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This dissertation develops a systematic model-based approach for the boundary control

and estimation of freeway traffic congestion problem. Three topics of traffic congestion on a free-

way segment are studied and include stop-and-go traffic oscillations, moving traffic shockwave,

and downstream traffic bottleneck, which are governed by different partial differential equation

(PDE) models and require the advancement and application of three PDE control techniques.

To supress stop-and-go oscillations, we introduce the macroscopic Aw-Rascle-Zhang

traffic model, consisting of second-order nonlinear hyperbolic PDEs that govern dynamics of

traffic density and velocity. The hetero-directional propagations of information in congested

traffic generate the instabilities, motivating us to the stabilization problem for a coupled 2× 2
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hyperbolic system. Using the backstepping method, a full-state feedback control is designed for

ramp metering at outlet to actuate the outgoing traffic flow. We design boundary observer for

state estimation and combine it with the full state feedback control to construct an output feed-

back controller. The observer design is validated with traffic field data. Under model parameter

uncertainties, adaptive control design is proposed with on-line parameter estimation. Further-

more, we develop output feedback boundary control for two types of 4×4 nonlinear hyperbolic

PDEs which arise from two-lane and two-class traffic congestion. Stabilization of two-lane traf-

fic involves regulation of the lane-changing interactions with lane-specific varying speed limits

while stabilization of two-class traffic tackles the heterogeneity of vehicles and drivers.

A moving traffic shockwave, caused by changes of local road situations, segregates light

traffic upstream and heavy traffic downstream. This density discontinuity travels upstream. As

a result, drivers caught in the shockwave experience transitions from free to congested traffic.

The interface position is governed by an ordinary differential equation (ODE) dependent on the

density of the PDE states, described with Lighthill-Whitham-Richards model. For the coupled

PDE-ODE system, the predictor feedback design is applied to compensate the state-dependent

input delays. We design bilateral boundary controllers to drive the moving shockwave front to a

desirable setpoint position, hindering the upstream propagation of the traffic congestion.

Traffic on a freeway segment with capacity drop at outlet causes a downstream bottle-

neck. Traffic congestion forms because the traffic at the outlet overflows its capacity. Therefore

the incoming flow of the segment needs to be regulated so that the outgoing traffic at the bottle-

neck area is discharged with its maximum flow rate. Since the traffic dynamics of the bottleneck

is hard to model, we apply extremum seeking control, a model free approach for real-time op-

timization, to obtain the optimal input density at the inlet. The predictor feedback design is

combined with the extremum seeking to compensate the delay effect of traffic state of the seg-

ment. The maximum flow rate is achieved at the bottleneck by regulating its upstream density at

the inlet.
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Chapter 1

Introduction

This dissertation considers three topics of traffic congestion on a freeway segment in-

clude: stop-and-go traffic oscillations, moving traffic shockwave and downstream traffic bottle-

neck, which present as distinct PDE models and require the advancement and application of

different PDE control techniques respectively. The PDE systems to be investigated in this dis-

sertation are coupled hyperbolic PDEs, coupled PDEs-ODE, PDE with unknown nonlinear map

for optimization. The following sections provide a through introduction to these three topics and

control techniques that are employed to achieve varied control objectives.

1.1 Freeway traffic congestion

1.1.1 Stop-and-go traffic oscillations

The stop-and-go traffic is a common phenomenon appearing on congested freeway, caus-

ing increase consumptions of fuel and unsafe driving conditions. The oscillations can form with

no apparent road change and therefore sometimes are referred as phantom traffic jam. It is of

great importance if we can reduce this kind of traffic congestion. The traffic instabilities, also

known as ”jamiton”, [32] [44] [96] are well represented by ARZ model [8] [123], which consists
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of second-order, nonlinear hyperbolic PDEs of traffic density and velocity.

The traffic congestion on freeway has been investigated intensively with different levels

of traffic model. Macroscopic modeling of traffic dynamics with PDE has been proposed, in-

cluding first-order model LWR [81] [94], second-order PW model [92] [114] and second-order

ARZ model. The first-order LWR model fails to model stop-and-go traffic, which does not obey

the density-velocity relation in equilibrium. This is caused by delay of drivers’ response. To

improve the LWR model, PW model developed a velocity equation to allow deviations from the

density-velocity equilibrium. The PW model, consisting of the momentum equation and conser-

vation law, are nonlinear second-order PDEs. It is shown in [27] [82] that disturbances in PW

model travel faster than traffic velocity. As a result, vehicle on freeway is influenced from both

behind and front, indicating that traffic flow is isotropic. However, [123] pointed out that traffic

flow is anisotropic since drivers mostly respond to the traffic in front of them. To deal with this,

Aw-Rascle [8] and Zhang [123] proposed a new velocity equation to address the non-static rela-

tion. Combining these two models together by proper definition and choice of coefficients, the

ARZ model is used to describe the dynamics of stop-and-go traffic oscillations. When we con-

sider multi-lane traffic with lane changing behaviors between lanes and multi-class traffic with

heterogeneous vehicle and driver types on road, stop-and-go instabilities become more crucial

to suppress.

