducibility of the results. In this case, 25 steps

were used. After each scan a re-centering of the beams was performed if necessary. After

the last scan was performed, an x and y scan was performed with the beam offset by 1σ in

the non-scanning direction to test coupling of the beams in x and y.

Figure 10.3 shows the scanning sequence for scans I, II, and III in the horizontal plane.

Figure 10.4 shows the raw and µ-corrected track rates for the same scans. Only data taken
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during specific intervals-of-validity (IOV) were used in the scan analysis. The IOV corre-

spond to the 30 s (scans I-III) or 20 s (scans IV and V) where the beams were not moving

and considered stable.
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Figure 10.3. Horizontal beam displacement versus local Geneva time for scan I (a) and scans II

and III (b) [114].
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Figure 10.4. Rate of events with at least one track for vdM scan I (a) and Scans II and III (b) as a function

of the scan point. The uncorrected data are in the red open circles, the µ-corrected data are the black points.

10.3.2 Fits for Beam Parameters

For each scan, the event rate was plotted as a function of the beam separation, and

normalized to eliminate beam lifetime effects. The normalization at scan point p is given

by

R(p) =
(I1I2)MAX

(I1I2)(p)
Rcorr

meas(p) (10.29)
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where (I1I2)MAX is the maximum product of the beam currents measured during the scan,

(I1I2)(p) is the measured product of the beam currents at scan point p and Rcorr
meas(p) is the

µ-corrected measured event rate at p. R is called the specific rate.

For all algorithms and all scans, the data were fit well by a double Gaussian distribution.

The specific rate as a function of the beam separation was fit to

Rx(x) =
Rx(0)√

2π

[

fae
−(x−x0)2/2σ2

a

σa
+

(1 − fa)e
−(x−x0)2/2σ2

b

σb

]

(10.30)

and similarly for the y direction. Substituting this Rx(x) into Equation ?? yields the fol-

lowing expression for Σx

1

Σx
=

[

fa

σa
+

1 − fa

σb

]

. (10.31)

Figure 10.5 shows the x and y fits for scans I, II, and II for the charged particle event

counting method. Table 10.2 shows the fit results for the same method.

The charged particle method was not used for scans IV and V. Figure 10.6 shows fits

by bunch group for the x scan in scan IV. The details of Scans IV and V fits are found

in [75], what is presented here for the LUCID OR algorithms summarizes the work con-

tained therein.

For each scan the visible cross-section was computed by taking the average of the max-

imum specific rates in x and y and using the following formula

σvis = RMAX 2πΣxΣy

nbfr(n1n2)MAX

(10.32)

where (n1n2)MAX is the maximum product of the number or proton per bunch during the

scan. Table 10.3 has the measured σvis and Lspec for the charged particle method. Averaging

the scans yields a visible cross-section of

σch part
vis = 42.7 ± 0.2 mb. (10.33)

The error is purely statistical.

For scans IV and V σvis was determined separately for each BCID and then averaged.

Table 10.4 shows the measured σvis values for those scans with the LUCID OR algorithm.

10.3.3 Uncertainties

Many sources of systematic uncertainty were considered in the vdM scan analysis. This

section summarizes the uncertainty determination detailed in [75].

• Beam Currents The dominant uncertainty is the LHC beam current determination

which is described in detail in [119, 120]. The integrated beam currents are measured
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Scan Number σvis Lspec

mb (1029 cm−2s−1)

1 42.61 ± 0.26 6.74 ± 0.05
2 42.84 ± 0.21 4.91 ± 0.02
3 42.93 ± 0.21 4.91 ± 0.03

Table 10.3. Measurement of the

visible cross section and peak spe-

cific luminosity for each scan for

the charged particle event counting

method.

LUCID EventOR σvis (mb)

BCID Scan IV Scan V

1 41.76± 0.07 41.68± 0.06
501 41.89± 0.07 41.63± 0.06
862 41.86± 0.06 41.76± 0.05
1451 41.78± 0.07 41.74± 0.06
1651 41.85± 0.07 41.71± 0.07
2301 41.87± 0.07 41.74± 0.06
Average 41.84± 0.03 41.71± 0.02
χ2/DOF 0.61 0.66

Table 10.4. Measured σvis val-

ues for the LUCID OR algo-

rithm by BCID. Errors shown

are statistical only. The

χ2/DOF is shown for the 5 de-

grees of freedom in the average

value.

by DC current transformers (DCCT) and the bunch-by-bunch currents are determined

with a relative measurement by the fast beam current transformers(FBCT). The ab-

solute scale of the DCCT varies from fill to fill and has baseline drifts over the course

of a fill. This leads to a 2.7% uncertainty which is uncorrelated between fills. Ad-

ditional sources of current uncertainty arise from knowledge of the baseline offset

as well as the bunch-to-bunch fraction. The uncertainties in these factors decrease

with increasing bunch current, therefore the total beam current uncertainty is 5.6%

for scan I, 4.4% for scans II and III, and 3.1% for scans IV and V.

• Beam Centering In order to achieve the true peak luminosity, the beams must be

centered in the non-scanning plane. The uncertainty was determined by looking at

the difference in the peak position at the beginning and end of the scans. For scans I

through III this is a 2% uncertainty and for scans IV and V this is a 0.04% uncertainty.

• Emittance Growth The beam emittance grows over the course of the fill, changing

the values of Σx and Σy. This should cancel with the corresponding decrease in R
and therefore σvis should be unaffected. This is true for scans IV and V. For scans

I through III, this effect is included in the 3% uncertainty due to non-reproducible

effects.

• Beam-position jitter Jitter in the beam position within a given scan point was de-

termined from the RMS of the beam position distribution within a scan point. This

results in a 0.3% uncertainty for scans IV and V and the 2.7% uncertainty for non-

reproducibility for scans I through III covers this effect.

• Length Scale Calibration The length scale calibration refers to the determination of

the true beam separation at each point in the scan. Dedicated scans were run where

the beams were displaced in the same direction and the beam-spot was determined at
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each step. The uncertainty on scans I through III is 2% and is largely statistical. The

0.3% uncertainty found for scans IV and V is assumed to be uncorrelated between

the scans.

• Absolute Length Scale of ATLAS detector Because the length scale is determined

using the ATLAS detector, any systematic mismeasurements could lead to a bias in

the length scale. This effect was studied using misaligned Monte Carlo simulation

and found to be at most 0.3%.

• Fit Model A cubic spline fit was used in place of a Gaussian to determine the un-

certainty due to the fit model. The difference in fit results was taken as a systematic

uncertainty. This leads to a 1% uncertainty for scans I through III and 0.2% for

scans IV and V.

• Transverse Correlations Correlations in the beam profiles between the x and y
planes will modify the measured specific luminosity because the density profiles will

no longer factorize. This leads to a 3% uncertainty on scan I, 2% on scans II and III,

and a 0.9% uncertainty on scans IV and V.

• µ-Dependence Scans I, II and III were taken at low µ values, therefore the correc-

tions were small, however a 2% uncertainty was applied based on the agreement

between different algorithms for the value of µ. Scans IV and V had µ values from 0

to 1.3, therefore the agreement between algorithms over that µ range was used to set

an uncertainty of 0.5%.

Table 12.8 summarizes the uncertainties and the level of correlation between scans of the

given error source.

Scan Number I II–III IV–V

Fill Number 1059 1089 1386

Bunch charge product 5.6% 4.4% 3.1% Partially correlated

Beam centering 2% 2% 0.04% Uncorrelated

Emittance growth and

other non-reproducibility 3% 3% 0.5% Uncorrelated

Beam-position jitter – – 0.3% Uncorrelated

Length scale calibration 2% 2% 0.3% Partially Correlated

Absolute ID length scale 0.3% 0.3% 0.3% Correlated

Fit model 1% 1% 0.2% Partially Correlated

Transverse correlations 3% 2% 0.9% Partially Correlated

µ dependence 2% 2% 0.5% Correlated

Total 7.8% 6.8% 3.4%

Table 10.5. Relative systematic uncertainties on the determination of the visible cross section σvis.
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10.3.4 Results

In order to combine the results from all five scans to determine the luminosity calibra-

tion the statistical and systematic uncertainties, as well as their correlations, were taken

into account. The average value of the LUCID OR σvis is 13.04 ± 0.01 ± 0.44 mb. The χ2

of the combination is 1.6. The combination is dominated by scans IV and V, collectively

contributing 92% of the weight in the fit. The total fractional error is ±3.4%.
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Figure 10.5. Fit results for the 1st (top), 2nd (middle) and 3rd (bottom) VdM scan using the charged particle

event counting method.
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Figure 10.6. Fit results for the the LUCID OR algorithm for six different bunch groups for Scan IV [75].
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CHAPTER 11

Comparisons of Monte Carlo Modeling

of Diffractive Events

Before Monte Carlo models are used to assess the acceptance of the cross-section mea-

surement, their ability to reproduce basic kinematic distributions of the data must be veri-

fied. Chapter 2 described the models Monte Carlo generators use to predict multiple parti-

cle production in non-diffractive and diffractive dissociation events. This chapter presents

studies of the agreement between data and the Monte Carlo models on exclusive quan-

tities in diffractive events. First, the ability of the Monte Carlo generators to reproduce

charged particle distributions in a diffraction-enhanced sample is examined. This section

largely summarizes work presented in [121]. Then, the data and Monte Carlo models are

compared in the MBTS acceptance.

