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Abstract Despite its ease of use, OpenMP has failed to gain widespread use on
large scale systems, largely due to its failure to deliver sufficient performance. Our
experience indicates that the cost of initiating OpenMP regions is simply too high for
the desired OpenMP usage scenario of many applications. In this paper, we introduce
CLOMP, a new benchmark to characterize this aspect of OpenMP implementations
accurately. CLOMP complements the existing EPCC benchmark suite to provide sim-
ple, easy to understand measurements of OpenMP overheads in the context of appli-
cation usage scenarios. Our results for several OpenMP implementations demonstrate
that CLOMP identifies the amount of work required to compensate for the overheads
observed with EPCC. We also show that CLOMP also captures limitations for OpenMP
parallelization on SMT and NUMA systems. Finally, CLOMPI, our MPI extension
of CLOMP, demonstrates which aspects of OpenMP interact poorly with MPI when
MPI helper threads cannot run on the NIC.
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1 Introduction

OpenMP [1] is a simple method to incorporate shared memory parallelism into sci-
entific applications. While OpenMP has grown in popularity, it has failed to achieve
widespread usage in those applications despite the use of shared memory nodes as the
building blocks of large scale resources on which they run. Many factors contribute
to this apparent contradiction, most of which reflect the failure of OpenMP-based
applications to realize the performance potential of the underlying architecture. First,
the applications run on more than one node of these large scale resources and, thus,
the applications use MPI [2]. While distributed shared memory OpenMP impleme-
tantions [3] are an option, they fail to provide the same level of performance.

Application programmers still might have adopted a hybrid OpenMP/MPI style,
using OpenMP for on-node parallelization. However, the performance achieved dis-
courages that also. OpenMP programs often have higher Amdahl’s fractions than with
MPI for on-node parallelization. Optimization of OpenMP usage has proven difficult
due to a lack of a standard OpenMP profiling interface and, more so, to a myriad of con-
fusing and often conflicting environment settings that govern OpenMP performance.
In addition, the lack of on-node parallelization within MPI implementations has often
implied higher network bandwidths with multiple MPI tasks on a node. Perhaps the
most important factor has been a mismatch between the amount of work in typical
OpenMP regions of scientific applications and the overhead of starting those regions.

Multi-core systems will impact many factors that have restricted adoption of
OpenMP. Future networking hardware will not support the messaging rates required to
achieve reasonable performance with an MPI task per core. Also, greater benefit from
on-node parallelization within MPI implementations will provide similar (or better)
aggregate network bandwidth to hybrid OpenMP/MPI applications compared to using
an MPI task per core. Further, shared caches will provide memory bandwidth benefits
to threaded applications.

Since we expect OpenMP to gain popularity with future large scale systems, we
must understand the impact of OpenMP overheads on realistic application regions.
Accurately characterizing them will help motivate chip designers to provide hard-
ware support to reduce them if necessary. In this paper, we present CLOMP, a new
benchmark that complements the EPCC suite [4] to capture the impact of OpenMP
overheads (the CLOMP benchmark has no relationship to Intel’s Cluster OpenMP).
CLOMP is a simple benchmark that models realistic application code structure, and
thus the associated limits on compiler optimization. We use CLOMP to model sev-
eral application usage scenarios on a range of current shared memory systems. Our
results demonstrate that OpenMP overheads limit performance substantially for large
scale multiphysics applications and that NUMA effects can dramatically lower their
performance even when they can compensate for those overheads. We also find that
an existing simultaneous multithreading (SMT) implementation provides little benefit
to realistic OpenMP scenarios. We then present CLOMPI, our extension of CLOMP
to capture the impact on OpenMP overheads of a hybrid OpenMP/MPI programming
model. Our results show that the impact is often insubstantial, particularly when MPI
helper threads run on the NIC. The impact can be much more significant without that
capability although SMT support on the cores can reduce it.
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2 Characteristics of Scientific Applications

CLOMP provides a single easy-to-use benchmark that captures the shared memory
parallelization characteristics of a wide range of scientific applications. We focused
on applications in use at Lawrence Livermore National Laboratory (LLNL), which
are representative of large scale applications. We categorize LLNL applications as
multiphysics applications or as science applications that focus on a particular physics
domain. We need a simple easy-to-use benchmark that accurately characterizes the
performance that a system and its OpenMP implementation will deliver to the full
range of these applications.

