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Abstract

A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with
chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no
studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h
circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated
glucose uptake, in isolated extensor digitorum longus and soleus from mice at 4 times-of-day (zeitgeber times 1, 7, 13, 19).
Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences
between the 4 time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake,
regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the
glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or
contraction-stimulated glucose uptake.
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Take home message: The intrinsic contractile properties of skeletal muscle, and
contraction-stimulated glucose uptake, are not different by time-of-day, regardless

of sex or muscle type.
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Introduction

Through circadian cycles, or rhythms, time-of-day impacts
many aspects of mammalian physiology.'®> Recently, the field
of exercise physiology has been focused on the effect of time-
of-day on exercise capacity and athletic performance. On the
whole, measures of both strength and endurance performance
tend to be lower in early morning and higher in the after-
noon/evening.** While a number of factors have been proposed
to underlie these performance impacting effects of time-of-day,
including body temperature,’>® motor unit recruitment,’-°
and meal timing/muscle glycogen status,?>?! an emphasized
point in the field is that variation in exercise performance is due
to circadian fluctuations in the intrinsic properties of skeletal
muscle.’® In contrast to these data, recent work found that the
maximal intrinsic force-generating capacity of the mouse exten-
sor digitorum longus (EDL) is not different between 2 different
times of the light phase (ie, zeitgeber time [ZT] ZT1 and ZT9)??
(personal communication with Dayanidhi S, Kahn RE, and Lieber
RL). While this study is interesting, whether there are intrinsic
changes in skeletal muscle physiology, such as submaximal con-
tractile function, resistance to fatigue, or the ability to take up
glucose from the blood during contractions, over the course of a
24 h circadian cycle or in other muscles, remains unknown.
Exercise is a cornerstone therapeutic for preventing or treat-
ing clinical hyperglycemia.?*?® A fundamental reason for this
beneficial effect of exercise is that muscle contraction potently
stimulates glucose disposal from the blood into the exercising
skeletal muscle,? and does so in an insulin-independent man-
ner.3%-32 Interestingly, like exercise performance, a large focus
of the field of exercise physiology, and more broadly, the field
of diabetes care, has been on the effect of time-of-day on the
glucose-controlling benefits of exercise.®® Indeed, in humans,

undertaking an exercise training intervention in the afternoon
has been found to be superior at improving glycemic control
and skeletal muscle insulin sensitivity to exercise training in
the morning.34-3¢ Similarly, in mice, a single exercise bout in the
early part of the active (ie, dark) phase, as compared to the early
rest (ie, light) phase, promoted a glycolytic transcriptional sig-
nature in skeletal muscle and reduced blood glucose concen-
tration.”” However, whether this time-of-day effect of exercise
on glycemic control is due to chronobiological variation in the
intrinsic capacity of contraction-stimulated glucose uptake by
skeletal muscle has not been investigated.

To address these major gaps in knowledge, we used an ex vivo
approach to assess intrinsic contractile function (sub-maximal
and maximal) and fatigability, and contraction-stimulated glu-
cose uptake at 4 different times of the 24 h cycle, ZT1, ZT7,
ZT13, and ZT19; “zeitgeber time” is commonly used in circa-
dian biology to describe different times of the light-dark cycle
in an animal vivarium, with ZTO representing the lights turn-
ing on and ZT12 representing the lights turning off for a stan-
dard 12 h/12 h light-dark cycle. Utilizing an ex vivo approach
allowed us to study skeletal muscle in isolation, and thus, inde-
pendent of other factors that might influence contractile func-
tion or glucose metabolism, such as muscle temperature, blood
flow, nerve function, humoral factors (ie, glucocorticoids, cat-
echolamines, androgens). We also studied 2 different muscles,
the EDL and soleus (SOL), which have distinctly different myosin
heavy chain compositions,* and both female and male mice,
thus allowing us to address the potential role of both muscle
fiber type and sex. Considering the literature, our hypothesis
was that intrinsic skeletal muscle contractile function, fatigabil-
ity, and contraction-stimulated glucose uptake would be higher
in the afternoon or evening, as compared to morning, regardless
of the muscle or sex studied.
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Material and Methods
Animals

All studies in female mice were conducted in C57BL/6NJ mice
(The Jackson Laboratory, stock #05304) at 13.0 + 0.1 weeks of
age. All studies in male mice were conducted in C57BL/6NJ mice
(The Jackson Laboratory, stock #05304) at 12.0 + 0.1 weeks of age.
Female mice arrived at the vivarium at 10 weeks of age and male
mice at 9 weeks of age and were housed in a conventional facil-
ity with a 12 h light/12 h dark cycle (Light: 0600 h [ZTOQ]; Dark:
1800 h [ZT12]) for 3.0 + 0.2 weeks after arrival. All animal exper-
iments were approved by and conducted in accordance with
the Animal Care Program at the University of California, San
Diego.

