
Lawrence Berkeley National Laboratory
LBL Publications

Title
Julienne + Assert == Correctness-Checking for Functional Fortran

Permalink
https://escholarship.org/uc/item/4m0270sj

Authors
Rasmussen, Katherine
Rouson, Damian
Bonachea, Dan

Publication Date
2025-04-08

DOI
10.25344/S4401K

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4m0270sj
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Julienne + Assert ==
Correctness-Checking for

Functional Fortran
Katherine Rasmussen, Damian Rouson, Dan Bonachea

go.lbl.gov/julienne
go.lbl.gov/assert

Improving Scientific Software 2025
April 8, 2025

https://go.lbl.gov/julienne
https://go.lbl.gov/assert

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Table of Contents

02
A Multi-paradigm
View of Modern
Fortran

03
Julienne

01
Agile and
Test-driven
Development

04
Use Case: Matcha

05
Assert

06
Use Case: Fiats

07
Communities &
Where to Find More
Fortran

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Temperature Check

use Fortran
Raise your hand if you

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Temperature Check

write unit tests
Raise your hand if you

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Temperature Check

work on a project trying to
introduce more unit testing

Raise your hand if you

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Agile and Test-driven
Development

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Traditional Development -
Waterfall Model

● Linear

● Problems identified late

-> costly
NASA Mars Climate Orbiter

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Agile Development -
A Modern Approach

● Agile development practices and tools

○ Lightweight

● Iterative:

○ Release often

○ Identify & fix problems early

○ Respond to change quickly

● Practice: Pair programming

○ Work interactively

○ Collaborate with client/customer/user

Photo by AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/opened-black-laptop-computer-oZ61KFUQsus?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Agile Development -
Tools

● Automated documentation generator

○ Examples: Doxygen, FORD

● Distributed version control

○ Git

○ GitHub, GitLab, BitBucket

● Integrated Development Environments (IDEs)

Photo by AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/opened-black-laptop-computer-oZ61KFUQsus?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Agile Development -
Practices

● Test-driven development

○ Tests = requirement specifications

○ Write unit test first

○ Write the minimal passing code

○ Rinse and repeat

● Suite of unit tests that can run in seconds or minutes

● Continuous integration/Continuous Deployment (CI/CD)

○ Merge frequently

○ Automate unit testing

○ Test every merge

Photo by AltumCode on Unsplash

https://unsplash.com/@altumcode?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/opened-black-laptop-computer-oZ61KFUQsus?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

A Multi-paradigm View
of Modern Fortran

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fortran Support for Programming Paradigms

● Array programming

○ multi-dimensional arrays

○ allocatable arrays

○ array statements

○ elemental procedures and more

● Object-oriented programming

○ derived types, polymorphism, etc.

● Functional programming

○ pure and simple procedures

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fortran - Natively parallel language (since F2008)

● Coarrays and more (collectives, atomics, teams, events, etc)

○ SPMD (single program multiple data) parallelism

○ Uses a PGAS (partitioned global address space) shared memory abstraction

○ PRIF and Caffeine - runtime support library

■ targeting LLVM Flang and LFortran

● do concurrent

○ Loop-level parallelism

○ Currently 3 compilers (NVIDIA, Intel, HPE) support automatic offloading to GPUs

● Benefits include easier to write and potentially faster to run

https://go.lbl.gov/prif
https://go.lbl.gov/caffeine

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Useful Intrinsic Functions/Features

● findloc - Find location of a specified value in an array (optional mask arg)

● pack - Pack an array into an array of rank one after mask is applied

● count - Count true values in an array

● merge - Merge variables based on the logic of the mask arg

● index - Find position of a substring within a string

● Note: mask argument (boolean logic) of intrinsic functions

● Note: Combining intrinsic function calls can be very powerful

https://fortran-lang.org/learn/intrinsics/array/#findloc
https://fortran-lang.org/learn/intrinsics/array/#pack
https://fortran-lang.org/learn/intrinsics/array/#count
https://fortran-lang.org/learn/intrinsics/array/#id1
https://fortran-lang.org/learn/intrinsics/character/#index

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LABPhoto by Igor Miske on Unsplash