11.1 Track-based Studies

Distributions of charged particles are powerful tools for assessing data and Monte Carlo

model agreement because they are sensitive to the properties of single particles. Refer-

ence [70] gives a comprehensive look at the properties of charged particles and events with

at least two charged particles with pT > 100 MeV and |η| < 2.5. This phase space is domi-

nated by non-diffractive events. In order to tune the Monte Carlo parameters related to low

momentum 2 → 2 scattering, charged particle multiplicity, pseudorapidity and momentum

distributions are used. To minimize the effects of the uncertainty in diffractive modeling,

diffractive-suppressed phase spaces are often used. Some experiments attempt to address

this by removing the single-diffractive events from their datasets [122, 123, 124] while AT-

LAS has published additional results in a high-multiplicity, high-momentum phase space

where diffractive events are greatly suppressed [70].

In order to understand how well the generators model exclusive quantities in diffrac-

tive events, this section presents charged particle multiplicity, pseudorapidity and momen-

tum distributions in a phase space which is dominated by diffractive dissocation events.
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The events are selected by requiring that there be hits on only one of the two sides of the

MBTS detector. As will be shown in Section 11.1.3, this selection results in a diffraction-

dominated sample. Section 11.1.1 outlines the study. The datasets and event and track

selection are described in Section 11.1.2. Section 11.1.4 discusses the agreement between

data and the detector simulation for the tracking and MBTS detectors. Section 11.1.5 re-

views the systematic uncertainties on the measurement, and Section 11.1.6 presents the

comparisons.

11.1.1 Overview of Studies

A sample enhanced in diffractive events is created by selecting events where there is

at least one MBTS hit on exactly one side of the detector (A- or C-side). Only one hit

is required because the additional requirement of a track, which is detailed below, signifi-

cantly reduces the backgrounds for events with just one hit over threshold. This selection

essentially requires the presence of a forward rapidity gap in the event and therefore pref-

erentially selects single-diffractive dissociation events and double-diffractive dissociation

events in which the diffractive mass of one of the proton remnants is too small to be seen

by the MBTS detectors1.

This analysis further requires a track with a transverse momentum of at least 500 MeV

and |η| < 2.5, similar to the selection in [109]. The details of the track selection are given

in Section 11.1.2.

To investigate the event kinematics, the following distributions are plotted:

1

Nev

dNtrk

dη
,

1

Nev

1

2πpT

d2Ntrk

dηdpT
,

1

Nev

dNev

dntrk
,

1

Nev

dNtrk

d∆η
(11.1)

whereNev is the number of events with at least one track satisfying the single-sided MBTS

requirements, pT is the transverse momentum, η is the pseudorapidity of the track, ntrk is

the number of selected tracks per event, and Ntrk is the total number of selected tracks in

the data sample. The variable ∆η is the absolute value of the difference in pseudorapidity

between the edge of the MBTS detector that has no hit (ηMBTS) and the track, i.e. ∆η =
|ηMBTS −η| where ηMBTS is +2.08 or −2.08 depending on which MBTS side did not have

any hits. Tracks which enter this distribution cannot overlap in η with the MBTS acceptance

of the side of the detecto which did not have any hits, i.e. η > ηMBTS (η < ηMBTS) if

ηMBTS < 0 (ηMBTS > 0).

Unlike the minimum bias analysis measurements cited above, these measurements are

not corrected for detector effects. Corrections for tracking inefficiency and event loss to

obtain charged particle level distributions are beyond the scope of this study. However,

systematic uncertainties reflecting the agreement between data and detector simulation are

1In terms of ξ = M2
X/s, ξ must be greater than 5×10−6 and less than 5×10−4.In the case of double-

diffraction the lower mass dissociation system must have a mass less than 5×10−6. The ξ−acceptance is

discussed in more detail in Chapter 12.
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Run L (µb−1) NEv

152166 7.0 0.5M

152221 20.2 1.4M

Table 11.1.

Luminosity and

number of events

recorded in the stream

physics MinBias.

presented. Therefore, the remaining differences between data and Monte Carlo events are

attributed to differences in physics modeling.

11.1.2 Datasets and Event Selection

Data Sets and MC samples

The data used in this study come from the two ATLAS runs at
√
s = 7 TeV taken in

late March and early April described in Chapter 7: 152166 and 152221. Only luminosity

blocks where both the Inner Detector and the MBTS detector were functioning properly

are considered. The integrated luminosity is approximately 27 µb−1. Table 11.1 gives the

luminosity and the number of events in the physics MinBias stream, a data stream including

all minimum bias triggers.

The Monte Carlo samples used are the same as those described in Chapter 7. Only the

Schuler-Söjstrand SD and DD differential cross-section models are used for the PYTHIA

8 generators because this study is more sensetive to the charged particle kinematics than

the diffractive mass distribution. The Monte Carlo events were weighted to approximately

reproduce the longitudinal beamspot width observed in data. No reconstructed vertex is

required for this event selection, therefore, an exact weighting cannot be performed.

Event and Track Selection

All events considered in the analysis must pass the L1 MBTS 1 trigger and have hits

on only the A- or the C-side of the MBTS detector (but not both). In addition, at least one

reconstructed track fulfilling the following requirements:

• pT > 500 MeV

• |η| <2.5

• |dBS
0 | <1.5 mm

• |z0| < 100 mm

• NPix ≥ 1

• NSCT ≥ 6

is required. This event selection does not require a primary vertex due to the relatively

low vertex finding efficiency for the events of interest. Because they produce few central

charged particles, many diffractive events do not have a reconstructed vertex.
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Generator ADD
1−trk ASD

1−trk AND
1−trk

Pythia 6 39.2% 37.0% 97.5%

Pythia 8 50.1% 55.6% 97.3%

Phojet 52.2% 63.7% 95.9%

Table 11.2.

Acceptances for

events to have at

least one track with

pT > 500 MeV

and |η| < 2.5 for

PYTHIA6, PYTHIA8

and PHOJET for

double-diffractive

(DD), single-

diffractive (SD) and

non-diffractive (ND)

events.

Generator DD SD ND

ADD
incl−trk ADD

ss−trk ASD
incl−trk ASD

ss−trk AND
incl−trk AND

ss−trk

Pythia 6 97.23% 23.89% 97.67% 20.73% 99.9% 0.68%

Pythia 8 99.97% 26.97% 99.97% 22.93% 100.0% 0.13%

Phojet 97.89% 14.22% 97.80% 22.03% 100.0% 0.48%

Table 11.3. Acceptances for events with activity in either side of the MBTS, Aincl−trk, and on only one side

of the MBTS, Ass−trk , for events with at least one track with pT > 500 MeV and |η| < 2.5 for Pythia 6,

Pythia 8 and Phojet for double-diffractive (DD), single-diffractive (SD) and non-diffractive (ND) events.

11.1.3 Acceptance

The acceptances of the track requirement are give in Table 11.2 for the single-dissociation,

double-dissociation, and non-diffractive events for the three MC programs. PYTHIA 8 and

PHOJET both predict that 50% of DD events will have a track, while PYTHIA 6 predicts

only 40%. Similarly, for SD events PYTHIA 6 predicts nearly 20% few events passing than

PYTHIA 8 and 25% less than PHOJET. The gap between PYTHIA 6 and the other genera-

tors is due to is soft diffractive component. The generators predict between 95 and 97% of

ND events pass the track cut.

Table 11.3 gives the acceptances of the MBTS hit requirement for double-diffractive,

single-diffractive and non-diffractive events for PYTHIA6, PYTHIA8 and PHOJET. These

acceptances are with respect to the track requirement. Both the inclusive (at least one hit in

the MBTS detector) and single-sided (at least one hit on exactly one side of the detector)

are shown for comparison purposes. The total acceptance is obtained by multiplying the

numbers from Table 11.3 with those of Table 11.2.

