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Simple Summary: A block randomized trial was conducted in California dairies to evaluate the
effect of different treatments at dry-off on the subsequent lactation’s milk production and somatic cell
count (SCC). Greater milk production was observed in cows treated with antibiotics and teat sealants
at dry-off in comparison to controls, while there was no significant difference in the milk produced
by cows that received either antibiotic or teat sealant in comparison to the untreated cows. Different
dry cow treatments were associated with a reduction in ln SCC during the first 150 DIM, with the
greatest reduction associated with both antibiotic and teat sealant in comparison to controls. Dairies
with high SCC may benefit from treating cows at dry-off with AB, TS, or both.

Abstract: Mastitis is the greatest disease challenge for dairy producers, with substantial economic
impacts due to lost milk production. Amongst the approaches implemented to control and prevent
mastitis on dairies are vaccination, pre- and post-milking teat dips, and treatments at dry-off including
intramammary antibiotics and teat sealants. The objectives of our study were to evaluate the effect
of different treatments at dry-off on the subsequent lactation’s milk production and somatic cell
count (SCC). A single-blinded controlled block randomized clinical trial was conducted between
December 2016 and August 2018 on eight herds from four of the top ten milk-producing counties in
California: Tulare, Kings, Stanislaus, and San Joaquin. The trial was repeated with cows enrolled
during the winter and summer seasons to account for seasonal variability. Eligible cows were treated
at dry-off with either intramammary antibiotics (AB), internal teat sealant (TS), AB + TS, or did not
receive any treatment (control), and were followed through 150 days in milk (DIM) post-calving. The
milk production and SCC data were extracted from monthly test day milk records (Dairy Comp 305,
Valley Ag Software, Tulare, CA, USA). Two-piece spline linear mixed models were used to model
the milk production (kg) and natural logarithm-transformed SCC. After accounting for parity, breed,
season, and dry period duration, the milk model showed a significant increase in milk production
(1.84 kg/day) in cows treated with AB + TS at dry-off in comparison to controls. There was no
significant difference in the milk produced by cows that received either AB or TS (0.12 kg/day, and
0.67 kg/day, respectively) in comparison to the untreated cows. Different dry cow treatments were
associated with a significant reduction in ln SCC during the first 150 DIM. The greatest reduction was
associated with using AB + TS, followed by AB, and finally TS in comparison to controls. Dairies
with high SCC may benefit from treating cows at dry-off with AB, TS, or both.
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1. Introduction

Mastitis continues to challenge dairy producers due to the severe economic losses
associated with reduced productivity, increased risk of early culling, treatment and labor
costs, and milk discarded during treatment [1–4]. Strategies used to prevent and control
mastitis include the administration of vaccines against coliform bacteria and Staphylococcus
aureus, the application of pre- and post-milking teat dips, and the application of dry cow
therapy (DCT) [5–8]. Dry cow therapy is one of the five points of the Mastitis Control
Plan recommended since 1970 [9,10]. Such treatment may resolve clinical and subclinical
mastitis that exists at dry-off, reducing the risk of mastitis during the dry period and
after calving [11–13]. As a result, the dairy industry has broadly adopted the use of
intramammary infusion with a long-acting antibiotic at dry-off, a practice known as blanket
dry cow therapy (BDCT). In the US, approximately 93% of dairy cows are treated with
intramammary antibiotics at dry-off, representing approximately 80.3% of the surveyed
US dairy herds [7]. Approximately 36.9% of dairies in the US use internal teat sealants at
dry-off [7]. Teat sealants have the advantage of acting as a physical barrier that hinders the
entrance of mastitis-causing microorganisms into the teat canal. Recent studies revealed
that not all cows at dry-off benefit from intramammary antibiotic treatment [14–20]. The
latter studies concluded that dry cow therapy should only target dairy cows at high risk of
mastitis to reduce the unnecessary use of antibiotics at dry-off in a practice called selective
dry cow therapy (SDCT).

Antibiotics are valuable chemicals that safeguard the health and welfare of humans and
animals; however, their misuse leads to the development of resistant bacterial strains [21].
A US study of antimicrobial use in dairy cows based on grams of active substance per cow
year showed approximately nine times greater use for dry cow therapy compared to use
for clinical mastitis [22]. Hence, SDCT has the potential to result in a greater reduction in
antimicrobial drug use compared to stewardship efforts related to other diseases. Further-
more, previous studies found no differences in the SCC and milk production between cows
that received SDCT or BDCT in the subsequent lactation [16–18,20,23]. The aforementioned
studies were limited to low-risk herds with a history of low bulk tank somatic cell count
(BTSCC) and/or low-risk cows with SCC < 200,000 cells/mL, which may not reflect the
current situation for the majority of the dairy herds; additionally, none of them included
a non-treated control group [16–18,20,23]. Coupled with the inclusion of herds across the
range of bulk tank SCC, a non-treated control group offers estimates for mastitis, subclinical
mastitis, milk production, and culling baseline risk—a necessary input for future studies
developing and validating SDCT algorithms and their economics.

The current study hypothesis was that dry cow treatments (AB, TS, and AB + TS) affect
milk production and SCC in the subsequent lactation. Our objectives were to estimate the
effect of using different dry cow treatments (AB, TS, and AB + TS) on milk production and
SCC during the first 150 DIM of the following lactation across the seasonal variation on
California dairies.

2. Materials and Methods
2.1. Herd Selection

The current research was approved by the University of California Davis Institutional
Animal Care and Use Committee (protocol number 19761). A single-blinded controlled
block randomized clinical trial was conducted between 28 December 2016 and 1 August
2018. Eight dairy herds were enrolled in the study from four of the top ten milk-producing
counties in California [24]. Three herds were in Tulare County, two in Kings County, two
in Stanislaus County, and one in San Joaquin County. The study commenced with an
in-person enrollment survey. The cows were enrolled between December 2016 and March
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2017 (winter season) and between June 2017 and September 2017 (summer season), with all
eight herds sampled during both seasons. The herd demographics and survey information
are previously described [25]. Briefly, the study dairies had a mean lactating herd size of
1782 cows, which were primarily Holstein, Jersey, or crossbreeds. The study herds had a
wide range of BTSCC (<200,000 to 400,000 cells/mL) and an average of 305,571 cells/mL.

2.2. Cow Enrollment, Follow-Up, and Sample and Data Collection

The cows were enrolled on a weekly basis from the study herds and every two weeks
from one herd according to the dairies’ dry-off schedules until the study sample size was
achieved. The inclusion and exclusion criteria are previously described [25]. Briefly, all
cows presented for dry-off were inspected by the study personnel at the parlor entry and
any cows with low BCS or lameness were excluded [26]. Prior to milking, the cows were
visually inspected and excluded if any signs of clinical mastitis (swelling, redness, and
painful udder) were observed. In addition, the udder hygiene score (scale 1–4), teat-end
score (scale 1–4), and California Mastitis Test (CMT; score 0, trace, 1–3) were recorded for
each enrolled cow. After milking, the enrolled cows were block randomized, with each cow
allocated one of the four treatments: intramammary antibiotics (AB), internal teat sealant
(TS), both (AB + TS), or no treatment (None). The enrolled cows were followed up until
150 DIM post-calving. The udder hygiene, teat-end, and CMT scores were again determined
for each cow prior to the post-calving milk sample collection [27–30]. At both times, the
study personnel recording udder hygiene, teat-end, and CMT scores were blinded to the
cows’ treatment allocations. Milk production and SCC were recorded through the Dairy
Herd Improvement Association (DHIA) monthly herd testing using Dairy Comp 305 (Valley
Ag Software, Tulare, CA, USA) for all study herds.

