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For me, because wow-I-actually-did-it, even through all the anxiety and depression and my

brain screaming at me that I am a garbage grad student, and even though writing feels like

pulling teeth.

Also for Mania, Bastet, Isis/Charlie, and Anubis, for all the ways you make my life better

and richer.

Oh, and for anyone who needs to hear this: kids, do not repeat my mistakes. Start writing

your dissertation in like, your second year.
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Preface

I have read exactly one dissertation which had a preface, and part of me wonders if the

decision to tack one on is the result of a need to overshare. But this has been a long

endeavour that often seemed impossible, and oversharing or not, I cannot shake the feeling

that using this space to provide more context about this work will serve to make it more

than the sum of its parts.

I loved being a graduate student (the stress and the mental health issues not withstand-

ing), so much so that, if I could simply continue working with Ajay and Justin, I would

gladly do so. And I think it has largely to do with how they supported me in exactly the

ways I needed and let me chart the path of my PhD. Of course, that resulted in this 100+

page work which, to many, may seem like something without a coherent thread or narrative

structure. After all, what do bacteria, human babies and predator-prey systems have in

common, right? I think I do a decent of job of providing a technical justification of why

this work serves as a cohesive PhD dissertation, but this is where I want to tell you exactly

what this means to me and what I see when I look at it.

I have broad interests, as far as my scientific inclinations go: I am just as curious about

the dynamics of ecological communities as I am about the way growing up in a multi-lingual

household shapes a child’s language learning or about the elements that make you want to

keep reading a book at 3 am, eyes drooping in exhaustion. And so, over the course of

my PhD, I kept collecting projects, and somehow, magically, miraculously, both Ajay and

Justin were on-board with my hodge-podge approach to doing a PhD. They did ask me

every now and then what the overarching story was, but they also helped me tease it out

as I panicked because I did not have an answer other than this seemed cool and I wanted to

do it.

Now, after nearly six years of dodging that question, I can see it so clearly, how it all fits

together. This dissertation is about how organisms forage for resources and how the way
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they interact with each other and their environment while going about it shapes the search

process. It may seem like a tenuous thread, but this work presents manifestations of one

of the most pervasive processes in the world in three wildly different systems, and I cannot

help but marvel at how the answer to what was the most terrifying question of my PhD

was so deceptively, beautifully–even mundanely–simple. It is all about something that is a

forgone conclusion in a world filled with so many things, living and otherwise: organisms

interact with each other and (incredible) things happen because of that, and I get to study

those things in the context of foraging and tease out the connections.

Looking back, I can think of this as nothing but a work of sheer joy, even though I

remember the many, many bad mental health days with excruciating clarity. But I think

that’s the point, that the wonderful aspects shine bright enough to obscure the not-so-

wonderful ones. And so, I think this is how I would like this whole doing research thing to

go, a random walk in the space of all the curiosity-piquing questions, and I get to work on

what I find. Being able to do it this way so far has been a wonderfully liberating experience,

and after all, following your curiosity is what being a scientist is really about, right?

But, enough with the rambling. I do feel like I have gotten my point across, albeit

circuitously. I’ll leave you with this: I feel like I might have done a shoddy job of putting

this dissertation together, but I am (somehow) also incredibly proud of what I have been

able to do here, and I am enormously grateful to the people (and especially Ajay and Justin)

who made it possible. I hope you like this dissertation at least a fraction of how much I like

it, and that you are able to see the subtle, unifying thread that brings it all together.
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Abstract

While foraging phenomena have historically been a focus of ecology, they can be described

as search processes carried out by one or multiple agents in a landscape characterised by

a resource distribution. As a result, tools from statistical physics can be used to study

foraging phenomena. The integration of statistical physics as a set of tools to both describe

patterns observed in foraging processes and understand the underlying mechanisms that

give rise to these patterns has enabled the development of robust theory as well as the

expansion of the scope of foraging to include applications in intracellular processes, human

cognitive behaviour, and even robotics.

Treating foraging processes as undertakings by a single foraging agent in a resource

environment has laid the foundation for a significant amount of our understanding of forag-

ing. However, these approaches fail to capture the complexities of real foraging phenomena

which arise from the fact that foraging agents do not exist independent of their environ-

ment. The logical first order step to rectify this is to consider foraging processes carried out

by multiple interacting agents. This dissertation describes complex, emergent phenomena

in three different systems resulting from interactions between multiple foraging agents.

First, I present a minimal, one-dimensional analytical model that describes emergent

pattern formation in a community of phototactic bacteria moving towards a directional light

source. During phototaxis—essentially, foraging for light—interactions between individual

bacteria result in emergent community-level spatial organisation, leading to the formation

of finger-like projections at the propagating front. We developed a one-dimensional ana-

lytical model which describes the dynamics of this pattern formation and predicts critical

parameters that limit finger formation. This model also predicts the loss of instabilities in

mutant phenotypes lacking a key photoreceptor.
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Second, I present a framework to use foraging theory to investigate the dynamics of vo-

cal interactions between human infants and their adult caregivers 2. By analysing day-long

recordings of infant and caregiver vocalisations in naturalistic settings over the infants’ first

year, we demonstrated support for the hypothesis that infants and their adult caregivers

are foraging in an acoustic space for sounds that have social value. Our findings also pro-

vide evidence that vocal interactions between infants and caregivers modify these foraging

patterns.

Finally, I present a computational model to study the diversity of foraging strategies

employed by terrestrial carnivore predators. Mammalian carnivores’ foraging strategies in-

clude hunting, scavenging, and kleptoparasitism (stealing). However, despite the prevalence

of literature on predator-prey systems, the factors that result in the deployment of these

strategies and their effects on predator-prey systems are not well understood. In this study,

we use an energetics approach to investigate how a focal predator’s interactions with poten-

tial prey and other predators constrain the use of these strategies. Our results predict the

dependence of predator foraging strategy on predator energetics as well as the body sizes

of the focal predator, prey, and potential competitors. In particular, our predictions for the

boundaries between hunting and alternative foraging strategies (scavenging and stealing)

show remarkable agreement with observational data. By employing dimensional reduction,

we are also able to accurately describe the phase transition from a state where the focal

predator relies predominantly on hunting to a state where the focal predator largely relies

on scavenging and stealing.

2This chapter is a reproduction of [1]
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Chapter 1

Introduction

We are almost always searching for something, and not just in the more philosophical sense

of searching-for-happiness or searching-for-the-meaning-of-life. We search for food, clothes,

and a number of other things in stores (or increasingly, on Amazon.com); we search for

that one gas station where gas prices are lower than every other gas station in town; and

with the internet at our disposal, we are almost constantly searching for information. And

before, for a long time in our history, we were searching for food and for shelter from the

elements on foot. Suffice it to say, search processes have been—and still are—an integral

part of how we go about our lives.

More importantly, search processes that are not carried out by us shape our lives and the

world around us in very significant ways. About 75% of global agriculture crop, to different

degrees, depend on animal pollination, which is usually a consequence of pollinators foraging

and reaching inside flowers for nectar [2,3]. Insectivores such as bats, lizards, and frogs help

control pests as a direct consequence of their search for food [4]. Even inside our bodies, vital

cellular functions such as DNA transcription and repair depend on DNA-binding proteins’

search for specific target sites [5].

Naturally, search processes—especially those that occur in the natural world—have en-

joyed enduring scientific interest, and are formally referred to as foraging processes. His-

torically, foraging has been defined as the collection of processes that organisms engage in

to obtain the resources necessary for survival and/or reproduction [6]. Naturally, foraging

studies predominantly fall (or more accurately, fell) within the purview of ecology. How-

ever, in its most bare-bones form, foraging is simply a search process carried out by one or

multiple agents in some landscape characterised by a resource distribution, and hence, can

1
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be modelled as a random search [7].

Biologists have long recognised the utility of statistical physics as a tool to analyse the

patterns in the search processes of organisms. However, the integration of physics as a

theoretical framework capable of contributing to the understanding of foraging processes

is more recent [8]. Arguably, the seminal work in this context is reported in a 1996 paper

by Viswanathan et al. [9] where the authors found that the probability distribution of the

flight times of the wandering albatross (Diomedea exulans) followed a heavy-tailed power

law distribution. This kind of search pattern is known as a Lévy flight, and has been shown

to be an optimal foraging strategy when resources are sparsely distributed [7, 10,11].

Over time, the scope of foraging studies has expanded beyond (macro)ecology, to in-

clude foraging processes of microorganisms [12] and beyond. It is now known that foraging

phenomena are found in human cognitive behaviour [13–15], online social networks [16],

information spaces [7, 17], etc. Our understanding of physics has played an important

role in this expansion, by identifying patterns arising in foraging processes and building a

generalised theoretical framework to understand these patterns [7, 8, 15].

As mentioned previously, foraging processes may be carried out by one or more agents

in search of a resource. For example, solitary predators such as tigers (Panthera tigris) [18]

and leopards (Panthera pardus) [19] hunt by themselves. Other examples of solitary foragers

include the eastern carpenter bee (Xyloeopa virginiea) [20], the northern pike (Esox lucius)

[21], white-tailed trogon (Trogon viridis) [22], etc. Group foraging, on the other hand,

involves multiple agents collectively—and often collaboratively—searching for resources [23].

The relatively simple case of individual foragers searching for resources has been used

to develop optimal foraging theory (OFT), which posits that some currency is optimised

during foraging. This currency can be the rate of energy intake by the forager, the total

energy intake by the forager, or the forager’s lifetime reproductive success [24–26]. Since

its introduction in 1966, OFT has received strong support as well as vehement criticism,

and in general, has only been successful in adequately describing simple realisations of the

foraging process [27,28].

The shortcomings of OFT can (perhaps) be best summarised thus: organisms do not

exist independent of each other, and a realistic understanding of complex phenomena like

foraging requires taking several complicating factors into account [28–30]. One such com-

plicating factor is the fact that often, foraging processes are undertaken by more than one

foraging agent.
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Sometimes, this takes the form of organisms foraging collaboratively in groups, since

the interactions facilitated by virtue of working together are often helpful in increasing the

average rate of resource consumption [31, 32]. Often, the splitting of foraging costs and

benefits between agents in a group foraging context confers a collective advantage to the

group that individual foragers cannot achieve. To put it simply, when organisms forage in

groups, “the food discoveries of a few can lead to the feeding of many” [33]. In other cases,

multi-agent foraging simply amounts to more than one agent foraging—and competing—

for the same (often finite) resource. For example, lions (Panthera leo) and spotted hyenas

(Crocuta crocuta) show significant overlap in their prey preferences [34]. When multiple

agents engage in foraging, collaboratively or otherwise, they may interact directly [35, 36]

or indirectly (eg. by modifying the target resource distribution) [37] with each other. These

interactions give rise to complex behaviours which lead to optimal group sizes, the emergence

of scroungers who steal resources from other foragers, temporal and spatial patterns in the

distributions and behaviours of the foragers and the target resource, etc. [31, 33,38–40].

Equally important to consider is the resource environment the agents are foraging in:

the distribution, abundance, and accessibility of the target resource play an important role

in shaping foraging patterns. For example, Lévy flights have been shown to be optimal

foraging strategies for sparse resource distributions that have no limitations on the number

of times a site can be visited by a forager [10]. On the other hand, foragers in resource-dense

regions tend to use smaller steps and paths with large tortuosities (or twistedness) [41].

In this text, I present my work on interactive multi-agent foraging phenomena in three

systems: phototactic bacterial communities, human infants learning language, and predator-

prey systems with multiple predator foraging strategies. While these may seem disparate,

the work presented here is linked by the perspective of how interactions between multiple

foraging agents and their resource environment modify foraging phenomena across different

scales. More importantly, this dissertation is a demonstration of both the diversity of

foraging phenomena and the versatility of using tools from physics in understanding them.

In Chapter 2, we investigate collective foraging and dynamic pattern formation in com-

munities of phototactic cyanobacteria. Synechocystis sp. PCC6803 is a photosynthetic,

photactic freshwater cyanobacterium that moves directionally in response to a light source

by gliding [42]. During phototaxis—which, in the case of phototactic bacteria, amounts

to foraging for a nutritional source—interactions between individual bacteria result in the

aggregation of bacteria in a thin, dense strip at the propagating front followed by emergent
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spatial organisation in the form of finger-like projections [39]. We propose a one-dimensional

analytical model which describes the dynamics of finger formation, predicts critical param-

eters that limit finger formation and predicts the observed loss of instabilities in taxD1 mu-

tants, which lack an important photoreceptor. Predictions from this minimal, analytically

solvable one-dimensional model can be tested against results from existing 2-dimensional

computational models [39], as well as experimental data obtained from phototaxis assays.

In Chapter 3, we leverage our understanding of foraging theory to frame vocal inter-

actions between human infants and their adult caregivers as a foraging process [1]. Vocal

learning observed in human infancy results from a combination of social rewards, imitation

of adult speech, and exploratory processes [43–49]. We investigated the hypothesis that

infants and adult caregivers are foraging in an acoustic space for sounds that have social

value, using day-long recordings of vocalisations in a naturalistic setting over the infants’

first year. Our findings are consistent with the hypothesis that infants forage vocally for so-

cial input and that vocal interactions between infants and caregivers modify these foraging

patterns. This study is a novel application of foraging theory to characterise infant-caregiver

vocal interactions by assessing vocal exploration in terms of patterns of movement in an

acoustic space, which will allow this domain of behaviour to be compared to other foraging

behaviours.

In Chapter 4, we build a computational model to understand how a focal predator’s

interactions with prey and other predators result in different predator foraging strategies.

The foraging behaviours that organisms employ can be diverse and have tangible ener-

getic costs. In the case of mammalian carnivores (predators) searching for food, these

behaviours include hunting, scavenging, and stealing (kleptoparasitism). While there is a

wealth of literature—both theoretical and observational—on predator-prey systems, they

largely focus on hunting and its consequences, and our understanding of scavenging and

kleptiparasitism is sorely lacking. We investigate how pairwise interactions between a focal

predator, prey, and potential competitors result in the deployment of different predator for-

aging strategies. Dimensional reduction of our results reveal a behavioural switch—a phase

transition, if you will—between hunting and alternative modes of predation (scavenging

and stealing) as a function of prey mass. In addition, these results show remarkable agree-

ment with observational data, and in particular, predict the boundaries between foraging

strategies exceptionally well.

Finally, in Chapter 5, I summarise this work and present conclusions.



Chapter 2

A One-Dimensional Model for the

Initiation of Fingering Instabilities

During Cyanobacterial Phototaxis

2.1 Introduction

Phototaxis is movement in response to light. A number of organisms across taxa are known

to be phototacic, including zooplankton, cyanobacteria, jellyfish, and insects [42, 50–52].

When the organism in question moves towards the light source, the movement is called

positive phototaxis, while movement away from the light source is called negative phototaxis.

This work focuses on the cyanobacterium Synechocystis strain PCC 6803 (referred to as

Synechocystis henceforth), which is a well-studied photosynthetic and phototactic cyanobac-

terium [42]. Synechocystis is a unicellular cyanobacterium found in freshwater sources [53].

It can undergo phototrophic growth through photosynthesis in the presence of light as well

as heterotrophic growth through glycolysis and oxidative phosphorylation in the absence of

light [54,55].

These cyanobacteria secrete an extracellular polymeric substance (EPS) which enhances

the mobility of the bacteria. Thus, by secreting EPS, individual bacteria are able to not

only enhance their own motility but also that of other bacteria in the vicinity, resulting in

interactions between bacteria [39]. These interactions between individual bacteria result in

emergent pattern formation in communities of Synechocystis during positive phototaxis [39].

5
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This pattern formation can be best described as finger-like projections that emerge from

an initially flat propagating bacterial front (Fig. 2.1). In a typical phototaxis assay, cells

spotted onto a moist, low concentration agarose surface are placed in a directional light

source, and the finger-like formations emerge after about a day of the system evolving

[39,56].

Figure 2.1: Finger-like projections emerge from an initially homogenous drop of
Synechocystis cells during the course of phototactic motion. The light source is
placed above the bacterial drop as shown, and the fingers move towards the light source.
Images from [39,56]

This pattern formation is the result of complex signal transduction pathways which

involves detecting the directional light source and local EPS concentrations, and transducing

them into appropriate motility responses [57, 58]. Several components underpinning this

motility response have been identified using genetic and molecular analysis [59–62]. In

particular, it is now known that Type IV pili (TFP) and TaxD1, a cyanobacteriochrome

photoreceptor, play important roles in mediating the observed community behaviour in

Synechocystis in response to a directional light source [56, 59, 63, 64]. TFP is necessary

for motion on a surface and adhesion, and mutants that lack TFP are completely non-

motile [63]. TaxD1 promotes positive phototaxis and inhibits sideways motion (motion
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perpendicular to the direction of the light source) [59, 64]. In fact, mutants with TaxD1

knocked off show increased sideways motion as well as negative phototaxis, in addition to

exhibiting a loss of finger formation, indicating that while TaxD1 is necessary for phototaxis,

there may be other photoreceptors involved in mediating the phototactic response [56,59,64].

In light of the complexity of the underlying mechanism of emergent pattern formation

in this system, biophysical models can shed light on mechanistic aspects of of this phe-

nomena. Previous work has resulted in a two-dimensional computational model based on

experimental observations, and successfully reproduces the finger formation [39]. However,

this model is not analytically solvable, and only numerical solutions exist which limits its

predictive ability.

In this work, we build a minimal, analytically solvable one-dimensional model to describe

this phenomenon. This is possible because over the course of the phototactic response, the

bacteria aggregate in a high-density band at the leading edge, enabling a one-dimensional

approximation of the system.

2.2 Theory

2.2.1 A one-dimensional theory for the initiation of fingering instabilities

during phototaxis

Since we are interested in the fingering transition of the inoculation boundary due to pho-

totaxis, we model the height of the migrating front at time t relative to a flat surface as

a one-dimensional curve h(s, t), where s represents length along the contour, with cellular

concentration c(s, t) along the front. The curve begins as a horiztonal line at t = 0. When

fluctuations transform the shape of the front away from being flat, the flux of cells along

the front has contributions from the phototactic bias and from random diffusion:

J = Ds

(
fsinθc− ∂c

∂s

)
(2.1)

where f is an effective force representing the phototactic bias, Ds is the diffusion constant

along h, and θ is the angle between the horizontal and the tangent to the curve at s. We

assume the phototactic force to always be directed perpendicular to the initial shape of the

front. In addition, we assume that θ is small, such that sinθ = ∂h/∂s.



CHAPTER 2. FINGERING DYNAMICS IN BACTERIAL PHOTOTAXIS 8

Assuming no gain or loss in cell density,

∂c

∂t
= −∇J =

∂

∂s

(
Ds

∂c

∂s
−Dsf

∂h

∂s
c

)
(2.2)

We consider short times such that h displays only small deviations from flatness and

assume that all displacements are normal to the interface, giving

∂h

∂t
= f Dp +

σ

η
d∇2h (2.3)

where Dp is the diffusion constant perpendicular to the interface and is not necessarily

equivalent to Ds (for instance due to heterogeneous distribution of TFP across the cell

surface) and d is the thickness of the EPS layer. In Eq. 2.3, we have ignored a factor of

cosθ in the first term based on our assumption of small θ. In the second term, σ∇2h is the

force resulting from the surface tension of the EPS interface, producing an interface velocity

according to the effective drag η.

To model the density-dependent production of EPS, we assume Ds and Dp are pro-

portional to the local cell density c, equivalent to assuming that the EPS concentration

equilibrates very quickly compared to cellular movement:

Ds = α c = β Dp (2.4)

From Eqs. 2.3 and 2.4, we arrive at

∂h

∂t
= f̄ c+ σ̄ ∇2h (2.5)

where f̄ = f α/β and σ̄ = σd/η. Solving for c,

c = f̄−1

(
∂h

∂t
− σ̄ ∇2h

)
(2.6)

Substituting Eq. 2.6 into Eq. 2.2,

∂2h

∂t2
− σ̄

∂3h

∂t∂s2
= − ∂

∂s

(
β
∂h

∂s
Γ2 − α

f̄
Γ
∂Γ

∂s

)
(2.7)

where Γ = ∂h/∂t − σ̄ ∂2h/∂s2. For uniform initial conditions, ∂h/∂s = 0, yielding

h = v0t, where v0 = f̄ c0 with c0 as the initial uniform concentration.
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2.2.2 Linear stability analysis of fingering instabilities

To determine the onset of instabilities, one can perform a linear stability analysis around

the uniform solution as

hp(s, t) = v0t+ ϵĥ(s, t) (2.8)

Substituting this expression into Eq. 2.7 and retaining terms linear in ϵ yields

∂2ĥ

∂t2
− σ̄

∂3ĥ

∂t∂s2
=

−∂2

∂s2

(
β v20 ĥ− α

f̄
v0Γ̂

)
(2.9)

where Γ̂ = ∂ĥ/∂t − σ̄ ∂2ĥ/∂s2. Substituting solutions of the form ĥ ∼ eλteiks into Eq.

2.9, we obtain a quadratic equation for λ:

λ2 + λ
(
σ̄ +D0

)
k2 +D0 σ̄ k4 − f2 D2

0k
2

β
= 0 (2.10)

using D0 = α c0 and β v20 = f2 D2
0/β. Solving for λ gives

λ =
k2
(
D0 + σ̄

)
2

[
−1±

√
1 + γ

(
k2c
k2

− 1

)]
(2.11)

where k2c = f2D0/(βσ̄) and γ = 4D0σ̄
(
D0 + σ̄

)−2
. Note that the determinant is always

positive (the maximum value of γ is 1), and hence λ is always real. For a detailed derivation

of Eq. 2.11, see Section A.1.

The dependence of λ on k is non-monotonic (see Fig. 2.3a): the growth rates of unstable

modes increase from λ → 0 when k → 0, till it attains a maximum value, λmax, correspond-

ing to the fastest growing unstable wavelength, characterised by its wave number kmax.

The wavelength corresponding to kmax is the wavelength of the dominant instability in the

system, provided that instabilities have not merged together (Fig. 2.2a). To determine

kmax, we set ∂λ/∂k = 0 and obtain, after some algebra (see Section A.2),

kmax = kc
(
2
(
1 + γ−0.5

))−0.5
(2.12)

Some more algebra (see A.2) provides a simplified expression for kmax in terms of fewer

derived quantities:

kmax =
fD

3/4
0

σ̄1/4
√
β
(√

D0 +
√
σ̄
) (2.13)
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By setting k = kmax in 2.11, we can also derive an expression for the growth rate of the

fastest growing mode, λmax (for a detailed derivation, see Section A.2):

λmax =
f2D2

0

β
(√

D0 +
√
σ̄
)2 (2.14)

The growth rate of modes greater than kmax decreases till it falls to 0, corresponding

to the critical wave number, kc. That is, as k → kc, λ → 0. Alternatively, all modes with

k > kc decay instead of growing, and hence, do not contribute to finger formation. This

critical wave number value, as described earlier in this chapter, is given by

kc = f

√
D0

σ̄β
(2.15)

Finally, we note that the formation of observable fingers is limited by the physical

dimension of the system, L. To observe an unstable mode requires that the system size, L,

be larger than the shortest unstable mode, i.e. kc > 2π/L. This imposes a lower limit on

the phototactic bias for (observable) finger formation (see Fig. 2.2b) such that

f >
2π

L

√
βσ̄

D0
≡ fc
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Figure 2.2: Explanatory schematics for wavelengths associated with the fastest
growing mode, kmax and critical mode, kc. (a) The fastest growing mode, kmax is
associated with the wavelength (or the distance between) the dominant fingers in the system,
provided multiple fingers have not merged together. (b) shows how the system size limits
pattern formation in the. Low kc values (red curve) correspond to large wavelengths. If
this wavelength is larger than the system size L, finger formation cannot be observed. High
kc values (blue curve) correspond to small wavelengths. As a result, finger formation will
be observable for a larger range of system sizes (image in (a) from [56]).