Multiphysics applications [5–8] generally have large, complex code bases with
multiple code regions that contribute significantly to their total run time. These rou-
tines occur in disparate application code sections as well as third party libraries, such
as linear solvers [9,10]. While the latter may include large loops that are relatively
amenable to OpenMP parallelization, the application code often has many relatively
small but parallelizable loops with dependencies between the loops that inhibit loop
fusion to increase the loop sizes. Further, the loops frequently occur in disparate
function calls related to different physics packages, making consolidation even more
difficult. Many multiphysics applications use unstructured grids, which imply signif-
icant pointer chasing to retrieve the actual data. Code restructuring to overcome these
challenges is difficult: not only are these applications typically very large (a million
lines of code or more) but the exact routines and the order in which they are executed
depends on the input. However, the individual loops have no internal dependencies
and would appear to be good candidates for OpenMP parallelization.

Science applications typically have fewer lines of code and less diverse execution
profiles. While many still use high performance numerical libraries such as ScaLA-
PACK [11], a single routine often contains the primary computational kernel. Loop
sizes available for OpenMP parallelization vary widely, from dense large matrix opera-
tions to very short loops. LLNL science applications include first principles molecular
dynamics codes [12], traditional molecular dynamics codes [13–15] and ParaDiS, a
dislocation dynamics application [16].

The loop sizes available for OpenMP parallelization depend on the application
and the input problem. Currently, many HPC applications either use weak scaling
or increase the problem resolution, both of which imply the loop sizes do not vary
substantially as the total number of processors increases. However, we anticipate sys-
tems with millions of processor cores in the near future, which will make strong
scaling attractive. Further, the amount of memory per core will decrease substantially.
Both of these factors will lead to smaller OpenMP loops. Thus, while we need an
OpenMP benchmark that characterizes the range of applications, capturing the impact
of decreasing loop sizes is especially important.

Both multiphysics and science applications run at large scale, using MPI to commu-
nicate between nodes and either MPI or shared memory for on-node parallelism; the
later leads to hybrid OpenMP/MPI applications. Many hybrid applications use a sim-
ple phased approach in which they alternate between OpenMP and MPI regions. Since
MPI plays an important role in evaluating the performance of these hybrid applica-
tions, we also require a benchmark that evaluates the interaction of compute-intensive
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threads with features of the MPI runtime such as message-passing communication
and any extra threads that implement MPI communication. Multiphysics applications
use a wide variety of communication patterns, with stencil patterns being particu-
larly common. A full evaluation of possible patterns is beyond the scope of a simple
benchmark so we limit our consideration to a ring communication pattern, which is a
straightforward one dimensional stencil with periodic boundaries.

3 The CLOMP Benchmark Implementation

CLOMP is structured like a multiphysics application. Its state mimics an unstruc-
tured mesh with a set of partitions, each divided into a linked list of zones, as Fig. 1
shows. The linked lists limit optimizations but we allocate the zones contiguously so
CLOMP can benefit from prefetching. The amount of memory allocated per zone can
be adjusted to model different pressures on the memory system; however, computa-
tion is limited to the first 32 bytes of each zone. We kept the per-zone working set
constant because many applications only touch a subset of a zone’s data on each pass,
including our target applications. Although the actual size varies from application to
application, our constant size simplifies exploration of interactions between the CPU
and the memory subsystem.

CLOMP repeatedly executes the loop shown in Fig. 2. calc_deposit() repre-
sents a synchronization point, such as an MPI call or a computation that depends on
the state of all partitions. The subsequent loop contains numPartitions indepen-
dent iterations. Each iteration traverses a partition’s linked list of zones, depositing a
fraction of a substance into each zone. We tune the amount of computation per zone
by repeating the inner loop flopScale times.
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Zone01
NextZone
ZoneData
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NextZone
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Fig. 1 CLOMP data structure

deposit = calc_deposit(); for(part = 0; part < numPartitions; part++) {
for(zone = partArray[part]->firstZone; zone != NULL; zone = zone->nextZone) {
for(scale_count = 0; scale_count < flopScale; scale_count++) {
deposit = remaining_deposit * deposit_ratio;
zone->value += deposit;
remaining_deposit -= deposit; } } }

Fig. 2 CLOMP source code
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{

repeat {
#pragma omp parallel for schedule(static)
for(part = 0; part < numPartitions; part++) 

….
}
deposit = calc_deposit();

}

repeat {
#pragma omp parallel for schedule(dynamic)
for(part = 0; part < numPartitions; part++) {

….
}
deposit = calc_deposit();

}

#pragma omp parallel
repeat {

for(part = thread_part_min; 
part < thread_part_max; part++) {
….

