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A Hierarcuicar Error ControLLeD OcTrEE DaTa STRUCTURE

FOR LarRGE-ScaLE VisuaLizATION

E{ Dmitriy V. Pinskiy, Joerg Meyer, Bernd Hamann, Kenneth I. Joy, Eric Brugger and
a

rk Duchaineau
Abstract

We present an octree-based approach supporting mul-
tiresolution visualzation of large three-dimensional sci-
entific data sets. Given an irregular gridded data set, we
initially impose an octree data structure of relatively low
resolution, Le., consisting of a relatively small number of
cells, The construction of this initial octree structure is
controlled by the original data resolution and cell-specific
error values. For each cell in the initial octree structure, we
compute the average field value, and a cell-specific error
value. It is thus possible to use the octree to visualize either
the feld function value or the local error value, The octree
data structure can be refined turther in areas that are spec-
ified by a user of a visualization system: A user would
identify a region in space, i.e., an octree cell, where the field
15 of greater interest or where octree cells carry relatively
large error values. This usage of our data structure ensures
that we use the highest resolution to render only regions
of interest in a large-scale scientific data set.

Introduction

Motivation

Numerous applications in the field of medical imaging,
vector field visualization, flow simulation, and computa-
tional fluid dynamics (CFD), produce large data sets,
which cannot be rendered anymaore with today's methods
in a reasonable amount of time. Rendering a complete
data set at the highest resolution often becomes very time
consuming and unfeasible. Moreover, applying the highest
resolution to the whole data set could be wasteful if 3 user
15 interested in only one small portion of a data set. For
example, a medical researcher might be interested not in
an entire MRI data set, but only in a certain subregion.

Multiresolution Approach

A solution to the above problem is to apply different res.
olutions for different parts of a data set, First, a user spec-
ifics the main region - a portion that contains the region
of interest (ROI). The main region can be either the entire
data set or some part of it. Using a low resolurion, our
algorithm generates an octree representation of this main
region. Octrees are similar to binary trees, but octrees’
internal nodes have eight children, and each node corre-
sponds 1o a cubic region. Thus an octree represents a
method for gpace subdivision. Even when ane has to ren-
der a large main region, we render it at a low resolution to
sccelerate the visualization (Figures 1 and 2).

Certainly, low resolution does not provide a lot of detail,
but a preview rendering is often sufficient for a user o
locate the specific region of his or her interest inside the
main region; and only this specific region, which usually
is & small subregion of the whole data set, should be ren-
dered at the highest resolution (Figure 3).

Firoure 1.
Chrdgiveal data set,

FIGURE 2,
Miin regron represesfaiions
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Related Work

Ohir algorithm is based on subdividing an octree repre-
sentation of space whenever the approximation error
exceeds a certain threshold or when a user requests a fur-
ther refinement in a designated region of interest (ROI).
We start with an initial, coarse octree decomposition of a
three-dimensional (3D) bounding box of the domain of
a given volumetric data set. Initially, octree cells are split
merely based on a local approximation error estimate.
The splitting process is terminated when a maximum
number of cells is exceeded or when all cell-specific
errors are smaller than some specified error threshold,

For an error metric, we use the differences between orig-
inal data values and the constant values associated with
each octree cell. Often, one uses the term “data-depen-
dent discretization” for decompositions of space when
the goal is to closely approximate some function by a cer-
tain piecewise constant or linear function. Previous work
on data-dependent discretization techniques is covered
in [5], [6]. and [14].

Using an octree-based approximation, one generates a
data-dependent spatial decomposition that adapts very
closely to the underlying “complexity” of the field func-
tion defined by the input data. The techniques described
in [8], 9], and [10] deal with the problem of decimating
triangular surface meshes and adaptive refinement of
tetrahedral volume meshes, respectively. These two
approaches are aimed at the concentration of points in
regions of high curvatures (or high second derivatives).
This principle can be used to either eliminate points in
nearly linearly varying regions (decimation) or to insert
points in highly curved regions (refinement). The data-
dependent octree-based decomposition scheme that we
describe in this paper is based on the principle of refine-
meni: Chir algorithm inserts octree cells when the error is
large or when a user requests local refinement.

In principle, our technique is related to the idea of con-
structing a “data pyramid,” i.e., a data hierarchy of cells
with increasing precision [3]. The pyramid concept has
also been extended to the adaptive construction of tetra-
hedral meshes for scattered scalar-valued data [1]{2). 50-
called multiresolution methods have been developed for
polygonal and polyhedral approximations of surfaces,
graphs of brvanate functions, and scalar fields defined
over volumetric domains, Such approaches are described
in [4], [7]. and [11]. Our data-dependent octree method

CoONTROLLED OCTREE DATA STRUCTURE
FOR LARGE-SCALE VISUALIZATION

can be viewed as a combined automatic and user-driven
hierarchical scheme supporting the visualization of large-
scale scientific data by multiple levels of approximation.
Some of the fundamental concepts from computational
geometry we are using are discussed in depth in [13].