To stabilize the oscillations of stop-and-go traffic, we propose boundary control strate-

gies. Boundary control through ramp metering and varying speed limits are widely and effec-

tively used nowadays in freeway traffic management. In developing boundary feedback control

through ramp metering and varying speed limits, many recent efforts [18] [65] [117] [118] [119]

[120] [121] [126] focus on ARZ model, due to its simplicity and realism. In [18], spectral anal-

ysis is applied to the linearized ARZ model and a parameter comparable to Froude number is

proposed to classify different regimes in traffic flow. The boundary control and measurement

are designed based on the spectral analysis. [124] investigates the local stability of a positive
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hyperbolic system with application to the ARZ model and [66] provides a feedback in-domain

control law using varying speed limits. The control strategy developed in [18][124] both needed

coordination of ramp metering and varying speed limits. The previously cited results [124] con-

sidered the homogeneous ARZ model, neglecting the relaxation term which reflects adaptation

of driver’s behavior to traffic conditions [45]. The relaxation term is kept in the ARZ model and

therefore the inhomogeneous ARZ model is considered which preserves more potential to yield

a realistic prediction. More importantly, only the inhomogeneous ARZ model considering the

delay of driver’s response is able to describe the instabilities of uniform states in stop-and-go

traffic problem. At the same time, only ramp metering control is implemented which is more

applicable in practice. Furthermore, the adaptive control problem is solved. The stabilization of

ARZ model is achieved without knowing some boundary parameters and relaxation time.

The ARZ model treats multi-lane freeway traffic cumulatively as a single lane by as-

suming averaged velocity and density over cross section of all lanes. The individual dynamics

of each lane and inter-lane interactions are neglected. However, distinct density and velocity

equilibrium exist in multi-lane problems. The differences of velocities and densities give rise

to lane-changing interactions and further lead to traffic congestion [82]. To address the phe-

nomenon, a number of macroscopic multi-lane models [58] [60] [86] [69] [70] have been devel-

oped from microscopic, then kinetic to macroscopic descriptions. In this paper, we adopt the

multi-lane ARZ traffic model proposed by [69] [60] to describe a two-lane freeway traffic with

lane-changing between the two lanes. Lane interactions appear as interchanging source terms in

the system, leading to more involved couplings and a higher order of PDEs. The complexity of

the multi-lane model is greatly increased compared to the one-lane problem. This dissertation

will introduce control design for the multi-lane congestion problem.

The heterogeneity in drivers and vehicles is exhibited in the ARZ model but has not

been addressed from the control perspective. Macroscopic multi-class models were proposed

after the ARZ model, including the first order models [20] [25] [46] [62] [88] [89] [107] [115].
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The extended LWR model, introduced by [115], is the first macroscopic multi-class extension.

Instead of adjusting their velocity only depending on the density of their own class, vehicles

are affected by the densities of all other classes. Thus, the assumed speed-density relationship

is formulated with respect to the sum of all densities, the total density. Furthermore, the n-

populations model [20] extends this idea of coupling regarding the average length of the vehicle

classes by denoting the speed-density relationship in dependence of the mean free space between

the vehicles. In [46] and [88], a phenomenon called creeping is introduced. This behavior

occurs in reality and corresponds to the scenario where one vehicle class, for instance trucks,

are jammed and stopped due to congestion and a second vehicle class, for instance motorcycles,

still moves in the gap between the trucks. In addition to first-order macroscopic multi-class

models, second-order multi-class models are introduced in [23] [55] [61] [87] [103] and [104].

While first-order models assume that the velocities of all vehicles equal to their equilibrium

velocities at every time, second-order models provide PDEs describing the velocity dynamics

for each class. In this dissertation, we consider a macroscopic multi-class model [87] for the

case of two different classes, yielding four coupled nonlinear hyperbolic PDEs. The two-class

AR traffic model assumes that the vehicles adjust their speeds according to a measure called area

occupancy [4] [6], which takes vehicle sizes into account.

1.1.2 Moving traffic shockwave

Consider in freeway traffic, there is a moving shockwave consisting of light traffic up-

stream of the shockwave and heavy traffic downstream. The shockwave conserves traffic flow

at the interface of discontinuity and is caused by local changes of road situations like uphill and

downhill gradients, curves, change of speed limits. The upstream propagation of the moving

shockwave causes more and more vehicles entering into the congested traffic. The abrupt transi-

tion from free to congested traffic at the moving interface leads to unsafe driving conditions. We

aim to halt the upstream propagation and drive the moving interface to a desirable location where
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the traffic congestion could be discharged by traffic management infrastructures on freeways.

Traffic discontinuity can be caused by various kinds of inhomogeneity of freeway or ve-

hicles. Some studies consider it as a moving traffic flux constraint [33] [109] due to a reduction

of road capacity. Slow moving vehicles, also known as moving bottlenecks, are represented

in [21] [78] [120] with ODEs governing the velocity of slow vehicles. Moving bottleneck prob-

lem are out of the scope of this work and relevant to the controllability problem with boundary

actuation. We consider the situation where road capacity is conserved but shockwaves form

due to uphills, downhills, and curves of the road. Higher density traffic appears downstream of

the shockwave front and the front of density discontinuity keeps moving upstream, driven by the

flux discontinuity. The upstream propagation of the moving shockwave causes traffic congestion

forming up on a freeway.