2.3. Statistical Analyses

The effects of intramammary treatments on milk production and SCC (outcomes)
during the first 150 DIM in the subsequent lactation were modeled using two-piece
spline general linear mixed models. In addition to treatment, the season (winter vs sum-
mer), cow-related variables including cow breed (Holstein, Jersey, crossbreed), parity
(2nd, ≥3rd lactation), history of clinical mastitis, and SCC were tested in the model. Other
explanatory variables recorded during the enrollment and after calving, such as udder
hygiene score, teat-end score, and CMT score, were included in the model.

2.3.1. Modeling Milk Production during the First 150 DIM after Calving

A two-piece splines general linear mixed model (LMM) was used to model the effect of
different treatments on milk production during the first 150 DIM in the lactation following
the enrollment. Splines have been used to model milk production resulting in pre- and
post-peak linear predictions that meet at a fixed knot representing DIM at peak milk
production [31,32]. Subsequent modifications allowed for a lactation-specific knot such
that the two splines meet at the naturally observed DIM at peak milk production for each
lactation [33] and have been applied to other dairy cattle health outcomes [34].

Equation (1) summarizes the model used to estimate the regression coefficients for
the association between different treatments (AB, TS, or AB + TS, versus None) and the
outcome (yjkl) milk production during the first 150 DIM of the following lactation.

yjkl = β0 + β1X1 + tdairy
l + u block

kl + v0
cow
jkl

+v1
cow
jkl DIMprePk jkl + v2

cow
jkl DIMpostPk jkl + ejkl

(1)

Random Effects

The random effects included t, u, and v representing the random intercepts for dairy,
block, and cow, respectively, where j cows were nested within randomization block k, which
were in turn nested within dairy l. The peak test-day milk production was determined for
each cow’s lactation as the DIM at the greatest test-day milk production recorded in the
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150 DIM after calving. Two random slope coefficients were specified at the cow level for
repeated milk measures during the lactation pre- and post-peak test-day milk production
(splines), v1

cow
jkl DIMprePk jkl , and v2

cow
jkl DIMpostPk jkl , respectively. The formula for the

calculation of pre-peak test-day DIM is DIMprePk = (DIM at test-day–DIM at peak)/(DIM
at peak), while the formula for post-peak test day DIM is DIMpostPk = (DIM at test-day
− DIM at peak)/(total DIM − DIM at peak). All random effects (tl , uk, vj) and residual
errors (ejkl) were assumed to be normally distributed with mean = 0 and variances of σ2

t,
σ2

u, σ2
v, and σ2, respectively.

Fixed-Effect Variables

The intercept (β0) represents the mean volume of milk produced on the peak test-day,
the estimate of which can be interpreted as the mean peak test-day milk produced across
all of the study cows. Similar to the random effects, fixed effects also include DIMPrePk
and DIMPostPk, which are the splines (lactation shape parameters) that meet at the peak
test-day and were calculated as described above. The term β1X1 represents the fixed-
effects variables in the model including the treatment groups (AB, TS, AB + TS, versus
None) amongst other explanatory variables. Cow-related factors obtained from the cow
records including breed (Jersey, Holstein, Cross), parity (second lactation, ≥3 lactation),
history of clinical mastitis events prior to enrollment, the time elapsed between the last
mastitis event prior to enrollment and enrollment date (cows with no history of mastitis
were assigned the duration of their lactation), DIM at enrollment, and the length of the
dry period were included in the model. Clinical mastitis events prior to enrollment were
specified as four variables; clinical mastitis during the enrollment lactation (Yes/No), the
number of clinical mastitis events during enrollment lactation, clinical mastitis prior to the
enrollment lactation (Yes/No), and the number of mastitis events that occurred during
lactations prior to enrollment lactation for multiparous cows. Other factors recorded at
enrollment included season, udder hygiene score (1–4), teat-end score (1–4), and CMT
score (0, T, 1, 2, 3). The udder hygiene score was presented to the model as a four-level
variable (scores 1, 2, 3, 4) and two-level variable (≤2, >2). At the cow level, the teat-end
score was coded using the teat with the highest score. In addition, the teat-end score was
also explored at the quarter level. Specifically, six different variables were used for coding
the teat-end score: cow with teat-end score at any teat ≥2 (Yes/No) and the number of
teats with teat end score ≥2/cow; cow with teat-end score at any teat ≥3 (Yes/No) and the
number of teats with teat-end score ≥3/cow; and cow with teat-end score at any teat ≥4
(Yes/No) and the number of teats with teat-end score ≥4/cow. Similarly, the CMT score
was coded at the cow level assigned the highest quarter score. In addition, eight different
variables were used to specify the CMT score at the quarter level: cow with CMT at any
quarter ≥ trace (Yes/No) and the number of quarters with score ≥ trace/cow; cow with
CMT score at any quarter ≥1 (Yes/No) and the number of quarters with CMT score at any
quarter ≥2/cow; and cow with CMT score at any quarter =3 (Yes/No) and the number
quarters with CMT score = 3/cow. The length of the dry-off period was explored as a
continuous variable and as a categorical variable with three levels (0–60, 61–120, >120 days)
based on its distribution. The last SCC test before enrollment was explored as a continuous
untransformed variable and as a natural log transformation. In addition, the SCC of the last
one, two, three, four, five, or six DHIA tests before enrollment were introduced to the model
individually as categorical variables (Yes/No) indicating whether any of these DHIA tests
exceeded the cut-off of ≥200, ≥250, ≥300, ≥350, ≥400, ≥450, or ≥500 ×1000 cells/mL.
Similarly, SCC was also specified as the number of tests in the last one, two, three, four, five,
or six DHIA tests before enrollment that exceeded the previous cut-offs. Hence, the two
categorical SCC variables informed the model as to whether SCC exceeded the previous
cut-offs and the number of tests where SCC exceeded the previous cut-offs over the six
DHIA tests prior to dry-off. Each variable was included in univariable models with the
random-effect variables described above. Significant variables in the univariable models
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were fitted in the final model, and variables that were no longer significant were excluded
from the final model.

2.3.2. Modeling Somatic Cell Count during 150 DIM after Calving

Similar to the milk production model (Equation (1)) described above, a two-piece
splines general LMM was used to model the effect of different treatments on the natural
logarithm of SCC expressed in cell/mL during the first 150 DIM in the lactation following
enrollment [33].