Introduction
of lesser
used
Fortran
intrinsics

Transforms
code from
37 lines to
 ? lines

Find out
here.

https://unsplash.com/@igormiske?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-slicing-cucumber-_6jk-nvKRK0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://youtu.be/lm4Xjqzct4k?si=P7UpSABh8vu2b0TY&t=502

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Useful Intrinsic Functions/Features

● all

● dot_product

● matmul

● maxloc

● maxval

● minval

● range

● More intrinsics with explanations here

● reshape

● scan

● transpose

● trim

● unpack

● verify

https://fortran-lang.org/learn/intrinsics/array/#all
https://fortran-lang.org/learn/intrinsics/numeric/#dot-product
https://fortran-lang.org/learn/intrinsics/numeric/#matmul
https://fortran-lang.org/learn/intrinsics/array/#maxloc
https://fortran-lang.org/learn/intrinsics/array/#maxval
https://fortran-lang.org/learn/intrinsics/array/#minval
https://fortran-lang.org/learn/intrinsics/model/#range
https://fortran-lang.org/learn/intrinsics/
https://fortran-lang.org/learn/intrinsics/array/#reshape
https://fortran-lang.org/learn/intrinsics/character/#scan
https://fortran-lang.org/learn/intrinsics/array/#transpose
https://fortran-lang.org/learn/intrinsics/character/#trim
https://fortran-lang.org/learn/intrinsics/array/#unpack
https://fortran-lang.org/learn/intrinsics/character/#verify

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne
go.lbl.gov/julienne

https://go.lbl.gov/julienne

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LABPhoto by Igor Miske on Unsplash

Thinly
Sliced
Vegetables

Julienne

A
lightweight
Unit
Testing
Framework

https://unsplash.com/@igormiske?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-slicing-cucumber-_6jk-nvKRK0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne

● Repository: go.lbl.gov/julienne

● Fortran unit testing framework

● Uses Template Method pattern

● Tests can include serial or parallel features

● Unit tests reside in a collection of unit tests

○ Each collection run by main test program

● Testing as specification

● fpm package

Photo credit: Paul Hargrove

http://go.lbl.gov/julienne

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

fpm

● fpm (Fortran Package Manager)

○ Package manager and build system

○ Written in Fortran

○ Maintained by Fortran developer community

○ Automatically detects file dependencies

○ Supports both Fortran and C source code

○ fpm itself is very easy to install

■ Available through package managers (Homebrew, etc)

■ If using gfortran 13 or later, can also compile a one-file version of the fpm

source code to install it

https://fpm.fortran-lang.org/

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne Test Output

● Julienne output includes:

○ Test subject (e.g., a class or type-bound procedure)

○ Expected behavior

○ Test outcome (pass or fail)

■ if fails, provides diagnostic information

● Will see more examples in Use Case: Matcha

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Testing with Fortran’s Parallel Features

● Julienne can not run tests in parallel, however it can run parallel tests

● Parallel tests: Tests that invoke multi-image Fortran features

○ Every image runs every test

○ Only report that a test passes if it passes on all images

○ Only image 1 outputs the results of the tests

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne Example (content of video walkthrough)

● Create new fpm project with fpm new name_of_proj

● Add Julienne dependency to fpm.toml file

Example: julienne = {git = "https://github.com/BerkeleyLab/julienne"}

● Copy Julienne example from julienne/example/example-project into new fpm

project

● Move specimen_m.f90 into src dir

● Run tests with fpm test

● Fix purposeful error in source code so test passes

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Writing Julienne Tests

● Write a unit test

○ Write a function that returns a test_diagnosis_t object

○ test_diagnosis_t object contains:

■ a condition in the form of a boolean expression that must pass for test to pass

■ a diagnostics string that is reported if failure occurs

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Example unit test for a very basic function
increment()

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Writing Julienne Tests - how to add new unit test

When working from collection of unit tests copied from Julienne example directory:

● Update results functions

○ Lists and invokes each of the unit tests

■ Create new test_description_t object that contains:

● description of the new unit test

● function pointer to the unit test function

■ Add to the array of test_description_t objects

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Update results() function to call new test
(with gfortran)

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Update results() function to call new test
(with LLVM Flang)

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Writing Julienne Tests - new collection of unit tests

When creating a new collection of unit tests:

● Create new test object for a new collection of unit tests

○ Extends the test_t type from the framework

● Write a subject function

○ Describes the collection of unit tests

● Write a results functions

○ Lists and invokes each of the unit tests through the test_description_t

objects

● Invoke the new collection of tests by calling the report function on the new test

object in the test main program

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne test main program

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Skipping Tests

● Julienne provides functionality to skip some tests

● When to skip a test?