We adopt the seminal LWR model to describe the traffic dynamics of the moving shock-

wave problem. The LWR model is a first-order, hyperbolic macroscopic PDE model of traffic

density. It is simple yet very powerful to describe the formation, dissipation and propagation

of traffic shockwaves on a freeway. The moving shockwave consists of upstream, downstream

traffic and a moving interface. The upstream and downstream traffic densities are governed by

LWR PDE models and the interface position is governed by Rankine-Hugoniot jump condition,

leading to a density state-dependent nonlinear ODE. Therefore, we are dealing with a PDE-

ODE coupled system, where ODE state is dependent on PDE states at the moving interface. The

traffic flow is actuated at both boundaries of a freeway segment and can be realized with ramp-

metering. The control objective is to drive the moving interface to certain location and traffic

states to steady values through bilateral boundary controls.

1.1.3 Downstream traffic bottleneck

When there are uphills, curvature or lane-drop further downstream on freeway, a bottle-

neck with lower capacity could appear. Traffic congestion then forms upstream of the bottleneck
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if there is no traffic regulation. Ramp metering and VSL have been proved to be very effective

in freeway traffic management system. Boundary control of traffic in presence of downstream

bottleneck is studied in this work.

The first local ramp metering strategy that was proposed based on feedback control the-

ory is ALINEA developed by [91], and later on an adaptive strategy was employed by AD-

ALINEA when downstream occupancy is uncertain [99]. The traffic flow entering the freeway

is controlled from ramp metering on-ramps so that the downstream mainline traffic flow is max-

imized locally or the optimal freeway network traffic is achieved coordinately. The ALINEA

algorithm uses real-time measurement of downstream occupancy and its set point value to cal-

culate their difference, and then the control input is designed via the integration of the errors

over time. In the presence of a downstream bottleneck, Proportional-Integrator (PI) ALINEA

was developed by [113] to improve performance of the closed-loop system. A comparative

study by [64] is conducted in comparison with ALINEA. PI-ALINEA is proposed as an exten-

sion to ALINEA by measuring the downstream bottleneck occupancy and feeding it back to

the local ramp-metering. In [113], the stability of the closed-loop system with PI-ALINEA,

a discretized ordinary differential equation (ODE) system, is proved with Lyapunov analysis.

Simulation demonstrated that PI-ALINEA improved significantly than ALINEA in the case of

distant downstream bottleneck.

Control of lane-drop bottleneck by VSL was explored by [63]. Authors approximated

LWR model with the discretized ODE link queue model. A Proportional-Integrator-Derivative

(PID) controller is employed for VSL control strategy. Modeling lane-drop traffic with macro-

scopic LWR PDE was firstly investigated by [16]. The traffic dynamics on a stretch of freeway

upstream of the bottleneck area is governed by LWR model. The predictor feedback control law

is designed for the ramp metering at the inlet of the freeway so that the density at bottleneck

area is regulated to a desired equilibrium. This work assumes the prior knowledge of the optimal

density that could maximize the discharging flow at the bottleneck area. However, the density
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and traffic flow relation at bottleneck area is usually hard to obtain or estimate, especially when

the bottleneck is caused by a random accident and the traffic needs to be regulated immediately.

We consider a freeway segment with bottleneck located at the outlet where the road

capacity drops. The traffic dynamics of the freeway segment is described with LWR model. The

density-flow relationship at the bottleneck area is described with a nonlinear map at the outlet

where the optimal density is unknown.

1.2 PDE model and control algorithms

1.2.1 PDE backstepping control

The key idea of our control design is applying backstepping method to ARZ model

which is a coupled hyperbolic PDE system. Theoretical results on boundary control design

for PDEs using backstepping method have been developed for 2×2 coupled hyperbolic systems

in [3] [31] [34] [35] [108] [116]. Feedback boundary control design for a general class of hyper-

bolic PDEs using backstepping method are studied in [1] [2] [3] [7] [31] [41] [36] [80] [121].

In [41], stabilization of a n+ 1 counter convecting hyperbolic PDEs is achieved with a single

boundary. [80] presents a solution to output feedback of a fully general case of heterodirec-

tional n+m first-order linear coupled hyperbolic PDEs. Actuation of all the m PDEs from the

same boundary is required to stabilize the system in finite time. A shorter convergence time

is further obtained in [7] by modifying the target system structure. We adopt and enhance the

existing methodology to fit the ARZ model. This is an essential step for boundary control of

freeway traffic in its PDE formulation. We develop full-state feedback boundary control law,

boundary observer based on [108]. Furthermore, we develop adaptive output feedback and en-

hanced the design based on [116]. The problem of unknown parameter coupling with boundary

measurement is addressed which is absent in the previous literature.

The main contribution of our work on control of one-lane ARZ model: this is the first
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result on boundary feedback control of inhomogeneous ARZ model. We address the traffic

dynamics with ARZ PDE model from control perspectives, explore the general framework for

stabilization problem of stop-and-go traffic and develop boundary feedback control design in-

cluding both nonadaptive and adaptive designs. Motivated by the ARZ PDE model, our work

yields theoretical advance relative to previous results on adaptive control design for hyperbolic

systems. Most importantly, this result paves the way for addressing the traffic problem with PDE

boundary control, as one of its most important application.