Experimental Groups

We undertook 3 separate studies. In Study 1, which was in
female mice, there were 4 experimental groups: ZT1, ZT7, ZT13,
and ZT19; the experimental timing is overviewed in Figure 1A.
These times during the light (ZT1 and ZT7) and dark (ZT13 and
ZT19) phases were chosen to represent “early” (ZT1 and ZT13)
and “late” (ZT7 and ZT19) timepoints within each phase. If the
experiment occurred during a dark phase timepoint, all ani-
mal handling before anesthetization was done under dim red
light. After anesthetization, muscle dissections and ex vivo test-
ing occurred under standard ambient light regardless of time
point. Because eating patterns differ by time-of-day in mice and
meal timing and carbohydrate intake impact exercise perfor-
mance,?>3%:40 in Study 1, we controlled the last meal before tis-
sue dissection.

Thus, all mice were orally gavaged with 50% dextrose (2 g/kg)
3 h before tissue dissection and were then fasted with ad
libitum access to water. Because oral gavage can be a poten-
tially confounding variable in animal studies*!, for example,
through elevated glucocorticoids, which are major entrain-
ment factors for circadian clocks in peripheral tissues,*? it
is possible that stress of the gavage could override, reset, or
otherwise mask any potential 24 h differences in contractile
parameters. To address this concern, in Study 2, the exper-
imental design was identical to Study 1, except mice were
not gavaged 3 h prior to tissue dissection; female mice were
studied, and food was removed 3 h prior to tissue dissec-
tion. Moreover, only 2 times-of-day (ZT7 and ZT19) were stud-
ied. The experimental design for Study 2 is overviewed in
Supplementary Figure S1A. In Study 2, intrinsic contractile prop-
erties, endurance capacity, and contraction-stimulated glucose
uptake were studied. In Study 3, male mice were studied at
ZT7 and ZT19, with the experimental timing overviewed in
Supplementary Figure S2A; food was removed 3 h prior to tis-
sue dissection, and there was no oral gavage. In Study 3, only
intrinsic contractile properties and endurance capacity were
studied.

Tissue Dissection

An overview of tissue dissection for Study 1 is presented
in Figure 1B, Study 2 in Supplementary Figure S1B, and
Study 3 in Supplementary Figure S2B. Fasted (3 h) mice were
weighed (nearest 0.01 g), and blood glucose (tail vein; Contour®
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blood glucose meter) was measured. Mice were then adminis-
tered an intraperitoneal injection of a pentobarbital/phenytoin-
containing solution (300 mg/kg; EUTHASOL®; Virbac, ANADA #
200-071). For Study 1 and Study 2, paired EDL and SOL were
rapidly dissected and incubated in “recovery” Krebs-Henseleit
buffer (REC-KHB; 116 mM NaCl, 4.6 mM KCl, 1.2 mmM KH,POy,
25 mM NaHCOs, 2.5 mM CaClp, 1.2 mMm MgSO,4 at room tem-
perature) for subsequent testing of contractile function and 2-
deoxyglucose (2DOG) uptake (see “Ex-vivo SOL and EDL incuba-
tion: Assessment of contractile function and 2DOG uptake” below).
For Study 3, immediately after dissection, the SOL and EDL
were transferred to a custom chamber for mechanical test-
ing only (see “Contractile function in male mice”). In Study 1,
blood was collected from the inferior vena cava into ethylene-
diaminetetraacetic acid-containing tubes, centrifuged (14 167 x
g, 20 min, 4°C), and the plasma was isolated for assessment of
fasting insulin concentration. In Studies 1 and 2, tibialis ante-
rior (TA), gastrocnemius (GA), liver and heart were dissected,
weighed, and rapidly frozen in liquid nitrogen. For Study 1,
in a separate cohort of identically treated mice, we collected
EDL and SOL for gene expression analysis, with these muscles
being rapidly frozen (liquid nitrogen) after dissection. For Study
3, only EDL and SOL were weighed. All samples were stored
at —80°C.