2.2.3 Alternative cases

In the analysis above, with Ds, Dp ∝ c, we found that the condition for instability was

k2 < k2c (Eq. 2.15). Several other scenarios can be readily studied with small modifications;

in each case Eq. 2.12 for kmax remains the same, while the definition of γ changes. If we

ignore the cell density dependence ofDs, focusing only on cell density/EPS effects for motion

out of the inoculation (which is primarily dictated by Dp), γ becomes 4Dsσ̄/(σ̄ + Ds)
2.

Instabilities are still possible, but emerge below a critical wave vector k2 < k2cDs/D0 as

long as the system size is above 2π
f

√
σ̄β
Ds

.

In the trivial case in which both Ds and Dp are constants independent of cell density,

no instabilities can occur: Eq. 2.11 becomes λ = −k2σ/η, which is always negative and

hence no unstable modes exist.
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Figure 2.3: A summary of (testable) predictions from the one-dimensional model.
(a) The growth rate of instabilities, λ, as a function of the wave number, k, is shown. This
functional form was computed by estimating the surface tension of EPS, σ ∼ 0.010.06
N/m [65–67], and the viscosity of EPS, η ∼ 10-300 mN s/m2 [68, 69]. D0, d, and f were
estimated from [39]. Exact values used are shown in the textbox on the top right. kc, kmax,
and λmax for these parameter values are indicated. (b-d) The dependence of the critical
mode, kc, on the bias force, f , the initial perpendicular diffusion constant, D0, as well as
the ratio of the strength of sideways diffusion and perpendicular diffusion, β are shown.
(e-g) The dependence of the fastest growing mode, kmax, on f , D0, and β are shown. (h-j)
The dependence of the growth rate of the fastest growing mode, λmax, on f , D0, and β are
shown. For (b-j), all parameter values are the same as for (a) except the parameter being
varied.
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2.2.4 Testable predictions

Equations 2.13–2.15 summarise three key variables which can be used to characterise the

system. kmax is the wave number associated with the fastest growing instability mode,

which provides an estimate for the wavelength of the dominant finger (Fig. 2.2a), while λmax

provides an estimate for how fast this instability grows. Together, these two quantities set an

upper limit for the size of the finger-like projections in the system—instability wavelengths

larger than the wavelength associated with kmax cannot be easily observed in the system

(even though unstable wavelengths larger than kmax are present in the system, due to the

high growth rate of the kmax mode, it will dominate all other wavelengths)—as well as a

timescale for finger formation. kc, the critical wave number, is associated with the smallest

instability wavelength present in the system, and hence, sets a lower bound for observable

finger wavelength.

Equations 2.13–2.15 also describe how these three system descriptors depend on several

tunable parameters, which allows for testing the validity of the one-dimensional model

outlined here against results from experiments conducted in the laboratory, in silico [39],

or both. For example, the wave number of the fastest growing mode and the critical

wave number are expected to increase linearly with the phototactic bias force (Fig. 2.3b,

c), i.e., with increase in the phototactic bias force, smaller finger widths contribute to

the observed pattern formation and the wavelength of the fastest growing mode becomes

smaller. These predictions have already been shown to be qualitatively true through in silico

experiments [39]. The one-dimensional model presented here provides analytical expressions

for these (and other) dependences as summarised in equations 2.13–2.15 and Fig. 2.3b-j,

which can be tested using information from a time series of the advancing bacterial front.

In particular, our model describes the dependence of kmax, λmax an kc on β, a ratio

which describes the strength of bacterial diffusion along the one-dimensional curve (or

alternatively, in the full two-dimensional context, diffusion in the X direction) with respect

to that of diffusion perpendicular to the one-dimensional curve (Y direction and directed

towards the light source). While this is not relevant for wild type bacteria, the differential

diffusion strengths play a crucial role in the loss of finger formation in taxd1 mutants, which

we will address next.
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2.2.5 Modification of the model to explain taxD1 cells

taxD1 cells exhibit increased diffusion in the direction perpendicular to the light source,

as well as negative phototaxis (movement away from the light). While negative phototaxis

can simply be modeled as a reversal of the direction of the bias force, we aimed to use our

model to interpret the changes in the front morphology in this mutant. We considered an

increase in Ds, or equivalently an increase in β, which results in a decrease in kc and an

increase in fc. Thus, instability sets in only at longer wavelengths, potentially explaining

the absence of fingering instabilities in taxD1 inoculations, though sufficiently large systems

should have the potential to generate instabilities.

2.3 Conclusion

Here, we have constructed an analytically solvable one-dimensional model based on mini-

mal assumptions to describe the formation of finger-like patterns in wild type Synechocystis

communities, and the loss of finger formation in taxD1 mutants. By virtue of being an-

alytically solvable, this model provides predictions (Eqs. 2.11, 2.13-2.15) about the effect

of tunable system parameters on pattern formation, which can be tested in vivo and/or in

silico, while also enabling the exploration of larger swaths of the system parameter space

than would be possible experimentally. However, not all predictions presented here may

be as readily testable in vivo as they are in silico. For instance, tuning the phototactic

bias, f , will likely prove to be much easier in laboratory experiments than altering D0,

since it is a rather more emergent parameter than f . Similarly, while the effect of β can

be easily tested by the addition of an anisotropic diffusion tensor in the two-dimensional

simulations [56], the measurement of said quantity may prove harder in experiments with

taxd1 mutants. Nevertheless, the one-dimensional model provides a powerful analytical

handle on this system and opens the doors to higher order explorations.



Chapter 3

Exploratory Dynamics of Vocal

Foraging During Infant-Caregiver

Communication

3.1 Introduction

3.1.1 Infant vocal development

Human infants show massive growth in vocalising abilities during their first year [70–74].

Cries and short, quiet sounds dominate early vocalisations. By about three months, in-

fants demonstrate a much wider range of vocalisation types, varying pitch, amplitude, and

other phonatory characteristics, as well as beginning to produce primitive consonant-vowel

articulations. By 7 months, infants begin producing well-timed adult-like consonant-vowel

alternations. This expansion in repertoire lays a foundation for later speech and other vocal

communication production [71, 75]. For instance, there is continuity between the sounds

produced during prelinguistic stages of vocal development and those sounds that make up

infants’ first words [76].

Although anatomical changes and neuromaturation may account for some of the changes

during the first year, even newborn infant vocal tracts are capable of producing a very

wide range of sounds, and the dramatic changes in infants’ vocalisations over the first

year are believed to be primarily due to learning [77–79]. Computational models of infant

vocal learning have demonstrated that some combination of exploratory processes, social

15
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or intrinsic rewards, and imitation of adult speech input can result in the vocal learning

we see in human infancy [43–49]. Infant vocal learning may be viewed as a process that

combines variation and selection, resulting in the evolution of a more adult-like repertoire

of sound types. From this perspective, it is important to know more about the dynamics of

the generation of varied sounds and the factors that contribute to the selection of some of

those sounds over others.

A large body of research with human infants provides strong support for the role of

social responses in shaping infant vocal learning at multiple timescales. Adult responses

are said to be contingent on infant vocalisation type if a response is more likely for some

types of vocalisations than for other types. Adult responses contingent on speech-related

infant vocalisations result in more frequent speech-related and adult-like vocalisations by the

infant during the seconds and minutes following the adult response [79–84]. At the longer

timescales of months and years, differences in adult responses predict later communication

abilities [85–87]. Differences in feedback loops wherein infant vocalisations generate adult

responses that in turn impact future infant vocalisations appear to underlie some of the

differences in speech development that are observed on average across socioeconomic and

clinical groups [83,88,89].

Less is known about exploratory dynamics in the vocal domain over the course of the

day. Research has documented temporal clumping in the occurrence of different prelinguistic

vocalisation types, termed “session effects” because the effect is that one recording session

can provide a very different view of an infant’s vocal repertoire than one made a few minutes

later [90]. Fractal-like clustering of infant vocalisation events in time has been found within

day-long audio recordings, with bouts of infant vocalisations clustered within larger episodes

of high-volubility with those in turn clustered at even longer timescales [91]. The same study

also found that the adult vocalisations to which infants were exposed were also hierarchically

clustered in time, with the degree of hierarchical clustering being coordinated between

infants and adults.

The finding of coordinated hierarchical clustering in the timing of adult vocalisations,

and the fact that adult responses appear to play such an important role in infant com-

munication development, highlight adults as active agents in the infant vocal exploration

process. Indeed, a large volume of prior research has documented how adults alter the

timing, acoustic properties, and content of their vocalisations when they are directed to an

infant [92–98]. While less research has focused on how future adult behaviour is influenced
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by infant responses to adult vocalisations, we do know that infant vocalisations tend to fol-

low adult vocalisations during naturalistic interactions [99–101] and that infant responses

are sensitive to differences in adult behaviours [102]. These findings taken together suggest

that it is appropriate to think not only of infants as vocal explorers in search of sounds that

have social value but also that adults may also be doing a similar kind of foraging.

3.1.2 The interdisciplinary study of foraging

We propose that infant and adult vocalisations can be viewed in part as a process of ex-

ploring various sound types in search of those that tend to yield social responses. This

perspective makes it possible to compare infant and adult vocal behaviour to other types of

foraging, such as animals foraging in physical space to collect food, identify mates or find

safe locations to escape predators. Other non-spatial behaviours, such as adult humans’

search in semantic networks during memory retrieval tasks, have already benefited from the

application of methods previously used to study animal foraging in space [103–107].

The search patterns of foraging animals have been shown to hold a wealth of information

about optimal foraging strategies under various conditions when analyzed in terms of the

distribution of the distances (a.k.a. step sizes) traveled in a particular direction between

reorientations [108]. For example, Lévy walks are a random search strategy consisting of

mostly short steps interspersed with a “heavy tail” of long steps, characterised by steps of

length l occurring with a power law probability distribution P (l) ∼ l−α with 1 < α ≤ 3.

Lévy-like path length distributions have been reported for a number of spatially foraging

organisms. Foraging strategies can provide insight into the clustering of resources. For

instance, for sparse and patchy resource distributions, heavy tailed random walks such as

Lévy walks, have been shown to be preferred [108]. The scaling exponent, α, of power

law distributed path lengths is also informative, differing as a function of the patchiness

or clustering of resources [109]. In other cases, foraging appears to follow an exponential

pattern, P (l) ∼ e−λl, where the likelihood of a given step size drops off more rapidly

than a power law as step size increases, giving rise to behaviour that is better modelled

as Brownian movement. The parameter λ can be fit to the data and reflects the rate of

exponential drop-off in likelihood as step size increases. Exponential step size distributions

are often observed for animals’ spatial foraging when resources are plentiful [110]. Other

distributions, including lognormal distributions, defined as P (l) = (lσ
√
2π)−1e−(ln l−µ)2/2σ2

,

represent step size distributions with tail sizes that are intermediate between exponential
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and power law. Thus, depending on the distribution of resources in the environment,

different kinds of search patterns can be optimal.

The temporal scaling of behaviour, i.e. the relative frequency of short events (or inter-

event intervals) compared with longer events or the degree to which events are clustered

hierarchically in time, sometimes changes over the course of learning. For example, it has

been observed that the temporal scaling of infant eye movements during an audio-visual

speech perception task changes with age, correlates with language ability, and differs for

infants with autism spectrum disorder [111]. Adults also show changes in the temporal

scaling of their eye movements as they learn in a mathematical insight task [112]. It is

possible that the temporal scaling of infant and/or adult vocal behaviour change as infants

gain increasing mastery over their vocal motor systems and as they learn about the social

consequences of their vocal behaviour, and as adults adapt their behaviour to facilitate

infant communication development [91]. As the patterns of the grouping of behaviours in

time has been found to be closely related to distances moved in space (both physical and

cognitive, e.g. semantic [104, 105]), we would also expect changes in temporal spacing of

infant and adult vocal episodes to correspond to exploration of acoustic properties.

3.1.3 The present study

Here we study the dynamics of socially-guided vocal exploration over the course of a day

by infants and their caregivers from a foraging perspective. We assess exploration in terms

of patterns of movement in acoustic space, an approach which has not previously been

employed in the study of infant vocalisations and which will allow this domain of behaviour

to be compared to other foraging behaviours, such as animal movement in physical space and

human search in memory. We ask whether some patterns of exploration are associated with

greater degrees of social responding than others, whether infant exploration is modulated

by adult responses and vice versa, and whether these patterns change over the course of the

first year.
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Adult  
Response

Infant  
Response

WOR WOR WR WOR WOR WOR
WOR

Figure 3.1: Illustration of the automatic labelling scheme. Here, we use a small
portion from a recording of an infant at age 3 months to illustrate the labelling scheme.
The information in the top portion of the figure is provided by the LENA system; inter-
vocalization intervals, acoustic features, and response codes are computed automatically
based on those LENA-generated speaker labels and the original audio file. Adult vocalisa-
tions are in blue boxes while infant vocalisations are in yellow boxes. The start (left, green)
and end times (right, red) of each vocalisation are indicated below the corresponding box.
Inter-vocalisation intervals (in s) are given in black boxes between subsequent vocalisations,
and the length of the box is indicative of the duration of the inter-vocalisation interval. For
each infant/adult vocalisation, the receipt of a response (Y/N/NA) is indicated (dotted ver-
tical line). An adult vocalisation is labelled as having been followed by an infant “response”
(WR for ”with response”; Y in the Infant Response row) if the onset of an infant vocalisa-
tion occurs within 1 s following the offset of the adult vocalisation, with no intervening adult
vocalisation. The same logic applied for labelling whether adult “responses” followed infant
vocalisations. If two adult vocalisations are separated by 1 s or less without an intervening
infant vocalisation, then response to the first is NA. Adult vocalisation steps analysed in
this study are indicated by the blue lines, with steps following a response labelled WR
in blue, and steps following no response labelled WOR (for ”without response”) in blue.
Infant vocalisation steps are indicated by the yellow lines, with steps following a response
labelled WR in yellow, and steps following no response labelled WOR in yellow. Dotted
lines connecting vocalisations indicate that the corresponding inter-vocalisation interval was
not analysed because it was less than or equal to 1 s with no intervening response. Analysed
inter-vocalisation intervals were divided into WR and WOR depending on whether the first
vocalization in the sequence was followed within 1 s by a “response”.
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We utilise automatically labelled day-long audio recordings, which have two main ad-

vantages. First, they provide very ecologically valid samples of infant and adult behaviour

in the range of contexts typically experienced by the infant. Second, they provide long

time series with large numbers of events, which is critical in order to characterise the tails

of distributions of vocal events. We define acoustic space as the combination of two pa-

rameters, the mean pitch and amplitude at the utterance level. While we also recognise

that this space does not reflect the complete set of acoustic features relevant to human

vocal communication, pitch and amplitude have the advantages of (1) being automatically

measurable and (2) being relevant dimensions for most vocalizations produced by infants

in the age range studied here as well as for adult vocalizations [90,93,94,101].

3.2 Results

3.2.1 Steps in time and acoustic space

Fig. 3.2 presents an example of visualising infant vocalisation steps in 2D acoustic space and

visualising position in each acoustic dimension as a function of the time in the recording

at which the vocalisation occurred. Euclidean distance in the acoustic space is defined as

s =
√
∆f2 +∆d2, where ∆f is the change in mean pitch (log f0) from the ith to i + 1th

vocalisation, and ∆d is the corresponding change in mean amplitude. Note that acoustic

dimensions are unitless since they have been standardised. Steps for each speaker type were

divided into two groups (Fig. 3.1): (1) steps following receipt of a response by the other

speaker type (referred to as WR, for ‘with response’) and (2) steps following a vocalisation

that did not receive a response (referred to as WOR, for ‘without response’).

We found weak positive correlations between distance in 2D acoustic space (i.e., the

step size from the ith to i+1th vocalisation in acoustic space) and the corresponding inter-

vocalisation time intervals for both infants (over the 143 recording days, mean r = 0.10,

mean p = 0.11, median r = 0.09, median p = 0.01, mean n = 1043.86, where r is the Pearson

correlation coefficient and p is the probability of the null hypothesis) and adults (mean

r = 0.08, mean p = 0.06, median r = 0.08, median p < 0.001, mean n = 3223.40). Note

that the number of adult vocalisation events is much larger than that of infant vocalisation

events.
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Figure 3.2: Sample vocalisation sequences by a 3-month-old infant and the in-
fant’s caregiver(s). (a) shows the movement of the infant (yellow) and adult (blue) in
a 2D acoustic space defined by mean pitch and amplitude. Directed arrows indicate the
direction of the vocaliser’s movement in the acoustic space. This can be thought of as a
foraging process-like depiction. The inter-vocalisation time intervals are indicated. (b) and
(c) show the same data with time plotted on the X axis, and pitch and amplitude respec-
tively on the Y axis. In (a–c), a vocalisation by the adult is indicated by a blue open circle,
and a vocalisation by the infant is indicated by a yellow open circle. Note that these are
the same data that is depicted in Fig. 3.1. (d), (e), and (f) show plots for a longer period
of time taken from the same recording as in (a–c).

Results from a linear mixed effects model with acoustic step size being predicted by

inter-vocalisation interval, controlling for age and infant ID, indicate that step sizes in

acoustic space and time are positively correlated for both infants (β = .07, p = < 0.001, n
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= 149,272, where β is the standardized regression coefficient) and adults (β = .05, p = <

0.001, n = 460,946). These results also hold for acoustic step sizes and inter-vocalisation

intervals following the reception of a response (WR) and following vocalisations that did

not receive responses (WOR). For more details, see Table B.4.

At the recording day level, step sizes in 2D acoustic space were found to be predom-

inantly lognormal for both infant and adult vocal exploration for both step types, based

on Akaike information criterion (AIC) [113]. Step sizes in individual acoustic dimensions

were exponentially distributed for all step types for both speaker types, per AIC (Fig.

B.4). Inter-vocalisation intervals between adult vocalisations were predominantly pareto

distributed for both step types. A pareto distribution is a type of power law distribution

given by P (x) =
αxα

min
xα+1 , where x ∈ [xmin,∞]. If the exponent α is such that 1 < α ≤ 3, then

a pareto distribution can be used to describe a Lévy walk. Inter-vocalisation times between

infant vocalisations were lognormally distributed for both step types. The unsplit step size

distributions (i.e., step size distributions that were not split into WR and WOR categories)

were largely of the same type as the split step size distributions, except for unsplit time step

sizes between adult vocalisations, which were found to be predominantly lognormal (Fig.

B.4). For all step size distribution analyses comparing WR to WOR, we only considered

steps for which the corresponding inter-vocalisation interval was at least 1 s. This was to

control for the fact that determining a response was not received required a wait of 1 s (see

Methods).

A randomly selected example of the probability distributions obtained from the day-

level recording data compared to the corresponding AIC fit is shown in Fig. B.3. We

see reasonable agreement between the two based on visual observation. In addition, we

calculated the coefficient of determination (R2) for all fits computed using AIC and generally

found good agreement between raw data and fits. R2 values indicated especially good fits

for WOR and unsplit step size distributions (which had larger sample sizes compared to

WR step size distributions), and the mean R2 value for all fits was found to be 0.73 (Table

B.5).

There was no statistically significant interaction between response and age on any of

the step size measures. Thus, we do not include an interaction term in any of the statis-

tical tests presented below. For results from statistical tests from models with interaction

between response and age effects as a predictor see https://osf.io/8ern6/.

https://osf.io/8ern6/
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Figure 3.3: Median values and fitted distributions for acoustic space step size
and inter-vocalisation interval distributions for infants. (a) Median values of infant
acoustic step size distributions split into steps following an adult response (WR, blue), and
steps following vocalisations that did not receive adult responses (WOR, red). (b) Median
values of infant inter-vocalisation interval distributions for WR and WOR steps. Median
values were computed based on data, not AIC best fits. (c, d) Infant acoustic step size and
inter-vocalisation interval distributions, respectively, fit to lognormal distributions, based
on AIC, are shown in log-linear plots. Only distributions that are best fit to lognormal are
shown.

3.2.2 Changes with age

Median infant step size in the 2D acoustic space increased significantly with infant age

(Table 3.1 and Fig. 3.3; see also Table B.10 and Fig. B.10). Infant step size in the pitch

dimension increased as infants got older (Table B.8 and Fig. B.7). However, infant step

size in the amplitude dimension if anything got smaller as infants got older (Table B.6 and

Fig. B.5). There were no statistically significant effects of age on infant inter-vocalisation

time intervals (Table 3.1 and Fig. 3.3; see also Table B.11 and Fig. B.12).

The median as well as the 90th percentile value of the adult vocal step distributions

increased with infant age (see Table 3.2) which is in agreement with the increase in the µ of

the lognormal fits to adult acoustic step size distributions as infant age increased and with
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Figure 3.4: Median values and fitted distributions for acoustic space step size
and inter-vocalisation interval distributions for adults. (a) Median values of adult
acoustic step size distributions split into WR (black) and WOR (green). (b) Median values
of adult inter-vocalisation interval distributions for WR and WOR. Median values were
computed based on data, not AIC best fits. (c, d) Adult acoustic step size and inter-
vocalisation interval distributions, respectively. Acoustic step size distributions are fit to
lognormal and inter-vocalisation interval distributions are fit to pareto, based on AIC, are
shown in log-linear plots. Only distributions that are best fit to lognormal and pareto,
respectively are shown.

the decrease in σ (see Fig. B.9a). The changes were evident in both the amplitude and

the pitch dimensions (Tables B.7 and B.9). Median inter-vocalisation intervals increased

significantly, which is consistent with the decrease in inter-vocalisation interval pareto α

values (For a demonstration of how lognormal and pareto distributions change as a function

of their parameters, see Fig. B.9 as well as https://osf.io/2fuje/). Note that for the

analyses of parameters based on step-size distribution fits, we only used those distributions

that were best fit to the predominant fit for that distribution type. For example, for µ or σ

parameters of adult vocal step distributions, only those distributions that were best fit to

lognormal were analysed.

https://osf.io/2fuje/
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Table 3.1: Infant steps in 2D acoustic space and inter-vocalisation intervals at
the day-long recording level: results of statistical analysis. Results of mixed effects
regressions predicting median and 90th percentile values of vocal foraging measures, as
well as parameters of probability distributions of vocal foraging measures, as a function of
whether a response was recently received, infant age, and sample size, with infant ID as a
random effect. The β values are given with the p values in brackets. Significant effects (at
a significance level of 0.05) are indicated in bold. All values reported have been rounded to
two decimal points wherever possible.

Dependent vari-

able

Response effect Age effect Sample size effect

Inf. acoustic step

size (median)

-0.02 (p = 0.85) 0.15 (p = 0.02) -0.31 (p < 0.001)

Inf. acoustic step

size (90th perc.)