○ The test triggers a compile-time or runtime crash

○ Example: gfortran runtime bug in Julienne test suite for the Julienne repository

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Skipping Tests

● To skip a test:

○ When writing constructing the list of test_description_t objects, don’t pass a

function name (or procedure pointer) to the test_description_t constructor

● Example:

#ifndef __GFORTRAN__

 ,test_description_t('constructing bracketed strings', brackets_strings_ptr) &

 #else

 ,test_description_t('constructing bracketed strings') &

 #endif

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Julienne
example
output

Includes:
6 tests passing
1 test failure
2 tests skipped

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Filtering Tests

● Julienne provides functionality to run only a subset of tests

○ Can run a specific collection of unit tests

○ Can run specific unit tests

○ Invoke by using --contains flag

■ fpm test -- --contains string_t

■ fpm test -- --contains comma

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Filtering
tests

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Use Case: Matcha

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB Photo by Alice Pasqual
on Unsplash

Matcha: T-cell Motility Simulator

● Matcha

○ Motility Analysis of T-Cell Histories in Activation

○ go.lbl.gov/matcha

○ Developed at Berkeley Lab in collaboration with

Northern New Mexico College

○ Goal: design virtual T-cells that move like biological

T-cells

https://unsplash.com/@stri_khedonia?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/green-powder-in-white-bowl-v1OW17UcR-Q?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://go.lbl.gov/matcha

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LABPhoto by Igor Miske on Unsplash

Matcha needs to
ensure:

A subdomain_t
object correctly
computes a
concave Laplacian
for a spatially
constant operand
with a step down
at boundaries
and more…

Photo by National Institute of Allergy and Infectious Diseases on Unsplash

https://unsplash.com/@igormiske?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-slicing-cucumber-_6jk-nvKRK0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@niaid?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-close-up-of-a-white-substance-on-a-blue-background-5v0UyRolNwg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LABPhoto by Igor Miske on Unsplash

Matcha needs to
ensure:

A t_cell_
collection_t
object correctly
constructs its
positions in the
specified domain
and more…

Photo by National Institute of Allergy and Infectious Diseases on Unsplash

https://unsplash.com/@igormiske?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-slicing-cucumber-_6jk-nvKRK0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@niaid?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-close-up-of-a-white-substance-on-a-blue-background-5v0UyRolNwg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LABPhoto by Igor Miske on Unsplash

Matcha needs to
ensure:

A matcha_t
object can match
simulated
distributions to
empirical
distributions

Matcha uses
Julienne unit tests
to help validate
these behaviors

Photo by National Institute of Allergy and Infectious Diseases on Unsplash

https://unsplash.com/@igormiske?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/person-slicing-cucumber-_6jk-nvKRK0?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/@niaid?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/a-close-up-of-a-white-substance-on-a-blue-background-5v0UyRolNwg?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

One
unit
test for
Matcha

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

One
unit
test for
Matcha

Result of unit test:
One or more test_diagnosis_t objects

 test_diagnosis_t object contains:
 a condition for the test to pass
 a diagnostics string for if it doesn’t

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Unit Test collection for matcha_t type

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Execution of Julienne test suite for Matcha

Subject of the collection of unit tests

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Execution of Julienne test suite for Matcha

single unit test

describes expected
behavior

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Execution of Julienne test suite for Matcha

Results of collection of unit test

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Execution of Julienne test suite for Matcha

All results

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

A Breather…

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Assert
go.lbl.gov/assert

https://go.lbl.gov/assert

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

A Functional Programming Pattern

● Recommendations

○ Write pure procedures — especially pure functions with no side effects

○ Referentially transparent

■ same arguments —> same result

○ Define immutable state

■ associate with expressions (for example: function invocations)