Study 1 and Study 2: Ex vivo EDL and SOL Incubation
and Assessment of Contractile Function and 2DOG
Uptake in Female Mice

The experimental design for muscle testing was identical for
Study 1 and Study 2 and is overviewed in Figure 1C. Imme-
diately after dissection, each EDL and SOL recovered in room
temperature (21.2 + 0.2°C) REC-KHB, with each muscle incu-
bated in a separate, oxygenated (95% O, 5% CO,) flask. After
20 min, the SOL and EDL for contraction (ie, CXN group) were
transferred to a custom chamber for mechanical testing and
assessment of glucose uptake. Thus, the muscle origin was
tied with 4-0 silk suture to a rigid post, and the insertion was
secured to the arm of a dual-mode ergometer. Then, muscles
were electrically stimulated (model S88; Astro-Med, West War-
wick, RI, USA) via parallel platinum electrodes (35 V, 0.3 ms
pulse duration) with single twitches (1 Hz) to set optimal muscle
length. After, 30 min in REC-KHB, the CXN group EDL and SOL
underwent a 2-step contraction protocol; the first step tested
the stress-frequency relationship, and the second step tested
fatigability. The stress—frequency testing was as follows: mus-
cles were stimulated (EDL: 300 ms train, 0.3 ms pulse; SOL:
400 ms train, 0.3 ms pulse) at different frequencies (1, 10, 20,
40, 60, 80, 100, and 120 Hz), with 60 s between each contrac-
tion. After assessing stress—frequency, the muscles rested for 10
min, with the total time to complete the stress-frequency test-
ing and rest being 17 min. Then, the REC-KHB was replaced with
room temperature “incubation” KHB (INC-KHB: 116 mm NacCl,
4.6 mM KCI, 1.2 mm KH,PO4, 25 mM NaHCOs, 2.5 mMm CaCl,,
1.2 mm MgS0O;4, 2 mm Na-pyruvate, 8 mM mannitol, 1 mm 2DOG,
0.1 mCi/mL [**C]-mannitol [American Radiolabeled Chemicals,
Inc.], and 1 mCi/mL [*H]-2-deoxyglucose [2DOG] [American Radi-
olabeled Chemicals, Inc.]) for the assessment of 2DOG uptake
during contraction. Thus, immediately after switching to INC-
KHB, each muscle underwent a fatiguing contraction protocol
for 15 min (EDL: 1000 ms train, 0.3 ms pulse, 100 Hz every 15 s;
SOL: 400 ms train, 0.3 ms pulse, 40 Hz every 2 s). The contralateral


https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqae035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqae035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqae035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqae035#supplementary-data

4 | Function, 2024, Vol. 00, No. 0

SOL and EDL were in the “rest” group (Rest). After a comparable
47 min of incubation in REC-KHB, the “rest” EDL and SOL were
transferred to flasks containing room temperature INC-KHB for
the assessment of basal 2DOG uptake. After 15 min in INC-KHB,
all CXN and rest muscles were rapidly blotted dry, trimmed,
weighed, frozen in liquid nitrogen, and stored (—80°C). Muscle
stresses were calculated by normalizing force in Newtons to the
physiologic cross-sectional area (PCSA) of each muscle (Stress
[kPa] = F [Newtons]/PCSA [mm?]). Cumulative fatigue was mea-
sured by assessing area under the curve (units = kPamin).

Study 3: Assessment of Contractile Function in Male
Mice

The experimental design for Study 3 is outlined in
Supplementary Figure S2C. After dissection, paired EDL
and SOL muscles were rapidly dissected and then transferred
to a custom chamber containing oxygenated Ringer’s solution
(137 mM NaCl, 5 mm KCl, 2 mMm CaCly, 24 mMm NaHCO3, 1 mm
NaH,POy4, 11 mM glucose, 1 mMm MgS0O,, and 0.01% tubocurarine
chloride [pH 7.5]) for mechanical testing. The muscle origin
was tied with 4-0 silk suture to a rigid post, and the insertion
was secured to the arm of a dual-mode ergometer. Then,
muscles were electrically stimulated (model S88; Astro-Med,
West Warwick, RI, USA) via parallel platinum electrodes (35 V,
0.3 ms pulse duration, EDL and SOL 400 ms train), with single
twitches (1 Hz) to set optimal muscle length. After finding
optimal muscle length, the muscles rested for 5 min and the
force-frequency was assessed (1, 10, 20, 40, 60, 80, 100, and
120 Hz every 60 s), followed by a 10 min rest period. After the
rest period, a fatiguing contraction protocol was conducted
(EDL: 300 ms train, 0.3 ms pulse, 40 Hz every 4 s, for 10 min;
SOL: 500 ms train, 0.3 ms pulse, 40 Hz every 4 s, for 20 min).
Muscle stresses were calculated by normalizing forces to PCSA,
as described above.

