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We discuss the phenomenology of effective field theories with new scalar or vector representations

of the Standard Model quark flavor symmetry group, allowing for large flavor breaking involving the

third generation. Such field content can have a relatively low mass scale <∼ TeV and O(1) couplings

to quarks, while being naturally consistent with both flavor violating and flavor diagonal constraints.

These theories therefore have the potential for early discovery at LHC, and provide a flavor safe “tool

box” for addressing anomalies at colliders and low energy experiments. We catalogue the possible

flavor symmetric representations, and consider applications to the anomalous Tevatron t t̄ forward

backward asymmetry andBs mixing measurements, individually or concurrently. Collider signatures

and constraints on flavor symmetric models are also studied more generally. In our examination

of the t t̄ forward backward asymmetry we determine model independent acceptance corrections

appropriate for comparing against CDF data that can be applied to any model seeking to explain the

t t̄ forward backward asymmetry.
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I. INTRODUCTION

In recent years, the study of New Physics (NP) that lies close to the electroweak (EW) energy scale

has been motivated primarily by the hierarchy problem. However, it is possible that the correct solution

to this problem or the detailed nature of EW symmetry breaking remain to be proposed. Experimental

input, as expected from the LHC, is crucial. Furthermore, hints for new physics (NP) may have already

emerged from the Tevatron. In this paper we are motivated by recent experimental anomalies at the Tevatron

and the strong discovery potential at LHC to explore collider signatures of new physics (NP) sectors that

are flavor symmetric. They will be taken to be invariant under the global flavor symmetry group GF =

U(3)UR
× U(3)DR

× U(3)QL
, or its subgroup HF = U(2)UR

× U(2)DR
× U(2)QL

× U(1)3 (where the

quarks of the first two families are in doublets of the corresponding SU(2) factors). The group GF is the

global symmetry of the Standard Model (SM) in the limit where one can neglect the Yukawa interactions

LY = YU ūRH
T iσ2QL − YD d̄RH†QL + h.c. , (1)

where YU and YD are the up and down quark Yukawa matrices, respectively.

The NP sectors will contain scalar or vector fields that have masses <∼ TeV and O(1) couplings to

quarks. At the same time they will be consistent with flavor changing neutral current (FCNC) constraints

precisely because of their flavor structure, as long as the breaking of the flavor symmetries is sufficiently

small. In the SM the top and bottom Yukawa couplings break the flavor group GF to its HF subgroup. We
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take this breaking into account in our analysis of NP sectors that are initially GF symmetric. The existence

of the HF symmetry at low energies protects these theories against dangerously large FCNC’s, e.g., in

neutral meson mixing. This protection satisfies the naturalness criteria of Glashow and Weinberg [1] and is

not the result of simply tuning parameters. Note that NP models that have an approximate HF symmetry

are sometimes referred to as models of next to minimal flavor violation [2]. The breaking of HF in the SM

is due to the other quark masses and the CKM mixing angles, and is thus small. The precise mechanism

by which HF is broken in the NP sector will not be important when we explore flavor diagonal collider

signatures. However, the nature of HF breaking will be relevant to our discussion of low energy FCNC’s,

see below.

Scalar and vector fields with dimension four GF invariant direct couplings to quarks are limited in their

allowed charge assignments by flavor and the SM gauge symmetry. There are only 14 different nontrivial

flavor representations allowed in each case. In the case of HF symmetric models the possible NP fields are

conveniently classified in terms of these representations, with the understanding that they need not come

in complete GF multiplets. A systematic exploration of new flavor symmetric sectors is therefore feasible,

either in general, or with the aim of explaining a particular anomaly.1

New flavor symmetric sectors that are perturbatively coupled to quarks are particularly interesting to

consider as candidate explanations for Tevatron anomalies. In the first part of this paper, we focus our

attention on two > 3σ anomalies: (i) the CDF measurement of the tt̄ forward backward asymmetry, Att̄FB ,

for mt̄ t ≥ 450 GeV [6] is 3.4σ away from the NLO SM prediction. (A recent DØ analysis [7] does

not observe a significant mtt̄ dependence in the “folded” detector level asymmetries, but it appears to be

consistent with the CDF detector level measurements within errors.) The inclusive tt̄ forward backward

asymmetry, averaged over the CDF semileptonic [6] and hadronic [8] tt̄ decay samples and the recent

DØ measurement [7], is ≈ 3σ from the NLO SM prediction; (ii) the like sign dimuon asymmetry measured

by DØ is 3.9σ away from the SM expectation [9, 10]. Each of these anomalies, if confirmed, points to a

relatively low scale of NP with a significant coupling to quarks. We identify flavor symmetric models that

have the potential to explain them either individually or simultaneously, and study related constraints. In the

case of GF symmetric models, under the assumption that the NP only couples to quarks, some hierarchies

among these couplings would be required in order to consistently explain the Att̄FB anomaly, e.g., due to

the absence of dijet or tt̄ resonances at the Tevatron and LHC. Thus, breaking of the GF symmetry to HF

would be necessary. Alternatively, one could consider HF symmetric models where the more constrained

1 Color symmetric fermion content that mixes with the SM fermion fields is not as constrained in its allowed representations.
Initial studies of vector-like fermions have also been undertaken in Refs. [4, 5]. Of the models studied only two were natural in
the Glashow-Weinberg sense [5].
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quark couplings would simply be absent.

It is possible that the above anomalies could be due to statistical fluctuations or underestimates of the-

oretical or experimental errors. Even if this turns out to be the case, the models we explore in this paper

are interesting in their own right, as they have strong discovery prospects at LHC. Again, this is because

their flavor symmetric structures allow for sub-TeV NP mass scales. In the second part of this paper, we

address the phenomenology of flavor symmetric sectors more generally. The global flavor symmetries we

consider could be accidental, or they could be a remnant of the underlying mechanism generating the SM

flavor structure (such as non-Abelian horizontal symmetries). We do not concern ourselves with the UV

origin of these symmetries, but instead focus on the collider and low energy phenomenology of the new sec-

tors. This approach is inspired by effective field theories (EFT), where one generally constructs all possible

interactions consistent with the symmetries of interest. The analysis of flavor diagonal collider constraints

and signatures can then be kept quite general, i.e., independent of the way HF is broken, as already men-

tioned. For simplicity, in attempts to explain a measured deviation from the SM we will only consider the

phenomenology of single GF multiplets (or the corresponding HF multiplets), effectively assuming that

there is a significant mass gap with other possible representations. Moreover, we will only consider their

couplings to quarks. Note that more generally, these fields could couple to additional states transforming

under GF or HF, possibly providing them with additional decay channels.

The determination of low energy flavor physics constraints on flavor symmetric models generally re-

quires the breaking of HF to be specified. When determining these constraints we assume the Minimal

Flavor Violation (MFV) hypothesis [11, 12], i.e., that all breaking of HF is due to the SM Yukawas. This

enforces maximal consistency with FCNC constraints through a symmetry principle, and allows us to ex-

plore how low the NP mass scale can be. In all the models we consider, the new states can have EW scale

masses. In MFV models that lead to class-2 operators (those that involve right handed fields) in the lan-

guage of [13], the breaking of HF can actually be orders of magnitude larger then assumed in MFV, while

still obeying the FCNC bounds.

The paper is organized as follows. In Section II we list all vector and scalar representations of the form

we have motivated, and write down in detail the vector field Lagrangians for two examples. In Section III

we systematically discuss the potential of models of this form to explain the Att̄FB anomaly, the DØ dimuon

anomaly, and related phenomenology. In Section IV we explore existing bounds on these models from LEP,

electroweak precision data (EWPD), FCNCs and dijet studies at the LHC and Tevatron. In Section V we

discuss additional LHC phenomenology. Finally, in Section VI we give our conclusions. Many details have

been relegated to the Appendices. In Appendix A we list the details of flavor symmetric vector Lagrangians,

in Appendix B we gives the details of 2 → 2 scattering calculations and phenomenology, and in Appendix



6

Case SU(3)c SU(2)L U(1)Y U(3)UR
×U(3)DR

×U(3)QL
Couples to

Is,o 1,8 1 0 (1,1,1) d̄R γ
µ dR

IIs,o 1,8 1 0 (1,1,1) ūR γ
µ uR

IIIs,o 1,8 1 0 (1,1,1) Q̄L γ
µQL

IVs,o 1,8 3 0 (1,1,1) Q̄L γ
µQL

Vs,o 1,8 1 0 (1,8,1) d̄R γ
µ dR

VIs,o 1,8 1 0 (8,1,1) ūR γ
µ uR

VIIs,o 1,8 1 -1 (3̄,3,1) d̄R γ
µ uR

VIIIs,o 1,8 1 0 (1,1,8) Q̄L γ
µQL

IXs,o 1,8 3 0 (1,1,8) Q̄L γ
µQL

X3̄,6 3̄,6 2 -1/6 (1,3,3) d̄R γ
µQcL

XI3̄,6 3̄,6 2 5/6 (3,1,3) ūR γ
µQcL

TABLE I: The flavor and gauge representations for vector fields that can couple directly to quarks through GF sym-

metric dimension four interactions without the insertion of a Yukawa matrix. QcL denotes the right handed conjugate

representation of the left handed SM doublet.

C we give a detailed discussion of constraints from meson mixing amplitudes.

II. GF SYMMETRIC REPRESENTATIONS

We are interested in scalars and vectors that couple directly to quarks through dimension four interac-

tions. The scalar fields of this form are renormalizable models, while the vector fields are nonrenormaliz-

able. In this section we list all the possible representations of GF and the SM gauge group that such fields

can have when GF is unbroken. The vector field representations are listed in Table I and the scalar field

representations are listed in Table II (the latter have been studied and classified in [3, 14]). This completes

the program initiated in [3]. The complete set of HF symmetric representations which can couple directly

to quarks through dimension four interactions appear in these tables as submultiplets of the GF representa-

tions. For example, in model VIs(o), the corresponding HF symmetric vector representations would consist

of a triplet, a complex doublet and a singlet of SU(2)UR
, which are color singlets (octets), or a subset of

these.

Several remarks are in order before we construct the Lagrangians.

• Is,o, IIs,o and IIIs,o carry the same quantum numbers and are thus a sub-classification of interac-

tions of a single field. For instance, in the case of a color singlet vector with the same couplings to
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Case SU(3)c SU(2)L U(1)Y U(3)UR
×U(3)DR

×U(3)QL
Couples to

SI 1 2 1/2 (3,1,3̄) ūR QL

SII 8 2 1/2 (3,1,3̄) ūR QL

SIII 1 2 -1/2 (1,3,3̄) d̄R QL

SIV 8 2 -1/2 (1,3,3̄) d̄R QL

SV 3 1 -4/3 (3,1,1) uR uR

SVI 6̄ 1 -4/3 (6̄,1,1) uR uR

SVII 3 1 2/3 (1,3,1) dR dR

SVIII 6̄ 1 2/3 (1,6̄,1) dR dR

SIX 3 1 -1/3 (3̄,3̄,1) dR uR

SX 6̄ 1 -1/3 (3̄,3̄,1) dR uR

SXI 3 1 -1/3 (1,1,6̄) QL QL

SXII 6̄ 1 -1/3 (1,1,3) QL QL

SXIII 3 3 -1/3 (1,1,3) QL QL

SXIV 6̄ 3 -1/3 (1,1,6̄) QL QL

SH,8 1, 8 2 1/2 (1,1,1) Q̄LuR, Q̄LdR

TABLE II: Different scalar representations that are not singlets under the flavor group that are GF symmetric [3] (the

upper rows). The two flavor singlet representations are in the last row and were discussed in [14].

QL, uR, dR this is just the baryonic Z ′. We found it useful to split the interactions into three sub-

groups. At colliders there is no interference among these interactions up to effects suppressed by

light quark masses (but if there are relations between their couplings this can have important con-

sequences for the predicted cross section; for example, for a purely axial gluon the NP interference

with the SM amplitude does not contribute to the top pair production cross section [15–17]). In the

treatment of FCNCs the interference effects are trivial to include in the analysis.

• Many of the scalar and vector fields do not lead to proton decay at any order in perturbation theory

due to the SM gauge symmetry and GF. The vectors X–XI and scalars SV–SXIV carry baryon number

±2/3 and may lead to proton decay if they also couple to lepto-quark bilinears, e.g., L̄cLγ
µuR and

L̄cLγ
µdR for fields X and XI, respectively. This type of coupling is not possible for scalars or vectors

in the color 6 representation and can be forbidden for the 3 color representation fields by extending

the flavor group to the lepton sector of the SM [3] .

• We assume that the new quanta have weak scale masses and that the cut-off of the theory is well

above the weak scale so that we only need to focus on dimension four interactions for most of our
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discussion. Other dimension four couplings such as BµνTr(V µV ν), with Bµν the hypercharge field

strength and Vµ the vector fields, are not directly relevant to the phenomenology of interest in this

paper. We leave the exploration of these interactions to a future publication.

• The kinetic terms (with flavor breaking insertions) can always be made universal through field redef-

initions. Below, we only write down the interaction terms.

• Tree-level exchanges of fields in a single representation of GF cannot explain both of the Tevatron

anomalies simultaneously for any of the models considered. Models VIIs,o and SI do, however, lead

to enhanced Att̄FB , while not modifying the tt̄ differential spectrum. At the same time they give new

CP violating contributions to Bs and Bd mixing of the right order of magnitude to yield the observed

like-sign dimuon asymmetry.

The interaction Lagrangians for the color triplet and sextet scalar fields are given in [3]. For vector

fields the GF symmetric interactions are given by q̄γµT aq′V a
µ , where T a represents a product of generators

of color, flavor, and weak SU(2), or some subset thereof, while q(′) are the uR, dR or QL family triplets,

as appropriate 2. To write down the GF breaking interactions it is useful to (initially) adopt some of the

formalism of MFV and promote YU,D to spurions that formally transform as bi-fundamentals of GF

YU → VU YU V
†
Q, YD → VD YD V

†
Q. (2)

Here VU,D,Q are elements of SU(3)U,D,Q, respectively. Assuming full MFV breaking of GF, all interactions

are then formally invariant under GF even for nonzero Yukawa couplings. We will mostly work to the first

nontrivial order in top Yukawa insertions (the resummation to all orders can be done using a nonlinear

representation of GF, see [13, 19–21]). The explicit forms of the interactions for all the vector models are

given in Appendix A. Here we show two examples, models VIs,o and X3̄,6.

Fields VIs(o) are SU(3)UR
flavor octets, color singlets (octets). The individual field components are V B

µ

(V A,B
µ ), where the color label A and flavor label B both run over 1..8. To compress the expressions we

introduce

V s
µ = TBV B

µ , V o
µ = T ATBV A,B

µ . (3)

with flavor (color) Gell-Mann matrices TB(T A) normalized to Tr[TATB] = δAB/2. The renormalizable

interactions between quarks and fields VIs,o are

LVIs,o = ηs,o1 ūR /V
s,ouR. (4)

2 In HF symmetric models the Lagrangians are trivially obtained from the corresponding GF symmetric Lagrangians, allowing
for the possibility that only particular submultiplets of the GF symmetric representations are present.
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There are also terms that break GF → HF,

∆LVIs,o = [ηs,o2 ūR(/V s,o∆U )uR + h.c.] + η̃s,o3 ūR(∆U/V
s,o∆U )uR + . . . . (5)

We kept only the breaking due to ∆U ≡ YU Y
†
U insertions. These are diagonal in the up-quark basis and

change the coupling of third generation quarks to the vector fields (explicitly written out in Appendix A,

Eqs. (A5), (A6)). Note that ηs,o2 can be complex and possibly a source of beyond the SM CP violation, of

interest when considering Bs mixing, while η̃o3 is real. Insertions of YUY
†
DYDY

†
U are also possible to break

the symmetry further and are almost diagonal in the up quark basis, while the off-diagonal elements lead to

FCNC’s. We postpone the discussion of these until Section IV D.

The GF → HF breaking also splits the vector mass spectrum. The flavor invariant mass terms are

LmassV Ia = (1 + δa,o)
{
m2
Va Tr

[
Ṽ a
µ Ṽ

µa
]

+ λ (H†H) Tr
[
Ṽ a
µ Ṽ

µa
]}

, a = o, s, (6)

where the color and SU(3) indices are suppressed, and there is no summation over a = o, s (the Kro-

necker delta δa,o insures the proper normalization for the color octet fields). Note that Ṽ is defined

when rotating to the mass eigenstate basis; see Appendix A. Adding the GF → HF breaking terms

(1 + δa,o)ζ1m
2
V Tr

[
Ṽµ ∆U Ṽ

µ
]

and (1 + δa,o)ζ2m
2
V Tr

[
∆U Ṽµ ∆U Ṽ

µ
]
, the mass spectrum of the vector

states is (suppressing the o, s labels)

m2
1,2,3 = m2

V +
λ

2
v2, m2

4,5,6,7 = m2
1 +m2

V

ζ1

2
y2
t , m2

8 = m2
4 +m2

V

2ζ2

3
y4
t . (7)

Note that λ, ζ1,2 are all real. The vectors V1,2,3 and V4,5,6,7 are degenerate since SU(2)U is only broken by

light quark Yukawas, not by yt.

Fields X3̄,6 are weak doublets in the bi-fundamental representation (1, 3, 3) of the flavor group. The

color anti-triplets have field components (Vµ)rγi,j , and color sextets the field components (Vµ)ri,j,α,β =

(Vµ)ri,j,β,α, with r the weak SU(2)L index, α, β, γ the color indices, while i and j are the indices of the

(1, 3, 1) and (1, 1, 3) representations respectively. The tree level quark coupling Lagrangian terms are (sup-

pressing all the indices apart from color, see also Eqs. (A30), (A31))

LX3̄
= η1 εαβγ d̄

α
R /V

γ QcβL + h.c., LX6 = η1 d̄
α
R(/V )α,β Q

cβ
L + h.c. (8)

Note that the Vµ fields transform as Vµ → VDVµV
T
Q , where dR → VDdR and QcL → V ∗QQ

c
L. The mass

terms are

Lmass
Xo,s

= m2
V Tr(VµV

µ†) + λ (H†H)Tr(VµV
µ†) + λ′Tr(HrV

r
µH

s†V µ†
s ) + λ′Tr(HC

r V
r
µH

Cs†V µ†
s ), (9)

where we have suppressed all the traced over flavor, color and weak indices (except in the last two terms

where we show explicitly the weak contractions). We use [(Vµ) rγ
i,j ]∗ = (V †µ )j,irγ , and similarly for the sextet.
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Note that the last two terms break the mass degeneracy between charge 1/3 and charge −2/3 components

of Vµ weak doublets. The flavor is broken through Yukawa insertions

∆Lmass
Xo,s

/m2
V = ζ1Tr(VµY

†
DYDV

µ†) + ζ2Tr(YDY
†
DVµV

µ†) + ζ3Tr(VµYUY
†
UV

µ†) + · · · , (10)

where we do not write down the terms with more than two Yukawa insertions or the similar terms with

Higgs fields. The resulting HF symmetric spectrum for charge 2/3 vectors is

m2
11,12,21,22 = m2

V +
1

2
(λ+ λ′) v2, m2

13,23,32,31,33 = m2
11 + ζ3m

2
V y

2
t . (11)

The interactions of mass eigenstates Ṽkl with mass eigenstate quarks (denoted with primes) are given by

(showing explicitly only color contractions, see also Eqs. (A32), (A32))

LX3̄
= η1 εαβγ (d̄′R)α /̃V γ

1 (u′L)cβ + η1 εαβγ (d̄′R)α /̃V γ
2 VCKM (d

′c
L)β + h.c.,

LX6 = η1 (d̄′R)α(/V )α,β (u′L)cβ + η1 (d̄′R)α(/V )α,βVCKM (u′L)cβ + h.c.,
(12)

where Ṽ1 and Ṽ2 are the mass eigenstate vector fields of the SU(2) doublet. The residual HF flavor uni-

versality of these interactions can be broken by insertions of the spurions Y †U YU and Y †D YD. In MFV this

is the only form of further flavor breaking. The rest of the Lagrangian constructions are collected in the

Appendix A.

III. PHENOMENOLOGY OF TEVATRON ANOMALIES

We now discuss two recent experimental anomalies observed at the Tevatron: the large forward-

backward asymmetry Att̄FB , and the like-sign dimuon anomaly in Bs decays. In this section, we systemati-

cally address the following questions:

• Is it possible to explain either of the two anomalies assuming HF symmetric models? By which

charge and flavor assignments?

• Are closely related experimental constraints simultaneously obeyed?

• Is it possible to explain both anomalies using just a single HF symmetric field?

A common feature of models put forward to explain the Att̄FB anomaly [3, 15–18, 22–83] is that they

have O(1) NP couplings to the up quark. They fall roughly into two classes, those with s-channel exchange

above a TeV3 [25, 26, 75], in which case the axial vector NP couplings to the top quarks and up quarks must

3 For a recent exception with a sub-TeV axigluon, see [17].
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be of opposite sign [25, 26], and those with sub-TeV t-channel exchange [18, 22, 23, 26–28, 57], in which

case large inter-generational couplings are required (for additional possibilities, see [29]). The couplings in

either class could arise from large flavor violation in the underlying theory, which may lead to violations of

FCNC constraints in K0 − K̄0, B0
d − B̄0

d , D
0 − D̄0 mixing, B → Kπ, or b → sγ, unless the couplings

are carefully aligned (see, e.g., [30, 31, 34]). Moreover, the t-channel models can lead to excessive (flavor

violating) single top or same sign top pair production at the Tevatron and LHC [22].

However, flavor violation is not necessary for largeAtt̄FB [35]. Note that in tt̄ production no net top quark

flavor charge is generated. Furthermore, models with an unbroken HF subgroup do not generate FCNCs

in processes with light quarks. The exact size of FCNCs then depends on the size of HF breaking. If this

breaking is MFV-like the FCNCs are generically suppressed below present bounds. The flavor symmetries

also eliminate single top and same sign top production.

Many new models have also been put forward to explain the DO/ dimuon anomaly [84–91]. Together

with possible indications for deviations from the SM in Bs → J/ψ φ decays and B− → τ− ν decays, it

may point to a NP phase in Bs,d mixing. Intriguingly, MFV suffices to explain the dimuon anomaly [92].

After discussing flavor symmetric fields and the Att̄FB anomaly, we will examine whether these fields can

also give large enough contributions to Bs mixing, under the assumption of MFV breaking of HF.

