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ABSTRACT OF THE DISSERTATION

Discrete Fourier Analysis and Its Applications

by

Jiapeng Zhang

Doctor of Philosophy in Computer Science

University of California San Diego, 2019

Professor Shachar Lovett, Chair

The topic of discrete Fourier analysis has been extensively studied in recent decades. It

plays an important role in theoretical computer science and discrete mathematics. One hand it is

interesting to study the structure of boolean functions via discrete Fourier analysis. On the other

hand, these structural results also provide a huge number of applications in theoretical computer

science, including computational complexity, pseudorandomness, cryptography, learning theory.

In this dissertation, we extend some more connections between discrete Fourier analysis and

theoretical computer science. In particular, we study the following questions.

• Robust sensitivity of boolean function. In this part, we study the connection between the

Fourier tail bound and the sensitivity tail bound of boolean functions, which is an analogue

xii



of the sensitivity conjecture, which was proposed by Nisan [48].

• DNF sparsification. The disjunctive normal form (or DNF) is a widely used representation

of boolean functions. It is very interesting to study the structure of DNFs. There are two

natural ways to measure the complexity of DNFs, the width and the size. In this thesis, we

study a connection between these two measures. We propose a new approach by combing

the swithing lemma (a combinatoric tool) and the hypercontrativity inequality (an analytic

inequality). This framework does also suggest a new approach to the famous sunflower

conjecture.

• Applications in learning theory. In 1989, the first Fourier-based learning algorithms was

introduced by a seminar paper of Linial, Mansour and Nisan [37]. Followed by a series

of subsequent works, people found that discrete Fourier analysis is powerful to design

learning algorithms. One hand sparse Fourier functions are strong enough to approximate

a lot of functions, on the other hand sparse Fourier functions are relatively easy to learn.

Build on this framework, we give a more efficient algorithm to solve the population

recovery problem. That is how to recover a unknown distribution from noisy samples.
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Chapter 1

Introduction

The topic of boolean function analysis studies functions with discrete domain. In the

mathematical aspect, it is interesting to study the structure of discrete functions. On the other

hand, it has also been found that discrete Fourier analysis has a lot of significant applications in

theoretical computer science, such like cryptography [1, 46], complexity [22, 13], combinatorics

[35], coding theory [9, 33], learning theory [19, 38, 45, 42, 14].

A major topic in discrete Fourier analysis is to study the Fourier structure of certain

boolean functions. Once we have a simple Fourier representation for a function f , then we

can easily deal with f in algorithmic aspect, such like design a learning algorithm, or construct

a pseudorandom generator. For example, Mansour [45] conjectured that any DNF can be

approximated by a sparse Fourier function. It looks like a mathematical problem, however once

this conjecture has been confirmed, it automatically leads an efficient learning (even agnostic

learning) algorithm for DNFs. The research of discrete Fourier analysis builds a bridge between

the profound mathematical structures and applications of computer science.

In this thesis, we study three applications of discrete Fourier analysis. 1) we study the

connection between Fourier coefficients and the robust sensitivity of boolean functions; 2) we

show how Fourier analysis helps to sparsify DNFs; 3) we solve the problem of population

recovery by using discrete Fourier analysis.

1



1.1 Our results

1.1.1 The robust sensitivity of boolean functions

The sensitivity is a common used complexity measure of boolean functions. Intuitively,

the sensitivity of a Boolean function f at a given point is the number of coordinates i such that if

we flip the i’th coordinate, the value of the function changes. The average value of this quantity

is exactly the total influence. The sensitivity connects to a lot of complexity measures, such like

decision tree complexity, block sensitivity, certificate complexity. Specifically, the sensitivity is

upper bounded by all of the measures above. The sensitivity conjecture speculates the other side,

i.e., other measures are also upper bounded by the sensitivity. This conjecture was proposed by

Nisan [48] in nearly 20 years ago. Despite much research [55, 48, 49, 10, 17, 32, 11, 4, 27, 2,

18, 3, 5, 24, 23, 28, 36, 54, 8] the conjecture remains wide open, where the best upper bounds on

the degree are exponential in the sensitivity, and the best separations are quadratic.

As the original sensitivity conjecture seems untractable at the moment, it makes sense to

try and relax it. Gopalan, Servedio, Tal and Wigderson [24] showed that functions of bounded

sensitivity have most of their Fourier mass supported on low levels of the hypercube. In the

same paper, they also speculate that if most of the points have low sensitivity (instead of every

point has low sensitivity), then most of the Fourier mass is on small sets, they call this robust

sensitivity conjecture.

In a joint work with Lovett and Tal [40], we confirm this conjecture, and our bound

is almost tight (up to some constant). Our proof studies a structure of boolean functions with

maximum Fourier degree. We show that any boolean function with maximum Fourier degree

contains a sensitivity walk that generates every dimension. This structure might have more

applications in boolean function analysis, including the original sensitivity conjecture.

2



1.1.2 DNF sparsification

The disjunctive normal form (DNF) is a well-used representation of logical formulae. A

DNF is a disjunction of conjunctive clauses; it can also be described as an OR of ANDs. As

DNF is a class of well-used formulae, it is natural to study the power of DNFs. In other words, it

is important to study the structure of DNFs.

It is well known that Fourier analysis builds a lot of applications to study DNFs. It has

been used to design learning algorithms for DNFs [45, 20], and it is also helpful to construct

pseudorandom generators for DNFs [13]. In this thesis, we focus on the problem of DNF

sparsification. Let f be a DNF. There are two natural complexity measures associates with it:

the numbers of clauses, called size and denoted s( f ); and the maximal number of variables in

a clause, called width and denoted w( f ). It is a folklore result that DNFs of small size can be

approximated by DNFs of small width; however the other side is not very clear. Gopalan, Meka

and Reingold [21] studied the reverse problem of DNF sparsification: can small width DNFs

be approximated by DNFs of small size? Their motivation, other than being a natural problem

on the structure of DNFs, came from the goal of designing faster deterministic algorithms to

approximately count the number of satisfying assignements of a DNF.

Built on the sunflower structure, Gopalan, Meka and Reingold [21] proved that any width-

w DNF can be ε-approximated by a DNF of size (w+ log(1/ε))O(w). They also speculated

this bound is not tight, and they conjectured a bound of (log(1/ε))O(w). In a joint work with

Lovett [44], we prove a new bound of (1/ε)O(w). We get a worse dependency on ε , however we

have a much better dependency on w. Instead of using sunflower conjecture, we use a powerful

tool from boolean function analysis, that is the hypercontrativity inequality. Our framework is

able to break the ww barrier, which also appears in some related problems, such like Mansour’s

conjecture and the sunflower conjecture. In a joint work with Lovett and Solomon [39], we prove

that a better upper bound DNF sparsification implies a better sunflower upper bound. Thus our

framework gives a hint to solve the sunflower conjecture, which has been opened for 60 years.

3



1.1.3 Population recovery

The topic of population recovery was first motivated by learning theory. Consider a

database of patients in a hospital, where for each patient the database lists a large number of

traits. Researchers are interested in obtaining this database to perform various statistical studies,

but due to privacy concerns the database cannot be released. A possible solution (other than

deleting identifying parameters of patients, such as their name) is to delete information at random

from the database, or even better, add randomness to the information, with the goal that this will

maintain the privacy of the original database, but would still provide researchers with useful

information. The question is: does this process ensure privacy, or can the original database be

recovered (up to its row order) from a lossy or noisy version of it?

The problem of recovery of data from lossy or noisy samples was studied extensively

in statistics in the context of continuous distributions, and was introduced to computer science

by Kearns et al. [31] who focused on discrete distributions. The problem regained attention

recently in a work by Dvir et al. [15], who related it to the problem of learning DNFs from partial

information.

Let k be the size of the original database. Kearns et al. [31] gave an algorithm which

is exponential in k. Wigderson and Yehudayoff [57] developed a framework called ”partial

identification”, and gave an algorithm which runs in time polynomial in (klogk,n,1/ε) for

any µ > 0. Moreover, they showed that their framework cannot obtain algorithms running

in time better than polynomial in klog logk. In a joint work with Lovett [41], we develop an

alternative framework (built on discrete Fourier analysis), which gives an algorithm running in

time polynomial in klog logk. In chapter 5, we will discuss more details.

4



Chapter 2

The Function Space

In this chapter, we introduce some standard definitions and notations.

2.1 Functions on the boolean cube

Boolean cube. Let n ≥ 1 be an integer, denote [n] = {1,2, . . . ,n}. We use {0,1}n to

denote the set of binary strings with length n.

Definition 1 (Function space). Let F = { f : {0,1}n→ R} denote the space of real functions

on the boolean cube, with inner product given by

〈 f ,g〉= 2−n
∑

x∈{0,1}n

f (x) ·g(x).

We shortly denote Ex[ f (x) ·g(x)] := 2−n
∑x∈{0,1}n f (x) ·g(x).

Definition 2. We define the L2-norm on F = { f : {0,1}n→ R} as

‖ f‖2 :=
√
〈 f , f 〉=

√
E
x
[ f (x)2]

5



2.2 Discrete Fourier transformation

Definition 3 (Inner product on the boolean cube). Let n ≥ 1 be an integer. We also represent

every string x ∈ {0,1}n as an element in Fn
2. We denote x⊕ y as x+ y in Fn

2. We define the inner

product of x,y ∈ {0,1}n as

〈x,y〉= ∑
i∈[n]

xi · yi.

Let n≥ 1 be an integer. For any S ⊆ [n] and x ∈ {0,1}n, we denote by eI ∈ {0,1}n the

indicator vector for I. For i ∈ [n] we shorthand ei = e{i}. We shorthand 〈x,S〉= 〈x,eS〉 .

Definition 4 (Fourier coefficient). Let f : {0,1}n → R be a function. For each S ⊆ [n], its

associated Fourier coefficient is

f̂ (S) := E
x

[
f (x) · (−1)〈x,S〉

]

The Fourier degree of f is defined as

deg( f ) := max{k : ∃S⊆ [n],(|S|= k)∧ ( f̂ (S) 6= 0)}

Theorem 5 (Fourier inversion theorem). Let f : {0,1}n → R be a function, then for every

x ∈ {0,1}n

f (x) := ∑
S⊆[n]

f̂ (S) · (−1)〈x,S〉

Lemma 5.1 (Parseval’s identity). Let f : {0,1}n→ R be a function, then

∑
S

f̂ (S)2 = E
x
[ f (x)2] = ‖ f‖2

2

6



2.3 The noise operator

In this section, we introduce the noise operator, which is a very useful tool discrete

Fourier analysis.

Definition 6 (Noisy distribution). Given x ∈ {0,1}n and a noise parameter µ ∈ [0,1], we denote

by Nµ(x) the distribution over y ∈ {0,1}n, where Pr[yi = xi] =
1+µ

2 and Pr[yi 6= xi] =
1−µ

2

independently for all i ∈ [n].

Definition 7 (Noise operator). The noise operator Tµ : F →F is defined as

(Tµ f )(x) = E
y∼Nµ

[ f (y)].

Definition 8 (Stability). Let f : {0,1}n→{−1,1} be a boolean function. The ρ-stability of f is

Stabρ( f ) := E
x∈{0,1}n,y∼Nρ (x)

[ f (x) · f (y)] .

It is clear that Stabρ( f ) =
〈

f ,Tρ f
〉

Boolean function approximation. Let f ,g : {0,1}n→{−1,1} be a boolean functions,

we say g that ε-approximates f if

Pr
x∼{0,1}n

[g(x) 6= f (x)]≤ ε

here x∼ {0,1}n means that x is a uniformly random string on {0,1}n

Influence. Let f : {0,1}n→{−1,1} be a boolean function. For each i ∈ [n], we define

its influence as

I f (i) := Pr
x∼{0,1}n

[ f (x) 6= f (x⊕ ei)]

7



Chapter 3

The Sensitivity of Boolean Functions

In this chapter, we study the notion of sensitivity, a well-known parameter to measuare the

complexity of boolean functions. Intuitively, the sensitivity of f at x ∈ {0,1}n, denoted s( f ,x),

is the number of neighbours of x in the boolean hypercube where f takes the opposite value.

It has been shown there are a lot of connections between the sensitivity and other complexity

measures, such like decision tree complexity, real polynomial degree, block sensitivitiy, certificate

complexity. All of these measures were motivated from different applications, it is surprisingly

to find connections between all of them. In this chapter, we focus on the connection between the

sensitivity and the discrete Fourier spectrum. Our study was motived by the sensitivity conjecture,

which is an important open problem in the area of boolean function analysis.

3.1 Sensitivity

Definition 9 (Sensitivity). Given a boolean function f : {0,1}n→{−1,1} and x ∈ {0,1}n. The

sensitivity of f at x is defined as

s( f ,x) = {i ∈ [n] : f (x) 6= f (x⊕ ei)}

The sensitivity of the function f is defined as the maximum sensitivity of a vertex, i.e.,

s( f ) = max
x∈{0,1}n

s( f ,x).
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Intuitively, there should be some connections between the sensitivity and the influence. Formally,

we have the following lemma,

Lemma 9.1. Let f : {0,1}n→{−1,1} be a boolean function. Then

E
x
[s(x, f )] = ∑

i
I f (i)

Proof. The proof of the lemma is straightforward. By definition,

E
x
[s(x, f )] = 2−n ·∑

x
s( f ,x) = 2−n ·∑

x
∑

i
1 f (x)6= f (x⊕ei) = ∑

i
E
x

[
1 f (x)6= f (x⊕ei)

]
The claim then follows by the definition of influence.

It has been showed that the sensitivity is upper bounded by the Fourier degree. In specific,

we have the following theorem.

Theorem 10 ([48]). There is a constant c > 1 such that for any boolean function f ,

s( f )≤ deg( f )c

The other side, which called the sensitivity conjecture, was originally proposed by

Nisan [48]. The sensitivity conjecture is a central open problem in boolean complexity theory.

It speculates that functions of low sensitivity must be “simple”. This can be phrased in several

equivalent formulations. For our purposes, we focus on the Fourier degree of f (see also [23] for

other notions in which low sensitivity functions are simple).

Conjecture 10.1 (Sensitivity conjecture). There is a constant c > 1 such that for any boolean

function f : {0,1}n→{−1,1},

deg( f )≤ s( f )c

Despite much research [55, 48, 49, 10, 17, 32, 11, 4, 27, 2, 18, 3, 5, 24, 23, 28, 36, 54, 8]

9



the sensitivity conjecture remains wide open, where the best upper bounds on the degree are

exponential in the sensitivity, and the best separations are quadratic. The survey [27] provides a

good account of the conjecture, many of its equivalent formulations and consequences, and the

progress so far.