It Table 11.3 the acceptances vary between 14% and 27% for the single-sided require-

ment for diffractive production, while for non-diffractive production the acceptances are

less than 1% for all generators. For the inclusive requirement of any MBTS hit the accep-

tance is > 97% in all cases. The high acceptance value is expected because at least one

central charged particle is ensured by the track requirement. Th generators predict similar

acceptance values for the SD process but differ by nearly a factor two in the DD predictions.
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11.1.4 Data and Simulation Response Agreement

Before determining the level of agreement between data and Monte Carlo models on

underlying physics distributions, the degree to which the simulation reproduces the re-

sponse of the detector and reconstruction must be assessed. The MBTS performance was

extensively validated in Chapter 8. This section concentrates on the tracking performance

for this event sample.

Chapter 6.1 and [109] already demonstrated that the data and Monte Carlo simulation

agree well for inclusive minimum bias measurements. Because this study has a different

event and track selection, it is necessary to check that the same level of agreement is found.

Figure 11.1 shows a comparison of the transverse and longitudinal impact parameter dis-

tribution between data and PHOJET MC for the single-sided sample.
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Figure 11.1. A comparison of transverse (a, b) and longitudinal (c, d) impact parameter distributions for

events passing the single sided event selection. These distributions are shown applying all cuts apart from

that on the quantity shown. The data (markers) are compared to PHOJET (histogram)

The agreement between data and simulation is fairly good for the transverse impact

parameter distribution both in the core and the tails of the distribution. The data z0 distri-

bution is slightly broader than the simulation distribution, indicating that the re-weighting
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does not work perfectly. However, the tail fraction (|z0| > 100 mm) is in good agreement

between data and MC.

Figure 11.2 shows the number of Pixel and SCT hits on track as well as the average

number of Pixel and SCT hits versus η. The agreement between data and simulation is ex-

cellent. The data tracks have slightly fewer Pixel hits on average, the disagreement arising

primarily from tracks in the forward region. The overall agreement of the average number

of SCT hits on track is good. In the region |η| > 1 the average number of hits is varying

strongly due to the structure of the SCT endcaps. This region is most sensitive to the lon-

gitudinal beamspot width, therefore differences between the data and MC simulation are

expected.
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Figure 11.2. A comparison of silicon hit quantities for data (points) and PHOJET Monte Carlo. (a) and (b)

show the number of Pixel and SCT hits on track, respectively. (c) and (d) show the average number of Pixel

and SCT hits versus η.

11.1.5 Systematic Uncertainties

The systematic uncertainties in this measurement arise from three principle sources:

beam backgrounds, the MC simulation of the MBTS performance and the MC simulation
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of the tracking performance. Each subject is discussed in the following.

Beam Backgrounds

Beam backgrounds are described in Chapter 9. For this study the background is deter-

mined using the single, non-colliding (unpaired) bunches which traverse ATLAS. The two

runs considered contain 41.5k MBTS triggered events in the unpaired bunches, 39.7k of

which have activity on only one side of the MBTS. These numbers can be compared to the

1.4M MBTS triggered events in the paired bunches, 0.2M of which are single-sided. Once

a track fulfilling all the selection cuts is required, there are 52 events passing the MBTS

trigger in the unpaired bunches, 1 of which passes the single-sided selection. Loosening

the track pT requirement to 100 MeV yields 322 MBTS triggered events, 5 of which are

single-sided. The colliding bunches have 1.2M MBTS triggered events with at least one

500 MeV track, with a subset of 5.3k single-sided events. Therefore it is concluded that

the beam background represents less than 0.02% of the number of events selected in the

colliding bunches and is neglected.

MBTS Response

The MBTS response systematic uncertainty was determined prior to the completion

of the studies presented in Chapter 8. Therefore, a conservative method is used to assign

the uncertainty. The threshold for the simulated events was kept at 0.15 pC and the data

threshold was raised to 0.3 pC. Then, the analysis was repeated and the fractional difference

in the resulting distributions (Equation 11.1.1) was taken as the uncertainty. It was assigned

as a symmetric uncertainty, thereby covering the fact that the MC were more efficient than

the data. The main result of the variation is to increase the number of ND events passing

the cut. Intuitively the increase happens because ND events are most likely to have hits

on both sides of the MBTS, and when the threshold is raised, hits can be lost, mimicking

the single-sided selection. The data support this explanation: η distribution becomes more

central and the pT and ntrk spectra become harder due to the larger contamination from ND

events.

Inaccuracies in the modeling of the material between the interaction point and the

MBTS detectors were checked with the extra material PYTHIA 6 sample. Differences

of less than 0.1% were found in the fraction of single-sided events, and therefore material

effects were ignored in the MBTS response systematic uncertainties.

Tracking Performance

The performance of the Inner Detector tracking has been studied extensively in [109,

70]. This analysis applies the same track selection aside from the impact parameter cuts,

which are with respect to the primary event vertex in [109, 70] instead of the beam spot as

in this track selection. Because the difference is small and the distributions are well mod-

eled by simulation, the tracking efficiency uncertainties are taken directly from Ref. [?].
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Systematic Uncertainty Systematic

Truth Primary Definition ±0.4%

Material ±3%*

Alignment ±1%

SCT Extension
±6% (2.2 < |η| < 2.5)
±4% (1.6 < |η| < 2.2)

Particle Composition ±0.2%
Resolution ±1% (0.5 < pT < 0.6 GeV)

Table 11.4. The systematic uncertainties on the tracking efficiency used in [109]. All uncertainties are quoted

relative to the track reconstruction efficiency except for the uncertainty due to the material which is absolute.

Chapter 6.1 summarizes the sources of systematic uncertainties on the tracking efficiency.

Table 11.4 lists the systematic uncertainties relevant for this study.

The systematic uncertainty due to the tracking efficiency is assessed by varying a

parametrized efficiency within the uncertainties and applying it to the Monte Carlo truth

distributions. The fractional difference of the resulting distributions give the systematic

uncertainty on the quantity of interest. The contribution of the tracking efficiency uncer-

tainty to the uncertainty on the total number of events passing the single-sided selection

cuts is 3%, whereas the uncertainty on the number of events passing the inclusive require-

ment is only 0.05%. This difference arises because the single-sided events are typically

low multiplicity events. 90% of events have one or two tracks per event, leading tracking

inefficiencies to translate directly into event losses. However, the impact of the event loss

largely cancels out in the track distributions which are normalized by the total number of

events passing the selection.

11.1.6 Comparisons

In data there are 52,801 events passing the single-sided selection out of 1,169,508

events passing the inclusive selection. Figures 11.3 and 11.4 show the track η, multiplicity

and pT distributions for events passing the single-sided MBTS requirement. The data are

compared to the PYTHIA6, PYTHIA8 and PHOJET samples.

The η distribution in the data is rather flat. It is well modeled by PHOJET and PYTHIA8

in overall normalization while PYTHIA6 underestimates the data by about 15-20%.

The ntrk distribution is well modeled both by PYTHIA8 and PHOJET while the PYTHIA6

spectrum is much softer than the data until the high multiplicity region where the non-

diffractive component dominates.

The track 1
Nev

1
2πpT

d2Ntrk

dηdpT
distribution predicted by PHOJET is in excellent agreement

with the data over most of the pT range. PYTHIA8 predicts a slightly softer spectrum than

that observed in data. PYTHIA6 is much softer than the data between 1 and 3 GeV but

agrees in the high pT tail where the ND process dominates.

Fig. 11.5 shows 1
Nev

dNtrk

d∆η
. It is seen that the rate of tracks increases from 0.05 at ∆η = 0
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Figure 11.3. Distributions for the single-sided trigger requirement. Data are the black points, PHOJET is

the solid red line, PYTHIA8 is the blue dashed line and PYTHIA6 is the dash-dotted pink line. (a) shows
1

Nev

dNtrk

dη
and (b) shows 1

Nev

dNev

dntrk
. The bottom plots show the ratio of data to MC. In the ratio plot the blue

band indicates the statistical and systematic errors.

to 0.8 at the highest ∆η. At low ∆η all three generators describe the data well, but at high

∆η, where the diffractive processes dominate, PYTHIA6 underestimates the rate of tracks.

The systematic uncertainty at low ∆η is large as it is dominated by the ND component

which is the most sensitive to the MBTS efficiency.