A. General analysis of the t t̄ forward backward asymmetry

We entertain the possibility that Att̄FB is enhanced above SM levels via tree level exchanges of fla-

vor symmetric scalars or vectors. The experimental evidence for such enhancement is as follows. Using

5.3fb−1 of data CDF measured an inclusive asymmetry Att̄FB = 0.158 ± 0.072 ± 0.017 in the t t̄ rest

frame (fixing mt = 172.5 GeV) [6]. In a channel with both t and t̄ decaying semileptonically an even

larger asymmetry was found, Att̄FB = 0.42 ± 0.15 ± 0.05 [8]. Similarly, a recent DØ analysis finds

Att̄FB = 0.196 ± 0.060+0.018
−0.026 using 5.4fb−1 of data [7]. Combining in quadrature the statistical and sys-

tematic errors of the three measurements gives Att̄FB = 0.200 ± 0.047. This is to be compared to the SM

predictionAtt̄,SMFB = 0.072+0.011
−0.007 from an approximate NNLO QCD calculation [93] withmt = 173.1 GeV

and using the MSTW2008 set of PDFs [94]. Inclusion of electroweak corrections leads to an enhancement

of the asymmetry, with Att̄,SMFB = 0.09 ± 0.01 recently obtained in Ref. [95]. In the pp̄ frame, a recent

approximate NNLO calculation [96] gives Att̄ SMFB = 0.052+0.000
−0.006 with mt = 173 GeV, to be compared

with the CDF value of Att̄FB = 0.150 ± 0.058 ± 0.024 [6]. The approximate NNLO SM predictions use

the known NLO results [97–99] and build on recent progress in NNLO calculations [100–105]. DØ also

reports a leptonic asymmetry AlFB = 0.152± 0.038+0.010
−0.013 to be compared to the MC@NLO prediction of
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Observable Measurement SM predict.

Att̄FB

0.158± 0.072± 0.017 [6]

0.42± 0.15± 0.05 [8]

0.196± 0.060+0.018
−0.026 [7]

 ' 0.200± 0.047 (7.24+1.04
−0.67

+0.20
−0.27) · 10−2[93]

Att̄FB(Mtt̄ > 450GeV) 0.475± 0.101± 0.049 [6] (11.1+1.7
−0.9) · 10−2[93]

Att̄FB(Mtt̄ < 450GeV) −0.116± 0.146± 0.047 [6] (5.2+0.9
−0.6) · 10−2 [93]

Att̄FB(|∆y| < 1.0) 0.026± 0.104± 0.056 [6] (4.77+0.39
−0.35) · 10−2 [93]

Att̄FB(|∆y| > 1.0) 0.611± 0.210± 0.147 [6] (14.59+2.16
−1.30) · 10−2 [93]

σtt̄ (6.9± 1.0)pb [108]

 (6.63+0.00
−0.27)pb [106]

(7.08+0.00
−0.24

+0.36
−0.27)pb [107]

TABLE III: Measurements and predictions for observables in tt̄ production at the Tevatron. We quote the approximate

NNLO QCD prediction of At t̄FB from [93] using MSTW2008 PDFs [94]. The two other choices for PDFs give results

in agreement with these [93]. Among the cross section predictions obtained in [106] we quote the 1PISCET one.

Al,SM
FB = 0.021± 0.001 [7].

CDF reported evidence that the anomalously large asymmetry rises with the invariant mass of the t t̄

system, with Att̄FB(Mtt̄ > 450 GeV) = 0.475 ± 0.114, while Att̄FB(Mtt̄ < 450 GeV) = −0.116 ±

0.153 [6]. A similar rise of the asymmetry with respect to the absolute top vs. anti-top rapidity difference

|∆y| = |yt − yt̄| was also reported by CDF with Att̄FB(|∆y| < 1.0) = 0.026 ± 0.104 ± 0.056 and

Att̄FB(|∆y| > 1.0) = 0.611± 0.210± 0.147 [6]. The recent DØ analysis [7] does not observe a significant

rise of the “folded” detector level asymmetry with respect to Mtt̄ and |∆y|. However, until these results are

unfolded they can not be directly compared to the CDF measurements, although at the detector level they

appear to be consistent within errors. We collect the above results in Table III.

Any NP enhancement of Att̄FB must not spoil the agreement between the measured production cross

section, σ̂t t̄, and the SM predictions. At NLO with NNLL summation of threshold logarithms, the SM

prediction is σtt̄ = (6.63+0.00
−0.27)pb [106] (using MSTW2008 pdf sets and 1PISCET choice of kinematic

variables and resummations – the other choices give consistent results but with larger error bars). This is

somewhat smaller than the approximate NNLO result (for mt = 173 GeV), σtt̄ = 7.08+0.00
−0.24

+0.36
−0.27 pb [107]

(see also [100, 104, 105]). Both of these results agree well, within errors, with the measured CDF result

based on 4.6fb−1 of data [108] σt t̄(mt = 173.1 GeV) = 6.9 ± 1.0pb. Thus the NP contribution to the tt̄

cross section, σNP
t t̄ , is tightly constrained.

Good agreement between experiment and SM predictions is also seen in the differential cross section

dσ/dMtt̄. This has important implications for the viability of different NP models. For instance, comparing

the measured and predicted cross sections together with the measured and predicted Att̄FB , for Mtt̄ > 450
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GeV, one finds that the NP contributions need to reduce the backward tt̄-scattering cross section (a statement

valid at 2σ). This can only happen if NP interferes with the SM [35]. NP in the s-channel which interferes

with the single gluon exchange amplitude must therefore be due to color octet fields. In general s-channel

resonances lead to significant effects in dσ/dMt t̄. However, this may be avoided for a purely axial gluon

that is broad [17], in particular regions of parameter space. There are no such clear requirements on the

charge assignments of possible t-channel NP contributions. However, a characteristic high mass tail in the

spectrum could lead to tension with the Tevatron and future LHC cross section measurements at large Mtt̄.

We collect expressions to be used in our analysis below. The total cross section σt t̄, forward-backward

asymmetry Att̄FB , and the cross sections for forward and backward scattering σF,B are defined as

σt t̄ = σF + σB, Att̄FB =
σF − σB
σF + σB

, σF (B) =

∫ 1(0)

0(−1)
d cos θ

dσ

d cos θ
, (13)

where θ is the angle between incoming proton and outgoing top quark. We use NLO SM predictions for σt t̄

and dσt t̄/dMtt̄, and LO predictions for the NP corrections (including interference with the SM). To obtain

Att̄FB we define a partonic level asymmetry,

ANP+SM
FB =

σNPF − σNPB
(σNP+SM
F )LO + (σNP+SM

B )LO
+ASMFB

(
σSM

σSM + σNP

)
, (14)

which is to be compared against the binned unfolded partonic level results of [6]. We use the NLO + NNLL

SM predictions for the forward, backward and total cross sections [109], the tt̄ spectrum [109] and Att̄,SMFB

[93]. For concreteness, forMt t̄ < 450 GeV we take the central values σSM = 4.23 pb andAtt̄,SMFB = 0.052,

while for Mt t̄ > 450 GeV we take σSM = 2.40 pb and Att̄,SMFB = 0.111 (MSTW08 pdfs); for the inclusive

asymmetry (in the tt̄ rest frame) we take Att̄FB = 0.0724.

1. Acceptance effects

As pointed out in [30, 110], care is needed when comparing NP predictions to the experimental parton

level Att̄FB and Mtt̄ differential spectrum deduced by CDF [6, 108], since the deconvolution was done

assuming the SM. The acceptance corrections are especially important if NP enhances top production in

the very forward region This is because the SM tt̄ event distribution is more central. We take into account

the CDF experimental cuts using correction factors εi. For the i−th bin in Mtt̄ one needs to multiply the

calculated partonic tt̄ cross section dσNP/dMtt̄ by εi in order to compare with the CDF measured partonic

cross section (dσNP/dMtt̄)
CDF

(
dσNP

dMtt̄

)CDF

i

= εi ×
(
dσNP

dMtt̄

)
i

. (15)
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Mtt̄ (GeV): /∆y : 0− 0.6 0.6− 1.2 1.2− 1.8 1.8− 2.4 2.4− 3.0

350− 400 2.42 2.23 − − −

400− 450 3.44 2.74 1.95 − −

450− 500 4.29 3.32 1.75 − −

500− 550 5.25 3.50 2.34 1.18 −

550− 600 5.61 4.39 2.67 1.15 −

600− 700 6.59 4.81 3.01 1.09 0.42

700− 800 7.38 6.06 3.49 1.34 0.45

800− 1400 6.68 6.26 4.30 1.83 0.42

TABLE IV: Acceptances εij (in %) to be used for emulating the CDF deconvolution to parton level measurements (cf.

eqs. (15) - (17)). Note that the εij do not depend on the NP model and are symmetric in ∆y ↔ −∆y.

There is no summation over i in this equation. Since CDF is using SM acceptances and no bins in ∆y in

the deconvolution of the dσ/dMtt̄ measurement in [6], the εi are given by the ratio of acceptances for the

NP model and the SM

εi =
εNP
i

εSM
i

, (16)

where εNP(SM)
i are calculated by splitting each i-th Mtt̄ bin into j bins in ∆y = yt − yt̄

ε
NP(SM)
i =

∑
j εijσ

NP(SM)
ij∑

j σ
NP(SM)
ij

, (17)

and the sum is over the bins in ∆y. Here εij is the acceptance for each (Mtt̄,∆y) bin, and σNP(SM)
ij is the

corresponding cross section integrated over the bin. The above expressions are approximate in so far as

the bins have finite sizes, and the spill-over of events between different bins is not taken into account. The

acceptances are calculated by simulating the partonic t− t̄ cross section using MadGraph4.4.30 [111],

decaying the top quarks in Pythia6.4 [112], which also simulates the LO showering and hadronization,

and using PGS for detector simulation. The events were read into Mathematica, where the cuts from

[6, 113] were implemented. The resulting values for the acceptances εij are collected in Table IV.

In Fig. 1 the correction factors εi are shown as a function of the Mtt̄ bin for two benchmarks points (cor-

responding to illustrative couplings and mass valuers) in models VIs,o which exhibit substantial departures

from the SM acceptances. Results for dσ/dMtt̄ and Att̄FB for the two model VIo benchmark points in Fig. 1

were shown previously without acceptance corrections [35]. The differential distributions with acceptance

corrections are compared to those in [35] in Fig. 2. We see that the corrections bring the predicted spectrum

for the light vector example into good agreement with experiment. For the remaining GF representations
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FIG. 1: The correction factors εi for t-channel dominated vector models VIs (left) and VIo (right), where

(mV ,
√
ηijη33, ηi3,ΓV /mV )=(300 GeV, 1, 1.33, 0.08)[dashed red]; (1200 GeV, 2.2, 4.88, 0.5)[solid blue].

discussed below, the correction factors are not as important. For models SV, VIIIs and IXs the εi are below

15%, and for the others they are below 5%, for all Mtt̄ bins and all benchmarks points considered.

The pattern of acceptance corrections εi can be understood from the angular dependence of the NP

contribution to the differential cross section in each model. For instance, the t-channel exchange of a

vector with mass mV leads to a Rutherford scattering peak in the forward direction for m2
tt̄ >> m2

V .

Specifically, the expressions for the NP cross sections contain characteristic t-channel (1− cos θ)2,4 factors

in the denominators, whose angular dependence is reinforced by (1 + cos θ)2 factors in the numerators,

where θ is the top quark scattering angle in the tt̄ center of mass frame. Thus, models VIs,o with light

vector masses favor forward top-quark production at large Mtt̄, yielding εi that are substantially less than 1

in the high Mtt̄ bins. In models SI (t-channel) and SV, SVI (u-channel), the angular dependence introduced

by the characteristic (1 ∓ cos θ)2,4 factors in the denominators is offset by (1 ∓ cos θ)2 factors in the

numerators, which leads to central NP top-quark production, as in the SM. The result is that the εi in these

models are actually slightly larger than 1.

To apply the acceptance corrections to Att̄FB we follow CDF, where Att̄FB was obtained using four bins

in Mtt̄ and ∆y: Mtt̄ above or below 450 GeV and ∆y positive or negative. The correction factor for each

of the four bins is given as in Eqs. (15)-(17), except that the sum in (17) now runs over all j with either

∆y > 0 or ∆y < 0, and over the appropriate values of i with either Mtt̄ > 450 GeV or Mtt̄ < 450 GeV.

We find that the corrections are small for all of the models we consider. For instance, for the light vector

color octet example in Fig. 1 the shift is from an uncorrected Att̄FB = (0.10949, 0.357) to a corrected

Att̄FB = (0.10953, 0.339), where the first and second numbers are the low and high mass bins in Att̄FB . The

small shifts inAtt̄FB are due to the coarse binning inMtt̄ [110]. In particular, the high mass bin is dominated
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FIG. 2: The effect of acceptance corrections on the vector model discussed in [35]. Before acceptance cor-

rections (left), after corrections applied (right). For the parameters (mV ,
√
ηijη33, ηi3,ΓV /mV ): solid red

(300 GeV, 1, 1.33, 0.08); dashed blue (1200 GeV, 2.2, 4.88, 0.5).

by events with Mtt̄ near 450 GeV, which are more central, as in the SM.

2. The t t̄ phenomenology of HF symmetric scalar fields

The flavor symmetric models introduced in Section II and collected in Tables I, II can couple to light

and heavy quark bilinears with unsuppressed couplings. They are thus interesting candidates to explain the

Att̄FB anomaly, as noted in [3, 35, 36]. In the case of scalars, SU(2)L singlet color triplets or color sextets

and SU(2)L doublet color singlets have previously been identified as being promising for explaining the

Att̄FB anomaly [18, 32, 33, 35–37, 114]. Here, we will focus on some of the flavored versions listed in Table

II. Our results overlap with past studies, but we also include color triplet and sextet scalars that couple to

initial state down quarks, that have not been studied as extensively. We find that these models may also be

viable, although they generically require a coupling that is a factor of ∼ 2 larger than if the up quark is in

the initial state. This rule of thumb also holds for the vector models that we will study in next subsection.

We show results below for models SV,VI that couple to initial state up quarks, for models SIX,X that

couple to initial state down quarks, and model SI that couples to initial state up and down quarks. (Flavored

color sextets and color triplets were considered previously in [35, 36]). We expect models SXI − SXIV

to yield results similar to those for SIX,SX. The scalar models SIII and SIV are in the 1 and 8 color

representations respectively. These models are known to generically suppress Att̄FB when interfering with

the SM [18] and we do not consider them further.
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FIG. 3: Upper two rows: predictions for the inclusive cross sections σ(tt̄) and inclusive forward-backward asymmetry

AFB(tt̄) as a function of scalar mass mS for models SV,SVI and couplings η = 1/4 (solid line), 1/2
√

2 (dotted),

1/
√

2 (dot-dashed), 1 (dashed) compared to 1σ and 2σ experimental (shaded) bands. Predictions for Att̄FB with Mtt̄

below and above 450 GeV and for dσt t̄/dMt t̄ are compared to the experimental data from [6, 108] in the last row for

benchmark points labeled with a ? in the inclusive predictions (mS = 400 GeV for SV and 800 GeV for SVI).

The interaction Lagrangians for scalar models SI and SIX are

LI = η (S0
ij ūi Luj R + S−ij d̄i Luj R) + h.c., (18)

LIX = η εαβγS
α
ijd

i β
R u j γR + h.c., (19)
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where i, j and α, β, γ denote flavor and color indices, respectively. Explicit forms of the interaction La-

grangians for the remaining scalar models under discussion, SV,VI,X are collected in Appendix A. In the

GF symmetric limit the decay widths of the scalars are κ η2mS/16π, where η is the coupling of the scalar

field to the SM quarks, and κ = 1, 8, 8, 2, 2 in models SI, SV, SVI, SIX, SX, respectively (assuming all

quark decay channels are open and ignoring phase space effects). The interaction Lagrangians explicitly

defining η are collected in Appendix A, while the relevant NP cross section formulae for top quark pair

production can be found in Appendix B.

In Figs. 3 and 4 we collect predictions for the inclusive Att̄FB and σt t̄ as functions of the scalar masses

in models SV, SVI, SIX, and SX, for several values of the couplings η to quarks. These results do not

depend on whether one is considering the GF symmetric limits in Eqs. (19), (A37), and (A38)), or the

HF symmetric limits (with the couplings of the light quarks to the top identified with the chosen values of

η). Large effects on Att̄FB are possible, while remaining within the 2σ bounds for σt t̄. In general O(1)

couplings η are required. Therefore, some GF → HF flavor breaking will be necessary in order to satisfy

the dijet constraints on the couplings to light quark pairs, particularly in models SVI and SX (we comment

on this further below). For example, recent LHC dijet measurements imply that in model SVI the couplings

of light quarks to ∼ 1 TeV mass scalars should be <∼ 0.1, see Section IV C.

A strong constraint on these models is consistency with the measured dσ(t t̄)/dMtt̄ distribution. To

demonstrate the potential of these models to explain the Att̄FB anomaly and their impact on this spectrum

we pick particular benchmark values for the scalar masses and couplings, denoted by a ? in Figs. 3, 4.

The resulting dσ(t t̄)/dMtt̄ spectra and Att̄FB in the low and high Mtt̄ bins are shown in the last rows of

Figs. 3, 4. We do not apply K-factors to the NP cross sections in any of the models we consider. A

genuine NLO calculation for these models is beyond the scope of this work, but is clearly required before

precise conclusions can be drawn regarding the effects of the various models on the dσ/dMtt̄ distributions.

All chosen points predict a significantly enhanced Att̄FB in the high invariant mass bin. In general, these

models reduce the good agreement between the SM and measured dσ(t t̄)/dMtt̄ spectrum, while improving

the agreement in Att̄FB . Clearly, there is significant tension between satisfying the constraints on the Mtt̄

distribution while simultaneously creating a large Att̄FB enhancement, as has recently been emphasized in

[37, 44]. Recent DØ data [7] shows a preference for a smaller Att̄FB in the high Mtt̄ bin. While the Mtt̄

dependence of Att̄FB has not been unfolded by DØ , and thus cannot be directly compared to the results in

Figs. 3 and 4, some of the tension may be alleviated with the new data.

The flavor breaking naturally present in this framework can reduce the remaining tension with measure-

ments associated with the light quark sector, e.g., from the dijet bounds mentioned above. For instance,

keeping the leading insertions in y2
t that break GF → HF, the Lagrangian for scalar model SIX in the mass
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FIG. 4: The same as Fig. 3, but for models SX,IX and couplings η = 1/
√

2 (solid line), 1 (dotted),
√

2 (dot-dashed),

2 (dashed). Benchmark masses are mS = 750 GeV (SIX ) and mS = 800 GeV (SX ).

eigenstate basis becomes,

LIX = η1 (d′R)αi (u′R)βj S
′i,j
γ εαβγ +

(
η1 + 2 η2 y

2
t

)
(d′R)αi (t′R)β S

′i,3
γ εαβγ , (20)

with j = {1, 2} and i = {1, 2, 3}. The mass spectrum is split, with m2
i3 = m2

ij + ζ̃1m
2
S . Depending on the

signs of η1,2 and ζ̃1 one can have an enhanced coupling to top quarks (compared to couplings to light quarks)

with a suppressed mass scale of the m2
i3 components of the scalar. This can naturally lead to larger effects
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FIG. 5: Upper row: predictions for the cross section σ(tt̄) and inclusive forward-backward asymmetry AFB(tt̄) as

a function of scalar mass mS for model SI and coupling η = 1/3 (solid curve), 2/3 (dotted), 3/4 (dot-dashed), 1

(dashed). Predictions for Att̄FB with Mtt̄ below and above 450 GeV and for dσt t̄/dMt t̄ are shown in the last row for

the benchmark point labeled with a ? in the inclusive predictions (mS = 110 GeV).

on top phenomenology, such as Att̄FB and σt t̄, while at the same time weakening the impact of the dijet

constraints (see Section IV C). This situation is similarly realized in the other scalar models. Alternatively,

one could consider minimal HF symmetric versions of models SIX and SX, which only contain the scalar

GF submultiplets transforming as (1, 2, 1) under HF (they only couple the light quarks directly to the top

quark), while in the minimal HF symmetric versions of models SV and SVI one would consider the (2, 1, 1)

representations of HF.

Finally, we discuss model SI.4 (Models with flavored scalar doublets have previously been considered

in [32, 33]). For illustration, we can define the left-handed (LH) quark fields in Eq. (18) in either the

up or down quark mass eigenstate basis (with the right-handed (RH) up quarks in their mass eigenstate

basis). In both cases, the recent DØ upper bounds [116] on anomalous resonant dijet production in W +

4 Note that two studies have recently concluded [37, 114] that a (color singlet) SU(2)L doublet would be the most promising,
among the possible scalar representations, for explaining the tt̄ asymmetry with minimal distortion of the Tevatron and LHC
Mtt̄ spectra.
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jets imply that the couplings of the scalars to light quarks should satisfy ηij <∼ 0.2, i, j = {1, 2}, given the

light scalar doublet masses favored by theAtt̄FB anomaly (see below and Section IV C). Significant breaking

of GF → HF would, therefore, be necessary in order to accommodate O(1) scalar-top quark-light quark

couplings. However, we reiterate that HF symmetry protects against NP contributions toK−K̄ andD−D̄

mixing, as well as to single top and same sign top production.

If the LH quarks in Eq. 18 are defined in the up mass basis, then theB → Kπ branching ratio constraints

[37, 115] would also impose the bound η3i <∼ 0.2, i = {1, 2}, see Section IV D. Therefore, in this case

top phenomenology would be well approximated by a minimal HF symmetric model consisting of scalar

SU(2)L doublets which transforms as (1, 1, 2, a) under HF, where the U(1)3 charge a is opposite to that of

the top and bottom quarks (U(2)QL
is defined with respect to the LH up quark mass eigenstate basis). We

can write the corresponding interaction Lagrangian, in the quark mass eigenstate bases, as

Lmin
I(a) = η (S0

i 3 ū
′
i L t
′
R + S−i 3 (V †CKM)j i d̄

′
j L t

′
R) + h.c., (21)

where i = {1, 2}, j = {1, 2, 3} and VCKM is the Cabbibo-Kobayashi-Maskawa (CKM) matrix. If the LH

quarks in Eq. (18) are defined in the down quark mass eigenstate basis, there are two minimal HF symmetric

and flavor safe alternatives for Att̄FB enhancement: exchange of scalar SU(2)L doublets which transform as

(2, 1, 1, a), or as (1, 1, 2, a) ( U(2)QL
is now defined with respect to the LH down quark mass eigenstate

basis). The relevant interaction Lagrangians would be

Lmin
I(b) = η (S0

3 i ū
′
j L (VCKM)j 3 u

′
i R + S−3 i b̄

′
L u
′
i R) + h.c., (22)

or

Lmin
I(c) = η (S0

i 3 ū
′
j L (VCKM)j i t

′
R + S−i 3 d̄

′
i L t
′
R) + h.c., (23)

respectively, where i = {1, 2}, j = {1, 2, 3}. For the light scalar masses ( <∼ 130 GeV) and O(1) couplings

η favored by Att̄FB , options I(a) and I(c) above (Eqs. (21), (23)) are disfavored at the 4σ level by constraints

on non-oblique corrections to the Z couplings to quarks, whereas option I(b) (Eq. (22)) is consistent at

2σ, see Section IV B. In a generalization of option I(b) to complete GF multiplets, non-oblique correctons

would dictate that the couplings ηi3 need to be roughly a factor of 2 smaller than η3i for i = {1, 2}, while

Wjj constraints would dictate the bounds ηij <∼ 0.2 for i, j = {1, 2}.