}
#pragma omp barrier
#pragma omp single

deposit = calc_deposit();
}

for-static for-dynamic

manual best-case

#pragma omp parallel
repeat {

for(part = thread_part_min;
part < thread_part_max; part++) {

….
}
deposit = calc_deposit();

}

Fig. 3 Variants of CLOMP

CLOMP models several possible loop parallelization methods, outlined in Fig. 3.
The first applies a combined parallel for construct to the outer loop, using either
a static or a dynamic schedule. We call these configurations for-static and
for-dynamic. The second method, called manual, represents parallelization that
the programmer can perform manually to reduce the Amdahl’s fraction. We enclose
all instances of CLOMP’s outer loop in a parallel construct and partition each
work loop among threads explicitly. To ensure correct execution, we follow the work
loop by a barrier and enclose the calc_deposit in a single construct. The
last configuration, called best-case represents the optimistic scenario in which
all OpenMP synchronization is instantaneous. It is identical to the manual version,
except that the barrier and single are removed. Although this configuration
would not produce correct answers, it provides an upper bound for the performance
improvements possible for the other configurations.

While similar to the schedule benchmark in EPCC that measures the overhead of the
loop construct with different schedule kinds, CLOMP emulates application scenarios
through several parameters in order to characterize the impact of that overhead. The
numPartitions parameter determines the number of independent pieces of work
in each outer loop while the numZonesPerPart and the flopScale parameters
determine the amount of work in each partition. While our results in Sect. 4.2 fix num-
Partitions to 64, we can vary it as appropriate for the application being modeled.
The EPCC test fixes the corresponding factor at 128 per thread and requires source
code modification to vary it; which prevents direct investigation of speed ups for a
loop with a fixed total amount of work. The EPCC test also fixes the amount of work
per iteration to approximately 100 cycles; our results show that this parameter directly
impacts the speed up achieved. CLOMP could mimic the EPCC schedule benchmark
through proper parameter settings but those would not correspond to any application
scenarios likely to benefit from OpenMP parallelization.

Our results in Sect. 4.2 demonstrate that we must measure the impact of mem-
ory issues as well as the schedule overheads alone to capture the effectiveness of an
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OpenMP implementation for many realistic application loops. We control CLOMP’s
memory footprint through the zoneSize parameter that specifies the amount of
memory allocated per zone. In addition, the allocThreads parameter determines
whether each thread allocates its own partitions or if the master thread allocates all of
the partitions. As is well known, the earlier strategy works better on NUMA systems
that employ a first touch policy to place pages.

CLOMPI provides two variants of CLOMP that evaluate the impact of MPI on
OpenMP-parallelized applications. The first, CLOMPI-No_Comm. is identical to
CLOMP, except that it calls MPI_Init() at the beginning of the run and
MPI_Finalize() at the end. These calls ensure that the MPI runtime, including
any additional threads, runs concurrently with CLOMP’s OpenMP tests. CLOMPI-
SendRecv, the second variant, includes actual MPI communication in the form of a
single MPI_Sendrecv() operation in the calc_deposit() routine. This com-
munication moves an MPI_DOUBLE value one step along a virtual ring that includes
all the application nodes.