In order to understand the origin of the discrepancies between data and MC, it is use-

ful to plot the distributions for each generator broken down into the SD, DD and ND sub-

components. Figure 11.6 shows the eta distribution, Figure 11.7 shows the ntrk, Figure 11.8

shows the momentum spectrum and Figure 11.9 shows the ∆η distribution. The η and ∆η
distributions best show the relative contributions from the different sub processes to the

event sample. PHOJET favors single diffractive events whereas the PYTHIA models favor

more equal contributions from both diffractive processes. PYTHIA 8 allows the smallest

contribution from ND events, indicating a multi-particle production mechanism generating

small rapidity gaps in between particles. In the track multiplicity and momentum spectrum

plots PYTHIA 6 describes the tails of the distributions entirely with the ND components,

whereas PYTHIA 8 and PHOJET have approximately equal contributions of all processes in
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Figure 11.4. 1
Nev

1
2πpT

d2Ntrk

dηdpT
for the single sided trigger requirement. Data are the black points, PHOJET is

the solid red line, PYTHIA 6 is the dash-dotted pink line and PYTHIA 8 is the blue dashed line. Shown is both

the distribution as well as the ratio of data to MC. In the ratio plot the blue band indicates the statistical and

systematic errors.

those regions. This difference is unsurprising given the lack of a hard component to diffrac-

tion in PYTHIA 6. Both PYTHIA 8 and PHOJET would do slightly better in describing the

data if there was in increase in the ND component.

11.2 MBTS Multiplicity-based Studies

This section plots the MBTS multiplicity distribution,Ncounter, for counters with charge

above threshold and compares data to Monte Carlo simulation. The simulated events use

the modified thresholds determined in Section 8.3 and the data uses the standard 0.15 pC

threshold. The PYTHIA 6, PYTHIA 8 and PHOJET models are based on full simulation.

The histograms for the other models presented are created by weighting the PYTHIA 8

full simulation events by the diffractive mass distribution to match the relevant model. As

outlined in Chapter 3, the relative diffractive contribution, fD, is set for each model to a

value determined with the data. The details of this procedure are given in Chapter 12.2.2,
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Figure 11.5. Distributions of 1/NevdNev/d∆η for the single sided trigger requirement. Data are the black

points, PHOJET is the solid red line and PYTHIA8 is the blue dashed line, and PYTHIA6 the dash-dotted pink

line. Shown is both the distribution as well as the ratio of MC to data. In the ratio plot the blue band indicates

the quadratic sum of the statistical and systematic uncertainty.

but for clarity, the results are summarized here: fD is 0.25 to 0.3, depending on the model.

The first comparison is of the inclusive counter distributions in Figure 11.10. The un-

certainty band includes the uncertainty on the MBTS efficiency as well as the material

as determined in Chapter 8.3. The efficiency uncertainty is determined by taking the dif-

ference between PYTHIA 8 with the tuned thresholds and the threshold which reproduces

the most discrepant counter efficiency in data. The A- (C-) side inner counter thresholds

were raised to 0.50 (0.60) pC. The A- (C-) side outer counter thresholds were changed to

0.18 (0.38) pC. The material uncertainty is taken as twice the difference in the distribu-

tions of PYTHIA 6 simulated with the nominal and extra material geometries. The factor of

two comes from assuming that the difference between PYTHIA 6 and the data in the fzero

distribution is entirely due to extra material.

The Donnachie and Landshoff models match the data the most accurately in the inclu-

sive samples. PHOJET shows the worst agreement. There are significant differences be-

tween PYTHIA 6 and PYTHIA 8 which are exclusively due to differences in fragmentation

model of the diffractive components and tuning and color connection between the initial

and final state in the ND component. No generator has high enough overall multiplicity,
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Figure 11.6. 1
Nev

dntrk

dη
for the single sided trigger requirement. Data are shown in comparison with PHO-

JET (a), PYTHIA8 (b) and PYTHIA6 (c). The non diffractive contribution is shown in green diamonds, the

single diffractive in red triangles and the double diffractive is shown in blue inverted triangles. The data are

the black points and the summed MC are the open black circles.

although the Donnachie and Landshoff models lie just outside the uncertainty band. In the

low multiplicity region PYTHIA 6 over-estimates the event fraction while the other gener-

ators underestimate. Comparing the multiplicity in the inner and outer counters separately

shows that the discrepancies are not confined to one particular η range.

The Ncounter = 1 bin is not shown in any distribution because the background subtrac-

tion, described in detail in Chapter 9, does not work in this bin. In the unpaired bunches

the majority of events with Ncounter = 1 are from afterglow. Because the level of afterglow

in the unpaired bunches is not the same in the paired bunches, the unpaired bunches do not

accurately represent the background in the Ncounter = 1 bin. The subtraction is valid for

events with Ncounter > 1 because these events are dominated by other background sources.
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Figure 11.7. 1
Nev

dNev

dntrk
for the single sided trigger requirement. Data are shown in comparison with PHO-

JET (a), PYTHIA8 (b) and PYTHIA6 (c). The non diffractive contribution is shown in green diamonds, the

single diffractive in red triangles and the double diffractive is shown in blue inverted triangles. The data are

the black points and the summed MC are the open black circles.

Figure 11.11 compares the counter multiplicity distributions in the single-sided event

sample. In this sample PYTHIA 8 and PHOJET overestimate the event fraction at high

multiplicity and underestimate it at low multiplicity, while PYTHIA 6 shows the opposite

trend. The large difference between PYTHIA6 and PYTHIA8 is notable because the two

have the same underlying diffractive mass distribution, indicating that the fragmentation

contributes significantly to the multiplicity. Arguably, inner counter multiplicities show a

broad distribution while the outer counters are peaked towards low values. The MC models

are a poor match to the data for the inner counters but describe it better in the outer counters.
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Figure 11.8. 1
Nev

1
2πpT

d2ntrk

dηdpT
for the single sided trigger requirement. Data are shown in comparison with

PHOJET (a), PYTHIA8 (b) and PYTHIA6 (c). The non diffractive contribution is shown in green diamonds,

the single diffractive in red triangles and the double diffractive is shown in blue inverted triangles. The data

are the black points and the summed MC are the open black circles.

11.3 Summary

The measurements of the properties of tracks in the diffractive-enhanced sample show

the best agreement with the PHOJET Monte Carlo generator, which accurately reproduces

the charged particle properties and the event level multiplicities. The PYTHIA 8 Monte

Carlo generator reasonably reproduces the η-based distributions and the multiplicities but

does not describe the pT spectrum well. The MBTS multiplicity plots are best reproduced

by PYTHIA 8 with a Donnachie and Landsoff parametrization. However, differences be-

tween PYTHIA 6 and PYTHIA 8 with the Schuler-Sjöstrand model show that the agreement

in these variables depends strongly on the fragmentation model. When these results are
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Figure 11.9. 1
Nev

dntrk

d∆η
for the single sided trigger requirement. Data are shown in comparison with PHO-

JET (a), PYTHIA8 (b) and PYTHIA6 (c). The non diffractive contribution is shown in green diamonds, the

single diffractive in red triangles and the double diffractive is shown in blue inverted triangles. The data are

the black points and the summed MC are the open black circles.

taken with the results from minimum bias measurement [70], PYTHIA 8 with a Donnachie

and Landshoff model emerges at the best overall description of inelastic interactions.
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Figure 11.10. MBTS multiplicity comparing data and MC. (a) shows the inclusive hit distribution, (b) shows

the inclusive inner counter hit multiplicities, and (c) shows the inclusive inner counter hit multiplicities . The

band indicates the systematic uncertainty due to the MBTS response and material.
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Figure 11.11. MBTS multiplicity comparing data and MC. (a) shows the single-sided hit distribution, (b)

shows the inner counter hit multiplicities, and (c) shows the outer counter hit multiplicities for the single-

sided events. The band indicates the systematic uncertainty due to the MBTS response and material.



128

CHAPTER 12

Results

This chapter presents the results of the inelastic cross-section measurement using the

inclusive sample defined in Chapter 3. The formula used to calculate the cross-section is

given by Equation 3.12, reproduced here for convenience:

σ(ξ > 5 × 10−6) =
(N −NBG)

ǫtrig × L × CMC. (12.1)

The measurement uses 1.2 million events, N , from run 152221, corresponding to an inte-

grated luminosity, L, of 20.25 µb. Chapter 7 describes the dataset in detail. The trigger

efficiency, ǫtrig , is measured to be 99.98+0.02
−0.12%, as described in Chapter 8.2. While the

backgrounds and MBTS performance are described in Chapters 9 and 8, those sections do

not present the corresponding correction factors for the cross-section measurement. In the

following sections the remaining factors necessary to calculate the inelastic cross-section

are determined. In Section 12.1 the number of background events, NBG, is calculated. The

Monte Carlo simulation-based correction factor, CMC, is presented in Section 12.2, which

additionally details the determination of the relative contribution of diffractive events for

each model. Section 12.3 reviews the systematic uncertainties and Section 12.4 presents

the cross-section measurement.