In Fig. 5 we show predictions forAtt̄FB (inclusive andMtt̄ bins) and dσ/dMtt̄ corresponding to Eq. (22).

Our results confirm the findings in [37] for Att̄FB enhancement with scalar doublets: given CDF data the

preferred scalar mass is small, below 130 GeV, while the coupling η is O(1). Also, the difference between

the asymmetries in the low and high mass bins is not large when the latter is enhanced (which could be
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FIG. 6: Upper two rows: predictions for total cross sections σ(tt̄) and inclusive forward-backward asymmetry

AFB(tt̄) as a function of vector mass mV for models IIs,o and couplings fqft = 1/256 (solid curve), 1/128 (dotted),

1/32 (dot-dashed), 1/8 (dashed). The bands are the one and two σ measurements of Att̄FB and σt t̄. The predictions

for AFB with Mtt̄ below and above 450 GeV and for dσt t̄/dMt t̄ are shown in the last row for benchmark points

labeled with a ? in the inclusive predictions (MV = 500 GeV). The data are summarized in Table III.

welcome in view of the recent DØ Att̄FB measurements), and there is minimal impact on the Mtt̄ spectrum.

Finally, we note that for our benchmark points the bounds on the top quark decay width are not violated by

new top quark decays to a scalar and a light quark (even though there are 2 times as many such modes in

I(b) than previously considered in [37]).
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FIG. 7: Same as Fig. 6 but for vector models VIs,o and couplings fqft = f2
qt = 1/4

√
2 (solid curve), 1/4 (dotted),

1/
√

2 (dot-dashed), 2
√

2 (dashed) for model Vs and couplings fqft = f2
qt = 1/16 (solid curve), 1/8 (dotted), 1/4

(dot-dashed), 1/2 (dashed) for model Vo. For the benchmark points, mV = 500 GeV.

3. The t t̄ phenomenology of HF symmetric vector fields

In flavor symmetric scalar models, tt̄ production can only proceed via the u or t channels. Flavor

symmetric vector models differ in this respect, as tt̄ production can also proceed in the s channel or both in

s and t channels simultaneously. Top phenomenology in these models is dictated to a large extent by which

channel dominates. The sizes of the couplings required in order to explain the top asymmetry are roughly
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FIG. 8: Same as Fig. 6 but for pure t channel vector models VIIs,o and coupling fqt = 1/5 (solid curve), 4/5 (dotted),

8/5 (dot-dashed), 16/5 (dashed) for model Vs and couplings fqt = 1/4 (solid curve), 1 (dotted), 9/4 (dot-dashed), 4

(dashed) for model Vo. For the benchmark points, mV = 300 GeV.

fixed by whether the vectors couple to up or down quarks in the initial states, as in the scalar models. The

Lagrangians for the vector models are given in Section II and Appendix A. Expressions for the q q̄ → t t̄

cross sections for models I−XI are collected in Appendix B. They are given in terms of effective couplings

of the vectors to light quarks (fq), to top quarks (ft), and to top and light quarks (fqt), defined in terms of

η1,2 etc, see Table VII. In this section we use these couplings as numerical inputs. In the GF symmetric

limit (yt = 0), one has fq = ft = fqt. Among the vector models, Is and Vs,o do not contribute to top
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FIG. 9: Predictions for dσ/dMtt̄ and AFB for a set of vector models, IVs,o,VIs,o,VIIIs,o, IXs,o fixing mV =500

GeV (except for VIs,o where mV =350 GeV, and using flavor breaking choices for couplings to quarks;

(
√
fqft, fqt) = (0.1, 0.3)IVs; (0.1, 0.3)IVo; (0.55, 1.3)VIs; (0.55, 1.3)VIo and (η1, η2) = (1.4,−0.4)VIIIs;

(1.3,−0.5)VIIIo; (1.1,−0.4)IXs; (1.1,−0.4)IXo.
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production, and Is, IIs and IIIs do not interfere with the SM amplitude at tree-level.

We begin with an examination of the representative models IIs,o, which only contribute in the s-channel.

The vector decay widths are given by mV (2f2
q + f2

t )/8π (IIs) and mV (2f2
q + f2

t )/48π (IIo), neglecting

phase space suppression due to top quarks in the final state. In the first two rows of Fig. 6 we collect

predictions for the inclusiveAtt̄FB and σt t̄ as functions of the vector masses, for several values of the product

fqft. We have taken vector decay widths appropriate for the GF symmetric limit: mV 3fqft/8π (IIs)

and mV fqft/16π (IIo). In the last row, predictions for dσ/dMtt̄ and Att̄FB in the low and high Mtt̄ bins

are shown for the benchmark points (denoted by a ?). Good fits to the inclusive cross section and the

top asymmetries can be obtained. However, agreement with dσ/dMtt̄ is much harder to achieve, as the

effect of the s-channel resonance is clear. The bounds from the Tevatron can be avoided if mV
>∼ 1 TeV.

Unfortunately, for mV
>∼ 1 TeV and O(1) couplings the effect on Att̄FB is strongly reduced. The LHC

dσ/dMtt̄ spectrum would also be problematic. It is possible, though, to hide a light s channel resonance

via an increase of its decay width due to additional non-qq̄ final states, as has recently been discussed in

the context of pure s-channel axial-vector models [17]. Another possibility for increasing the vector decay

widths may be to consider the GF breaking hierarchy f2
q << f2

t , keeping the product fqft fixed.

The flavor octet models VIs and VIo contain admixtures of s and t channel contributions, while the

flavor (3, 3̄, 1) models VIIs and VIIo are purely t channel. The s channel contributions in VIs,o are due

to the vectors associated with the generator T 8 of SU(3)UR
and the coupling product fqft. The t channel

contributions are due to the vectors associated with the generators T 4,..,7 and the coupling product f2
qt. While

the generic problem of s channel resonances persists, it is mitigated by their relative suppression compared

to the t channel contributions (the coefficients C1,2 are significantly smaller than C3 for these models, see

Table VII), by possible cancelations between the two channels, and by the absence of interference between

the SM and NP s channel contribution in VIs (C5 = 0). The s channel effects can be further diminished,

if the vector decay widths are enhanced by additional non-qq̄ final states.5 This assumption was implicit in

the model VIo examples presented in [35] and Fig. 1. In the following, we only consider vector decays to

quark bilinears. In the GF symmetric limit (fq = ft = fqt) the decay widths can be written as f2
qtmV /16π

(VIs and VIIs) and f2
qtmV /96π (VIo and VIIo). Finally, s channel effects in VIs,o would be suppressed

in the GF breaking limit fqft << f2
qt (this breaking is natural due to the large top yukawa), and would

be absent entirely in the minimal HF symmetric realizations which only contain the complex SU(2)UR

doublets associated with the SU(3)UR
flavor generators T 4,..,7.

5 Given that these models are by themselves non-renormalizable, it is reasonable to expect that renormalizable UV completions
could contain additional vector decay modes.
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We show the effect of the models VIs,o and VIIs,o on At t̄FB and σt t̄ in the GF symmetric limit in Figs. 7

and 8, respectively. In the purely t-channel models VIIs,o, we see that it is possible to enhance At t̄FB , while

at the same time not introducing any visible deviations in the dσ/dmtt̄ differential spectrum. For models

VIs,o, on the other hand, we see that it is difficult to enhance At t̄FB sufficiently, without obtaining excessive

s channel peaks in the dσ/dMtt̄ spectra, as in the model IIs,o examples above. However, as already noted,

much better agreement with the measured spectrum can be achieved in this case, if GF is broken down to its

subgroup HF
6. In Fig. 9 we show such examples, with fqft << f2

qt, for various vector models. The decay

widths of the different vectors in a GF multiplet will not be equal in this limit. For simplicity, we have iden-

tified all the widths in each multiplet with the quantities mV fqft/16π× (3, 1/2, 1, 1/6, 2, 1/3, 1/2, 1/12)

in models IVs, IVo, VIs, VIo, VIIIs, VIIIo, IXs, IXo, respectively (which would hold in the GF symmetric

limit, neglecting phase space differences). The rationale for this approximation is that the s channel res-

onance widths are associated with the coupling products f2
q and f2

t , whereas the widths of the t channel

resonances, controlled by the product f2
qt, have minimal impact on the Mtt̄ spectrum. In addition, as we

will see in Section IV C (see Table VI), dijet constraints on the light quark vector couplings fq are relatively

mild, so that the relation f2
q = f2

t = fqft would be phenomenologically viable in the light vector examples

of Fig. 9.

4. Limits from LHC measurements of the t t̄ invariant mass spectrum.

Recently, the first measurements of the tt̄ invariant mass spectrum at the LHC have been presented

by the ATLAS and CMS collaborations. With up to 0.7 pb−1 the ATLAS collaboration obtains σtt̄ =

176 ± 5(stat)+13
−10(syst.) ± 7(lumi.) pb, while using 36pb−1 the CMS collaboration obtains a combined

cross section σtt̄ = 158 ± 10(uncor.) ± 15(cor.) ± 6(lumi.) pb [120]. This is to be compared with the

NLO+NNLL predictions or the approximate NNLO predictions for the inclusive cross section that are listed

in Ref. [106], and range between σtt̄ = 157±13 pb and σtt̄ = 145±11 pb, depending on the approximation

used. ATLAS and CMS have also presented promising first measurements of the differential cross section

at 200 pb−1 and 886 pb−1 [121], respectively.

In the near future the differential cross section measurements will place meaningful constraints on the

models we have considered. We therefore present below some representative examples of their impact on

6 Whereas in models VIIs,o the GF → HF breaking is not needed in order to obtain good agreement with the dσ/dmtt̄ spectrum,
it may be required to evade dijet and B → Kπ constraints.
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FIG. 10: Predictions for the ratio (dσ(t t̄)NP+SM/dMtt̄)/(dσ(t t̄)SM/dMtt̄) for scalar and vector models. The scalar

model examples are for model SV with (η,mS) = (1, 400 GeV) dashed blue, and for model SVI with (η,mS) =

(1/
√

2, 800 GeV) dotted red. The vector model examples are for IIo with (fq = ft,MV ) = (1/
√

32, 500 GeV) solid

blue, and for with (fq ft, fqt,MV ) = (0.5, 2, 500 GeV) solid red.

the differential spectrum. In Fig. 10 we show the ratio

Rσ =
dσ(t t̄)NP+SM/dMtt̄

dσ(t t̄)SM/dMtt̄
. (24)

in models IIo,VIo, SV, and SVI for the benchmark points shown in Figs. 6, 7, and 9. In the ratio we use

SM NLO+NNLL prediction from Ref. [109], while NP contribution including interference with the SM is

calculated at LO, mirroring our procedure for Tevatron predictions used in previous sections. In Fig. 10 a

sharp resonant peak is clearly visible for the disfavored pure s-channel model IIo. Once convoluted with

the experimental resolution the peak will be less prominent. For instance assuming 10 GeV resolution the

peak leads to an O(30%) enhancement of the cross section in the bin containing the peak. The model VIo

example contains a rise in the tail region associated with the Rutherford scattering peak that is characteristic

of t-channel models with O(1) couplings. The scalar models SV and SVI, being u-channel models, display

a relative enhancement throughout the entire differential spectrum [44], similarly to the case at Tevatron (see

Fig. 3). Model SI displays virtually no deviation from the SM spectrum, as pointed out in Refs. [37, 68].

B. Contributions to Bs − B̄s mixing

There is some evidence for NP contributions to the measurement of the Bs mixing phase. A 3.9σ

deviation from the negligible SM prediction has been measured in the like-sign dimuon charge asymmetry

by the DØ collaboration [9, 10]. This result is in agreement [92, 122] with a hint for a nonzero weak phase
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in Bs mixing (measured through flavor tagged decays [123, 124]). The hints for NP in Bs mixing have two

preferred solutions [92], with

hs ∼ 0.5, σs ∼ 130◦ and hs ∼ 2, σs ∼ 100◦. (25)

Here, hs,d and 2σs,d denote the magnitude and phase, respectively, of the NP contribution to theBs,d mixing

amplitude, normalized to the SM one (see also (C3)). Note that the above results have been obtained using

the older measurement of the dimuon asymmetry [9]. Since the two measurements are consistent, we do not

expect a significant change in the position of the two minima. There is also a slight preference for hd ∼ 0.2,

σd ∼ 100◦, but at slightly more than 1σ hd is consistent with zero. At 3σ one finds hd < 0.5 for all σd [92].

The flavor symmetric models can be grouped by whether or not they can give contributions to Bs − B̄s

mixing. The models in which the new fields only couple to uR fall into the latter category These are models

IIs,o, VIs,o and SV,VI. Then there are models in which the NP contributions first arise at loop level: VIIs,o

and SIX,X, which couple to dR and uR, ,XI3̄,6 and SI,II that couple to uR andQL. For the remaining models

tree level contributions to Bs mixing are possible.

For a quantitative analysis one needs to specify the HF breaking. We will adopt the MFV hypothesis,

assuming that the breaking in the NP sector is only due to the SM Yukawa couplings. (for an example with

maximal breaking of HF see [31]). This hypothesis ensures that the FCNCs generated from the exchange

of NP fields have SM CKM suppression, making the FCNC constraints easier to satisfy. MFV scalar fields

that can lead to the dimuon anomaly have been discussed in the literature previously [88–91]. We begin by

classifying the flavor symmetric vector and scalar fields that can contribute to Bs mixing at tree level. Most

of the details are relegated to Appendix C.

The MFV models fall in two categories:“universal models” leading to class 1 ∆B = 2 mixing operators

in the terminology of [13], and “yukawa suppressed” models that give rise to class 2 operators and are

additionally suppressed by light quark yukawa couplings, ys,d. In universal models the NP contributions

(normalized to the SM) are equal in the Bs and Bd mixing amplitudes. This is in some tension with exper-

iment, where there are indications for large effects in Bs mixing, i.e., 50% − 200% of the SM amplitude.

Measurements in the Bd system, on the other hand, can accommodate a NP contribution of up to ∼ 20%.

Universal models can thus explain the dimuon anomaly only if the real effect is on the lower end of the

experimentally preferred range for Bs mixing and on the upper range for Bd mixing.

The simplest examples of universal MFV models that can explain the dimuon anomaly are the two

scalar doublet model, where in our notation the higgs linear combination without a vev is SH [89–91],

and the color-octet, weak-doublet scalar model S8 [14]. Effects are large even for mS = 1 TeV, if the

couplings of the flavor breaking terms ηi and the bottom Yukawa coupling yb are O(1). For the SM value
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yb ∼ 0.02 the mass scale for the new uncharged scalars would have to be quite low. Such a low mass scale,

surprisingly, is consistent with present phenomenology for S8 [125]. Similar comments apply to the other

universal models, IIIs,o, IVs,o,VIIIs,o, IXs,o and SXIV. In order to obtain the right size of hs for the dimuon

anomaly one needs ηi ∼ 0.1, if mS,V = 1 TeV.

The yukawa suppressed models can have mixing amplitudes suppressed either by one power or two

powers of light yukawas. For y2
s suppressed models, Is,o,Vs,o and SVIII, the Bs mixing anomaly can be

potentially explained only if yb, ηi ∼ O(1) and the masses of NP fields are no more that a few 100 GeV. The

NP contributions to Bd are predicted to be too small to be observed in this case, since they are additionally

suppressed by y2
d/y

2
s . The singly ys suppressed models, X3̄,6 and SI, SIII, give contributions to hs of the

right order of magnitude for ηi ∼ O(1) and mS,V ∼ 1 TeV. There is also an effect predicted for Bd mixing

with size hd ∼ 0.1.

A number of flavor symmetric models can potentially explain both the Bs mixing and Att̄FB anomalies

simultaneously. If enhanced Bs mixing is due to tree level exchange, the NP fields need to couple to left-

handed doublets if they are to also contribute to tt̄ production. The relevant models are IIIs,o, IVs,o,VIIIs,o

and IXs,o, where for TeV masses, the flavor breaking couplings need to be ηi ∼ O(0.1). However, none of

these models seem to fit the observed data in top pair production particularly well (See Fig. 9 for models

IVs,o,VIIIs,o and IXs,o. The models IIIs,o are pure s-channel and thus lead to large deviations in the tt̄

differential cross section.).

There are also four models of interest that exhibit linear Yukawa suppression and can in principle con-

tribute to Bs mixing and to the Att̄FB anomaly simultaneously. These are models X3̄,6 and models SIII,

SIV. However, due to their color representation SIII, SIV, have limited potential to explain Att̄FB , while X3̄,6

reduce rather than increase Att̄FB .

This leaves us with models where the contributions to Bs mixing are loop suppressed. These are the

vector models VIIs,o, XI3̄,6 and the scalar models SI,SII, SIX,X. They lead to contributions to Bs and Bd

mixing which are universal, if one assumes MFV. Among these, models VIIs,o and SI can also explain

the present top data. The contributions to Bs mixing can also carry a new weak phase, as required by the

dimouon charge asymmetry.

For instance, model SI, see Eq. (21), contains contributions that are proportional to the product of the

generally complex quantity 4η2
0η

2
3 (where these coefficients are defined in Table X in Appendix C) with a

loop function that is of the same order of magnitude as the SM one, with its precise value depending on the

size of mS . The B → Kπ branching ratios require
√
η0η3 <∼ 1/4 (see Section IV D), while Att̄FB favors

η0 ∼ 1. Thus, CPV contributions to Bs mixing of O(20%) are readily attainable for SI scalar masses of

order 100 GeV. Similar considerations apply to models VIIs,o.
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IV. EXISTING EXPERIMENTAL CONSTRAINTS ON A FLAVOR SYMMETRIC SECTOR

We now determine some of the existing experimental constraints on flavor symmetric extensions of the

SM. We examine bounds on direct production at LEP, from electroweak precision data (EWPD) and from

collider searches at the Tevatron and LHC. We also determine the (residual) FCNC constraints.

Our aim is characterize the general phenomenological bounds whenever possible and to check if some

of the models that we have identified as promising candidates are consistent with other phenomenology

in some detail. Our results are not completely comprehensive, as at times we have to focus on particular

sample models. However, we believe our results are valuable to gain some intuition as to the current

phenomenological constraints on a flavor symmetric sector.

A. LEP Constraints

The LEP constraints depend on how the new states couple to electrons and to the pair of final state

fermions. In this section we will discuss the constraints on the vector models from LEP in some detail.

The constraints for scalar models are very similar, see [3] for some details. Limits on anomalous four jet

events at LEP give a kinematic lower bound for pair production of the scalar models of 105 GeV [3]. For

the vector and scalar models signals that involve couplings to quarks and leptons are the most problematic

at LEP. For a Z ′ vector boson that couples to quarks (electrons) with couplings gzzfB (gzzeA), the bound is

[126]

M2
Z′ ≥

g2
z

4π
|zeA zfB| (ΛfAB)2 . (26)

with A,B = {L,R} the chirality of the fermions. Typically ΛfAB ∼ 10 TeV, leading to mass bounds on

the order of MZ′
>∼ 1 TeV.

The vectors in nontrivial color or flavor representations (Io − IVo or V −XI) are protected from having

tree level exchanges of this form. For models protected by flavor symmetry one is forced to have the

insertion of Yukawa matrices. The final operating energy of LEP was
√
s = 209 < 2mt so the flavor

symmetry is sufficient to remove this bound for models V −XI. These bounds do apply to Is − IVs unless

the couplings to electrons are somehow suppressed, e.g., by extending flavor symmetry to the lepton sector.

For the models where the bound (26) does not hold, there are constraints from covariant derivative

couplings to Z and γ in the kinetic terms of the vectors (the factor N is set by requiring canonical normal-

ization),

LK = NTr
(
DµV

†
ν D

µV ν −DµV
†
ν D

νV µ
)
. (27)
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FIG. 11: Tree level generation of multi-jet events at LEP due to flavor symmetric vectors. Similar diagrams (and

bounds) exist for scalars and the first diagram is representative of the emissions of the vectors and scalars off the final

state fermions.

Some tree level processes that would lead to anomalous four jet events at LEP are shown in Fig. 11. These

processes do proceed even in the absence of flavor violation. Furthermore, for vector pair production (the

second diagram) the couplings of the Z or γ to the vectors are fixed by gauge invariance. This implies a

kinematic bound of MV
>∼ 105 GeV on the flavor symmetric vectors. The analogous diagram for the scalar

models is the origin of the kinematic bound on the scalar masses discussed in [3].

The first diagram(s) can lead to a stronger bound for a vector or a scalar model as the vector or scalar

is singly produced and has an order one branching ratio to anomalous multi-jet final states due to the flavor

quantum numbers it carries. We find that this production process gives a cross section of 0.20|η|2 pb−1 for

MV = 120 GeV, or, with an integrated luminosity of 500 pb above this mass scale, a total of 100|η|2 events.

The number of expected events falls rapidly with increasing MV and is below 12|η|2 for MV ≥ 140 GeV.

Assuming an order one branching ratio to anomalous multi-jet final states, this implies that the mass bound

on the vectors from LEP is MV
>∼ 150 GeV for O(1) couplings. Colored vectors will have similar mass

bounds from LEP from anomalous multijet events. The calculation for the scalar models is very similar,

resulting in the same approximate bounds.