Random Effects

The random-effect variables included in the SCC model were specified similar to those
in the milk model, with the exception of the following differences:

The minimum (Min) test-day SCC was determined as the lowest SCC measure
recorded in the 150 DIM after calving. The formula for the calculation of pre-Min test-day
SCC DIM is DIMpreMin = (DIM at test date − IM at Min)/(DIM at Min), while the formula
for test days post-Min is DIMpostMin = (DIM at test date − DIM at Min)/(total DIM −
DIM at Min). All random effects (tl , ukl , vjkl) and residual errors (ejkl) were assumed to be
normally distributed with mean = 0 and variances of σ2

t, σ2
u, σ2

v, and σ2, respectively.

Fixed-Effect Variables

The explanatory variables for the SCC model were specified as in the milk model
described above. In addition, milk production (Kg) during the testing lactation was offered
to the model as a continuous variable to account for the variation in the SCC that may be
attributed to the volume of milk produced. A log-transformed SCC of the test prior to
enrollment was included in the model after accounting for the duration between the test
date and enrollment date.

2.3.3. Selection of the Final Models

For both the milk and SCC models, univariable models were fitted for each variable
along with the respective random effect structure described above. Model building was
performed manually by including the spline fixed effects, treatment, and the remaining
fixed effects described above for each model. A manual backward elimination process
was implemented, and a 5% level of significance was used in all models. Confounding by
known confounders was assessed during variable selection and model building, using a
20% change in estimates method, and two-way interactions for potential effect modifiers
were tested using significance testing [33]. The model goodness of fit was estimated using
the Akaike Information Criterion (AIC) to select between competing models, with lower
values denoting a better model fit [35]. The addition of a quadratic term for each outcome’s
respective spline terms (DIMprePK squared and DIMpostPK squared for the milk model, and
DIMpreMin squared and DIMpostMin squared for the SCC model) was explored in terms
of improving the model fit as assessed by a lower AIC compared to the models without
these quadratic term variables. Locally weighted scatterplot smoothing (LOWESS) was
used to plot predictions (Xβ) for each of the outcomes, milk production, and SCC, by parity
(second, and greater than second lactation) to compare the study treatments. The statistical
analysis and visualizations were conducted in Stata IC 15.1 (College Station, TX, USA).

3. Results
3.1. Description of the Enrolled Herds

A total of 1133 cows were enrolled in the study (480 in winter, 653 in summer), with
27 being excluded due to errors transcribing their identification, resulting in a total of
1106 cows. Of the 1106 cows, 45 cows were culled during the dry period and another
166 cows were culled during the first 150 days post-calving (89 of the 166 were culled
between calving and the first DHIA test). The herd demographics have been described
elsewhere (Aly et al., 2022). Briefly, the average number of lactating cows in the enrolled
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herds was 1782 (SE ± 347) milking cows. The cow breeds included in the study were
Holstein only (four herds), Holstein, Jersey, and crossbreds (two herds), Holstein and Jersey
(one herd), and Jersey and crossbreed (one herd). All enrolled herds used Dairy Comp
305 (Valley Ag Software, Tulare, CA, USA) as DHIA computer software. The breed and
parity of the cows included in the analyses are summarized in Table 1. Table 2 summarizes
the mean test-day milk production and mean test-day SCC by treatment group in the
study cows.

Table 1. Comparison of the categorical baseline traits for dairy cows (n = 972 cows) from eight herds
block randomized to one of four treatments at dry-off (AB, TS, AB + TS, None) *.

Parameter Level
Treatment

p **
None AB TS AB + TS Total

Number of cows 252 244 228 248 972 0.365

Breed
Holstein 165 157 147 153 622

0.85Jersey 49 47 43 47 186
Cross 38 40 38 48 164

Parity
2 113 104 95 122 434

0.85≥3 139 140 133 126 538

* AB, antibiotic; TS, internal teat sealants. ** Chi-square test.

Table 2. Mean test-day milk production and mean test-day SCC during the first 150 DIM from eight
herds block randomized to one of four treatments at dry-off (AB, TS, AB + TS, None) *.

Treatment Group Test-Day Milk (kg) Test-Day SCC (1000 Cells/mL)

Mean SE 95% CI Mean SE 95% CI

None 41.73 0.288 (41.16–42.29) 330.22 19.03 (292.90–367.55)
AB 42.36 0.289 (41.79–42.93) 264.97 19.12 (227.48–302.46)
TS 42.28 0.304 (41.68–42.88) 302.32 20.13 (262.86–341.79)

AB + TS 43.30 0.287 (42.74–43.87) 245.75 19.00 (208.49–283.01)

*AB, antibiotic; TS, internal teat sealants.

3.2. Milk Production

Table 3 summarizes the effect of the different dry cow treatments (AB, TS, AB + TS,
None) on milk production during the first 150 DIM using two competing models. The first
(Model A) modeled milk production as explained by the set of predictors that maximized
the model fit (AIC, 39,811), which included test-day SCC prior to dry-off. The second
model (Model B) was specified without SCC, since not all US dairy herds may have this
information readily available (AIC, 39,862). Instead, the CMT score at dry-off was forced in
Model B to offer an alternative for producers who may not subscribe to herd SCC testing.
Figure 1 depicts the lactation-specific LOWESS plots for milk production using Model A’s
fixed effects, which included SCC given its better fit compared to Model B that substituted
SCC for CMT.
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Table 3. Final two-piece spline models for test-day milk production (kg) during the first 150 DIM
of dairy cows randomized at dry-off to four treatment groups (AB, TS, AB + TS, None) 1 on eight
California dairies (n = 972 cows).

Factor Levels

Model A 2 (AIC; 39,811) Model B 3 (AIC; 39,862)

Coefficient
(95% CI)