4 Experimental Results

In this section, we demonstrate that CLOMP provides the context of application
OpenMP usage for results obtained with the EPCC microbenchmarks [4] through
results on three different shared memory nodes. The LLNL Atlas system has dual
core, quad socket (8-way) 2.4 GHz Opteron, 16 GB main memory nodes. Each core
has 64 KB L1 instruction and data caches and a 1 MB L2 cache; each dual core chip
has a direct connection to 4 GB of local memory with Hyper-Transport connections
to the memories of the other chips. The LLNL Thunder system has 4-way 1.4 GHz
Itanium2, 4 GB main memory nodes. Each single core chip has 16 KB instruction
and data caches, a 256 KB L2 cache and a 4 MB L3 cache. All four processors on a
node share access to main memory through four memory hubs. Our experiments on
Thunder and Atlas use the Intel compiler version 9.1, including its OpenMP run time.
The LLNL uP system has dual core, quad socket (8-way) 1.9 GHz Power5, 32 GB
main memory nodes. Each core has private 64 KB instruction and 32 KB data caches
while a 1.9 MB L2 cache and a 36 MB L3 cache are shared between the two cores on
each chip. Each dual core chip has a direct connection to 8 GB of local memory with
connections through the other chips to their memories. Our experiments on uP use the
IBM xlc compiler version 7.0, including its OpenMP run time.

All experiments on all platforms use the -O3 optimization level. We used thread
affinity to ensure each thread used a different core but the threads were not bound,
meaning that the operating system could move them. We relied on the kernel’s memory
affinity algorithm to keep memory close to the threads that allocated it but the exact
details of the algorithms used are unknown.

4.1 OpenMP Overheads Measured with EPCC

We measured the overheads of OpenMP constructs on our target platforms with the
EPCC microbenchmark suite. Figure 4 presents the results of the synchronization
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Fig. 5 EPCC scheduling results

microbenchmark and Fig. 5 show the scheduling microbenchmark. All figures list
OpenMP constructs on the x-axis and their average overhead from ten runs in proces-
sor cycles on the y-axis. The synchronization benchmark data is plotted on a linear
y-axis and the scheduling data uses a logarithmic axis.

The synchronization microbenchmark data shows several interesting effects. First,
while the overheads of synchronization constructs with Intel OpenMP vary little with
the number of threads, they rise dramatically as the number of threads increases with
IBM OpenMP. However, despite its poor scaling, IBM OpenMP is less expensive for
most OpenMP constructs. The exceptions are the atomic and critical and par-
allel loop constructs, which have higher overhead with IBM OpenMP on larger thread
counts. Overall, most synchronization overheads are on the order of tens of thousands
of cycles. In particular, a barrier costs between 27,000 and 38,000 cycles with Intel
OpenMP and from 7,000 to 31,000 with IBM OpenMP. The overhead of a loop con-
struct is 28,000–40,000 cycles with Intel OpenMP and ranges from 1,400 to 100,000
cycles with IBM OpenMP. The overhead of a combined parallel loop construct is
typically a little larger than the maximum overhead of the separate constructs.
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The overhead of different schedule kinds varies between our platforms also, as
shown in Fig. 5 (the y-axis is logarithmic). The overhead of the loop construct changes
little as the number of threads increases with our two Intel OpenMP platforms for a
fixed schedule kind and associated chunk size. Further, static scheduling overhead is
similar for all chunk sizes. In contrast, dynamic scheduling overhead drops off expo-
nentially with increasing chunk size while guided scheduling overhead falls linearly.
The reduced overheads reflect that the dynamic and guided mechanisms impose a
cost every time they are invoked. Since larger chunks imply fewer invocations of the
chunk assignment mechanism, they impose a smaller overhead. This drop-off is less
pronounced for guided scheduling because it uses smaller chunks at the end of the
allocation process, while dynamic scheduling uses similar chunk sizes throughout.
Nonetheless, dynamic and guided scheduling overheads are consistently higher than
static scheduling overhead on the Intel OpenMP platforms, ranging from twice as high
with a chunk size of 128 to a factor of ten higher on Thunder and 50 on Atlas with a
chunk size of one. On Thunder, guided scheduling overhead with a chunk size of 32
is 1.8× lower than the static scheduling overhead; the reason for this is unclear. The
overheads of different schedule kinds with IBM OpenMP rise superlinearly with the
number of threads. However, IBM OpenMP overheads exhibit the same patterns with
respect to chunk size patterns as seen with Intel OpenMP except that static sched-
uling shows even steeper overhead drops than dynamic and guided scheduling with
increasing chunk size. In addition, static scheduling overhead is not much lower than
the other schedule kinds with the same chunk size and is sometimes larger.