In summary, we consider the minimum LEP lower bound for all vector and scalar models to be >∼
150 GeV when order one couplings exist for the fields to quarks. A dedicated study would be required for

each model to obtain more precise bounds. However, we note that while scalar (doublet) masses below

150 GeV were only considered in model SI, see Eq. 22, for enhancing Att̄FB , this bound could easily be

evaded by making the charged components of the scalar doublets heavier. Single exchange of the neutral

components (the ones involved in tt̄ production), as in the scalar analog of the first diagram of Fig. 11, would

lead to kinematically suppressed virtual tt̄ pair production. The LEP bound can be generically stronger for

a color singlet that does not transform under the flavor group: for vectors Is − IVs the lower mass bound is

>∼ 1 TeV for order one couplings to leptons and quarks.
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B. Electroweak precision tests

We consider the models for massive HF symmetric vector and scalar fields to be effective field theories.

Up to this point we have assumed that the cut-off of the theory, Λ, is high enough that we can neglect

operators suppressed by powers of Λ. For the scalar models, in principle, we do not have to consider effects

of higher dimensional operators. In this case, for scalar models that are SUL(2) singlets, the results of [3]

show that the generic lower bound from fitting to EWPD is ms
>∼ 100 GeV. The LEP bounds we have just

derived are stronger than these bounds for scalar models that do not break custodial symmetry.

Below, we summarize our findings for model SI, for which particularly light scalar doublets were con-

sidered in the context of At̄t
FB. We find that it is easily consistent with S parameter bounds, even in the

presence of nine light doublets, as in the GF symmetric realization, rather than only two, as in the minimal

HF symmetric versions I(a) - I(c) (Eqs. (21) – (23)) considered in the previous section (we have general-

ized the analysis of [37] for a single scalar doublet). The T parameter bounds are easily satisfied in the

minimal versions, with neutral scalar doublet component masses as low as 110 GeV and heavier charged

component masses of 150 GeV, a mass splitting that may be required in order to simultaneously evade the

LEP bounds discussed above and enhance Att̄FB to observed levels. Mass splitting between the charged and

neutral scalar doublet components can be obtained via GF symmetric couplings to the SM Higgs vacuum

expectation value. We have also checked the sizes of non-oblique corrections in the minimal versions of

SI. In options I(a) and I(c), loop graphs containing the top quark lead to problematic shifts in the LH down

and strange quark couplings to the Z. For instance, taking charged scalar masses of 150 GeV, neutral scalar

masses of 110 GeV, and couplings η ≈ 2/3 yields δgsL/gsL , δgdL/gdL ≈ −0.0046, roughly 2σ in excess

of the 2 σ upper bound obtained, for equal shifts in the two couplings, from the Z hadronic width. In option

I(b), loop graphs containing the charm and up quarks lead to a shift in the LH bottom quark coupling to the

Z. For the same parameter choices (see Fig. 5) the shift is δgbL/gbL ≈ −0.0028, which is consistent with

Rb at 2σ. We therefore conclude that whereas I(b) is a viable option for enhancing Att̄FB , this is unlikely for

cases I(a) and I(c).

For the massive vector fields we do have to consider the effects of higher dimensional operators sup-

pressed by the cut off scale as the theory is nonrenormalizable. This is particularly the case when con-

sidering electroweak precision data (EWPD) for vectors. To the effective fields we have considered at the

scale µ ∼ MV we should add dimension six operators. These arise from integrating out heavier modes

of the UV complete theory. At the electroweak scale µ ∼ mZ we integrate out also the vectors and can

match onto an effective field theory constructed from only the SM fields, appropriate for examining EWPD.

The dimension six operators then receive contributions from vectors and from heavier fields from the UV



34

FIG. 12: Contribution to the operator O1 generated by the SM through mixing with the SM B field.

completion.

For cases Is−IVs, the EFT will in general have a dangerous dimension 4 operatorO1 = V µ (H†DµH).

Integrating out the vectors gives the dimension six operator OT = |H†DµH|2/M2
V , well constrained

by EWPD. For positive (negative) Wilson coefficient CT the bound on the vector mass is MV ≥

5.6 (4.6) TeV×
√
|CT | (adding only this operator to the SM EWPD fit, and taking mh = 115 GeV) [127].

The operator O1 could be suppressed by the unknown dynamics in the UV theory. However, it is also

generated via the quarks that the vectors couple to and SM interactions, see Fig. 12. Due to mixing with the

SM B field (with coupling g) as shown an effective wilson coefficient of C1 ' Σi y
2
i η

2 g3 v4/(16π2M2
V )2

is generated, where yi is the quark Yukawa coupling and the sum is over all the allowed flavors (we neglect

small GF breaking). The bound is very weak as this is effectively a two loop effect due to mass mixing

with the B field. This gives a bound MV /η
2/5 >∼ 50 GeV for models IIs, IIIs, IVs generated through SM

interactions, weaker than the LEP bound discussed. The bound is even weaker if the vector only couples to

down quarks and yb is not enhanced from its SM value. Models that transform under flavor can still generate

this operator through SM interactions but require the insertion of the appropriate number of Yukawas inO1.

If the vector transforms under SU(3)c the operatorO1 is forbidden. In general, if this operator is not present

due to matching onto the underlying theory, the bound through custodial symmetry violating loop effects is

weaker than the direct production LEP bound.

Note that a key assumption of this analysis — fitting to EWPD with the SM supplemented with a

single operator such as OT — is not well justified. We leave a more complete analysis of EWPD to a

future publication but note that non oblique observables, such as Rb and the decay width of the SM Z

boson potentially can place stronger bounds on the HF symmetric fields with a large number of degrees of

freedom. This is particularly the case when flavor off diagonal couplings are present and the top quark mass

scale is present in large numbers of loop corrections to Rb and ΓZ .

C. Tevatron and LHC dijet Constraints

At the LHC and the Tevatron the most relevant constraints on flavor universal couplings come from dijet

resonance searches and dijet angular distribution studies. These constraints limit the couplings of the HF
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symmetric fields to the light quarks. In this section we give a brief account of these dijet bounds on scalar

models SV,SVI and vector models IIo, VIo, and VIs, relegating details of the calculations to Appendix B.

These models are of interest for the tevatron’s top quark forward-backward asymmetry, Att̄FB . The vector

examples contain prominent dijet contributions in both the s and t-channels at the tevatron and LHC. Scalar

model SV is u-channel dominated, due to the flavor antisymmetry of its quark couplings (s-channel effects

are present in the uc → uc, ūc → ūc channels); model SVI contains s-channel (uu → uu) and u-channel

contributions. Related bounds on some of these models were also discussed recently in [35, 36, 128].

The relevant scalar interaction Lagrangians in the GF symmetric limit are given in Eq. (A37). The

relevant vector Lagrangians are listed in Eqs. (4)–(12) in Section II, and in Appendix A (with GF breaking

corrections also discussed). Expressions for the dijet cross sections in these models are given in Appendix

B. The new scalar or vector fields can haveO(1) couplings to first generation quarks, a necessary condition

for obtaining large Att̄FB . Thus, they can mediate large contributions to 2→ 2 quark scattering, potentially

spoiling the good agreement between measurements and SM theory predictions for dijets. Tevatron and

LHC bounds on their couplings to light quarks are collected in Table V. They are derived using partonic

cross sections evaluated at LO in αs, with the renormalization and PDF factorization scales identified with

the transverse momenta of the two outgoing partons. Rapidity related experimental cuts on the two leading

jets (the dijet measurements are inclusive) are emulated by imposing these cuts on the outgoing partons.

Clearly, a parton level treatment introduces considerable uncertainties. Nevertheless, our bounds should

still be indicative of the constraints one would obtain with more precise inclusive Monte Carlo simulations,

carried out at NLO and including showering and full detector response.

In Tables V and VI we quote upper bounds on the couplings η and η1 (or fq) of the light quarks to the

scalar and vector fields, respectively, for a range of masses. There are four sets of bounds, obtained from

searches for dijet resonances in the dijet invariant mass (Mjj) spectra at CDF [129] and LHC [130–133], and

from dijet angular distribution measurements at DØ [134] and CMS [135]. The CDF dijet resonance search

[129] (corresponding to a luminosity of 1.3 fb−1) imposes a rapidity cut of |y| < 1 on the two leading jets.

For the LHC dijet resonance searches we use the CMS data [130] (2.9 pb−1) for 500 GeV scalar or vector

masses, the ATLAS data [131] (36 pb−1) for 700 GeV masses, and the more recent ATLAS [132] (0.81

fb−1) and CMS [133] (1 fb−1) data for heavier masses. These studies impose a rapidity cut of |y| < 2.5

(2.8 in [132]) on the two leading jets, with a rapidity separation for these jets satisfying |∆y| < 1.3 (1.2

in [132]). Rapidity cuts are imposed in order to eliminate a large fraction of the dominantly t-channel,

hence forward, QCD dijet background at large pT ; s-channel NP effects will be more isotropic. As already

mentioned, we implement these cuts on the two outgoing partons.

The dijet angular distribution measurements quote normalized differential cross sections 1/σdijet dσ/dχ,
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S3
V Mass TeV Mjj LHC Mjj TeV χ LHC χ SVI Mass TeV Mjj LHC Mjj TeV χ LHC χ

300 1.0 - 1.2 1.1 300 0.3 - 0.4 0.5

500 1.2 n.b. 0.5 0.9 500 0.3 2.2 0.2 0.5

700 2.0 0.7 0.7 0.6 700 0.6 0.2 0.2 0.2

900 2.5 0.3 0.6 0.5 900 0.7 0.1 0.2 0.2

1100 2.8 0.4 0.5 0.6 1100 1.4 0.1 0.2 0.1

1300 4.0 0.5 1.3 0.6 1300 1.6 0.1 0.7 0.1

1500 6.0 0.6 1.6 0.3 1500 1.8 0.1 0.8 0.1

1700 n.b. 0.6 1.8 0.5 1700 2.0 0.1 0.8 0.1

1900 n.b. 0.6 2.0 0.4 1900 2.6 0.1 0.9 0.1

2100 n.b. 0.7 2.1 0.6 2100 3.0 0.1 1.0 0.1

TABLE V: Approximate upper bounds on the couplings of the scalars SV, SVI to light quarks due to the measured

dijet invariant mass spectra (labeled Mjj) and angular distributions (labeled χ) at the tevatron and LHC, as explained

in the text. The masses correspond to the scalar field flavors S3
V and S11=22=12

VI . If no bound is determined we denote

this with “n.b.”.

where the angular variable is χ ≡ (1 + | cos θ|)/(1 − | cos θ|) and θ is the scattering angle for the 2 → 2

parton scattering process in the parton CM frame. The differential cross sections are integrated over dijet

mass intervals of a few hundred GeV in size, and results are presented in bins of χ for 0 < χ < 16.

The normalization, σdijet, is the measured cross section integrated over the dijet mass interval and over

0 < χ < 16. Whereas the χ distributions for the QCD dijet background are relatively flat (due to t-

channel dominance), more central NP effects, e.g., from s-channel resonances, will peak at low χ. The

DØ angular measurements [134] (0.7 fb−1) include a cut on yboost ≡ 0.5 |y1 + y2| < 1, where y1,2 are the

rapidities of the two leading jets. The CMS angular measurements [135] (36 pb−1 ) employ a similar cut of

yboost < 1.11. Again, we implement these cuts on the two outgoing partons.

In general, the dijet invariant mass spectrum of a NP model can exhibit both an s-channel peak in the

vicinity of the mass of the mediating field, and a monotonic rise relative to the SM prediction at larger

Mjj . At the Tevatron, our scalar examples would possess the latter feature, due to u-channel effects, but

an s-channel peak would be less prominent, particularly for model SV. Therefore, for these models the

bounds on the light quark couplings quoted in the Tevatron “Mjj” columns of Table V are obtained by

requiring that the ratios of the predicted to SM dσ/dMjj spectra (with both evaluated at LO) lie within

the PDF uncertainty band in Fig. 1b of the CDF study [129]. In particular, we do not make use of the

bump hunter bounds on the new particle production cross sections. The widths of the intermediate scalar

fields are identified with the two-body decay widths to quarks neglecting phase space, Γ = η2ms/(2π) for
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IIo VIo VIs

Mass TeV Mjj LHC Mjj TeV χ LHC χ TeV Mjj LHC Mjj TeV χ LHC χ TeV Mjj LHC Mjj TeV χ LHC χ

300 0.4 - 0.9 1.7 0.6 - 1.4 2.2 0.6 - 1.7 1.4

500 0.4 0.8 0.3 1.3 0.4 0.9 0.4 1.5 0.5 1.0 0.5 1.4

700 0.4 0.8 0.3 0.9 0.4 1.0 0.5 1.0 0.5 1.1 0.6 1.2

900 0.3 0.3 0.2 0.7 0.5 0.3 0.3 0.9 0.6 0.3 0.4 1.0

1100 0.4 0.3 0.4 0.8 1.1 0.4 0.6 1.0 1.3 0.5 0.8 1.2

1300 0.7 0.5 1.1 0.9 1.0 0.6 1.6 1.2 1.2 0.6 1.6 1.2

1500 2.7 0.5 2.6 0.9 4.8 0.6 4.3 1.1 3.4 0.7 3.1 1.2

1700 4.0 0.5 3.5 1.2 6.4 0.7 5.7 1.6 4.8 0.7 4.1 1.6

1900 5.3 0.7 4.4 1.0 7.7 0.9 6.5 1.3 6.1 0.8 4.8 1.4

2100 6.5 0.8 5.2 1.4 8.8 1.0 7.2 1.8 7.8 0.8 5.6 1.8

TABLE VI: Approximate upper bounds on the couplings fq of the vectors IIo,VIo and V Is to light quarks, due to the

measured dijet invariant mass spectra (labeled Mjj) and angular distributions (labeled χ) at the Tevatron and LHC, as

explained in the text.

SV and SVI. The vector examples can produce prominent s-channel peaks at the Tevatron. We therefore

obtain the Tevatron Mjj bounds quoted in Table VI from the CDF bump hunter 95% CL upper limits on

the product of a Z ′ production cross section × its branching ratio to dijets (Br) × acceptance (A), setting

Br × A = 1 (see Table I of [129]). For vector masses in excess of the last measured invariant mass bin,

Mjj ∈ [1225, 1350] GeV, we require that the ratios of the predicted to SM dijet cross sections in this bin

lie below the 95% CL upper bound, obtained from the systematic and PDF uncertainty errors added in

quadrature (the corresponding ratios in the lower bins would be much smaller than such bounds, given the

widths of the vector fields). The intermediate vector two body decay widths to quarks are η2mV /(16π)

for IIo and VIs, and η2mV /(96π) for VIo. To obtain bounds on the scalar and vector couplings from the

ATLAS and CMS dijet resonance searches we again use bump hunter 95% CL upper limits on new particle

production cross sections, setting Br × A = 1. Specifically, for the CMS studies [130, 133] we make use

of the bounds provided for qq final states (see Table 1 of [130] for a 500 GeV resonance mass, and Table 1

of [133]); for the ATLAS studies in [132] we use the upper limits in Table 3, and in [131] we use the bound

in Figure 3 (for a 700 GeV resonance mass).

To set the bounds on the light quark couplings from the dijet angular distribution measurements, we

conservatively require that in each bin of χ and in each Mjj interval, the addition of NP does not result in a

shift of 1/σdijet dσ/dχ that is larger than the 1σ error. In the case of the DØ measurement [134], the errors

are statistics dominated (see the “EPAPS” document cited therein), and we can neglect the systematic and
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SM theory errors. For the CMS study [135] we add the theory and experimental errors in quadrature. In all

of our examples, the largest deviations occur at small χ, and they tend to concentrate in the invariant mass

intervals closest to the new particle masses, as would be expected for s-channel resonances. We can see

from a comparison of all the bounds in Tables V and VI that the LHC bounds have superseded the Tevatron

bounds for new scalar or vector masses ≥ 1 TeV, and that they are particularly restrictive for model SVI.

It is important to note that the constraints determined above are on the couplings of the HF symmetric

couplings of the new fields to light quarks. Only in the yt → 0 limit, when the full GF symmetry is restored,

are these couplings the same as the couplings involving heavy quarks. Thus, these bounds cannot be directly

translated into limits on the allowedAtt̄FB , in general. Rather, these bounds dictate to what degree GF → HF

flavor breaking is required, in order to have couplings that are suitable for explaining the Att̄FB anomaly

while being consistent with dijet constraints. Considering the benchmark scalar examples in Fig. 3, flavor

symmetry breaking is probably not required in model SV, while moderate breaking is required in model

SVI. In the case of vector models VIs,o, we can see that in examples in which simultaneous agreement with

all of the top data is obtained with the help of the GF → HF symmetry breaking hierarchy fqft << fqt,

see Fig. 9 some flavor symmetry breaking would probably also be required in order accommodate the dijet

bounds (fq < fqt); however, in models in which agreement with the top data is achieved with the help of

enhanced vector decay widths, see Fig. 2, little or no flavor symmetry breaking appears to be required by

the dijet bounds.

We close this Section with a brief discussion of collider constraints on scalar model SI. In particular,

we consider the recent DØ bounds [116] on anomalous dijet production in Wjj final states, prompted by a

potential signal at CDF [117], and constraints from UA2 dijet measurements [118]. The scalar doublet fields

Sij , i, j = {1, 2} couple to light quarks with equal HF symmetric couplings ηij , see Eq. 18, which would

lead to dijet peaks in Wjj final states via associated W +Sij production. DØ has presented 95% CL upper

bounds on the cross section for such processes, ranging from 2.57 pb to 1.28 pb for dijet resonance masses

of 110 - 170 GeV, i.e., in the preferred range for enhancing Att̄FB in model SI. We apply these bounds to the

sum over cross sections for the four scalar doublet fields (charged and neutral components). The resulting

95% CL upper bounds on the couplings ηij are ≈ 0.2 for these masses. Finally, we find that the UA2 dijet

measurements do not provide meaningful constraints on these couplings once finite width effects for the Sij

and interference with the SM are taken into account.
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D. Residual Constraints from FCNCs

The fact that there is a global flavor symmetry HF in the models we consider helps to avoid low energy

constraints from Flavor Changing Neutral Currents (FCNCs) even though the NP has weak scale masses. In

this section, as always when considering flavor bounds, we adopt a strict interpretation of the MFV hypoth-

esis and assume that GF is only broken by the SM Yukawas. The detailed analysis of FCNC constraints

from Bd,s, D and K mixing is given in Appendix C while here we only collect the main results.

We discuss the models in the two categories, universal and Yukawa suppressed, that we have introduced.

(In the notation of Ref. [13] these are the models that receive only contributions from class-1 or class-2

operators). The universal models give roughly the same contributions to Bd and Bs mixing amplitudes,

when normalized to the SM. For vector or scalar masses about 1 TeV, the coupling constants have to be less

than about 0.1. The models of the universal type are vector models IIIs,o, IVs,o,VIIIs,o, IXs,o and scalar

model SXIV.

The Yukawa suppressed models give contributions to the mixing amplitudes that are CKM suppressed

(with the same CKM structure as the leading short distance contributions in the SM). They are, in addition,

Yukawa suppressed. The suppression can start at linear or quadratic order in light quark Yukawas. The

FCNC bounds are satisfied for η couplings of O(1) for vector or scalar masses above ∼ 1 TeV for linear

Yukawa suppressed models. For quadratically Yukawa suppressed models the FCNC constraints are even

weaker and are already satisfied for masses above ∼ 300 GeV.

Finally, meaningful constraints can be obtained for certain quark couplings in model SI from the B →

Kπ branching ratios [37, 115]. For example, if the LH quarks in the SI Lagrangian of Eq. (18) are defined

in the up quark mass eigenstate basis, the couplings of the charged scalars in the quark mass eigenstate

bases would include the terms

ηk 1 S
−
k 1 (V †CKM)j k d̄

′
j L u

′
R + h.c. , (28)

where j, k = {1, 2, 3}. In the GF symmetric limit, the contributions to B → Kπ, ππ from tree-level

exchanges of the scalars S−k1 would exactly cancel. However, in the limit of large GF → HF symmetry

breaking (as would be required in order to maintain consistency with the Wjj bounds while accounting

for enhanced Att̄FB) the couplings would be constrained. The tightest bounds come from B → K+π−.

Borrowing from the analysis of [37], we find ηk 1 < 0.23 (mS/125 GeV), when considering the exchange

of S−31 and S−21 separately. Thus, tree-level exchange of the scalar doublet fields S3i could not account for

Att̄FB in this case. However, if the couplings of the LH quarks in Eq. (18) are defined in the LH down quark

mass eigenstate basis, the scalars S−3 i would only couple to bL in the HF symmetric limit, as in Eq. 22, and
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there would be no obstruction to Att̄FB enhancement from B → Kπ.

V. LHC SIGNALS

We next turn to signals at the LHC from a flavor symmetric sector. The NP fields couple to light quark

bilinears so that generically deviations in the phenomenology of dijet observables at LHC and the Tevatron

are expected. No statistically significant deviation in these observables has been measured to date, thus

placing bounds on the couplings of NP fields to light quark bilinears. For a set of sample models we derived

the bounds in Section IV C showing that O(1) couplings of these fields to quark bilinears are generally still

allowed. Deviations from the QCD prediction can arise from an s-channel resonance effect, a t-channel

driven rise in the dijet invariant mass spectra at large Mjj , or a combination of both signatures.

A prototypical signal of colored GF symmetric fields is pair production, g g → V V and g g → S S.

This flavor diagonal scattering comes about due to the kinetic terms of the new scalar and vector fields, and

the rate is driven by a coupling fixed by gauge invariance. The gg → SS production cross section in the

GF symmetric limit as a function of scalar meson mass is shown in Fig. 13. As this signal requires the

pair production of the NP states, there is a significant fall in the cross section with the mass of the scalars.

A simple approximation to the fall in the pair production cross section as a function of mS is given by

σeff ∼ (1, 16, 20) pb × exp(−ms/95 GeV) for the color representations (3,6,8). This approximates the

full result within the PDF uncertainty band over the mass region 0.15 − 1.5 TeV. We expect the behavior

of the g g → V V cross sections to be of a similar order of magnitude. Note that the non renormalizable

nature of the effective vector field will lead to corrections to the cross section that grow with
√
s/mV . These

effects, however, are accompanied with the fall in the cross section with
√
s due to PDF suppression.

Dedicated four quark jet studies where one searches for pairs of equal mass resonances with no missing

energy can place strong bounds on models of this form in principle. The cross section for 4-jets at the 7

TeV LHC with all four jets having at least pT of 300 GeV (500 GeV) is 1.6 · 10−3 pb (1.6 · 10−4 pb),

obtained using ALPGEN. Compared to the pair production cross section the QCD background is thus of

moderate size. The condition that the four jets reconstruct resonances of approximately equal mass can aid

in reducing the QCD four jet background. We leave a detailed study of the discovery prospects for a future

study.