-0.18 (p = 0.13) 0.09 (p = 0.14) -0.24 (p = 0.002)

Inf. acoustic step

size (lognormal µ)

0.01 (p = 0.93) 0.12 (p = 0.06) -0.30 (p < 0.001)

Inf. acoustic step

size (lognormal σ)

-0.41 (p < 0.001) 0.02 (p = 0.70) 0.18 (p = 0.04)

Inf. inter-voc. inter-

val (median)

-0.25 (p = 0.01) 0.06 (p = 0.22) -0.62 (p < 0.001)

Inf. inter-voc. inter-

val (90th perc.)

-0.11 (p = 0.24) 0.004 (p = 0.94) -0.57 (p = 0.01)

Inf. inter-voc. inter-

val (lognormal µ)

-0.19 (p = 0.01) 0.03 (p = 0.52) -0.78 (p < 0.001)

Inf. inter-voc. inter-

val (lognormal σ)

-0.43 (p < 0.001) 0.01 (p = 0.76) -0.76 (p < 0.001)



CHAPTER 3. EXPLORATORY DYNAMICS OF VOCAL FORAGING 26

Table 3.2: Adult steps in 2D acoustic space and inter-vocalisation intervals at
the day-long recording level: results of statistical analysis. Results of mixed effects
regressions predicting median and 90th percentile values of vocal foraging measures, as
well as parameters of probability distributions of vocal foraging measures, as a function of
whether a response was recently received, infant age, and sample size, with infant ID as a
random effect (continued). The β values are given with the p values in brackets. Significant
effects (at a significance level of 0.05) are indicated in bold. All values reported have been
rounded to two decimal points wherever possible. Note that the p-value indicated by ‘*’ is
actually 0.0479 (rounded to 0.05), and therefore, is in bold typeface, indicating significance.

Dependent vari-

able

Response effect Age effect Sample size effect

Ad. acoustic step

size (median)

0.24 (p = 0.01) 0.39 (p < 0.001) 0.07 (p = 0.23)

Ad. acoustic step

size (90th perc.)

0.02 (p = 0.83) 0.29 (p < 0.001) 0.19 (p = 0.01)

Ad. acoustic step

size (lognormal µ)

0.26 (p = 0.003) 0.46 (p < 0.001) 0.05 (p = 0.47)

Ad. acoustic step

size (lognormal σ)

-0.61 (p < 0.001) -0.16 (p = 0.01) 0.12 (p = 0.11)

Ad. inter-voc. in-

terval (median)

0.16 (p = 0.05)* 0.22 (p < 0.001) -0.45 (p < 0.001)

Ad. inter-voc. in-

terval (90th perc.)

-0.07 (p = 0.46) 0.04 (p = 0.43) -0.50 (p < 0.001)

Ad. inter-voc. in-

terval (pareto xmin)

0.65 (p < 0.001) -0.003 (p = 0.96) -0.04 (p = 0.50)

Ad. inter-voc. in-

terval (pareto α)

0.30 (p < 0.001) -0.24 (p < 0.001) 0.37 (p < 0.001)

3.2.3 Infant step sizes after receiving an adult response

As shown in Table 3.1 and Fig. 3.3, infants’ median and 90th percentile acoustic space

step sizes did not show statistically significant differences as a function of whether the first
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vocalisation received a response (see also Table B.10 and Fig. B.10). Upon analysing the

parameters of the lognormal fits, we found a smaller σ when a response was received after

the first vocalisation in a step. A small σ is associated with a right-shifted peak as well as a

smaller tail to the distribution (Fig. B.9a). When looking individually at steps in amplitude

(Table B.6, Fig. B.5) and steps in pitch (Table B.8, Fig. B.7), steps in amplitude showed

no statistically significant differences as a function of response, and steps in pitch showed

only a significantly increased median step size for post-response steps.

Infant inter-vocalisation time intervals were shorter following an adult response, as indi-

cated by statistically smaller median, µ, and σ values (Table 3.1, Fig. 3.3, Table B.11, and

Fig. B.12). Infants vocalised again more quickly following the receipt of an adult response.

3.2.4 Adult step sizes after receiving an infant response

For adult vocalisations, the median acoustic step size was significantly larger after an infant

response was received compared to other acoustic step sizes, as were µ values (Table 3.2,

Fig. 3.4, Table B.10, and Fig. B.10). On the other hand, σ values were significantly

smaller for post-response steps. Lower sigma values correspond to distributions with right-

shifted peaks but smaller tails. We did not find a significant effect of response for adult

90th percentile 2D acoustic space step size values. Analyses treating amplitude and pitch

dimensions individually indicated that steps in the amplitude dimensions increased (larger

median and 90th percentile values, and smaller λ values; Table B.7, Fig. B.5) following

an infant response whereas steps in the pitch dimension decreased (smaller 90th percentile

values and larger λ values; Table B.9, Fig. B.7).

Adult inter-vocalisation intervals tended to decrease following an infant response, as

evidenced by larger α values (Table 3.2, Fig. 3.4, Table B.11, and Fig. B.12).
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3.2.5 What kinds of vocalisations and vocalisation patterns receive re-

sponses?

Table 3.3: Results of logistic regression predicting whether a response from the
other speaker type will follow from a vocalisation’s pitch and amplitude. Infant
age was also included as a predictor. Infant ID was included as a random effect. The β
values are given with the p values in brackets. Significant effects (at a significance level
of 0.05) are indicated in bold. Note that the p-value indicated by ‘*’ is actually 0.0495
(rounded to 0.05), and therefore, is in bold typeface, indicating significance.

Dependent variable Pitch effect Amplitude effect Age effect

Whether infant received

adult response

-0.32 (p < 0.001) 0.17 (p < 0.001) -0.16 (p < 0.001)

Whether adult received

infant response

0.23 (p < 0.001) 0.45 (p < 0.001) -0.01 (p = 0.05)*

As shown in Table 3.3, logistic regression analyses found that infant utterances at lower

frequencies and higher amplitudes were more likely to receive adult responses. Overall, the

probability of receiving adult responses decreased with infant age. For adults, we found

that utterances at higher pitch and amplitude were more likely to receive infant responses,

and the overall likelihood of an infant response decreased with infant age, although this

effect was only marginally significant (Table 3.3). We also did some preliminary analyses

regarding what (non-directional) vocalisation step sizes in pitch, amplitude, and time predict

a response. We found the probability of both infants and adults receiving a response

increased when a vocalisation was preceded by a larger amplitude step and decreased when

a vocalisation was preceded by larger steps in pitch and time (Table B.18).
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3.2.6 Validation using data re-labelled by human listeners

Table 3.4: Inter-rater reliability measures for human-labelled data. Inter-rater
reliability for each human listener with respect to the corresponding LENA labels are pre-
sented. All values reported have been rounded to two decimal points wherever possible

Listener id Child id Child age Simple percent

agreement

Cohen’s Kappa

L1 274 82 days 78.51 0.65

L1 340 183 days 85.61 0.78

L2 530 95 days 71.38 0.53

L3 340 183 days 85.70 0.78

We had four cases where an entire recording’s automatically identified child and adult

vocalisations were given speaker type labels by listeners who were blind to the speaker

type as labelled by the automated system. We calculated inter-rater reliability measures

comparing LENA’s CHNSP, MAN, and FAN labels to human listener CHN, MAN, and FAN

labels, excluding utterances that received any other LENA label or any other human listener

label. We found a mean percent agreement of 80.3 (std. dev = 6.83) and a mean Kappa

value of 0.68 (std. dev = 0.12) (see Table 3.4). For the data labelled by two human listeners

(infant 340, 183 days; listeners L1 and L3), we found a simple percent agreement between

those listeners of 0.99 and a Cohen’s Kappa value of 0.99, indicating high human inter-rater

reliability. For more details on inter-rater reliability measures, see Section B.4.1. We also

plotted temporal and acoustic step size distributions for human labelled data compared

to automatically labelled data (Fig. B.14–B.17). Visual inspection of these distributions

overlaid on each other looked extremely similar, except for CHNWR steps, for which we had

very few human-labelled datapoints (see Table B.14). In addition, two sample Kolmogorov-

Smirnov tests performed to test the validity of the null hypothesis that step distributions

computed from human-labelled data and corresponding LENA-labelled data belong to the

same distribution failed to reject the null hypothesis in 78 percent of tests (see Table B.15).

We also compared correlation coefficients between step sizes in acoustic space and inter-

vocalisation intervals, for data re-labelled by human listeners and the corresponding data

as labelled by LENA, and found good agreement between the two (Fig. B.2), with better

agreement for the adult data which could be due to there being more adult data points. We
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attempted to replicate the results of what vocalisation acoustics predict whether a response

will be received, but found that with the human-labelled data, no effects were statistically

significant. We hope that future work will attempt to validate the WR vs. WOR and the

age results presented here using a larger and more fully annotated human-labelled dataset.

3.3 Discussion

This study set out to examine infant and caregiver vocal behaviour from a foraging per-

spective. Step size distributions provide one approach to characterising an individual’s

exploration (and exploitation) processes. They have proved useful in understanding spatial

foraging, for example to measure effects of resource scarcity on foraging strategies. It has

been shown that adult humans performing non-spatial cognitive tasks, such as coming up

with a large list of unique animal names, show movement dynamics in semantic space or on

semantic networks that share properties with spatial foraging, such as power law step size

distributions and time-distance step size correlations [105].

Inspired by this prior literature on spatial foraging across species and memory foraging

by human adults, we asked how infant and caregiver vocalisation-to-vocalisation ‘step sizes’

change with infant age and depending on whether the speaker’s prior vocalisation received a

response. Our interest in changes in exploration with age stems from the fact that over the

first 18 months of life (the range of ages included in our datasets) infants exhibit enormous

changes in the types of vocalisations they produce and in their ability to use vocalisation for a

range of communicative purposes. Our interest in whether infant vocal exploration depends

on adult responses is based on prior findings that adults respond contingently to infants’

non-distress vocalisations, being especially likely to respond vocally to infant vocalisations

that are more advanced, and findings that infants’ subsequent vocalisations are shaped by

recent adult responses [82,114]. Our interest in whether adult vocal behaviour depends on

infant responses is based on prior literature demonstrating that adults actively modify their

vocalisation acoustics when they are addressing an infant, and that they do so to entertain

and soothe infants as well as to promote language learning. Consistent with prior spatial

and memory foraging literature, we characterised distributions of step sizes (a.k.a. lengths)

in space, in our case an acoustic space comprised of two dimensions, a vocalisation’s mean

pitch on log scale and mean intensity, as well as distributions of inter-event intervals, or

how much time has passed from the end of one vocalisation to the beginning of the next.
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First we tested for correlations between inter-vocalisation time and inter-vocalisation

distance in acoustic space. Distance and flight or walk time are naturally correlated in spa-

tial foraging; longer distances take longer to traverse than shorter distances. Prior research

on memory foraging has found a correlation between inter-response-intervals and semantic

distance [104, 105], and this finding has informed our understanding of the organisation

and access of semantic memory. In the present study, we found that correlations between

inter-vocalisation intervals and acoustic distance between vocalisations were weak (but very

statistically reliable). One possible explanation for the finding that the correlation was weak

is that our acoustic space did not provide a great representation of infant and adult vocalisa-

tion features. Our 2D acoustic space took into account only the mean pitch and amplitude

of each utterance. It ignored all other temporal and spectral features, some of which are

key to identifying major types of vocalisations such as canonical (syllablic) infant babble.

Errors in labelling the onsets and offsets of vocalisations and in the measurement of pitch

could also have played a role in reducing the correlation between inter-vocalisation interval

and distance in acoustic space. On the other hand, there is good reason to believe that

mean pitch and amplitude are key features that both adults and infants vary in their own

vocalisations and attend to in each others’ [90,93,94,101]. With more accurate labelling and

a more comprehensive acoustic space validated by listener judgments, we may either find

that time-space correlations remain weak or that they are revealed to be as strong as those

found in memory and spatial foraging. Either way, the results will be highly informative

about infant and adult vocal exploration, so such future work will be quite worthwhile.

Inspired by the animal and memory foraging literature, we used AIC to determine

whether exponential, normal, lognormal, or pareto distributions best fit the inter-vocalisation

step-size distributions for a given recording (and speaker type and response context). We

found that step sizes in both time and space were largely lognormally distributed. This sug-

gests that vocal search trajectories are clustered, a feature shared with spatial and memory

foraging. On the other hand, the fact that step size distributions were not pareto (the

exception being adult inter-vocalisation intervals split according to whether a response was

just received) suggests that vocal foraging may not be a Lévy process, as has been found for

those other domains. That said, future advancements in vocalisation labelling and measure-

ment will be important to confirm or modify this conclusion. It is also worth noting that

we found that when acoustic dimensions were analysed individually, step size distributions

were exponentially distributed. This is unsurprising since computing Euclidean distances
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on data points distributed exponentially in two orthogonal dimensions produces a proba-

bility density that is not exponential. However, the finding highlights that for exploration

in more abstract, potentially high-dimensional spaces representing acoustic features (or se-

mantic, visual, or other cognitive features), the distribution type may be less informative

than comparisons of how distribution features co-vary with performance or other variables

of interest.

Thus, perhaps more important than determining whether or not behaviour generally

shows power law scaling is determining whether behaviour dynamics change, qualitatively

and/or quantitatively, as a function of other variables of interest, such as infant maturity or

resource availability. Inspired by previous studies of foraging behaviour we pursued a distri-

bution fitting and parameter comparison approach to test for differences in vocal foraging

dynamics as a function of age and recent resource acquisition, specifically recent receipt

of a vocal response. The distribution fits provided a holistic perspective in the sense that

they provide a complete characterisation of the shape of the step size or inter-event-interval

distributions. On the other hand, we found the parameters of the fits somewhat challeng-

ing to interpret, especially in the case of lognormally distributed data, and thus we found

that analysing median and 90th percentile values provided a concrete and interpretable way

of characterising the distributions. In many cases the two approaches provided converg-

ing, complementary evidence for how step size distributions related to response receipt and

infant age.

Although we did not have a specific hypothesis regarding how infant age would relate

to exploration, we did find intriguing differences in both infant and adult vocal foraging

dynamics as a function of age. In particular, we found that as infants got older (and gen-

erally more skilled at vocalising) they explored with bigger steps in pitch but smaller steps

in amplitude. We also found that with infant age, adult vocalisations to which infants were

exposed exhibited longer times between adult vocalisations as well as bigger vocalisation-

to-vocalisation differences in the adult pitch and amplitude (and the 2D acoustic space

based on these two acoustic features). These findings seem at least in some cases to be

related to changes in exploration dynamics rather than simply tracking age-related changes

in amplitude and pitch ranges (Table B.2, Table B.3, and Fig. B.1).

A possible explanation for the infant finding is that over the course of the first year and

a half of life infants become increasingly skilled at varying the pitch of their vocalisations

and produce more active variation along this dimension either for their own interest or
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to elicit the interest of their caregivers [71]. A possible explanation for the adult finding

is that as infants become more skilled communicators and more cognitively capable and

socially aware in general, adults systematically vary their vocalisations in order to stimulate

infants [94, 97, 115]. Another possible explanation might be that as infants get older they

begin to spend more time physically distant from their caregivers. This could result in the

adult vocalisations infants can clearly hear to be somewhat less frequent [116], therefore

having longer inter-vocalisation intervals and possibly as a result, correspondingly larger

acoustic step sizes. Or it may be that as infants get older, the accuracy of the automatic

labelling and measurement increases, revealing greater variation in the acoustic measures.

Again, further exploration and development of labelling and acoustic measurement methods

will be helpful in clarifying and better understanding these patterns.

As for social effects of receiving a vocal response on vocal foraging dynamics, we hy-

pothesised that vocal responses from adults would function as rewards (among the resources

being foraged for) for infants and vice versa. We expected that when a vocalisation was

followed by a vocalisation from another speaker type, the speaker’s next vocalisation would

occur more quickly and would be more similar to the previous vocalisation than when the

preceding vocalisation was not followed by a vocal response.

Inter-vocalisation intervals supported foraging for social responses hypothesis: both

infants and adults had shorter inter-vocalisation intervals (as indicated by median values

and/or fitted step size distribution parameters) when the first vocalisation in a pair was

followed by a response than when it was not. This finding fits well with the body of research

on naturalistic infant-caregiver vocal interaction based on human-labelled utterance onsets

and offsets—it has been found that across cultures infant speech-related vocalisations show

bidirectional first order contingencies on each others’ occurrence at various ages throughout

the first year of life and beyond [99–101]. This agreement between our data and prior work

provides additional validation for our new approach focusing on step size distributions.

It also provides converging evidence for bidirectional coupling between infant and adult

vocalisation processes, and it supports our initial social foraging hypothesis. It should be

noted however, that concerns about first order measures’ inability to resolve causal pathways

(at least when based on non-experimental observations) apply as much to the present study

as they do to the prior body of research [101].

As for social effects on step sizes in acoustic space, we did not see a pattern of statistically

significant effects that straightforwardly corresponded to our hypothesis in terms of paths
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being shorter following a response—the only statistically significant effects of response on

infant acoustic path length were a tendency for pitch steps to be larger following response

and a tendency for steps in 2D space to have right-shifted distribution peaks and lighter

tails corresponding to a smaller lognormal σ parameter. Moreover, the effects of infant

responses on adult path lengths were also in the opposite direction from what we expected

when considering the 2D acoustic space. The finding that adult acoustic step sizes were

generally larger following an infant response could reflect the increased variability associated

with infant-directed speech. However, since the effect was only apparent in the amplitude

dimension and since amplitude is from the infant’s perspective and not the adults’, the

results are perhaps more likely reflecting a tendency for adults to get closer to infants

following an infant response. There was one statistically significant effect consistent with

our initial hypothesis relating social response to reduced acoustic step size: adult steps in

the pitch dimension tended to be shorter following an infant response.

One possible explanation for the null and unexpected results could be that our acoustic

space is not comprehensive enough to capture enough of the key features that infants and

adults repeat after getting a response [74, 94–96, 117, 118]. Another possibility is that our

definition of response receipt was not ideal, not taking into account enough temporal infor-

mation and not taking into account any features of the responses, such as whether they were

positive, who or what the vocalisation was directed toward, what their acoustic properties

were, etc. Too much noise in the automatic labelling and the acoustic measurement could

also have limited our ability to detect effects. Perhaps longer timescales where behaviour

is not viewed at the utterance level but at the level of groups of utterances would also be

good to consider (we did do some preliminary area-restricted search inspired plotting that

looked at longer series of events, reported in Fig. B.6, B.8, B.11, and B.13). And of course

it is possible that infants really are minimally affected by adult responses. We will be more

confident drawing conclusions once future work taking into account other possible acoustic

spaces and with better human validation for the labelling has been conducted. Nevertheless,

we believe the present study provides a useful framework for asking such questions about

social effects on vocal exploration dynamics, and our initial results regarding the effects of

infant responses on adult pitch and amplitude step sizes are intriguing.

Finally, we found that certain acoustic features of infant and adult vocalisations pre-

dicted whether a response would follow. In particular, we found that adult vocalisations that
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were higher in amplitude and higher in pitch were more likely to be followed by infant vocal-

isations. This supports prior literature indicating that acoustically modified infant-directed

speech, which tends to have higher pitch together with greater frequency modulation, is

more salient and appealing to infants [94, 101, 115, 119]. It also supports our intuition that

higher amplitude sounds are more salient to infants. Infant vocalisations were more likely

to be followed by an adult vocalisation when they were lower in pitch and higher in am-

plitude. The higher amplitude finding can perhaps be explained by the greater salience of

higher amplitude sounds, although to the extent that greater amplitude is associated with

more mature infant vocalisations, that could also be playing a role. The fact that lower

pitch infant vocalisations were more likely to be followed by an adult response might also

be explained by those vocalisations sounding more adult-like and perhaps more speech-

like. Similarly, we found that vocalisations that are further apart in time and pitch are

less likely to receive both infant and adult responses, while vocalisations that are further

apart in amplitude are more likely to receive both infant and adult responses. One pos-

sible explanation for the time step finding is that closely spaced vocalisation events are

more noteworthy to the responder than those that are not. It could also be that events

are temporally closer when infants and adults are interacting with each other and hence,

responses are more likely during these periods of interaction. The findings about step sizes

in pitch and amplitude are harder to interpret since these step sizes were non-directional.

Repeating these tests with directional step sizes may be more informative. One way to

think of larger amplitude steps being more likely to receive a response is that these could

correspond to shifts to louder, and hence more noticeable, vocalisations. It will be inter-

esting for future research to explore the underlying reasons for these effects as well as to

identify other acoustic predictors of responses and to link these more directly with infant

and adult foraging behaviour. For example, it may be that infant vocalisation acoustics

which predict adult responses become targets for the infant’s vocal exploration even in the

absence of an interactive adult caregiver, during times of more solitary vocal play. Our

findings on vocalisation acoustics patterns predicting a response are especially interesting

when juxtaposed with our findings that adult amplitude steps increase after receiving an

infant response, while adult pitch steps decrease following an infant response. For example,

it could be that adults repeat similar vocalisation patterns that yielded an infant response

in an effort to elicit more responses. On the other hand, a tendency for LENA’s automatic

labelling software to systematically mislabel infant vocalisations as adult speech and vice
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versa could have biased the results on how pitch predicts response in the exact directions

observed here. Future validation using a more comprehensively human-labelled dataset is

necessary.

3.4 Methods

Audio recordings for this study were obtained using the LENATM Pro system, which consists

of a small single-channel audio recorder and cloth vests each with a chest pocket into which

the recorder can be placed. Caregivers were instructed to turn on the recorders at the

beginning of the day, place them in the vest pockets, and then put the vests on their

infants. The recorders can capture up to 16 hours of audio, including sounds made and

heard by the infant.

Recordings included in the present study were obtained as part of two separate data

collection efforts. The first involved two infant participants, one learning English and Span-

ish and the other learning German and English, who were recruited via acquaintance with

one of the authors and who began the study at 1–2 months of age and were recorded ap-

proximately twice per week until 11–13 months. Recordings were made on days that were

convenient for the infants’ families, and the infants’ parents were instructed to turn on the

recorder when the infant woke up in the morning and to turn it off when the infant was put

to sleep for the evening. The recorder could be paused as needed for privacy purposes.

The second effort was ongoing at the time of this study and involved 15 participants

from the Merced, CA region. Seven children were learning only English, four children were

learning both English and Spanish with one of these children having Spanish as the primary

language, one was learning English, Spanish, and Sahaptin, one was learning English and

German, one was learning English with a small amount of French input, and one was

learning English together with another language not specified by the caregiver. Infants

were recruited via word of mouth, flyers, and in-person recruitment at a local hospital

and community events. The infants in this study were scheduled to be recorded for at

least 10 hours during a single day at 3, 6, 9, and 18 months of age. Many of the later

recordings had not yet been collected by the time data were prepared for analysis for the

present paper. Caregivers were asked to record on days when most of the infant’s immediate

family members were home and when outings and special events, especially involving a lot

of socialising, would be minimal. In most cases, recordings were made on typical weekend
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days. Caregivers were instructed to turn on the recorder in the morning, no later than 8 am

and to turn off the recorder in the evening, no earlier than 7 pm. Caregivers were told that

they could pause the recorders for privacy purposes, but that pause time should not exceed

one hour total over the course of the target recording period. Parents were able to have the

researchers delete sections of the recording when private events took place and they had not

been able to pause the recorder in advance. Caregivers also filled out various questionnaires

some of which were to be completed on the day of recording, and were provided in most

cases with cash compensation for their time assisting with the study. Since caregivers in

both data collection efforts were instructed to complete the recording on a single day, we

use the infant’s age in days on the day of recording for infant age. However, we have not

controlled for possible recordings split over multiple days due to caregiver error, and these

recordings, if they exist, have infant age as the infant’s age in days on the day of the first

subrecording.