Standard
Error p Coefficient

(95% CI)
Standard

Error p

Treatment

None Referent Referent

AB 0.12
(−0.99, 1.23) 0.570 0.83 0.17

(−0.95, 1.29) 0.575 0.76

TS 0.67
(−0.46, 1.82) 0.583 0.24 0.69

(−0.45, 1.85) 0.588 0.23

AB + TS 1.84
(0.72, 2.95) 0.569 <0.01 1.96

(0.84, 3.08) 0.573 <0.01

Breed

Holstein Referent Referent

Jersey −8.90
(−10.38, −7.42) 0.754 <0.01 −8.94

(−10.43, −7.46) 0.758 <0.01

Cross −4.58
(−5.89, −3.26) 0.671 <0.01 −4.53

(−5.85, −3.21) 0.673 <0.01

Parity
Second Referent Referent

≥3 2.28
(1.34, 3.22) 0.480 <0.01 2.15

(1.22, 3.08) 0.475 <0.01

SCC at any DHIA test during
enrollment lactation
≥200,000 cells/ml

No Referent

Yes −1.00
(−1.92, -0.07) 0.471 0.03

Cow has at least one quarter with
CMT score ≥ 2 at enrollment

No Referent

Yes −1.03
(−2.04, −0.01) 0.517 0.04

Time between dry-off and last
clinical mastitis Days 0.007

(0.001, 0.01) 0.003 0.01

Season
Winter Referent Referent

Summer −4.61
(−5.55, −3.67) 0.479 <0.01 −4.51

(−5.44, −3.59) 0.472 <0.01

Days dry days 0.03
(0.003, 0.06) 0.015 0.03 0.03

(0.008, 0.06) 0.015 0.01

Intercept and splines variables

Days in milk pre-peak (Kg) −0.81
(−3.30, 1.67) 1.270 0.52 −0.74

(−3.24, 1.74) 1.270 0.55

Days in milk post-peak (Kg) −4.94
(−5.42, −4.45) 0.247 <0.01 −4.95

(−5.44, −4.46) 0.248 <0.01

Days in milk pre-peak (Kg) square −13.97
(−16.97, −10.98) 1.526 <0.01 −13.91

(−16.90, −10.92) 1.526 <0.01

Days in milk post-peak (Kg) square −0.30
(−0.44, −0.17) 0.069 <0.01 −0.30

(−0.44, −0.17) 0.069 <0.01

Intercept 45.63
(42.29, 48.97) 1.705 <0.01 47.28

(44.61, 49.94) 1.361 <0.01

1 AB, antibiotic; TS, internal teat sealants. 2 Model A: model using information about the history of SCC in the
enrollment lactation. 3 Model B: model using information about CMT score at dry-off (instead of SCC in the
current lactation).
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Figure 1. Locally weighted scatterplot smoothing of the predicted milk production curves for dairy
cows that received different dry cow treatments (AB, TS, AB + TS or None) during the first 150 days
in milk post-calving. AB: cows treated with intramammary antibiotics at dry-off. TS: cows treated
with internal teat sealants at dry-off. AB + TS: cows treated with both intramammary antibiotics and
internal teat sealants at dry-off. None: control group.

There was a significant increase in the daily milk production (Model A 1.84 kg/cow/day,
Model B 1.96 kg/cow/day) for cows that received both intramammary antibiotics and internal
teat sealants at dry-off in comparison to the control group (p < 0.01). In contrast, there was
no significant difference in milk production between the untreated cows and cows that
received intramammary antibiotic tubes (Model A 0.12 kg/cow/day, p = 0.83 and Model
B 0.17 kg/cow/day, p = 0.76) or internal teat sealants (Model A 0.67 kg/cow/day, p = 0.24
and Model B 0.69 kg/cow/day, p = 0.23), although the numerical difference in the latter
comparison may be biologically important. The Bonferroni-adjusted multiple comparisons
showed no additional significant differences, with the exception of the difference between
cows that received both antibiotics and internal teat sealants compared to those that received
antibiotics only (Model A, p = 0.02, Model B, p = 0.01). There was a significant difference
in the milk production between parities (p < 0.01), with cows of third or greater lactation
producing more milk (Model A 2.28 kg/cow/day, Model B 2.15 kg/cow/day) compared to
second lactation cows. The SCC-based model (Model A) showed a significant decrease in the
daily milk production of cows with SCC ≥ 200,000 cells/mL at any test during the enrollment
lactation (1.00 kg, p = 0.03), in comparison to cows with <200,000 cells/mL. The CMT-based
model (Model B) revealed that cows with a score of two or more in one or more quarters
at enrollment had significantly lower daily milk production (1.03 kg/cow/day, p = 0.04) in
comparison to cows with a CMT score less than two in all quarters. Both models showed that
the cows enrolled during the summer season produced significantly less daily milk (Model A
4.61 kg/cow/day, Model B 4.51 kg/cow/day) compared to cows enrolled during the winter
season (p < 0.01). Both models showed that every one-day increase in the dry period was
associated with a daily increase of 0.03 kg of milk (p 0.03 and 0.01, respectively). For Model
A, each one-day increase in the duration between the last clinical mastitis event and dry-off
was associated with a significant increase of 0.007 kg daily milk (p = 0.01). In addition, a
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model with a quadratic term for dry period length showed minimal improvement in AIC
(Model A with the variable dry period length as a main effect had an AIC = 39,811 versus
the same model with the addition of the quadratic term for dry period length, which had an
AIC = 39,805), with approximately similar estimates for the remaining variables and no change
in their interpretations; hence, the model with the main effect only was chosen for simplicity.

3.3. Somatic Cell Count

The effect of dry cow treatments (AB, TS, AB + TS, None) on ln SCC during the first
150 DIM following calving is shown in Table 4. Figure 2 depicts the lactation-specific
LOWESS plots using fixed effects from the final model for SCC.

Table 4. Final two-piece spline models for natural logarithm-transformed test-day somatic cell counts
1 (SCC) during the first 150 DIM of dairy cows randomized at dry-off to one of four treatment groups
(AB, TS, AB + TS, None) 2 on eight California dairies (n = 972 cows).

Factor Level Coefficient Standard Error p
95% Confidence Limits

Lower Upper

Treatment

None Referent
AB −0.30 0.086 <0.01 −0.47 −0.13
TS −0.19 0.088 0.03 −0.36 −0.01

AB + TS −0.41 0.087 <0.01 −0.58 −0.24

Breed
Holstein Referent

Jersey −0.30 0.111 <0.01 −0.52 −0.08
Cross −0.17 0.104 0.08 −0.38 0.02

Parity Second Referent
≥3 0.21 0.074 <0.01 0.07 0.36

Teat-end score 4 at any teat
after calving

No Referent
Yes 0.59 0.167 <0.01 0.26 0.92

CMT 3 at any quarter
after calving

No Referent
Yes 0.79 0.138 <0.01 0.52 1.06

Mastitis at enrollment lactation
No Referent
Yes 0.30 0.142 0.03 0.02 0.58

Mastitis at any lactation prior
to enrollment lactation

No Referent
Yes 0.26 0.131 0.04 0.008 0.52

Milk production at
current lactation (kg) −0.01 0.001 <0.01 −0.018 −0.01

Ln SCC of last test
before enrollment

Natural log
1000 cells/mL 0.17 0.028 <0.01 0.11 0.23

Time between last test day and
enrollment day days 0.009 0.003 0.01 0.002 0.01

Days in milk pre-Min −3.69 0.194 <0.01 −4.08 −3.31
Days in milk post-Min 4.28 0.155 <0.01 3.97 4.58

Days in milk pre-Min square −2.25 0.224 <0.01 −2.69 −1.81

Factor Level Coefficient Standard Error p
95% Confidence Limits

Lower Upper

Days in milk post-Min square −3.13 0.148 <0.01 −3.42 −2.84
Intercept 10.05 0.207 <0.01 9.65 10.46

1 Model coefficients are on the natural logarithm scale and hence estimates comparing cows should incorporate
the intercept and any other covariate coefficients relevant to the contrast. 2 AB, antibiotic; TS, internal teat sealant.
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curves for dairy cows that received different dry cow treatments (AB, TS, AB + TS or None).