3.2 Robust sensitivity

As the original sensitivity conjecture seems untractable at the moment, it makes sense to

try and relax it. As usual, we denote by f̂ (S) for S ⊆ [n] the Fourier coefficients of a boolean

function f : {0,1}n→{−1,1}. Parseval’s identity implies that ∑ f̂ (S)2 = 1. Gopalan, Servedio,

Tal and Wigderson [24] showed that functions of bounded sensitivity have most of their Fourier

mass supported on low levels of the hypercube.

Theorem 11 (Theorem 1.2 in [24]). Let f : {0,1}n→ {−1,1} be a Boolean function. If the

sensitivity of f is s = s( f ) then for every ε > 0,

∑
|S|≥O(s log(1/ε))

f̂ (S)2 ≤ ε.

Observe that there is a disconnect between the assumption and conclusion of Theorem 11

in the following sense. The assumption (bounded sensitivity) is very sensitive to changes in the

function f . Indeed, changing even one value can increase the sensitivity from 0 to n. However,

the conclusion (bounded Fourier tail) is not sensitive to small changes in the function. Thus, it

makes sense to relax the assumption: instead of assuming that s( f ,x) is bounded for all x, we

will assume that it is the case for most x, and attempt to reach a similar conclusion.

This question was explicitly phrased as an open problem by Gopalan et al. [24]. Given a

boolean function f : {0,1}n→{−1,1}, consider two distributions over integers 0, . . . ,n:

1. The Fourier distribution of f , where one chooses a set S⊆ [n] with probability f̂ (S)2 and

computes its size |S|.
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2. The sensitivity distribution of f , where one chooses a random point x ∈ {0,1}n and

computes its sensitivity s( f ,x).

They speculate the robust sensitivity conjecture that if most of the points have low sensitivity,

then most of the Fourier mass is on small sets. Formally, this is expressed via corresponding

moments of the two distributions.

Conjecture 11.1 (Conjecture 1.3 in [23]). For every d ≥ 1 there exists a constant ad such that

the following holds. For any n≥ 1 and any Boolean function f : {0,1}n→{−1,1} it holds that

∑
S⊆[n]

f̂ (S)2|S|d ≤ ad · E
x∈{0,1}n

[s( f ,x)d +1].

It is easy to verify that Conjecture 11.1 with a good enough constant ad (concretely,

ad = dd · 2O(d)) implies Theorem 11, even if we replace the assumption that the maximum

sensitivity of f is at most s, with the weaker assumption that the d-th moment of the sensitivity

is at most sd .

In a joint work with Lovett and Tal [40], we proved this conjecture, with near optimal

bounds. As we demonstrate below, achieving near optimal bounds is crucial for certain ap-

plications, as it allows to tightly relate the Fourier distribution and the sensitivity distribution

of boolean functions. The following is our main theorem, which is a slight re-formulation of

Conjecture 11.1.

Theorem 12 ([40]). Let f : {0,1}n→{−1,1}. For any d ≥ 1 it holds that

∑
S⊆[n]

f̂ (S)2|S|d ≤ ad · E
x∈{0,1}n

[
s( f ,x)d +1

]
,

for ad = d13d ·2O(d).

We first give below two corollaries of Theorem 12. We note that both are possible only

because of the near optimality of our bound on ad (namely ad ≤ dO(d)).
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Exponential sensitivity tails implies exponential Fourier tails. As a first corollary,

we show that if the sensitivity distribution has an exponentially decaying tail, then the same holds

for the Fourier distribution. This shows that indeed we can replace the condition of bounded

maximal sensitivity with a fast enough decay of the sensitivities.

Corollary 12.1. Let f : {0,1}n → {−1,1}. Assume that for some s ≥ 1, for any λ ≥ 1 the

number of nodes x ∈ {0,1}n for which s( f ,x)≥ λ s is at most 2n−λ . Then for any ε > 0 it holds

that

∑
|S|≥O(s log14(1/ε))

f̂ (S)2 ≤ ε ∀ε > 0.

High degree nodes in induced subgraphs of the hypercube. The second corollary

is in graph theory, and involves induced subgraphs of the hypercube. For A⊂ {0,1}n let G[A]

denote the induced sub-graph of the hypercube {0,1}n on the vertices in A. Let Ac = {0,1}n \A

denote the complement of A.

Gotsman and Linial [25] proved that the sensitivity conjecture is equivalent to the

following conjecture: if |A| 6= 2n−1 then either in G[A] or in G[Ac], there is a node whose degree

is at least nc for some absolute constant c > 0. Below we note that Theorem 12 immediately

implies this if we assume that |A| ≥ (1+ ε)2n−1 for exponentially small ε . In fact, there are

many such nodes. Observe that this beats the naive averaging argument, which requires that

ε ≥ 1/n.

Corollary 12.2. Let A⊂ {0,1}n of size |A| ≥ (1+ε)2n−1. Then either in G[A] or in G[Ac], there

exist εO(1)2n vertices whose degree is at least Ω(n/ log13(1/ε)).

The proofs of Corollaries 12.1 and 12.2 is given in Section 3.5.

Conjectured optimal parameters. We conjecture that the bound on ad in Theorem 12

can be improved to ad ≤ dd · 2O(d). If so, this will imply the strongest quantitative form of

Conjecture 11.1, as an example in [24] shows that necessarily ad ≥ dd(1−o(1)). We note that

under this conjecture, Corollaries 12.1 and 12.2 improve. Concretely:
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• Corollary 12.1, under the same assumption, would give that ∑|S|≥O(s log2(1/ε)) f̂ (S)2 ≤ ε .

• Corollary 12.2, under the same assumption, would give that either in G[A] or in G[Ac],

there exist εO(1)2n vertices whose degree is at least Ω(n/ log(1/ε)).

We denote by Hn the n-dimensional hypercube, whose vertices are V (Hn) = {0,1}n

and edges are E(Hn) = {(x,x⊕ ei) : x ∈ {0,1}n, i ∈ [n]}. Given two vectors x,y ∈ {0,1}n, we

shorthand x+ y for x⊕ y whenever the context is clear. In particular, edges of the hypercube are

written as (x,x+ ei). We say that an edge (x,x+ ei) has direction i.

Chapter organization. In Section 3.3 we prove a weak form of Theorem 12, where

the bound on ad is ad = 2O(d2) instead of ad = dO(d). Although this bound is insufficient for the

applications described in Corollary 12.1 and Corollary 12.2, it is useful to build intuition, as the

proof is significantly simpler than the proof of Theorem 13. The actual proof of Theorem 13

appears in Section 3.4. We prove Corollaries 12.1 and 12.2 in Section 3.5. We discuss open

problems in Section 3.6.

3.3 A weak form of the main theorem

First, we rephrase Theorem 13 in terms of
(|S|

d

)
instead of |S|d . Using the fact that for

any d (even d > |S|), we have |S|d ≤ dd ·
((|S|

d

)
+1
)

, it is enough to prove the following.

Theorem 13. Let f : {0,1}n→{−1,1}. For any d ≥ 1 it holds that

∑
S⊆[n]

f̂ (S)2
(
|S|
d

)
≤ ad · E

x∈{0,1}n

[
s( f ,x)d

]
,

where ad ≤ d12d ·2O(d).

We prove Theorem 13 in Section 3.4. In this section, we prove a weak form of Theorem 13

with ad = dO(d2) instead of ad = dO(d). While these bounds are insufficient for the applications

in Corollaries 12.1 and 12.2, it would be instructive in order to build intuition.

13



Theorem 14 (Weak form of Theorem 13). Let f : {0,1}n→ {−1,1}. For any d ≥ 1 it holds

that

∑
S⊆[n]

f̂ (S)2
(
|S|
d

)
≤ ad · E

x∈{0,1}n

[
s( f ,x)d

]
where ad ≤ 2(

d
2)+d .

We prove Theorem 14 in the reminder of this section. The first step is to replace the

Fourier moments with a more combinatorial expression.

3.3.1 Fourier moments and max degree cubes

Definition 15 (Sub-cubes). For v ∈ {0,1}n and I ⊂ [n] let

C(v, I) := {x ∈ {0,1}n : xi = vi ∀i /∈ I}

denote a sub-cube. The dimension of the sub-cube is |I|. Note that C(v, I) = C(v′, I) for all

v′ ∈C(v, I). We denote by C (n,d) the set of all d-dimensional cubes in {0,1}n.

Given C = C(v, I) ∈ C (n,d), the restriction of f : {0,1}n → {−1,1} to C is f |C :

{0,1}I → {−1,1} given by f |C(x) = f (y) where yi = xi for i ∈ I and yi = vi for i /∈ I. We

say that f |C has max degree if its degree as a multilinear real polynomial over {xi : i ∈ I} is

maximal, namely d. This is equivalent to f̂ |C(I) 6= 0.

The following lemma connects the Fourier moments of f and the number of maximal

degree cubes in f . It appears in a slightly different formulation as Theorem 3.2 in [24].

Lemma 15.1. Let f : {0,1}n→{−1,1}. Fix d ≥ 1. Define

A := 2n
∑

S⊆[n]
f̂ (S)2

(
|S|
d

)

and

B := |{C ∈ C (n,d) : f |C has max degree}|.
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Then

2−dB≤ A≤ 2dB.

Proof. For a function g : {0,1}n → R define its directional derivative in direction i ∈ [n] as

∆ig : {0,1}n→ R given by ∆ig(x) = g(x+ ei)−g(x). For a set of directions I = {i1, . . . , id} the

iterated derivative is defined as

∆I f (x) = (∆i1 . . .∆id f )(x) = ∑
J⊆I

(−1)|I|−|J| f (x+ eJ).

In particular, the iterative derivative does not depend on the order of i1, . . . , id , making ∆I f well

defined. Define

T := {(x, I) : x ∈ {0,1}n, I ⊂ [n], |I|= d,∆I f (x) 6= 0}.

We will see that |T | is directly related to B, while A is related to the expression

∑
(x,I)∈T

(∆I f (x))2.

We first show that B = 2−d|T |. To see that, fix a d-dimensional cube C = C(v, I) and

consider f |C. Note that ∆I f (v) is the sum with alternating signs of the points of C. In particular,

if we let f |C(x) = ∑J⊆I f̂ |C(J)(−1)〈x,eJ〉 be the Fourier decomposition of f |C, then

∆I f (v) =±2d · f̂ |C(I).

(the sign can be computed explicitly as (−1)〈v,eI〉, but we don’t need it). In particular, f |C has

max degree iff ∆I f (v) 6= 0; namely exactly when (v, I) ∈ T . As this holds for any v′ ∈C we have

that

2dB = |T |.

Next we relate T to A. To that end, we explore the effect of derivatives on the Fourier
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decomposition. It is easy to see that the Fourier decomposition of ∆i f is

∆i f (x) = 2 ∑
S⊆[n]:i∈S

f̂ (S)(−1)〈x,eS〉.

Applying this iteratively for I ⊂ [n] of size |I|= d gives

∆I f (x) = 2d
∑

S⊆[n]:I⊆S
f̂ (S)(−1)〈x,eS〉.

Thus we have

∑
x∈{0,1}n

(∆I f (x))2 = 2n ·22d
∑

S⊆[n]:I⊆S
f̂ (S)2.

Summing over all sets I with |I| = d, and restricting to (x, I) ∈ T (otherwise by definition

∆I f (x) = 0 contributes nothing to the sum) gives

∑
(x,I)∈T

(∆I f (x))2 = 2n ·22d
∑
S

f̂ (S)2
(
|S|
d

)
= 22dA.

To conclude, note that whenever (x, I) ∈ T then 1≤ (∆I f (x))2 ≤ 22d , where the lower

bound follows from ∆I f (x) being a nonzero integer, and the upper bound from the fact that

∆I f (x) is the sum with alternating signs of 2d evaluations of a Boolean function f . Thus

2dB = |T | ≤ ∑
(x,I)∈T

(∆I f (x))2 ≤ 22d|T |= 23dB

and hence

2−dB≤ A≤ 2dB.
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3.3.2 Sensitivity graph and related notions

Let f : {0,1}n→ {−1,1}. Given Lemma 15.1, we focus on bounding the number of

d-dimensional cubes C such that f |C has max degree. The following definitions are from [24].

We define two notions of “sensitive edges” for edges of the hypercube. The first is sensitivity

with respect to a boolean function defined on the hypercube; the second is sensitivity with respect

to a path in the hypercube. We would mainly be interested in situations when the two coincide.

Definition 16. Let f : {0,1}n→{−1,1}. The sensitivity graph G f of f is the sub-graph of Hn

whose edges are

E(G f ) := {(x,x+ ei) : x ∈ {0,1}n, i ∈ [n], f (x) 6= f (x+ ei)}.

Edges of G f are called “sensitive edges” of Hn with respect to f .

Definition 17. Let P be a walk (i.e. a path) in Hn, whose vertices are v0,v1, . . . ,vm ∈ {0,1}n.

Let i1, . . . , im ∈ [n] be the directions of the edges of P, namely vi = vi−1 + ei. An edge (v j,v j+1)

is said to be a leading edge of the walk if there is no j′ < j for which i j′ = i j. Namely, the edge

(v j,v j+1) is the first edge in the walk in direction i j. In such a case, we also say that v j is a

sensitive node. We further define:

• Sensitive nodes of P: V (P) = (v j1 , . . . ,v jd).

• Sensitive directions of P: I(P) = (i j1, . . . , i jd).

• Dimension of P: dim(P) = |V (P)|= |I(P)|.

Definition 18 (Walk sensitive for a function). Let f : {0,1}n → {−1,1}. A walk P in Hn is

sensitive for f if the sensitive edges of P are also sensitive edges for f .

Definition 19 (Proper walk). Let f : {0,1}n→ {−1,1} and 1 ≤ d ≤ n. A proper walk P with

respect to f , of dimension d, is given by:
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• Its sensitive nodes V (P) = (v1, . . . ,vd), where v1, . . . ,vd ∈ {0,1}n.

• Its sensitive directions I(P) = (i1, . . . , id), where i1, . . . , id ∈ [n] are distinct.

Such that they satisfy:

• f (v j) 6= f (v j + ei j) for j = 1, . . . ,d.

• v j ∈C(v1,{i1, . . . , i j−1}) for j = 2, . . . ,d.

A proper walk can be extended to a walk in Hn with sensitive nodes V (P) and sensitive directions

I(P), by connecting each v j to v j+1 using some shortest walk. By definition, this part of the walk

will only use edges with directions in {i1, . . . , i j}. The resulting walk is sensitive for f .