Both datasets were collected in accordance with relevant guidelines and regulations.

Informed consent was obtained from the infant participants’ legal guardians, and data

collection protocols were approved by the University of Memphis Institutional Review Board

(dataset 1) and by the University of California, Merced Institutional Review Board (dataset

2).

Once recordings were completed, caregivers returned the audio recorders to the re-

searchers, and the audio recordings were uploaded to and processed by the LENA Pro

software. The software automatically segments each audio recording into a mutually ex-

clusive and exhaustive set of sound source segments, using a speech recognition algorithm

involving a combination of Gaussian mixture and hidden Markov models. The algorithm

was previously trained on human-labelled LENA recordings collected by the LENA Re-

search Foundation and is dependent on the infant’s age in months. All subsequent analyses

focused exclusively on segments labelled “CHN” (clear vocalisations by the infant wearing

the recorder [120]) containing at least one “Utt” (a speech-related vocalisation, as opposed

to cry, laugh, or vegetative vocalisations), called “CHNSP” in our analyses; “FAN” (clear

adult female vocalisations); and “MAN” (clear adult male vocalisations). Note that adult

vocalisations collectively refer to FAN and MAN labels, i.e., adult vocalisations are not

necessarily from a single adult. A study of the system’s sensitivity in detecting various

sound sources, conducted by the LENA Research Foundation [120], reported that 82% of

portions identified by human transcribers as adults vocalising near the infant were correctly
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identified by the system as FAN or MAN, and 2% were mislabelled by the system as infant.

For portions identified by human transcribers as infant vocalisations, 76% were correctly

labelled as such by the system and 7% were mislabelled as adult. Specificity data were not

included in the report.

For three of the day-long recordings, research assistants used custom software (source

code available at https://github.com/tim-shea/ivfcr-server) to listen to the audio

clips that were labelled by the LENA Pro software as either CHN, CXN (near-sounding

vocalisations by an infant other than the one wearing the recorder), FAN, or MAN. The

research assistants then indicated which speaker types they actually heard during those clips,

entering multiple labels for a segment if multiple speaker types were heard. One of the three

recordings was labelled by two different people, allowing for comparison of results across

raters (one recording, of a 6 month old, was re-labelled by listeners 1 and 3, a recording

of a different participant at 3 months was re-labelled by listener 2, and a recording of yet

another participant at 3 months was labelled by listener 1). Vocalisations were listened to in

the order in which they occurred and were mostly labelled in that same order, except when

listeners opted to skip the sounds and return to them later (Note that a small percentage of

the segments identified by LENA did not receive human listener labels due to some issues

with the software not returning users to vocalisations they had opted to skip and return

to later. In all step-size analyses, this would have resulted in a small set of steps that are

not between temporally sequential infant-to-infant and adult-to-adult step sizes in the data

re-labelled by human listeners). This allowed us to obtain an independent measure of the

accuracy of the labels as well as to run analyses on recordings with more accurate labels

(human listeners, while more idiosyncratic than the automatic labelling software and not

perfectly reliable in their judgments, are generally accepted to be much more accurate than

the LENA Pro software) so that results could be compared to LENA-labelled recordings to

help identify whether inaccuracies in the automatic labelling could have biased our results.

For all validation analyses using data re-labelled by human listeners, we used vocalisations

with MAN, FAN, or CHN labels, and without multiple speaker labels only. Further, since

all our analyses on LENA-labelled data were carried out on infant vocalisation data with

CHNSP labels only, we filtered the CHN labels by human listeners (which comprised of

both CHNSP and non-CHNSP vocalisations) using the CHNSP labels by LENA before

proceeding with any analyses. MAN and FAN segments that were labelled by humans as

CHN were kept and were presumed to be predominantly CHNSP. We are less concerned

https://github.com/tim-shea/ivfcr-server
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with missed vocalisation instances (which due to the nature of the human labelling task were

likely quite common) than we are with instances where an adult vocalisation is mistaken

for a vocalisation by the infant wearing the recorder and vice versa, as such instances would

be more problematic for the research questions posed here.

The automatically obtained vocaliser label data were then used to segment each record-

ing’s audio into individual WAV files for each CHN (although only CHNSP were used in

our analyses) and AN (FAN or MAN) utterance. A pitch contour for each utterance was

then automatically obtained using Praat [121], using the auto-correlation method with a

minimum pitch of 75 Hz and a maximum of 1000 Hz for both infant and adult vocalisa-

tions. The wide range of possible pitch values was used because it is known that infants

and adults interacting with infants tend to vocalise with fundamental frequency that often

exceeds the range, on both the low and high ends, of fundamental frequency in typical

adult-directed adult speech [117,118]. Average intensity (a measure of amplitude) was also

automatically obtained in Praat for each utterance. In some instances, Praat did not detect

a clear pitch for any portion of the utterance; these utterances were subsequently excluded

from all analyses. For each utterance, we then obtained the log of the mean pitch (fun-

damental frequency) in Hz and the mean intensity in dB. Both pitch and amplitude were

then converted to z-scores with all infant (CHNSP) and adult (FAN, MAN) vocalisations

included in the dataset for standardisation. The standardised log mean pitch and mean

intensity were then used to position each utterance in a two-dimensional pitch-amplitude

space.

We also used the time stamps of the automatically obtained vocaliser labels to deter-

mine whether each infant vocalisation was followed by an adult vocalisation within 1 s

following the offset of the infant vocalisation, in which case we (operationally) say that the

infant vocalisation received a response. We used the same to determine whether each adult

vocalisation was followed within 1 s by an infant speech-related (CHNSP) vocalisation, in

which case we say that the adult vocalisation received a response. In cases where two

infant vocalisations (CHNSP or non-CHNSP) occurred with less than 1 s separation inter-

vening and no adult vocalisation occupied the intervening time, we marked adult response

to the first infant vocalisation as ‘not applicable’, and the same was done for two adult

vocalisations occurring with less than 1 s separating intervening and no infant vocalisation

occupying the intervening time [83]. For human re-labelled data, a similar approach but

using labels as assigned by human listeners was used to determine whether a vocalisation
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received a response or not, or whether a response was ‘not applicable’ (there were some

minor differences in the way ‘not applicable’ was defined; see analysis code for details). We

determined acoustic measures (standardised mean log pitch and standardised amplitude)

for human-labelled data by matching start times of vocalisations to LENA-labelled data

and using the associated acoustic measures.

Linear mixed effects analyses were run predicting day-level recording step size distribu-

tion features. As fixed effects, we entered infant age, the reception of adult/infant response,

and sample size (the number of CHNSP, MAN, and FAN vocal events in the recording) into

the model. Analyses including an age*response interaction term always returned null effects

for the interaction; thus we excluded the interaction term from all analyses reported here.

We performed separate analysis with and without the interaction term and the sample size

term (see Appendix B). Participant ID was always included as a random effect. For these

analyses, any pauses of the recorder were filtered out by removing step sizes corresponding

to the step from the end of one recording to the beginning of the next—thus, all data anal-

ysed are day-level recordings. All step sizes were also non-directional, i.e., we used absolute

values of differences in pitch and amplitude for all analyses.

Finally, we ran logistic mixed effects regressions to determine whether certain vocalisa-

tions or vocalisation patterns were more likely to receive responses than others. We used a

binary response variable (1 for response received, and 0 for no response) as the dependent

variable. To test the relationship between the amplitude and pitch of vocalisations and

the probability of a vocalisation receiving a response, we entered infant age, z-scored log

pitch of the utterance, and z-scored amplitude of the utterance into the model as fixed

effects. To test the relationship between step sizes in pitch, amplitude, and time leading to

a vocalisation, and the probability of the vocalisation receiving a response, we added step

sizes in z-scored log pitch, z-scored amplitude, and time, from vocalisation i− 1 to vocali-

sation i (where vocalisation i is the vocalisation of interest) as fixed effects, in addition to

z-scored log pitch of the utterance and z-scored amplitude of the utterance, and infant age.

Participant ID was treated as a random effect.

Following pre-processing, MATLAB (R2019a) was used for all analyses except for the

mixed effects regressions, for which R (version 3.5.2 – “Eggshell Igloo”), and packages lme4

and lmerTest [122] were used.



Chapter 4

The Fitness Trade-offs of

Predation: When to Scavenge and

When to Steal

4.1 Introduction

Foraging can be energetically costly, and maintaining energetic reserves is crucial for sur-

vival. Consumers must interact with other organisms to obtain energy, and the form of

these interactions often depends on trophic level. For example, herbivores such as folivores

and frugivores consume plant tissue, but generally do not kill individual plants. Predators,

by comparison, must kill their prey prior to energetic replenishment, exposing themselves

to substantial risk in the process [123,124]. These risks are multifaceted: prey resources are

individually energetically rich, but may be less abundant and patchily distributed in both

space and time [124–127]. This may require predators to be on the move and can impose

a constant risk of starvation [124]. For larger predators that consume larger prey, the mor-

tality risks associated with prey-handling prior to consumption may be substantial [123].

This is particularly true for larger mammalian carnivores in terrestrial environments be-

cause their focal prey tend to have body sizes greater than their own [128,129], demanding

increased risks to access abundant energetic rewards.

Predators are not limited to active hunting but can incorporate a wide array of behav-

ioral strategies that alter the various costs of foraging. These alternative modes of predation

41
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allow the predator to adjust the time and energy it spends acquiring prey, the uncertainty

of capturing prey, and the potential for injury when handling prey [123, 129–138]. For ex-

ample, scavenging involves finding and consuming carrion [139], thereby substituting the

time and uncertainties involved in prey handling with those of searching, while lowering the

risk of injury [123,129]. However carrion has less consumable tissue than recently deceased

prey, while the tissue that remains may be of lower quality and possibly contaminated by

harmful microbiota [140–143]. These qualities of carrion become exaggerated over time,

such that the amount of digestible tissue declines via decay while the potential for spoilage

increases [144]. Kleptoparasitism, or stealing from a co-occurring predator (which we will

refer to as the competitor), is another mode of acquisition available to predators [131]. Such

behavior eliminates the handling time and mortality risks associated with hunting as well

as the diminishing returns of scavenging, yet introduces risks associated with stealing from

potentially dangerous competitors [131]. Thus, while the competitor in the kleptoparasitic

process may or may not be an individual of the same species [131,145,146], such a strategy

may be more likely if it poses limited overall risk to the predator [131,145].

The extent to which these different modes of predation are employed varies across species

[139], among individuals within a given species [147], and over the course of an individual’s

life [148]. The acts of hunting, scavenging, and kleptoparasitism are thus better described

as a continuum [139], where the implementation of each mode relative to the others defines

a predator’s overall strategy. In many cases, the deployment of one mode over another

can be opportunistic [130, 139, 149]. For example, great white sharks (Lamnidae) actively

hunt fur seals [150] while also obtaining significant nutritional gain from scavenging whale

carcasses [151]. Albatross (Diomedeidae) hunt live squid and fish while supplementing their

diet with scavenged prey—often from cetacean vomit [152]. The extent to which different

predators rely on scavenged resources can be controversial and both under- or overestimated,

depending on taxa [134,153–155]. For example, a standard-bearer of scavenging, the spotted

hyena (Crocuta crocuta), relies less on scavenged resources in some environments than is

widely perceived (up to one-third of diet; [156]), whereas lions (Panthera leo) rely more

on scavenged resources (up to 35% of diet) than is often assumed [157]. While scavenging

is ubiquitous as a strategy of opportunity [139, 158], obligate scavenging is rare because

the energetic costs associated with acquiring enough carrion to meet energetic demands is

high [134].

Kleptoparasitism as a strategy is largely facultative [131,145,159]. This behavior is more
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common among species where predator-prey interactions are easily observed by potential

kleptoparasites, and is particularly well-documented among birds [145] and large terrestrial

carnivores [137]. For example, skua (Stercorarius spp.) are predatory seabirds that are

described as specialist kleptoparasites [160], even though resources obtained through active

theft remain a minority component of diet [161]. Kleptoparasitism has also been observed

in spiders [162], hyenas [137, 163], and marine snails [164], though these behaviors appear

to supplement diet, rather than form a primary foraging strategy for most predators. Im-

portantly, the advantages of kelptoparasitism are expected to increase when resources are

rare and the length of aggressive contests between predator and competitor are short [165].

Optimizing survival strategies requires balancing the energetic trade-offs and risks as-

sociated with different modes of predation. As such, the energetic state of a predator is

expected to influence the use of alternative foraging strategies over time. A predator’s

energetic stores—in the form of body fat for most terrestrial vertebrates—determine the

time over which it can survive prior to finding and acquiring additional resources. When

a predator has sufficient reserves it may be more likely to seek lower-risk resources that

provide less energetic reward. In contrast, predators near starvation may be more likely

to engage in riskier foraging behaviors [166, 167]. Since organisms’ fat stores (which act as

energetic reserves) scale with body size [168], starvation risks are very different for small

versus larger predators [129, 169]. Beyond starvation, prey and predator body sizes play a

central role in determining predator foraging behavior, influencing energetic expenditures

and the mortality risks associated with foraging [170–172]. In fact, the body size ratio of

predators and prey is a strong predictor of whether trophic interactions are realized between

pairs of species in a community [173–175].

Here, we introduce a stochastic dynamic programming (SDP) framework [176] to exam-

ine the conditions resulting in active hunting, scavenging, and kleptoparasitic behaviors for

terrestrial carnivores foraging in a stochastic environment over time. We leverage allomet-

ric relationships governing energetic costs, physiology, and population densities to evaluate

how patterns of predation are likely to change based on the body sizes of the focal predator,

prey, and the competitor in kleptoparasitism/scavenging. We then compare our model pre-

dictions to behavioral observations for a range of mammalian predators spanning an order

of magnitude in body size across several continents.

Our model results point to four key findings that shed light on the nature of alternative

predator behavioral strategies. First, we find that whether a predator hunts, scavenges,
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or steals is strongly correlated with starvation risk, where higher starvation risk increases

the diversity of the predatory modes utilized. Second, the deployment of these modes

of predation changes as a function of predator, prey, and competitor body size, where

both scavenging and kleptoparasitism become dominant strategies as the size of the prey

relative to the predator increases. Third, our model expectations most accurately predict

the transition between hunting and alternative modes of predation for a range of terrestrial

mammalian predators. Finally, we show that the behavioral transition predicted by the

model and captured by field observations follows a scaling law with an exponent near three

quarters. Taken as a whole, we suggest that our mechanistic model offers particular insight

into the role that behaviors such as scavenging and kleptoparasitism play in the arsenal of

strategies available to behaviorally and strategically flexible predators.
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Figure 4.1: A summary of organismal interactions, energetic transactions, and
risks in the model: The solid orange double-sided arrows indicate direct interactions
between predator and kleptoparasitic competitor (brown silhouette) during stealing while
the dashed orange double-sided arrow show the indirect interactions between predator and
competitor (brown silhouette) during scavenging. Green arrows represent the direction of
energy gain. The competitor’s interrupted energy gain as a result of stealing by a predator
is indicated by the red cross on the energy flow arrow. Finally, the dotted black arrow in the
depiction of scavenging represents the transition of freshly-killed prey to leftovers available
to the scavenger. The energetic cost, energetic gain, and the mortality risk associated with
each predatory mode are represented by blue, green, and red circles, respectively. The size
of the circle indicates how big the effect is for the mode of predation in question relative to
other modes of predation.

4.1.1 Model Description

We construct a model to explore the conditions under which alternative predator foraging

behaviors maximize fitness, where possible behaviors include active hunting, scavenging,
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and kleptoparasitism. We assess how these modes of predation change as a function of the

risks associated with starvation, mortality induced by intra- or interspecific interactions,

and time. To accomplish this, we track two state variables: the energetic state of a focal

predator X = x (Joules) and time t (days in a month), where fitness is assessed at the end of

the month t = tmax. Throughout we maintain uppercase notation for stochastic variables,

and lowercase notation for specific values of these stochastic quantities. The focal predator’s

energetic capacity X = xmax, as well as a number of energetic parameters throughout, are

based on the body size of the focal predator Mp, its potential prey Mr, and the potential

competitor Mc (see Table 4.1). While we introduce the essential framework of the model

below, for details please see Section 4.3 and Section C.1.

Hunting, scavenging, and kleptoparasitism have different energetic costs, energetic gains,

and mortality risks associated with them (Fig. 4.1). While hunting, a predator searches for

the prey resource distributed according to expected densities from Damuth’s law [177]. A

successful hunting event is an antagonistic encounter (moderate mortality risk, especially

for large prey) which involves pursuing and subduing prey before it can be consumed (high

energetic cost). Once prey is captured, all of the high quality prey fat and muscle mass is

available to the hunter, limited only by its stomach size (high energetic gain).

Kleptoparasitism involves the predator searching for a potential competitor—also dis-

tributed according to expected density—and successfully stealing from the competitor if

the latter successfully acquires prey through hunting (high energetic gain, same as hunting

for the same prey). The low energetic cost due to the lack of the pursue-and-subdue phase

is offset by the high mortality risk associated with the antagonistic encounter with another

predator. Finally, during scavenging, the focal predator only interacts passively with the

competitor and live prey (low energetic cost and mortality risk), but can only consume

leftovers from the competitor’s meal (low energetic gain).

By virtue of the addition of the competitor, scavenging and stealing are more complex

processes than hunting: the success of both behaviors depends on the predator finding a

competitor, the competitor successfully hunting prey, and in the case of kleptoparasitism, on

the predator finding the competitor before a significant fraction of the prey mass is consumed

by the competitor in order to offset the high mortality risk associated with stealing.

Our model incorporates the different ways each strategy utilizes and replenishes predator

energetic reserves and associated stochastic risks to relate the predator’s updated energetic

state to its fitness. All factors described above scale with predator, prey and/or competitor
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size, and we use known allometric relationships to parameterize our model as a function of

organismal body size.

4.2 Results and Discussion

Figure 4.2: Strategy as a function of predator state. The average proportion of each
strategy (h = hunting, (a); s = scavenging, (b); k = kleptoparasitism, (c)), Ps as a function
of the predator’s energetic reserves (expressed as a fraction of the maximum energetic
storage, xmax; X axis) and time (Y axis) are shown. These results are based on decision
matrices averaged over all combinations of predator, prey and competitor mass, for 15 trials
(see Section C.2 for details). (a) and (b) share a color bar, while (c) has a different color
bar, for ease of visualization. Also note that the color maps are on a log scale. Terminal
time is denoted by tmax, and no decision is made at terminal time. (d) shows the Shannon
Evenness Index (SEI; [178–180]) of strategy as a function of the predator’s energetic reserves
and time.
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4.2.1 Predator energetics predict modes of predation

Predator foraging strategies emerge from the cumulative risks associated with finding and

successfully acquiring prey while negotiating the potential for serious injury or death. While

these behaviors can be viewed through an allometric lens, where the masses of predator,

potential prey, and potential competitors scale associated risks, our framework points to im-

portant generalities that lay the foundation for this more nuanced perspective. For instance,

the results of our model reveal that alternative predator strategies—modes of predation—

are strongly predicted by predator energetic state. When the predator’s energetic state is

replete, there is a heavier reliance on hunting, where reliance is measured by the proportion

of states resulting in hunting as the fitness-maximizing strategy averaged across predator,

prey, and competitor masses (Fig. 4.2a). As the predator’s state declines towards starva-

tion, both scavenging and stealing increase in frequency, where stealing is employed across

an order of magnitude fewer states than scavenging (Fig. 4.2b, c). As time advances to the

terminal time tmax, hunting increases in frequency for a larger proportion of energetic states,

with scavenging and to a lesser extent stealing serving as fallback strategies for predators

near starvation. These patterns reveal a behavioral switch: near starvation and far from

the terminal time, predation modes are more evenly employed, which we denote as the

jack-of-all-trades condition (Fig. 4.2d). As the predator attains energetic storage and nears

the terminal time, the predator switches to a hunting-dominant condition, which serves to

maximize the accessibility of prey while on-boarding modest bodily risk.

The behavioral shift between hunting-dominant to jack-of-all-trades behaviors tracks

declining energetic reserves of the predator. A general prediction of our model follows: an

increasingly diverse strategic tool-kit is expected to be employed when the risk of starvation-

induced mortality is increased. While energetic data on carnivores and their resultant

foraging behaviors are very limited, there is some evidence to support such a switch. For

example, coyote reliance on ungulate carrion increases during periods when primary prey

populations (snowshoe hare) decline [181]. Similarly, Australian dingos [182] and arctic

foxes [183] have been observed to rely more on scavenging during periods of resource scarcity,

while hyenas [184] have been observed to increase their reliance on scavenging as a result of

an effective decrease in prey abundance due to interspecific competition with lions. However,

both external environmental and internal physiological drivers of scavenging behavior among

predators are not easily quantified [149,185].

Because predators are more likely to experience near-starvation states in low-productivity
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or nutrient-stressed environments, the integration of starvation and/or kleptoparasitic be-

haviors would increase dependence on—and competition for—carrion subsidies in these

conditions. Compellingly, expectations from the stress gradient hypothesis [186], where

the negative effects of competition initially increase with environmental stessors, have been

proposed to influence predator scavenging behaviors, potentially resulting in higher rates

of intraguild competition and significant top-down mesopredator control [185]. In a broad

sense, our framework thus offers a mechanistic reasoning for this expectation of carrion

subsidy dietary integration that promotes increased intraguild competition. However, it is

reasonable to expect that the magnitude of carrion integration should depend on the body

sizes of predators, potential prey, and potential competitors, as we will next investigate.

4.2.2 Pairwise allometry constrains modes of predation

Whether a predator hunts, scavenges, or steals is highly constrained by predator, prey, and

competitor body sizes. Our model predicts that, on average, larger predators hunt across a

larger proportion of states, and maintain this behavior across a larger range of prey body

sizes (Fig. 4.3a, d). As expected, as prey increase in size, both scavenging and kleptopar-

asitic strategies dominate (Fig. 4.3b), whereas we observe a decline in kleptoparasitism as

an effective strategy with increasing body size of the competitor (Fig. 4.3c). Smaller to

intermediate-sized predators are thus expected to deploy an increased diversity of predator

behaviors, while the largest predators tend to hunt. However, these general trends belie

the fact that predatory strategies are inherently a function of pairwise interactions between

predators and prey, as well as predators and competitors.
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Figure 4.3: Strategy as a function of body size. (a)-(c) The proportion of each strategy
(h = hunting, s = scavenging, k = kleptoparasitism), Ps as a function of predator mass, Mp,
prey mass, Mr, and competitor mass, Mc in kg averaged across 15 replicates (see Section
C.2). (d)-(f) Proportion of strategies (Ps, averaged across decision matrices and competitor
masses; see Section C.2) resulting in hunting, scavenging, and stealing, respectively, as a
function of pairwise predator-prey body size combinations. The dashed line denotes 1:1
predator-prey body sizes. In (d), red and black horizontal bars denote observed total prey
and preferred prey mass ranges for predators of different body sizes, respectively [128],
where W = African wild dog, C = cheetah, Le = leopard, H = spotted hyena, and Li = lion
(Le and H have been staggered for visualization). Grey circles denote the most frequently
observed prey for a range of predator body sizes [133].
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The fitness advantages of alternative strategies between interacting species reveal allo-

metrically constrained behavioral boundaries. Across predator and prey body sizes, our

framework points to a behavioral switch from a hunting-dominant region when the preda-

tor is larger than the prey, to a jack-of-all-trades region when the predator is smaller than

the prey (Fig. 4.3d-f). This behavioral transition scales sub-linearly with prey body size,

meaning that hunting remains the dominant mode of predation for a wider range of prey

with increasing predator body size, a trend observed in terrestrial mammalian systems [128].