12.1 Background Estimation

This measurement suffers from the primary backgrounds described in Chapter 9: beam-

related backgrounds such as beam-gas, beam-halo and afterglow, and non-beam-related

backgrounds such as noise and cosmic-rays. The measurement corrects for events which

are purely background as inelastic interaction with low activity to migrate into the event

sample because of additional hits supplied by afterglow.

Beam-gas and beam-halo events typically have multiple MBTS counters above thresh-

old, whereas noise and out-of-time afterglow generally produce only one counter above

threshold. These backgrounds are estimated as the sum of events passing the event selec-

tion in the unpaired bunches. In these runs, the same unprescaled trigger is used in the
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Intensity (109 p)

paired unpaired

Beam 1 9.13 9.61

Beam 2 8.77 8.38

Table 12.1. Beam intensities in

terms of protons per bunch for

the paired and unpaired bunches

in run 152221.

paired bunches and in the unpaired bunches. The out-of-time afterglow is overestimated

using this method because the afterglow is correlated with the main collision event in the

preceding paired bunches, as shown in Figure 9.2. Thus, the estimate of background from

unpaired bunches will tend to be an overestimate of the true background contamination.

In order to reduce the effect of afterglow and noise, the event sample is restricted to

events with at least two MBTS hits above threshold. This requirement cuts out the majority

of out-of-time afterglow events which typically have only done counter above threshold. In

principle, it also removes most of the noise-only events, but no events were found to have

a charge less than −0.15 pC. Because the noise is symmetric about 0 pC, it is assumed that

there are no events with noise hits greater than 0.15 pC in the event sample.

The background due to beam gas and beam-halo events is estimated from the unpaired

bunches. Since the afterglow contribution is smaller for BCID=1786 (beam 1) than for

BCID=892 (beam 2), only BCID 1786 is used for the background estimate. However, it

must be corrected for the difference in currents between it and the other bunches. The

correction proceeds as follows

NB1
BG = NB1

unp ×
IB1
p

IB1
unp

(12.2)

NB2
BG = NB1

unp ×
IB1
p

IB1
unp

×
IB2
p

IB1
p

(12.3)

NBG = NB1
unp +NB2

unp (12.4)

= NB1
unp ×

IB1
p

IB1
unp

×
(

1 +
IB2
p

IB1
p

)

(12.5)

= 1.86 ×NB1
unp (12.6)

Here NB1,2
BG is the number of estimated background events in the paired bunches for

Beam 1 or 2, NB1
unp is the measured number of events in the unpaired bunches for Beam 1

(BCID 1786), and IB1,2
p,unp is the current of the paired or unpaired bunches for Beam 1 or 2.

The beam current values are taken from a database1 and the beam intensities, which are

derived from the currents, are listed in Table 12.1.

Table 12.2 shows the number of observed events in the paired bunches and the esti-

mated background for the single-sided and inclusive event samples with different minimum

MBTS counter requirements.

1The ATLAS conditions database folder /TDAQ/OLC/LHC/LBDATA in COOL.
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Process run 152221

Npaired NBG

Ncounter ≥ 1

single-sided 149518 23737 ± 210

inclusive 1247851 24889 ± 215

Ncounter ≥ 2

single-sided 122490 422 ± 28

inclusive 1220749 1574 ± 54

Table 12.2. Number of events in the paired bunches (Npaired) and estimated background (NBG) for the two

runs we consider for all L1 MBTS 1 triggered events with at least one offline cell above threshold and the

single − sided and the inclusive selection of at least two cells above threshold. The number of background

events is based on the number of events in BCID 1786 and corrected for the difference in currents between

Beam 1 and Beam 2 as defined in 12.2. The uncertainties are statistical only.

The inclusive sample contains 1.2 million events, 10% of which are single-sided. Frac-

tionally, the beam background contributes 0.34% to the single-sided bunches and 0.13% to

the full event sample. The single-sided events make up less than 30% of the background,

indicating that it is mostly from beam-halo events, which produce hits on both sides of the

detector. In contrast, when the event selection requirement is relaxed to only one counter

above threshold, the background is dominantly single-sided and makes up 2% of the in-

clusive sample and 16% of the single-sided sample. This large background is the reason

behind the requirement of at least 2 hits for the cross-section measurement.

Additionally, beam background events can overlap with collision events to increase the

MBTS cell multiplicity. The overlap is a problem for the single-sided sample because it

could cause a single-sided event to appear as a double-sided event. However, the luminosity

of this run was low enough that there were only 0.007 events per crossing. There are

roughly 2% as many events with Ncounter ≥ 1 in the unpaired bunches as in the paired

bunches, leading to a beam background event every 0.0001 crossings. Therefore, an overlap

occurs in 0.01% of the event sample, which is negligible.

Lastly, the contribution from in-time afterglow, which is not modeled in the Geant4

simulation, is estimated. Afterglow hits arising from collisions with less than 2 prompt

MBTS hits could cause the events migrate into the event sample. As described in Chap-

ter 9 the asymmetry of the time of the MBTS hits is used as an upper limit on the in-time

afterglow contribution.

Binomial statistics are used to find the fraction of events with two real hits, freal, as a

function of the number of observed counters over threshold:

freal(N) =

N
∑

n=2

(

N

n

)

h.p.(N)n(1 − h.p.(N))N−n (12.7)

freal(2) = h.p.(2)2 (12.8)

freal(3) = h.p.(3)3 + 3h.p.(3)2(1 − h.p.(3)) (12.9)

where N = Ncounter, the number of counters over threshold.
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The hit purity of the Ncounter = 2 and Ncounter = 3 events was found to be 0.83.

Therefore 67% of events with Ncounter = 2 have two real hits and 92% of the events with

Ncounter = 3 have at least two real hits. Ncounter = 2 and Ncounter = 3 each make up

approximately 1% of the event sample and therefore, 0.4% of events in the selected events

sample have less than two real hits. In the single-sided sample, the Ncounter = 2 and

Ncounter = 3 events each make up approximately 10% of the event sample. The afterglow

is at most 3.6% of this sample.

An uncertainty of 100% is assumed on both the in-time afterglow and other beam-

related background determinations. The resulting uncertainties are added in quadrature.

This conservative estimate is due to the fact that the afterglow contribution is not well-

understood but it is clear that it can only be overestimated using these methods. The un-

certainties from other sources, such as the beam-current ratios, are small compared to the

afterglow uncertainty.

12.2 Acceptance

This section discusses the acceptance of the event selection as determined with Monte

Carlo models. First, the MBTS detector acceptance is discussed for the diffractive and non-

diffractive sub-processes in Section 12.2.1. Then, the data are used to constrain the relative

diffractive cross-sections in Section 12.2.2. A determination of ǫsel and fξ<5×10−6 for the

measurement range follows in Section 12.2.3. Finally, the extrapolation to ξ > m2
P/s is

discussed in Section 12.2.4.

12.2.1 MBTS Acceptance

The MBTS acceptance for the inclusive and the single-sided selections are given in

Table 12.3. The inclusive values are very high for the non-diffractive component for all

generators, while it is as low as 43% for some of the diffractive contributions. The single-

sided numbers show that the non-diffractive component is significantly suppressed for this

selection: less than 1% of the ND events are selected. For the diffractive components ǫsel
varies between 27 and 41%. The effect of variations in the Monte Carlo tuning was investi-

gated using several different PYTHIA 6 tunes2. The differences between the tunings in the

acceptance were smaller than the differences between the MC models, and therefore the

tuning was not considered in further studies. This large variation in acceptance motivates

the restriction of the measurement to a well-defined ξ-range. It also motivates constraining

the relative diffractive contribution to the cross-section.

Figure 12.1 shows the efficiency of the MBTS selection (ǫSel) as a function of ξ and

ηmin
3. The efficiency agrees between the different generators to within 5% as a function

2Perugia0 and DW were used for all three subprocesses, and there were serveral other variations of inital

and final state parameters for non-diffractive events only.
3ηmin is defined in Chapter 3
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Figure 12.1. Efficiency of the inclusive MBTS selection as a function of log10(ξ) for single-diffractive (a)

comparing PYTHIA 6, PYTHIA 8, and PHOJET. A comparison of the efficiency between single- and double-

dissociation (b) events for PHOJET. (c) and (d) show the same efficiency as a function of ηmin. In the case

of double-dissociation the higher mass system is plotted.

of ξ and ηMin for the SD processes, and to within 8% for the DD processes. The SD and

DD efficiencies agree to within 8% as a function of ξ and 10% as a function of ηMin. At

ξ = 5×10−6 the MBTS selection is 50% efficient. The large width of the efficiency turn on

in ηmin is due to the requirement of at least 2 MBTS hits over threshold, which effectively

requires a second particle to also be within the acceptance.