Different dry cow treatments were associated with a significant reduction in the ln SCC
during the first 150 DIM following calving. The highest reduction was associated with cows
that received both intramammary antibiotics and internal teat sealants, followed by cows
that received intramammary antibiotics only, and cows that received internal teat sealant
only, in comparison to the untreated cows in the control group. The Bonferroni-adjusted
multiple comparisons showed no additional significant differences between the treatment
groups. In comparison to the Holsteins, the Jerseys had significantly lower ln SCC, while
crossbreeds had a non-significant (p = 0.08), but numerically lower ln SCC. Cows of third
lactation or greater had a significantly higher ln SCC compared to cows in their second
lactation. Cows with a teat-end score of four on any teat after calving had a higher ln
SCC compared to cows with a teat-end score less than four. Cows with a CMT score of
three in any quarter after calving had higher ln SCC compared to cows with a CMT score
less than three. Cows with a history of clinical mastitis during the enrollment lactation
or any lactation prior to enrollment had significantly higher ln SCC compared to cows
with a history of no clinical mastitis. Each additional kilogram of daily milk produced was
associated with a decrease in the ln SCC. Model coefficients are on the natural logarithm
scale, and hence estimates comparing cows should incorporate the intercept and covariate
coefficients relevant to the contrast. The example below compares two Holstein cows
with 100,000 SCC/mL 30 days prior to dry-off and not treated with any dry-off therapy.
In addition, the first cow completed her first lactation at dry-off, while the second cow
completed her second lactation at dry-off with at least one teat-end score of 4, at least
one quarter with a CMT score of 3, and a history of mastitis in both previous lactations.
Assuming both cows are at 40 DIM in the lactation subsequent to their dry-off with a SCC
nadir at 60 DIM, then the estimates based on the SCC model are 119,372 cells/mL and
1024,791 cells/mL for the first and second cows, respectively.

To further demonstrate the differences in SCC due to treatment under the same
conditions, 40 DIM in the subsequent lactation with a SCC nadir at 60 DIM, had the first
cow been treated with AB, her estimated SCC would have been 88,432 cells/mL. Similarly, if
the first cow under the same conditions had been treated with TS or AB + TS, her SCC would
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have been 98,715 cells/mL or 79,221 cells/mL, respectively. The second cow’s estimated
SCC after treatment with AB, TS, or AB + TS at dry-off, assuming the same conditions,
would have been 759,184 cells/mL, 847,460 cells/mL, or 680,103 cells/mL, respectively.

4. Discussion

Different dry cow therapy practices including the administration of intramammary
antibiotics, internal teat sealants, or both were associated with increased milk production;
however, the increase was only significant for cows that received both intramammary
antibiotics and internal teat sealant. There was a significant reduction in the ln SCC in
all treated groups (AB, TS, and AB + TS) in comparison to the control group that did
not receive any treatment. Dry cow treatments are likely to reduce the prevalence of
intramammary infection at the commencement of the subsequent lactation, either by curing
existing infections and/or reducing the risk of new infection over the dry period [36].
The net effect, therefore, is likely to be that dry cow treatments reduce the prevalence of
intramammary infection at calving, which may potentially impact production and SCC.
Both milk production and ln SCC were significantly associated with parity, breed, and
season. Cows enrolled during the summer season had a significant reduction in both milk
production and SCC.

The study revealed a significant increase in milk production during the first 150 DIM
in cows treated with both intramammary antibiotics and internal teat sealant in compari-
son to cows that did not receive any treatments at dry-off. In addition, there was a non-
significant increase in the milk production of cows that received either internal teat sealants
or intramammary antibiotics at dry-off—specifically, cows treated with TS produced nu-
merically more milk than those treated with AB. Based on Models A and B for milk pro-
duction, cows with at least one high test-day SCC (>200,000 cells/mL) or CMT score of 3
in any quarter during the enrollment lactation can benefit from combined treatment with
AB + TS. The study findings agree with findings by McNab and Meek (1991), who reported
an increase in milk production in cows that received dry cow treatment compared to non-
treated cows. In addition, Osteras and Sandvik (1996) found a significant increase in the
milk production between treated and non-treated groups. The current study findings are
in contrast with findings from previous studies that reported no differences in the milk pro-
duction between cows that received SDCT and BDCT [16,19,37,38]. The lack of difference
in findings reported by Rajala-Schultz et al. [36], Cameron et al. [19] and Vasquez et al. [16]
is likely attributed to the assignment of the enrolled cows into SDCT and BDCT groups
according to the history of clinical mastitis and SCC in the enrollment lactation; in con-
trast, our study cows were randomized to different treatment groups regardless of their
clinical mastitis history. Furthermore, our study had an untreated control group, unlike
Cameron et al. [19], Golder et al. [37], Vasquez et al. [16] and Rowe et al. [17]. In addition, our
analysis relied on use of two-piece spline mixed regression models, which account for the
pre-peak and post-peak differences in the milk production, while Rajala-Schultz et al. [36],
Cameron et al. [19], Golder et al. [37], and Vasquez et al. [16] used linear mixed regres-
sion models, which assume a linear relation between milk production and days in milk
Vasquez et al. [16] only followed the milk production for the first 30 days in milk, compared
to our study, in which the cows were followed up to 150 DIM. did not include internal teat
sealants in their study, while in our study, the cows received teat sealants either alone or
in combination with intramammary antibiotics. Rowe et al. [17] used linear mixed models
in their analysis for milk and ln SCC models with DIM categorized into six levels equally
spanning the first 120 DIM, which assumes a flat relationship between the respective outcome
and DIM within each category and hence ignores the non-linear trends in milk production
and SCC. Such differences in the study design, enrollment criteria, and analysis models may
explain the differences regarding the effect of dry cow treatment on the milk production
between studies.

There was a significant decrease in ln SCC during the first 150 DIM for the cows
treated with either AB, TS, or both in comparison to the cows that did not receive any
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treatment at dry-off. The cows that received both AB and TS had the lowest SCC, followed
by those treated with either AB or TS alone. The cows with a teat-end score of four on any
teat, a CMT score of three in at least one quarter at dry-off, or mastitis in the enrollment or
previous lactations may benefit from lowering their SCC by treatment with AB or TS at
dry-off, with the maximum benefit derived when treated using both. Our results agreed
with the findings of Golder et al. [37], as they found that treatment with a combination
of teat sealants and intramammary antibiotics at dry-off was associated with a lower
geometric mean of SCC in comparison to antibiotics alone. Rajala-Schultz et al. [36] found
a 16% decrease in SCC in cows treated with intramammary antibiotics in comparison
to the non-treated group. McDougall [39] reported a significant decrease in the SCC of
cows treated with antibiotics and teat sealants at dry-off in comparison to a non-treated
group [39]. The application of dry cow therapy to all cows was associated with a significant
reduction in SCC compared to no treatment [39]. A previous study reported a significant
reduction of 0.409 ln unit on the geometric mean of SCC (1000/mL) in cows treated with
antibiotic therapy at dry-off in comparison to non-treated groups in the lactation following
enrollment, and they recommended the use of SDCT [40]. In our study, we used a two-piece
mixed regression model to account for the dip in the SCC curve, a biological feature that
coincides with the peak milk production, while Cameron et al. [19] and Vasquez et al. [16]
used a linear mixed regression model for their analysis, which did not account for the dip in
the SCC curve. Mutze et al. [41] reported a significant decrease in the SCC after calving in
comparison to the last test before dry-off, but there was no significant difference in the SCC
between cows that received intramammary antibiotics at dry-off and cows that received
both intramammary antibiotics and internal teat sealants [41].