While our model is relatively coarse and cannot shed light on the nuanced behaviors between

species over short timescales, we observe that it successfully predicts predation limitations

in diverse mammalian communities. For the most part, observed predator-prey body mass

relationships (points and bars in Fig. 4.3d; see Refs. 128, 133) fall within the hunting-

dominant strategy space predicted by our framework.

For body size relationships beyond the hunting-dominant region, both scavenging and to

a lesser extent kleptoparasitism play increasingly important roles, though observational data

for both are limited and constrained to a small number of well-studied species. Kleptopar-

asitism is employed more frequently for larger prey (Fig. 4.3b), attesting to the increased

profitability of stealing larger prey in antagonistic encounters. In contrast, increasing com-

petitor size (proportional to increased mortality risk) results in decreased reliance on klep-

toparasitism. Together, we observe that the most diverse strategy tool-kit emerges when

prey are roughly 10× larger than the predator, and when competitors are of similar size or

smaller than the predator (Fig. C.10).

Of particular note is the observed nonlinearity in the role of kleptoparasitism and preda-

tor body size, with a peak frequency associated with a predator ≈ 70 Kg (Fig. 4.3a). This

corresponds to a size similar to that of the spotted hyena (Crocuta crocuta), a noted klep-

toparasite of wild dogs, cheetahs, and lions [187–189]. As an oft-cited exemplar of intra-

guild instigation, the contributions of hunting, scavenging, and kleptoparasitism to spotted

hyena diet are estimated at 50-85%, 7-33% [139], and ≈ 20% [187], respectively. Expec-

tations from our model are on par with these observations: for hyena-sized predators, our

framework predicts strategy contributions of 59%, 33% and 7%, respectively.

Expanding our assessment of model accuracy against both lions and spotted hyenas,

both well-studied large mammalian species engaged in both hunting and scavenging behav-

iors, we find that model expectations are largely predictive of observed behavioral tenden-

cies. Across sub-Saharan Africa, lion and hyena populations variably supplement active
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hunting with scavenging, with both species employing scavenging behaviors from < 10% to

ca. 33% [139]. While lions tend to acquire a greater proportional dietary contribution from

activities related to hunting compared to spotted hyenas, the range of the behaviors for both

nearly overlap (Fig. 4.4). These field observations of hunting versus scavenging behaviors

align with expectations from our model, where we use the proportion of states resulting in

a hunting versus scavenging fitness-maximizing strategy—taken across prey body sizes—as

a proxy for the percent contribution to diet measured in the field [139]. While our proxy

measurement is not one-to-one, we expect it to vary proportionally, such that increases in

the proportion of states resulting in scavenging as a fitness maximizing strategy will result

in behaviors that tend towards scavenging.

Figure 4.4: Testing model predictions against data from lion and hyena popula-
tions in Africa. Model predictions for hunting (circles) and scavenging (squares) from lion
(green) and spotted hyena (purple) populations across Africa, compiled by [139]. Horizon-
tal error bars indicate maximum and minimum values of the observed strategy proportions
where available, as reported in [139], while vertical error bars are too small to be distin-
guished in the figure. The linear best fit line (dashed gray line) is y = 0.6769x+0.1508 with
R2 = 0.7953, indicating good agreement between data and predictions from our model.
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4.2.3 The scaling of behavioral transitions

Behaviors are often borne from an intersection of physical and biological constraints, a

source from which plastic responses may adapt to rapidly changing situations. Far from

these constraints, it is reasonable to expect behaviors to be idiosyncratic and subject to

a diversity of (a)biotic drivers. Yet close to the constraint, behaviors may be expected to

reflect the nature of the constraint itself. Because our model primarily serves to identify

transitions between fitness-maximizing behaviors in a foraging context, we focus assessment

of model expectations against observations of these ‘behavioral boundaries’. Specifically,

we examine the extent to which predators actively hunt prey for a range of predator and

prey body sizes, in terms of the percent of kills attributed to prey as well as prey preference

(Jacob’s index) [190]. While we do not have a direct proxy for these empirical measures in

our model, we expect that the transition from hunting to scavenging and/or kleptoparasitism

as a function of prey body size will correspond with the prey size where kill percentage and

prey preference decline to a minimum. Such an analogy provides an opportunity to examine

the predictive capacity of our framework.

Comparing prey kill percentage and preference metrics for six carnivore species span-

ning nearly an order of magnitude in body size (Fig. 4.5a-f), we observe that our model

accurately predicts this behavioral boundary—a transitional prey body size where active

hunting by the predator tapers off. The prey body size marking this decline in both kill per-

centages and prey preference is different for each examined carnivore: it is both predicted

and observed to occur at smaller prey size for wild dogs and at much larger prey body

size for tigers. We next examine whether our model quantitatively predicts the boundary

created by the tapering of observational data that is visually apparent in Fig. 4.5a-f. To

extract this boundary for each carnivore species, we use the following procedure.

We first discard prey kill percentages less than 5% because they identify the absence

rather than presence of predators’ hunting interactions with prey. We then calculate a

critical prey body mass M∗
r based on the remaining non-negligible kill percentages. M∗

r

is estimated such that all reported prey masses less than or equal to M∗
r cumulatively

account for 90% of observations of prey kill percentages. We compare this empirical measure

of critical prey mass against the modeled prey mass at which the proportion of hunting

falls to 10%. Our expectations of this boundary both visually and quantitatively match

observational data for 5 out of 6 species (Fig. 4.5h), as we cannot evaluate the accuracy for

wild dogs given the coarseness of kill percentage data available. For this range of species,
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the observed boundary reflects an observational limit without shedding light on changes

in behavior that might occur for prey body sizes above the threshold, except the obvious

decline in active hunting. Our model suggests, however, that at this transition we are more

likely to observe alternative modes of predation, a prediction that may be useful in directing

future observational efforts.



CHAPTER 4. THE FITNESS TRADE-OFFS OF PREDATION 55

Figure 4.5: Predicting behavioral transitions in prey preference (a)-(f) Model pre-
dictions of the proportional utilization of hunting (line bordering shaded region) compared
against observed prey preferences for (a) wild dog (W), (b) cheetah (C), (c) leopard (Le),
(d) spotted hyena (H), (e) lion (Li), and (f) tiger (T). Two empirical measures of prey
preference are shown: 1) Jacob’s Index of prey (squares), ranging from -1 (avoidance) to
+1 (preference) [190] on the right Y axis; and 2) percent contribution of the number of
kills of the prey to the total number of kills made by the predator (circles) [191–196] on
the left Y axis. Negligible kill percentages (¡ 5%) are indicated by grey circles. (g) Cu-
mulative distribution of non-negligible prey kill percentages shown in (a)-(f) as a function
of prey body mass. The 10% threshold is denoted by the gray dashed line while critical
prey mass values (M∗

r ) estimated from the observational data in (a)-(f) are indicated by
circles. (h) Correlation between empirical (from (g); X axis) and predicted (from lines bor-
dering shaded regions in A-F; Y axis) critical prey masses (M∗

r ), where hunting dominant
behaviors transition to increasingly diverse strategies. The linear best fit line (dashed grey
line) is y = 1.038x + 182.6, R2 = 0.7217. (i) Rescaled behavioral transition from hunting
dominant behaviors to more diverse strategies reveals a common threshold as a function of
the prey:predator ratio Mr/M

1.42
p . Red points denote prey kill percentages for species in

A-F.

Perhaps compellingly, while expectations of this behavioral boundary are a function of
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the fitness maximization procedure implemented in the SDP (see Section 4.3) and emerge at

different prey body sizes for different predators, we observe that they collapse together, such

that the behavioral transition is observed to occur at roughly M∗
r /M

1.42
p ≈ 1 (Fig. 4.5i),

where M∗
r is the critical prey mass. This points to a scaling relationship for this behavioral

boundary where the transitional prey mass M∗
r ≈ M1.42

p , meaning that predators of larger

body size transition from hunting to alternative modes of predation at proportionally larger

prey masses. Because larger prey deliver both greater energetic rewards and increased risk

to the hunter, we interpret the suspension of hunting behaviors at larger prey body sizes as

a signal of the energetic gain outweighing the increased risk. Alternatively we could write

Mp ≈ M∗
r
0.704. That the exponent is roughly 3/4 suggests that these behavioral boundaries

may be a product of established biological scaling relationships.

4.2.4 Conclusion and future directions

The model framework introduced here focuses on the energetics of the focal predator and

its interactions with potential prey and competitors. However, we do not take into account

habitat-specific parameters such as vegetation cover [197–199] or the effect of group foraging

[200,201] (among other things). Even so, our model reproduces key trends from behavioural

observations of predator hunting behavior (Fig. 4.5g) and provides a holistic framework

to guide future observational efforts of predator foraging behaviors. The success of our

model in reproducing observed behavioral patterns, despite the exclusion of group foraging

suggests that energetic considerations of the individual predator (in species where group

foraging is observed) and its interactions with potential prey and competitors are at least as

important in determining foraging strategy as the group structure. Nonetheless, a modified

model framework with foraging group size taken into account can provide more insights

into the factors that drive the use of alternative foraging strategies. While our model

predicts the boundaries of hunting as a function of prey mass remarkably well, it loses

some predictive power for prey masses far from this boundary (Fig. 4.5a-f). This is likely

because it is designed to predict the fitness maximizing strategy based on interactions

between a focal predator-prey-competitor triad rather than the optimal foraging strategy

for predators in the presence of an assemblage of potential prey and competitors. However,

the model framework can be easily adapted to investigate the adoption of different foraging

strategies by predators in real ecological communities without incurring significantly more

computational costs, and is the logical next step here.
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4.3 Methods

4.3.1 SDP model

We use a simple SDP model to investigate how the energetics of a focal predator and its

interactions with potential prey and competitors affect predator foraging behavior. In this

model framework, the predator’s state is fully specified by its energetic state X = x and

time t. In the interest of keeping computational costs manageable, we set the terminal time

tmax to 30 days.

To asses predator fitness at tmax, we use a saturating terminal fitness function F (x; tmax).

F (x; tmax) = 1− ex/xmax (4.1)

where xmax is the maximum energetic content of of the focal predator. The saturating

dependence on x models the diminishing fitness returns of increasing energetic content

close to capacity. The onset of starvation is assumed to occur at x = 0 ≡ xc. Predators do

not recover once this critical energetic state, xc is reached.

Consider a predator whose energetic state at time t is x(t). If the predator’s foraging

strategy at t is hunting, then

xhn(t+ 1) = x(t)− λh
n +min(rhn, s) (4.2)

Here, xhn(t+1) is the updated energetic state at time (t+1) given n successful prey en-

counters by the predator, with corresponding encounter probability phn for n = 0, 1, 2, .., nh
max.

Successful encounters are those which result in the predator acquiring the prey resource.

The maximum number of successful encounters, nh
max, is constrained by s/mh

r , where mh
r

is the consumable prey mass available to the predator in one successful encounter and s

is the predator’s stomach size. λh
n is the metabolic cost accrued by the predator across n

successful encounters, and rhn is the prey mass consumed by the predator in n successful

encounters.

The predator’s projected fitness associated with hunting at time t is given by

F h(t) =
∑
n

(1− µh
n)p

h
nF (xhn(t+ 1), t+ 1) (4.3)
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where µh
n is the predator mortality associated with hunting for n successful encounters with

prey.

Expressions for the updated energetic state and projected fitness for scavenging and

kleptoparasitism are analogous to Eqs. 4.2 and 4.3, with superscripts s and k denoting

appropriate metabolic costs, mortalities, etc. In the case of kleptoparasitism, a successful

encounter is one where the predator is able to steal prey from a competitor in an antago-

nistic event. In the case of scavenging, however, the predator merely needs to wait for a

competitor’s leftovers after its encounter with the competitor. Thus, kleptoparasitism in-

volves active predator-competitor interactions, while during scavenging, these interactions

are passive. The predator’s fitness at time t, then, is given by

F (t) = max
(
F h(t), F s(t), F k(t)

)
(4.4)

The fitness-maximizing choice at time t determines the predator’s foraging strategy

given x(t). Since F h(t), F s(t), and F k(t) are all functions of (t + 1), the SDP framework

allows us to compute the predator’s foraging strategy for all x and t given the terminal

fitness function.

We use the SDP framework to compute the foraging strategy of (terrestrial mammalian)

predators in the 10–500 kg range as a function of x and t, for a range of prey (10–3000 kg) and

competitor (10–500 kg) body sizes. We use allometric scaling relationships to incorporate

the effects of predator, prey, and competitor body sizes into the model.

The computations are performed independently for each combination of predator, prey

and competitor masses and determine the fitness-maximizing strategy for the focal predator

within each predator-prey-competitor triad. In order to investigate a large enough num-

ber of body size combinations while keeping computational costs low, we used logarithmic

increments (base 10) to span the mass ranges reported above. This approach reflects ob-

served trends in nature, since there are fewer predators and prey at higher body masses.

We performed 15 trials of the SDP computation for all combinations of predator, prey and

competitor masses. All reported results are averages based on these trials.

All computations were performed using MATLAB R2021a and/or R2017b.
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Table 4.1: Summary of allometric scaling relationships used in the SDP model.

Quantity (Units) Scaling relationship Units of body
mass

Ref.

Fat mass, fm (g) 0.02M1.19 g [168,169,202]
Muscle mass, mm (g) 0.38M g [169,202]
Skeletal mass, sm (kg) 0.061M1.09 kg [203]
Resting metabolic rate,
λr (J/s)

.018M0.75 g [169,204,205]

Field metabolic rate, λf

(J/s)
0.047M0.75 g [169,205]

Maximal metabolic
rate, λm (J/s)

39.597M0.872 kg [206]

Body velocity, v (m/s) 0.33M0.21 kg [207]
Reaction distance, d †

(m)
1.62(MpMr)

0.21 kg [207,208]

Handling time, th
† (s) 8912M−1.02

p Mr kg [208]

Stomach size, s (kg) 0.107M1.062 kg [209]
Baseline mortality, µ
(s-1)

1.2 x 10−8M−0.24 g [210]

Population density, ρ
(num/km-2)

1.15 x 104M−0.78 g [177]

† Reaction distance and handling time are both dependent on the body sizes of the predator as well as
prey, hence the use of Mp and Mr, indicating predator and prey masses, respectively. All other scaling
relationships are applicable to both predator and prey, and make use of M , to indicate body mass.
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4.3.2 Allometric scaling relationships

For a predator of mass Mp, the fat mass scales as fm = 0.02M1.19
p [168, 169, 202] and

sets the energetic capacity xmax for the predator. In the absence of somatic growth and

reproduction, all energetic transactions replenish and diminish only the fat mass. Hence,

we use fat mass as a proxy for predator energetic content under these assumptions.

We express predator energetic state as well as all metabolic costs and resource gains in

Joules by converting tissue mass to energy and vice-versa. To estimate the average energy

yield of bulk tissue, we note that the energy yield of fatty acids is about 38 kJ g-1 and

that of carbohydrates and proteins is about 17 kJ g-1 [211]. For our purposes, we use an

intermediate value of 20 kJ g -1. We assume that only 10% of the energy from consumed prey

mass is assimilated as predator fat mass, to account for energy lost in biosynthesis [205].

We assume that each 24 hour time step comprises of 12 hours of rest and 12 hours of

activity, during which the predator may hunt, scavenge, or steal. The predator’s energy

expenditure during the resting phase is given by the resting metabolic rate, λr = 0.018M0.75
p

[169,204,205]. For both scavenging and stealing, energy expenditure during the active phase

is given by the field metabolic rate, λf = 0.047M0.75
p [169,205]. For hunting, however, energy

expenditure during the active phase depends on the number of successful prey encounters,

because the structure of the foraging process is dependent on foraging strategy.

During hunting, the focal predator searches for prey, distributed uniformly according to

the latter’s equilibrium density [177]

ρr = 1.15x104M0.78
r (4.5)

The predator’s encounter time with prey, tenc, is exponentially distributed.

P (tenc) = (vdρr)e
−(vdρr)tenc (4.6)

where v = 0.33M0.21
p is the predator’s body velocity [207] and d = 1.62(MpMr)

0.21 is

the predator’s reaction distance [207, 208] with respect to the prey in question. Predator

hunting success follows a binomial distribution characterized by the probability that a food

web link exists between the predator and prey as described in [173], with a = 2.51, b = 0.79,

and g = −0.37. These values correspond to the fitted body size model for the Serengeti

ecosystem [173].

Each successful prey encounter during hunting results in energy expenditure according



CHAPTER 4. THE FITNESS TRADE-OFFS OF PREDATION 61

to the predator’s maximal metabolic rate, λm = 39.597M0.872
p [206], for the length of time

it takes to pursue and subdue prey prior to consumption. This time is estimated as 20% of

prey handling time th = 8912M−1.02
p Mr [208]. Energy expenditure for the remainder of the

hunting process, during which the predator does not directly interact with prey, is given by

the field metabolic rate, λf . Consumable prey mass (which determines energy gain) from a

successful hunting encounter, rh, is given by

rh = fm +mm (4.7)

where mm = 0.38Mr [169, 202] is the prey muscle mass and the superscript h denotes

hunting.

During both scavenging and kleptoparasitism, the focal predator searches for a potential

competitor, also distributed uniformly according to the latter’s equilibrium density. The

scaling relationship for the competitor’s equilibrium density and the encounter time dis-

tribution for predator-competitor encounters are the same as those in Eqs. 4.5 and 4.6,

respectively, with the competitor mass Mc replacing prey mass.

While the energetic costs associated with scavenging and kleptoparasitism are the same,

the energy gain from successful scavenging and kleptoparasitic encounters are different.

The energy gain from a successful instance of kleptoparasitsm, where the focal predator

encounters a successful competitor and successfully steals from said competitor, is the same

as that from a successful hunting encounter (Eq. 4.7). Implicit in this is the assumption

that kleptoparasitism is only profitable when the predator is able to usurp all of the high

quality consumable prey mass from the competitor. For a successful scavenging encounter,

where the predator encounters a successful competitor and consumes its leftovers, the prey

mass available for consumption is given by

rs = Mr − (fm +mm + sm) (4.8)

where sm = 0.061M1.09
r [203] is the prey skeletal mass and the superscript s denotes scav-

enging. This is based on the assumption that scavengers only have access to leftovers from

the competitor’s meal.

The maximum energetic gain during a foraging bout is limited by the predator’s stom-

ach size s = 0.107M1.062
p [209], predator energetic state x, and predator energetic capacity

xmax. Predator stomach size also limits the maximum number of successful encounters,
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nmax per foraging bout. Since the energy gain per successful encounter is different for

scavenging and hunting/kleptoparasitism, nmax is also different for scavenging and hunt-

ing/kleptoparasitism.

To estimate predator mortality associated with different strategies, we note that scaveng-

ing does not involve antagonistic interactions with the competitor or prey. Hence, the mor-

tality associated with scavenging, µs is given by a baseline mortality µ = 1.2x10−8M−0.24
p ≡

µs [210]. By the same reasoning, the mortality associated with hunting and kleptoparasitism

should be greater than that for scavenging and should increase with the number of successful

encounters with prey and competitor, respectively. Since a number of anatomical, physio-

logical, and behavioural quantities scale with body size, it is reasonable to assume that this

increased mortality also scales with the body sizes of the organisms involved. To account for

increased mortality during hunting, we add a scaling factor ofMr/Mp to the baseline mortal-

ity. Then, the mortality associated with hunting, µh = (1+Mr/Mp)µ during the predator’s

pursuit and subdual of prey, and µh = µ otherwise. Since kleptoparasitism involves antag-

onistic interactions with the competitor—which is a predator in its own right—we use a

scaling factor of 2Mc/Mp, such that predator mortality associated with kleptoparasitsim,

µk = (1 + 2Mc/Mp)µ during the predator’s interaction with the competitor, and µk = µ

otherwise. The length of time during which this enhanced mortality is applicable for each

successful encounter is estimated as 10% of the ‘competitor handling time’ where we use

competitor mass in place of prey mass in the scaling relationship for handling time (Table

4.1).

We compute the fitness associated with each strategy using Eqs. 4.2 and 4.3. To estimate

the probability of n successful encounters during a foraging bout for each strategy, pstrategyn

for all allowed n, we simulate 50000 independent realisations of the predator’s search process

for the corresponding strategy.

Table 4.1 provides a summary of all scaling relationships used in this model. For more

details about the allometric relationships used in this model, see Section C.1.
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Conclusion

This dissertation presents work that at first glance, might appear disparate, and yet, is

linked by a the cohesive thread of looking at complex, emergent foraging phenomena at

different scales through the lens of a physicist. These studies are also anchored by their

reliance on observational data to bolster the perspectives presented in them and to provide

a robust foundation for future investigations.

The minimal one-dimensional model presented in Chapter 2 can be used to analyse ob-

served pattern formation in experimental observations of Synechocystis communities as well

as simulations based on a two-dimensional biophysical model [39] that has been successful in

describing the system. This simple analytical model also offers the possibility to investigate

the system beyond the linear approximation we employed. Particularly interesting would

be the extension of our model to describe pattern formation in non-linear regimes. Another

potential modification would involve reconfiguring the model to account for phototactic

movement over longer timescales during which bacterial reproduction becomes relevant.

The framework presented in Chapter 3 by describing the vocal interactions between

human infants and their adult caregivers as a foraging process in an acoustic space opens

the door to using foraging theory to build a mechanistic understanding of the processes that

result in human vocal learning. In particular, insights from this study can be used to build

predictive models of infants’ vocal foraging process, which in turn may have applications

in early identification of speech pathologies and delayed language development, and in

understanding cultural differences in human speech by providing an enhanced toolkit to

study how babies vocally interact with the world around them.

The computational model presented in Chapter 4 is perhaps the first work of its kind
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to provide a predictive framework to understand the underlying reasons for plasticity in

predator foraging strategy. In fact, this is merely a first step in understanding how alter-

native modes of predation affects the dynamics of predator-prey systems and the ecological

communities they are embedded in. In addition to extending this model to predict likely

modes of predation in realistic assemblages of predator and prey species, this framework

can be used to predict optimal group sizes in group foraging. This in turn, can lead the

way to a more comprehensive understanding of how alternative modes of predation beyond

hunting shape ecological systems over both ecological and evolutionary timescales.