Given a proper walk P with V (P) = (v1, . . . ,vd) and I(P) = (i1, . . . , id), we say that it

realizes the sub-cube C(P) :=C(v1, I(P)). Equivalently, C(P) is the minimal sub-cube which

contains all the edges (v j,v j + ei j).

3.3.3 Proper walks in maximal degree cubes

Let f : {0,1}n→ {−1,1}. Gopalan et al. [24] proved that if f |C has maximal degree,

then C is realized by some proper walk (in fact, they prove that there exists such a proper walk

with a succinct description, which allows for better quantitative bounds; for now, we ignore this

aspect, and re-inspect it in Section 3.4). We will ask for a proper walk where the first node has

maximal sensitivity.

Definition 20 (First-maximal proper walk). Let P be a proper walk with respect to f , with

sensitive nodes V (P) = (v1, . . . ,vd). We say that P is first-maximal if s( f ,v1)≥ s( f ,vi) for all

i = 2, . . . ,d.

Lemma 20.1. Let f : {0,1}n→{−1,1}, C ∈ C (n,d) such that f |C has maximal degree d. Then

C is realized by a first-maximal proper walk with respect to f .
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Proof. Let g = f |C. For a sensitive edge (x,x′) for g, define its weight as

w(x,x′) = max(s( f ,x),s( f ,x′)).

We will prove that there exists a d-dimensional proper walk P with respect to g, with sensitive

nodes V (P) = (v1, . . . ,vd) and sensitive directions I(P) = (i1, . . . , id), such that

w(v1,v1 + ei1)≥ w(v2,v2 + ei2)≥ . . .≥ w(vd,vd + eid).

We first observe that this suffices for the lemma. We may assume that s( f ,v1)≥ s( f ,v1+ei1), as

otherwise we can set the starting point to be v1 + ei1 without changing any of the properties of

the proper walk. Then by design for every j = 2, . . . ,d we have

s( f ,v1) = w(v1,v1 + ei1)≥ w(v j,v j + ei j)≥ s( f ,v j).

Next, we prove the existence of such a walk by induction on d. For d = 1 this is

obvious, so assume d ≥ 2. Let (y,y′) be a sensitive edge in Gg with minimal weight w(y,y′).

Assume that y′ = y+ e`. If g has maximal degree d, then at least one of the restrictions g|x`=0

or g|x`=1 must have maximal degree d−1 in their respective sub-cube. Assume without loss of

generality that this holds for g|x`=0 and that y` = 0. By induction there is a proper walk with the

required conditions, realizing the sub-cube {x : x` = 0} of dimension d−1, given by sensitive

nodes v1, . . . ,vd−1 and sensitive directions i1, . . . , id−1. To complete the walk we set vd = y and

id = `.

3.3.4 Putting it together

Let f : {0,1}n→ {−1,1}. By Lemma 20.1, in any d-dimensional sub-cube C where

f |C has maximal degree, we can find a first-maximal proper walk realizing it. Thus, instead of

counting maximal degree sub-cubes, we will count first-maximal proper walks.
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Claim 20.1. The number of d-dimensional first-maximal proper walks in G f , which start at a

given node x, is at most

2(
d
2)s( f ,x)d.

Proof. We wish to count d-dimensional proper walks P with respect to f . Let V (P) = (v1, . . . ,vd)

and I(P) = (i1, . . . , id). We assume v1 = x, hence there are s( f ,x) possible values for i1.

Given that we already defined v1, . . . ,v j−1 and i1, . . . , i j−1, we have by assumption that v j ∈

C(v1,{i1, . . . , i j−1}), and hence it has at most 2 j−1 different possibilities. Given a choice of v j,

the number of choices for i j is at most s( f ,v j)≤ s( f ,x). Thus we can bound the number of such

walks by

21+2+...+d−1 · s( f ,x)d = 2(
d
2)s( f ,x)d.

We complete the proof of Theorem 14 below.

Proof of Theorem 14. Let A = 2n
∑S⊆[n] f̂ (S)2(|S|

d

)
, B = |{C ∈ C (n,d) : f |C has max degree}|

and D = ∑x∈{0,1}n s( f ,x)d . By Lemma 15.1 we have A≤ 2dB. By Lemma 20.1 we can bound B

by the number of d-dimensional first-maximal proper walks with respect to f , and by Claim 20.1

this number is bounded by 2(
d
2)D. Thus

2n
∑

S⊆[n]
f̂ (S)2

(
|S|
d

)
≤ 2dB≤ 2(

d
2)+d

∑
x∈{0,1}n

s( f ,x)d.

The theorem follows by dividing both sides by 2n.

3.4 Proof of the main theorem

We prove Theorem 13 in this section. We will follow the proof of Theorem 14 and make

careful modifications and optimizations, that would allow us to improve the bound from the

weak bound of ad = dO(d2) to the near optimal bound of ad = dO(d).
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A keen reader can see that the main reason for the loss of parameters in Theorem 14 is

the number of potential first-maximal proper walks in a max degree function, which we naively

bounded by 2(
d
2). In order to obtain a better bound, we need to define more carefully what do

we mean by a “description” of a proper walk. This notion was studied implicitly in [24] (see

Lemma 5.5), and we define it here explicitly.

Definition 21 (Signature of a walk). Let P be a d-dimensional walk in {0,1}n. Let V (P) =

(v1, . . . ,vd) and I(P) = (i1, . . . , id). By construction, we have v j+1 ∈C(v1,{i1, . . . , i j}) for all

j = 1, . . . ,d−1. This means that there exists ri, j ∈ {0,1} such that

v j+1 = v1 + r j,1 · ei1 + . . .+ r j, j · ei j .

The signature of P is

R(P) = (ri, j : 1≤ i≤ j ≤ d−1) ∈ {0,1}(
d
2).

We next define when a family of walks has a succinct description.

Definition 22 (Signature of a family of walks). Let P be a family of walks in {0,1}d . The

signatures of P are

R(P) = {R(P) : P ∈P} ⊂ {0,1}(
d
2).

If |R(P)| ≤ 2b then we say that P can be described using b bits.

We also need to extend the notion of first-maximal proper walks, in a way that breaks the

relation between the sub-cube and the global sensitivity of the function on Hn.

Definition 23. Let P be a d-dimensional walk whose sensitive nodes are V (P) = (v1, . . . ,vd).

Let w : {0,1}d → R be some weight function on the nodes of the hypercube. We say that P is

first-maximal with respect to w if w(v1)≥ w(vi) for all i = 2, . . . ,d.
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In the applications we will use g = f |C with weight function w(x) = s( f ,x). However,

making the general definition allows to focus on the restricted function f |C and forget about

the function f . The following definition isolates our notion of “efficient description” of a

first-maximal proper walks.

Definition 24. Fix d ≥ 1. We say that first-maximal proper walks in d dimensions can be

described using b bits if the following holds. For any function g : {0,1}d →{−1,1} of maximal

degree d, and any weight function w : {0,1}d → R, there exist a d-dimensional walk Pg,w which

is proper with respect to g, and first-maximal with respect to w, such that the family

Pproper, f irst−maximal := {Pg,w}

can be described using b bits (recall Definition 22).

One can verify that Lemma 20.1 can be extended to an arbitrary weight function. Thus,

it establishes that first-maximal proper walks in d dimensions can be described using
(d

2

)
bits.

This motivates the question of looking for the minimal such description length. This is further

motivated by the following lemma.

Lemma 24.1. Assume that first-maximal proper walks in dimension d can be described using b

bits. Then Theorem 13 holds with the bound ad = 2d+b.

Proof. Let R ⊂ {0,1}(
d
2) be a set of size |R| ≤ 2b, such that for any function g : {0,1}d →

{−1,1}, and any weight function w : {0,1}d → R, there exists a d-dimensional walk Pg,w which

is proper with respect to g, and first-maximal with respect to w, such that R(Pg,w) ∈R.

The only change needed in the proof of Theorem 13 is in Claim 20.1, where instead

of allowing for an arbitrary first-maximal proper walk, we only allow for walks P for which

R(P) ∈R. Thus the number of first-maximal proper walks starting at node x can be bounded by

s( f ,x)d|R| and the rest of the proof remains as is.
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Gopalan et al. [24] proved (Lemma 5.5) that if we remove the requirement that the walk

is first-maximal, then proper walks can be described using 4d bits. However, their proof does

not give the first-maximal condition, which is why their proof only works assuming a bound on

the maximal sensitivity of f . We conjecture that such a bound can be obtained also with the

first-maximal condition.

Conjecture 24.1. For any d ≥ 1, first-maximal proper walks in dimension d can be described

using O(d) bits.

Conjecture 24.1 would give optimal bounds in Theorem 13. Below, we give a nearly

tight bound.

Theorem 25. For any d ≥ 1, first-maximal proper walks in dimension d can be described using

12d logd bits.

Theorem 13 follows immediately from Theorem 25 and Lemma 24.1. Below, we give

the details necessary to prove Theorem 25. We start with some more definitions from [24].

3.4.1 Sensitive trees

Let g : {0,1}d →{−1,1}. Its corresponding sensitivity graph is Gg. We will generally

assume that g has max degree, although the following statements also follow from a weaker

assumption that g has maximal decision tree depth d.

Definition 26 (Sensitive tree). Let g : {0,1}d →{−1,1}. A sensitive tree for g is a sub-tree T

of Gg such that all edges of T have distinct directions. We denote by V (T ) the nodes of T , by

I(T ) the directions of the edges of T , and by C(T ) the minimal sub-cube that contains T .

The following claim is Lemma 5.3 in [24], which shows how to get a proper walk from a

sensitive tree. It also shows that such walks can be succinctly described.
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Claim 26.1 (Proper walk from a sensitive tree). Let g : {0,1}d → {−1,1}, and let T be a

sensitive tree for g. Then for every v ∈ V (T ) there exists a proper walk P = Ptree(v;T ) with

respect to g, such that v is the first node in P, V (P)⊆V (T ) and I(P) = I(T ). Furthermore, let

Ptree := {Ptree(v;T ) :g : {0,1}d →{−1,1},

T sensitive tree for g, v ∈V (T )}.

Then Ptree can be described using 2d bits.

Proof. Given a sensitive tree T with respect to g, consider the walk obtained by performing

a depth first search on T starting at v. This gives the required proper walk. To analyze the

signatures of Ptree, note that if T is a tree with k edges, then a depth first search in T is a walk

of length 2k which can be described as a sequence of length 2k with two types of operations:

“follow next sensitive edge” or “backtrack”. Moreover, there are exactly k of each type. This

determines the signature of the walk. Thus the total number of different signatures in Ptree is at

most

|R(Ptree)| ≤
d

∑
k=1

(
2k
k

)
≤ 22d.

Definition 27 (Shifting a sensitive tree). Let g : {0,1}d →{−1,1} and let T be a sensitive tree

for g. We say that T can be shifted in direction J ⊆ [d], where J∩ I(T ) = /0, if f (x) = f (x+ eJ)

for all nodes x of T . In such a case, we denote by T + eJ the tree obtained by shifting all nodes

and edges of T by eJ . Observe that T + eJ is also a sensitive tree for g.

Definition 28. Let g : {0,1}d →{−1,1} and let T be a sensitive tree for g. Let I ⊂ [d] disjoint

from I(T ). We say that T is invariant to shifts supported on directions I, if for any J ⊆ I we can

shift T in direction J. Equivalently, if f (x) = f (x+ eJ) for all x ∈ V (T ) and all J ⊆ I. In the

case that I = [d]\ I(T ) we say that T is maximally invariant to shifts.

24



The following claim is essentially Lemma 4.6 in [24].

Claim 28.1. Let g : {0,1}d → {−1,1}. Let T be a sensitive tree with respect to g. Let I ⊂ [d]

disjoint from I(T ). Then there exists I′ ⊆ I, and a sensitive tree T ′ with respect to g, such that

the following holds:

• I(T ′) = I(T )∪ I′.

• T ′ is invariant to shifts supported on directions I \ I′.

• There exists J ⊆ I′ such that T + eJ is a sub-tree of T ′.

Proof. We build T ′ greedily. Set initially T ′ = T and I′ = /0. If T ′ is invariant to shifts supported

on I \ I′, we are done. Otherwise, let J be minimal such that g(v+eJ) 6= g(v) for some v ∈V (T ′).

Choose some arbitrary j ∈ J. By assumption T ′ can be shifted in direction J \ { j}, so set

T ′ = T ′+eJ\{ j}. Now, there exists some v∈V (T ′) for which g(v) 6= g(v+e j). Thus, we can add

a new sensitive edge (v,v+ e j) to T ′, and add j to I′. Repeat this process until it terminates.

Let v ∈ {0,1}d . We say that a sensitive tree T agrees with v on coordinates I ⊂ [n], where

I∩ I(T ) = /0, if vi = xi for all x ∈C(T ) and all i ∈ I. Note that if a sensitive tree T is invariant to

shifts supported on directions I, then for any v there exists some shift T ′ = T + eJ for J ⊆ I such

that T ′ agrees with v on I.

3.4.2 Sensitive tree chains

Definition 29 (Sensitive tree chain). Let g : {0,1}d → {−1,1}. A sequence of sensitive trees

T1, . . . ,Tm with respect to g is called a sensitive tree chain if for each i = 2, . . . ,m, V (Ti)∩C(Ti−1)

is nonempty. We define V (T1, . . . ,Tm) :=V (T1)∪ . . .∪V (Tm) and I(T1, . . . ,Tm) := I(T1)∪ . . .∪

I(Tm).

Note that if T1, . . . ,Tm is a sensitive tree chain with respect to g, then so is any sub-

sequence. Namely, for any i≤ j we have that Ti, . . . ,Tj is also a sensitive tree chain with respect

to g.
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Claim 29.1. Let g : {0,1}d →{−1,1}. Let T1, . . . ,Tm be a sensitive tree chain for g. For every

v ∈V (T1) there exists a proper walk P = Pchain(v;T1, . . . ,Tm) with respect to g, such that v is the

first node in P, V (P)⊆V (T1, . . . ,Tm) and I(P) = I(T1, . . . ,Tm).

Proof. Let v1 = v, and for i > 1 fix some vi ∈ V (Ti)∩C(Ti−1). Consider the following walk:

start with a tree walk Ptree(v1;T1), which traverses T1 and starts and ends with v1. Then choose a

shortest path from v1 to v2, which by assumption only uses directions in I(T1). Proceed with a

tree walk Ptree(v2;T2), which traverses T2 and starts and ends with v2. Then choose a shortest

path from v2 to v3, which by assumption only uses directions in I(T2). Iterate this procedure

until we cover all trees.