The contribution of our work on control of two-lane ARZ model: we solve the control

problem of multi-lane traffic PDE model. The dynamics of two-lane traffic are studied from

control perspectives. Theoretical result of output feedback control of the general class of het-

erodirectional linear hyperbolic PDE systems is developed in [7] [80], but has never been ap-

plied in traffic application. Being the first work to adopt the methodology, our result opens the

door for solving related multi-lane traffic problems with PDE control techniques. Furthermore,

we advance the theoretical results in [7] [80] by proposing a collocated boundary observer and

controller design. The output feedback controllers in both papers are constructed with full-state

feedback controllers and an anti-collocated observer. In implementation, collocated boundary

observer and controllers are more practically applicable. We bridge this gap by developing a

observer with sensing at outlet, which is also a more challenging problem in the design for the

system of this paper.

The contribution of our work on control of two-class ARZ model: this work presents

boundary control design for traffic congestion consisting of two different vehicle classes. On

one hand, this work contributes to traffic modeling in the sense of deducing a macroscopic multi-

class traffic model in its characteristic form and investigating the obtained characteristic speeds.

On the other hand, a connection between the theoretical control design method backstepping

and an up-to-date extension of the AR traffic model for two classes is created by designing a

full-state feedback controller and output feedback controller.
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1.2.2 Predictor feedback control

Boundary control of PDE with state-dependent ODE systems has been intensively stud-

ied over the past few years. Backstepping control design method is used in solving these prob-

lems. In parabolic PDE-ODE system, a recently studied one is the thermo-dynamical model

known as Stefan problem with application to control of screw extruder for 3D Printing [72] and

arctic sea ice temperature estimation [71]. The state-dependency of the ODE governs the mov-

ing interface and makes the PDE-ODE system nonlinear. [73] presents a backstepping-based

control design.

In hyperbolic PDE-ODE system, the widely studied problem considers the ODE system

with time-varying or state-dependent input delays. Many recent theoretical results have been

developed for time-varying input delay in [11] and state-dependent input delays for nonlinear

ODE in [12] [13] [38]. [14] and [106] studied multi-inputs constant and time-varying delays to

nonlinear ODE system. But the multiple state-dependent input delays have not been discussed

before and this dissertation will address this problem which arise from the moving traffic shock-

wave. In order to compensate the time-varying or state-dependent delays, the predictor feedback

approach is employed. The predictor feedback laws use the future values of the state so that

when the control signal reaches the state of the plant with delays compensated.

For application of the ODE system with the hyperbolic-type input delays, [22] devel-

ops boundary control piston position in inviscid gas and [37] develops the control of a mass

balance in screw extrusion process. Other applications include vibration suppression of mining

cable elevator [110], control of Saint-Venant equation with hydraulic jumps [10]. However, the

application of the methodology in traffic problem has never been discussed before.

The contribution of our work on control of moving traffic shockwave: this is the first

theoretical result on control of two PDE state-dependent input delays to ODE. Predictor-based

state feedback design approach is adopted following [38] [106]. In fact, [106] shows a predictor

feedback design for multiple constant delayed inputs to linear time-invariant systems while [38]
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considers a single implicitly defined state-dependent input delay to nonlinear time-invariant sys-

tems alternatively written as a PDE-ODE cascade system. In this work, we firstly present the

predictor feedback design for two PDE states dependent input delays to ODE and address control

problem of traffic moving shockwave.

1.2.3 Extremum Seeking control

Extremum Seeking (ES) control is a non-model based, real-time optimization tool emerg-

ing in 1990’s. ES control is applicable to deal with nonlinearity in control problem or in the

optimization problem with a local minimum or maximum. Its performance and analytical frame-

work was further advanced and established after the publication of the theoretical work by [75]

proving the convergence of cost function to a neighborhood of the optimal value by means of

averaging analysis and singular perturbation. Many recent efforts include [5] [19] [47] [49] [50]

[51] [54] [74] [75] [84] [90] [93] [95] [101] [102] [111].

ES approach relies on a small periodic excitation, usually sinusoidal to disturb the param-

eters being tuned and the effect of the parameters is then quantified by the output of a nonlinear

map. The search of the optimal value is therefore generated. Despite the large number of pre-

vious work on ES control, authors in [90] firstly considered the problem of ES control in the

presence of delays. The proposed method is based on the predictor-based feedback for delay

compensation of [90]. Using backstepping transformation and averaging in infinite dimensional

systems in [56], the stability analysis is rigorously obtained. The averaging based approach is

employed due to the need to estimate the unknown second-order derivative of nonlinear map.

We consider a freeway segment with bottleneck located at the outlet where the road

capacity drops. The traffic dynamics of the freeway segment is described with LWR model. The

dynamics at the bottleneck area is described with a nonlinear map at the outlet where the optimal

density is unknown. We apply ES control in order to find the unknown optimal density at the

bottleneck. Since the control is actuated from the upstream freeway of the bottleneck, the delay
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effect of the traffic dynamics is compensated in designing ES control. The optimal density input

at inlet of the freeway segment is achieved by estimating the unknown nonlinear map at the

outlet.