Appendix A

Supplementary Information: A

One-Dimensional Model for the

Initiation of Fingering Instabilities

During Cyanobacterial Phototaxis

A.1 Deriving an analytical expression for the growth rate of

instabilities, λ as a function of the wave number, k

From Eq. 2.7, we have

∂2h

∂t2
− σ̄

∂3h

∂t∂s2
= − ∂

∂s

(
β
∂h

∂s
Γ2 − α

f̄
Γ
∂Γ

∂s

)
(A.1)

where

Γ = ∂h/∂t− σ̄ ∂2h/∂s2 (A.2)

To determine the onset of instabilities, we perform linear stability analysis around the

uniform solution given by

hp(s, t) = v0t+ ϵĥ(s, t) (A.3)

We do this by substituting Eq. A.3 into the expression in Eq. A.1 and retaining terms

linear in ϵ. As a first step, we write Eq. A.1 in terms of Γ as a function of hp.
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∂2hp
∂t2

− σ̄
∂3hp
∂t∂s2

= − ∂

∂s

(
β (Γ(hp))

2∂hp
∂s︸ ︷︷ ︸

I

− α

f̄
Γ(hp)

∂Γ(hp)

∂s︸ ︷︷ ︸
II

)
(A.4)

where Γ(hp) indicates that Γ is a function of hp.

For simplicity, we will evaluate each term in Eq. A.4 separately. First, let us simplify

the left hand side by substituting Eq. A.3 for hp.

∂2hp
∂t2

− σ̄
∂3hp
∂t∂s2

=
∂2

∂t2
(v0t+ ϵĥ)− σ̄

∂3

∂s2∂t
(v0t+ ϵĥ)

= ϵ

(
∂2ĥ

∂t2
− σ̄

∂3ĥ

∂s2∂t

) (A.5)

Here, ĥ(s, t) has been abbreviated as ĥ. Eq. A.5 is linear in ϵ and hence, there is no need

to discard any terms. Evaluating part I of Eq. A.4 using Eqs. A.2 and A.3 gives

− ∂

∂s

(
β (Γ(hp))

2 ∂hp
∂s

)
= −β

∂

∂s

((
∂hp
∂t

− σ̄
∂2hp
∂s2

)2(∂hp
∂s

))

= −β
∂

∂s

((
∂

∂t
(v0t+ ϵĥ)− σ̄

∂2

∂s2
(v0t+ ϵĥ)

)2( ∂

∂s
(v0t+ ϵĥ)

))

= −β
∂

∂s

((
v0 + ϵ

∂ĥ

∂t
− ϵσ̄

∂2ĥ

∂s2

)2(
ϵ
∂ĥ

∂s

))
Discarding terms quadratic and above in ϵ, the above expression reduces to

− ∂

∂s

(
β (Γ(hp))

2 ∂hp
∂s

)
≈ −β

∂

∂s

(
ϵv20

∂ĥ

∂s

)

= −ϵβv20
∂2ĥ

∂s2

(A.6)
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Part II of Eq. A.4 can be simplified similarly.

∂

∂s

(
α

f̄
Γ(hp)

∂Γ(hp)

∂s

)
=

∂

∂s

(
α

f̄

(
∂hp
∂t

− σ̄
∂2hp
∂s2

)(
∂

∂s

(
∂hp
∂t

− σ̄
∂2hp
∂s2

)))

=
∂

∂s

(
α

f̄

(
∂

∂t
(v0t+ ϵĥ)− σ̄

∂2

∂s2
(v0t+ ϵĥ)

)
(

∂2

∂s∂t
(v0t+ ϵĥ)− σ̄

∂2

∂s2
(v0t+ ϵĥ)

))

=
∂

∂s

(
α

f̄

(
v0 + ϵ

∂ĥ

∂t
− ϵσ̄

∂2ĥ

∂s2

)(
∂

∂s

(
v0 + ϵ

∂ĥ

∂t
− ϵσ̄

∂2ĥ

∂s2

)))

=
∂

∂s

(
α

f̄

(
v0 + ϵ

∂ĥ

∂t
− ϵσ̄

∂2ĥ

∂s2

)(
ϵ
∂2ĥ

∂t∂s
− ϵσ̄

∂3ĥ

∂s3

))
With only terms linear in ϵ retained, the expression above becomes

∂

∂s

(
α

f̄
Γ(hp)

∂Γ(hp)

∂s

)
≈ ϵ

αv0
f̄

∂

∂s

(
∂2ĥ

∂t∂s
− σ̄

∂3ĥ

∂s3

)

= ϵ
αv0
f̄

∂2

∂s2

(
∂ĥ

∂t
− σ̄

∂2ĥ

∂s2

)
≡ ϵ

αv0
f̄

∂2Γ̂

∂s2

(A.7)

where Γ̂ = ∂ĥ/∂t − σ̄ ∂2ĥ/∂s2. Rewriting Eq. A.4 in terms of Eqs. A.5–A.7 and dividing

by ϵ yields
∂2ĥ

∂t2
− σ̄

∂3ĥ

∂t∂s2
=

−∂2

∂s2

(
βv20 ĥ− αv0

f̄

(
∂ĥ

∂t
− σ̄

∂2ĥ

∂s2

))
(A.8)

Substituting solutions of the form ĥ ∼ eλteiks into Eq. A.8, we get

λ2ĥ− σ̄(ik)2λĥ = −βv20(ik)
2ĥ+

αv0
f̄

∂2

∂s2
(λĥ− σ̄(ik)2ĥ)

=⇒ λ2ĥ+ σ̄k2λĥ = βv20k
2ĥ+

αv0
f̄

(
(ik)2λĥ− σ̄(ik)4ĥ

)
=⇒ λ2 + σ̄k2λ = βv20k

2 − αv0
f̄

(k2λ+ σ̄k4)
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Here, we have divided the entire equation by ĥ in the last line. Rewriting the above

expression in the standard quadratic form gives

λ2 +

(
αv0
f̄

+ σ̄

)
k2λ+

αv0
f̄

σ̄k4 − βv20k
2 = 0

Using f̄ = f α/β and v0 = f̄ c0, this can be rewritten as

λ2 +
(
D0 + σ̄

)
k2λ+D0σ̄k

4 − f2D2
0

β
k2 = 0 (A.9)

where D0 = α c0 and β v20 = f2 D2
0/β. λ can be expressed as a function of k by solving the

quadratic equation above.

λ =
−k2(D0 + σ̄)

2
±

√
(D0 + σ̄)2k4 − 4

(
D0σ̄k4 −

f2D2
0k

2

β

)
(A.10)

Setting k2c = f2D0/(σ̄β), we can rewrite Eq. A.10 as

λ =
−k2(D0 + σ̄)

2
±
√(

D0 + σ̄
)2
k4 − 4

(
D0σ̄k4 − k2cD0σ̄k2

)
=

−k2(D0 + σ̄)

2
±

√(
D0 + σ̄

)2
k4 + 4k4D0σ̄

(
k2c
k2

− 1

)

=
−k2(D0 + σ̄)

2
±

√(
D0 + σ̄

)2
k4
(
1 +

4D0σ̄

(D0 + σ̄)2

(
k2c
k2

− 1

))

This expression reduces to Eq. 2.11 by using γ = 4D0σ̄
(
D0 + σ̄

)−2
.

λ =
k2(D0 + σ̄)

2

[
− 1±

√
1 + γ

(
k2c
k2

− 1

)]
(A.11)
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A.2 Analytical expressions for the fastest growing mode, kmax

and its growth rate, λmax

To find the fastest growing mode, we set ∂λ/∂k = 0.

∂λ

∂k
=

∂

∂k

(
k2(D0 + σ̄)

2

[
− 1±

√
1 + γ

(
k2c
k2

− 1

)])
= 0 (A.12)

For simplicity, let K = k2c/k
2, and A = 1 + γ(k2c/k

2 − 1) = 1 + γ(K − 1). Then, Eq.

A.12 becomes

∂λ

∂k
= k(D0 + σ̄)(−1±

√
A)± k2(D0 + σ̄)

2

(
1

2
√
A

∂A

∂k

)
= 0 (A.13)

Using ∂A/∂k = −2γk2c/k
3 in A.13

0 = (D0 + σ̄)

(
k(−1±

√
A)∓ k2

2

(
2γ

2
√
A

k2c
k3

))

= (D0 + σ̄)

(
k(−1±

√
A)∓ 1

2

(
γ√
A

k2c
k

))

= (D0 + σ̄)
k2c
k

(
k2

k2c
(−1±

√
A)∓ γ

2
√
A

)
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Dividing by (D0 + σ̄)k2c/k throughout and using K = k2c/k
2 gives

0 =
−1±

√
A

K
∓ γ

2
√
A

=⇒ 0 =
−
√
A±A

K
∓ γ

2

=⇒
√
A

K
= ±A

K
∓ γ

2

=⇒ A

K2
=

(
A

K
− γ

2

)2

=⇒ A =

(
A− γK

2

)2

=⇒ A = A2 +
γ2K2

4
−AγK

Substituting for A, we get

1 + γ(K − 1) = 1 + γ2(K − 1)2 + 2γ(K − 1) +
γ2K2

4
− (1 + γ(K − 1))γK

=⇒ γ(K − 1) = γ2(K − 1)2 + 2γ(K − 1) +
γ2K2

4
− (1 + γ(K − 1))γK

=⇒ 0 = γ2(K − 1)2 + γ(K − 1) +
γ2K2

4
− (1 + γ(K − 1))γK

= (γ2K2 + γ2 − 2γ2K) + (γK − γ) +
γ2K2

4
+ (γ2K − γK − γ2K2)

Rearranging the above expression yields a quadratic equation in K.

γ2K2

4
− γ2K + γ(γ − 1) = 0 (A.14)
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Since this is obtained by rearranging the equation for ∂λ/∂k = 0, the value of k that

satisfies Eq. A.14 will also be a solution for ∂λ/∂k = 0.

K =
γ2 ±

√
γ4 − γ3(γ − 1)

(γ2/2)

=

γ2 ±

√
γ4
(
1− (γ−1)

γ

)
(γ2/2)

= γ2

(
1±

√
1− 1 + 1

γ

(γ2/2)

)

=⇒ K = 2

(
1± 1

√
γ

)
(A.15)

Using K = k2c/k
2, we get

k =
kc√
K

(A.16)

Substituting Eq. A.16 in the positive solution for K in Eq. A.15, we get

kmax = kc

(
2
(
1 + 1/

√
γ
))− 1

2

(A.17)

Using k2c = f2D0/(σ̄β) and γ = 4D0σ̄/(D0 + σ̄)2, we can rewrite Eq. A.17 as

k2max =
f2D0

σ̄β

√
4D0σ̄

(D0 + σ̄)
÷ 2

( √
4D0σ̄

(D0 + σ̄)
+ 1

)

=
f2D

3
2
0√

σ̄β
÷
(√

4D0σ̄ +D0 + σ̄
)

=
f2D

3
2
0√

σ̄β
÷
(√

D0 +
√
σ̄
)2

=
f2D

3
2
0√

σ̄β
(√

D0 +
√
σ̄
)2
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Taking the square root, we get

kmax =
fD

3
4
0 σ̄

− 1
4

√
β
(√

D0 +
√
σ̄
) (A.18)

which is the same expression as in Eq. 2.13. Next, we will derive Eq. 2.14 for the

growth rate of the fastest growing mode, λmax. To do this, we set k = kmax in Eq. A.11.

λmax =
k2max(D0 + σ̄)

2

[
− 1±

√
1 + γ

(
k2c

k2max

− 1

)]
(A.19)

First, we evaluate the expression inside the square root using Eq. A.17.

1 + γ

(
k2c

k2max

− 1

)
= 1 + γ

(
k2c

k2c (2(1 + 1/
√
γ))−1

− 1

)

= 1 + γ

(
2 +

2
√
γ
− 1

)

= 1 + γ

(
1 +

2
√
γ

)
= 1 + γ + 2

√
γ

Substituting this expression in Eq.A.19

λmax = k2max

(D0 + σ̄)

2

(
− 1±

√
1 + γ + 2

√
γ
)

= k2max

(D0 + σ̄)

2

(
− 1±

√
(1 +

√
γ)2
)

= k2max

(D0 + σ̄)

2

(
− 1± (1 +

√
γ)
)

After discarding the negative solution, we are left with

λmax = k2max

(D0 + σ̄)

2

(
− 1 + (1 +

√
γ)
)

= k2max

(D0 + σ̄)

2

√
γ)
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Using Eq. A.18 and γ = 4D0σ̄
(
D0 + σ̄

)−2
, this becomes

λmax =

(
f2D

3
2
0 σ̄

− 1
2

β
(√

D0 +
√
σ̄
)2)(D0 + σ̄

2

)(
4D0σ̄(

D0 + σ̄
)2)

=
f2D

3
2
0

√
D0σ̄√

σ̄β
(√

D0 +
√
σ̄
)2

From this, we get

λmax =
f2D2

0

β
(√

D0 +
√
σ̄
)2 (A.20)



Appendix B

Supplementary Information:

Exploratory Dynamics of Vocal

Foraging During Infant-Caregiver

Communication

Table B.1: List of abbreviations in figure legends and axis labels

Abbreviation Explanation

Ch Infant vocalisation

Ad Adult vocalisation

WR With response (for steps following vocalisa-

tions that received responses)

WOR Without response (for steps following vo-

calisations that did not receive responses)

LENA or L Labelled by LENA software

HUM or H Labelled by human listeners

(f) AIC best fit curve

(d) Raw data-based curve

s.z. Step size

std. dev. Standard Deviation

74
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B.1 Infant and adult acoustics as a function of infant age
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Figure B.1: Infant and adult vocalisation acoustics as a function of infant age.
Mean pitch (standardised—and hence, unitless—across all infant and adult vocalisations
combined) as a function of infant age for infants (panel a) and adults (panel b). Red
squares are for the complete dataset, automatically (LENA) labelled. Each data point
corresponds to one day-long recording. Error bars represent the standard deviation. Note
that we computed the unbiased sample standard deviation, dividing by N-1, where N is
the number of samples used in computing the standard deviation. This is in contrast to
the population standard deviation, which divides by N. The dark blue points (HUM in the
legend) represent the same information as computed from data labelled by human listeners,
while the cyan points (LENA in the legend) are the values obtained from the corresponding
data as labelled by the LENA system. Note that data from infant 340 at 183 days was
re-labelled by two human listeners and results from both listeners are represented. (c, d)
Mean standardised amplitude of vocalisations as a function of infant age for infants and
adults, respectively.
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Table B.2: Vocalisation acoustics as a function of infant age. βs are shown with
p-values in brackets. Both were obtained from linear mixed effects models with participant
ID as a random effect and infant age as fixed effect. Statistically significant results (at a
significance level of 0.05) are in bold. All values reported have been rounded to two decimal
points wherever possible.

Measure Age effect

Infant mean pitch 0.11 (p=0.13)

Infant pitch standard deviation 0.21 (p=0.01)

Infant mean amplitude 0.50 (p<0.001)

Infant amplitude standard deviation -0.61 (p<0.001)

Adult mean pitch -0.12 (p=0.13)

Adult pitch standard deviation 0.31 (p<0.001)

Adult mean amplitude 0.001 (p=0.99)

Adult amplitude standard deviation -0.35 (p<0.001)
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Table B.3: Vocalisation acoustics as a function of whether the vocalisation was
preceded by response and infant age, with optional response-infant age interac-
tion. βs are shown with p-values in brackets. Both were obtained from linear mixed effects
models with participant ID as a random effect, and whether the preceding vocalisation re-
ceived a response and infant age as fixed effects. Interaction between response and infant
age was used as an optional fixed effect. Results from the model with the interaction term
are given in columns 4, 5, and 6. Statistically significant results (at a significance level of
0.05) are in bold. All values reported have been rounded to two decimal points wherever
possible.

Measure Response Infant age Response Infant age Infant age-

response in-

teraction

Infant mean -0.91 0.14 -0.91 0.09 0.11

std. dev. (p<0.001) (p=0.003) (p<0.001) (p=0.19) (p=0.22)

Infant pitch -0.14 0.26 -0.14 0.22 0.08

std. dev. (p=0.19) (p<0.001) (p=0.19) (p=0.01) (p=0.44)

Infant mean 0.31 0.51 0.31 0.62 -0.22

amplitude (p<0.001) (p<0.001) (p<0.001) (p<0.001) (p=0.01)

Infant ampli- -0.25 -0.54 -0.25 -0.65 0.21

tude std. dev. (p=0.01) (p<0.001) (p=0.01) (p<0.001) (p=0.02)

Adult mean 0.80 -0.22 0.8 -0.14 -0.17

pitch (p<0.001) (p<0.001) (p<0.001) (p=0.04) (p=0.06)

Adult pitch -0.56 0.25 -0.56 0.25 -0.0002

std. dev. (p<0.001) (p<0.001) (p<0.001) (p<0.001) (p=1.00)

Adult mean 1.02 -0.03 1.02 0.04 -0.13

amplitude (p<0.001) (p=0.49) (p<0.001) (p=0.50) (p=0.09)

Adult ampli- -0.23 -0.22 -0.23 -0.38 0.31

tude std. dev. (p=0.02) (p<0.001) (p=0.02) (p<0.001) (p=0.001)
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B.2 Steps in time are correlated with steps in acoustic space

Table B.4: Step sizes in 2D acoustic space as a function of steps in time. βs
are shown with p-values in brackets. Both were obtained from linear mixed effects models
with participant ID as a random effect. Infant age and steps in time were used as fixed
effects. Statistically significant results (at a significance level of 0.05) are in bold. All values
reported have been rounded to two decimal points wherever possible.

Vocaliser Time step Infant age

Adult 0.05 (p<0.001) 0.06 (p<0.001)

Adult (WR) 0.11 (p<0.001) 0.07 (p<0.001)

Adult (WOR) 0.05 (p<0.001) 0.06 (p<0.001)

Infant 0.07 (p<0.001) 0.01 (p=0.06)

Infant (WR) 0.09 (p<0.001) 0.02 (p=0.002)

Infant (WOR) 0.06 (p<0.001) 0.001 (p=0.76)
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Figure B.2: Correlations between steps in acoustic space and steps in time val-
idated using data labelled by human listeners. In (a) and (b), squares represent
significant correlations, while crosses represent correlations that were not significant (at a
significance level of 0.05), for infant and adult vocalisations, respectively. Black points are
obtained from data labelled by human listeners, while red points are from the same data
labelled by the LENA software. Note that data from infant 340 at 183 days was re-labelled
by two human listeners and results from both listeners are represented. The pink lines indi-
cate the range of space-time correlation values obtained from all available data as labelled
by LENA. The dashed blue line separates positive and negative correlation strengths. Note
that these correlations were computed using MATLAB’s corrcoef function.
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B.3 Step size probability density fits

For each set of step sizes—infants’ pitch steps following an adult response, infants’ pitch

steps following no adult response, etc.—we used AIC (see https://github.com/AnneSWarlaumont/

infant-vocal-foraging/tree/master/Analyses/AIC_Theo_Rhodes_code for details) to

determine the best fit probability density distribution type and the curve parameters. The

types of distributions considered were normal, lognormal, exponential and pareto distri-

butions. For a given type of step, we determined what type of distribution best fit the

majority of day-long recordings. We then analysed distribution parameters only from those

recordings for which the best fitting distribution also belonged to that of the majority best

fit type, for that set of step size distribution fits.
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Figure B.3: Representative example of randomly selected data vs. AIC fit (Infant
mww, age 75 days). The figure shows the probability distribution of steps in acoustic
space for infant vocalisations where the first infant vocalisation was not followed by an adult
response. The distribution derived from the data is in blue and the AIC best fit (lognormal,
in this case) is shown in red.

https://github.com/AnneSWarlaumont/infant-vocal-foraging/tree/master/Analyses/AIC_Theo_Rhodes_code
https://github.com/AnneSWarlaumont/infant-vocal-foraging/tree/master/Analyses/AIC_Theo_Rhodes_code
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Figure B.4: Distribution of AIC best fits for step size probability distributions
for various step types. Probability distributions of step sizes along pitch (panel a)
and amplitude (panel b) dimensions, respectively, are predominantly exponential, for both
adults and infants. (c) Probability distributions of steps in two dimensional acoustic space
are predominantly lognormal for both infants and adults. (d) Probability distributions of
inter-vocalisation times are predominantly lognormal for infants, and pareto for adults with
the exception that unsplit inter-vocalisation time distributions are largely lognormal for
adults.
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Table B.5: Goodness of AIC fits. The means and standard deviations of the R2 values
of the AIC best fit for different step size distribution types are shown. All results are from
data labelled by LENA. The step size distributions are organised by whether they were
computed from data where the vocaliser was an infant or adult (column 1), and whether
they are WOR, WR, or unsplit distributions (column 2). For mean and standard deviation
for each step size distribution type for a category (eg. WR pitch step size distributions of
adult vocalisations), see https://osf.io/53amv/. For a breakdown of the majority best
fit for each distribution type, see Fig. B.4. The fifth column contains the mean number of
observations per distribution for that category while the sixth column has the total number
of distributions that went into calculating the mean and standard deviation of R2 values
for that category. For example, the first row of the table gives the mean and standard
deviation of R2 values of all unsplit step size distributions (pitch, amplitude, 2d acoustic
space, and time) where the vocaliser was an infant, regardless of best fit type. For this
category, each distribution, on average, had 1043.86 observations, and 572 distributions
were used to calculate the mean and standard deviation R2 values. R2 values typically
fall between 0 to 1, with values closer to 1 indicating better fits. Note that one possible
reason for lower R2 values could be that some step types were less prevalent and therefore
had fewer steps on which to fit the distribution (see fifth column of the table). All values
reported have been rounded to two decimal points wherever possible. For a similar table
for human-labelled data and the corresponding LENA-labelled subset, see Table B.16.

Vocaliser Step type Mean R2 Std. dev Mean

observations

per

distribution

Number of

distributions

Infant Unsplit 0.92 0.10 1043.86 572

Infant WOR 0.91 0.09 603.18 564

Infant WR 0.78 0.20 184.83 564

Adult Unsplit 0.94 0.08 3223.40 572

Adult WOR 0.96 0.04 2031.54 564

Adult WR 0.60 0.40 137.27 564

https://osf.io/53amv/
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B.3.1 Do amplitude step sizes vary with response and infant age?

As shown in Table B.6 and Figure B.5, we observed a significant decrease with age in the

90th percentile value of infant amplitude step size. We also observed a significant increase

with age in the λ parameter of the fitted exponential distributions. Both findings suggest

that infants take shorter steps in amplitude as they get older, indicating more focused

exploration. For adults’ amplitude step sizes, we observed a significant increase in the

median and 90th percentile values, as well as smaller λ for the exponential fits following

infant response and with increasing infant age (Table B.7, Fig. B.5). These findings all

point to larger steps in amplitude, and thus suggest broader adult exploration, both with

infant response and with increasing infant age.

Finally, Figure B.6 shows how, for infant and adult vocalisations from the entire dataset

(all recordings at all ages combined), the median and 90th percentile values of amplitude

steps change as a function of the number of vocalisation events by the speaker since a

response was last received. Here, the step from the vocalisation that receives a response to

the next vocalisation is designated as vocalisation 0, the following step is designated 1, and

so on. This continues until the next response is received, at which point the count resets

to 0. Thus, as shown in panels (c) and (d), there are fewer steps included in the analysis

as the number of events since last response increases, and thus the estimates in panels (a)

and (b) can be expected to be less stable as the number of vocalisations since last response

increases. At the moment, we treat these visualisations as exploratory, leaving statistical

analyses of such multi-event sequences for future work.
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Table B.6: Infant steps in amplitude at the day-long recording level as a function
of recent response, infant age, and sample size: results of statistical analyses. βs
are shown with p-values in brackets. Statistically significant results (at a significance level
of 0.05) are in bold. Fixed effects are in rows and dependent variables are in columns. A
separate linear mixed effects regression model was run for each dependent variable. Sam-
ple size was included to control for possible co-variation between sample size (number of
vocalisation step events in the recording) and distribution fits, age, and response; including
sample size did not affect which results were statistically significant or their sign. Infant ID
was a random effect in all models. All values reported have been rounded to two decimal
points wherever possible.