Definition 30 (Disjoint sensitive tree chain). Let g : {0,1}d → {−1,1}. Let T1, . . . ,Tm be a

sensitive tree chain with respect to g. It is said to be disjoint if I(T1), . . . , I(Tm) are pairwise

disjoint.

Gopalan et al. [24] proved that for any function of maximal degree, there exists a disjoint

sensitive tree chain which cover all directions.

Lemma 30.1 (Lemma 5.2 in [24]). Let g : {0,1}d →{−1,1} of maximal degree. There exists a

disjoint sensitive tree chain T1, . . . ,Tm with respect to g, such that I(T1, . . . ,Tm) = [d].

Gopalan et al. [24] also showed that for these disjoint sensitive tree chains, their corre-

sponding proper walks can be descried using 4d bits.

Lemma 30.2 (Lemma 5.5 in [24]). Define

Pdis joint := {P(v;T1, . . . ,Tm) | g : {0,1}d →{−1,1},

v ∈V (T1), T1, . . . ,Tm

disjoint sensitive tree

chain for g}.
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Then Pdis joint can be described using 4d bits.

Proof sketch. We show that O(d) bits are enough, where with some optimizations this can be

made 4d. Let di = dim(Ti) where by the disjointness assumption ∑di ≤ d. Fix v1 ∈ V (T1)

and vi ∈ V (Ti)∩C(Ti−1). Each walk Ptree(vi;Ti) can be encoded using 2di bits, as we saw in

Claim 26.1. The shift from vi ∈V (Ti) to vi+1 ∈V (Ti+1) can be encoded using additional di bits.

In addition, we need symbols to denote when a description of a tree starts and ends, and when

the description of a shift starts and ends. Each of these is repeated at most d times.

The main problem with tree chains T1, . . . ,Tm is that they allow to “move” only in one

direction, that is following the sequence T1,T2, . . . ,Tm, but not in the reverse direction. In the

next section, we introduce reversible tree chains, which allow to move in both directions. These

will turn out to be crucial for the purpose of designing first-maximal proper walks.

3.4.3 Reversible tree chains

Up until now, we relied on the definition of [24]. In this section, we give several new

definitions for combinatorial sub-structures of the hypercubes, which our improved bound hinges

upon.

Given trees T1, . . . ,Tm, we define by C(T1, . . . ,Tm) the smallest sub-cube that contains

all their edges. The following definition is a weak form of a sensitive tree chain, that will be

important for us.

Definition 31 (Weak sensitive tree chain). Let g : {0,1}d → {−1,1}. A sequence of sensitive

trees T1, . . . ,Tm with respect to g is called a weak sensitive tree chain if for each i = 2, . . . ,m,

V (Ti)∩C(T1, . . . ,Ti−1) is nonempty (as opposed to V (Ti)∩C(Ti−1) 6= /0 in Definition 29).

Claim 31.1. Let g : {0,1}d →{−1,1}. Let T1, . . . ,Tm be a weak sensitive tree chain for g. For

every v ∈V (T1) there exists a proper walk P = Pweak−chain(v;T1, . . . ,Tm) with respect to g, such

that v is the first node in P, V (P)⊆V (T1, . . . ,Tm) and I(P) = I(T1, . . . ,Tm).
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Proof. The proof is identical to that of Claim 29.1, except that after the traversal on Ti we

may change coordinates in I(T1)∪ . . .∪ I(Ti) to get to Ti+1 (as opposed to just changing the

coordinates in I(Ti), as done in Claim 29.1).

Definition 32 (Reversible sensitive tree chain). Let g : {0,1}d →{−1,1}. A reversible sensitive

tree chain for g is comprised of:

• A disjoint sensitive tree chain T1, . . . ,Tm where I(T1, . . . ,Tm) = [d].

• A weak sensitive tree chain T ′m, . . . ,T
′

1 (in this order!) where I(T ′m, . . . ,T
′

1) = [d].

Such that

• Each Ti is a sub-tree of T ′i

• The sets I(T ′i )\ I(Ti) for i = 1, . . . ,m are pairwise disjoint.

Reversible sensitive tree chains allow us to construct first-maximal walks, as they support

proper walks which start at any node of T ′1, . . . ,T
′

m.

Claim 32.1. Let g : {0,1}d →{−1,1}. Assume that there exists a reversible sensitive tree chain

(T1, . . . ,Tm;T ′m, . . . ,T
′

1) for g. Then, for any weight function w : {0,1}d → R, there exists a walk

P = Pg,w which is proper with respect to g, and first-maximal with respect to w. In addition:

• V (P)⊂V (T ′1, . . . ,T
′

m).

• I(P) = [d].

• The length of P is at most 12d.

Proof. Let V =V (T ′1, . . . ,T
′

m). Let v ∈V for which w(v) is maximal. We will construct a walk P

as above starting at v. Assume that v ∈V (T ′j ). The walk P is composed of:

• The shortest path in the tree T ′j from v to some v′ ∈V (Tj).
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• The walk Pchain(v′;Tj, . . . ,Tm), ending at some v′′ ∈V (Tm).

• The walk Pweak−chain(v′′;T ′m, . . . ,T
′

1).

The first two claims clearly hold. We next bound the length of P.

In order to bound the length of walk, the first part has length at most dim(T ′i )≤ d. The

second walk has length bounded by ∑
m
i= j 3dim(Ti) ≤ 3d, which follows as we assume that

I(T1), . . . , I(Tm) are disjoint, and that C(Ti)∩V (Ti+1) 6= /0 for i = 1, . . . ,m−1. The length of the

third part can be bounded as follows.

The walk in the third part Pweak−chain(v′′;T ′m, . . . ,T
′

1) selects vertices v′m−1, . . . ,v
′
1 in

V (T ′m−1), . . . ,V (T ′1), respectively, such that for all i = m−1, . . . ,1 we have v′i ∈C(T ′i+1, . . . ,T
′

m).

The walk starts at v′m := v′′ ∈V (T ′m), and explores T ′m using Ptree(v′m;T ′m) that starts and ends at

v′m. We then take the shortest walk in Hd from v′m to v′m−1(we explain why the walk is proper

below). From v′m−1 explore T ′m−1 using Ptree(v′m−1;T ′m−1), and then take the shortest walk in

Hd from v′m−1 to v′m−2. We continue this way until we reach v′1, where we explore T ′1 using

Ptree(v′1;T ′1).

First, we argue that the walk is proper. Recall that when moving from v′i+1 to v′i,

for i = m− 1, . . . ,1, we take the shortest path in Hd between the two vertices. Since v′i ∈

C(v′i+1, I(T
′

i+1, . . . ,T
′

m)), we only change coordinates in I(T ′i+1, . . . ,T
′

m) which means that the

walk is indeed proper.

Next, we wish to bound the length of the shortest path from v′i+1 to v′i, i.e., the distance

between v′i and v′i+1 in Hd . Denote by dH(u,v) the distance between two nodes u and v in

Hd (i.e., their Hamming distance). To bound dH(v′i,v
′
i+1), we use the fact that T1, . . . ,Tm is a

disjoint sensitive tree chain (that is, we are using the forward chain to bound the length of the

backward walk!). Since T1, . . . ,Tm is a disjoint sensitive tree chain, there exist vi ∈ V (Ti) and

vi+1 ∈V (Ti+1) with distance at most dim(Ti) between them (simply take vi+1 ∈V (Ti+1)∩C(Ti)
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and any vi ∈V (Ti)). By the triangle inequality,

dH(v′i,v
′
i+1)

≤dH(v′i,vi)+dH(vi,vi+1)+dH(vi+1,v′i+1)

≤dim(T ′i )+dim(Ti)+dim(T ′i+1),

where we used the fact that v′i,vi ∈V (T ′i ) to bound the first summand and that vi+1,v′i+1 ∈V (T ′i+1)

to bound the third. Thus, the total length of the third part is at most

m

∑
j=1

dim(Tj)+
m

∑
j=1

4dim(T ′j )≤ 9d,

where ∑
m
j=1 dim(Tj) = d and where ∑

m
j=1 dim(T ′j )≤ 2d by our assumption that I(T ′1)\ I(T1), . . . ,

I(T ′m)\ I(Tm) are disjoint. Thus we can bound the length of the total walk by 12d.

The following lemma shows how, starting from a sensitive tree chain, we can construct a

reversible sensitive tree chain.

Lemma 32.1. Let g : {0,1}d →{−1,1}. Assume that there exists a disjoint sensitive tree chain

T1, . . . ,Tm for g such that I(T1, . . . ,Tm) = [d]. Then there exists a reversible sensitive tree chain

for g.

Before proving Lemma 32.1 we need an extension of Claim 28.1 to a weak sensitive tree

chain.

Claim 32.2. Let g : {0,1}d→{−1,1}. Let T1, . . . ,Tm be a weak sensitive tree chain with respect

to g. Let I ⊂ [d] disjoint from I(T1, . . . ,Tm). Then there exists I′ ⊆ I, and a weak sensitive tree

chain T ′1, . . . ,T
′

m with respect to g, such that the following hold:

• I(T ′i ) = I(Ti)∪ I′i , where I′1, . . . , I
′
m is a partition of I′.

• For all i = 1, . . . ,m, T ′i is invariant to shifts supported on directions I \ I′.
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• There exists J ⊆ I′ such that for all i, Ti + eJ is a sub-tree of T ′i .

Proof. The proof is nearly identical to that of Claim 28.1. Let initially T ′i = Ti, I′ = /0. If all

of T ′1, . . . ,T
′

m are invariant to shifts supported on directions I \ I′, we are done. Otherwise, pick

minimal J ⊂ I \ I′ for which some T ′i cannot be shifted in direction J, and pick j ∈ J. Replace

each T ′i with T ′i + eJ\{ j}, and observe that T ′1, . . . ,T
′

m is still a weak sensitive tree chain with

respect to g. Choose v ∈V (T ′i ) such that g(v) 6= g(v+e j), add the edge (v,v+e j) to T ′i , and add

j to I′. Repeat this process until it terminates.

Proof of Lemma 32.1. Let T1, . . . ,Tm be the initial disjoint sensitive tree chain. Throughout the

proof, we will modify T1, . . . ,Tm by the following operations: for some i ∈ [m] we will choose

J ⊆ I(Ti), and replace Ti+1, . . . ,Tm with Ti+1 + eJ, . . . ,Tm + eJ , while assuring that the latter are

also sensitive trees for g. Observe that such operations maintain the property that T1, . . . ,Tm is a

disjoint sensitive tree chain, and that they do not change I(Tj) for any j.

We construct T ′m, . . . ,T
′

1 in this order. In the i-th iteration (where i = m, . . . ,1), we will

construct T ′i , and along the way also change T ′i+1, . . . ,T
′

m and Ti+1, . . . ,Tm. We will obtain the

following invariant at the end of the i-th iteration (and the beginning of the i−1 iteration):

• Tj is a sub-tree of T ′j for all j = i, . . . ,m.

• T1, . . . ,Tm is a disjoint sensitive tree chain.

• T ′m, . . . ,T
′

i is a weak sensitive tree chain.

• C(T ′m, . . . ,T
′

i ) =C(Ti, . . . ,Tm).

The first iteration, for i = m, is very simple: take T ′m = Tm. At the beginning of the i-th

iteration, for i < m, we have already constructed T ′m, . . . ,T
′

i+1 that satisfy the requirements above.

Apply Claim 32.2 to the weak sensitive tree chain T ′m, . . . ,T
′

i+1 with I = I(Ti) (which by induction

is disjoint from I(Tm, . . . ,Ti−1) = I(T ′m, . . . ,T
′

i−1)). This results in a weak sensitive tree chain

T ′′m , . . . ,T
′′

i+1 and a set I′ = I(Ti)∩ I(T ′′i+1, . . . ,T
′′

m) such that
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• There exists J′ ⊆ I′ such T ′j + eJ′ is a sub-tree of T ′′j for all j = i+1, . . . ,m.

• The directions I(T ′′i+1)∩ I(Ti), . . . , I(T ′′m)∩ I(Ti) are disjoint and partition I′.

• For all j = i+1, . . . ,m, T ′′j is invariant to shifts supported on directions I \ I′.

Next, choose some vi ∈ V (Ti). Let I′′ = I \ I′. Let J′′ ⊆ I′′ be a shift so that T ′′i+1 + eJ′′

will agree with vi on the coordinates I′′. Define T ′′′j = T ′′j +eJ′′ for j = i+1, . . . ,m. Note that for

J = J′∪ J′′ we have that Tj + eJ is a sub-tree of T ′′′j . Perform the following operations:

• Set T ′j = T ′′′j for j = i+1, . . . ,m.

• Set Tj = Tj + eJ for j = i+1, . . . ,m.

• Set T ′i = Ti.

We claim that this satisfies the required conditions for the end of the i-iteration.

First, we have that Tj is a sub-tree of T ′j for j = i, . . . ,m. Second, T1, . . . ,Tm is still a

disjoint sensitive tree chain, as we shifted Ti+1, . . . ,Tm by some J ⊆ I(Ti). Next, we need to show

that T ′m, . . . ,T
′

i is a weak sensitive tree chain.

Recall that by definition that means that C(T ′m, . . . ,T
′
j+1)∩V (T ′j ) 6= /0 for all j = m−

1, . . . , i. First, we claim that this holds for j = m−1, . . . , i+1. This is true since it held at the

beginning of the i-th iteration, and the only change is that we shifted all trees T ′i+1, . . . ,T
′

m by the

same shift eJ , and potentially replaced them by larger sensitive trees containing them. So, it also

holds at the end of the i-th iteration. Next, we show that for j = i.

Recall that we chose the shift J so that for some vi ∈ V (Ti), C(T ′i+1) agrees with vi on

I′′ = I(Ti) \ I(T ′m, . . . ,T
′

i+1). By the assumption that C(T ′m, . . . ,T
′

i+1) = C(Ti+1, . . . ,Tm) which

held at the beginning of the i-th iteration, and since we only shifted and extended T ′i+1, . . . ,T
′

m by

some directions in I(Ti), we have that T ′i+1, . . . ,T
′

m ⊂C(Ti, . . . ,Tm). As each Tj is a sub-tree of T ′j ,

and as T ′i = Ti, this implies that C(T ′m, . . . ,T
′

i ) =C(Ti, . . . ,Tm). But then C(T ′i+1) also agrees with

vi on I(T1, . . . ,Ti−1). This then implies that vi ∈C(T ′m, . . . ,T
′

i+1). Thus V (Ti)∩C(T ′m, . . . ,T
′

i+1) is

nonempty, as claimed.
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3.4.4 Completing the proof

We conclude the proof of Theorem 25. Let g : {0,1}d →{−1,1} of maximal degree. By

Lemma 30.1 there exists a disjoint sensitive tree chain T1, . . . ,Tm for g, such that I(T1, . . . ,Tm) =

[d]. We may thus apply Lemma 32.1, which shows the existence of a reversible sensitive tree

chain for g. Claim 32.1 then shows that there exists a proper walk for g of length at most 12d.