The findings from the current study show that cow breed, parity, and season were
significant factors that affected both milk production and SCC during the lactation. Our
results disagree with [42,43], as they reported higher SCC for Jersey cows compared to
Holsteins, while [44,45] found no difference in the SCC between Holstein and Jersey
breeds. Cows of the third or greater lactation produced more milk and had higher SCC in
comparison to second lactation cows, similar to the results of previous studies [41,46]. Our
results disagreed with Cameron et al. [19], as they reported a decrease in milk production
for cows in the third or greater lactation in comparison to second lactation cows, which
could be related to their inclusion of previous lactation milk production in their model,
which is on the causal pathway between parity and milk production. The cows enrolled
during the summer season produced less milk than those enrolled during the winter season,
which could be due to heat stress, which can decrease feed consumption and indirectly
reduce the milk yield [44].

Milk production and SCC in the first 150 DIM were associated with SCC of the
enrollment lactation. Cows with SCC ≥ 200,000 cell/mL at any test during the enrollment
lactation produced less milk in comparison to cows with <200,000 cells/mL. The lower milk
production in cows with higher enrollment lactation SCC could be attributed to the higher
risk of existing intramammary infection, which may continue to the following lactation. In
addition, a higher SCC at enrollment could be a residual effect of clinical mastitis during the
enrollment lactation, and these cows may be of higher risk for the development of clinical
mastitis during subsequent lactations. The current study showed that cows with a CMT
score of three in at least one quarter at enrollment produced lower milk and higher ln SCC
in the following lactation in comparison to cows with lower CMT scores. A CMT-positive
test (score 3) is an indication of an intramammary infection of the affected quarter. Hence,
cows with higher CMT scores at enrollment may suffer from subclinical mastitis and have
a higher risk of developing clinical mastitis during the next lactation. Despite the lack
of effect modification (interaction) between the treatment and cow characteristics in both
milk production and SCC models, selective dry cow therapy can still benefit cows at risk
of reduced milk production or elevated SCC. As a result, economics and antimicrobial
drug stewardship practices may further help determine which cows may benefit from dry
cow therapy.
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5. Limitations

The study included a large number of cows from four of the top ten milk-producing
counties in California (Tulare, Kings, Stanislaus, and San Joaquin) during the summer
and winter seasons, but the weather conditions and cow housing may differ from other
regions. Hence, similar studies may be needed to address other climatic and housing
conditions. The study included Holstein, Jersey, and crossbreeds as they were the common
milk-producing breeds in California; however, breeds may also differ in other countries.
The study relied on the monthly milk test for milk production and SCC data, as this is
the common practice in California, so further research may investigate daily milk and
SCC where and when such data are available. Information on the microbiological quality
of the milk could also further inform models predicting milk and SCC; however, such
variables are likely highly correlated with CMT scores and SCC, and are on the causal
pathway between the treatment and the study outcomes. Future studies may be required
to evaluate the effect of different dry cow therapies on the bacteriological quality of milk.
Finally, although the inclusion of different dry cow antibiotics in our trial increases its
generalizability compared to the use of a single antibiotic, estimating the effect measure for
each drug would be based on a smaller sample size.

6. Conclusions

Adjusting for SCC in the previous lactation, the treatment of cows at dry-off with both
AB and TS was associated with an increase in the test-day milk production of approximately
1.84 Kg (4.06 lbs) compared to untreated cows. Otherwise, the treatment of cows at dry-off
with either AB or TS did not result in statistically significant differences in test-day milk
production compared to untreated cows. Dry cow treatments including AB, TS, or both
were beneficial in significantly reducing test-day SCC. Cows with high test-day SCC during
the enrollment lactation or a CMT score of three in any quarter at dry-off may benefit from
combined AB and TS treatments.

Author Contributions: Conceptualization, S.S.A., D.R.W., B.K. and T.W.L.; data curation, W.R.E.
and S.S.A.; formal analysis, W.R.E. and S.S.A.; funding acquisition, D.R.W., B.K., T.W.L. and S.S.A.;
investigation, W.R.E., E.O., D.R.W., R.J.A. and S.S.A.; methodology, W.R.E., E.O., D.R.W., R.J.A. and
S.S.A.; project administration, S.S.A.; resources, W.R.E. and S.S.A.; software, S.S.A.; supervision,
S.S.A.; validation, W.R.E., E.O. and S.S.A.; visualization, W.R.E. and S.S.A.; writing–original draft,
W.R.E.; writing—review and editing, W.R.E., E.O., D.R.W., R.J.A., B.K., T.W.L. and S.S.A. All authors
have read and agreed to the published version of the manuscript.

Funding: Funding for this research was provided by the University of California Agriculture and
Natural Resources (Grant No. 3765; PI Sharif Aly).

Institutional Review Board Statement: The study was approved by the University of California
Davis’s Institutional Animal Care and Use Committee (protocol number 19761).

Informed Consent Statement: Informed consent was obtained from all animal owners involved in
the study.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author. The data are not publicly available, as the study-associated dairy
owners did not consent to publishing them alongside the article.

Acknowledgments: The authors acknowledge the study farm owners and staff for their collaboration,
and Zoetis for the provision of the dry cow internal teat sealant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Romero, J.; Benavides, E.; Meza, C. Assessing Financial Impacts of Subclinical Mastitis on Colombian Dairy Farms. Front. Vet. Sci.

2018, 5, 273. [CrossRef] [PubMed]
2. Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Farre, M.; Halasa, T. Economic and epidemiological impact of different

intervention strategies for subclinical and clinical mastitis. Prev. Vet. Med. 2019, 166, 78–85. [CrossRef] [PubMed]

http://doi.org/10.3389/fvets.2018.00273
http://www.ncbi.nlm.nih.gov/pubmed/30542654
http://doi.org/10.1016/j.prevetmed.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/30935508


Vet. Sci. 2022, 9, 559 14 of 15

3. Gussmann, M.; Steeneveld, W.; Kirkeby, C.; Hogeveen, H.; Nielen, M.; Farre, M.; Halasa, T. Economic and epidemiological impact
of different intervention strategies for clinical contagious mastitis. J. Dairy Sci. 2019, 102, 1483–1493. [CrossRef] [PubMed]

4. Hagnestam-Nielsen, C.; Ostergaard, S. Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation
using different methods to model yield losses. Animal 2009, 3, 315–328. [CrossRef] [PubMed]

5. Schukken, Y.H.; Bronzo, V.; Locatelli, C.; Pollera, C.; Rota, N.; Casula, A.; Testa, F.; Scaccabarozzi, L.; March, R.; Zalduendo, D.;
et al. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative staphylococci intramammary infection dynamics
in 2 dairy herds. J. Dairy Sci. 2014, 97, 5250–5264. [CrossRef] [PubMed]

6. Erskine, R.J. Vaccination strategies for mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 257–270. [CrossRef]
7. USDA. A, VS, National Animal Health Monitoring System. Milk Quality, Milking Procedures, and Mastitis on U.S. Dairies 2014.