Muscle Homogenization for 2DOG Uptake Assessment
and Immunoblotting

Muscles were transferred to 1.5 mL tubes on ice containing
a 1/8 inch stainless steel bead and 500 uL of homogeniza-
tion buffer (50 mm Tris [pH 7.5], 250 mM sucrose, 1 mm EDTA,
1 mmM EGTA, 1% Triton X-100, 50 mM NaF, 1 mm Nay(PO4),, and
0.1% DTT) containing 1 M nicotinamide (MilliporeSigma #N0636),
1 mm Pefabloc SC PLUS (MilliporeSigma #11873601001), 1 mm tri-
chostatin A (Cell Signaling #9950S), Complete (MilliporeSigma
#11836170001), phosphatase inhibitor cocktail (PIC) 2 (Millipore-
Sigma #P5726), and PIC3 (MilliporeSigma #P0044). The muscles
were then homogenized (Bullet Blender, Next Advance #BT24M)
and subsequently rotated for 2 h at 4°C. The homogenate was
then centrifuged (14489 x g) for 20 min at 4°C. The super-
natant was collected and stored at —80°C for subsequent scin-
tillation counting and determination of 2DOG uptake as previ-
ously described.** Immunoblotting was conducted using the Jess
Automated Western Blot System (Protein Simple #004-650). Anti-
bodies used were phospho-AMPKe (Thr172; pAMPK [T172]) Anti-
body (Cell Signaling #2531) and eEF2 (Cell Signaling #2332).

RNA Extraction, Reverse Transcription, and Real-Time
PCR

RNA was extracted from tissues with TRIzol Reagent
(Invitrogen™ #15596026). RNA concentration and quality of RNA
were measured (NanoDrop™ 2000 spectrophotometer; Thermo

Scientific™ #ND-2000), and 500 ng of RNA was used for cDNA
synthesis (Applied Biosystems #4368814). Semi-quantitative
real-time PCR analysis was conducted using PowerUp™ SYBR™
Green Master Mix (Thermo Scientific™ #A25741). Relative
expression levels for each gene of interest were calculated with
the AACt method, using Rnl18s as the normalization control.

Primers used were Bmall (5-CACTGTCCCAGGCATTCCA-
3 FWD, 5-TTCCTCCGCGATCATTCG-3' REV),
Dbp (5'-CCTGAGGAACAGAAGGATGA-3 FWD,
5-ATCTGGTTCTCCTTGAGTCTT-3 REV), Nrld1l
(5-TGGCCTCAGGCTTCCACTATG-3 FWD, 5'-
CCGTTGCTTCTCTCTCTTGGG-3' REV), and Rn18s

(5'-GCTTAATTTGACTCAACACGGGA-3' FWD, 5'-
AGCTATCAATCTGTCAATCCTGTC-3' REV).

Plasma Insulin

Plasma insulin was analyzed using an ELISA kit, per
the manufacturer’s instructions (80-INSMS-E-01; ALPCO
Diagnostics).

Statistics

Statistical analyses were performed using Prism v10.0.2 (Graph-
Pad Software Inc., La Jolla, CA, USA). For Figures 1 and 2, data
were analyzed by either a 1- or 2-way analysis of variance or
mixed-effects model; details regarding specific statistical tests
for each figure are detailed in corresponding figure legends.
For Figure 3, statistical significance of circadian rhythmicity was
determined by a zero-amplitude test on the Cosinor.Online web
application.** All data are expressed as mean =+ SD. Significant
differences (P < .05) are marked with “#” in figures. Sample
sizes to detect a 20% difference with an a of 0.05 and a B of
80% were estimated using G«Power v3.1.9.6 and were based on
means and standard deviations from the literature for maximal
tetanic tension,* fatigability,® and contraction-stimulated glu-
cose uptake.?’

Results and Discussion

Intrinsic Skeletal Muscle Contractile Function Does Not
Vary Over a 24 h Circadian Cycle

Studies suggest that circadian variation in skeletal muscle con-
tractile function, such as anaerobic power output, concentric
force production, and maximal torque production, is due to diur-
nal variation in the intrinsic contractile properties of the skele-
tal muscle.t11%:17.48, 49 Others suggest that daily variance in
exercise capacity in mice may be due to distinct diurnal tran-
scriptomic and metabolic signatures (eg, NAD", ZMP) in skele-
tal muscle.>*>2 Certainly, the time-of-day that exercise is under-
taken has differential effects on the gene expression response
to exercise.”>3>> However, a key gap in the field is that, to
our knowledge, no studies have investigated skeletal muscle
contractile function at multiple points throughout both the
light and dark phases of the circadian cycle (ie, over a 24 h
period).

In Study 1, body mass, muscle mass (TA, SOL, and EDL), liver
and heart mass, and fasting glucose and insulin concertations
were not different across the 4 timepoints (Table 1). For both EDL
and SOL, while there was the expected effect of stimulation fre-
quency on muscle stress production, contrary to our hypothe-
sis and current thinking in the field, the stress-frequency rela-
tionship at low, moderate, or maximal stimulation frequency
was not different across a 24 h circadian cycle, in either mus-
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Figure 1. Intrinsic contractile function in 2 different skeletal muscles does not vary over a 24 h circadian cycle (Study 1). (A) Overview of the experimental timing for
the 4 experimental groups for Study 1. Mice were orally gavaged with a standardized meal of 50% dextrose (2 g/kg) and then fasted for 3 h before tissue dissection,
which occurred at zeitgeber time (ZT) 1, ZT7, ZT13, and ZT19. Vivarium lights were on at ZTO (0600 h) and were off at ZT12 (1800 h). Thus, ZT1 and ZT7 were during
the light/rest phase (yellow), while ZT13 and ZT19 were during the dark/active phase (blue). (B) Overview of the tissue dissection and collection procedure. TA, tibialis

anterior; SOL, soleus; EDL, extensor digitorum longus; GA, gastrocnemius. (C)