To conclude, observe that for any length `≥ 1, if we define a family of walks in Hd of length `,

Plength ` := {P walk of length ` in Hd}

then P can be described using ` · logd many bits, simply by giving the edges in the walk. This

shows that first-maximal proper walks in dimension d can be described using 12d logd bits. 1

3.5 Proofs of Corollaries

We prove in this section the two corollaries of Theorem 12 given in the introduction.

Proof of Corollary 12.1. For any d ≥ 1 it is easy to verify that the assumption implies

E
x∈{0,1}n

[
s( f ,x)d +1

]
≤ sd ·dd ·2O(d).

Fix ε > 0 and let λ to be determined later. Then by Theorem 12 we have

∑
|S|≥λ s

f̂ (S)2 ≤ 1
(λ s)d ∑ f̂ (S)2|S|d

≤d13d2O(d)

(λ s)d E
x∈{0,1}n

[
s( f ,x)d +1

]
≤
(

O
(

d14

λ

))d

.

1The constant 12 is not optimal. We chose to compromise optimizing the constant, in order to make the
presentation simpler.
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The claim follows by setting d = log(1/ε) and λ = O(d14).

Proof of Corollary 12.2. Let g : {0,1}n→{−1,1} be the indicator function of A, namely g(x) =

1 if x∈ A and g(x) =−1 if x /∈ A. Let Parity(x) = (−1)x1+...+xn be the parity function, and define

f (x) = g(x)Parity(x). Note that if x ∈ A then the degree of x in G[A] equals s( f ,x), and if x /∈ A

then the degree of x in G[Ac] equals s( f ,x). Thus, we can rephrase the claim as

Pr
x∈{0,1}n

[
s( f ,x)≥ n

c log13(1/ε)

]
≥ ε

c,

for some absolute constant c > 0.

Next, observe that f̂ ([n]) = ĝ( /0) = E[g] = 2ε . By Theorem 12 for any d ≥ 1 we have

E
x∈{0,1}n

[s( f ,x)d]

≥−1+
1

d13d2O(d) ∑ f̂ (S)2|S|d

≥−1+
ε2nd

d13d2O(d)
.

On the other hand, for any λ > 0 we have

E
x∈{0,1}n

[s( f ,x)d]≤ Pr[s( f ,x)≥ λn] ·nd +(λn)d.

Setting λ = 1/(c log13(1/ε)) gives

Pr
[

s( f ,x)≥ n
c log13(1/ε)

]
≥ ε2

d13d2O(d)
− 1

cd log13d(1/ε)
− 1

nd .

The claim follows by setting d = log(1/ε) and choosing c > 0 large enough.
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3.6 Open problems

Our main result is Theorem 13, which proves Conjecture 11.1. As we discussed in

the introduction, we suspect that our quantitative bounds are sub-optimal. The conjectured

bound below will allow us to match the results of [24], which assumed a bound on the maximal

sensitivity.

Conjecture 32.1. Theorem 12 holds with a bound of ad ≤ dd ·2O(d).

Lets assume this conjecture for now. Corollary 12.2 finds many nodes of large degree in

either G[A] or G[Ac]. However, it makes sense that it suffices to consider the larger of either A or

Ac.

Conjecture 32.2. Let A⊂ {0,1}n of size |A| ≥ (1+ε)2n−1. Then G[A] contains εO(1)2n vertices

whose degree is at least Ω(n/ log(1/ε)).

The main technical component of our proof is the structure of the sensitivity graph for

functions of maximal degree. Our techniques, however, apply equally well under the weaker

assumption that the decision tree complexity of the function is maximal. In fact, any complexity

measure where if f has maximal complexity then, for any bit xi, one of the restrictions f |xi=0 or

f |xi=1 has maximal complexity would do.
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Chapter 4

DNF Sparsification

The disjunctive normal form (DNF) is a well-used representation of logical formulae.

A DNF is a disjunction of conjunctive clauses; it can also be described as an OR of ANDs.

Functions which can represented as small CNFs or DNFs are central in computational complexity

theory, and have been widely studied. We focus on DNFs in this chapter.

Given a DNF f , there are two natural ways to measure its complexity: the number of

clauses, called the size of f ; and the maximal number of variables in a clause, called the width

of f . It is a folklore result that DNFs of small size can be approximated by DNFs of small width;

concretely, we have the following theorem.

Theorem 33. Let f = ϕ1∨ ·· ·∨ϕs be a DNF of size s, where each ϕi is a conjunctive clause.

Then it can be ε-approximated by a DNF f ′ of width log(s/ε).

The proof of this theorem is pretty straightforward. We can easily obtain f ′ by removing

the large clauses.

Proof. Define the set as B := {i ∈ [t] : the width of ϕi is smaller than log(s/ε)}. Define the

DNF f ′ as

f ′ =
∨
i∈B

ϕi.
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Then

Pr
x
[ f (x) 6= f (x′)]≤ Pr

x
[∃i 6∈ B,ϕi(x) = 1]≤∑

i6∈B
Pr
x
[ϕi(x) = 1]≤ s ·2− log(s/ε) ≤ ε.

Then claim the follow.

Gopalan, Meka and Reingold [21] studied the reverse problem of DNF sparsification: can

small width DNFs be approximated by DNFs of small size? Their motivation, other than being a

natural problem on the structure of DNFs, came from the goal of designing faster deterministic

algorithms to approximately count the number of satisfying assignements of a DNF. In specific,

their main structural result on DNFs is the following.

Theorem 34 ([21]). Let f be a boolean function which can be expressed as a width-w DNF.

Then for every ε > 0, f can be ε-approximated by a DNF of width w and size (w log(1/ε))O(w).

It was conjectured in [21] that the term (w log(1/ε))w is not tight. In particular, Con-

jecture 6.1 in their paper speculates that the bound can be improved to c(ε)w, and moreover

that possibly one can take c(ε) = (log1/ε)O(1). Joint with Lovett [44], we resolve the weaker

conjecture.

Theorem 35 ([44]). Let f be a boolean function which can be expressed as a width-w DNF.

Then for every ε > 0, f can be ε-approximated by a DNF of width w and size (1/ε)O(w).

While the dependence we obtain on the error ε > 0 is probably sub-optimal, our main

goal was to sharpen the dependence on the width w, from wO(w) to 2O(w) (for a fixed error ε).

4.1 Proof overview

Let f = ϕ1∨ . . .∨ϕt be a DNF, where each ϕi is a clause (conjunction of literals). The

main object which underlies our work is the function which maps an input to the first clause

which satisfies it. We call this the DNF index function. Observe that this depends on the specific
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structure of the DNF, and not just the boolean function it computes. Moreover, it depends on the

order of the clauses.

Definition 36 (DNF index function). Let f = ϕ1∨ . . .∨ϕt be a DNF. The index function of f is

a function Ind f : {0,1}n→{0, . . . , t} defined as follows:

Ind f (x) =


0 if f (x) = 0

min{i ∈ [t] : ϕi(x) = 1} if f (x) = 1

Let pi = Prx[Ind f (x) = i] denote the fraction of inputs such that the i-th clause is the first

clause that satisfies them. The following is a natural approach for DNF sparsification: only keep

clauses ϕi for which pi is noticeable.

However, it is not clear how many noticeable clauses could there be. For example, a

bad scenario would be if pi = 1/t for all i; in this case there would be no way to significantly

sparsify the DNF. However, this cannot be the case, as if ϕ1 as width w then p1 = 2−w. So, the

main challenge is to show that there is a small set of indices I ⊂ [t], such that ∑i/∈I pi ≤ ε . Our

main theorem shows that this holds for |I|= (1/ε)O(w).

Next, we highlight how we show that. At its core, our argument has two parts: a

combinatorial part, where we prove switching lemma for the DNF index function; and an

analytic part, where we analyze the noise sensitivity of the index function and connect it to the

problem of DNF sparsification.

Combinatorial part: Switching lemma. The behaviour of DNFs under random re-

strictions have been well studied. Razborov [51], refining previous work of Håstad [26], showed

that DNFs simplify under random restrictions. See also [7] for an exposition.

We need a few standard definitions. A restriction is ρ ∈ {0,1,∗}n. An (n,k)-random

restriction is a uniform restriction ρ ∈ {0,1,∗}n with exactly k stars. Given a boolean function

f : {0,1}n → {0,1}, its restriction under ρ is denoted f |ρ : {0,1}ρ−1(∗) → {0,1}. Given a

38



function f : {0,1}n→ X for some finite set X , we denote its decision tree complexity by dt( f ).

The well-known switching lemma for DNFs[26, 51, 7] is the following result. Let f be

an n-variate boolean function computed by a width-w DNF. Let k = αn. Let ρ ∈ {0,1,∗}n be an

(n,k)-random restriction. Then for any d ≥ 1,

Pr
ρ

[
dt( f |ρ)≥ d

]
≤ (7αw)d.

We extend this result to the DNF index function. Assume that f = ϕ1∨ . . .∨ϕt and let Ind f :

{0,1}n→{0, . . . , t} be its associated DNF index function. We prove (lemma 36.1) that for any

d ≥ 1,

Pr
ρ

[
dt(Ind f |ρ)≥ d

]
≤ (32αw)d.

We note that Rossman [53] introduced the index function under the name “first witness function”,

and proved a similar switching lemma.

Analytic part: Noise sensitivity. Let I denote the set of noticeable clauses i ∈ [t]. Our

goal is to upper bound ∑i/∈I pi. To that end, we study the behaviour of the index function under

noise. Given x ∈ {0,1}n let Nρ(x) denote the noise distribution around x, where y∼ Nρ(x) is

sampled by taking Pr[xi = yi] = ρ independently for i ∈ [n]. The main observation is that that

if all (or most) of the pi are negligible, then Ind f cannot be stable under noise. This is since if

Ind f (x) = i, and pi is tiny, then if we sample y∼ Nρ(x) then with high probability Ind f (y) 6= i.

This follows from the well known fact (whose proof is based on the hypercontractive inequality)

that small sets in the hypercube are not noise stable.

So, our goal is to show that Ind f is noise stable. Concretely, we say that an input x which

satisfies f is (ρ,γ)-stable for f if

Pr
y∼Nρ (x)

[
Ind f (x) = Ind f (y)

]
≥ γ.
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Thus, if most inputs are stable, then if we first sample x ∈ {0,1}n uniformly, and then take

i= Ind f (x), then with high probability pi is noticeable. This then implies that ∑ pi is concentrated

on a small set I. To conclude, we need to show that indeed most inputs x ∈ f−1(1) are noise

stable.

This in turn follows from our switching lemma for Ind f . Consider an equivalent way

to jointly sample x,y, where first we sample ρ ∈ {0,1,∗}n where Pr[ρi = ∗] = 1−ρ , and then

sample x,y conditioned on xi = yi = ρi whenever ρi 6= ∗. If Ind f |ρ has a small depth decision

tree, then there is a noticeable probability that it evaluates to the same leaf on both x,y. That is,

that Ind f (x) = Ind f (y). Thus, the switching lemma allows us to prove that most inputs are noise

stable, completing the proof.

4.2 Switching lemma for DNF index function

Let f be a width-w DNF. Recall that the index function of f maps an input to the first

clause that is satisfies, or to 0 if no clause is satisfied. The main goal of this section is to prove a

switching lemma for the DNF index function. We start with some preliminary definitions.

Decision tree. Let g : {0,1}n→ X be a function where X is some finite set. A decision

tree for g is a binary tree whose nodes are labeled by variables and whose leaves are labeled

by elements of X . The decision tree complexity of g, denoted dt(g), is the minimal depth of a

decision tree computing g.

Restrictions. A restriction is ρ ∈ {0,1,∗}n. Given a function g : {0,1}n → X , its

restriction g|ρ is the sub-function obtained by restricting to inputs which agree with ρ . That is,

let S = {i : ρi = ∗} be the “alive” variables. Then g|ρ : {0,1}S→ X by mapping z ∈ {0,1}S to

g(x), where xi = zi if i ∈ S and xi = ρi otherwise.
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Random restrictions. An (n,k)-random restriction is the the uniform distribution over

restrictions ρ ∈ {0,1,∗}n with exactly k stars.

The following is the main result of this section.

Lemma 36.1 (Switching lemma for the DNF index function). Let f be a width-w DNF on n

variables, and let Ind f be its DNF index function. Let k = αn and let ρ be an (n,k)-random

restriction.. Then for every d ≥ 1,

Pr
ρ
[dt(Ind f |ρ)≥ d]≤ (32αw)d.

Proof. We assume α ≤ 1/32w otherwise the claim is trivial. Let ρ ∈ {0,1,∗}n. We say that ρ is

“bad” if dt(Ind f |ρ)≥ d. We use a compression argument, similar to the one used by Razborov

[51] to prove the switching lemma for DNFs.

The DNF f = ϕ1∨ . . .∨ϕt is fixed throughout. Let Vj denote the variables that appear in

ϕ j. We use the following notations. Given two strings a,a′ their concatenation is a◦a′. Given

a known set W of size w, and a set V ⊂W of a known size, we can uniquely describe V by a

string in [w]|V |. We denote this representation SetIndex(W,V ). We define three operations on

restrictions:

• Append: given a restriction ρ ∈{0,1,∗}n and a partial input u∈{0,1}S where S⊂ ρ−1(∗),

we denote by append(ρ,u) the restriction obtained by appending u to ρ:

append(ρ,u) =


ui if i ∈ S

ρi otherwise

• Delete: given a restriction ρ ∈ {0,1,∗}n and a set S ⊂ ρ−1({0,1}), we denote by
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delete(ρ,S) the restriction obtained by setting the symbols in S to stars:

delete(ρ,S) =


∗ if i ∈ S

ρi otherwise

• Update: given a restriction ρ ∈ {0,1,∗}n and a partial input u ∈ {0,1}S where S ⊂

ρ−1({0,1}), we denote by update(ρ,u) the restriction obtained by updating the elements

in S to u:

update(ρ,u) =


ui if i ∈ S

ρi otherwise

We next present the encoding and decoding algorithms.