Our contribution lies in the following aspects: this is the first work on control of traffic

governed by LWR PDE model in the presence of unknown downstream bottleneck. ES control

with delay compensation is firstly adapted to this traffic problem. The traffic dynamics is repre-

sented with linearized LWR model in the theoretical analysis, but the simulation is conducted on

the nonlinear LWR model and ES control design is validated for the nonlinear system.

1.3 Thesis overview

The reminder of the dissertation is outlined below:

Chapter 2 develops boundary feedback control laws to reduce stop-and-go oscillations

in congested traffic. The traffic dynamics is describe with the one-lane ARZ model and a coupled

2×2 nonlinear hyperbolic PDE system is considered. Nonadaptive and adaptive output feedback

control are proposed to achieve exponential stability in L2 sense and finite time convergence to

uniform steady states.

Chapter 3 develops output feedback boundary control to mitigate traffic congestion of a

unidirectional two-lane freeway segment. The macroscopic traffic dynamics are described by the

two-lane ARZ model respectively for both the fast and slow lanes. Lane-changing interactions

between the two lanes lead to exchanging source terms between the two pairs second-order

PDEs. Therefore, we are dealing with 4×4 nonlinear coupled hyperbolic PDEs. Two full-state

feedback boundary control laws are developed and a collocated boundary observer is designed

for state estimation with sensing of densities at the outlet. Output feedback boundary controllers

are obtained by combining the collocated observer and full-state feedback controllers. The finite

time convergence to equilibrium is achieved for both the controllers and observer designs.
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Chapter 4 develops boundary feedback control laws in order to damp out traffic oscil-

lations in the congested regime of two-class Aw-Rascle (AR) traffic model. The macroscopic

second-order two-class AR traffic model consists of 4× 4 nonlinear coupled hyperbolic PDEs.

The concept of area occupancy is proposed to express the traffic pressure and equilibrium speed

relationship yielding a coupling between the two classes of vehicles. Each vehicle class is char-

acterized by its own vehicle size and driver’s behavior. Output feedback controller is designed

for ramp metering at outlet to achieve finite time convergence of the density and velocity pertur-

bations to zeros.

Chapter 5 develops backstepping state feedback control to stabilize a moving shockwave

in a freeway segment under bilateral boundary actuations of traffic flow. Boundary control design

in this chapter brings the moving shockwave front to a static setpoint position, hindering the

upstream propagation of traffic congestion. The traffic dynamics are described with LWR model,

leading to a system of two first-order PDEs. Each PDE represents the traffic density of a spatial

domain and the segregating moving interface is governed by an ODE. For the PDE-ODE coupled

system. The control objective is to stabilize both the PDE states of traffic density and the ODE

state of moving shock position to setpoint values. We design predictor feedback controllers to

cooperatively compensate state-dependent input delays to the ODE and show local stability of

the closed-loop system in H1 norm.

Chapter 6 develops boundary control for freeway traffic with a downstream bottleneck.

If the incoming traffic flow remains unchanged, traffic congestion forms upstream of the bottle-

neck due to outgoing traffic overflowing its capacity. Therefore,incoming flow at the inlet of

the freeway segment is controlled so that the optimal density could be achieved to maximize the

outgoing flow and not to surpass the capacity at outlet. Traffic densities on the freeway segment

are described with LWR macroscopic PDE model. We use ES Control with delay compensation

for LWR PDE.
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Chapter 7 develops boundary observer for estimation of congested freeway traffic states

based on ARZ PDE model. Numerical simulations are conducted to validate the boundary ob-

server design for estimation of the nonlinear ARZ model. In data validation, we calibrate model

parameters of the ARZ model and then use vehicle trajectory data to test the performance of the

observer design.

13



Chapter 2

One-Lane Traffic Congestion Control

We develop boundary feedback control laws to reduce stop-and-go oscillations in con-

gested traffic. The macroscopic traffic dynamics are governed by ARZ model, consisting of

second-order nonlinear PDEs. A criterion to distinguish free and congested regimes for the

ARZ traffic model leads to the study of hetero-directional hyperbolic PDE model of congested

traffic regime. To stabilize the oscillations of traffic density and speed in a freeway segment, a

boundary input through ramp metering is considered. We discuss the stabilization problem for

freeway segments respectively, upstream and downstream of the ramp. For the more challenging

upstream control problem, our full-state feedback control law employs a backstepping transfor-

mation. Both collocated and anti-collocated boundary observers are designed. The exponential

stability in L2 sense and finite time convergence to equilibrium are achieved and validated with

simulation. In the absence of relaxation time and boundary parameters’ knowledge, we propose

adaptive output feedback control design. Control is applied at outlet and the measurement is

taken from inlet of the freeway segment. We use the backstepping method to obtain an observer

canonical form in which unknown parameters multiply with measured output. A parametric

model based on this form is derived and gradient-based parameter estimators are designed. An

explicit state observer involving the delayed values of the input and the output is introduced
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for state estimation. Using the parameter and state estimates, we develop an adaptive output

feedback control law which achieves convergence to the steady regulation in the L2 sense.