Figure 12.2 shows the efficiency of the single-sided selection for single- and double-

dissociation events as a function of the maximum diffractive mass in the event. While all

of the generators have the same turn-on and turn-off in efficiency with diffractive mass,

they achieve different plateau values. The higher multiplicity generators, PHOJET and

PYTHIA 8 have similar behavior for the single-dissociation events, but differ for the double-

dissociation events. The difference is likely due to the correlations between the two disso-

ciation systems in these events.
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Figure 12.2. Efficiency of the single-sided MBTS selection as a function of log10(ξ) for single-diffractive (a)

and double-diffractive (b) events comparing PYTHIA 6 , PYTHIA 8 and PHOJET . In the case of double-

dissociation the higher mass system is plotted.

12.2.2 Fractional Contribution of Diffractive Processes

As seen in Table 12.3, the single-sided selection strongly suppresses non-diffractive

events. Consequently, the quantity fD can be determined experimentally from RSS, the

fraction of events in the inclusive sample that have hits on only one side of the MBTS

detector. The dependence of RSS on fD is outlined in Equation 3.10.

Table 12.4 lists the values obtained by the MC generators for RSS.

RSS = [10.02 ± 0.03(stat.)+0.07
−0.36(sys.)]%

is measured for the inclusive sample in data. The systematic uncertainties on RSS include

the MBTS response, backgrounds, and the material effects, which are described in Chap-

ters 8, 9 and 8.4, respectively.

Assuming the acceptance values from Table 12.3, RSS is predicted as a function of

the relative diffractive contributions (fD and fSD). For the models without full simulation,

PYTHIA 8 events are re-weighted to match the ξ distribution described by each model. In

Fig. 12.3 fD is varied, keeping fSD fixed at the value predicted by the relevant generator

(see Table 2.1). It is seen that the preferred value for fD varies between 25% and 30%

depending on the model. Because the relative DD to SD contributions are also not well

known, σDD/σSD, is also varied. Figure 12.4 shows the predictions assuming σDD/σSD = 1
and σDD/σSD = 0 as two extreme choices. 4.

The maximum and minimum allowed values of fD are determined from the measured

value of RSS by taking the intersection of the MC predictions with the systematic error

band of the data. The values are determined for each of the models separately and for the

4σDD/σSD = 1 is an extreme choice because for reasonable models of diffractive processes, the DD

component does not exceed the SD component until s >> 100 TeV [60].
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Generator Model RSS (%)

PYTHIA 6 Schuler-Sjöstrand 10.83 ± 0.01

PHOJET Engel 6.85 ± 0.01

PYTHIA 8 Schuler-Sjöstrand 10.83 ± 0.01

PYTHIA 8 Bruni and Ingelman 12.94 ± 0.1

PYTHIA 8 Berger and Streng 12.39 ± 0.1

PYTHIA 8 DL ǫ = 0.085,α′ = 0.25 GeV−2 12.16 ± 0.1

PYTHIA 8 DL ǫ = 0.02,α′ = 0.25 GeV−2 12.56 ± 0.1

PYTHIA 8 DL ǫ = 0.15,α′ = 0.25 GeV−2 9.98 ± 0.1

PYTHIA 8 DL ǫ = 0.085,α′ = 0.10 GeV−2 12.15 ± 0.1

PYTHIA 8 DL ǫ = 0.085,α′ = 0.40 GeV−2 12.04 ± 0.1

Table 12.4. Predicted values for RSS at
√

s = 7 TeV for PYTHIA 6, PHOJET, PYTHIA 8 with the Schuler-

Sjöstrand model and PYTHIA 8 re-weighted for other diffractive mass models.

variations of σDD/σSD. The results are listed in Table 12.5. The fitted fD value is average

of fmin
D and fmax

D for the default σDD/σSD and the error is the spread in allowed fD values

for σDD

σSD
= 1 and σDD

σSD
= 0. The central values range from 25% to 30% and the error is

typically between 1% and 3%. It is interesting to note that although the exclusive particle

properties of the PYTHIA 8 and PYTHIA 6 are very different, they prefer a very similar

value of fD. This similarity suggests that the RSS measurement is primarily sensitive to the

differential diffractive mass distribution rather than the diffractive event modeling.

12.2.3 ǫsel and fξ<5×10−6

The kinematic range of the measurement is restricted by defining the acceptance with

respect to a limited diffractive mass range, as described in Section 3.

Table 12.6 lists the fraction of events with ξ > 5 × 10−6 that pass the event selection

(ǫsel) as well as fξ<5×10−6 , the fraction of events in the inclusive event sample that have

ξ < 5 × 10−6. ǫsel is greater than 90% for all processes, generators and diffractive mass

spectra. When the ND, SD, and DD components are combined with the value of fD in

Table 12.5 the inelastic efficiencies are between 98.5 and 99.5 %. fξ<5×10−6 varies more

significantly. It is as low as 1.2% and as high as 8.3% for the diffractive processes. It is

consistent with 0 for the ND process. The large variations in fξ<5×10−6 for the diffractive

processes are attributed to differences in the diffractive mass spectra at low ξ. The total

inelastic fξ<5×10−6 varies between 0.3 and 1%.

12.2.4 Extrapolating to ξ > m2
p/s

In order to extrapolate from σ(ξ > 5× 10−6) to σinel, the fraction of the inelastic cross-

section within the kinematic range of the measurement (ξ > 5 × 10−6) is determined for

each model. Table 12.7 gives the fraction of events that fulfill the ξ > 5 × 10−6 cut for

the individual processes, i.e. σ(ξ > 5 × 10−6)/σinel. This fraction is nearly 100% for all
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Figure 12.3. RSS versus fD. The data are shown as the line with systematic uncertainties (grey band). Also

shown are the predictions as a function of fD for a variety of models. For each model th point indicates the

predicted value of RSS for the default value of fD. In this case the default value for fSD is assumed for each

sample, i.e. 59.6% for PYTHIA and additional models and 68.6% for PHOJET. For all models but PHOJET

the σCD is taken to be 0.

models of the ND processes, whereas it varies between 44% and 76% for the SD events

and between 53% and 92% for the DD events depending on the assumed ξ-dependence of

the diffractive cross section. Additionally, there are predictions from M. Ryskin based on

the work in [51] which predicts σ(ξ > 5 × 10−6)/σinel = 77 − 82%.

To perform the extrapolation of the cross-section measurement from the restricted ξ-

range to the full range, the model by Donnachie and Landshoff with ǫ = 0.085 and

α′ =0.25 GeV−2 is used because it gives the best description of the MBTS hit multiplicity

for the single-sided sample (see Fig. 11.11). It predicts 87.2% acceptance for the ξ cut.

The lowest acceptance value is obtained with the Ryskin model. The highest fraction is

given by the Engel model, which predicts 95% of the cross-section to have ξ > 5 × 10−6.

The full spread of the acceptance value is taken as a systematic uncertainty, leading to an

extrapolation factor of 1.145 ± 0.115.

12.3 Systematic Uncertainties

The systematic errors on the total cross section measurement are summarized in Ta-

ble 12.8. The following sources contribute to the total uncertainty:
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Figure 12.4. RSS versus fD with σDD

σSD
= 1 (a) and σDD

σSD
= 0 (b). The data are shown as the line with

systematic uncertainties (grey band). Also shown are the predictions for a variety of models as function of an

assumed value of fD.

• MBTS trigger efficiency: The efficiency of the trigger requirement with respect to

the offline requirement of two MBTS hits is studied in data as described in Chap-

ter 8.2. The trigger efficiency is measured with randomly triggered events to be

99.98+0.02
−0.12%. In order to set a systematic uncertainty, a trigger requiring at least one

hit in the LUCID detector (5.6 < |η| < 6.0) is used to independently determine the

efficiency. This method yields an efficiency of 99.91%. The difference between the

LUCID based and random trigger based methods is taken as the uncertainty. Both

methods agree within the statistical uncertainties and 0.07% is taken as the uncer-

tainty.

• MBTS response: Chapter 8 showed that the data and MC simulation disagree in the

shape of the signal charge distribution, leading to a lower average counter efficiency

in the data. This effect is emulated in the MC by increasing the threshold to 0.28 pC

(0.26 pC) on the A- (C-) side outer counters and 0.32 pC (0.38 pC) on the A- (C-

) side inner counters. The systematic uncertainty associated with tuning the MBTS

efficiency in the simulation is obtained by varying the MC thresholds until they match

the efficiency of the counter in data which is furthest from the mean counter efficiency

on each side and ring. The resulting thresholds are 0.50 (0.60) pC for the A- (C-) side

inner counters and 0.18 (0.38) pC for the A- (C-) side outer counters. Changing the

MC thresholds to these values results in a 0.09% variation on CMC for PYTHIA6 and

in smaller variations for the other models. Thus 0.1% is taken as the uncertainty due

to the MBTS response.