Encode(ρ)

Input: restriction ρ ∈ {0,1,∗}n.

Output: restriction τ ∈ {0,1,∗}n, string a ∈ N∗.

1. Initialize τ = ρ . Initialize a to be an empty string.

2. For j = 1, . . . , t do:

(a) If ϕ j|ρ ≡ 0 then skip to the next j.

(b) If ϕ j|ρ ≡ 1 then abort the loop.

(c) Otherwise compute:

i. A j = {i ∈Vj : ρi = ∗} the alive variables in ϕ j.

ii. u j ∈ {0,1}A j an assignment under which dt(Ind f |append(ρ,u j)) is maximized.

iii. v j ∈ {0,1}A j an assignment under which ϕ j|append(ρ,v j) ≡ 1.
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(d) Update:

i. ρ = append(ρ,u j).

ii. τ = append(τ,v j).

iii. a = a◦ |A j| ◦SetIndex(Vj,A j)◦u j.

3. Return τ,a.

Decode(τ,a)

Input: restriction τ ∈ {0,1,∗}n, string a ∈ N∗.

Output: restriction ρ ∈ {0,1,∗}n.

1. Initialize A to be an empty set.

2. For j = 1, . . . , t do:

(a) If ϕ j|τ ≡ 0 then skip to the next j.

(b) Otherwise read from a: A j ⊂Vj and u j ∈ {0,1}A j .

(c) Update:

i. A = A∪A j.

ii. τ = update(τ,u j).

3. Return ρ = delete(τ,A).

We first argue that the encoding and decoding are correct.

43



Lemma 36.2. For any ρ ∈ {0,1,∗}n it holds that

DECODE(ENCODE(ρ)) = ρ.

Proof. Let τ,a = ENCODE(ρ). Note that if ρi 6= ∗ then τi = ρi. So, we just need to verify

that the decoding procedure deletes exactly the elements that were appended in the encoding

procedure, namely ∪A j. Say that an index j ∈ [t] is active if in the encoding procedure, we

have that ϕ j|ρ is non-constant when it is considered. Let J = { j1, . . . , jr} denote the set of

active indices. The main observation is that these are also the indices in which in the decoding

procedure we have ϕ j|ρ 6≡ 0. In fact, one can further verify that ϕ j|ρ ≡ 1 in these cases. To

conclude note that the auxiliary string a allows to precisely recover the sets A j.

To conclude the proof we need to bound the probability that ρ is bad. To do so, we bound

the size of the set {ENCODE(ρ) : ρ is bad}. Assume that τ,a = ENCODE(ρ). As ρ is bad,

we have dt(Ind f |ρ)≥ d. This means that m = ∑ |A j| ≥ d by the choice of the u j. Given a fixed

m we bound the number of choices for τ,a.

The restriction τ has exactly k−m stars, and so has
( n

k−m

)
2n−k+m options. Assume there

are r sets A j with |A j| > 0. The number of choices of |A1|, . . . , |Ar| is equal to the number of

ways we can decompose m = a1 + . . .+ar with ai ≥ 1, which equals
(m−1

r−1

)
. The sum of these

over all r is 2m−1. Given that |A j|> 0 for some j, the number of options for SetIndex(Vj,A j) is

w|A j| and the number of choices for u j is 2|A j|. So we obtain

{ENCODE(ρ) : ρ is bad} ≤ ∑
m≥d

(
n

k−m

)
2n−k+m(4w)m.

On the other hand, the total number of restrictions ρ with exactly k stars equals
(n

k

)
2n−k. So we
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obtain that

Pr[ρ is bad]≤ ∑
m≥d

( n
k−m

)(n
k

) (8w)m

≤ ∑
m≥d

(
α

1−α

)m

(8w)m

≤ ∑
m≥d

(16αw)m ≤ (32αw)d,

where the last inequality follows from the assumption α ≤ 1/32w.

We would need the following simple corollary. Let Rn,α be the distribution over restric-

tions {0,1,∗}n where Pr[ρi = ∗] = α and Pr[ρi = 0] = Pr[ρi = 1] = 1−α

2 .

Corollary 36.1. Let f be a width-w DNF on n variables, and let Ind f be its DNF index function.

Let ρ ∼ Rn,α . Then for every d ≥ 1,

Pr
ρ∼Rn,α

[dt(Ind f |ρ)≥ d]≤ (64αw)d +2−Ω(αn).

Proof. Let ρ ∼ Rn,α and let k = |ρ−1(∗)|. Conditioned on |ρ−1(∗)|= k, the distribution of ρ

is an (n,k)-random restriction. Namely, it is uniform in Un,k, the set of restrictions in {0,1,∗}n

with exactly k stars. Then

Pr
ρ∼Rn,α

[dt(Ind f |ρ)≥ d]

=∑
k

Pr
ρ∼Rn,α

[|ρ−1(∗) = k|] · Pr
ρ∈Un,k

[dt(Ind f |ρ)≥ d].

The probability that k ≥ 2αn is exponentially small in αn. Whenever k ≤ 2αn we use lemma

36.1 to deduce the bound.
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4.3 DNF sparsification

The goal of this section is to prove the following theorem.

Theorem 37. Let f = ϕ1∨ . . .∨ϕt be a width-w DNF. Then for every ε > 0, there exists a subset

I ⊂ [t] of size |I| ≤ (1/ε)O(w) such that the following holds. Let f ′ =
∨

i∈I ϕi. Then

Pr[ f (x) 6= f ′(x)]≤ ε.

4.3.1 Noticeable indices

Let f = ϕ1∨ . . .∨ϕt be a width-w DNF. To recall, Ind f is the index function of f , which

maps an input x to the first clause that it satisfies, or to 0 if f (x) = 0. The main question we study

is: how are the outputs of the DNF index function distributed? for example, can they be uniform

in [t]? we show that the answer is no if t is too large, which leads us to be able to approximate f

as a smaller DNF.

Definition 38 (Noticeable index). Let f = ϕ1 ∨ . . .∨ϕt be a DNF. An index i ∈ [t] is called

τ-noticeable if

Pr
x∈{0,1}n

[
Ind f (x) = i

]
≥ τ.

For example, if f is a DNF, and ϕ1 is the first clause with w variables, then 1 is (2−w)-

noticeable since Pr[ϕ1(x) = 1] = 2−w. We denote the set of all noticeable indices by

I( f ,τ) = {i ∈ [t] : i is τ-noticeable}.

The following claim is straightforward.

Lemma 38.1. |I( f ,τ)| ≤ 1/τ .

Proof. Ii i ∈ I( f ,τ) then Pr
[
Ind f (x) = i

]
≥ τ . These events are disjoint for different i.

46



4.3.2 Noise stability

We use the following shorthand: |g|= Prx∈{0,1}n [g(x) = 1] is the fraction of inputs on

which g accepts. We will need the following fact which follows from the hyper-contractive

inequality (see for example [50], page 259).

Lemma 38.2. Let g : {0,1}n→{0,1} be a boolean function. Then Stabρ(g)≤ |g|
2

1+ρ .

The following claim is a simple corollary of Fact 38.2. It studies the noise sensitivity of a

decomposition of a boolean function f into disjoint boolean functions g1, . . . ,gt .

Lemma 38.3. Let f = g1 + . . .+gt where f ,g1, . . . ,gt : {0,1}n→{0,1} are boolean functions.

Given a parameter τ ∈ [0,1] define

I = {i ∈ [t] : |gi| ≥ τ}.

Then

∑
i/∈I

Stabρ(gi)≤ τ
1−ρ

1+ρ .

Proof. Lemma 38.2 gives that for i /∈ I we have Stabρ(gi)≤ |gi|
2

1+ρ ≤ |gi| · τ
1−ρ

1+ρ . Thus

∑
i/∈I

Stabρ(gi)≤ τ
1−ρ

1+ρ ∑
i/∈I
|gi| ≤ τ

1−ρ

1+ρ .

4.3.3 Noise stability of the index function

The noise stability of boolean function is a well-studied topic. Here, we study the noise

stability of the DNF index function.

Definition 39 (Stable and sensitive inputs). Let f be a DNF, Ind f be its DNF index function, and
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let x ∈ {0,1}n be an input which satisfies f . The input x is called (ρ,γ)-stable for f if

Pr
y∼Nρ (x)

[
Ind f (x) = Ind f (y)

]
≥ γ.

Otherwise, x is called (ρ,γ)-sensitive for f .

Definition 40 (Index sensitivity). The (ρ,γ)-index sensitivity of f is the fraction of (ρ,γ)-

sensitive inputs for f ,

IndexSensitivity( f ,ρ,γ)

= Pr
x∈{0,1}n

[ f (x) = 1 ∧ x is (ρ,γ)-sensitive for f ] .

The following lemma connects the index sensitivity to DNF sparsification.

Lemma 40.1. Let f = ϕ1∨ . . .∨ϕt be a DNF. Fix ρ,γ,τ ∈ [0,1]. Let I = I( f ,τ) be the set of

τ-noticeable clauses of f , and define f ′ =
∨

i∈I ϕi. Then

Pr[ f (x) 6= f ′(x)]≤ IndexSensitivity( f ,ρ,γ)+ γ
−1

τ
1−ρ

1+ρ .

Proof. Observe that f ′(x)≤ f (x) for all x. So, if f (x) 6= f ′(x) then necessarily f ′(x) = 0, f (x) =

1 and Ind f (x) /∈ I. Let Ic = [t]\ I. Then

Pr[ f (x) 6= f ′(x)]≤ ∑
i∈Ic

Pr[Ind f (x) = i].

To simplify notation, for x ∈ {0,1}n let E(x) denote the event “x is (ρ,γ)-stable for f ”. Then we

can bound

Pr[ f (x) 6= f ′(x)]

≤Pr[ f (x) = 1 ∧ ¬E(x)]+ ∑
i∈Ic

Pr[Ind f (x) = i ∧ E(x)].
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The first term equals IndexSensitivity( f ,ρ,γ). To bound the second term, Fix i∈ Ic. Conditioned

on E(x) we have Pry∼Nρ (x)[Ind f (x) = Ind f (y)]≥ γ . Thus

Pr
x∈{0,1}n,y∼Nρ (x)

[Ind f (x) = Ind f (y) = i ∧ E(x)]

≥γ ·Pr[Ind f (x) = i ∧ E(x)].

Let gi : {0,1}n→{0,1} be the indicator of the event Ind f (x) = i, so that f = g1+ . . .+gt . Then

we have

Pr[Ind f (x) = i ∧ E(x)]

≤γ
−1 ·Pr[Ind f (x) = Ind f (y) = i]

=γ
−1 ·Stabρ(gi).

To conclude we have

Pr[ f (x) 6= f ′(x)]≤ IndexSensitivity( f ,ρ,γ)+ γ
−1 ·∑

i∈Ic
Stabρ(gi).

The bound now follows from claim 38.3.

Thus, we reduced the problem of compressing DNFs to that of bounding the index

sensitivity of DNFs. The following lemma shows that for width-w DNFs is, most of their inputs

are stable at noise level ρ = 1−O(1/w). Its proof uses the switching lemma for the DNF index

function, or more precisely corollary 36.1.

Lemma 40.2. Let f be an n-variate width-w DNF. Set ρ = 1− 1
128w and let γ = 2−d for an

integer d ≥ 1. Then

IndexSensitivity( f ,ρ,γ)≤ 2γ +2−Ω(n/w).

Proof. Let x ∈ {0,1}n sampled uniformly and let y∼ Nρ(x). It will be convenient to sample x,y
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in an equivalent but different way. Recall that Rn,α is a distribution over restrictions ρ ∈ {0,1,∗}n

where Pr[ρi = ∗] = α and Pr[ρi = 0] = Pr[ρi = 1] = 1−α

2 . Then we can sample (x,y) as follows:

1. Sample ρ ∼ Rn,α where α = 1−ρ . Let S = {i : ρi = ∗}.

2. Sample x|S ∈ {0,1}S uniformly, and set xi = ρi if i /∈ S.

3. Sample y|S ∈ {0,1}S uniformly, and set yi = ρi if i /∈ S.

Next, fix ρ and assume that dt(Ind f |ρ) = d. Then in particular, the probability that x|S,y|S

take the same path in the decision tree is at least 2−d . So we obtain that

Pr
x,y

[
Ind f (x) = Ind f (y)|ρ

]
≥ 2−dt(Ind f |ρ ).

Let p(x) denote the probability that dt(Ind f |ρ)≥ d when ρ is sampled conditioned on x. Then

Pr
y

[
Ind f (x) = Ind f (y)|x

]
≥ 2−(d−1)(1− p(x)).

We would like to show that for most x it holds that p(x)≤ 1/2; such x will be (ρ,2−d)-stable for

f . That is, we wish to upper bound

p = Pr
x
[p(x)≥ 1/2]≤ 2Pr

ρ

[
dt(Ind f |ρ)≥ d

]
.

corollary 36.1 bounds the right hand side, and for α = 1/128w gives

p≤ 21−d +2−Ω(n/w).

We now prove theorem 37.
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Proof of theorem 37. Let ρ,γ,τ ∈ [0,1] to be optimized shortly. Let I = I( f ,τ), where |I| ≤ 1/τ

by Claim 38.1. Combining lemma 40.1 with lemma 40.2 gives the bound

Pr[ f 6= f ′]≤ O(γ)+2−Ω(n/w)+ γ
−1

τ
1−ρ

1+ρ .

First, we note that we may assume that n = Ω(w log(1/ε)) as otherwise the theorem holds

vacuously, as the total number of possible width w clauses is 2w(n
w

)
≤ O(log1/ε)w. Let ρ =

1−1/128w, γ = O(ε) and τ = εO(w). Then

Pr[ f (x) 6= f ′(x)]≤ ε.

4.4 Open problems and future direction

As we shortly describe, the same challenge appears in two other related problem: the

Erdős-Rado sunflower conjecture [16] and Mansour’s conjecture [45].

4.4.1 Connections to the sunflower conjecture

The sunflower structure was first introduced by Erdős-Rado. It deals with set systems.

A w-set system is a collection of sets in which all sets contain at most w elements. To see the

relation between set systems and DNFs, note that if F is a set system of sets S⊂ [n], then there

is a natural associated (monotone) DNF given by f (x) = ∨S∈F ∧i∈S xi. The DNF associated to a

w-set system is a width-w DNF. In the other direction, any width-w DNF contains a large unary

DNF (concretely, with at least a 2−w fraction of the clauses) [21]. Unary DNFs are similarly

equivalent to set systems.