There are a number of other LHC signal features that are common to GF symmetric models. When

a signal requires flavor violation, such as the production of same sign tops, the rate is suppressed by the

required CKM suppression and Yukawas to generate the tops from the initial state - as in the SM. The

t-channel models aiming to explain the At t̄FB anomaly without such a flavor symmetry can be strongly
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FIG. 13: Production cross sections of g g → S S for color triplets (red left), sextets (blue left) and octet (grey right)

scalar field S. We show σeff = σ/dim[F ] for a single flavor. We use MSTW208 pdfs and the PDF error bands shown

are defined by taking µ = [2(2mS), (2mS)/2]. Details of the calculation are in the Appendix.

constrained by bounds on same sign top signal at LHC [136]. The GF symmetric models we have studied

are essentially unbounded by this measurement.

Other signatures that are linked to explanations of theAt t̄FB anomaly do offer the prospect of constraining

these models, such as a resonance decaying to t+ j. This can be seen in tt̄+ j production, and is a generic

feature of t-channel models that can give enhancedAtt̄FB not just GF symmetric models. Prospects for early

LHC discovery were explored in Ref. [38, 44]. It is also feasible that for t-channel dominated models, the

enhanced very forward tt̄ cross section may be observable at LHCb [137]. We have shown that generically

the new physics effect on the t t̄ invariant mass spectra in the models we have considered are measurable in

the near future. The cuts can be optimized at LHC to increase the prospects of measuring an excess of t t̄

events due to new physics of this form while suppressing the SM background - see [138] for a recent study.

VI. CONCLUSIONS

In this paper, we have explored the collider physics of new physics sectors symmetric under the flavor

group GF = U(3)UR
×U(3)DR

×U(3)QL
and its subgroup HF = U(2)UR

×U(2)DR
×U(2)QL

×U(1)3.

These are the flavor symmetry groups of the SM quark sector in the absence of all yukawa couplings, and

in the limit that only the top and bottom yukawa couplings are kept, respectively. Flavor symmetric fields

cataloged in Tables I and II can have EW scale masses and O(1) couplings to quark bi-linears. This is

because the representations of these fields under the SM gauge group and the flavor group are motivated

to address a generic experimental conflict – the flavor problem of NP. Moreover, the flavor symmetries

eliminate NP contributions to single top and same sign top production, which otherwise would be tightly
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constrained. For fields that transform under GF and have O(1) couplings to light quarks we find that a

lower bound on their masses of roughly 150 GeV can be obtained from the absence of anomalous multi-jet

events at LEP2. More detailed studies of EWPD, however, have the potential to improve these constraints.

Upper bounds on the couplings of GF symmetric fields to light quarks can be set through studies of

dijet resonance searches and angular distributions at the Tevatron and LHC. Based on the partonic LO study

of dijet production we have determined these bounds in a number of sample models. Our results indicate

that the LHC data sets are starting to constrain the allowed couplings to be <∼ 0.1 in some of these models,

in particular if they lead to resonant uu quark pair production as in models with color sextet scalars (e.g.,

model SVI in Table II).

FCNC bounds on flavor symmetric models depend on how GF is broken. In the HF symmetric limit

there are no NP contributions to meson mixing. We have analyzed NP contributions to meson mixing

assuming MFV breaking of the HF symmetry. The contributions to meson mixing are of second order in

the product of MFV flavor breaking coefficients and vector or scalar couplings to quarks. We find that

for models that contribute to Bd and Bs mixing with the same product of CKM elements as the SM box

diagrams (and no additional light quark yukawa coupling factors) these coefficients have to be <∼ 0.1 for

vector or scalar masses of 1 TeV (these are vector models IIIs,o, IVs,o,VIIIs,o, IXs,o and the scalar model

SXIV). The bounds on couplings for the remaining models are much looser.

The fields we have introduced and studied are of particular interest in the LHC discovery era. As

an application we have examined the potential impact of such field content on two current experimental

anomalies, the top quark forward-backward asymmetry, At t̄FB , and the Bs,d dimuon charge asymmetry.

Many of the flavor symmetric models can yield large At t̄FB , while maintaining agreement with the total

top pair production cross section. However, simultaneous agreement with the mtt̄ differential cross section

is more difficult to achieve. Generically, scalar models have difficulties accommodating all of the top

quark data. The scalar models can either give u-channel contributions to tt̄ production (models SV − SXIV)

or t-channel contributions (models SI − SIV). The u-channel models exhibit significant tension with the

differential spectrum. Of the t-channel models we have checked that model SI shows good agreement with

the differential spectrum, for masses of order 100 GeV. While it has difficulty reproducing the CDF mtt̄

dependent AFB at the one sigma level, it should be noted that the recent DØ Att̄FB measurement appears to

exhibit a smaller mtt̄ dependence.

Vector models can contribute to tt̄ production in the u-channel, s-channel, t-channel, or the s-channel

and t-channel simultaneously. Phenomenologically preferred t-channel dominance can be a feature of the

flavor structure (models VIIs,o), or can be attained either through some flavor breaking or additional decay

channels to broaden the s-channel decay widths. This leads to good agreement with all the top quark data,
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with a preference for lighter vector meson masses (see models VIs,o in Fig. 9, or Fig. 2 and Ref. [35], and

models VIIs,o in Fig. 8 ). Note that flavor breaking or broadening of the widths (via non-qq̄ final states)

also insures consistency with resonance searches in the dijet data.

When studying the potential of new physics explanations of the At t̄FB anomaly we have determined

model independent acceptance corrections. These are appropriate for comparing against Tevatron data that

can be applied to any model to good approximation at the partonic level- these results are given in Section

III A 1.

Assuming MFV for HF symmetry breaking, we have systematically examined the effects of scalar and

vector fields on the dimuon charge asymmetry anomaly. Flavor symmetric models that can easily give

relatively larger contributions to Bs mixing than to Bd mixing are preferred. Several flavor symmetric

models can accommodate this pattern with tree level exchanges: vector models Is,o,Vs,o and scalar models

SIV, SVIII, withO(1) MFV flavor breaking coefficients and NP masses of no more than a few 100 GeV, and

models X3̄,6, SIII, for masses around 1 TeV. None of these, however, can also explain the large Att̄FB , while

simultaneously obeying all constraints. The dimuon charge asymmetry anomaly can also be explained by

the experimentally less favored possibility - equal contributions to Bs and Bd mixing amplitudes (once

normalized to the SM contributions). There are a number of models that can contribute to tt̄ production as

well as Bs,d meson mixing. Of these, vector models VIIs,o and scalar model SI are preferred, leading to

both very small deviations in the differential tt̄ spectrum and enhancement of Att̄FB . The contributions to

Bs,d arise at 1-loop and can be of the right size.

The models we have introduced and motivated can be discovered at the LHC through a number of

processes: tt̄ + j with t + j forming a vector or scalar resonance peak; deviations in the mtt̄ differential

cross section; pair production via gg → SS, V V , where two resonance peaks are reconstructed in four jet

final state; and deviations in dijet observables.

In conclusion, flavor symmetric fields by virtue of their flavor safe properties can have masses near the

electroweak scale. They are therefore candidates for discovery at the LHC, as the lowest lying states of

more complete models, which may or may not be directly linked to electroweak symmetry breaking. Flavor

symmetric sectors have a rich, predictive, and mostly unexplored phenomenology. It is interesting to note

that the list of fields that are GF symmetric and can directly couple to quark bilinears is relatively short.

Systematically exploring the phenomenology of flavor symmetric sectors is therefore feasible.



44

Acknowledgments

The work of B.G. was supported in part by the U.S. Department of Energy under contract DE-FG03-

97ER40546. A. K. is supported by DOE grant FG02-84-ER40153. AK thanks the Weizmann Institute

Phenomenology group for their hospitality while this work was being carried out. MT thanks Mark Wise,

Maxim Pospelov and Jonathan Arnold for past collaboration related to some of the material discussed in

this paper and the Triumf theory group for hospitality while this paper was being finalized. We thank K.

Blum, O. Gedalia, Y. Hochberg, J. Kamenik, I.-W. Kim, S. J. Lee, Z. Ligeti, Y. Nir, G.Perez, J. Shu, and Y.

Soreq for discussions regarding NP models in tt̄ production. We use this opportunity to congratulate Jernej

Kamenik on the birth of his first son Tian.



45

Appendix A: Flavor Symmetric Lagrangians

In this appendix we collect the Lagrangians of the vector fields in nontrivial GF representations. The

form of the scalar Lagrangians is given in [3] and we use that notation in the main part of the paper and

in the Appendix for ease of comparison (for concreteness we also show explicit form of the relevant scalar

Lagrangians at the end of this Appendix). For parameterizing the breaking of GF we use the language of

MFV, where the breaking is due to SM Yukawas only. For the unitary transformations that diagonalize the

quark mass matrices we use the following notation

U(u,R)† YU U(u, L) =
√

2Mu/v ≡ Y diag
U ' diag(0, 0, yt),

U(d,R)† YD U(d, L) =
√

2Md/v ≡ Y diag
D ' diag(0, 0, yb).

(A1)

These relate the flavor (qi) and mass eigenstates (q′i)

uL =U(u, L)u′L, uR = U(u,R)u′R,

dL =U(d, L)d′L, dR = U(d,R)d′R.

In (A1)Mu andMd are the diagonal up-type and down-type quark mass matrices and v ' 246 GeV is the

SM Higgs vev. The Cabbibo-Kobayashi-Maskawa (CKM) matrix VCKM is then given by

VCKM = U(u, L)† U(d, L). (A2)

Two basis choices that we will frequently use are the “up” and “down” quark mass bases. In the “up”

quark basis Y †U YU → (Y diag
U )2, Y †D YD → VCKM(Y diag

D )2V †CKM, so that down-quarks are rotated from the

mass eigenstates to keep interactions with the W bosons diagonal. Similarly in the down quark mass basis,

the up quarks are rotated by V †CKM, so that Y †U YU → V †CKM(Y diag
U )2VCKM, Y

†
D YD → (Y diag

D )2.

1. Vector fields I− IV

The vector fields Is,o − IVs,o are flavor singlets, but can be either singlets or in adjoint representations

of color and/or weak SU(2)L. The interaction Lagrangian with quarks then has the same forms as the

interactions with corresponding gauge fields would have. For instance, for Is,o, it is

LI = ηd̄R/V dR, (A3)

where Vµ = V A
µ T

A for Io fields, with TA the Gell-Mann matrices normalized to Tr(TATB) = δAB/2.

The interaction Lagrangians for IIs,o, IIIs,o are obtained from the above through replacements, dR → uR

and dR → QL, respectively. In the interaction Lagrangians IVs,o the short-hand notation for the sum of

vector field multiplets is Vµ = V a
µ σ

a/2 for IVs model and Vµ = V A,a
µ TAσa/2 for IVo model, with σa the

Pauli matrices.
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2. Fields Vs,o

These fields are color singlets (octets) and SU(3)D octets. The interaction and mass terms in the La-

grangian are similar to the case of the SU(3)U octet fields VIs,o given in Eqs. (3)-(7) and Eqs. (A4)-(A6),

but with the obvious uR → dR and yt → yb, YU → YD replacements. In the SM, yb ∼ 0.02 so that

all the vectors in the multiplet are degenerate to a good approximation. The degeneracy can be lifted in

theories with more than one Higgs where yb can be O(1), as occurs for example in the large tanβ limit of

the MSSM.

3. Fields VIs,o

These real fields are 1,8 under color and 8 under flavor. We denote them by V B
µ and V A,B

µ , with color

(flavor) labels A(B) = 1, . . . , 8. The quark-vector interaction Lagrangian and the mass terms were already

given in Section II using the short-hand notation V s
µ = TBV B

µ , V
o
µ = T ATBV A,B

µ . Here we write out the

terms keeping all the indices explicit. The GF symmetric quark-vector interactions (4) are

LVIs = ηs1 (ūR)α,i (TB)ji/V
B(uR)α,j , LVIo = ηo1 (ūR)α,i (T A)βα (TB)ji /V

A,B(uR)β,j , (A4)

where α, β, γ... (i, j, k...) are color (flavor) indices. The couplings ηs,o1 are real because the interaction terms

are hermitian. The GF → HF breaking interaction terms due to YU Y
†
U insertions (5) have the following

explicit form in the mass eigenstate basis (keeping only the terms proportional to yt)

∆LVIo = y2
t

[
(ηo2)?(ū′R)α /̃V A,B

µ (T A)βα (TB)i3(u′R)β,i + h.c.
]
− y4

t η
o
3

2
√

3
(ū′R)α,i /̃V A,8

µ (T A)βα(u′R)β, (A5)

∆LVIs = y2
t

[
(ηs2)? (ū′R)α /̃V B

µ (TB)i3(u′R)α,i + h.c.
]
− y4

t η
s
3√

3
(ū′R)α,i /̃V 8

µ (T 8)3
3(u′R)α. (A6)

4. Fields VIIs,o

These fields are in the (3̄, 3, 1) representation of flavor. As for fields V, VI we use the short-hand notation

V s
µ = TBV B

µ , V o
µ = T ATBV A,B

µ , (A7)

with T A the color Gell-Mann matrices. The flavor matrices TB now also include an identity matrix, so that

for B = 1, . . . , 8, TB are the Gell-Mann matrices, and T 9 = 1/
√

6. Note that V †µ 6= Vµ , because the Vµ

fields are in the (3̄, 3, 1) representation of GF. The transformation to the mass eigenstate basis is

V a
µ = U(d,R)Ṽ a

µ U(u,R)†, a = o, s, (A8)
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explicitly showing that V o,s
µ are not hermitian (note also that V B

µ , V A,B
µ carry nonzero hyper-charge). The

tree level quark coupling Lagrangian terms are (no summation over a = o, s)

LVIIa = ηa1 d̄R/V
a
µ uR + h.c., (A9)

with ηo,s1 complex in general. Explicitly the two terms are

LVIIo = ηo1 (V A,B
µ TB)ij (d̄R)α,j γµ (T A)βα (uR)β,i,+h.c., (A10)

LVIIs = ηs1 (V B
µ T

B)ij (d̄R)α,j γµ (uR)α,i + h.c.. (A11)

The flavor breaking introduces corrections to these interaction terms from insertions of the YU Y
†
U and

YD Y
†
D. Keeping only the terms proportional to y2

t for GF → HF, the leading contribution is given by

ηa2 d̄R/V
a
µ YUY

†
UuR, which gives in the mass eigenstate basis the following interactions

∆LVIIo = y2
t

[
η2(d̄′R)α,i γµ (T A)βα (t′R)β,

]
(Ṽ A,B
µ TB)3

i + h.c., (A12)

∆LVIIs = y2
t

[
η2(d̄′R)α,i γµ (t′R)α

]
(Ṽ B
µ T

B)3
i + h.c. (A13)

The mass terms are

LVIIa = 2(1 + δa,o)
{
m2
Va Tr

[
Ṽ a
µ Ṽ

µa†
]

+ λ (H†H) Tr
[
Ṽ a
µ Ṽ

µa†
]}

, a = o, s, (A14)

while the top quark Yukawa splits the mass spectrum through corrections to the mass Lagrangian of the

form 2(1 + δa,o) ζ1Tr[Ṽ
a
µ YUY

†
U Ṽ

µa†]. The mass of the field V 8
µ gets split from the rest by the term 2(1 +

δa,o) ζ2Tr[Ṽ
a
µ YUY

†
U Ṽ

µa†YDY
†
D]. These splittings result in the following mass spectrum

m2
1 = m2

2 = m2
3 = m2

V

(
1 +

λ

2

v2

m2
V

)
, (A15)

m2
4 = m2

5 = m2
6 = m2

7 = m2
V

(
1 +

λ

2

v2

m2
V

+
ζ1

2
y2
t

)
, (A16)

m2
8 = m2

V

(
1 +

λ

2

v2

m2
V

+
2ζ1

3
y2
t +

2ζ2

3
y2
b y

2
t

)
, (A17)

m2
9 = m2

V

(
1 +

λ

2

v2

m2
V

+
ζ1

3
y2
t +

ζ2

3
y2
b y

2
t

)
, (A18)

where we neglect terms suppressed by off-diagonal CKM elements or first two generation Yukawas.

5. Fields VIIIs,o

The scalar matrix of fields V s
µ = TBV B

µ , and the octet matrix of fields V o
µ = T ATBV A,B

µ , now trans-

form as a bi-fundamental of U(3)Q, i.e. V o,s
µ → VQV

o,s
µ V †Q for a transformation that takes the left-handed



48

quark fields to QL → VQQL (suppressing the flavor indices). Note that the fields V o,s
µ are hermitian,

V o,s†
µ = V o,s

µ . The interaction with quarks is then given by

LVIIIa = ηa1Q̄L/V
a
µQL, (A19)

or writing out the color and flavor indices explicitly

LVIIIo = ηo1 V
A,B
µ (Q̄L)α,i γµ (T A)βα (TB)ji (QL)β,j , (A20)

LVIIIs = ηs1 V
B
µ (Q̄L)α,i γµ (TB)ji (QL)α,j . (A21)

The flavor symmetric mass Lagrangian for the vectors is

Lmass
VIIIo,s = (1 + δa,o)

{
m2
V Tr

[
Ṽµ Ṽ

µ
]

+ λ (H†H) Tr
[
Ṽµ Ṽ

µ
]}

, (A22)

where the color and flavor indices are suppressed. The masses are split by the presence of the SM Yukawas

breaking the flavor group. In contrast to cases V and VII here both insertions of Y †U YU and Y †D YD are

possible. The flavor breaking terms are

∆Lmass
VIIIo,s/m

2
V = ζ1Tr

[
Ṽµ Y

†
U YU Ṽ

µ
]

+ ζ ′1Tr
[
Ṽµ Y

†
D YDṼ

µ
]

+ ζ2Tr
[
Y †U YU Ṽµ Y

†
U YU Ṽ

µ
]

+ · · · ,(A23)

with ζi all real (complex couplings are possible at higher orders in Yukawa insertions). In general, the

masses for Vµ are not diagonalized by the U(u, L) or U(d, L) unitary transformation, but by a unitary

transformation that differs by ∼ VCKM from the two. For simplicity, we work in the limit where the con-

tributions from yb are much smaller than from yt. In this limit the vector field mass matrix is diagonalized

using U(u, L), giving a spectrum

m2
1 = m2

2 = m2
3 = m2

V

(
1 +

λ

2

v2

m2
V

)
, (A24)

m2
4 = m2

5 = m2
6 = m2

7 = m2
V

(
1 +

λ

2

v2

m2
V

+
ζ1

2
y2
t

)
, (A25)

m2
8 = m2

V

(
1 +

λ

2

v2

m2
V

+
ζ1

3
y2
t +

ζ2

3
y4
t

)
. (A26)

The mass degeneracy is lifted at y2
b order from a contribution of the form y2

b (VCKM)i3(V †CKM)j3 (i.e., from

the term proportional to ζ ′1 in (A23)).

We are now ready to write down the flavor breaking couplings between the vector and the quark fields.

These are given by

∆LVIIIa =
[
ηa2Q̄LY

†
UYU/V

a
µQL + h.c.

]
+
[
ηa3Q̄LY

†
DYD/V

a
µQL + h.c.

]
+
[
ηa4Q̄LY

†
UYU/V

a
µ Y
†
DYDQL + h.c.

]
+ · · · ,

(A27)
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where we only display one of the possible terms with four insertions of Yukawa matrices. Note that η2,3,4

can all be complex. We first display the couplings to the up-quarks in the “up” basis

∆LVIIIo = y2
t η
o
2

[
(t̄′L)α(T A)βα(TB)i3 /̃V

A,B
µ (u′L)iβ

]
+ y2

bη
o
3(VCKM)3

i (V ∗CKM)j3

[
(ū′L)iα(T A)βα(TB)kj /̃V

A,B
µ (u′L)kβ

]
+ y2

t y
2
bη
o
4 (VCKM)3

i (V
∗

CKM)j3

[
(t̄′L)α(T A)βα (TB)i3/̃V

A,B
µ (u′L)jβ

]
.

(A28)

The couplings to the bottom quarks we display in the “down” basis

∆LVIIIo = y2
t η
o
2(V ∗CKM)3

i (VCKM)j3

[
(d̄′L)iα(T A)βα(TB)kj /V

A,B
µ (d′L)kβ

]
+ y2

bη
o
3

[
(b̄′L)α(T A)βα(TB)i3 /V

A,B
µ (d′L)iβ

]
+ y2

t y
2
bη
o
4 (V ∗CKM)3

i (VCKM)j3

[
(d̄′L)iα(T A)βα (TB)3

j/V
A,B
µ (b′L)β

]
.

(A29)

For each of these two cases, the vector fields have to be put in the “up” or “down” basis respectively. In the

limit where we neglect yb insertions, the “up” basis coincides with the mass basis for the vector fields, while

the vector fields are not mass diagonal in the “down” basis. The couplings for the singlet case are obtained

from the above expressions by replacing (T A)βα → δβα.

6. Fields IXs,o

The discussion for this case is very similar to the previous one. The fields are given by V B,i
µ for the color

singlet and V A,B,i
µ for the color octet case, where i = 1, 2, 3 is the weak SU(2)L index. All basis indepen-

dent expressions apply also in this case, if the matrices of fields are defined as V s
µ = TBσiV B,i

µ /2, and the

octet matrix of fields V o
µ = T ATBσiV A,B,i

µ /4, where σi are the Pauli matrices. Phenomenologically the

most important difference is that there are now charged currents.

7. Fields X3̄,6

These fields are weak doublets and belong to the bi-fundamental representation of the flavor group

(1, 3, 3). They are either anti-triplets of color, in which case we have the fields (Vµ)rγi,j , or they are sextets

of color, in which case the fields are (Vµ)ri,j,α,β = (Vµ)ri,j,β,α. Here r is the weak SU(2)L index, α, β are

the flavor indices, while i and j are the indices of the (1, 3, 1) and (1, 1, 3) representations respectively. In

Section II we have written the Lagrangian in short-hand notation, while here we show the terms keeping the

indices explicit. The tree level quark coupling Lagrangian terms are (suppressing the SU(2)L indices)

LX3̄
= η1 εαβγ (Vµ)γi,j (d̄R)αi γµ (QcL)βj + h.c., (A30)

LX6 = η1 (Vµ)i,j,α,β (d̄R)αi γµ (QcL)βj + h.c., (A31)
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which in the mass eigenstate basis are

LX3̄
= η1 εαβγ (Ṽ 1

µ )γi,j (d̄′R)αi γµ (u′cL)βj + η1 εαβγ (VCKM)kj (Ṽ 2
µ )γi,k (d̄′R)αi γµ (d′cL)βj + h.c.,(A32)

LX6 = η1 (V 1
µ )i,j,α,β (d̄′R)αi γµ (u′cL)βj + η1 (VCKM)kj (Ṽ 2

µ )i,k,α,β (d̄′R)αi γµ (d′cL)βj + h.c.. (A33)

with (Ṽ 1
µ ) and (Ṽ 2

µ ) the charge and neutral vector fields, respectively.