Overview of the ex vivo testing of intrinsic contractile function and endurance, and

basal and contraction-stimulated [*H]-2-deoxyglucose (2DOG) uptake in paired (R., Right; L., Left) SOL and EDL. KHB, Krebs-Henseleit buffer; REC-KHB, recovery KHB;
INC-KHB, incubation KHB. (D) Stress—frequency relationship in the EDL (1-120 Hz, 300 ms train, 0.3 ms pulse, 35 V; n = 6/8/6/6 for ZT1/7/13/19, respectively). (E) Maximal
tetanic stress in the EDL, extracted from the stress-frequency test (n = 6/8/6/6 for ZT1/7/13/19, respectively). (F) Stress-frequency relationship in the EDL, normalized
to maximum tetanic stress (n = 6/8/6/6 for ZT1/7/13/19, respectively). (G) Stress—frequency relationship in the SOL (1-120 Hz, 400 ms train, 0.3 ms pulse, 35V, n = 7/9/6/6
for ZT1/7/13/19, respectively). (H) Maximal tetanic stress for the SOL, extracted from the stress-frequency testing (n = 7/9/6/6 for ZT1/7/13/19, respectively). (I) Stress—
frequency relationship in the SOL, normalized to maximum tetanic stress (n = 7/9/6/6 for ZT1/7/13/19, respectively). Data were reported as mean =+ SD. Statistics: (D, E,
G, and H) Repeated measures 2-way (ToD, time of day; F, stimulation frequency) ANOVA with Geisser-Greenhouse correction. (F and I) Ordinary 1-way ANOVA. Figures
A, B, and C were created with BioRender.com (www.biorender.com), and confirmation of publication and licensing rights was obtained.

cle (EDL: Figure 1D and E, Supplementary Figure S3A-D [stress
tracings|, Table 1 [twitch parameters]|; SOL: Figure 1G and H,
Supplementary Figure S3E-H [stress tracings]|, Table 1 [twitch
parameters]). Notably, while Kahn et al.*>® did not study contrac-
tile function across a range of stimulation frequencies, our find-
ings of no difference in maximal tetanic stress in the EDL dur-
ing the light phase are in line with their maximal tetanic stress

data (personal communication with Dayanidhi S, Kahn RE, and
Lieber RL). There was also no time-of-day effect in the EDL or
SOL when expressing the stress frequency curve relative to max-
imum stress (Figure 1F and I, respectively). Additionally, contrac-
tile parameters, including peak twitch tension and time-to-peak
tension, are indistinguishable between wild-type (WT) controls
and mice with double knockout of core clock proteins, Cryl and
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Figure 2. Muscle endurance and contraction-stimulated glucose uptake do not vary over a 24 h circadian cycle (Study 1). All measurements for all panels were con-
ducted at zeitgeber time (ZT) 1, ZT7, ZT13, and ZT19, per the experimental design for Study 1. (A) Muscle stresses measured during the fatigue test for extensor
digitorum longus (EDL) (n = 5/6/6/6 for ZT1/7/13/19, respectively). (B) Cumulative fatigue during the endurance test, measured by AUC (kPa Min) for EDL (n = 5/6/6/6
for ZT1/7/13/19, respectively). (C) Muscle stresses measured during the fatigue test for soleus (SOL) (n = 6/7/6/5 for ZT1/7/13/19, respectively). (D) Cumulative fatigue
during the endurance test, measured by AUC (kPa Min), for SOL (n = 6/7/6/5 for ZT1/7/13/19, respectively). (E) 2-deoxyglucose (2DOG) uptake in rested (R) and contracted
(C) EDL (n = 5/6/6/6 for ZT1/7/13/19, respectively). (F) Contraction-stimulated glucose uptake (Contraction 2DOG uptake—Rested 2DOG uptake) in EDL (n = 5/6/6/6 for
ZT1/7/13/19, respectively). (G) 2DOG uptake in rested (R) and contracted (C) SOL (n = 6/7/6/5 for ZT1/7/13/19, respectively). (H) Contraction-stimulated glucose uptake
in SOL (n = 6/7/6/5 for ZT1/7/13/19, respectively). (I) Representative immunoblot for eEF2 and pAMPK""2 in rested (R) and contracted (C) EDL, and, (J) quantification of
PAMPK™72 in rested (R) vs. contracted (C) EDL, normalized to eEF2 (n = 3/3/3/3 for ZT1/7/13/19, respectively). Data were reported as mean + SD. Statistics: (A and C)
Repeated measures 2-way ANOVA with Geisser-Greenhouse correction, Tukey’s multiple comparisons test. (B, D, F, and H) Ordinary 1-way ANOVA with Tukey’s multiple
comparison’s test. (E, G, and J) Repeated measures 2-way ANOVA with $idak’s multiple comparison’s test. #, P < .05 for R vs. C within each zeitgeber timepoint.