We next introduce sunflowers, which are widely studied in combinatorics.
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Definition 41 (Sunflower [16]). A collection of r sets S1, . . . ,Sr is called an r-sunflower if all the

pairwise intersections Si∩S j are the same.

The Erdős-Rado sunflower lemma [16] states that if F is a w-uniform set system, and

|F |> w!(r−1)w, then F must contain an r-sunflower. The well-known sunflower conjecture is

that the dependence on w can be improved.

Conjecture 41.1 (Sunflower conjecture). For any r ≥ 3 there exists c = c(r) such that the

following holds. If F is a w-uniform set system, and |F |> cw, then F contains an r-sunflower.

The sunflower conjecture has been open for nearly 60 years. Despite much research, the

best bounds, even for r = 3, still are of the order of ww.

Approximate sunflowers. Rossman [52] defined the notion of an approximate sun-

flower, motivated by applications in complexity theory.

Definition 42 (Approximate sunflower). A set system F is a γ-approximate sunflower if the

following holds. Let C = ∩S∈F S be the common core of all sets in F , and define F ′ = {S\C :

S ∈F}. Let f ′ be the monotone DNF associated with F ′. Then Pr[ f ′(x) = 1]≥ 1− e−γ .

Rossman proved that if F is a w-uniform set system of size |F | > (w log(1/γ))O(w),

then F must contain a γ-approximate sunflower. Similarly to the sunflower conjecture, it is

reasonable to conjecture that a better bound holds.

Conjecture 42.1 (Approximate sunflower conjecture). For any γ > 0 there exists c = c(γ)> 0

such that the following holds. If F is a w-uniform set system, and |F |> cw, then F contains an

γ-approximate sunflower.

In fact, one can show [35, 39] that the approximate sunflower conjecture implies the

sunflower conjecture.
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Connection to DNF sparsification. The main tool used in [21] to achieve their result

about DNF sparsification is the sunflower and approximate sunflower lemmas stated above.

Roughly speaking, they used the approximate sunflower lemma to compress an approximate

sunflower to its common core. A barrier towards an improved dependence on the width w in their

result, is that the dependence on w in both lemmas is of the order of ww. Thus, one of the main

motivations of the current work is to achieve DNF sparsification that breaks the ww bound. A

more ambitious goal is to use the connection between sunflower structure and DNF sparsification

as highlighted in [21], together with our improved DNF sparsification result, to obtain improved

bounds for the sunflower conjecture.

Upper approximation DNF implies sunflower structures. In this paper, we show

that every width-w DNF f can be ε-approximated by a width-w DNF f ′ of size (1/ε)O(w). In

addition, f ′ lower bounds f , that is f ′(x)≤ f (x) for all x ∈ {0,1}n. In a joint work with Lovett

and Solomon [39], we show that if one can get similar bounds where f ′ upper bounds f , then

this would imply improved bounds for the sunflower conjecture.

4.4.2 Connections to Mansour’s conjecture

Mansour’s conjecture [45] deals with the approximation of DNFs by sparse polynomials.

We say that a boolean function f : {0,1}n→{0,1} can be ε-approximated by a polynomial of

sparsity t if there exists a polynomial p : {0,1}n→ R with at most t monomials such that

E
x∈{0,1}n

[
( f (x)− p(x))2]≤ ε.

Conjecture 42.2 (Mansour’s conjecture for size). For any ε > 0 there exists c = c(ε)> 0 such

that the following holds. Any DNF of size s can be ε-approximated by a polynomial of sparsity

clogs.

One of the motivations behind Mansour’s conjecture, other than a better understanding
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of the structure of DNFs, is that it would give an efficient agnostic learning algorithm for DNFs

[20, 19].

As was noted in [21], it makes sense to speculate a similar conjecture for bounded width

DNFs. As any DNF of size s can be approximated by a DNF of width w = O(log(s/ε)), this

latter conjecture is stronger.

Conjecture 42.3 (Mansour’s conjecture for width). For any ε > 0 there exists c = c(ε)> 0 such

that the following holds. Any DNF of width w can be ε-approximated by a polynomial of sparsity

cw.

The best known bound for Mansour’s conjecture for width [45] is that it holds for sparsity

(w log(1/ε))O(w) (the bound for size holds by approximating a bounded size DNF with a bounded

width DNF). So again, we see the ww term appearing, where the conjecture asks if it can be

improved to c(ε)O(w) (and moreover that c(ε) = O(log1/ε)). In fact, Mansour shows that his

technique would not yield a wo(w)-type bound, so other ideas are necessary. A direct corollary of

our main theorem is that both versions of Mansour’s conjecture are equivalent.

Corollary 42.1. Conjecture 42.2 and conjecture 42.3 are equivalent.
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Chapter 5

Population Recovery

A huge number of Fourier-based learning algorithms have been discovered in the past

three decades. [19, 20, 34, 37, 45]. One hand, a lot of simple functions can be approximated

by sparse real polynomials; On the other hand, the Fourier-based learning algorithm provides a

generic framework to learn sparse polynomials. In our work, we focus on learning distributions

from noisy samples, this problem is called population recovery.

5.1 Noisy distribution

A formal description of the population recovery problem is as follows. Suppose there is

an unknown distribution π over {0,1}n, and an error parameter 0 < µ < 1. Lossy samples from

it are obtained as follows:

• Sample a string x ∈ {0,1}n according to π .

• Replace each coordinate of x independently with a ? with probability 1−µ .

Noisy samples from it are obtained as follows:

• Sample a string x ∈ {0,1}n according to π .

• Flip each coordinate of x independently with probability (1−µ)/2.
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In both cases, the goal is to reconstruct π up to a small additive error ε . That is, we would like to

output a list of strings S and an estimate π̃(x) for x ∈ S, such that |π̃(x)−π(x)| ≤ ε for all x ∈ S,

and π(x)< ε for x /∈ S.

It should be clear that the problem is trivial when µ = 1 (as no error is introduced), is

harder the smaller µ is, and is intractable for µ = 0. Moreover, the recovery problem from

lossy samples is easier than the recovery problem from noisy samples, since if we replace each

? with a random bit, we obtain the noisy model. Indeed, the known algorithms for the lossy

problem are better than those known for the noisy problem. In [15] a polynomial time algorithm

(in n,1/ε) for the lossy recovery problem was given whenever µ ' 0.365. This was improved

to µ > 1−1/
√

2 ≈ 0.3 in [6]. Finally, a polynomial time algorithm for any µ > 0 was given

in [47].

For the noisy problem, algorithms are known only when the support size of π , which

we denote by k, is bounded. Kearns et al. [31] gave an algorithm which is exponential in k.

Wigderson and Yehudayoff [57] developed a framework called ”partial identification”, and gave

an algorithm which runs in time polynomial in (klogk,n,1/ε) for any µ > 0. In this chapter, we

show an alternative framework, which gives an algorithm running in time polynomial in klog logk.

Theorem 43 ([41]). For any µ > 0 there exists an algorithm for the noisy recovery problem,

running in time poly(kOµ (log logk),n,1/ε).

A subsequent work of De, Saks and Tang [14] (built on refined discrete Fourier analysis)

further improved the upper bound to poly(k).

Theorem 44 ([14]). For any µ > 0, there exists an algorithm for the noisy population recovery

problem, running in time poly((k/ε)Oµ (1),n).

An interesting property of the noisy recovery problem is that the algorithmic problem

reduces to a purely information theoretic problem. Recall the noise operator Tµ on functions
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f : {0,1}n→ R which defined as

(Tµ f )(x) = E
e∼Nµ

[ f (x⊕ e)],

where Nµ is the noisy distribution. If π is a distribution on {0,1}n, then Tµπ is the distribution

of its noisy samples. Now, if π1,π2 are two distributions on {0,1}n, each of support of size k

and with a noticeable statistical distance, then any recovery algorithm would need to distinguish

the two noisy distributions. In particular, there should be noticeable statistical distance between

Tµπ1 and Tµπ2. Surprisingly, it turns out that if this holds for any pair of distributions, then

the noisy recovery problem can be solved efficiently, for example by computing the maximum

likelihood estimator which is a convex optimization problem. See eg [6, 47] for details. Thus, we

can formulate the following information theoretic problem, which is equivalent to the existence

of efficient algorithms for noisy population recovery.

Let f : {0,1}n → R be a function of bounded support (e.g. f = 1
2(π1− π2)). Let

‖ f‖1 = ∑x | f (x)|. Define

∆(k,µ) := sup
supp( f )≤k

‖ f‖1

‖Tµ f‖1
.

Then ∆(k,µ) is a lower bound on any recovery algorithm for noisy population recovery with

error ε ≤ 1/k; and on the other hand, the maximum likelihood estimator converges to the correct

solution in time polynomial in (∆(k,µ),n,ε−1). Our main technical contribution is the following

theorem, which shows that ∆(k,µ)≤ kO(log logk+log1/µ). Theorem 43 then follows by the above

discussion.

Theorem 45. Let f : {0,1}n→ R with supp( f ) = k. Then

‖Tµ f‖1 ≥ k−O(log logk+log1/µ)‖ f‖1.
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5.2 Proof overview

Let f : {0,1}n→R be a function with support of size k, where we may assume ‖ f‖1 = 1.

If we could find a noticeable Fourier coefficient f̂ (S) where S has low hamming weight, we

could lower bound ‖Tµ f‖1 since

‖Tµ f‖1 ≥ |T̂µ f (S)|= µ
|S|| f̂ (S)|.

As a first step, we show (Lemma 45.1) an extension of this lower bound. If we define a function

g(x) = f (x) ·Pre[x⊕ e ∈ E], and E ⊂ {0,1}n is any subset, then

‖Tµ f‖1 ≥ µ
|S||ĝ(S)|.

Next, we choose the subset E to control the properties of g. Let supp( f ) = {x1, . . . ,xk}

and assume | f (x1)| is maximal, and in particular | f (x1)| ≥ 1/k. We choose E to contain only

points which are closer to x1 than to all the other xi which are far enough from x1. With this

choice, we prove (Lemma 45.2) that g(x1)≈ f (x1) while g(xi) decays exponentially fast in the

hamming distance between x1 and xi. This allows us to approximate g by a function h supported

on a small hamming ball around x1.

Finally, we restrict our attention to functions supported on small hamming balls. We

show that if h has support of size k and is supported in a hamming ball of radius r, then there

exists S⊂ [n] of size |S| ≤ logk such that |ĥ(S)| ≥ k−O(logr). Putting these together, it turns out

that one should consider balls of radius r = O(logk log logk), which imply the bound.

5.3 Preliminary

For x ∈ {0,1}n let |x| denote the hamming weight of x. For x,y ∈ {0,1}n let dist(x,y)

denote their hamming distance. Let B(n,r) = {x ∈ {0,1}n : |x| ≤ r} denote the hamming ball of
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radius r in {0,1}n. We will mostly be interested in the L1 norm ‖ f‖1 = ∑ | f (x)|. For an operator

T : F →F its L1 to L1 norm is defined as ‖T‖1→1 = sup‖T f‖1/‖ f‖1, where the supremum is

taken over all nonzero functions. The support of a function f is the set of elements with nonzero

value, supp( f ) = {x : f (x) 6= 0}.

For a noise parameter 0 < µ < 1, let Nµ denote the distribution of e ∈ {0,1}n given by

Pr[ei = 0] = (1+µ)/2 and Pr[ei = 1] = (1−µ)/2 independently for all i ∈ [n].

5.4 Lower bounding the norm of noisy functions

Let f : {0,1}n→ R with bounded support. We restate Theorem 45 for the convenience

of the reader.

Theorem 45 (restated). Let f : {0,1}n→ R with supp( f ) = k. Then

‖Tµ f‖1 ≥ k−O(log logk+log1/µ)‖ f‖1.

We may assume without loss of generality that ‖ f‖1 = 1. A simple lower bound on

‖Tµ f‖1 follows if f has a noticeable Fourier coefficient of low hamming weight. For any S⊂ [n],

‖Tµ f‖1 ≥ |T̂µ f (S)|= µ
|S|| f̂ (S)|.

As a first step, we show that the same bound holds if one replaces f with any function of the

form g(x) = f (x)Pr[x+ e ∈ E], where e∼ Nµ and E ⊂ {0,1}n is any subset.

Lemma 45.1. Let f : {0,1}n→ R be a function and let E ⊂ {0,1}n. Define g : {0,1}n→ R by

g(x) = f (x) Pr
e∼Nµ

[x+ e ∈ E].
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Then for any S⊂ [n] we have

‖Tµ f‖1 ≥ µ
|S||ĝ(S)|.

We defer the proof of this lemma to section 5.5. Assume that supp( f ) = {x1, . . . ,xk} with

| f (x1)| ≥ 1/k. We choose E so that g(x1)≈ f (x1) but g(xi) decays exponentially in dist(x1,xi).

This will allow us to approximate g by a function bounded in a hamming ball of low radius.

Specifically, we choose

E =
{

y ∈ {0,1}n : dist(x1,y)< dist(xi,y)

for all xi such that dist(x1,xi)≥ log(k)/µ
2} (5.1)

Lemma 45.2. For the set E defined in (5.1) and g = f ·Tµ1E we have

1. |g(x1)| ≥ | f (x1)|/2≥ 1/2k.

2. If dist(x1,xi)≥ log(k)/µ2 then |g(xi)| ≤ | f (xi)| · exp(−µ2 ·dist(x1,xi)).

We defer the proof of this lemma to section 5.5. As the values in g decay exponentially

fast, we can well approximate g with a function supported on a hamming ball of low radius.

Corollary 45.1. Let f : {0,1}n→R with |supp( f )|= k, and let g= f ·Tµ1E for the set E defined

in (5.1). For any r ≥ log(k)/µ2 there exist a function h : {0,1}n→ R such that

1. supp(h)≤ k, supp(h)⊆ B(n,r), ‖h‖1 ≥ 1/2k.

2. ‖g− h‖1 ≤ exp(−rµ2)‖ f‖1. In particular, |ĝ(S)| ≥ |ĥ(S)| − exp(−rµ2)‖ f‖1 for any

S⊂ [n].

Proof. Take h(x) = g(x) if |x| ≤ r, and h(x) = 0 otherwise. The properties follow immediately

from Lemma 45.2.
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This motivates the study of functions supported in a hamming ball of low radius. We

may assume the hamming ball is centered around 0 by shifting the function. We show that such

functions have noticeable Fourier coefficients of low hamming weight.