Data Structure lssues

Points

Suppose our data set is determined on an arbitrary irreg-
ular grid without holes inside (Figure 6), Each mesh ele-
ment (cell) has an associated data value that can be, for
example, color, density, weight, temperature, etc.

FuGuee 4.
RMS error for nuain regiors,

One of the most fundamental data structures used in our
algorithm is a set of points, Each point corresponds to a
cell of the original mesh. Each point consists of
« coordinates, which define the center of the corre-
sponding mesh element;
= data values, which are associated with this mesh ele-
ment; and
+ area, which corresponds 1o the actual area of the
mesh element (2D case), or to its volume (31 case).
In practice, it is very handy to keep the set of points as a
dynamically allocated array, and use point indices rather
than actual point coordinates.

Resolutions and Representations of Main and

We store the two numbers that define the resolutions of
the main region and the subregion. We also store two
pointers to represent the main and the $ubregh:-n. Each
region is represented by a quadtree or octree data struc-
ture in the 2D and 3D case, respectively.

e, iEP o fcrossroadh
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Quadtree and Octree as a Representation of a Region
The trees are designed in such a way that each leaf corre-
sponds to a different subregion. The union of these suib-
regions covers the entire region. We display the region by
drawing and coloring the bounding boxes of each leaf
with average function value F calculated by the formula:

N - ok
p=Na"h
2

where A is the area or volume of the bounding box of
the node, a subscribe i is the area or volume associated
with the i-th point, and [ subscribe i is the function value
associated with the i-th point.

Error

Concerning the averaging of function values, we assume
that a mesh cell belongs to a quadrant or octant if the
center of the mesh cell is inside the bounding box. We
can neglect the resulting error due to the following argu-
ment: Since we are working with large data sets, we are
concerned with large numbers of mesh cells. Having this
in mind, and assuming that the area or volume of the
whole data sct is some constant, we can assume that the
area or volume of a single cell is relatively small. Tt makes
little difference whether one considers a cell that lies only
partially inside a box as lying entirely inside or outside.
Therefore, the area or volume of the bounding box can
be approximated by the sum of the areas/volumes stored
as part of the points of the leaf.

However, there 15 a second error measure, which we
determine. Many points of the function values of the
original may dramatically differ from the average. We
compute two errors for the bounding box, the root mean
square (RMS) error and the maximum error [MAX):
where F is the average of all function values associated
with the box.

- FY
Eml' .I""T

By =max(] £ -F[)

To visualize the error of an approximation, we use gray-
scale shading. White corresponds to zero error, and black
corresponds to the highest error (Figures 4 and 5).

FIGURE 5,
BMS error for main and subregions,

FiGURE &,
Examiple of an trregular grid,

T reduce the error we decrease the number of points per
box, making the boxes smaller. A smaller region repre-
sented in the octree corresponds to smaller boxes of the
octree's leaves. Thus, when a user specifies a relatively
small region in the original volume, a high detail image
results. To improve the quality of the resulting image
without decreasing the area of the region, we need to
increase the depth of the octree. Increasing the number
of subdivisions (constructing a deeper tree) corresponds
to increasing the resolution in the image. Provided that a
region is small enoogh so that it contains at most one
point, ideally we have zero error.

Although the error calculation might look like a very
time-consuming operation, it 15 necessary to do it. The
use of the error function can speed up the whole algo-
rithm. In a near constant-value region, the error will be
smaller than some tolerance e. In this case usually only a
small number of subdivisions is needed. In other words,
we can stop subdividing such a region before we reach
the maximally allowed depth of the tree.

Soring 2000
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To miake use of our data structure, we initialize the set of
points in our data structure from an input data set and
build the main octree that corresponds to the main
region. The depth of the main tree corresponds o the
resolution of the main region. Typically, the depth of this
main tree is very low since we do not want to represent
the main region in great detail, Both initializing the set of
points and computation of the main octree structure are
straightforward (Figure 7). After constructing the main
tree, we can display the main region at low resolution,
and the user can select a subregion (ROI),

NW MNE

_.f"r
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Fioume 7,

Mair regron and corresponding quadiree (2D case).

SW SE

We then construct a tree that comresponds to the selected
subregion. To do this efficiently we take advantage of the
fact that the points are already sorted in the main tree,
Having this in mind and using the main tree as a search tree,
wee can easily find a node A whose bounding box contains
our subregion. Thus, to build the sub-octree, we do not con-
sider all the points, as we did for building the main tree, but
only those points that are inside the bounding box of node
A. This allows us to process a smaller number of points and
speed up the algorithm { Figure 8).

FiGuRe 8,
Sulrregion inside main region not ichuding center of main region,

Naote: To build an octree for & subregion we consider anly points of
the 5W branch of the main tree root, and we do not consider the por-
tion of the textared points.

FOR LARGE-S5cALE VISUALIZATION

However, if the subregion is near the center, the node
whose bounding box contains the whole subregion
might be only the root. That makes it necessary to re-
process all points again tor building the sub-tree. There
are several options to deal with this problem.