Median 90 th per-

centile

Exponential

parameter, λ

With

sample

size

Response -0.13 -0.18 0.17

(p=0.25) (p=0.09) (p=0.11)

Infant age -0.08 -0.24 0.15

(p=0.17) (p<0.001) (p=0.01)

Sample size -0.13 -0.12 0.10

(p=0.12) (p=0.13) (p=0.24)

W/o

sample

size

Response -0.13 -0.18 0.17

(p=0.25) (p=0.09) (p=0.1)

Infant age -0.11 -0.27 0.17

(p=0.05) (p<0.001) (p=0.002)
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Table B.7: Adult steps in amplitude at the day-long recording level as a function
of recent response, infant age, and sample size: results of statistical analyses. βs
are shown with p-values in brackets. Statistically significant results (at a significance level
of 0.05) are in bold. Fixed effects are in rows and dependent variables are in columns. A
separate linear mixed effects regression model was run for each dependent variable. Sam-
ple size was included to control for possible co-variation between sample size (number of
vocalisation step events in the recording) and distribution fits, age, and response; including
sample size did not affect which results were statistically significant or their sign. Infant ID
was a random effect in all models. All values reported have been rounded to two decimal
points wherever possible.

Median 90 th per-

centile

Exponential

parameter, λ

With

sample

size

Response 0.47 0.37 -0.43

(p<0.001) (p<0.001) (p<0.001)

Infant age 0.23 0.11 -0.19

(p<0.001) (p=0.02) (p<0.001)

Sample size 0.06 0.07 0.01

(p=0.37) (p=0.24) (p=0.92)

W/o

sample

size

Response 0.47 0.37 -0.43

(p<0.001) (p<0.001) (p<0.001)

Infant age 0.23 0.12 -0.19

(p<0.001) (p=0.02) (p<0.001)
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Figure B.5: Results of amplitude step size distribution analyses. (a) Exponen-
tial probability distributions of infant inter-vocalisation changes (‘step sizes’) in amplitude
following adult response (WR, blue) and not (WOR, red). (b) Median infant amplitude
step size as a function of infant age, WR (blue) and WOR (red); (c) shows a similar plot
for adults where WR is in black and WOR is in green. (d) Exponential distributions of
amplitude steps for adults (WR, black; WOR, green). (e) Age-dependent change in the
exponential paramater λ of the WR (blue) and WOR (red) exponential amplitude step size
probability distributions for infants; (f) shows a similar plot for adults (WR, black; WOR,
green). Note that only distributions that were determined to best fit to an exponential
based on AIC are represented in (a), (d), (e), and (f). 90th percentiles of infant amplitude
step size distributions plotted against infant age following adult response (WR, blue) and
not (WOR, red); (h) shows a similar plot for adult amplitude step sizes (WR, black; WOR,
green). Medians and 90th percentile values were computed based on the raw data prior to
determining best fits using AIC.
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Figure B.6: Median and 90th percentile values for amplitude steps as a function
of number of events since last response. (a) Median amplitude step sizes for the entire
dataset as a function of number of vocalisations since a response was last received. Here, the
step from the vocalisation that received a response to the next vocalisation was assigned 0,
the following step (assuming no response to the second vocalisation) was designated 1, and
so on. This continued until the next response was received at which point the count resets
to 0. The data for infants is in blue and that for adults is in black. (b) 90th percentile values
of amplitude step sizes for the entire dataset, as a function of number of vocalisations since
the last response was received (Infant, blue; adult, black). Number of vocalisation events
as a function of number of vocalisations since the last response was received for infants (c),
and adults (d). Note that plots were terminated after the 10th vocalisation step following
the post-response step.
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B.3.2 Do pitch step sizes vary with response and infant age?

Table B.8: Infant steps in pitch at the day-long recording level as a function of
recent response, infant age, and sample size: results of statistical analyses. βs
are shown with p-values in brackets. Statistically significant results (at a significance level
of 0.05) are in bold. Fixed effects are in rows and dependent variables are in columns. A
separate linear mixed effects regression model was run for each dependent variable. Sam-
ple size was included to control for possible co-variation between sample size (number of
vocalisation step events in the recording) and distribution fits, age, and response; including
sample size did not affect which results were statistically significant or their sign. Infant ID
was a random effect in all models. All values reported have been rounded to two decimal
points wherever possible.

Median 90 th per-

centile

Exponential

parameter, λ

With

sample

size

Response 0.28 -0.01 -0.11

(p=0.01) (p=0.91) (p=0.27)

Infant age 0.25 0.43 -0.37

(p<0.001) (p<0.001) (p<0.001)

Sample size -0.29 -0.32 0.35

(p<0.001) (p<0.001) (p<0.001)

W/o

sample

size

Response 0.28 -0.01 -0.10

(p=0.01) (p=0.91) (p=0.35)

Infant age 0.19 0.36 -0.30

(p<0.001) (p<0.001) (p<0.001)
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Table B.9: Adult steps in pitch at the day-long recording level as a function of
recent response, infant age, and sample size: results of statistical analyses. βs
are shown with p-values in brackets. Statistically significant results (at a significance level
of 0.05) are in bold. Fixed effects are in rows and dependent variables are in columns. A
separate linear mixed effects regression model was run for each dependent variable. Sam-
ple size was included to control for possible co-variation between sample size (number of
vocalisation step events in the recording) and distribution fits, age, and response; including
sample size did not affect which results were statistically significant or their sign. Infant ID
was a random effect in all models. All values reported have been rounded to two decimal
points wherever possible.

Median 90 th per-

centile

Exponential

parameter, λ

With

sample

size

Response 0.06 -0.19 0.18

(p=0.50) (p=0.04) (p=0.03)

Infant age 0.31 0.32 -0.40

(p<0.001) (p<0.001) (p<0.001)

Sample size 0.04 0.13 -0.17

(p=0.51) (p=0.04) (p=0.01)

W/o

sample

size

Response 0.06 -0.19 0.17

(p=0.50) (p=0.04) (p=0.04)

Infant age 0.31 0.33 -0.41

(p<0.001) (p<0.001) (p<0.001)
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Figure B.7: Results of pitch step size distribution analyses. (a) Exponential proba-
bility distributions of infant inter-vocalisation changes (‘step sizes’) in pitch following adult
response (WR, blue) and not (WOR, red). (b) Median infant pitch step size as a function
of infant age (WR in blue and WOR in red); (c) shows a similar plot for adults where
WR is in black and WOR is in green. (d) Exponential distributions of pitch step sizes for
adults (WR, black; WOR, green). (e) Age-dependent change in the exponential parameter
λ of the WR (blue) and WOR (red) exponential pitch step size probability distributions
for infants; (f) shows a similar plot for adults (WR, black; WOR, green). Note that only
distributions that were determined to best fit to an exponential based on AIC criterion are
represented in (a), (d), (e), and (f). (g) 90th percentiles of the infant pitch step size dis-
tributions plotted against infant age following adult response (WR, blue) and not (WOR,
red); (h) shows a similar plot for adult pitch step sizes (WR, black; WOR, green). Medians
and 90th percentile values were computed based on the raw data, prior to determining best
fits using AIC.



APPENDIX B. EXPLORATORY DYNAMICS OF VOCAL FORAGING 90

For infants, as shown in Table B.8 and Figure B.7, we found a significant increase

following adult response in the median pitch step size, suggesting that infants are more likely

to take longer steps in the pitch dimension immediately after receiving adult responses. As

infant age increased, median and 90th percentile pitch step sizes increased and λs of the

exponential step size probability density fits decreased; these three findings suggest that as

infants get older, they explore more broadly in the pitch dimension.

For adults, as shown in Table B.9 and Figure B.7, we found a significant decrease in 90th

percentile value and a significant increase in λ parameter of the exponential fits following an

infant response. Together, these results suggest that adults are more likely to take shorter

steps following a response from an infant, indicating more focused exploration. We also

found that median and 90th percentile values increased and λ decreased with infant age.

These findings suggest that adults take longer steps in the pitch dimension as infant age

increases, suggesting more adult pitch exploration and variation as the infant develops.

Finally, Figure B.8 shows the median and 90th precentile values of pitch steps as a

function of the number of vocalisation events by the vocaliser since a response was last

received, for infant and adult vocalisations from the entire dataset (all recordings at all

ages combined).
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Figure B.8: Median and 90th percentile values for pitch steps as a function of
number of steps since a response was last received. (a) Median pitch step size for
the entire dataset, as a function of number of vocalisations since a response was last received.
The step from the vocalisation that received a response was assigned 0, the following step
(assuming no response in the meantime) was assigned 1, and so on. This continued until
the next response was received, at which point the count reset to 0. Infant data are shown
in blue, and adult data are in black. (b) 90th percentile of pitch step sizes for the entire
dataset, as a function of number of vocalisations since the last response was received (Infant,
blue; adult, black). Note that plots were terminated after the 10th vocalisation event after
the last response.
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B.3.3 Do step sizes in 2D acoustic space vary with response and infant

age?

See Sections 3.2–3.3 for additional results and discussion.

For a demonstration of how lognormal and pareto distributions change as a function of

their parameters, see https://osf.io/2fuje/ (Wolfram Player may be used to view the

demo). To see how the variation of the parameters of lognormal and pareto distributions

in parameters regimes seen in our data per AIC best fits, see Fig. B.9.

Table B.10: Steps in 2D acoustic space at the day-long recording level as a func-
tion of recent response and infant age: additional results of statistical analysis.
βs are shown with p-values in parentheses. Statistically significant results (at a significance
level of 0.05) are in bold. Fixed effects are in rows and dependent variables are in columns.
A separate linear mixed effects regression was run for each dependent variable. Infant ID
was a random effect in all models. In Tables 3.1–3.2, sample size was included to control for
possible co-variation between sample size and distribution fits, age, and response. Results
when not controlling for sample size are shown here. The only difference in statistically
significant relationships was observed for median infant step size increasing with infant age;
this relationship only reached statistical significance when sample size was controlled. All
values reported have been rounded to two decimal points wherever possible.

Median 90 th per-

centile

Lognormal

parameter, µ

Lognormal

parameter, σ

Infant vocalisations

W/o

sample

size

Response -0.02 -0.18 -0.01 -0.40

(p=0.85) (p=0.14) (p=0.95) (p<0.001)

Infant age 0.08 0.02 0.05 0.01

(p=0.16) (p=0.75) (p=0.40) (p=0.80)

Adult vocalisations

W/o

sample

size

Response 0.24 0.02 0.26 -0.60

(p=0.01) (p=0.83) (p=0.003) (p<0.001)

Infant age 0.39 0.30 0.46 -0.15

(p<0.001) (p<0.001) (p<0.001) (p=0.01)

https://osf.io/2fuje/
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Figure B.9: Representative probability distributions to demonstrate how values
affect fitted step size distribution shapes. (a) has lognormal probability distributions
for parameter ranges similar to those observed in AIC fits for infant and adult WR and
WOR step size distributions in 2D acoustic space obtained from LENA and human-labelled
data. As µ increases the peak widens while shifting to the right and the tail gets wider,
making both intermediate steps and larger steps more likely. As σ increases, the peak
widens while shifting to the left, and the tail widens, making shorter and larger steps more
likely. (b) A similar plot for lognormal parameter ranges similar to those observed in AIC
fits for WR and WOR temporal step size distributions (infants) obtained from LENA and
human-labelled data. In contrast with plot (a), plot (b) uses log scales for both x and
y axes, in order to better highlight the effects of differing parameter values in the ranges
of interest. (c) A similar plot for pareto parameter ranges similar to those observed in
AIC fits for adult WR and WOR temporal step size distributions obtained from LENA
and human-labelled data. In addition, we add a reference curve at xmin = 100 to show
the effect of increasing xmin. For the range of xmin values obtained from AIC best fits
(∼ 1-1.3) and the range of step sizes in time present in our data, the change in xmin has
no appreciable effect on the pareto distribution. In contrast, however, as α increases, the
distribution decays rapidly and the likelihood of larger step sizes decrease. For parameter
ranges for infant and adult WR/WOR lognormal fits of step size distributions in 2D acoustic
space from LENA-labelled data, see Fig. B.10; for parameter ranges for infant and adult
WR/WOR step size distributions in time from LENA-labelled data, see Fig. B.12; for
parameter values for human-labelled data and the corresponding LENA-labelled subset,
see https://osf.io/xptv4/ and https://osf.io/56gx9/. Note that the range of X-axis
values used in (a), (b), and (c) correspond to the range of step size values for the data that
went into the analyses reflected in Fig. B.10 and B.12. All probability distributions shown
have been normalised such that the area under the curve from 0 to the maximum X-axis
value shown, is 1.

https://osf.io/xptv4/
https://osf.io/56gx9/
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Figure B.10: Additional results of 2D acoustic space step size distribution anal-
yses. (a) Infant µ and (b) σ as a function of age and whether the child’s first vocalisation
received an adult response (WR, blue) or not (WOR, red). (c and d) show similar plots
for adult (WR, black; WOR, green). Only distributions that were determined to best fit
to lognormal based on AIC criterion are represented in (a-d). (e) 90th percentile values for
step sizes in 2D acoustic space as a function of infant age for infants (WR, blue; WOR,
red). (f) shows a similar plot for adults (WR, black; WOR, green). 90th percentile values
were computed from the raw data, before finding the AIC best fit.
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Figure B.11: Median and 90th percentile values for steps in 2D acoustic space
as a function of number of events since last response. (a) Median step size in
2D acoustic space for the entire dataset as a function of number of vocalisations since the
last response was received. The step from the vocalisation that received a response was
assigned 0, the following step (assuming no response in the meantime) was assigned 1, and
so on. This continued until the next response was received, at which point the count reset
to 0. The data for infants are in blue and data for adults are in black. (b) 90th percentile
value of step sizes in 2D acoustic space for the entire dataset, as a function of number of
vocalisations since the last response was received (infant, blue; adult, black). Note that
plots were terminated after the 10th vocalisation event after the last response.
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B.3.4 Do inter-vocalisation intervals vary with response and infant age?

See Sections 3.2–3.3 for additional figures and results.

Table B.11: Inter-vocalisation interval distributions at the day-long recording
level as a function of recent response and infant age: results of statistical anal-
ysis. βs are shown with p-values in parentheses. Statistically significant results (at a
significance level of 0.05) are in bold. Fixed effects are in rows and dependent variables are
in columns. A separate linear mixed effects regression was run for each dependent variable.
Infant ID was a random effect in all models. In Tables 3.1–3.2, sample size was included
to control for possible co-variation between sample size and distribution fits, age, and re-
sponse. Here, results when not controlling for sample size are shown. When sample size
was excluded, infant age showed a statistically significant negative relationship with the
90th percentile value and lognormal parameters σ and µ of infant inter-vocalisation interval
distributions. Similarly, when sample size was included, the positive relationship between
adult median inter-vocalisation interval and an infant response being recently received was
only marginally significant. Finally, when sample size was included, we found a statistically
significant negative effect in the µ parameter of infant inter-vocalisation step size distribu-
tions with respect to having recently received an adult response. All values reported have
been rounded to two decimal points wherever possible.

Median 90 th per-

centile

Lognormal

parameter, µ

Lognormal

parameter, σ

Infant vocalisations

W/o

sample

size

Response -0.25 -0.11 -0.18 -0.42

(p=0.02) (p=0.29) (p=0.07) (p<0.001)

Infant age -0.07 -0.13 -0.15 -0.17

(p=0.17) (p=0.02) (p=0.004) (p=0.001)

Median 90 th per-

centile

Pareto pa-

rameter, xmin

Pareto pa-

rameter, α

Adult vocalisations

W/o

sample

size

Response 0.16 -0.07 0.64 0.33

(p=0.07) (p=0.50) (p<0.001) (p<0.001)

Infant age 0.19 0.01 -0.003 -0.21

(p<0.001) (p=0.87) (p=0.96) (p<0.001)
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Figure B.12: Additional results of inter-vocalisation step size distribution analy-
ses. Infant µ (a) and σ (b) plotted against infant age following adult response (WR, blue)
and not (WOR, red). Only distributions that were best fit to lognormal curves based on
AIC are represented. Adult xmin (c) and α (d) plotted against infant age following infant
response (WR, black) and not (WOR, green). Only distributions that were best fit to pareto
curves per AIC are shown. (e) shows 90th percentile values for inter-vocalisation intervals
plotted against infant age for infants (WR, blue; WOR, red). (f) shows a similar plot for
adults (WR, black; WOR, green). 90th percentile values were computed from the raw data,
before finding the AIC best fit.
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Figure B.13: Median and 90th percentile values for inter-vocalisation intervals as
a function of number of events since a response was last received. (a) Median inter-
vocalisation interval for the entire dataset as a function of number of vocalisations since
the last response was received. The step from the vocalisation that received a response
to the next vocalisation was assigned 0, the following step (assuming no response in the
meantime) was assigned 1, and so on. This continued until the next response was received
at which point the count reset to 0. Data for infants are in blue and adult data are in black.
(b) 90th percentile value of inter-vocalisation intervals for the entire dataset, as a function
of number of vocalisations since the last response was received. Infant data is in blue and
adult data is in black. Note that plots are terminated after the 10th vocalisation event after
the last response.

Note that unlike other measures presented in this study (mean and standard deviation of

pitch and standard deviation, median and 90th percentile values of step sizes in amplitude,

pitch, and 2D acoustic space), infant inter-vocalisation intervals are longer than those of

adults, based on median and 90th percentile values, i.e., infants vocalise more sparingly

than adults. This observation is supported by Table B.5. This disparity in median and 90th

percentile values is in contrast to all other measures presented, which are comparable for

both infants and adults.
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B.4 Using data re-labelled by human listeners to check the

validity of automatically labelled data

B.4.1 Inter-rater reliability measures

[Confusion matrices for LENA vs. human-listener labelled data]Confusion matrices for

LENA vs. human-listener labelled data. Confusion matrices for each set of

human-labelled data are shown, with LENA labels as the known class (row indices) and

human-listener labels as the predicted class (column indices). For a description of

human-listener vs. LENA labels, refer to Section 3.4.

CHN (H) FAN (H) MAN (H)

L1, 274

CHNSP (L) 320 32 0

FAN (L) 99 295 12

MAN (L) 22 26 83

L2, 530

CHNSP (L) 954 195 12

FAN (L) 278 445 113

MAN (L) 66 12 287

L1, 340

CHNSP (L) 462 12 17

FAN (L) 23 269 137

MAN (L) 3 17 512

L3, 340

CHNSP (L) 502 12 16

FAN (L) 24 258 147

MAN (L) 3 15 541
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Table B.12: Confusion matrix for human listeners 1 vs. 3 for data from infant
340. Confusion matrix for data from infant 340 labelled by listeners 1 and 3 is shown, with
L1 labels as the known class (row indices) and L3 labels as the predicted class (column
indices). For a description of human-listener labels, refer to Section 3.4. Note that we see
high agreement between L1 and L3 labels, which is in agreement with the high inter-rater
reliability scores for listeners 1 and 3 for data from infant 340 (see Table 3.4).

Infant 340 CHN (L3) FAN (L3) MAN (L3)

CHN (L1) 478 0 0

FAN (L1) 0 266 10

MAN (L1) 1 0 631
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Table B.13: Fraction of LENA speaker labels as identified by human listeners.
The fraction of infant speech-related (CHNSP) labels and adult (MAN or FAN) labels as
labelled by LENA that fall into various label categories as determined by human listeners
is reported, for each human-labelled dataset. The human-labelled categories include infant
speaker label (CHN) only (Ch only, column 2); adult (MAN or FAN or both) speaker
only (Ad only, column 3); infant speaker with possible other child overlap but no adult
overlap (column 4); adult speaker with possible other child (not the infant wearing the
recorder) overlap (column 5); infant (CHN) and/or adult (MAN or FAN) speakers with
possible overlap of other child voice (column 6); and either no voices identified or other
child identified, but no target infant (CHN) or adult (MAN or FAN). For a description of
human-listener vs. LENA labels, refer to the Section 3.4. All values reported have been
rounded to two decimal points wherever possible. We see fairly good agreement (∼ 70% or
greater) between human listeners and LENA for the infant 340 data labelled by listeners 1
and 3 both when overlaps are allowed (Adult (L) vs. column 5, and Ch (L) vs. column 4)
and not allowed (Adult (L) vs. column 3, and Ch (L) vs. column 2). Note that these are also
the human-labelled datasets with the highest percent agreement and Cohen’s Kappa values
(Table 3.4). These values are lower for data from infant 274 labelled by listener 1, and data
from infant 530 labelled by listener 2, both of which have lower inter-rater reliability scores.
In addition, the data loss as a consequence of more restrictions on determining what is an
infant vocalisation (CHN only vs. CHN+Olp; no Ad vs. Ch/Ad) or an adult vocalisation
(Ad only vs. Ad+Olp; no Ch vs. Ch/Ad) for human-labelled data can be seen clearly in
the table.

Ch only

(H)

Ad only

(H)

Ch+Olp;

no Ad (H)

Ad+Olp;

no Ch (H)

Ch/Ad

(H)

No Ch/Ad

(H)

L1, 274

Ch (L) 0.49 0.05 0.61 0.10 0.83 0.17

Ad (L) 0.08 0.32 0.11 0.45 0.87 0.13

L1, 340

Ch (L) 0.67 0.04 0.72 0.08 0.86 0.14

Ad (L) 0.02 0.74 0.02 0.89 0.96 0.04

L3, 340

Ch (L) 0.72 0.04 0.78 0.06 0.90 0.09

Ad (L) 0.02 0.75 0.02 0.87 0.96 0.04

L2, 530

Ch (L) 0.51 0.11 0.57 0.15 0.83 0.17

Ad (L) 0.14 0.37 0.16 0.43 0.74 0.26
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B.4.2 Acoustic space trajectories and step size distributions of infants

and adults

In Figures B.14, B.15, B.16, and B.17, we present data from three infants at different ages

re-labelled by human listeners. For comparison, we also present the corresponding data

(i.e. from the same day-long recording) as labelled by the LENA software. In addition to

comparing how data labelled by the LENA software compares to the same data labelled

by human listeners, we have one recording (participant 340, age 183 days) labelled by two

different human listeners to compare how differences in labelling by different listeners affect

the data.