Lemma 45.3. Let h : {0,1}n → R be a function with |supp(h)| = k,supp(h) ⊆ B(n,r). Then

there exists S⊂ [n], |S| ≤ logk such that

|ĥ(S)| ≥ k− log(4r)‖h‖1.

We defer the proof of this lemma to section 5.5. Theorem 45 follows by combining

Lemma 45.1, Corollary 45.1 and Lemma 45.3.

Proof of Theorem 45. Assume without loss of generality that ‖ f‖1 = 1. Set E ⊂ {0,1}n as given

in (5.1), and set g(x) = f (x)Pr[x+ e ∈ E] where e ∼ Nµ . By Lemma 45.1 we have ‖Tµ f‖1 ≥

|ĝ(S)|µ |S| for all S⊆ [n]. Let r ≥ log(k)/µ2 to be optimized later, and apply Corollary 45.1 to

find a function h : {0,1}n→ R such that |supp(h)|= k,supp(h)⊂ B(n,r) and |ĝ(S)| ≥ |ĥ(S)|−

exp(−rµ2). Applying Lemma 45.3 to h, there exists S ⊆ [n], |S| ≥ logk such that |ĥ(S)| ≥

k− log(4r)‖h‖1. We also know that ‖h‖1 ≥ 1/2k. Putting these together, we obtain the lower

bound

‖Tµ f‖1 ≥ µ
logk
(
(1/2k) · k− log(4r)− exp(−rµ

2)
)
.

Setting r =O(logk · log logk · log(1/µ)/µ2) we get that exp(−rµ2)≤ (1/4k)k− log(4r) and hence

‖Tµ f‖1 ≥ k−O(log logk+log1/µ).

5.5 Missing proofs

Proof of Lemma 45.1 We restate Lemma 45.1 for the convenience of the reader.
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Lemma 45.1 (restated). Let f : {0,1}n → R be a function and let E ⊂ {0,1}n. Define

g : {0,1}n→ R by

g(x) = f (x) Pr
e∼Nµ

[x+ e ∈ E].

Then for any S⊂ [n] we have

‖Tµ f‖1 ≥ µ
|S||ĝ(S)|.

We will need a few auxiliary claims first. For i ∈ [n] define Tµ,i : F →F to be the

operator that adds noise only in coordinate i,

(Tµ,i f )(x) =
1+µ

2
· f (x)+

1−µ

2
· f (xi),

where xi is the element obtain by flipping the i-th bit of x. The following claim bounds the norm

of Tµ,i and its inverse.

Claim 45.1. ‖Tµ,i‖1→1 = 1 and ‖T−1
µ,i ‖1→1 = 1/µ .

Proof. The bound ‖Tµ,i f‖1 ≤ ‖ f‖1 is immediate, and is tight for f = 1. To derive the bound on

T−1
µ,i , let x0,x1 be such that (x0)i = 0,(x1)i = 1 and (x0) j = (x1) j for all j 6= i. If ( f (x0), f (x1)) =

(a,b) then ((T−1
µ,1 f )(x0),(T−1

µ,1 f )(x1)) = (1/2µ) · ((1+µ)a− (1−µ)b,−(1−µ)a+(1+µ)b).

Then |(T−1
µ,i f )(x0)|+ |(T−1

µ,i f )(x1)| ≤ (1/µ)|a+ b| = (1/µ)(| f (x0)|+ | f (x1)|). The claim fol-

lows by summing over all choices for x0,x1, and noting that the bound is tight for f (x) =

(−1)xi .

For S ⊂ [n] define the operator Tµ,S : F → F to add noise to the coordinates in S.

Formally, Tµ,S = ∏i∈S Tµ,i. Note that Tµ = Tµ,[n]. Claim 45.1 implies that

‖Tµ,S‖1→1 ≤ 1, ‖T−1
µ,S‖1→1 ≤ (1/µ)|S|. (5.2)
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Proof of Lemma 45.1. Note that for any two functions f ′, f ′′ ∈F we have

〈
f ′,Tµ f ′′

〉
= E

e∼Nµ

∑
x∈{0,1}n

f ′(x) f ′′(x+ e) = E
e∼Nµ

∑
x∈{0,1}n

f ′(x+ e) f ′′(x) =
〈
Tµ f ′, f ′′

〉
.

We have g(x) = f (x) · (Tµ1E)(x). Define an operator XS : F →F by (XS f )(x) = f (x)χS(x).

Then

ĝ(S) = ∑
x∈{0,1}n

f (x)Tµ1E(x)χS(x) =
〈
XS f ,Tµ1E

〉
=
〈
TµXS f ,1E

〉
.

In particular, since ‖1E‖∞ = 1 we obtain that

|ĝ(S)| ≤ ‖TµXS f‖1. (5.3)

Next, let Sc = [n] \ S be the complement of S, and decompose Tµ = Tµ,STµ,Sc . Note that the

operators Tµ,Sc and XS commute. Hence

TµXS f = Tµ,STµ,ScXS f = Tµ,SXSTµ,Sc f = Tµ,SXST−1
µ,STµ f .

To conclude, we bound

‖TµXS f‖1 ≤ ‖Tµ,S‖1→1‖XS‖1→1‖T−1
µ,S‖1→1‖Tµ f‖1 ≤ (1/µ)|S|‖Tµ f‖1,

where we apply Claim 45.1 and the obvious bound ‖XS‖1→1 = 1.

Proof of Lemma 45.2 We restate Lemma 45.2 for the convenience of the reader.

Lemma 45.2 (restated). For the set E defined in (5.1) and g = f ·Tµ1E we have

1. |g(x1)| ≥ | f (x1)|/2≥ 1/2k.

2. If dist(x1,xi)≥ log(k)/µ2 then |g(xi)| ≤ | f (xi)| · exp(−µ2 ·dist(x1,xi)).
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Proof. We first lower bound |g(x1)|. Let s = log(k)/µ2. By definition g(x1) = f (x1)Pr[x1 + e ∈

E], where e∼ Nµ . If we let y = x1 + e then we can upper bound the probability that x1 + e /∈ E

by the union bound

Pr[x1 + e /∈ E]≤ ∑
i:dist(x1,xi)≥s

Pr[dist(x1,y)≥ dist(xi,y)].

Let Si denote the coordinates in which x1,xi differ, where |Si| ≥ s. Then dist(x1,y)≥ dist(xi,y)

iff the hamming weight of e restricted to S is at least |S|/2. As each bit of e is 1 with probability

(1−µ)/2 independently, we apply the Chernoff bound and obtain

Pr[dist(x1,y)≥ dist(xi,y)] = Pr

[
∑
j∈Si

e j ≥ |Si|/2

]
≤ exp(−2|Si|µ2)≤ 1/2k.

Hence Pr[x1 + e ∈ E]≥ 1/2 and |g(x1)| ≥ | f (x1)|/2. To upper bound |g(xi)|, we upper bound

Pr[xi+e∈E]. Now, if xi+e∈E then in particular dist(x1,xi+e)< dist(xi,xi+e), or equivalently

the hamming weight of e restricted to Si exceeds |Si|/2. Applying again the Chernoff bound,

Pr[xi + e ∈ E]≤ Pr

[
∑
j∈Si

e j ≥ |Si|/2

]
≤ exp(−2|Si|µ2).

Proof of Lemma 45.3 We restate Lemma 45.3 for the convenience of the reader. For

convenience, we denote the function studied by f .

Lemma 45.3 (restated). Let f : {0,1}n → R be a function with |supp( f )| = k,supp( f ) ⊆

B(n,r). Then there exists S⊂ [n], |S| ≤ logk such that

| f̂ (S)| ≥ k− log(4r)‖ f‖1.
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In order to prove Lemma 45.3, we find a low degree polynomial p which computes f on

its support. A function p : {0,1}n→ R is a degree d polynomial if p(x) = ∑|S|≤d pS ·χS(x). We

note that in our normalization, p̂(S) = 2n pS. To simplify notation define |p|= ∑S |pS|.

Proposition 45.1. Let f : {0,1}n→R be a function with |supp( f )|= k,supp( f )⊆ B(n,r). Then

there exists a polynomial p of degree at most logk such that

(i) p(x) = f (x) for all x ∈ supp( f ).

(ii) |p| ≤ k · rlogk · ‖ f‖1.

We first show that Lemma 45.3 follows immediately from Proposition 45.1.

Proof of Lemma 45.3 from Proposition 45.1. Consider 〈 f , p〉. On the one hand,

〈 f , p〉= ∑
x

f (x)p(x) = ∑
x

f (x)2 ≥ 1/k.

On the other hand, by Parseval’s identity,

〈 f , p〉= ∑
S

f̂ (S)pS ≤max{| f̂ (S)| : |S| ≤ logk} · |p|.

Hence there exists S⊂ [n], |S| ≤ logk such that f̂ (S)≥ 1/(k|p|).

We now move to prove Proposition 45.1 by induction. We first define F(k,r) to be the

minimal bound on |p| for which Proposition 45.1 holds. For technical reasons, we will require

p(x) = f (x) also for some x outside the support of f . Formally, we define f : X → R where we

implicitly assume that f (x) = 0 for all x /∈ X , but it could be that f (x) = 0 for some x ∈ X . We

require that p(x) = f (x) for all x ∈ X .

Definition 46 (F(k,r) function). For k,r ≥ 1 define F(k,r)≥ 0 to be the minimal quantity such

that the following holds. For any n ≥ 1, any set X ⊂ B(n,r) of size |X | ≤ k and any function

f : X → R, there exists a polynomial p of degree at most logk such that
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(i) p(x) = f (x) for all x ∈ X.

(ii) |p| ≤ F(k,r)‖ f‖1.

If no such polynomial exists, set F(k,r) = ∞.

We will also need a refinement based on the sum of hamming weights in X . Define

W (X) = ∑x∈X |x| to be the sum of hamming weights in X .

Definition 47 (F(k,r;w) function). For k,r,w≥ 1 define F(k,r;w)≥ 0 to be the minimal quantity

such that the following holds. For any n≥ 1, any set X ⊂ B(n,r) of size |X | ≤ k and W (X)≤ w

and any function f : X → R, there exists a polynomial p of degree at most logk such that

(i) p(x) = f (x) for all x ∈ X.

(ii) |p| ≤ F(k,r;w)‖ f‖1.

If no such polynomial exists, set F(k,r;w) = ∞.

Note that F(k,r;kr) = F(k,r). We now prove a recursive formula on F(k,r;w);

Proposition 47.1. F(k,r;w)≤max1≤a≤k/2{F(k,r;w−a)+F(a,r)}.

Proof. We prove the proposition by induction on n. Let X ⊂ B(n,r) with |X | ≤ k, W (x)≤ w and

let f : X→R. We assume without loss of generality that ‖ f‖1 = 1. Define X0,X1,X∗ ⊆ {0,1}n−1

as

X0 = {x ∈ {0,1}n−1 : x0 ∈ X ,x1 /∈ X},

X1 = {x ∈ {0,1}n−1 : x1 ∈ X ,x0 /∈ X},

X∗ = {x ∈ {0,1}n−1 : x0,x1 ∈ X}.
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Note that X0,X1,X∗ are disjoint and that |X0|+ |X1|+2|X∗|= |X | ≤ k. Let {i, j}= {0,1} be such

that |Xi| ≤ |X j|. Define Y,Z ⊆ {0,1}n−1 by

Y = X0∪X1∪X∗

Z = Xi∪X∗

Note that by our assumption, |Z| ≤ k/2. If |Z|= 0 then the last bit in all elements of X is always

j, hence we can reduce to dimension n−1 and continue by induction. Thus, we assume that

|Z| ≥ 1. Define a function g : Y → R by

g(x) =
{ f (x j) if x ∈ X j∪X∗

f (xi) if x ∈ Xi

and a function h : X → R by

h(x) =
{ 0 if x ∈ Xi

f (xi)− f (x j) if x ∈ X∗
.

Let x = x′xn with x′ ∈ {0,1}n−1,xn ∈ {0,1} and observe that for all x ∈ X ,

f (x) = g(x′)+h(x′) ·1xn=i. (5.4)

We now apply the proposition inductively to g,h. For g, we have ‖g‖1 ≤ 1, Y ⊂ B(n−

1,r), |Y | ≤ k and W (Y )=W (X)−|X1|−|X∗|−W (X∗)≤w−|Z|. Hence there exists a polynomial

pg of degree logk such that pg(x′) = g(x′) for all x′ ∈ Y and |pg| ≤ F(k,r;w−|Z|). For h, we

have ‖h‖1 ≤ 1, Z ⊂ B(n− 1,r) and |Z| ≤ k/2. Hence there exists a polynomial ph of degree
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log |Z| ≤ logk−1 such that ph(x′) = h(x′) for all x′ ∈ Z and |ph| ≤ F(|Z|,r). Define

p(x) = pg(x′)+ ph(x′)1xn=i

so that p(x) = f (x) for all x ∈ X . Note that since deg(pg) ≤ logk,deg(ph) ≤ logk− 1 then

deg(p)≤ logk. Finally, we bound |p| by

|p| ≤ |pg|+ |ph1xn=i|= |pg|+ |ph||1xn=i|= |pg|+ |ph| ≤ F(k,r;w−|Z|)+F(|Z|,r).

Proposition 47.2. F(k,r)≤ k · rlogk.

Proof. As r never changes throughout the induction, set G(k) = F(k,r) and G(k;w) = F(k,r;w).

We prove the proposition by induction on k. By Proposition 47.1 we have

G(k;w)≤ max
1≤a≤k/2

{G(k;w−a)+G(a)} .

Expanding G(k;w−a) recursively, we obtain the bound

G(k) = G(k;kr)≤ max
a1+...+at≤kr,1≤a1,...,at≤k/2

{
t

∑
i=1

G(ai)

}
. (5.5)

Let a1, . . . ,at be the parameters that maximize (5.5). By induction, G(ai)≤ airlogai ≤ airlogk−1,

where we used the fact that ai ≤ k/2. Hence

G(k)≤

(
t

∑
i=1

ai

)
rlogk−1 ≤ kr · rlogk−1 = k · rlogk.
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5.6 Open problems

In this paper, we proved an improved bound kO(log logk) for population recovery. In a

subsequent work of De, Saks and Tang [14] further improved it to kO(1). In both of our studies,

we assumed the noisy parameter µ is known. It is more interesting to consider the case of

unknown noise. In a joint work with Lovett [42], we have a quasi-polynomial time algorithm to

solve this question, and our algorithm was built on framework of [57]. It is interesting to ask

whether we can get unknown noise population recovery based on discrete Fourier analysis.
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