• Beam background determination: As described in Chapter 9 and Section 12.1,

the background contribution is estimated from the unpaired bunches and from the
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asymmetry of the MBTS counter time measurement. Conservatively, 100% error

is assumed on the beam background, leading to a 0.42% uncertainty on the cross

section measurement.

• Luminosity: The uncertainty on the luminosity was described in detail in Chapter 10.

The 3.4% uncertainty is dominated by the uncertainty on the measurement of the

beam currents.

• Acceptance: The acceptance correction uncertainty is divided into several parts:

– Relative diffractive cross-section: The value of fD preferred by the data and

its uncertainty is determined for each MC model as described in Section 12.2.2.

The difference in CMC obtained using the spread of the allowed fD values (Ta-

ble 12.5) is set as the systematic uncertainty. This variation leads to a symmetric

0.26% uncertainty on CMC determined with the Donnachie and Landshoff ǫ =
0.085,α′ = 0.25 GeV−2 parametrization.

– MC Multiplicity: The dependence of the correction factor on the multiplicity

of the diffractive system was determined by the taking the difference between

CMC determined with PYTHIA 8 and PYTHIA 6. These two models have the

same cross-section model but quite different particle multiplicity distributions

for diffractive events. The difference leads to a 0.36% uncertainty on CMC.

– ξ-dependence : The dependence on the input diffractive mass distribution is

determined by comparing the value of CMC for all models. The maximum

difference between the Donnachie and Landshoff ǫ = 0.085, α′ = 0.25 GeV−2

model with all other models is taken as the uncertainty. The largest difference

comes from the PHOJET prediction and results in a 0.36% uncertainty on CMC.

• Material: An excess in material with respect to the model used for simulation in-

creases the MBTS multiplicity due to the increased rate of conversions as well as

increased scattering. The effect of material is evaluated by taking twice the differ-

ence in CMC of the PYTHIA 6 MC simulated with the nominal and extra material

geometries as described in Section 8.4. This contributes 0.20% to the uncertainty on

the cross-section measurement.

The CD process is only included in PHOJET. Including or not including this process in

PHOJET makes a 0.01% difference to CMC which is negligible compared to the systematic

uncertainties listed above. Therefore, there is no additional uncertainty due to the CD

contribution.

12.4 The Cross-section Measurement

The final result depends upon CMC: the combination of ǫSel and fξ<5×10−6 . Using the

calculated ǫSel and fξ<5×10−6 values in Table 12.6 and the relative diffractive contribution,
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Source Uncertainty (%)

Trigger Efficiency 0.07

MBTS Response 0.09

Beam Background 0.42

fD 0.26

MC Multiplicity 0.36

ξ-dependence 0.36

Material 0.20

Sub Total 0.75

Luminosity 3.40

Table 12.8. Sources

of systematic uncer-

tainty and their effect

on the cross section

measurement.

fD as determined in section 12.2.2, CMC is determined. Table 12.9 lists ǫsel, fξ<5×10−6 and

CMC for each model using the experimentally determined values of fD which are also listed.

The PYTHIA 8-generated Donnachie and Landshoff model with ǫ = 0.085, α′ = 0.25

GeV−2 is taken as the default MC, which gives ǫsel = 98.77% and fξ<5×10−6 = 0.96%,

leading to a correction factor of 1.0028. The observed number of events is 1,220,743,

the number of background events, NBG, is 1,574 ± 1.01, and the luminosity is 20.25 ±
0.69 µb−1, resulting in a cross section of

σ(ξ > 5 · 10−6) = 60.33 ± 0.05(stat) ± 0.45(syst) ± 2.05(lumi) mb.

where (stat), (sys), and (lumi) are the statistical, systematic and luminosity uncertainties,

respectively.

Table 12.10 lists the predictions from Schuler Sjöstrand, PHOJET (Engel) and Ryskin

et. al., the only models for which a prediction of σ(ξ > 5 · 10−6) is available. Figure 12.5

graphically shows the results. Compared to the Schuler Sjöstrand (PHOJET) prediction of

66.4 mb (74.2 mb), the data value is 2.9σ (6.7σ) lower. The data are 1.9 to 4.1σ higher than

the Ryskin et. al. prediction. The uncertainty is dominated by the uncertainty on the lu-

minosity measurement. Runs 152166 and 154817 were additionally checked and the same

cross-section was measured to within 0.8%. Runs 152166 and 152221 had very similar run

conditions, but 154817 had non-negligible pile-up, and consequently, a higher afterglow

bpackground. The consistency of the results shows the robustness of the measurement.

This level of agreement (0.8%) is expected within the run-to-run luminosity uncertainties.

The measurement is extrapolated to the full inelastic cross-section assuming the ξ-

dependence as given by the various models listed in Table 12.7. The model by Donnachie

and Landshoff with ǫ = 0.085, α′ = 0.25 GeV−2 is used, which gives a correction factor of

1.145 ± 0.115, as discussed in Section 12.2. Using this value an inelastic cross-section of

σinel = 69.1 ± 2.4(stat + syst + lumi) ± 6.9(extr) mb

is obtained where (extr) indicates the extrapolation uncertainty. Figure 12.5 shows the

inelastic cross-section vs
√
s and Table 12.10 compares the extrapolated to results to several

predictions. Within the large uncertainty, the extrapolation agrees with the predictions from

Schuler-Sjöstrand and most of the other analytic models. The only model in disagreement
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σ(ξ > 5 × 10−6) [mb]

ATLAS Data 2010 60.33± 2.10(exp.)
Schuler and Sjöstrand 66.4
PHOJET 74.2
Ryskin et al. 51.8 − 56.2

σ(ξ > m2
p/s) [mb]

ATLAS Data 2010 69.4 ± 2.4(exp.) ± 6.9(extr.)
Schuler and Sjöstrand 71.5
PHOJET 77.3
Block and Halzen 69 ± 1.3
Ryskin et al. 65.2 − 67.1
Gotsman et al. 68
Achilli et al. 60 − 75

Table 12.10. Measurement and theoretical predictions of the inelastic cross-section for the restricted kine-

matic range, ξ > 5× 10−6, and for the full kinematic range, ξ > m2
p/s. The experimental uncertainty (exp.)

includes the statistical, systematic and luminosity uncertainties. The extrapolation uncertainty (extr.) only

applies to the full kinematic range and is listed separately.

is the Engel-based PHOJET. The agreement between the result and the Schuler-Sjöjstrand

prediction improves in the extrapolation because the DL model is used for the extrapolation

factor instead of the Schuler-Sjöjstrand correction factor.

It should be noted that because the primary measurement is mostly independent of

the models, the extrapolation uncertainty can be reduced in the future when more data is

available on diffractive cross-sections at low ξ. For example, preliminary results of large

rapidity gap cross-sections up to |η| <4.9 reported in [125] indicate that PHOJET normal-

ized to a 30% relative diffractive contribution describes the data well. Future measurements

with forward proton-tagging detectors5 will greatly improve the knowledge of the single-

diffractive cross-section at low ξ [126, 127].

5The ALFA detector, a far forward proton tagging detector, is scheduled to take data in late 2011.



12.4 The Cross-section Measurement 145

 [GeV]s

1 10 210
3

10 410

 [
m

b
]

in
e

l
σ

0

20

40

60

80

100
­6

 > 5 x 10ξ = 7 TeV: sData 2010 
­6

 > 5 x 10ξstrand: oSchuler and Sj
­6

 > 5 x 10ξPHOJET (Engel et al.):  

/s
2

p
 > mξ = 7 TeV: extrap. to  sData 2010 

Uncertainty (incl. extrapolation)

strandoSchuler and Sj
Block and Halzen 2011
Achilli et al. (arXiv:1102.1949)

pp Data

 Datapp

/s unless specified otherwise
2

p
 > mξTheoretical predictions and data are shown for 

ATLAS data extrapolated using Pythia implementation of Donnachie­Landshoff model

ξ/dσ = 0.085 for dεwith 

ATLAS

Figure 12.5. The inelastic cross-section versus
√

s. The ATLAS measurement for ξ > 5 × 10−6 is shown

as the red filled circle and compared with the predictions of Schuler and Sjöstrand and PHOJET for the same

phase space. Data (filled circles for pp data and unfilled circles for pp̄ data) from several experiments are

compared with the predictions of the pp inelastic cross-section from Schuler and Sjöstrand [60] (as used

by PYTHIA), by Block and Halzen [128] and by Achilli et al. [61]. An extrapolation from the measured

range of ξ > 5 × 10−6 to the full inelastic cross-section using the acceptance of 87 ± 10% is also shown