In each of the four figures, panel (a) shows infant vocalisations’ locations in 2-D acoustic

space and panel (b) shows adult vocalisations’ locations in the same space. The data are

depicted as a series of directed vectors from vocalisation i at a location in the acoustic

space given by the ordered pair (fi, di) to vocalisation i + 1 at (fi+1, di+1), starting from

the first available vocalisation based on the data. Here, f is the z-scored log pitch, and

d is the z-scored amplitude. Pink vectors start at infant vocalisations that have received

adult responses (corresponding to WR steps) and grey vectors start at infant vocalisations

that have not received responses (corresponding to WOR steps), as labelled by the human

listener. These plots are on the left side of the (a) panels. On the left side of panel (b), pink

vectors start at adult vocalisations that have received infant responses (WR steps) and grey

vectors start at adult vocalisations that have not received infant responses (WOR steps),

as labelled by the human listener. On the right side of panel (a) are infant step data based

on LENA labels, with blue vectors starting at infant vocalisations that have received adult

responses (WR steps) and red vectors starting at infant vocalisations that have not received

responses (corresponding to WOR steps). Finally, on the right side of panel (b) are the adult

step data based on LENA labels, with black vectors starting at adult vocalisations that have

received infant responses (WR steps) and green vectors starting at adult vocalisations that

have not received responses (WOR steps). Note that vocalisations that were marked as ‘not

applicable’ for whether a response was received or not were excluded from these plots.

Finally, we present raw and fitted probability distributions of steps in pitch, amplitude,

2D acoustic space, and time. Each plot shows a set of human-labelled data together with the

same recording’s data as labelled by the LENA software. Plots c1–c4 and d1–d4 show raw

probability distributions of step sizes following response (WR) based on human labelled

utterances (pink) and the corresponding data as labelled by LENA (infant: blue; adult:
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black). Plots c5–c8 and d5–d8 show raw probability distributions of step sizes following no

response (WOR) for human labelled utterances (grey) and the corresponding data labelled

by LENA (infant: red; adult: green). Plots e1–f8 show best fit curves for step size probabil-

ity distributions from human labelled data and the corresponding data labelled by LENA.

Dashed pink lines are for human-labelled data WR (where the first vocalisation received

a response), dashed grey are for human-labelled data WOR (where the first vocalisation

did not receive a response), dashed blue lines are for the corresponding LENA-labelled WR

data for infants, and dashed black lines are for the corresponding LENA-labelled adult WR

data. Similarly, dashed red lines are LENA-labelled infant WOR data and dashed green

lines are LENA-labelled adult WOR data. More details about the fits and fit parameters

available here: https://osf.io/8ern6/, in folder Reported and auxiliary results.

We see that the without response (WOR) steps’ distributions are extremely similar

when LENA’s labels vs. human re-labelling are used. On the other hand, for with-response

steps, we see larger differences between the distribution fits (shown in dashed lines in plots

e1–e4 and f1–f4) for human-labelled vs. LENA-labelled data. We also see that the raw

distributions are much less smooth for human-labelled with-response data. A likely reason

for these discrepancies is the paucity of with-response data in the human-labelled dataset

(see Table B.14). This in turn may perhaps be due to human listeners’ greater sensitivity

to voices, so that segments labelled by humans may have been more likely to be identified

as containing multiple human voices and therefore excluded from analysis. Additionally,

exclusion of many of segments of the audio (based on LENA’s automatic segmentation and

classification) from the human labelling task made it unlikely that relevant voices that were

missed by the LENA system would have been included in the human analysis. For all these

reasons, responses were less likely to be identified within the human-labelled datasets. For

quantitative results on how step size distributions based on human-labelled data compare

to those based in corresponing LENA-labelled data, see Table B.15.

https://osf.io/8ern6/
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Table B.14: Number of data points in WR and WOR step sizes for human re-
labelled data and corresponding LENA data. The number of data points for both
WR and WOR step sizes for all three datasets that were re-labelled by human listeners are
shown. These numbers are reported for adult vocalisations (Ad) and infant vocalisations
(Ch), for both human re-labelled data (HUM) and the corresponding LENA data (LENA).
The LENA-labelled data include many more steps for all types except child steps in which
the first vocalisation was not followed by an adult response. We find that the number
of steps for this category is comparable for both human-labelled data and corresponding
LENA-labelled data.

Child ID, age LENA Ad LENA Ch Listener ID HUM Ad HUM Ch

WR WOR WR WOR WR WOR WR WOR

274, 82 days 100 941 124 383 L1 7 359 10 338

340, 183 days 76 1001 86 438 L1 7 771 10 397

340, 183 days 76 1001 86 438 L3 15 781 13 425

530, 95 days 295 1769 340 1289 L2 7 492 17 1060
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Table B.15: Two-sample Kolmogorov-Smirnov (KS2) test results, comparing step
size distributions from human-labelled data and corresponding LENA labelled
data. frej represents the fraction of tests which failed to reject the null hypothesis (that
data from the two samples – step size distriution from data labelled by LENA and human
listeners – are drawn from the same distribution) at the 0.05 significance level, for individual
datasets (column 1). For each category specified in columns 3, 5, and 7, we present the mean
p-value from the KS2 test in columns 4, 6, and 8, respectively. The standard deviation of the
p-value in parentheses. For example, for data from infant 274 at 82 days labelled by listener
1, 83 percent of KS2 tests (performed on unsplit, WR, and WOR step size distributions
in pitch, amplitude, 2D acoustic space, and time, for infants and adults) failed to reject
the null hypothesis. Further, for all unsplit step size distributions (pitch, amplitude, 2D
acoustic space, and time) where the infant was the vocaliser, the mean p-value associated
with the KS2 tests performed was 0.37, with a standard deviation of 0.35. By and large,
we see that frej is high for all datasets except infant 530 at 95 days labelled by listener 2.
Note that frej is lowest for data from infant 530 at 95 days labelled by listener 2, followed
by data from infant 274 at 82 days labelled by listener 1, both of which have the lowest
reliability scores (Table 3.4; Subsection B.4.1). Similarly, we also see the lowest mean p-
values for these datasets. All values reported have been rounded to two decimal points
wherever possible. For more detailed results, see https://osf.io/8ern6/ .

Infant ID, age,

and listener ID

frej

Infant 274, 82

days, listener L1
0.83

Infant

(unsplit)

0.37

(0.35)

Infant

(WR)

0.33

(0.32)

Infant

(WOR)

0.46

(0.29)

Adult

(unsplit)

0.18

(0.13)

Adult

(WR)

0.51

(0.39)

Adult

(WOR)

0.28

(0.19)

Infant 340, 183

days, listener L1
0.92

Infant

(unsplit)

0.35

(0.35)

Infant

(WR)

0.79

(0.13)

Infant

(WOR)

0.39

(0.39)

Adult

(unsplit)

0.74

(0.49)

Adult

(WR)

0.76

(0.36)

Adult

(WOR)

0.73

(0.49)

Infant 340, 183

days, listener L3
0.92

Infant

(unsplit)

0.69

(0.22)

Infant

(WR)

0.65

(0.12)

Infant

(WOR)

0.70

(0.31)

Adult

(unsplit)

0.67

(0.45)

Adult

(WR)

0.63

(0.33)

Adult

(WOR)

0.69

(0.46)

Infant 530, 95

days, listener L2
0.46

Infant

(unsplit)

<0.001

(<0.001)

Infant

(WR)

0.51

(0.36)

Infant

(WOR)

0.02

(0.02)

Adult

(unsplit)

0.05

(0.05)

Adult

(WR)

0.65

(0.35)

Adult

(WOR)

0.25

(0.42)

https://osf.io/8ern6/
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Table B.16: Goodness of AIC fits (human-labelled data and corresponding LENA-
labelled subset). The means and standard deviations of the R2 value of the AIC best fit
for different step size distribution types are shown. All results are from data labelled by
human listeners and the corresponding LENA-labelled subset. The step size distributions
are organised by whether they were computed from data where the vocaliser was an infant or
adult (column 1), and whether they are WOR, WR, or unsplit distributions (column 2). For
mean and standard deviation for R2 values for each step size distribution type for a category
(eg. WR pitch step size distributions of adult vocalisations), see https://osf.io/53amv/.
For a breakdown of the majority best fit for each distribution type, see Fig. B.4. The sixth
column has the mean number of observations per distribution for that category while the
seventh column has the total number of distributions that went into calculating the mean
and standard deviation of R2 values for that category. For example, the first row of the
table gives the mean and standard deviation of all unsplit step size distributions (pitch,
amplitude, 2D acoustic space, and time) where the vocaliser was an infant as labelled by
human listeners, regardless of best fit type. For this category, each distribution on average
had 684 observations, and 16 distributions were used to calculate the mean and standard
deviation R2 values. All values reported have been rounded to two decimal points wherever
possible. R2 values typically fall between 0 to 1, with values closer to 1 indicating better
fits. Note that one possible reason for lower R2 values could be that some step types were
less prevalent and therefore had fewer steps on which to fit the distribution (see the sixth
column of the table).

Labelled by Vocaliser Step

type

Mean

R2

Std.

dev

Mean

num. of

observa-

tions

Num. of

distribu-

tions

HUM Infant Unsplit 0.90 0.06 684 16

LENA (subset) Infant Unsplit 0.94 0.03 1188.67 12

HUM Infant WOR 0.90 0.09 555 16

LENA (subset) Infant WOR 0.94 0.04 703.33 12

HUM Infant WR 0.22 0.24 12.5 16

LENA (subset) Infant WR 0.69 0.21 183.33 12

HUM Adult Unsplit 0.90 0.06 861.5 16

LENA (subset) Adult Unsplit 0.93 0.03 1930.33 12

HUM Adult WOR 0.90 0.09 600.75 16

LENA (subset) Adult WOR 0.94 0.06 1237 12

HUM Adult WR 0.18 0.24 9 16

LENA (subset) Adult WR 0.69 0.22 157 12

https://osf.io/53amv/
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Figure B.14: Human labelled data and corresponding LENA labelled data - Par-
ticipant 274 at 82 days old; Listener 1. (a) Acoustic space traversed by the infant as
labelled by human listener L1 (WR in pink and WOR in grey; left), and as labelled by the
LENA software (WR in blue and WOR in red; right). (b) Acoustic space traversed by the
adult as labelled by human listener L1 (WR in pink and WOR in grey; left), and as labelled
by the LENA software (WR in black and WOR in green; right). Raw and fitted probability
distributions of step sizes from human labelled data and corresponding LENA labelled data
are shown in panels (c1) through (f8). Infant data for step size distributions following a
response (WR) are in panels c1–c4 and infant data for WOR are in panels c5–c8. Adult
WR data are in panels d1–d4, and adult WOR data are in panels d5–d8. Fits for Infant
WR data are in panels e1–e4 and infant WOR fits are in panels e5–e8. Adult WR fits are in
panels f1–f4, and adult WOR fits are in panels f5–f8. The (f) in the legend indicates fitted
as opposed to raw data (indicated by (d) in the legend). Note that both human-labelled
infant and adult WR and WOR data/fits are given by pink and grey solid/dashed lines and
are presented in the same subplots as their corresponding LENA-labelled data/fits, to allow
for visual comparison of how well the curves do, or in a few cases do not, overlap.
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Figure B.15: Human labelled data and corresponding LENA labelled data - Par-
ticipant 340 at 183 days old; Listener 1. (a) Acoustic space traversed by the infant as
labelled by human listener L1 (WR in pink and WOR in grey; left), and as labelled by the
LENA software (WR in blue and WOR in red; right). (b) Acoustic space traversed by the
adult as labelled by human listener L1 (WR in pink and WOR in grey; left), and as labelled
by the LENA software (WR in black and WOR in green; right). Raw and fitted probability
distributions of step sizes from human labelled data and corresponding LENA labelled data
are shown in panels (c1) through (f8). Infant data for step size distributions following a
response (WR) are in panels c1–c4 and infant data for WOR are in panels c5–c8. Adult
WR data are in panels d1–d4, and adult WOR data are in panels d5–d8. Fits for Infant
WR data are in panels e1–e4 and infant WOR fits are in panels e5–e8. Adult WR fits are in
panels f1–f4, and adult WOR fits are in panels f5–f8. The (f) in the legend indicates fitted
as opposed to raw data (indicated by (d) in the legend). Note that both human-labelled
infant and adult WR and WOR data/fits are given by pink and grey solid/dashed lines and
are presented in the same subplots as their corresponding LENA-labelled data/fits, to allow
for visual comparison of how well the curves do, or in a few cases do not, overlap.
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Figure B.16: Human labelled data and corresponding LENA labelled data - Par-
ticipant 340 at 183 days old; Listener 3. (a) Acoustic space traversed by the infant as
labelled by human listener L3 (WR in pink and WOR in grey; left), and as labelled by the
LENA software (WR in blue and WOR in red; right). (b) Acoustic space traversed by the
adult as labelled by human listener L3 (WR in pink and WOR in grey; left), and as labelled
by the LENA software (WR in black and WOR in green; right). Raw and fitted probability
distributions of step sizes from human labelled data and corresponding LENA labelled data
are shown in panels (c1) through (f8). Infant data for step size distributions following a
response (WR) are in panels c1–c4 and infant data for WOR are in panels c5–c8. Adult
WR data are in panels d1–d4, and adult WOR data are in panels d5–d8. Fits for Infant
WR data are in panels e1–e4 and infant WOR fits are in panels e5–e8. Adult WR fits are in
panels f1–f4, and adult WOR fits are in panels f5–f8. The (f) in the legend indicates fitted
as opposed to raw data (indicated by (d) in the legend). Note that both human-labelled
infant and adult WR and WOR data/fits are given by pink and grey solid/dashed lines and
are presented in the same subplots as their corresponding LENA-labelled data/fits, to allow
for visual comparison of how well the curves do, or in a few cases do not, overlap.
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Figure B.17: Human labelled data and corresponding LENA labelled data - Par-
ticipant 530 at 95 days old; Listener 2. (a) Acoustic space traversed by the infant as
labelled by human listener L2 (WR in pink and WOR in grey; left), and as labelled by the
LENA software (WR in blue and WOR in red; right). (b) Acoustic space traversed by the
adult as labelled by human listener L2 (WR in pink and WOR in grey; left), and as labelled
by the LENA software (WR in black and WOR in green; right). Raw and fitted probability
distributions of step sizes from human labelled data and corresponding LENA labelled data
are shown in panels (c1) through (f8). Infant data for step size distributions following a
response (WR) are in panels c1–c4 and infant data for WOR are in panels c5–c8. Adult
WR data are in panels d1–d4, and adult WOR data are in panels d5–d8. Fits for Infant
WR data are in panels e1–e4 and infant WOR fits are in panels e5–e8. Adult WR fits are in
panels f1–f4, and adult WOR fits are in panels f5–f8. The (f) in the legend indicates fitted
as opposed to raw data (indicated by (d) in the legend). Note that both human-labelled
infant and adult WR and WOR data/fits are given by pink and grey solid/dashed lines and
are presented in the same subplots as their corresponding LENA-labelled data/fits, to allow
for visual comparison of how well the curves do, or in a few cases do not, overlap.



B.5 What vocalisation acoustics and changes in vocalisation

acoustics predict responses?

Table B.17: Which vocalisation patterns received responses: results of statistical
analysis with patterns of change in acoustics included. βs are given with p-values in
brackets. Significant results (at a significance level of 0.05) are in bold. The ‘step’ variables
are the step sizes from the preceding vocalisation to the vocalisation in question. Note that
acoustic step sizes are non-directional and may represent either increasing or decreasing
amplitude or pitch. Infant ID was a random effect in all models. All values reported have
been rounded to two decimal points wherever possible.

Probability of infant

receiving adult response

Probability of adult

receiving infant response

Infant age -0.16 -0.01

(p<0.001) (p=0.08)

Pitch -0.32 0.24

(p<0.001) (p<0.001)

Amplitude 0.18 0.44

(p<0.001) (p<0.001)

Pitch step -0.02 -0.07

(p=0.002) (p<0.001)

Amplitude step 0.03 0.09

(p<0.001) (p<0.001)

Time step -0.07 -0.03

(p<0.001) (p=0.02)
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Appendix C

Supplementary Information: The

Fitness Trade-offs of Predation:

When to Scavenge and When to

Steal

C.1 Allometric relationships used in the SDP model

Figure C.1: Allometric scaling of predator energy expenditure for different strate-
gies. (a) The left Y axis (blue) summarises how a predator’s basal metabolic rate (BMR;
blue solid line), field metabolic rate (FMR; green solid line), and maximal metabolic rate
(MMR; black solid line) scales with predator body size. All metabolic rates are expressed
in J/s. The right Y axis (red) shows how a scavenging or kleptoparasitic predator’s energy
expenditure (in J) over the course of a day scales with predator body mass (red dashed line).
(b) shows a heat map of the energy expenditure associated with hunting over the course of
a day (see colour bar; units of J/day) when the number of successful encounters with prey,
nh = 1, as a function of predator and prey mass. Here, the superscript h indicated hunting.
(c) shows a similar heat map for nh = 2.
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Figure C.2: Allometric scaling of factors that affect predator energetic gains.
(a) Biomass consumed by a scavenger (red), and a hunter or kleptoparasite (blue) in one
successful encounter is shown as a function of prey mass. The former is given by the sum
of the prey’s fat and muscle mass, while the latter is computed by subtracting the prey’s
fat, muscle, and skeletal mass from the prey mass. (b) Predator stomach size as a function
of predator body size. (c) The maximum possible number of successful encounters during
a 12 hour foraging bout, nmax (see colour bar) for hunting/stealing for all predator-prey
mass pairings is shown as a heat map, as a function of predator mass, Mp, and prey mass,
Mr. The white dashed line is the one-to-one mass line. (d) shows a similar heat map for
nmax for scavenging. nmax is 1, regardless of strategy, when prey is larger than the predator
(for the range of predator and prey masses investigated,). When prey is smaller than the
predator, nmax is higher for scavengers when compared to the other two strategies. Closer
to the one-to-one mass line, however, this number approaches 1 for all strategies.
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Figure C.3: Allometric scaling of handling time for different strategies. (a) The
handling time, th (in hours), for a hunter as a function of predator and prey mass is shown
as a heat map (see colour bar). The dashed white line is the one-to-one mass line. The
contours for th = 10, 20 hours are shown. (b) shows a similar heat map for the handling
time, th, for a scavenger. (c) shows a similar heat map for th for a kleptoparasite. When prey
is smaller than the predator, th for hunting and stealing is less than two hours, while that
for scavenging is less than an hour. In addition, th for stealing and hunting are comparable
to each other while that for scavenging is much lower.

For hunting, the handling time is computed as the sum of the time it takes for the predator to

pursue and subdue prey (estimated as 20% of the handling time according to the expression

th = 8912M1.02
p Mr) and the time it takes to consume prey fat and muscle mass (estimated

as 80% of th = 8912M1.02
p rh), where rh is the combined prey fat and muscle mass from one

successful prey encounter).

For scavenging, the handling time is estimated as 80% of th = 8912M1.02
p rs, where rs is

the mass of leftovers available to the scavenger in one successful encounter. This acocunts

for the fact that the scavenger does not spend time pursuing and subduing prey.

Finally, in the case of kleptoparasitism, the handling time is computed as the sum of

10% of th = 8912M1.02
p Mr (to account for the time spent stealing from the competitor,

because the actual act of stealing is assumed to be a quick one, due to the high per unit

time mortality associated with it) and 80% of th = 8912M1.02
p rk, where rk = rh.
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Figure C.4: Allometric scaling of predator mortality for different foraging strate-
gies. (a) The probability of mortality per second for a scavenger as a function of predator
body mass is shown. This serves as the baseline mortality that all predators incur at all
times. During antagonistic encounters with a prey (or competitor) while hunting (or steal-
ing), predators incur additional mortality risks. (b) Additional probability of mortality per
second as incurred by predators during successful encounters with prey while hunting is
shown as a function of predator and prey mass. The dashed horizontal line indicates the
maximum competitor mass investigated in our model, to provide a comparison between
the additional mortality due to hunting and the additional mortality due to stealing. (c)
shows the additional mortality per second incurred during a successful encounter with the
competitor as a function of predator mass and competitor mass. Note that the additional
mortality due to stealing at competitor masses is comparable to that due to hunting at prey
masses that are an order of magnitude higher.



APPENDIX C. THE FITNESS TRADE-OFFS OF PREDATION 121

Figure C.5: A summary of allometric scaling relationships used to compute en-
counter probability distributions for different strategies. (a) The population density
(in number of individuals per km2) and the biomass density are plotted as a function of
organismal body mass on the left and right Y axes, respectively. These relationships apply
to predator, prey and competitor densities in our model. (b) The body velocity, v of the
predator during a foraging bout is plotted as a function of predator mass. (c) The reaction
distance, d of the predator for a target of given mass is depicted as a heat map. This rela-
tionship applies to both prey and competitor in our model, with the former being relevant
to hunting, and the latter being relevant to scavenging and stealing. The dashed horizon-
tal line indicates the maximum competitor mass investigated in this study. (d) shows the
probability of a predator successfully subduing prey (in the case of hunting) or successfully
stealing prey from a competitor (in the case of stealing) as a heat map. The dashed hori-
zontal line indicates the maximum competitor mass investigated in this study.
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C.2 Computing proportion of strategies

Figure C.6: Schematic describing how the proportion of different foraging strate-
gies is computed. One trial of the simulation involves computing decision matrices for
every combination of predator, prey, and competitor mass. If Np, Nr, and Nv are the
number of predator, prey, and competitor masses considered in the simulation, then there
are Np ×Nr ×Nv decision matrices. Each decision matrix contains the strategy employed
by the predator for discretised values of the state variables, energetic content and time
(sample decision matrix shown). Here, h represents hunting, s represents scavenging, and k
represents stealing (kleptoparasitism). Each decision matrix can be summarised using the
numbers fh, fs, and fk, which represent the fraction of hunting, scavenging, and kleptopar-
asitic ‘decisions’ in the matrix, respectively. Thus, the information in Np×Nr×Nv decision
matrices can be reduced to Np × Nr × Nv vectors of the form (fh, fs, fk). Alternatively,
the vectors (ih, is, ik) can also be used, where ih, is, and ik are the number of hunting,
scavenging, and stealing ‘decisions’ in the decision matrix.
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Figure C.7: Schematic describing how the proportion of different foraging strate-
gies is computed (contd.). The vectors (f ljm

h , f ljm
s , f ljm

k ) can be used to compute the
proportion of hunting (Ph), scavenging (Ps), and stealing (Pk) in different contexts. Here,
the indices l, j, and m correspond to the predator, competitor, and prey mass, respectively.
(a) To compute the proportion of a strategy as a function of predator and competitor mass,

the vectors (f ljm
h , f ljm

s , f ljm
k ) are summed along the prey mass axis, as shown. Then, for

predator mass M l
p and competitor mass M j

v , the proportion of hunting, P lj
h is given by∑

m f ljm
h /Nr. Dividing by Nr normalises the summation. Proportions for the other two

strategies can be computed similarly. (b) To compute the proportion of a strategy as a

function of predator mass, the vectors (f ljm
h , f ljm

s , f ljm
k ) are summed along the prey mass

and competitor mass axes. Then, for predator mass M l
p the proportion of hunting, P l

h is

given by
∑

j,m f ljm
h /NrNv =

∑
j L

ij
h /Nv. Dividing by NrNv normalises the summation.

Proportions for the other two strategies can be computed similarly.
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C.3 More visualisations of average proportions of strategy

Figure C.8: Relative predator size as a predictor of strategy diversity Shannon’s
entropy, H of predator foraging strategy as a function of prey size and competitor size with
respect to predator size. The vertical red dashed line indicates the line along which prey
mass and predator mass are the same, while the horizontal red line is the line competitor
mass equal to predator mass. Strategy diversity is highest in quadrant IV, when competitors
are smaller than or about the same size as the predator, and prey is about 10 times larger
than the predator.
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