This chapter is organized as follows: Section 2.1 presents linearized ARZ model and

free and congested regime. Section 2.2 proposes a general freeway traffic control model through

ramp-metering. Sections 2.3-2.4 provide boundary control design for downstream of the ramp

metering traffic and full-state feedback control law and observers for upstream of the ramp meter-

ing traffic. Section 2.5 gives adaptive output feedback design for the upstream of ramp metering

problem. Both the nonadaptive control design and adaptive design are validated with simulation

in Section 2.6. Section 2.8 summarizes results and discuss future work of this paper.

2.1 Aw-Rascle-Zhang model

We consider the Aw-Rascle-Zhang model with a relaxation term and linearize it around

steady states. The Aw-Rascle model is

∂tρ +∂x(ρv) =0, (2.1)

∂tv+(v−ρ p′(ρ))∂xv =
V (ρ)− v

τ
. (2.2)

The state variable ρ(x, t) is the traffic density and v(x, t) is the traffic speed, V (ρ) is the equilib-

rium traffic speed profile and τ is the relaxation time related to driving behavior. The variable

p(ρ) is defined as the traffic pressure, an increasing function of density

p(ρ) = ργ , (2.3)

and γ ∈ R+.
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The Zhang model is given by

∂tρ +∂x(ρv) =0, (2.4)

∂tv+
(
v+ρV ′(ρ)

)
∂xv =0. (2.5)

Combining these two models together, we have the Aw-Rascle-Zhang model in (ρ,v) given in

(2.1), (2.2), and the conditions p′(ρ) = −V ′(ρ) and p(0) = 0 need to be satisfied so that the

Aw-Rascle model and the Zhang model are consistent. Thus it holds that

p(ρ) = v f −V (ρ), (2.6)

where v f is the free flow velocity. Since V (ρm) = 0 and ρm is the maximum density, p(ρ) = ργ

is rescaled as

p(ρ) = v f

(
ρ

ρm

)γ
. (2.7)

The equilibrium velocity-density relationship V (ρ) is given in the form of Greenshield’s model [52],

V (ρ) = v f − p(ρ) = v f

(
1−
(

ρ
ρm

)γ)
. (2.8)

2.1.1 Linearized ARZ model

The traffic density is the number of vehicles per unit length. The traffic flux is defined

as the number of vehicles per unit time which cross a given point on the road, which is a more

reasonable physical variable to control by ramp metering. Therefore, we rewrite the ARZ model

in traffic flux and velocity (q,v),

qt + vqx =
q(γ p− v)

v
vx +

q(v f − p− v)
τv

, (2.9)
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vt − (γ p− v)vx =
v f − p− v

τ
, (2.10)

where the traffic flow flux q is defined as

q = ρv. (2.11)

The traffic pressure p(ρ) and flux q are related by

p =
v f

ργ
m

(q
v

)γ
. (2.12)

There is no explicit solution to the nonlinear hyperbolic (q,v)-system in (2.9), (2.10). To better

understand the dynamics of the ARZ traffic model, we linearize the model around steady states

(q⋆, v⋆). The small deviations from the nominal profile are defined as

q̃(x, t) =q(x, t)−q⋆, (2.13)

ṽ(x, t) =v(x, t)− v⋆, (2.14)

where x ∈ [0,L], t ∈ [0,∞).

We consider the traffic dynamics of a segment of freeway and L is the length of freeway

segment. For inlet boundary at x = 0, we consider a constant traffic flux q⋆ entering the domain

which can be realized by implementing a mainline flux metering at the inlet,

q(0, t) = q⋆. (2.15)

For outlet, we assume to implement a mainline density metering so that the following condition
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holds,

ρ(L, t) = ρ⋆. (2.16)

Applying this assumption to the outlet boundary x = L of considered freeway section and we

obtain a boundary condition for (q,v)-system in (2.9), (2.10),

v(L, t) =
1

ρ⋆
q(L, t). (2.17)

The linearized ARZ model is describes with the following (q̃, ṽ)-system,

q̃t + v⋆q̃x −
q⋆(γ p⋆− v⋆)

v⋆
ṽx =− q⋆

τ

(
1
v⋆

− 1
γ p⋆

)
ṽ− γ p⋆

τv⋆
q̃, (2.18)

ṽt − (γ p⋆− v⋆)ṽx =
γ p⋆− v⋆

τv⋆
ṽ− γ p⋆

τq⋆
q̃, (2.19)

with the linearized boundary conditions

q̃(0, t) =0, (2.20)

ṽ(L, t) =
1

ρ⋆
q̃(L, t). (2.21)

where p⋆ = p(q⋆,v⋆), according to (2.12).

2.1.2 Free/congested regime analysis

According to the relation between p⋆ and v⋆ in (2.6), the following holds

v⋆− γ p⋆ = v⋆− γ(v f − v⋆) = (1+ γ)v⋆− γv f . (2.22)
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For free-flow regime, γ p⋆ < v⋆ implies v⋆ > γ
γ+1v f . For congested regime, γ p⋆ > v⋆ implies

v⋆ < γ
γ+1v f . Therefore, v⋆ = γ

γ+1v f is the critical velocity to distinguish the free regime and the

congested regime of traffic flow.

• Free-flow regime : ρ⋆ < ρm
(1+γ)1/γ ⇔ v⋆ > γ

γ+1v f

In the free-flow regime, both the disturbances of traffic flux and velocity travel down-

stream, at respective speeds v⋆ and v⋆− γ p⋆. The linearized ARZ model in free-regime is

a homo-directional hyperbolic PDEs.