Cry2 (Cry1~/=; Cry2~/~ DKO), further supporting a lack of chrono-
biological/intrinsic muscle clock effect on skeletal muscle force-
generating capacity.”’

In Study 1, to control for potential effects of food intake
on contractile function, all mice were orally gavaged with glu-
cose 3 h before tissue dissection. However, oral gavage can
be a stressful intervention in mice, and as such, it is pos-
sible that the stress of the oral gavage procedure overrides,
resets, or otherwise masks any potential 24-h differences in
contractile parameters. Addressing this possibility, Study 2 was
identical to Study 1, except mice were not orally gavaged.
Body and tissue masses and fasting glucose were not differ-
ent between mice at the 2 timepoints studied, that is, ZT7
and ZT19 (Supplementary Table S1). Significantly, in line with
our findings in Study 1, in both EDL and SOL we found no
difference in the absolute or relative stress-frequency curves
(EDL: Supplementary Figures S1C and S3I-J, and S1D, respec-
tively; SOL: Supplementary Figure S1F and S3M-N, and S1G,
respectively), twitch characteristics (Supplementary Table S1),

or maximal tetanic stress (EDL: Supplementary Figure S1E; SOL:
Supplementary Figure S1H]) between ZT7 and ZT19.

Furthermore, to address potential sex differences, in Study
3, we studied the EDL and SOL of male mice (which were
not orally gavaged); body and muscle masses and fast-
ing glucose were not different between mice at ZT7 ver-
sus ZT19 (Supplementary Table S2). Similar to our findings
in female mice, the absolute and relative stress-frequency
relationship (EDL: Supplementary Figure S2D and E, respec-
tively; SOL: Supplementary Figure S2G and H, respectively),
twitch characteristics (Supplementary Table S2), stress tracings
(EDL, Supplementary Figure S3K and S3L; SOL, Supplementary
Figure S30 and S3P), and maximal tetanic stress (Supplementary
Figure S2F [EDL] and S2I [SOL]) were not different between ZT7
and ZT19 in either muscle. Taken together, these 3 indepen-
dent studies demonstrate that the intrinsic contractile proper-
ties of skeletal muscle do not vary over the course of a 24 h cir-
cadian cycle in female or male mice, regardless of muscle type
studied.
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Figure 3. Normal circadian rhythmicity in the expression of core clock genes in skeletal muscle and liver. All measurements for all panels were conducted in extensor
digitorum longus (EDL), soleus (SOL), gastrocnemius (GA), or liver that were collected at zeitgeber time (ZT) 1, ZT7, ZT13, and ZT19, per the experimental design for
Study 1; n = 3 for all time points and tissues. mRNA expression of Bmall (A-D), Dbp (E-H), and Nr1d1 (I-L) normalized to Rn18s expression in EDL (A, E, and I), SOL (B,
F, and J), GA (C, G, and K), and liver (D, H, and L). Data were reported as mean =+ SD. Statistics: Zero amplitude test for circadian rhythmicity was reported for each
gene-tissue combination above each panel; # indicates P < .05.

Muscle Endurance Does Not Vary Over a 24 h Circadian
Cycle

Similar to the effects of time-of-day on muscle force-generating
capacity, there is a documented effect of time-of-day on
endurance exercise performance across species, including in
humans?*-58-60 and rodents.>1:>+61.62 A potential role of the cir-
cadian clock in endurance performance is further substanti-
ated by the fact that mouse models with disruption of the cir-
cadian clock (eg, Per2~/~ and Bmall~" mice) do not demon-
strate variability in exercise performance within and/or between
the light and dark phases of the circadian cycle.>1:62-5¢ Never-
theless, while some studies demonstrate that treadmill run-
ning performance in mice differs between the light and dark

phases in wild-type mice,”>% importantly, this is not a uni-
versal finding.>® While variability in these results could be
due to many factors, including the treadmill testing approach
used (eg, electrical shock or not), as well as other common
factors impacted by time-of-day, such as body temperature,
motivation to exercise, food intake, muscle glycogen content,
central nervous system arousal, and pain tolerance, intrin-
sic muscle properties have been emphasized as an underly-
ing mediator,'® although this concept has not been empirically
tested.