The EPCC results capture the relative cost of different schedule kinds on our plat-
forms. When compared to Intel OpenMP, IBM OpenMP with dynamic and guided
scheduling is always cheaper with one thread and is usually cheaper with two. In all
other cases, IBM OpenMP is more expensive as its poor scalability overtakes its good
sequential performance. The results demonstrate that users should use static schedul-
ing with Intel OpenMP unless their loop bodies have very significant load imbalances
while, with IBM OpenMP, the more flexible schedule kinds are more likely to prove
worthwhile. However, these low level EPCC results do not include sufficient informa-
tion to determine if an application can compensate for the overheads. While it helps to
convert the overheads to cycles from the microseconds that the test suite reports, we
still need measures that capture the effect of these overheads for realistic application
scenarios.

4.2 Capturing the Impact of OpenMP Overheads with CLOMP

We model application scenarios through CLOMP parameter settings. All results pre-
sented here set numPartitions to 64 and flopScale to 1. CLOMP’s default
parameters, including numZonesPerPart equal to 100, model the relatively small
loop sizes of many multiphysics application. The defaults use the minimum zone size
of 32 bytes, which provides the most opportunity for prefetching and limits memory
system pressure, and have the master thread allocate all memory similarly to the usual
default in most applications.
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Fig. 6 CLOMP untuned default scenario

The untuned results, shown in Fig. 6, use the default run time environment variable
settings, which is the most likely choice of application programmers. With these set-
tings the (unrealistic) best-case configuration scales well up to 8 threads, which
shows that good performance for the loop sizes common to multiphysics applica-
tions are possible. However, the realistic configurations all scale poorly, even causing
increased run times in many cases.

The tuned results, shown in Fig. 7, reflect the impact of changing environment
settings so idle threads spin instead of sleep on uP and so idle threads spin much
longer (KMP_BLOCKTIME=100000) before they sleep on Atlas and Thunder (we
used these settings for the EPCC results presented in Sect. 4.1). These settings, which
are appropriate for nodes dedicated to a single user, result in improved scaling for
the manual and for-static scale configurations on both uP and Atlas. However,
the actual speed ups, no more than 3.9, are still disappointing in light of the potential
demonstrated by the best-case configuration. Further, the for-dynamic con-
figuration still does not have sufficient work to compensate for the high overhead of
the dynamic schedule kind. In fact, the “tuned” environment settings actually caused
a slowdown for for-dynamic on uP and they did not improve performance on
Thunder.

Figure 8 focuses on this effect by looking at the running times of several key com-
ponents of CLOMP on uP when three major runtime parameters of IBM OpenMP are
varied. Specifically, we show the cost in microseconds of #pragma omp barrier
and cost of each of our four parallelization options in microseconds per loop iteration.
The runtime parameters are:

– Spins: number of times each thread spin waits before it calls yield
– Yields: number of times a thread yields before it calls sleep
– Delay: time (unspecified units) between each scan of the work queue

For each parameter we evaluated three values: 1, 100 and infinity.
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Fig. 9 CLOMP relative speedup on uP of 2 threads per core versus 1 thread per core

Figure 8 shows that the cost of barriers varies moderately with the different param-
eter values. Barriers are fastest when Yields is equal to infinity, regardless of the
other parameters. Spins does not have a consistent effect on barrier performance.
Delay is also inconsistent, although setting it to infinity leads to the worst barrier
performance. The default configuration has average performance.
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Looking at the parallelization variants, the parameter settings do not affect
best-case, which uses no synchronization. The settings have a small impact on
manual performance due to its barrier calls. In contrast, for-static and
for-dynamic have much stronger dependence o nthe parameter settings. When
Yields is equal to 1, for-static consistently performs poorly, while its per-
formance improves dramatically with Yields set to 100 or infinity. The settings of
Delay and Spins imply small differences in the performance of for-static.
The cost of for-dynamic is much more unstable, with no parameter value consis-
tently better than any other; the best performance occurs with Yields set to 100 and
Delay to 1. Overall, different parameter settings provide the best performance with
for-dynamic than with for-static, which complicates choosing appropriate
defaults.