8. Fields XI3̄,6

The analysis is very similar to case X. The couplings to quarks, vector fields mass spectra and splittings

can be obtained from the discussion on case X with the replacements dR ↔ uR, YD ↔ YU . For instance,

the quark coupling Lagrangian terms are (suppressing the SU(2)L index)

LXI3̄ = η1 εαβγ (Vµ)γi,j (ūR)αi γµ (QcL)βj + h.c., (A34)

LXI6 = η1 (Vµ)i,j,α,β (ūR)αi γµ (QcL)βj + h.c.. (A35)

9. Scalar Fields I, V, VI, IX, X

For convenience, the interaction Lagrangians for the scalar models under discussion, in the GF symmet-

ric limit, are provided below:

LI = η (S0
ij ūi Luj R + S−ij d̄i Luj R) + h.c. , (A36)

LV = η εαβγεijk S
i
α u

j
Rβ u

k
Rγ + h.c. , LVI = η Sa,b(T̂ a)ij(T̂ b)αβ uiRα u

j
Rβ + h.c., (A37)

LIX = η εαβγSαijd
i
Rβ u

j
Rγ + h.c. , LX = η Saij(T̂

a)αβ diRα u
j
Rβ + h.c., (A38)

where the η are dimensionless flavor universal couplings, Latin (Greek) indices label flavor (color), and

Lorentz spinor indices are suppressed. The generators T̂ a and T̂ b of the symmetric sextet flavor and color

representations are the symmetric 3 × 3 matrices, normalized such that Tr(T̂ aT̂ b) = 2δab and a, b =

1, · · · , 6. The scalar fields appearing in LI,V,VI,IX,X are canonically normalized. In LI we show explicitly

the Yukawa couplings of the charged and neutral components of the scalar doublets. The relevant NP cross

section formulae for top quark pair production can be found in Appendix B. The decay widths of the scalars

are κ η2mS/16π, where κ = 1, 4, 2, 1, 1 in models SV, SVI, SIX, SX, SI, respectively (assuming all quark

decay channels are open and ignoring phase space effects).
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Appendix B: Details on 2→ 2, 3 scattering calculations and phenomenology

In this Appendix we give some details of the calculations for tt̄ and light quark qq̄ production in the

scalar and vector MFV models. The comparisons with experimental data at the Tevatron and LHC were

done in Sections III and IV C.

a. 2→ 2 scattering in the scalar models

The relevant interaction Lagrangians for the scalar models are given in Eqs. (A37) – (A36). The general

formula for the spin averaged matrix element squared for qq̄ → tt̄, including interference with the SM, for

the exchange of a color triplet or sextet in the u-channel is [18]∑
ij

|M|2 = 64
∑
ij

[
g2
s η

2C0

s

(
(sm2

t + u2
t )(u−m2

s)

(u−m2
s)

2 + Γ2m2
s

)
+

4 η4C2 u
2
t

(u−m2
s)

2 + Γ2m2
s

]
, (B1)

where vt ≡ v−m2
t for v = {s, t, u}. For the exchange of a color singlet or octet in the t-channel one has to

make the replacement u→ t above. The color factors for an exchange of a (1, 3̄,6,8) of SU(3)c are given

by C0 = (4, 1,−1,−2/3) and C2 = (9, 3/4, 3/2, 2).

The differential partonic 2 → 2 cross section averaged over initial spins and colors and summed over

final states is given by

d σ̂

d z
=

β

32π s

∑
ij

|Mij |2. (B2)

where
∑

ij |Mij |2 = 1
4

1
9

∑
ij |Mij |2. Here β =

√
1− 4m2/s is the velocity of the final state quark (with

mass m) in the initial state partonic rest frame while z = cos θ and θ is the scattering angle in the partonic

CM frame. The sum in Eq. (B2) is over all contributing matrix elements. The initial states are weighted

with the appropriate PDFs to obtain the hadronic cross section. When evaluating the dijet constraints we

use MSTW2008 PDF sets [94]. The renormalization scale is set to the pT of the jets, µ = Mjj

√
1− z2/2,

where z = cos θ is the partonic scattering angle from the beam line and Mjj is the invariant mass of the

dijets.

In the case of light quark pair production, in models SV and SVI there are u-channel exchange con-

tributions to u ū → c c̄, c c̄ → u ū, and in SVI there are additional u-channel exchange contributions to

u ū → u ū, c c̄ → c c̄. The corresponding matrix elements squared can be obtained from Eq. (B1), taking

care to include factors of 2 and 4, respectively, in the first and second terms for the latter subprocesses.

s-channel exchange in models SV and SVI contribute to u c → u c + c.c., and in SVI there are additional

contributions to uu → uu + c.c., cc → cc + c.c.. The corresponding cross sections can be obtained via

crossing symmetry from the above, and including t channel SM contributions, also see [36].
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Following [139], experimental cuts on the rapidity y and the rapidity separation ∆y of the two leading

jets in dijet production are implemented at the partonic level in the 2→ 2 subprocesses via

dσ

dMjj
= σN

Mjj

s

∫ y0
B

−y0
B

d yB

∫ z0

−z0
d z
∑
ij

fi(τ e
yB ) fj(τ e

−yB )
d σ̂

d z
(B3)

where σN = 0.3894 · 109pb, s is the hadronic center of mass energy, τ =
√
M2
jj/s, fi,j are the MSTW

parton densities, and YB is the boost rapidity of the subprocess frame. The rapidity cuts |y1,2| < Ymax

correspond to the integration limits

y0
B = Min[Ymax,− log[M2

jj/s]/2] (B4)

and a cut ∆y < (∆y)max enters the angular integration limits as

z0 = Min[zmax, tanh(Ymax − |yB|)]. (B5)

where zmax = (Exp[(∆y)max]− 1)/(Exp[(∆y)max] + 1).

b. Vector models 2→ 2 production

The vector models can be divided into two sets: the cases I-IX that couple only right-handed or left-

handed quarks, and the models X and XI, where the right-handed quarks are coupled to left-handed (charge

conjugated) quarks. To obtain a general equation for the qq̄ → tt̄ cross section for the first subset of models

I-IX, we consider a generic Lagrangian (with trivial changes in notation if vectors couple to right-handed

quarks)

L = fq q̄L/V qL + ftt̄L/V tL + [fqtq̄L/V tL + h.c.], (B6)

where we have suppressed flavor, weak and color indices. This gives for the weighted average of the

amplitude squared for the qq̄ → tt̄ scattering∑
|M|2 = C1

|fqft|2

36

s2(1 + βθ)
2

s2
V + Γ2

Vm
2
V

+ C3
|fqt|4

36

s2

t2V + Γ2
Vm

2
V

(
(1 + βθ)

2 +
m4
t

4m4
V

[
(1− βθ)2 + 16

m2
V

s

])
+ C2

|fqt|2

18

fqft(sV tV + Γ2
Vm

2
V )

(s2
V + Γ2

Vm
2
V )(t2V + Γ2

Vm
2
V )
s2

(
(1 + βθ)

2 + 2
m4
t

sm2
V

)
(B7)

while the interference with the LO SM one gluon exchange gives∑
2Re(MM∗SM ) =

8παS
9
C4|fqt|2

tV
t2V + Γ2

Vm
2
V

s

(
m2
t

s
+

1

4
(1 + βθ)

2 +
m2
t

2m2
V

[
m2
t

s
+

1

4
(1− βθ)2

])
+

8παS
9
C5

fqftsV
s2
V + Γ2

Vm
2
V

s

[
m2
t

s
+

1

4
(1 + βθ)

2

]
.

(B8)
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Case Couples to q fq ft fqt Cs1 Cs2 Cs3 Cs4 Cs5 Co1 Co2 Co3 Co4 Co5
Is,o d, s, b η1 0 0 9 0 0 0 0 2 0 0 0 2

IIs,o u, c η1 η1 + y2
t η2 0 9 0 0 0 0 2 0 0 0 2

IIIs,o u, d, s, c, b η1 η1 + y2
t η2 0 9 0 0 0 0 2 0 0 0 2

IVs,o u, c η1 η1 + y2
t η2 0 9 −6 36 8 0 2 4

3 8 − 4
3 2

d, s, b η1 η1 + y2
t η2 η1δq,b 9 −6 36 8 0 2 4

3 8 − 4
3 −2

Vs,o d, s, b η1 0 0 1
4 −

1
4

9
4 2 0 1

18
1
18

1
2 −

1
3 −

1
3

VIs,o u, c η1 η1 + 2y2
tRe(η2) η1 + y2

t η2
1
4 −

1
4

9
4 2 0 1

18
1
18

1
2 −

1
3 −

1
3

VIIs,o d, s, b 0 0 η1 + y2
t η2 0 0 9

4 2 0 0 0 1
2 −

1
3 0

VIIIs,o u, d, s, c, b η1 + y2
t 2Re(η2)δq,b η1 + y2

t 2Re(η2) η1 + y2
t η2

1
4
−1
4

9
4 2 0 1

18
1
18

1
2 −

1
3 −

1
3

IXs,o u, c η1 + y2
t 2Re(η2)δq,b η1 + y2

t 2Re(η2) η1 + y2
t η2

1
4 −

1
4

9
4 2 0 1

18
1
18

1
2 −

1
3 −

1
3

d, s η1 + y2
t 2Re(η2)δq,b η1 + y2

t 2Re(η2) η1 + y2
t η2

1
4

1
2 9 4 0 1

18 −
1
9 2 − 2

3
1
3

b η1 + y2
t 2Re(η2)δq,b η1 + y2

t 2Re(η2) η1 + y2
t η2 1 - 2

3 4 8
3 0 2

9
4
27

8
9 −

4
9 −

2
3

TABLE VII: The contributions to tt̄ cross section from MFV vector resonances. The coefficients Ci are to be used

in Eqs. (B7), (B8), where we have kept for simplicity only leading flavor breaking in the couplings of quarks to the

vector, while neglecting the flavor breaking in the vector propagators (and in models IV, IX, X, XI also neglecting the

electroweak symmetry breaking contributions to vector masses).

Here sV = s−m2
V , and similarly tV = t−m2

V , uV = u−m2
V . Explicitly one has

t = m2
t −

1

2
s(1− βθ), u = m2

t −
1

2
s(1 + βθ), (B9)

with βθ = β cos θ, while β =
√

1− 4m2
t /s is the top velocity in the tt̄ rest frame. We have used the same

notational conventions as in the scalar case above. This formula should be summed over all possible initial

quark states q, which depends on the particular MFV vector field considered.

The expressions for the contributions to the tt̄ cross section for the second subset, cases X and XI, are

very similar to the above. The important difference is that both left-handed and right-handed quarks couple

to the vectors at the same time. The general form of the interaction Lagrangian in this case is

L = t̄γµ(fLPL + fRPR)Vµ q
c + h.c., (B10)

which gives for the weighted average of the amplitude squared contribution to qq̄ → tt̄ scattering

∑
|M|2 = C′1(|fL|4 + |fR|4)

12s2

36u2
V

[
m4
t

4m4
V

(
(1 + βθ)

2 + 16
m2
V

s

)
+ (1− βθ)2

]
+

+ C′22|fL|2|fR|2
12s2

36u2
V

[
m4
t

4m4
V

(
(1 + βθ)

2 + 16
m2
V

s

)
+ 4

(
1− 2

m2
t

s

)2
]
.

(B11)
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The interference with the SM one gluon exchange is∑
2Re(MM∗SM ) =

−1

9
παSC′3(|fL|2 + |fR|2)

s

uV

[
(1− βθ)2 + 8

m2
t

s
+
m2
t

m2
V

(1 + βθ)
2 + 4

m4
t

m2
V s

]
.

(B12)

For the coefficients in these equations we have C′1 = C′2 = 1(1/2), C′3 = 2(1) for 3̄(6) cases, while

fL = η1 + y2
t η2, fR = 0 for model X and fL = η1 + y2

t η2, fR = η1 for model XI.

For light quark pair production we use the generic form of the interaction Lagrangian (B6), but replace

the top quarks with light quarks. We denote by fq the flavor diagonal coupling of vectors to quarks (these

will contribute in the s-channel). The flavor off-diagonal couplings for terms contributing in the t-channel

are denoted as fq q′ . In the numerical analysis we set fq = fqq′ , which follows from HF symmetry.

We examine dijet constraints on three sample models, IIo, VIs and VIo. The spin and color averaged

amplitudes for uū→ cc̄ or cc̄→ uū processes are∑
|M|2 =

|fufc|2

9

C1u
2

s2
V + Γ2

Vm
2
V

+
2|fuc|2

9

C2fufc(sV tV + Γ2
Vm

2
V )

(s2
V + Γ2

Vm
2
V )(t2V + Γ2

Vm
2
V )

u2 +
|fuc|4

9

C3u
2

t2V + Γ2
Vm

2
V

(B13)

and ∑
2Re(MM∗SM ) =

8παS
9

(
C4|fuc|2

tV
t2V + Γ2

Vm
2
V

+ C5
fufcsV

s2
V + Γ2

Vm
2
V

)
u2

s
, (B14)

where t = −s(1− cos θ)/2, u = −s(1 + cos θ)/2. The Ci’s are

C1 =
1

18
, C2 =

1

18
, C3 =

1

2
, C4 = −1

3
, C5 = −1

3
(B15)

for model VIo,

C1 =
1

4
, C2 = −1

4
, C3 =

9

4
, C4 = 2, C5 = 0 , (B16)

for model VIs, and

C1 = 2, C2 = 0, C3 = 0, C4 = 0, C5 = 2 (B17)

for model IIo.

For the processes uū→ uū or cc̄→ cc̄ the spin and color averaged amplitudes squared are∑
|M|2 =

f4
q

9
u2

(
C1

s2
V + Γ2

Vm
2
V

+ 2 C2
sV tV + Γ2

Vm
2
V

(s2
V + Γ2

Vm
2
V )(t2V + Γ2

Vm
2
V )

+
C3

t2V + Γ2
Vm

2
V

)
(B18)

We have to add new terms to the interference between the NP and SM, because now there is also a t-channel

contribution in the SM. The modified equation is∑
2Re(MM∗SM ) =

8παS
9

u2 f2
q

[
tV

t2V + Γ2
Vm

2
V

(
Cs4
s

+
Ct4
t

)
+

sV
s2
V + Γ2

Vm
2
V

(
Cs5
s

+
Ct5
t

)]
(B19)
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The Ci’s are

C1 =
2

9
, C2 = − 2

27
, C3 =

2

9
, Cs4 = −2

9
, Ct4 =

2

3
, Cs5 =

2

3
, Ct5 = −2

9
(B20)

in model VIo,

C1 = 1, C2 =
1

3
, C3 = 1, Cs4 =

4

3
, Ct4 = 0, Cs5 = 0, Ct5 =

4

3
(B21)

in model VIs, and

C1 = 2, C2 = −2

3
, C3 = 2, Cs4 = −2

3
, Ct4 = 2, Cs5 = 2, Ct5 = −2

3
(B22)

for model IIo

Using crossing symmetry, the processes uc̄ → uc̄ + c.c. are obtained from Eqs. (B13), (B14) via the

substitutions s→ t, t→ s, u→ u; the processes uc→ uc+ c.c. are obtained from Eqs. (B13), (B14) via

the substitutions s → t, t → u, u → s; and the processes uu → uu + c.c., cc → cc + c.c. are obtained

from Eqs. (B18), (B19) via the substitutions s→ t, t→ u, u→ s.

c. LEP e+ e− → f f̄V production

Consider a vector Lagrangian of the form L = η V µ ψ̄R γµ ψR. Then the amplitude squared for the

production of a color singlet vector V through e+ e− → γ? → V f̄ f is given by

|M|2 = −8e4Q2Nc|η|2

s2
1s

2
2

[
1

s2

(
2m2

v(s1s2 − s1t1 − s2t2)2
)

− 1

s

(
2s1s2m

4
v − 2(s1 + s2)(s1t1 + s2t2)m2

v + s1s2

(
s1

2 − 2t2s1 + s2
2 − 2s2t1 + 2(t1

2 + t2
2)
))

+m2
v(s1 − s2)2 + 2s1s2(s1 + s2 − t1 − t2)− 2ss1s2

]
. (B23)

Here we have used the three body final state Mandelstam variables using the notation of [141], with the

momenta assignments e−(pa), e
+(pb), f̄(p1), V (p2), f(p3) and e is the electromagnetic coupling constant

while Q is the charge of a particular quark. The corresponding production cross section at LEP is given by

σ(e+ e− → γ? → V f̄ f) =
1

210π4s2

∫
ds1 ds2 dt1 dt2 |M|

2
θ [−G]√

−G
, (B24)

where the physical region that determines the integration range satisfies the condition that the Gram deter-

minant G ≤ 0. The Gram determinant for the 2→ 3 production is explicitly given by

G =
1

16

[
m4
vs

2 − 2m2
vs(s t1 + s t2 + s1(s2 − t1)− s2t2 + 2t1t2) (B25)

+2s1(s(s2(t1 + t2) + t1(t2 − t1)) + s2t2(t1 − s2)) + (s(t1 − t2) + s2t2)2 + s2
1(s2 − t1)2

]
.
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d. LHC gg → SS production

For a field in a flavor representation F , and color representation R, the cross section for g g → S S is

dσ

dt
=

dim(F )π α2
s

82 s2
[C1 F1 + C2 F2 + C3 F3 + C4 F4] . (B26)

Here the functions Fi are

F1 = 2 +
s− 2m2

s

t−m2
s

+
s− 2m2

s

u−m2
s

,

F2 =
(u− t)2

2 s2
+

[
(m2

s − u)(4m2
s − s) + (t− u)(s− 2m2

s)/2

s(t−m2
s)

+ u↔ t

]
,

F3 = 4m4
s

(
1

(t−m2
s)

2
+

1

(u−m2
s)

2

)
,

F4 =
2(s− 2m2

s)
2

(u−m2
s)(t−m2

s)
.

(B27)

The color factors, for the R = (3,6,8) representations (G = 8) are

C1 = C(R)dim(G)(2C2(R)− C2(G)/2) = (14/3, 310/3, 108),

C2 = C(R)C2(G)dim(G) = (12, 60, 72),

C3 = [C2(R)]2dim(R) = (16/3, 200/3, 72),

C4 = C(R)dim(G)(C2(R)− C2(G)/2) = (−2/3, 110/3, 36).

(B28)

Appendix C: Low Energy Constraints

The main motivation for studying flavor symmetric extensions of the SM is to have an effective way of

suppressing FCNCs allowing new states of fairly low mass. In this appendix we give a brief account of the

constraints on our models from low energy data. We focus on processes that can be very restrictive, K− K̄,

Bs,d − B̄s,d and D − D̄ mixing.

The effective weak Hamiltonian describing the Bs − B̄s mixing in the SM is

HSM
eff = ηW ηRG

(
V ∗tsVtb

)2
Λ2
SM

(
s̄Lγ

µbL)2, (C1)

where

ΛSM =
2π

GFmW

√
S0(xt)

= 4.39 TeV. (C2)

This is larger than mW by an order of magnitude because SM contribution arises at one loop level from box

diagrams with t and W exchanges. The factor ηW encodes the QCD corrections to the matching at the hard
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scale µW ∼ mW , while ηRG is the correction due to the running from µW to µb. In NDR at NLO they are

ηW = 0.970, ηRG = 0.860 (using αS(mz) = 0.1184, µW = mW , µb = mb = 4.2 GeV and m̄t = 164

GeV for which S0(xt) = 2.33). The SM weak hamiltonians for the Bd − B̄D, K − K̄ and D − D̄ mixing

follow from (C1) with the obvious replacements in quark flavors. In addition K and D mixing amplitudes

receive large nonlocal contributions in the SM.

NP contributions can modify the effective weak Hamiltonian toHSM
eff +∆HNP

eff . To make the comparison

with the experiment easier we normalize the NP contributions to the SM predictions. For Bs,d mixing we

thus define

hs,de
i2σs,d ≡

〈Bs,d|∆HNP
eff |B̄s,d〉

〈Bs,d|HSMeff |B̄s,d〉
. (C3)

Note that σs,d measures the deviation of NP weak phase from the SM one (for Bs mixing the SM weak

phase is very small, O(1◦), while for Bd mixing it is 2β ∼ 45◦). Since the (real part) of 〈K0|HSMeff |K̄0〉

receives potentially large long distance contributions from ∆S = 1 operators, we normalize the NP matrix

elements to the measured mass difference

hKe
i2σK ≡ MNP

12

∆mK
=

1

∆mK
·
〈K0|∆HNP

eff |K̄0〉
2mK

. (C4)

Similarly there are potentially large long distance effects in D − D̄ mixing amplitude, so that we define in

the same way

hDe
i2σD ≡ MNP

12

∆mD
=

1

∆mD
·
〈D0|∆HNP

eff |D̄0〉
2mD

. (C5)

Note that σK and σD measure the total weak phase of the NP contributions to the mixing, not just the

deviation from the SM one. No NP in the mixing corresponds to hs = hd = kK = hD = 0.

From the agreement of measured and predicted values of εK we obtain the bound at 95% C.L.

|hK sin(2σK)| <∼ 1.3× 10−3. (C6)

Conservatively we use the the prediction |εK | = (2.01+0.59
−0.66) · 10−3 from [122], which is in good agreement

with the measured value |εK | = (2.229 ± 0.010) · 10−3 (for a different treatment of lattice inputs see

[140]). The bound on hK cos 2σK is more uncertain because of potentially large long distance contributions.