First of all, if we know beforehand that the ROI is located
closed to the center of the scene, we can subdivide the
space at an uneven ratio {for example 1/3 or 2/3) when
we construct the main tree (Figure 9). Besides this, even
if node A happens to be the root, we can traverse down
from node A towards the leaves and purge points outside
the subregion by ignoring all branches and leaves whose
bounding boxes do not touch the ROT (Figure 10).

i3

FiGune 9.
Sulbmegion inside main region tncluding center of main region.

(Mote Space was subdivided at an uneven ratio, and, therefore, 1o
build an octree for the sub region, we comsider only points of the SW
branch of the main tree oot and do pot consider the points the
within textured beaxes. )

Froure 10,
Suclrregiont fristele the sevain regrove inclucding center of main regio

[ 2iste: Tin baidled an octree for a subregion we consider enly points of
the BW-5E, HE-5W, 5W-HME, and SE-WW branches of the main tree
1ol amd wee do o conssder pn'inuw’d.l'l.lﬂ thic textured boxes, }
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Implementotion and Results
Tree data structure
Eﬂd1 node of the tree consists of the following fields:
a pointer to the parent node;
# ﬂ:gslﬂ-mdltab: whether a node 15 a nonempty leaf,
an empty leaf, or a branch; and
* coordinates of the bounding box that contains all
points associated with the node.

Mote that the root has a bounding box that includes all
points of the region, while leaves have the smallest
bounding boxes in the tree.

When a node is a branch, it also has fields such as a
pointer to the North-West front node, a pointer 1o the
South-East rear node, etc. In case of a non-empty leaf,
the node includes the set of those points {actually a set of
indices to points) that belong to the leaf. In case of an
empty leaf, it is sufficient for the node o have only the
three basic fields. To visualize an octree, we can simply
draw wire frames of bounding bowes of the octree nodes.

Calculating Errors

Let us consider the data set that is shown in Figure 1, a
slice through a 31 data set. Each point of this data set has
an associated RGB color value. To calculate the maxi-
mum error for an RGB value, we calculate the maximum
error for the red, green, and blue color components and
then choose the maximum of these three errors.

To calculate the RMS error, we use the following formula:
Error={Error! Unknown switch argument. di / N)1/2,
where di is the distance between a “point” (ri, gi, bi)
and the “average point” (R, G, B), and N is the total
number of points. The values of R, G, and B are the
components of the average color of the leaf; the values
of ri, gi, and bi are the components of the color associ-
ated with the i-th point of the leaf. Thus, the above for-
mula shows how much the RGB value of the i-th point
varies from the average.

Tres [}qj'lh and Error

Increasing the depth of the tree decreases the error
Considering the data set shown in Figure 1, these are
our results: A main tree depth of two leads to an aver-
age vilue of the BMS errors of 140, and the depth of
four leads to an RMS error of 59. Thus, increasing the
depth by factor of two, we decrease the RMS error more
than twice.

Concerning Figure 3, a sub-tree of depth two corre-
sponds to an RMS error of 132, and a depth of four cor-
responds to 66. These results seem surprising. When
bath trees have the same depth (four), the RMS error of
the representation of the small subregion is greater than
the error of the representation of the main region, Figure
3 might create the impression that one perceives a subre-
gion in greater detail. We note that the far South and the
far North parts of the main region are completely white.
As a result, we have an extremely good approximation. In
the subregion, we do not have such constant-colored
spots, and the RMS error is high. However, the maxi-
mum error in the subregion is slightly lower than in the
main region. (For example, for a depth of four, we obtain
a maximum error of 210 for the subregion representa-
tion and 225 for the main region representation.)

Conclusion and Future Work

Qur method allows a user to define an ROI in a 2Dy3D
data set, which will be rendered at the highest resolution,
while the rest of the data set, or some part of it, will be
rendered at a lower resolution. The method can be used
to navigate within the data set, so that the current region
of interest is always displayed at a higher resolution than
the rest. Therefore, it provides a flexible interface, which
allows arbitrary positioning of the ROT in 2D/3D space
|12]. The underlying data structure of our algorithm is a
tree (quadtree for the 2D case and octree for the 3D
case). Setting specific resolution and allowed error toler-
ance, we prevent the tree structure from growing exces-
sively in depth.

Since the main region would be relatively large and we are
using a low resolution to visualize it, we can assume that
each leaf contains at least one point. We also can assume
that the error is greater than the tolerance ¢ because oth-
erwise a user should be satisfied with the quality of the
main region, and there would be no reason for having a
suhﬁgi-un. The additional overhead for allocating and
storing the pointers suggests considering a hashing
method as an alternative for the main region representa-
tion. If we were to use this approach, each square or cube
would take less memory than a leaf, since we would not
allocate memory for pointers to parents, flags, or a
bounding box. Using hashing, we would associate a two-
number index with each square or a three-number index
with each cube. Knowing the indices and the size of the
squares or cubes, we would calculate all necessary infor-
mition to construct the tree for the subregion, This tech-

Spring 2000
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nique would help to accelerate the algorithm even more
and contribute to saving time and memory.
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