The Power5 processors on uP include SMT support that can run two hardware
threads simultaneously, using hardware-level instruction scheduling. We evaluated
the performance impact of using this feature by running CLOMP with 2 threads on
each core. Figure 9 shows the relative speedup factor of the 2 threads per core con-
figuration over 1 thread per core. Running 2 threads per core benefits best-case
since it can utilize each core’s functional units more fully. Overall, SMT can speed up
best-case up to 60%. However, other configurations suffer in this mode. Barriers
exhibit slowdowns between 20% and 30% because the interference between threads
causes timing noise, which causes individual threads to arrive at barriers late, causing
all threads to slow down. Similarly, manual, which combines best-casewith bar-
rier calls, runs slower since it runs faster between barriers but then must synchronize
its threads at slower barriers. These performance drops are very small when Yields
is set to infinity because this setting ensures that timing noise can never cause some
thread to sleep while waiting at a barrier. However, the slowdown grows to more than
20% for other parameter settings. We observe similar behavior with for-static
and for-dynamic, which perform best with Yields set to infinity, and consis-
tently better with Yields set to 1 than 100 since the smaller setting reduces tim-
ing noise by keeping inactive threads from interfering with working threads. Finally,
for-dynamic experiences less slowdown than for-static because its dynamic
work allocation policy reduces load imbalance resulting from timing noise.

These results highlight the complexity of choosing the best OpenMP configuration,
a task for which CLOMP results provide guidance. For our subsequent experiments
we consistently used the modified OpenMP flags that optimized for the best perfor-
mance of for-static rather than for-dynamic because the latter has much
worse performance than the best of manual and for-static.

We examined the effects of memory bandwidth on the performance of parallel loops
by increasing the number of zones per partition by a factor of 10 (1,000 zones per parti-
tion), which corresponds to some multiphysics application runs as well as some science
codes. The results for this scenario, shown in Fig. 10, exhibit outstanding scaling since
the single core’s memory bandwidth dominates performance of the sequential run. In
fact, we observe superlinear speedups with manual and for-static on uP (e.g.,
8.7× on with 8 threads) and on Atlas (peaking at 36× on 7 threads). The dramatic
improvement on Atlas arises from the system’s NUMA architecture, in which the
penalty for accessing remote memory via Hyper-Transport is relatively very high.
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Fig. 10 CLOMP 10× memory scenario

Since the problem fits in cache with more threads, the performance benefit is signifi-
cant. The cache effects are far smaller on uP and Thunder since these systems provide
uniform memory access, with uP’s slightly super-linear speedups attributable to its
much larger cache. In all cases, these configurations are very close to the theoretical
maximum of best-case while the for-dynamic configuration results continue
to disappoint.

For application scenarios with even larger memory footprints, corresponding to sci-
ence codes based on dense linear algebra routines, we no longer observe superlinear
speedups since they no longer fit into cache. However, while we observe consistently
good scaling on the uniform memory access systems, these scenarios provide insight
into NUMA performance issues. Figure 11 shows results on Atlas for scenarios in
which we increase the number of zones per partition over the default scenario 100×
(10,000 zones per partition) and 1,000× (100,000 zones per partition). Here, we com-
pare the two strategies for allocating application state: serial, where the master
thread allocates all memory; and threaded, where each thread allocates its own
memory. For each allocation strategy we show the speedup of the highest-performing
realistic configuration. In both scenarios the two allocation strategies result in dra-
matically different performance, with the threaded allocation achieving near-linear
speedup, while theserial allocation shows little improvement at all scales, similarly
to previous observations on other NUMA systems. While application programmers
generally will make the necessary coding changes to achieve these performance gains,
the gains are not consistent: we still observed significant performance variation in our
runs, with speed ups as low as 4 with eight threads. Examination of /proc data indi-
cates that the threaded allocation does not guarantee the strict use of local memory.
We are investigating using the numactl command in the NUMA library to provide
more consistent performance.

By providing a best-case performance estimate, CLOMP puts the actual perfor-
mance numbers in context of OpenMP overheads, cache effects, and NUMA effects.
The best-case configuration is significantly different from the EPCC schedule test
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Fig. 11 CLOMP 100× and 1000× memory scenarios

and represents a contribution of our work. For example, in Fig. 10, the 27.1 speedup
for 8 threads on Atlas is great but an even higher speedup of 30.5 was possible if
the OpenMP overheads were lower. Similarly, the low best-case serial Allocation
performance corresponding to the results in Fig. 11 shows that OpenMP overhead is
not the problem; NUMA effects are.