● Consequences

○ ✅: error stop

○ ❌: write, print, stop

● Fortran provides pure and simple keywords

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

A Functional Programming Pattern

● Pros:

○ Clarifies data dependencies

○ Easier to parallelize

■ Only pure procedures can be invoked inside do concurrent

● Cons

○ No output when debugging during development

■ Exceptions:

● error stop

● Or with the existence of a useful utility (wink, wink)

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Programming by Contract

● Programming by contract enforces constraints

○ Preconditions: correctness requirements - must be true before a procedure executes

○ Postconditions: correctness requirements - must be true after a procedure executes

○ Invariants: correctness conditions that must always be true (applies to a whole class,

i.e., every procedure).

● In C & C++: Enforce constraints using <assert.h>

● In Fortran, constraints can take the form of logical expressions and can be enforced by a

utility (wink, wink)

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Assert

● Fortran assertion utility that allows for diagnostic output

● go.lbl.gov/assert

● Motivations for utility:

○ To mitigate against a reason Fortran developers often cite for not writing pure

procedures: their inability to produce output in normal execution.

○ To promote the enforcement of programming contracts.

http://go.lbl.gov/assert

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Assert

● Can be called in pure procedures

● The provided assertions are function-like preprocessor macros that by default get

replaced by nothing

● Workflow:

○ Normal development: no assertions

■ Code runs faster without assertions because no runtime overhead

○ When needing to debug: use -DASSERTIONS flag

■ Could also have a special CI run that always uses assertion flag

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Getting Started with Assert

● https://github.com/BerkeleyLab/assert/blob/main/example/invoke-via-macro.F90

● Statements required in file where assertions are to be used

○ #include "assert_macros.h"

○ use assert_m

call_assert(1==1)

call_assert_describe(2>0,"example assertion invocation via macro")

call_assert_diagnose(1+1==2,"example with scalar diagnostic

data",1+1)

https://github.com/BerkeleyLab/assert/blob/main/example/invoke-via-macro.F90

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

What to expect upon failure

call_assert_describe(.true. .eqv. .false.,"Breaking the boolean basics")

Result:

Source Code: Assertion that will fail

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

What to expect when assertions pass

{nothing}

٩(◕‿◕｡)۶

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Use Case: Fiats

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fiats: Deep Learning with Fortran

● Machine learning and AI impacts on HPC

● Fiats (Functional inference and training for surrogates)

○ go.lbl.gov/fiats

○ Alternative name: Fortran inference and training for

science

○ “training and deployment of neural-network

surrogate models for computational science”

○ Automatic parallelization of batch inference

Photo by Max Di Capua on Unsplash

https://go.lbl.gov/fiats
https://unsplash.com/@maxdicapua?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/gray-3-door-hatchback-on-road-S1O5ntrjkgc?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fiats: Deep Learning with Fortran

● Assertions used for:

○ Validating input data is in correct format

■ Multiple ways of inputting data to construct the

neural network

■ Need to validate the various ways

○ Validate the construction of the layers of the neural

network

○ And more!

Photo by Max Di Capua on Unsplash

https://unsplash.com/@maxdicapua?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/gray-3-door-hatchback-on-road-S1O5ntrjkgc?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Assert Example with fiats

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fiats: Deep Learning with Fortran

● To learn more about Fiats, please attend Damian Rouson’s talk “Cloud microphysics

training and aerosol inference with the Fiats deep learning library”

● Date: Wednesday, April 9

● Time: 8:30 AM

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Communities &
Where to Find More

Fortran

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Grabbag of Fortran tools

● Codee - Static analysis tool for Fortran and C/C++

○ Code correctness

○ Modernization

○ Codee Youtube Channel

○ Codee training at NERSC

● fortran-linter

● rojff - Return of JSON for Fortran - Utility to support use of JSON files in Fortran

source

● iso_varying_string - An implementation of the ISO_VARYING_STRING module as

proposed for the ISO standard

https://www.codee.com/product/fortran/
https://www.youtube.com/@codee_com/videos
https://www.youtube.com/playlist?list=PL20S5EeApOStCubwBhMi5ln-uYslsvYM0
https://github.com/cphyc/fortran-linter
https://github.com/everythingfunctional/rojff
https://github.com/everythingfunctional/iso_varying_string