(blue filled triangle). The experimental uncertainty is indicated by the error bar while the total (including the

extrapolation uncertainty) is represented by the blue shaded area.
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CHAPTER 13

Conclusion

In summary, this thesis details the first measurement of the proton-proton inelastic

cross-section at
√
s =7 TeV. The cross-section is obtained by selecting approximately 1.2

million events with at least two hits in forward scintillator counters. The luminosity of the

data sample was measured to be 20 µb−1 using a far-forward, Cherenkov light based, rela-

tive luminosity detector. The measurement is restricted to the acceptance of the scintillator

detectors, ξ > 5×10−6, where ξ = M2
X/s, the invariant mass of the largest proton dissocia-

tion system in the event. This phase space fully contains non-diffractive events and accepts

over half of diffractive events. The details of the acceptance depend on the model of the

diffractive cross-section. The events are corrected for the event selection efficiency, ǫSel,

and for the fraction of events in the selected sample which have ξ < 5×10−6, fξ<5×10−6 . In

order to limit the model-dependence of the correction, the relative diffractive contribution

is measured in-situ for each of the 10 models used to generate a correction factor. The total

correction factor, including the ǫtrig, ǫsel and fξ<5×10−6 , which was derived from a model

with a single Pomeron pole with α(0) > 1,is 0.03%.

The cross-section is measured to be

σ(ξ > 5 × 10−6) = 60.33 ± 0.05(stat) ± 0.45(syst) ± 2.05(lumi) mb (13.1)

where (stat), (sys), and (lumi) are the statistical, systematic and luminosity uncertainties,

respectively. The systematic error of 0.75% is dominated by the model dependence of

ǫsel and fξ<5×10−6 . The dominant experimental uncertainty is due to the luminosity mea-

surement. It arises from the measurement of the beam currents during the van der Meer

scans which determined the luminosity calibration factor. Comparisons to the models used

by Monte Carlo generators show that the cross-section measured in the data is lower than

predicted.

In order to compare to analytic models, the measured value of the cross-section is

extrapolated to the total inelastic cross-section. The same model used to derive ǫSel and

fξ<5×10−6 is used to obtain the central value. The uncertainty on the extrapolation is as-

sessed using a variety of other models. The factor used to correct the observed cross-section
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is 1.145±0.115, resulting in an inelastic cross-section of

σinel = 69.1 ± 2.4(stat + syst + lumi) ± 6.9(extr) mb. (13.2)

where (extr) is the uncertainty due to the extrapolation. This measurement agrees nicely

with most predictions for the cross-section at 7 TeV, but it should be noted that without a

better understanding of the differential diffractive cross-section at low ξ, the uncertainty on

the measurement is large.

The results presented here, the highest energy direct measurement of the proton-proton

inelastic cross-section, constitute a benchmark measurement for high-energy particle physics.

The measurement of the inelastic cross-section for ξ > 5 × 10−6 is well-defined with

small experimental errors and little model dependence. The extrapolation uncertainty is

at present large, but will benefit in the future from improved knowledge of the diffractive

cross-sections.
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[60] G. A. Schuler and T. Sjöstrand, “Hadronic diffractive cross sections and the rise of

the total cross section,” Phys. Rev. D 49 no. 5, (Mar, 1994) 2257–2267.

[61] A. Achilli et al., “Total and inelastic cross-sections at LHC at CM energy of 7 TeV

and beyond,” arXiv:1102.1949 [hep-ph].

[62] E. Berger, , et al., “Diffractive hard scattering,” Nucl. Phys. B286 (1987) .

[63] K. Streng, “Hard QCD scatterings in diffractive reactions at HERA,” Tech. Rep.

CERN-TH-4949, CERN, 1988.

http://dx.doi.org/10.1103/PhysRevD.46.5192
http://arxiv.org/abs/hep-ph/9803437
http://arxiv.org/abs/1102.2844
http://dx.doi.org/10.1016/S0370-2693(01)01048-6
http://arxiv.org/abs/hep-ph/0105088
http://arxiv.org/abs/hep-ph/0402081
http://dx.doi.org/10.1103/PhysRevD.2.2963
http://dx.doi.org/10.1103/PhysRevD.49.2257
http://arxiv.org/abs/1102.1949


BIBLIOGRAPHY 152

[64] P. Bruni and G. Ingelman, “Diffractive W and Z production at colliders and the

pomeron parton content,” Phys. Lett. B311 (1993) .
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APPENDIX A

Mandelstam Variables

The Mandelstam variables describe the kinematics of two-body scattering, as shown in

Figure A.1. The four-vectors of the particles involved are given by P1,..,4 and they can be

combined into several lorentz invarient quantities:

s = (P1 + P2)
2 (A.1)

t = (P1 − P3)
2 (A.2)

u = (P1 − P4)
2 (A.3)

with the relation

s+ t+ u =

4
∑

i=1

m2
i . (A.4)

where mi is the invariant mass of particle i. Due to energy and momentum conservation,

only two out of the three mandelstam variables are independent. Most commonly s and t
are used, with s corresponding the square of the center-of-mass-energy and t correspond-

ing to the square of the momentum transfer between P1 and P3. Often t and q2 are used

interchangeably, where q2 is the momentum transfer in a more complicated interaction than

2→2. In the case of hadron-hadron scattering s is the center-of-mass of the two particle,

or equivalently, the two beams of particles in the case of colliding beams. In calculating

partonic cross-sections ŝ is used, where ŝ is the center of mass in the parton scattering

frame.
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1P

2P

3P

4P

Figure A.1. Two-to-two scattering process. Pi denotes the four-momentum of particle i.
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APPENDIX B

The Optical Theorem

The optical theorem is a useful property of the scattering matrix which relates the for-

ward elastic scattering amplitude to the total cross-section. Let S be the scattering matrix,

i be the initial state, and f be the final state. The probability to be in f given i is given by

Pfi = |〈f |S|i〉|2 (B.1)

where f has the property
∑

f

|f〉〈f | = 1 (B.2)

which is simply the statement that f covers all possible final states. Additionally, the

probability to end up is some final state must be unity, therefore

1 =
∑

f

|〈f |S|i〉|2 (B.3)

=
∑

f

〈i|S†|f〉〈f |S|i〉 (B.4)

= 〈i|S†S|i〉. (B.5)

which is to say that S is unitary. It follows that

δij = 〈j|S † S|i〉 (B.6)

=
∑

f

〈j|S † |f〉〈f |S|i〉 (B.7)

for orthonormal states i and j. Let’s assume a two-body initial state i with particles with

four-momenta k1 and k2 and a final state f with an arbitrary number of particles, n. Then

we can define a transition matrix, T such that S = 1 + iT and it follows that

〈f |S|i〉 = 〈k′1k′2 · · · k′n|S|k1k2〉 (B.8)

= δif + i(2π)4δ4(P f − P i)〈f |T |i〉 (B.9)
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where P i = k1 + k2 and P f = k′1 + k′2 + · · · + k′n. The transition rate, Rfi, is normalized

such that

Rfi = (2π)4δ4(P f − P i)|〈f |T |i〉|2 (B.10)

The total cross-section for 12 → n particles is then given by

σ12→n =
1

4|k1|
√
s

∑

fn

Rfi (B.11)

where k1 is the three-momentum of particle 1 in the center-of-mass frame. In order to

derive the optical theorem we note that S†S = 1, therefore (1 − iT )†(1 − iT ) = 1 and if

follows that

− i(T − T †) = T †T. (B.12)

Considering two states i and j we then have

〈j|T |i〉 − 〈j|T †|i〉 =
∑

f

(2π)4δ4(P f − P i)〈j|T †|f〉〈f |T |i〉 (B.13)

which can alternately be obtained by inserting Equation B.9 into Equation B.7. If j = i
then

2Im〈i|T |i〉 =
∑

f

(2π)4δ4(P f − P i)|〈f |T |i〉|2. (B.14)

Using Equation B.11 we find that

σTot
12 =

1

2|k1|
√
s
Im〈i|T |i〉 (B.15)

=
1

2|k1|
√
s
ImA(s, t = 0). (B.16)

Equation B.16 is the statement of the optical theorem: the total cross-section is related to

the imaginary part of the 2 → 2 scattering cross-section taken to the limit of no momentum

transfer. Figure B.1 graphically illustrates this concept.

2Im ∑ 
f

f

k
1

k
2

k
1

k
1

k
2

k
2

f

Figure B.1. An illustration of the optical theorem.

This derivation drew on References [11] and [133].
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