4.3 Studying the Interactions of MPI and OpenMP

In this section, we evaluate the impact of MPI on Open MP overheads through the
CLOMPI-No_Comm and CLOMPI-SendRecv variants of CLOMP using the same
range of configurations on our experimental platforms. Since MPI implementations
often use additional threads to monitor and to manage incoming and outgoing com-
munication, the impact can be significant. On Thunder and Atlas the Quadrics and
Infiniband network interface cards (NICs) provide additional processing power for
these threads. Thus, their MPI implementations (Quadrics MPI and MVAPICH) can
run these threads without interfering with the application, which is exactly the behavior
we observed in our experiments on these platforms.

In constrast, uP’s NICs do not support these threads, which requires IBM’s MPI to
run them on the same cores used for computation. However, the Power5 SMT capa-
bility allows MPI threads to share the cores with with CLOMP computational threads
at little cost. We measured this effect by running CLOMPI-NoComm on uP, with 1
CLOMPI-NoComm thread per uP core. Figure 12 shows the costs in microseconds of
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Fig. 12 CLOMPI–NoComm performance
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the key components of CLOMPI-NoComm (top) and the speedup of each component
relative to CLOMP (bottom). Just running the additional MPI threads, as shown in
CLOMPI-NoComm, leads best-case running 30% slower Since the MPI threads
dfo not slow its barriers, manual fares a little better, slowing down only about 20%.

We observe a complex performance profile with for-static, which exhibits
larger slowdowns with parameters that cause inactive threads to actively spin or yield
rather than sleep (i.e., larger values of Spins and Yields). This behavior suggests
that the MPI threads use functions such as yield() and sleep() to avoid using the
CPU when other threads are active. Thus, the MPI threads can quickly determine that
they have no work to perform when the main compute threads sleep soon after they
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have completed their work. In contrast, if the compute threads spin, the MPI threads
awaken at random times and interfere with the compute threads.

Finally, the MPI threads cause little performance degradation with for-dynamic
since dynamic scheduling adapts to non-deterministic interference. However,
for-dynamic does incur a 20% slowdown when Delay0 is set to infinity since the
threads infrequently check the work queue, resulting in poor adaptation to interference.

We evaluated the effect of MPI communication on OpenMP overheads by running
CLOMPI-SendRecv, which adds anMPI_Sendrecv() call tocalc_deposit(),
on uP. Figure 13 shows the costs in microseconds of all CLOMPI-SendRecv
components. While barriers have the same cost in CLOMPI-SendRecv and CLO-
MPI-NoComm, the various parallelization strategies cost more in absolute time with
CLOMPI-SendRecv since it does more work. However, it has essentially the same
performance profile as CLOMPI-NoComm.

5 Conclusion and Future Work

Despite the popularity of shared memory systems and OpenMP’s ease of use, over-
heads in OpenMP implementations and shared memory hardware have limited poten-
tial performance gains, thus discouraging the use of OpenMP. This paper presents
CLOMP, a new OpenMP benchmark that models the behavior of scientific applications
that have an overall sequential structure but contain many loops with independent iter-
ations. CLOMP can be parameterized to represent a variety of applications, allowing
application programmers to evaluate possible parallelization strategies with minimal
effort and OpenMP implementors to identify overheads that can have the largest impact
on real applications. Our results on three shared memory platforms demonstrate that
CLOMP extends EPCC to capture the application scenarios necessary to character-
ize the impact of the overheads measured by EPCC. CLOMP guides selection of run
time environment settings and can identify the impact of architectural features such
as memory bandwidth, SMT and a NUMA architecture on application performance.
The resulting insights can be very useful to application programmers in choosing the
parallelization strategy and hardware that will provide the best performance for their
application.

Overall, our results should not be seen as critiquing the OpenMP implementations
that were used in our experiments. While we noted differences between them, the most
significant issues arose from differences in the underlying architecture. Ultimately,
CLOMP would provide its greatest value if it could guide architectural refinements
that reduce the overheads of dispatching threads for OpenMP regions. For this reason,
we included CLOMP in the benchmark suite of LLNL’s Sequoia procurement.
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