Assuming conservatively that ∆mK is saturated by NP gives |hK cos 2σK | <∼ 0.5. The CP violation in

D − D̄ mixing is well constrained and so |hD sin(2σD)| <∼ 0.3, at 95 % C.L. [142] (the NP contribution

to φD12 is 2σD, while the SM CP violating contribution is negligible). Conservatively assuming that NP

saturates the mass difference ∆mD we obtain hD <∼ 0.5.
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The NP contributions to the effective weak Hamiltonian in (C1), ∆HNP
eff , are described by local operators

∆HNP
eff =

∑
i

CiQi +
∑
i

C̃iQ̃i (C7)

where the sum runs over the full set of dimension 6 local operators. For Bs mixing these are [143]

Q1 = (s̄LγµbL)(s̄LγµbL), Q2,4 = (s̄RbL)(s̄R,LbL,R), Q3,5 = (s̄αRb
β
L)(s̄βR,Lb

α
L,R), (C8)

Above PL,R = (1± γ5)/2, while color indices are not displayed, if the summation is within brackets. The

operators Q̃i are obtained from Eq. (C8) by making a PR ↔ PL replacement. Note that Q1 is the operator

in the SM effective weak Hamiltonian Eq. (C1).

The SM and NP weak hamiltonians for the Bd, K and D mixing follow from (C1) and (C8) with the

obvious replacements in quark flavors. In addition K and D mixing amplitudes receive large nonlocal

contributions in the SM. We evaluate the matrix elements for the operators Qi in the same way as described

in Eqs. (8)-(10) of [143], including the numerical values, except for the updated values of fBd
= 205± 12

MeV, fBs = 250 ± 12 MeV [144] and the quark masses, for which we use the PDG 2010 values β =

(21.8 ± 0.9)◦ and γ = (67 ± 4)◦ [145]. The matrix elements for Q̃i are the same as for Qi since QCD

interactions are parity conserving.

1. Models I-IX

The models I-IX give contributions to the effective Hamiltonian forBs mixing that at scale µ = mb take

the form

∆HNP,Bs

eff =
κs
M2
V

(y2
t VtbV

∗
ts)

2η′ηRG
[
b̄Lγ

µsL b̄LγµsL
]
, (C9)

or of its parity image: replacing b̄RγµsR b̄RγµsR for b̄LγµsL b̄LγµsL. Parity symmetry of the strong

interactions implies that these operators have identical matrix elements between one particle states. The

value of model dependent constant κs is listed in Table VIII, while MV stands for the average mass of the

MFV-vector exchanged. The factor η′ is a QCD correction that arises from running from the scale of the

new physics, MV , to the electroweak scale, MW . In calculating bounds we set η′ = 1 incurring an error of

order [αS(MW )/4π] ln(MV /MW ) ≈ 0.01 ln(MV /MW ).

The contributions to Bd, D and K mixing we define analogously (for simplicity of notation setting

η′ηRG = 1),

∆HNP,Bd
eff =

κd
M2
V

(y2
t VtbV

∗
td)

2(d̄Lγ
µbL)2, ∆HNP,K

eff =
κK
M2
V

(y2
t VtsV

∗
td)

2(d̄Lγ
µsL)2, (C10)

∆HNP,D
eff =

κD
M2
V

(y2
bV
∗
ubVcb)

2(c̄Lγ
µuL)2. (C11)
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Case
∆L

κs,d/Cs,o κK/Cs,o κD/Cs,o

Is,o

η1 d̄R(/V YD∆UY
†
D)dR +

[
η2 d̄R(/V YD∆U∆DY

†
D)dR + h.c.

]
y2
s,dy

2
b (η1 + η2y

2
b )2 y2

dy
2
s(η1 + η2y

2
b )2 0

IIs,o

η1 ūR(/V YU∆DY
†
U )uR +

[
η2 ūR(/V YU∆U∆DY

†
U )uR + h.c.

]
0 0 y2

uy
2
c (η1 + η2y

2
c )2

IIIs,o

η1Q̄L(/V∆U )QL + η′1Q̄L(/V∆D)QL +
[
η2Q̄L(/V∆U∆D)QL + h.c.

]
(
η1 + η2y

2
b )2 η2

1 η′1
2

IVs,o

η0Q̄L/V QL + η1Q̄L(/V∆U )QL + η′1Q̄L(/V∆D)QL +
[
η2Q̄L(/V∆U∆D)QL + h.c.

]
(
η1 + η2y

2
b )2 + ∆CC η2

1 + ∆CC η′21 + ∆CC

Vs,o

η1d̄R/V dR +
[
η2d̄R /V

(
YD∆UY

†
D

)
dR + h.c.

]
+ η3d̄R

(
YD∆UY

†
D

)
/V
(
YD∆UY

†
D

)
dR

y2
s,dy

2
b

[
η22
4r23

+
(η2−2η∗2 )2

12r28
+ η1η3

r26,4

]
y2
dy

2
s

[
(η2−η∗2 )2

4r23
+

(η2+η∗2 )2

12r28
+ η1η3

r21

]
0

VIs,o

η1ūR/V uR +
[
η2ūR /V

(
YU∆DY

†
U

)
uR + h.c.

]
+ η3ūR

(
YU∆DY

†
U

)
/V
(
YU∆DY

†
U

)
uR

0 0 y2
uy

2
c

[
(η∗2−η2)2

4r23
+

(η2+η∗2 )2

12r28
+ η1η3

r21

]
VIIs,o

η1 d̄R/V uR + η2 d̄R(YD∆UY
†
D)/V uR + h.c.

∆CC ∆CC ∆CC

VIIIs,o

η1Q̄L/V QL + [η2Q̄L∆U/V QL + η′2Q̄L∆D/V QL + h.c.] + η3Q̄L∆U/V∆UQL + η′3Q̄L∆D/V∆DQL

η∗22

4r23
+

(η∗2−2η2)2

12r28
+ η1η3

r26,4

(η∗2−η2)2

4r23
+

(η2+η∗2 )2

12r28
+ η1η3

r21

(η′2−η
′
2
∗)2

4r23
+

(η′2+η′2
∗)2

12r28
+

η1η
′
3

r21

IXs,o

η1Q̄L/V QL + [η2Q̄L∆U/V QL + η′2Q̄L∆D/V QL + h.c.] + · · ·
η∗22

4r23
+

(η∗2−2η2)2

12r28
+ ∆CC

(η∗2−η2)2

4r23
+

(η2+η∗2 )2

12r28
+ ∆CC

(η′2−η
′
2
∗)2

4r23
+

(η′2+η′2
∗)2

12r28
+ ∆CC

TABLE VIII: The part of interaction Lagrangian ∆L relevant for meson mixing amplitudes and coefficients κi in

(C9)-(C11) for each of the models I-IX. We use the abbreviations ∆U = Y †UYU , ∆D = Y †DYD and ri = mVi
/mV for

the ratios of vector meson masses in the flavor multiplet to the average vector meson massmV , while ∆CC stands for a

1-loop contribution, a box diagram, from exchange of charged MFV-vectors; see text. The factors of Cs = 1(Co = 1
3 )

must be included for color singlet (octet) vectors. Due to lack of space we display for model IX results only for leading

complex parameters (the undisplayed leading real terms are the same as for model VIII).

The coefficients κs,d,K,D are collected in Table VIII. In models V, VIII and IX several vector fields mediate

mixing and we indicate their separate contributions. This requires we distinguish among their masses , with

MV then denoting their average mass in the defining formulae (C9)-(C11) for κi.
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Numerically, for Bd,s mixing contributions we have

hd,se
2iσd,s = κd,sy

4
t

η′

ηW

Λ2
SM

M2
V

≈ 20× κd,sy4
t

(
1 TeV
MV

)2

. (C12)

The contribution to the K mixing is

hKe
i2σK = κKy

4
t (VtsV

∗
td)

2 mK

3∆mK

f2
KB̂K
m2
V

≈ 0.1× κKei2βy4
t

(
1 TeV
MV

)2

, (C13)

and for the D mixing

hDe
i2σD = κDy

4
b (V

∗
ubVcb)

2 mD

3∆mD

f2
DB

D
1

m2
V

≈ (0.3 · 10−2)× κDei2γy4
b

(
1 TeV
MV

)2

. (C14)

In the numerics above we use fK = 156 MeV, B̂K = 0.79 [143], BD
1 = 0.865 [143], the averages of

CKM elements from CKMfitter ICHEP2010 update [145]. The standard CKM unitarity triangle angles

have the values β = (21.8 ± 0.9)◦ and γ = (67.2 ± 3.9)◦. We have also included the effect of running

from electroweak scale to mD for D− D̄ mixing, however, this is numerically unimportant and results in a

percent level shift in hD.

The flavor constraints thus require that (for MV = 1 TeV) the κi coefficients for the particular model

are below κd <∼ 0.02, κK <∼ 10−2 (unless the phase of κK is finely tuned not to give a contribution to εK),

and κD <∼ 20. In order to explain the hint for nonzero phase of Bs mixing, on the other hand, requires

hs ∼ 0.02 or hs ∼ 0.1 for the two solutions, with appropriate weak phases.

We make the following observations regarding models I-IX:

• We can group the models into two categories. The first category form “universal” models, where

the contributions to the mixing amplitudes are due to class-1 operators in the notation of [13]. For

universal models we have

κs = κd ' κK ∼ κD, (C15)

where the last approximate equalities are valid, if all the couplings ηi are of the same size. In addition

in yb → 0 limit κs,d = κK .

• The second category form the “Yukawa suppressed” models, where the contributions to the mixing

come from operators with additional Yukawa suppression (the so-called class-2 operators in the nota-

tion of [13]). These are the models IIs,o, VIs,o, that contribute only to D− D̄ mixing and the models

Is,o, Vs,o, for which

κd : κs : κK = y2
d : y2

s :
y2
sy

2
d

y2
b

, (C16)

(the relation to κK is only approximate for model V).
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• Universal models can require small values for ηi ∼ 0.1 · (MV /1 TeV) in order to avoid K − K̄

and Bd − B̄d mixing constraints. This is an order of magnitude smaller then the flavor-conserving

couplings typically required to obtain largeAtt̄FB . This by itself is not a problem as the flavor violating

couplings could be loop suppressed.

• Yukawa suppressed models have no problems satisfying FCNC bounds. The typical sizes of contri-

butions to hi are

hse
i2σs ' 0.09× y4

t

κs
y2
s

( ys
0.02

)2
(

0.3 TeV

mV

)2

, (C17)

hde
i2σd ' (2 · 10−4)× y4

t

κd
y2
d

( yd
10−3

)2
(

0.3 TeV

mV

)2

, (C18)

hKe
i2σK ' (5 · 10−10)× y4

t

κK
y2
dy

2
s

( yd
10−3

)2 ( ys
0.02

)2
(

0.3 TeV

mV

)2

, (C19)

hDe
i2σD ' (8 · 10−16)× y4

b

κD
y2
uy

2
c

( yu
10−5

)2 ( yc
5 · 10−3

)2
(

0.3 TeV

mV

)2

, (C20)

where we have normalized ys,d to values typical for large tanβ (yb ∼ 1). The contributions to Bd,

K and D mixing are completely negligible for these models.

• Yukawa suppressed models Is,o, Vs,o can potentially explain Bs mixing anomaly, if yb ∼ O(1) and

ηi ∼ O(1), while vectors need to have electroweak scale masses of no more than a few 100 GeV.

For this a flavor diagonal weak phase is needed [92]. A flavor diagonal weak phase arises if the

coefficients ηi are complex. For models I-VI the coefficients can be real only for terms that are

higher order in Yukawas and therefore non-hermitian: η0,1,3 and η′1 are all real, while η2 can be

complex. In models VIIs,o all ηi can be complex. In models V, VIII and IX the contributions to the

mixing carry a weak phase only if the vector mesons are not degenerate.

Finally, in models IV, VII and IX we include a contribution ∆CC from charged vectors that produce

mixing through a 1-loop box diagram, much like in the standard model. For example, for model IVs we

find for the contribution to Bs, Bd and K mixing

∆CC =
1

128π2

η4
0

y4
t

S0(xtV ) , (C21)

where xtV = (mt/MV )2 and [146]

S0(x) = x

[
1

4
+

9

4

1

1− x
− 3

2

1

(1− x)2

]
− 3

2

(
x

1− x

)3

ln(x) . (C22)

For model VIIs the Bs mixing contribution is

∆CC =
1

64π2
(ybys)

2S0(xtV )
[
|η1η2|2 + Re(η∗1η2)2

]
, (C23)
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1.5 2 2.5 3
MV�mt

0.1

0.2

h�Η0
4

FIG. 14: Correction h, in units of η4
0 , to BB mixing in Model IVs from double exchange of charged currents as a

function of vector mass in units of top mass.

while the Bd and K mixing contributions are obtained through the replacements ys → yd and yb → yd,

respectively. Above, we have assumed degenerate MFV-vectors for simplicity. For IVo and VIIo insert

an additional factor of 11/6 in these formulae. Fig. 14 shows the correction h = hs = hd in model IVs

resulting only from ∆CC, as a function of the top to charged vector mass ratio mt/MV . The figure is

for η0 = 1, but can easily be rescaled as indicated. The bound h < 0.2 gives MV > 200 GeV (using

mt = 164 GeV) for η0 = 1, increasing to MV > 420 GeV for η0 = 2. In estimating this effect we have

assumed the box diagram for these vectors is precisely as for the case of W ’s in the SM, because the GIM

mechanism renders the diagram finite even in unitary gauge.

In the D− D̄ case, in contrast to the B − B̄ case, the long distance contribution is believed to dominate

the double charge current exchange amplitude. Since this is not computable, we settle for estimating ∆CC

by comparing the perturbative box diagram to the corresponding one in the SM. Since all internal quarks

are light the computation simplifies: for example, in model IVs the ratio is

NPBox

SMBox
=

(
η0

g2

)4(MW

MV

)4

≈
(

190η0

MV (GeV)

)4

, (C24)

so that, for example, the new physics is a factor of 10 suppressed relative the SM for MV /η0
>∼ 340 GeV.

2. Models X and XI

The vector models give a contribution to the effective Hamiltonian for Bs mixing that at the scale µ ∼

mV takes the form

∆HNP,Bs

eff =
2κs
M2
V

(y2
t VtbV

∗
ts)

2 (Q4 −Q5) , (C25)

where the operators Q4,5 are given in (C8). The contributions to Bd, K and D mixing are defined in the

same way, with appropriate replacement of the CKM factors and quark fields, as in (C10), (C11). The above
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Case
∆L

κs,d κK κD

X3̄,6

η1d̄R/V Q
c
L + η2d̄R/V∆∗UQ

c
L + η3d̄R(YD∆UY

†
D)/V QcL + η4d̄R(YD∆UY

†
D)/V∆∗UQ

c
L + h.c.

ys,d yb

[
η1η
∗
4

r2ii
+

η̃∗1η4
r233

+
η2η̃
∗
3

ri3
+

η̃∗2η3
r3i

]
ys yd

[
η1η
∗
4+2<η2η∗3
r2ii

+
η̃∗1η4
r233

]
0

XI3̄,6

η1ūR/V Q
c
L + η2ūR/V∆∗DQ

c
L + η3ūR(YU∆DY

†
U )/V QcL + η4ūR(YU∆DY

†
U )/V∆∗DQ

c
L + h.c.

0 0 yu yc

[
η∗1η4+2<η2η∗3

r2ii
+

η̃′1η
∗
4

r233

]

TABLE IX: The same as Table VIII, but for models X and XI. We further defined η̃1 = η1 +η2y
2
t +η3y

2
t y

2
b +η4y

4
t y

2
b ,

η̃2 = η2 + η4y
2
t , η̃3 = η3 + η4y

2
t , and η̃′1 = η1 + η2y

2
b + η3y

2
by

2
t + η4y

4
by

2
t . The results are written in the limit of

degenerate vectors mediating transitions between the first two generations. Above the index i stands for i = 1, 2.

expression is for color triplets, X3̄,XI3̄. The result for color sextets, X6,XI6, is obtained with a replacement

(Q4 −Q5)→ −(Q4 +Q5)/2. The factors κi are collected in Table IX.

To obtain the low energy predictions, we include the RG running using the equations and numerical

values for the matrix elements given in [143]. As before, we use the updated values of CKM elements from

CKMFitter, ICHEP2010 update [145]. We obtain

hse
i2σs ' 1.7(−2.1)× y4

t

κs
ys

( ys
0.02

)(1 TeV

mV

)2

, (C26)

hde
i2σd ' 0.09(−0.11)× y4

t

κd
yd

( yd
10−3

)(1 TeV

mV

)2

, (C27)

hKe
i2σK ' 5(−4) · 10−3 × ei2βy4

t

κK
ydys

( ys
0.02

)( yd
10−3

)(1 TeV

mV

)2

, (C28)

hDe
i2σD ' 1.4(−1.5) · 10−8 × ei2γy4

b

κD
yuyc

( yu
10−5

)( yc
5 · 10−3

)(1 TeV

mV

)2

, (C29)

where the first values are for color triplet models and in the brackets for the color sextet models.

We make the following observations:

• Models X and XI are of the ”Yukawa suppressed” category, but the class-2 operators that they give

rise to are linear in ys, yd suppression, which is quite atypical. Commonly the suppression in class-2

operators is quadratic in light Yukawas. The ratios of κi for models X are

κd : κs : κK = yd : ys :
ysyd
yb

, (C30)

where the ratio with κK is only approximate.
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• Models X3̄,6 offer the possibility to explain Att̄FB and Bs mixing anomaly at the same time, if fla-

vor violating couplings ηi are a factor few smaller than the corresponding couplings in the flavor

conserving part of the Lagrangian.

3. Models SI−IV

The models SI−IV give contributions to Bs mixing of the form

∆HNP,Bs

eff = − κs
M2
S

(y2
t VtbV

∗
ts)

2Q4, (C31)

where the operators Q4,5 are given in (C8). The contributions to Bd, K and D mixing are defined in the

same way, with appropriate replacement of the CKM factors and quark fields, as in (C10), (C11). The above

expression is for models SI and SIII, while for models SII and SIV the result is obtained with a replacement

Q4 → −Q4/6 +Q5/2. The factors κi are collected in Table X. Numerically these models are very similar

to the MFV models X and XI,

−hsei2σs ' 1.5(0.05)× y4
t

κs
ys

( ys
0.02

)(1 TeV

mS

)2

, (C32)

−hdei2σd ' 7(0.3) · 10−2 × y4
t

κd
yd

( yd
10−3

)(1 TeV

mS

)2

, (C33)

−hKei2σK ' 3.6(−0.1) · 10−3 × ei2βy4
t

κK
ydys

( ys
0.02

)( yd
10−3

)(1 TeV

mS

)2

, (C34)

−hDei2σD ' 1.1(0.01) · 10−8 × ei2γy4
b

κD
yuyc

( yu
10−5

)( yc
5 · 10−3

)(1 TeV

mS

)2

, (C35)

where the values in the brackets are for the models SII and SIV, for which numerical cancellation between

the matrix elements of the two operators occurs.

4. Models SV−XIV

Of the remaining models only models SVI,VIII,XIV lead to tree level FCNCs. The models SV,VII,IX,XI

and SXIII do not lead to tree level FCNCs because of its color triplet structure (and thus antisymmetric

contraction of indices). The models SX and SXII lead to charge currents and thus give FCNCs at loop level

only.

We next focus on the models that lead to FCNCs at tree level. They give contributions to Bs mixing of

the form

∆HNP,Bs

eff = −4κs
M2
S

(y2
t VtbV

∗
ts)

2Q̃1, (C36)
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Case
∆L

κs,d κK κD

I, II
η0ūRSQL + η1ūRS∆DQL + η2ūR(YU∆DY

†
U )SQL + η3ūR(YU∆DY

†
U )S∆DQL + h.c.

0 0 yuyc
[
2
<(η0η

∗
3+η1η

∗
2 )

r2ii
+ |ytη3|2

r233

]

III, IV
η0d̄RSQL + η1d̄RS∆UQL + η2d̄R(YD∆UY

†
D)SQL + η3d̄R(YD∆UY

†
D)S∆UQL + h.c.

yd,syb
[η1η∗2
r2ii

+
η̃0η
∗
3

r2i3
+

η3η
∗
0

r23i
+

η̃2η̃
∗
1

r233

]
ydys

[
2
<(η0η

∗
3+η1η

∗
2 )

r2ii
+ |ybη3|2

r233

]
0

TABLE X: The same as Table VIII, but for models SI−IV. We also use the abbreviations η̃0 = η0 + η1y
2
t , η̃1 =

η1 + η3y
2
by

2
t , η̃2 = η2 + η3y

2
t . The results are written in the limit of degenerate scalars mediating transitions between

the first two generations. Above the index i stands for i = 1, 2. In all the models there is also a 1-loop contribution

∆CC (not displayed).

where the operator Q̃1 is replaced by Q1 for model SXIV. The contributions to Bd, K and D mixing are

defined in the same way, with appropriate replacement of the CKM factors and quark fields, as in (C10),

(C11). The factors κi are collected in Table XI. Numerically the analysis is exactly the same as for MFV

vector models SI−X. The Yukawa suppressed (class-2 operator) models are SVI and SVIII, while SXIV is an

example of the universal model (class-1 operator model).

5. Models SH,8

The models SH,8 give contributions to Bs mixing of the form

∆HNP,Bs

eff = κs

(
1

m2
S1

− 1

m2
S2

)
(y2
t VtbV

∗
ts)

2(C̃2Q̃2 + C̃3Q̃3), (C37)

where the operators Q̃2,3 are given in (C8), mS1,2 are the masses of CP even and odd neutral scalars, and

C̃2 = 1/2(1/4), C̃3 = 0(−1/12) for models SH (S8). The contributions to Bd, K and D mixing are

defined in the same way, with appropriate replacement of the CKM factors and quark fields, as in (C10),

(C11). Numerically (taking mS2 � mS1 limit for simplicity),

hs,de
i2σs,d ' −15(5)× y4

t κs,d

(
1 TeV

mS1

)2

, (C38)

hKe
i2σK ' 1.1(−0.3) · 10−2 × ei2βy4

t

κK
y2
s

( ys
0.02

)2
(

1 TeV

mS1

)2

, (C39)

hDe
i2σD ' −1.1(0.3) · 10−6 × ei2γy4

b

κD
y2
c

( yc
5 · 10−3

)2
(

1 TeV

mS1

)2

, (C40)
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Case
∆L

κs,d κK κD

VI
η0ū

c
RSuR + η1ū

c
RS(YU∆DY

†
U )uR + η′1ū

c
R(YU∆DY

†
U )TSuR + η2ū

c
R(YU∆DY

†
U )TS(YU∆DY

†
U )uR + h.c.