• Congested regime : ρ⋆ > ρm
(1+γ)1/γ ⇔ v⋆ < γ

γ+1v f

In the congested regime, the disturbances of the traffic flow flux are carried downstream by

the vehicles that generated them. The disturbances of the traffic speed travel upstream at a

speed of γ p⋆−v⋆. Therefore, we are dealing with a hetero-directional coupled hyperbolic

system, given that v⋆−γ p⋆ < 0 and v⋆ > 0 in the congested regime. The disturbances force

vehicles into deceleration-acceleration cycles, leading to the traffic oscillations, known as

the stop-and-go traffic. This kind of instability in traffic causes unsafe driving conditions,

extra fuel consumptions and eventually evolves into a bumper-to-bumper jam.

• Bumper-to-bumper traffic jam : ρ⋆ = ρm ⇔ v⋆ = 0

The traffic becomes bumper-to-bumper jammed when the traffic density reaches its maxi-

mum and traffic speed equals to 0.

In this paper, we focus on control design for the congested regime

ρm > ρ⋆ >
ρm

(1+ γ)1/γ ⇔ 0 < v⋆ <
γ

1+ γ
v f . (2.23)

We choose the steady states (ρ⋆,v⋆) satisfying above inequalities but not too close to bounds so
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that small disturbances will not exceed them.

2.2 Boundary Control Model

Before we apply boundary control to the linearized ARZ model in (q̃, ṽ), we represent

the system in Riemann coordinates and then map it to a decoupled first-order 2× 2 hyperbolic

system in (w̄, v̄). We propose two different control strategies for the hyperbolic (w̄, v̄)-system

through ramp metering control.

We define new variables (w, v̄) in Riemann coordinates,

w =q̃−q⋆
(

1
v⋆

− 1
γ p⋆

)
ṽ, (2.24)

v̄ =
q⋆

γ p⋆
ṽ, (2.25)

We obtain

wt(x, t)+ v⋆wx(x, t) =− 1
τ

w, (2.26)

v̄t(x, t)− (γ p⋆− v⋆)v̄x(x, t) =− 1
τ

w, (2.27)

w(0, t) =− γ p⋆− v⋆

v⋆
v̄(0, t), (2.28)

v̄(L, t) =w(L, t). (2.29)

In order to decouple (2.26) and (2.29), we introduce a scaled state as follows:

w̄(x, t) =exp
( x

τv⋆

)
w(x, t). (2.30)
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The (w, v̄)-system is then transformed to a first-order 2×2 hyperbolic system

w̄t(x, t) =− v⋆w̄x(x, t), (2.31)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.32)

w̄(0, t) =− k0v̄(0, t), (2.33)

v̄(L, t) =κw̄(L, t). (2.34)

where

c(x) =− 1
τ

exp
(
− x

τv⋆

)
, (2.35)

k0 =
γ p⋆− v⋆

v⋆
, (2.36)

κ =exp
(
−L
τv⋆

)
. (2.37)

The spatially varying coefficient c(x) is a strictly increasing function and is bounded by

−1
τ
≤ c(x)≤−κ

τ
. (2.38)

The following relations for boundary values are obtained from (2.24)-(2.25),

q̃(0, t) =w̄(0, t)+ k0v̄(0, t), (2.39)

q̃(L, t) =κw̄(L, t)+ k0v̄(L, t), (2.40)

The applicable boundary control inputs could be traffic flow flux at either the inlet or at the

outlet of a freeway section. We summarize the transformation from the linearized ARZ model
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in (q̃, ṽ)-system to (w̄, v̄)-system,

w̄(x, t) =exp
( x

τv⋆

)
(q̃(x, t)−ρ1ṽ(x, t)) , (2.41)

v̄(x, t) =ρ2ṽ(ξ , t). (2.42)

And the inverse transformation is given by

q̃(x, t) =exp
(
− x

τv⋆

)
w̄(x, t)+ k0v̄(x, t), (2.43)

ṽ(x, t) =
1
ρ2

v̄(ξ , t). (2.44)

where the constant, positive coefficients are defined as follows:

ρ1 =q⋆
(

1
v⋆

− 1
γ p⋆

)
, ρ2 =

q⋆

γ p⋆
. (2.45)

Therefore, we can study the stability of (q̃, ṽ)-system through (w̄, v̄)-system due to their equiva-

lence. The control laws we obtain later for the (w̄, v̄)-system guarantee the equivalent stability

properties of the (q̃, ṽ)-system.

2.2.1 UORM/DORM ramp metering control

Considering a ramp metering is installed at freeway on-ramp to reduce the oscillations

in the congested traffic, we propose two different control design based on the domain we aim to

control with the ramp metering.

If we consider controlling the traffic downstream of the ramp metering (DORM) in the

domain D , the ramp metering is located at the inlet of the domain D and Uin(t) is the control

law to be designed. The DORM controller Uin(t) is applied with q̃(0, t).

In the case that we control the traffic upstream of the ramp metering (UORM) in the
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Figure 2.1: A freeway segment controlled by ramp-metering.

domain U , the controller Uout(t) is located at the outlet of domain U . The UORM controller

Uout(t) is applied with q̃(L, t).