Thus, to specifically study intrinsic skeletal muscle
endurance over a 24 h circadian cycle, in Studies 1, 2, and
3, we conducted a fatiguing contraction protocol in the EDL
and SOL. To confirm that the muscles were not fatigued before
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Table 1. Study #1 (Females, Gavaged). Body and Tissue Masses, Fasting Glucose and Insulin, and Twitch Characteristics at Different Times-of-Day

ZT1 ZT7 ZT13 ZT19 P-value n (ZT1/7/13/19)
Body and tissue mass
Body mass (g) 26.7 £ 1.7 258 +£ 2.8 256 + 1.2 256 +£ 1.5 .9587 7/9/8/6
EDL mass (mg) 115 £ 1.5 11.0 + 2.1 12.2 £ 0.9 12.0 £ 1.2 .3432 7/9/6/6
SOL mass (mg) 113 £ 14 11.2 £ 06 11.8 £ 1.3 11.5 £ 0.7 .6616 7/9/6/6
TA mass (mg) 51.6 £ 3.0 50.3 £ 5.2 514 + 44 49.6 £ 3.4 7709 7/9/8/6
Heart mass (mg) 121.1 + 85 124.0 + 18.1 128.3 £+ 11.5 113.7 + 12.2 1995 7/9/8/6
Liver mass (g) 1.321 £ 0.148 1.198 + 0.122 1.184 + 0.174 1.167 + 0.152 .9268 7/9/8/6
Fasting glucose and insulin
Fasting glucose (mg/dL) 131 + 14 119 + 16 109 + 14 112 £ 21 4027 7/9/8/6
Fasting insulin (ng/mL) 0.85 £ 0.09 0.88 + 0.12 0.82 + 0.11 0.83 £ 0.07 .7686 4/4/4/4
Contractile function: twitch characteristics
EDL Peak twitch tension (kPa) 92.0 + 13.3 98.7 + 204 83.0 + 21.1 98.7 + 36.9 .6229 6/8/6/6
Time-to-peak tension (ms) 253 + 14 244 + 22 253 + 2.2 237 £ 2.1 .9691 6/8/6/6
SOL Peak twitch tension (kPa) 29.6 + 10.2 30.5 + 14.4 305 +73 26.0 + 5.4 .8507 7/9/6/6
Time-to-peak tension (ms) 60.0 + 4.5 55.8 + 5.4 628 + 7.1 64.3 + 16.0 .2905 7/9/6/6

Abbreviations: EDL, extensor digitorum longus; SOL, soleus; TA, tibialis anterior; ZT, zeitgeber time.
Statistics: Within each row, data were analyzed by 1-way ANOVA with Tukey’s multiple comparison’s test. Data are mean + SD.

starting the fatiguing protocol, we compared the stresses
for the first contraction of the fatigue protocol to the corre-
sponding stimulation frequency from the stress-frequency
curve. Importantly, there was no significant difference in
the stresses between these time points in the EDL or SOL
(Study 1: Supplementary Figure S4A and S4B, respectively;
Study 2: Supplementary Figure S4C and S4D, respectively;
Supplementary Figure S4E and S4F, respectively). During the
endurance protocol in Study 1 (in which mice were orally
gavaged), muscle stresses robustly decreased in response to
repeated contractions in the EDL (Figure 2A and B) and SOL
(Figure 2C and D). Significantly, however, the rate of fatigability
did not differ within the light or dark phases, or between the
light and dark phases, in either muscle. Similarly, in Study 2
(female, no gavage) and Study 3 (male, no gavage), there was no
difference in the rate of fatigability of the EDL or SOL when com-
paring ZT7 and ZT19 (EDL—Study 2: Supplementary Figure S5A
and S5B, Study 3: Supplementary Figure S6A and S6B;
SOL—Study 2: Supplementary Figure S5C and S5D, Study
3: Supplementary Figure S6C and S6D). Interestingly, these
findings, which suggest no time-of-day effect on fatigability, are
supported by the fact that intrinsic endurance of the SOL and
EDL is not different between Cry1~/~; Cry2~/~ DKO mice and WT
controls.’

As expected, pAMPK (T172) was significantly increased by
the fatiguing protocol, but there was no time-of-day variability
within the resting or contracting groups (Figure 2I and J). This
lack of an effect of time-of-day on basal or exercise-mediated
activation of pAMPK (T172) in skeletal muscle is in line with
work by others,”? but differs from findings in murine hypotha-
lamus and embryonic fibroblasts, which demonstrate circadian
oscillations in pAMPK (T172).%° In summary, contrary to our
hypothesis and current thinking in the field, intrinsic skele-
tal muscle endurance does not vary over the course of a 24-
h circadian cycle in female or male mice, regardless of muscle

type.