2016. Available online: https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.
pdf (accessed on 23 August 2022).

8. Haltia, L.; Honkanen-Buzalski, T.; Spiridonova, I.; Olkonen, A.; Myllys, V. A study of bovine mastitis, milking procedures and
management practices on 25 Estonian dairy herds. Acta Vet. Scand. 2006, 48, 22. [CrossRef] [PubMed]

9. Kingwill, R.G.; Neave, F.K.; Dodd, F.H.; Griffin, T.K.; Westgarth, D.R.; Wilson, C.D. The effect of a mastitis control system on
levels of subclinical and clinical mastitis in two years. Vet. Rec. 1970, 87, 94–100. [CrossRef] [PubMed]

10. Natzke, R.P. Therapy: One component in a mastitis control system. J. Dairy Sci. 1971, 54, 1895–1901. [CrossRef]
11. Hillerton, E.; Bryan, M.; Biggs, A.; Berry, E.; Edmondson, P. Time to standardise dry cow therapy terminology. Vet. Rec. 2017, 180,

301–302. [CrossRef]
12. Hogan, J.S.; Smith, K.L.; Todhunter, D.A.; Schoenberger, P.S.; Dinsmore, R.P.; Canttell, M.B.; Gabel, C. Efficacy of dry cow therapy

and a Propionibacterium acnes product in herds with low somatic cell count. J. Dairy Sci. 1994, 77, 3331–3337. [CrossRef]
13. Schukken, Y.H.; Vanvliet, J.; Vandegeer, D.; Grommers, F.J. A randomized blind trial on dry cow antibiotic infusion in a low

somatic cell count herd. J. Dairy Sci. 1993, 76, 2925–2930. [CrossRef]
14. Scherpenzeel, C.G.M.; den Uijl, I.E.M.; van Schaik, G.; Riekerink, R.; Hogeveen, H.; Lam, T. Effect of different scenarios for

selective dry-cow therapy on udder health, antimicrobial usage, and economics. J. Dairy Sci. 2016, 99, 3753–3764. [CrossRef]
15. Patel, K.; Godden, S.M.; Royster, E.E.; Timmerman, J.A.; Crooker, B.A.; McDonald, N. Pilot study: Impact of using a culture-

guided selective dry cow therapy program targeting quarter-level treatment on udder health and antibiotic use. Bov. Pract. 2017,
51, 48–57.

16. Vasquez, A.K.; Nydam, D.V.; Foditsch, C.; Wieland, M.; Lynch, R.; Eicker, S.; Virkler, P. Use of a culture-independent on-farm
algorithm to guide the use of selective dry-cow antibiotic therapy. J. Dairy Sci. 2018, 101, 5345–5361. [CrossRef] [PubMed]

17. Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.
Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at
dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [CrossRef] [PubMed]

18. Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.
Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in
the subsequent lactation. J. Dairy Sci. 2020, 103, 6493–6503. [CrossRef]

19. Cameron, M.; Keefe, G.P.; Roy, J.P.; Stryhn, H.; Dohoo, I.R.; McKenna, S.L. Evaluation of selective dry cow treatment following
on-farm culture: Milk yield and somatic cell count in the subsequent lactation. J. Dairy Sci. 2015, 98, 2427–2436. [CrossRef]
[PubMed]

20. Cameron, M.; McKenna, S.L.; MacDonald, K.A.; Dohoo, I.R.; Roy, J.P.; Keefe, G.P. Evaluation of selective dry cow treatment
following on-farm culture: Risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J. Dairy
Sci. 2014, 97, 270–284. [CrossRef]

21. CDC. Antibiotic Resistance Threats in the United States, 2013. 2013. Available online: https://stacks.cdc.gov/view/cdc/20705
(accessed on 23 August 2022).

22. Schrag, N.F.D.; Godden, S.M.; Apley, M.D.; Singer, R.S.; Lubbers, B.V. Antimicrobial use quantification in adult dairy cows–Part
3—Use measured by standardized regimens and grams on 29 dairies in the United States. Zoonoses Public Health 2020, 67, 82–93.
[CrossRef]

23. Huxley, J.N.; Greent, M.J.; Green, L.E.; Bradley, A.J. Evaluation of the efficacy of an internal teat sealer during the dry period. J.
Dairy Sci. 2002, 85, 551–561. [CrossRef]

24. CDFA. California Agricultural Statistics Review, 2017–2018; CDFA, Ed.; CDFA: Sacramento, CA, USA, 2018; pp. 1–118.
25. Aly, S.S.; Okello, E.; ElAshmawy, W.R.; Williams, D.R.; Anderson, R.J.; Rossitto, P.; Tonooka, K.; Glenn, K.; Karle, B.; Lehenbauer,

T.W. Effectiveness of Intramammary Antibiotics, Internal Teat Sealants, or Both at Dry-Off in Dairy Cows: Clinical Mastitis and
Culling Outcomes. Antibiotics 2022, 11, 954. [CrossRef] [PubMed]

26. Sprecher, D.J.; Hostetler, D.E.; Kaneene, J.B. A lameness scoring system that uses posture and gait to predict dairy cattle
reproductive performance. Theriogenology 1997, 47, 1179–1187. [CrossRef]

27. Schreiner, D.A.; Ruegg, P.L. Effects of tail docking on milk quality and cow cleanliness. J. Dairy Sci. 2002, 85, 2503–2511. [CrossRef]
28. Arruda, A.G.; Godden, S.; Rapnicki, P.; Gorden, P.; Timms, L.; Aly, S.S.; Lehenbauer, T.; Champagne, J. Randomized noninferiority

clinical trial evaluating 3 commercial dry cow mastitis preparations: I. Quarter-level outcomes. J. Dairy Sci. 2013, 96, 4419–4435.
[CrossRef] [PubMed]

http://doi.org/10.3168/jds.2018-14939
http://www.ncbi.nlm.nih.gov/pubmed/30580951
http://doi.org/10.1017/S1751731108003352
http://www.ncbi.nlm.nih.gov/pubmed/22444235
http://doi.org/10.3168/jds.2014-8008
http://www.ncbi.nlm.nih.gov/pubmed/24881797
http://doi.org/10.1016/j.cvfa.2012.03.002
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf
http://doi.org/10.1186/1751-0147-48-22
http://www.ncbi.nlm.nih.gov/pubmed/17118211
http://doi.org/10.1136/vr.87.4.94
http://www.ncbi.nlm.nih.gov/pubmed/5472066
http://doi.org/10.3168/jds.S0022-0302(71)86131-3
http://doi.org/10.1136/vr.j1308
http://doi.org/10.3168/jds.S0022-0302(94)77274-X
http://doi.org/10.3168/jds.S0022-0302(93)77632-8
http://doi.org/10.3168/jds.2015-9963
http://doi.org/10.3168/jds.2017-13807
http://www.ncbi.nlm.nih.gov/pubmed/29605332
http://doi.org/10.3168/jds.2019-17728
http://www.ncbi.nlm.nih.gov/pubmed/32448572
http://doi.org/10.3168/jds.2019-17961
http://doi.org/10.3168/jds.2014-8876
http://www.ncbi.nlm.nih.gov/pubmed/25648799
http://doi.org/10.3168/jds.2013-7060
https://stacks.cdc.gov/view/cdc/20705
http://doi.org/10.1111/zph.12773
http://doi.org/10.3168/jds.S0022-0302(02)74108-8
http://doi.org/10.3390/antibiotics11070954
http://www.ncbi.nlm.nih.gov/pubmed/35884208
http://doi.org/10.1016/S0093-691X(97)00098-8
http://doi.org/10.3168/jds.S0022-0302(02)74333-6
http://doi.org/10.3168/jds.2012-6461
http://www.ncbi.nlm.nih.gov/pubmed/23628244