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Grabbag of Fortran tools

● FORD - (FORtran Documentation)

○ Automatic documentation generator for Fortran projects

○ Can build documentation locally, provides html files

○ Can deploy documentation in Github Actions

○ Example Ford Documentation

● Various tools to convert fixed form code to free form code

● A grabbag of more tools - Beliavsky/Fortran-Tools

https://forddocs.readthedocs.io/en/stable/
https://berkeleylab.github.io/julienne/
https://github.com/Beliavsky/Fortran-Tools

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Upcoming Fortran Features

● Upcoming features:

○ Generic programming (templates, etc)

■ Type-safe templates: requirements (strong concepts)

● Must state properties of types

● Compiler can provide error messages in template source code

○ Asynchrony: tasks, collectives

○ Standardized Fortran preprocessor

● International body - WG5

● Working group - INCITS US National body (informally known as J3)

https://wg5-fortran.org/
https://j3-fortran.org/

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Fortran Resources & Communities

● Stereotypes about Fortran include ideas of being antiquated

● Vibrant, engaged developer community

● For more Fortran questions or to engage and share with the Fortran community, visit:

○ Fortran Lang: fortran-lang.org

■ Tutorials, links to playgrounds, compilers info

■ Helpful language information and advice

■ Link to LFortran, a Fortran compiler and interpreter

○ Discourse: fortran-lang.discourse.group

○ Fortran Wiki: fortranwiki.org

● Fortran at LBNL: fortran.lbl.gov

http://fortran-lang.org
https://fortran-lang.org/learn/
https://play.fortran-lang.org/?code=module%20m_shapes%0A%20%20implicit%20none%0A%20%20private%0A%20%20public%20t_square%0A%0A%20%20type%20%3A%3A%20t_square%0A%20%20real%20%3A%3A%20side%0A%20%20contains%0A%20%20%20%20procedure%20%3A%3A%20area%20%20%21%20procedure%20declaration%0A%20%20end%20type%0A%0Acontains%0A%0A%20%20%21%20Procedure%20definition%0A%20%20real%20function%20area%28self%29%20result%28res%29%0A%20%20%20%20class%28t_square%29%2C%20intent%28in%29%20%3A%3A%20self%0A%20%20%20%20res%20%3D%20self%25side%2A%2A2%0A%20%20end%20function%0A%0Aend%20module%20m_shapes%0A%0Aprogram%20main%0A%20%20use%20m_shapes%0A%20%20implicit%20none%0A%0A%20%20%21%20Variables%27%20declaration%0A%20%20type%28t_square%29%20%3A%3A%20sq%0A%20%20real%20%3A%3A%20x%2C%20side%0A%0A%20%20%21%20Variables%27%20initialization%0A%20%20side%20%3D%200.5%0A%20%20sq%25side%20%3D%20side%0A%0A%20%20x%20%3D%20sq%25area%28%29%0A%20%20%21%20self%20does%20not%20appear%20here%2C%20it%20has%20been%20passed%20implicitly%0A%0A%20%20%21%20Do%20stuff%20with%20x...%0A%0Aend%20program%20main
https://fortran-lang.org/compilers/
https://lfortran.org/
http://fortran-lang.discourse.group
http://fortranwiki.org
https://fortran.lbl.gov/

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Acknowledgements
● This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research

● As mentioned, Julienne was initially inspired by the testing framework Veggies

○ Veggies lead developer: Brad Richardson

○ Veggies repository: https://github.com/everythingfunctional/veggies

https://github.com/everythingfunctional/veggies

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

More Fiats and Fortran Fun
Talk: Cloud microphysics training and aerosol inference with the Fiats deep
 learning library

Presenter: Damian Rouson

Date: Wednesday, April 9

Time: 8:30 AM

Julienne + Assert == Correctness-Checking for Functional Fortran | BERKELEY LAB

Thank You
Questions?

Email: fortran@lbl.gov

mailto:fortran@lbl.gov