Contraction-Stimulated Glucose Uptake by Skeletal
Muscle Does Not Vary By Time-of-Day

To meet the energetic demands of contraction, skeletal mus-
cle glucose uptake increases over time and/or with increasing

intensity of contraction.®’~7° In addition to meeting the energetic
demands of exercise, contraction-stimulated glucose uptake is
important to glycemic control, with exercise being a corner-
stone intervention for treating or preventing clinical hyper-
glycemia.?® Nevertheless, while studies3® demonstrate time-
of-day effects of exercise training on glycemic control, we stud-
ied whether this might be due to intrinsic changes contraction-
stimulated glucose uptake by muscle. As expected, in Study
1, there was a robust effect of contraction to increase muscle
glucose uptake as compared to the contralateral rested mus-
cle in the EDL (~85% higher in CXN vs. Rest; Figure 2E) and
SOL (~59% higher in CXN vs. Rest; Figure 2G). However, there
was no time-of-day difference in 2DOG uptake when comparing
within the rested or contracted muscles. As a result, contraction-
stimulated 2DOG uptake (calculated as: CXN 2DOG uptake—Rest
2DOG uptake) was not different across the 24 h circadian cycle
in the EDL or SOL (Figure 2F and H, respectively). Notably, this
lack of difference in contraction-stimulated glucose uptake over
the 24 h period was not due to the gavage protocol in Study 1,
as contraction-stimulated glucose uptake in Study 2 (ie, no oral
gavage) was comparable when comparing ZT7 and ZT19 (EDL:
Supplementary Figure SSE and S5F; SOL: Supplementary Figure
S5G and S5H). Thus, contrary to current thinking in the field,
contraction-stimulated glucose uptake does not vary over the
course of a 24 h circadian cycle in mice, regardless of muscle

type.

Skeletal Muscle and Liver Exhibit Circadian
Rhythmicity in Gene Expression

Food intake and carbohydrate content of meals are important
contributors to exercise performance?3%7%73 and a powerful
zeitgeber for the circadian cycle.**”* Moreover, systemic glucose
or insulin (through carbohydrate intake) availability can pro-
foundly impact muscle gene expression.”> To date, to our knowl-
edge, all studies that have focused on the role of time-of-day on
exercise performance have not controlled for the potential effect
of food/carbohydrate availability, which may underlie some of
the variability in findings in the field. Addressing this, in our
study, all mice received a standardized glucose meal 3 h before
tissue dissection. Accordingly, we wanted to validate that there
was circadian rhythmicity in skeletal muscle and the liver (as an
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example of another important metabolic tissue). Thus, we mea-
sured mRNA expression levels of the core clock regulator Bmall,
and the clock output genes Dbp and Nrldl in EDL (Figure 3A,
E, and [, respectively), SOL (Figure 3B, F, and J, respectively), GA
(Figure 3C, G, and K, respectively), and liver (Figure 3D, H, and L,
respectively). In these 3 muscles and the liver, there was signifi-
cant circadian rhythmicity of the 3 genes (as measured by zero-
amplitude testing), with circadian changes in these genes being
consistent with previous studies in skeletal muscle®® and liver.”®
These data demonstrate that circadian rhythmicity, regardless
of prior food intake, is strongly entrained in skeletal muscle and
liver; this finding is in line with a recent study showing that cir-
cadian rhythmicity in the core clock genes even when subjects
were fed hourly isocaloric meals.”” It also demonstrates that the
lack of effect of time-of-day on skeletal muscle contractile func-
tion, fatigability, or contraction-stimulated glucose uptake is not
due to a lack of circadian rhythmicity in skeletal muscle or liver
gene expression.

Summary

Contrary to our hypothesis and current thinking in the field,
we found that the intrinsic contractile functionality and capac-
ity for contraction simulated glucose uptake of 2 skeletal mus-
cles with robustly different myosin heavy chain compositions
does not differ over a 24 h circadian cycle in mice. Thus, cir-
cadian variation in exercise performance and the glycemia-
reducing benefits of exercise do not appear to be due to chrono-
biological variation in intrinsic muscle function or contraction-
stimulated glucose uptake, respectively. Notably, while ex vivo
contractions are a useful approach to assess intrinsic skeletal
muscle mechanical properties, these contractions are inherently
different from those that occur in vivo during exercise. By exten-
sion, future studies may use a more physiologically relevant
experimental set-up (eg, in situ contractions) to study time-of-
effects on contractile function and contraction-stimulated glu-
cose uptake. Finally, it will be interesting in future work to fur-
ther define the underlying factor(s) (eg, body or muscle temper-
ature, meal timing, muscle glycogen, motor unit recruitment,
humoral factors, etc.) that mediate chronobiological variation
in exercise performance or how exercise modulates systemic
glycemia.
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