0 0 2<(η1η
′
1
∗ + η0η

′
2
∗)y2

uy
2
c

VIII
η0d̄

c
RSdR + η1d̄

c
RS(YD∆UY

†
D)dR + η′1d̄

c
R(YD∆UY

†
D)TSdR + η2d̄

c
R(YD∆UY

†
D)TS(YD∆UY

†
D)dR + h.c.

y2
d,sy

2
b

[ 2<η1η′1
∗

r2i3
+

η0η
∗
2

r2ii
+

η2η
∗
0

r233

]
y2
dy

2
s2<(η1η

′
1
∗ + η0η

∗
2) 0

XIV
η0Q̄

c
LSQL + η1Q̄

c
LS∆UQL + η′1Q̄

c
L∆T

USQL + η2Q̄
c
L∆T

US∆UQL + h.c.

[ 2<η1η′1
∗

r2i3
+

η0η
∗
2

r2ii
+

η2η
∗
0

r233

]
2<(η1η

′
1
∗ + η0η

∗
2) 2<(η̃1η̃

′
1
∗ + η0η̃

∗
2)

TABLE XI: The same as Table VIII, but for models SV−XIV. Only models that lead to tree level FCNCs are shown.

The results are written in the limit of degenerate scalars mediating transitions between the first two generations. Above

the index i stands for i = 1, 2. For model SXIV the terms that contribute to D − D̄ mixing have not been written out

explicitly in ∆L. They can be obtained with ∆U → ∆D and have coupling η̃i.

Case
∆L

κs,d κK κD

H, 8
η0d̄RYDSQL + η′0ūRYUSQL + η1d̄R(YD∆U )SQL + η′1ūR(YU∆D)SQL + h.c.

y2
bη

2
1 + ∆CC y2

sη
2
1 + ∆CC y2

cη
′
1
2 + ∆CC

TABLE XII: The same as Table VIII, but for models SH,8. The 1-loop contributions ∆CC arise from charge currents.

where the values in the brackets are for model S8.

[1] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).

[2] K. Agashe, M. Papucci, G. Perez and D. Pirjol, arXiv:hep-ph/0509117.

[3] J. M. Arnold, M. Pospelov, M. Trott and M. B. Wise, JHEP 1001, 073 (2010) [arXiv:0911.2225 [hep-ph]].

[4] Y. Grossman, Y. Nir, J. Thaler, T. Volansky and J. Zupan, Phys. Rev. D 76, 096006 (2007) [arXiv:0706.1845

[hep-ph]].

[5] J. M. Arnold, B. Fornal and M. Trott, JHEP 1008, 059 (2010) [arXiv:1005.2185 [hep-ph]].

[6] T. Aaltonen et al. [The CDF Collaboration], arXiv:1101.0034 [hep-ex].



67

[7] V. M. Abazov et al. [ D0 Collaboration ], [arXiv:1107.4995 [hep-ex]].

[8] CDF Collaboration, CDF note 10398, http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/

[9] V. M. Abazov et al. [D0 Collaboration], arXiv:1005.2757.

[10] M. R. J. Williams et al. [on behalf of D0 Collaboration], [arXiv: 1106.6308 [hep-ex]].

[11] R. S. Chivukula and H. Georgi, Phys. Lett. B 188 (1987) 99.

[12] G. D’Ambrosio et al., Nucl. Phys. B 645 (2002) 155 [arXiv:hep-ph/0207036].

[13] A. L. Kagan, G. Perez, T. Volansky and J. Zupan, arXiv:0903.1794 [hep-ph].

[14] A. V. Manohar and M. B. Wise, Phys. Rev. D 74, 035009 (2006) [arXiv:hep-ph/0606172].

[15] Q. H. Cao, D. McKeen, J. L. Rosner, G. Shaughnessy and C. E. M. Wagner, Phys. Rev. D 81, 114004 (2010)

[arXiv:1003.3461 [hep-ph]].

[16] K. Blum, C. Delaunay, O. Gedalia, Y. Hochberg, S. J. Lee, Y. Nir, G. Perez, Y. Soreq, [arXiv:1102.3133

[hep-ph]].

[17] G. M. Tavares, M. Schmaltz, [arXiv:1107.0978 [hep-ph]].

[18] J. Shu, T. M. P. Tait and K. Wang, Phys. Rev. D 81, 034012 (2010) [arXiv:0911.3237].

[19] T. Feldmann and T. Mannel, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802 [hep-ph]].

[20] T. Feldmann, M. Jung and T. Mannel, arXiv:0906.1523 [hep-ph].

[21] R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D. M. Straub, arXiv:1105.2296 [hep-ph].

[22] S. Jung, H. Murayama, A. Pierce and J. D. Wells, Phys. Rev. D 81, 015004 (2010) [arXiv:0907.4112 ].

[23] K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Lett. B 682, 287 (2009) [arXiv:0908.2589 ].

[24] S. Jung, A. Pierce and J. D. Wells, arXiv:1108.1802 [hep-ph].

[25] P. Ferrario, G. Rodrigo, Phys. Rev. D80, 051701 (2009). [arXiv:0906.5541 [hep-ph]].

[26] P. H. Frampton, J. Shu and K. Wang, Phys. Lett. B 683, 294 (2010) [arXiv:0911.2955 [hep-ph]].

[27] A. Arhrib, R. Benbrik and C. H. Chen, Phys. Rev. D 82, 034034 (2010) [arXiv:0911.4875 ].

[28] I. Dorsner, S. Fajfer, J. F. Kamenik and N. Kosnik, Phys. Rev. D 81, 055009 (2010) [arXiv:0912.0972 [hep-

ph]].

[29] J. F. Kamenik, J. Shu and J. Zupan, arXiv:1107.5257 [hep-ph].

[30] S. Jung, A. Pierce and J. D. Wells, arXiv:1103.4835 [hep-ph].

[31] J. Shelton and K. M. Zurek, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392 [hep-ph]].

[32] A. E. Nelson, T. Okui and T. S. Roy, arXiv:1104.2030 [hep-ph].

[33] K. S. Babu, M. Frank and S. K. Rai, Phys. Rev. Lett. 107, 061802 (2011) [arXiv:1104.4782 [hep-ph]].

[34] J. Shu, K. Wang and G. Zhu, arXiv:1104.0083 [hep-ph].

[35] B. Grinstein, A. L. Kagan, M. Trott and J. Zupan, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374 [hep-

ph]].

[36] Z. Ligeti, M. Schmaltz and G. M. Tavares, arXiv:1103.2757 [hep-ph].

[37] K. Blum, Y. Hochberg and Y. Nir, arXiv:1107.4350 [hep-ph].

[38] M. I. Gresham, I. W. Kim and K. M. Zurek, arXiv:1102.0018 [hep-ph].

[39] K. Cheung and T. C. Yuan, Phys. Rev. D 83, 074006 (2011) [arXiv:1101.1445 [hep-ph]].



68

[40] V. Barger, W. Y. Keung and C. T. Yu, Phys. Rev. D 81, 113009 (2010) [arXiv:1002.1048 [hep-ph]].

[41] V. Barger, W. Y. Keung and C. T. Yu, Phys. Lett. B 698, 243 (2011) [arXiv:1102.0279 [hep-ph]].

[42] E. L. Berger, Q. H. Cao, C. R. Chen, C. S. Li and H. Zhang, Phys. Rev. Lett. 106, 201801 (2011)

[arXiv:1101.5625 ].

[43] B. Bhattacherjee, S. S. Biswal and D. Ghosh, Phys. Rev. D 83, 091501 (2011) [arXiv:1102.0545 [hep-ph]].

[44] M. I. Gresham, I. W. Kim and K. M. Zurek, arXiv:1107.4364 [hep-ph].

[45] C. Degrande, J. -M. Gerard, C. Grojean, F. Maltoni, G. Servant, JHEP 1103, 125 (2011). [arXiv:1010.6304

[hep-ph]].

[46] J. A. Aguilar-Saavedra, M. Perez-Victoria, JHEP 1105, 034 (2011). [arXiv:1103.2765 [hep-ph]].

[47] K. -m. Cheung, Phys. Rev. D53, 3604-3615 (1996). [hep-ph/9511260].

[48] O. Antipin, G. Valencia, Phys. Rev. D79, 013013 (2009). [arXiv:0807.1295 [hep-ph]].

[49] S. K. Gupta, A. S. Mete, G. Valencia, Phys. Rev. D80, 034013 (2009). [arXiv:0905.1074 [hep-ph]].

[50] Z. Hioki, K. Ohkuma, Eur. Phys. J. C65, 127-135 (2010). [arXiv:0910.3049 [hep-ph]].

[51] D. Choudhury, P. Saha, [arXiv:0911.5016 [hep-ph]].

[52] Z. Hioki, K. Ohkuma, Eur. Phys. J. C71, 1535 (2011). [arXiv:1011.2655 [hep-ph]].

[53] Z. HIOKI, K. OHKUMA, Phys. Rev. D83, 114045 (2011). [arXiv:1104.1221 [hep-ph]].

[54] D. -W. Jung, P. Ko, J. S. Lee, S. -h. Nam, Phys. Lett. B691, 238-242 (2010). [arXiv:0912.1105 [hep-ph]].

[55] C. Zhang, S. Willenbrock, Phys. Rev. D83, 034006 (2011). [arXiv:1008.3869 [hep-ph]].

[56] C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez, Y. Soreq, JHEP 1108, 031 (2011). [arXiv:1103.2297 [hep-

ph]].

[57] J. Cao, Z. Heng, L. Wu, J. M. Yang, Phys. Rev. D81, 014016 (2010). [arXiv:0912.1447 [hep-ph]].

[58] B. Xiao, Y. -k. Wang, S. -h. Zhu, Phys. Rev. D82, 034026 (2010). [arXiv:1006.2510 [hep-ph]].

[59] J. Cao, L. Wang, L. Wu, J. M. Yang, [arXiv:1101.4456 [hep-ph]].

[60] K. M. Patel, P. Sharma, JHEP 1104, 085 (2011). [arXiv:1102.4736 [hep-ph]].

[61] E. R. Barreto, Y. A. Coutinho, J. Sa Borges, Phys. Rev. D83, 054006 (2011). [arXiv:1103.1266 [hep-ph]].

[62] N. Craig, C. Kilic, M. J. Strassler, [arXiv:1103.2127 [hep-ph]].

[63] M. R. Buckley, D. Hooper, J. Kopp, E. Neil, Phys. Rev. D83, 115013 (2011). [arXiv:1103.6035 [hep-ph]].

[64] S. Jung, A. Pierce, J. D. Wells, [arXiv:1104.3139 [hep-ph]].

[65] P. J. Fox, J. Liu, D. Tucker-Smith, N. Weiner, [arXiv:1104.4127 [hep-ph]].

[66] Y. Cui, Z. Han, M. D. Schwartz, JHEP 1107, 127 (2011). [arXiv:1106.3086 [hep-ph]].

[67] M. Duraisamy, A. Rashed, A. Datta, [arXiv:1106.5982 [hep-ph]].

[68] J. A. Aguilar-Saavedra, M. Perez-Victoria, [arXiv:1107.0841 [hep-ph]].

[69] I. Dorsner, S. Fajfer, J. F. Kamenik, N. Kosnik, Phys. Rev. D82, 094015 (2010). [arXiv:1007.2604 [hep-ph]].

[70] C. Delaunay, O. Gedalia, S. J. Lee, G. Perez, E. Ponton, [arXiv:1101.2902 [hep-ph]].

[71] G. Isidori, J. F. Kamenik, Phys. Lett. B700, 145-149 (2011). [arXiv:1103.0016 [hep-ph]].

[72] R. S. Chivukula, E. H. Simmons, C. -P. Yuan, Phys. Rev. D82, 094009 (2010). [arXiv:1007.0260 [hep-ph]].

[73] Y. Bai, J. L. Hewett, J. Kaplan, T. G. Rizzo, JHEP 1103, 003 (2011). [arXiv:1101.5203 [hep-ph]].



69

[74] B. Xiao, Y. -k. Wang, S. -h. Zhu, [arXiv:1011.0152 [hep-ph]].

[75] P. Ferrario, G. Rodrigo, JHEP 1002, 051 (2010). [arXiv:0912.0687 [hep-ph]].

[76] M. V. Martynov, A. D. Smirnov, Mod. Phys. Lett. A25, 2637-2643 (2010). [arXiv:1006.4246 [hep-ph]].

[77] M. Bauer, F. Goertz, U. Haisch, T. Pfoh, S. Westhoff, JHEP 1011, 039 (2010). [arXiv:1008.0742 [hep-ph]].

[78] C. -H. Chen, G. Cvetic, C. S. Kim, Phys. Lett. B694, 393-397 (2011). [arXiv:1009.4165 [hep-ph]].

[79] G. Burdman, L. de Lima, R. D. Matheus, Phys. Rev. D83, 035012 (2011). [arXiv:1011.6380 [hep-ph]].

[80] D. Choudhury, R. M. Godbole, S. D. Rindani, P. Saha, Phys. Rev. D84, 014023 (2011). [arXiv:1012.4750

[hep-ph]].

[81] J. Cao, L. Wu, J. M. Yang, Phys. Rev. D83, 034024 (2011). [arXiv:1011.5564 [hep-ph]].

[82] R. Foot, Phys. Rev. D83, 114013 (2011). [arXiv:1103.1940 [hep-ph]].

[83] U. Haisch and S. Westhoff, arXiv:1106.0529 [hep-ph].

[84] B. A. Dobrescu, P. J. Fox and A. Martin, Phys. Rev. Lett. 105, 041801 (2010) [arXiv:1005.4238 [hep-ph]].

[85] A. J. Buras, M. V. Carlucci, S. Gori and G. Isidori, JHEP 1010, 009 (2010) [arXiv:1005.5310 [hep-ph]].

[86] M. Jung, A. Pich and P. Tuzon, JHEP 1011, 003 (2010) [arXiv:1006.0470 [hep-ph]].

[87] C. H. Chen, C. Q. Geng and W. Wang, JHEP 1011, 089 (2010) [arXiv:1006.5216 [hep-ph]].

[88] K. Blum, Y. Hochberg and Y. Nir, JHEP 1009, 035 (2010) [arXiv:1007.1872 [hep-ph]].

[89] A. J. Buras, K. Gemmler and G. Isidori, Nucl. Phys. B 843, 107 (2011) [arXiv:1007.1993 [hep-ph]].

[90] A. J. Buras, G. Isidori and P. Paradisi, Phys. Lett. B 694, 402 (2011) [arXiv:1007.5291 [hep-ph]].

[91] M. Trott and M. B. Wise, JHEP 1011, 157 (2010) [arXiv:1009.2813 [hep-ph]].

[92] Z. Ligeti, M. Papucci, G. Perez and J. Zupan, Phys. Rev. Lett. 105, 131601 (2010) [arXiv:1006.0432 []].

[93] V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, arXiv:1106.6051 [hep-ph].

[94] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002].

[95] W. Hollik and D. Pagani, arXiv:1107.2606 [hep-ph].

[96] N. Kidonakis, [arXiv:1105.5167 [hep-ph]].

[97] O. Antunano, J. H. Kuhn and G. Rodrigo, Phys. Rev. D 77, 014003 (2008) [arXiv:0709.1652 [hep-ph]].

[98] M. T. Bowen, S. D. Ellis and D. Rainwater, Phys. Rev. D 73, 014008 (2006) [arXiv:hep-ph/0509267].

[99] J. H. Kuhn and G. Rodrigo, Phys. Rev. D 59, 054017 (1999) [arXiv:hep-ph/9807420].

[100] S. Moch and P. Uwer, Nucl. Phys. Proc. Suppl. 183, 75 (2008) [arXiv:0807.2794 [hep-ph]].

[101] M. Czakon, A. Mitov, G. F. Sterman, Phys. Rev. D80, 074017 (2009). [arXiv:0907.1790 [hep-ph]].

[102] M. Beneke, M. Czakon, P. Falgari, A. Mitov, C. Schwinn, Phys. Lett. B690, 483-490 (2010). [arXiv:0911.5166

[hep-ph]].

[103] N. Kidonakis, Phys. Rev. D82, 114030 (2010). [arXiv:1009.4935 [hep-ph]].

[104] N. Kidonakis and R. Vogt, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844 [hep-ph]].

[105] M. Cacciari, S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 0809 (2008) 127 [arXiv:0804.2800

[hep-ph]].

[106] V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, L. L. Yang, [arXiv:1103.0550 [hep-ph]].

[107] N. Kidonakis, [arXiv:1105.3481 [hep-ph]].



70

[108] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850 [hep-ex]].

[109] V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, JHEP 1009 (2010) 097 [arXiv:1003.5827].

[110] M. I. Gresham, I. W. Kim and K. M. Zurek, arXiv:1103.3501 [hep-ph].

[111] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater et al., JHEP

0709, 028 (2007). [arXiv:0706.2334 [hep-ph]].

[112] T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 0605, 026 (2006). [hep-ph/0603175].

[113] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472 [hep-ex]].

[114] J. A. Aguilar-Saavedra and M. Perez-Victoria, arXiv:1105.4606 [hep-ph].

[115] G. Zhu, arXiv:1104.3227 [hep-ph].

[116] V. M. Abazov [D0 Collaboration], Phys. Rev. Lett. 107, 011804 (2011) [arXiv:1106.1921 [hep-ex]].

[117] T. Aaltonen et al. [ CDF Collaboration ], Phys. Rev. Lett. 106, 171801 (2011). [arXiv:1104.0699 [hep-ex]].

[118] J. Alitti et al. [UA2 Collaboration], Nucl. Phys. B 400, 3 (1993).

[119] ATLAS Collaboration, ATLAS-CONF-2011-087, http://cdsweb.cern.ch/record/1356196/files/ATLAS-CONF-

2011-087.pdf

[120] CMS Collaboration, CMS-PAS-TOP-10-007, http://cdsweb.cern.ch/record/1335720?ln=en

[121] M. Mulders, talk on behalf of the CMS Collaboration presented at EPS High Energy Phsyics Conference 2011,

July 21-27 Grenoble, France.

[122] A. Lenz et al., Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593 [hep-ph]].

[123] CDF Collaboration, CDF Note 10206

[124] D0 Collaboration, D0 Note 6098-CONF

[125] C. P. Burgess, M. Trott and S. Zuberi, JHEP 0909, 082 (2009) [arXiv:0907.2696 [hep-ph]].

[126] M. S. Carena et al. Phys. Rev. D 70, 093009 (2004) [arXiv:hep-ph/0408098].

[127] R. Barbieri, A. Strumia, [hep-ph/0007265].

[128] G. F. Giudice, B. Gripaios and R. Sundrum, arXiv:1105.3161 [hep-ph].

[129] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. D 79, 112002 (2009) [arXiv:0812.4036 [hep-ex]].

[130] V. Khachatryan et al. [CMS Collaboration], Phys. Rev. Lett. 105, 211801 (2010) [arXiv:1010.0203 [hep-ex]].

[131] G. Aad et al. [ATLAS Collaboration], New J. Phys. 13, 053044 (2011) [arXiv:1103.3864 [hep-ex]].

[132] ATLAS Collaboration, ATLAS conference note ATLAS-CONF-2011-095.

[133] CMS Collaboration, CMS-EXO-11-015, arXiv:1107.4771 [hep-ex].

[134] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 103, 191803 (2009) [arXiv:0906.4819 [hep-ex]] .

”EAPS Document with data: E-PRLTAO-103-025946”

[135] V. Khachatryan et al. [CMS Collaboration], arXiv:1102.2020 [hep-ex].

[136] S. Chatrchyan et al. [CMS Collaboration], arXiv:1106.2142 [hep-ex].

[137] A. L. Kagan, J. F. Kamenik, G. Perez and S. Stone, arXiv:1103.3747 [hep-ph].

[138] J. F. Arguin, M. Freytsis and Z. Ligeti, arXiv:1107.4090 [hep-ph].

[139] K. D. Lane and M. V. Ramana, Phys. Rev. D 44, 2678 (1991).

[140] E. Lunghi and A. Soni, Phys. Lett. B 697 (2011) 323 [arXiv:1010.6069 [hep-ph]].



71

[141] E. Byckling, K. Kajantie, Particle Kinematics, John Wiley & Sons Ltd (January 1, 1973)

[142] A. L. Kagan and M. D. Sokoloff, Phys. Rev. D 80 (2009) 076008 [arXiv:0907.3917 [hep-ph]].

[143] M. Bona et al. [UTfit Collaboration], JHEP 0803 (2008) 049 [arXiv:0707.0636 [hep-ph]].

[144] J. Laiho, E. Lunghi and R. S. Van de Water, Phys. Rev. D

81 (2010) 034503 [arXiv:0910.2928 [hep-ph]]; and 2011 updates at

http://krone.physik.unizh.ch/∼lunghi/webpage/LatAves/index.html

[145] J. Charles et al. [CKMfitter Group], Eur. Phys. J. C 41 (2005) 1 [arXiv:hep-ph/0406184], we are using the

ICHEP2010 update from http://ckmfitter.in2p3.fr.

[146] T. Inami, C. S. Lim, Prog. Theor. Phys. 65, 297 (1981).

[147] H. Zhang, E. L. Berger, Q. H. Cao, C. R. Chen and G. Shaughnessy, Phys. Lett. B 696, 68 (2011)

[arXiv:1009.5379 [hep-ph]].


	 Contents
	I Introduction
	II GF Symmetric Representations
	III Phenomenology of Tevatron anomalies
	A General analysis of the t   forward backward asymmetry
	1 Acceptance effects
	2 The t   phenomenology of HF symmetric scalar fields
	3 The t   phenomenology of HF symmetric vector fields
	4 Limits from LHC measurements of the t   invariant mass spectrum.

	B Contributions to Bs-s mixing

	IV Existing experimental constraints on a flavor symmetric sector
	A LEP Constraints
	B Electroweak precision tests
	C Tevatron and LHC dijet Constraints
	D Residual Constraints from FCNCs

	V LHC Signals
	VI Conclusions
	 Acknowledgments
	A Flavor Symmetric Lagrangians
	1 Vector fields I-IV
	2 Fields Vs,o
	3 Fields VIs,o
	4 Fields VIIs,o
	5 Fields VIIIs,o
	6 Fields IXs,o
	7 Fields X,6
	8 Fields XI,6
	9 Scalar Fields I, V, VI, IX, X

	B Details on 2 2,3 scattering calculations and phenomenology
	a 2 2 scattering in the scalar models
	b Vector models 2 2 production
	c LEP e+  e- f   V production
	d LHC gg SS production


	C Low Energy Constraints
	1 Models I-IX
	2 Models X and XI
	3 Models SI-IV
	4 Models SV-XIV
	5 Models SH,8

	 References