Vet. Sci. 2022, 9, 559 15 of 15

29. Kandeel, S.A.; Morin, D.E.; Calloway, C.D.; Constable, P.D. Association of California Mastitis Test Scores with Intramammary
Infection Status in Lactating Dairy Cows Admitted to a Veterinary Teaching Hospital. J Vet. Intern Med. 2018, 32, 497–505.
[CrossRef] [PubMed]

30. Cockcroft, P. Bovine Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2015.
31. Nielsen, S.S.; Krogh, M.A.; Enevoldsen, C. Time to the occurrence of a decline in milk production in cows with various

paratuberculosis antibody profiles. J. Dairy Sci. 2009, 92, 149–155. [CrossRef] [PubMed]
32. Bennedsgaard, T.W.; Enevoldsen, C.; Thamsborg, S.M.; Vaarst, M. Effect of Mastitis Treatment and Somatic Cell Counts on Milk

Yield in Danish Organic Dairy Cows. J. Dairy Sci. 2003, 86, 3174–3183. [CrossRef]
33. Aly, S.S.; Anderson, R.J.; Adaska, J.M.; Jiang, J.; Gardner, I.A. Association between Mycobacterium avium subspecies paratubercu-

losis infection and milk production in two California dairies. J. Dairy Sci. 2010, 93, 1030–1040. [CrossRef]
34. Valldecabres, A.; Silva-Del-Río, N. Association of low serum calcium concentration after calving with productive and reproductive

performance in multiparous Jersey cows. J. Dairy Sci. 2021, 104, 11983–11994. [CrossRef] [PubMed]
35. Wagenmakers, E.J.; Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 2004, 11, 192–196. [CrossRef]

[PubMed]
36. Bhutto, A.L.; Murray, R.D.; Woldehiwet, Z. The effect of dry cow therapy and internal teat-sealant on intra-mammary infections

during subsequent lactation. Res. Vet. Sci. 2011, 90, 316–320. [CrossRef]
37. Rajala-Schultz, P.J.; Torres, A.H.; Degraves, F.J. Milk yield and somatic cell count during the following lactation after selective

treatment of cows at dry-off. J. Dairy Res. 2011, 78, 489–499. [CrossRef] [PubMed]
38. Golder, H.M.; Hodge, A.; Lean, I.J. Effects of antibiotic dry-cow therapy and internal teat sealant on milk somatic cell counts and

clinical and subclinical mastitis in early lactation. J. Dairy Sci. 2016, 99, 7370–7380. [CrossRef] [PubMed]
39. McNab, W.B.; Meek, A.H. A benefit cost analysis of dry-cow mastitis therapy in Ontario dairy herds. Can. Vet. J. 1991, 32, 347–353.

[PubMed]
40. Osteras, O.; Sandvik, L. Effects of selective dry-cow therapy on culling rate, clinical mastitis, milk yield and cow somatic cell

count. A randomized clinical field study in cows. Zent. Vet. B 1996, 43, 555–575.
41. Mütze, K.; Wolter, W.; Failing, K.; Kloppert, B.; Bernhardt, H.; Zschöck, M. The effect of dry cow antibiotic with and without an

internal teat sealant on udder health during the first 100 d of lactation: A field study with matched pairs. J. Dairy Res. 2012, 79,
477–484. [CrossRef]

42. Berry, E.A.; Hillerton, J.E. Effect of an intramammary teat seal and dry cow antibiotic in relation to dry period length on
postpartum mastitis. J. Dairy Sci. 2007, 90, 760–765. [CrossRef]

43. Sewalem, A.; Miglior, F.; Kistemaker, G.J.; Van Doormaal, B.J. Analysis of the Relationship Between Somatic Cell Score and
Functional Longevity in Canadian Dairy Cattle. J. Dairy Sci. 2006, 89, 3609–3614. [CrossRef]

44. Prendiville, R.; Pierce, K.M.; Buckley, F. A comparison between Holstein-Friesian and Jersey dairy cows and their F1 cross with
regard to milk yield, somatic cell score, mastitis, and milking characteristics under grazing conditions. J. Dairy Sci. 2010, 93,
2741–2750. [CrossRef] [PubMed]

45. Washburn, S.; White, S.; Green Jr, J.; Benson, G. Reproduction, mastitis, and body condition of seasonally calved Holstein and
Jersey cows in confinement or pasture systems. J. Dairy Sci. 2002, 85, 105–111. [CrossRef]

46. Ray, D.; Halbach, T.; Armstrong, D. Season and lactation number effects on milk production and reproduction of dairy cattle in
Arizona. J. Dairy Sci. 1992, 75, 2976–2983. [CrossRef]

http://doi.org/10.1111/jvim.14876
http://www.ncbi.nlm.nih.gov/pubmed/29222843
http://doi.org/10.3168/jds.2008-1488
http://www.ncbi.nlm.nih.gov/pubmed/19109273
http://doi.org/10.3168/jds.S0022-0302(03)73920-4
http://doi.org/10.3168/jds.2009-2611
http://doi.org/10.3168/jds.2020-19527
http://www.ncbi.nlm.nih.gov/pubmed/34482978
http://doi.org/10.3758/BF03206482
http://www.ncbi.nlm.nih.gov/pubmed/15117008
http://doi.org/10.1016/j.rvsc.2010.06.006
http://doi.org/10.1017/S0022029911000690
http://www.ncbi.nlm.nih.gov/pubmed/21939576
http://doi.org/10.3168/jds.2016-11114
http://www.ncbi.nlm.nih.gov/pubmed/27320676
http://www.ncbi.nlm.nih.gov/pubmed/17423801
http://doi.org/10.1017/S0022029912000477
http://doi.org/10.3168/jds.S0022-0302(07)71560-6
http://doi.org/10.3168/jds.S0022-0302(06)72400-6
http://doi.org/10.3168/jds.2009-2791
http://www.ncbi.nlm.nih.gov/pubmed/20494183
http://doi.org/10.3168/jds.S0022-0302(02)74058-7
http://doi.org/10.3168/jds.S0022-0302(92)78061-8

	Introduction 
	Materials and Methods 
	Herd Selection 
	Cow Enrollment, Follow-Up, and Sample and Data Collection 
	Statistical Analyses 
	Modeling Milk Production during the First 150 DIM after Calving 
	Modeling Somatic Cell Count during 150 DIM after Calving 
	Selection of the Final Models 


	Results 
	Description of the Enrolled Herds 
	Milk Production 
	Somatic Cell Count 

	Discussion 
	Limitations 
	Conclusions 
	References