DORM control

We define a ramp metering boundary control input Uin(t) at the inlet of D ,

Uin(t) =qr(t) = q̃(0, t), (2.46)

q̃(L, t) =ρ⋆ṽ(L, t). (2.47)

Note that the DORM controller Uin(t) is applied with the traffic flow flux variation at the inlet

of domain D . The other boundary condition does not change. We need to implement a density

metering at mainline outlet so that a constant density is enforced.

Substituting (2.46) into (2.39), we obtain the controlled boundary. The DORM control

model is given by (w̄, v̄)-system in (2.31), (2.32) with controlled boundary at the inlet in (2.50),

w̄t(x, t) =− v⋆w̄x(x, t), (2.48)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.49)
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w̄(0, t) =− k0v̄(0, t)+Uin(t), (2.50)

v̄(L, t) =κw̄(L, t). (2.51)

UORM control

We consider a constant traffic flux entering the domain U and the control input Uout(t) is

implemented with the ramp metering at the outlet of the domain. For inlet, we need to implement

a flux metering at mainline so that a constant flux is enforced. The UORM control input Uout(t)

and q̃(0, t) are defined as

Uout(t) =qr(t), (2.52)

q̃(0, t) =0. (2.53)

The total traffic flow flux variation at the outlet of domain U includes the traffic flow flux varia-

tion from the mainline and from the ramp.

q̃(L+, t) = q̃(L−, t)+qr(t). (2.54)

The mainline flow flux variation q̃(L−, t) in the domain is given by (2.40). The flow flux variation

q̃(L+, t) of the downstream of domain U is given by (2.21). Substituting (2.40) and (2.21) into

(2.54), we obtain the UORM control model with controlled boundary at the outlet in (2.58).

w̄t(x, t) =− v⋆w̄x(x, t), (2.55)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.56)

w̄(0, t) =− k0v̄(0, t), (2.57)

v̄(L, t) =κw̄(L, t)+Uout(t). (2.58)
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Figure 2.2: Diagram of control model with zero input.

2.2.2 Spectrum analysis of control models with zero input

In order to explore the traffic dynamics in the open loop-system, we consider the zero

input for DORM or UORM control design

qr(t) =0, (2.59)

Uin(t) =0 (2.60)

Uout(t) =0. (2.61)

According to boundary conditions in (2.50), (2.51) or (2.57), (2.58), we have the following zero

input system that holds for both control models

w̄t(x, t) =− v⋆w̄x(x, t), (2.62)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.63)

w̄(0, t) =− k0v̄(0, t), (2.64)

v̄(L, t) =κw̄(L, t), (2.65)

where x ∈ [0,L] and t > 0. The diagram is shown in Fig. 2.2. The above zero-input system is

equivalent to the open-loop (q̃, ṽ)-system in (2.18)-(7.78).
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In order to analyze the spectrum of the system with zero input in (2.62)-(2.65), we trans-

form the first-order 2×2 hyperbolic system to a second-order wave equation.

ytt(x, t) =v⋆(γ p⋆− v⋆)yxx(x, t)− (2v⋆− γ p⋆)yxt(x, t)

− 1
τ

yt(x, t)+
γ p⋆− v⋆

τ
yx(x, t), (2.66)

yt(0, t) =0, (2.67)

yx(L, t) =0. (2.68)

The new variable y(x, t) satisfies the following relations,

w(x, t) =yt(x, t)− (γ p⋆− v⋆)yx(x, t),

v̄(x, t) =yt(x, t)+ v⋆yx(x, t). (2.69)

The term yxt is a structural damping, of which effect is fully addressed in [26]. The term yt is

also a damping term and the longer reaction time τ will cause the weaker damping effect of yt

in the domain.

The wave equation is written in the vector form,

∂
∂ t

 y

yt

= A

 y

yt

 , (2.70)

where the operator matrix A is given by

A =

 yt

−1
τ yt − (2v⋆− γ p⋆)yxt +

γ p⋆−v⋆
τ yx + v⋆(γ p⋆− v⋆)yxx

 .
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The eigenvalues of A are obtained by solving the following equations,

λy =yt , (2.71)

λ 2y =− (2v⋆− γ p⋆)λyx −
λ
τ
+

γ p⋆− v⋆

τ
yx + v⋆(γ p⋆− v⋆)yxx.

We take Fourier transform with respect to the spatial variable x ∈ [0,L]. We map y(x, t)→ ŷ(n, t),

n ∈ Z,

y(x) =
∞

∑
n=1

ŷn exp
(

inx
L

)
. (2.72)

The nth Fourier coefficient is defined as

ŷn =
∫ L

0
y(x)exp

(
−inx

L

)
dx, (2.73)

the transformation yields

ŷx =
inx
L

ŷ, ŷxx =
−n2

L2 ŷ. (2.74)

Substituting ŷx and ŷxx into (2.72), the kth pair of eigenvalues satisfy the following quadratic

equation:

0 =λ 2 +

(
2v⋆− γ p⋆

L
ni+

1
τ

)
λ +

v⋆(γ p⋆− v⋆)
L2 n2 − γ p⋆− v⋆

τL
ni. (2.75)

The nth pair of eigenvalues are obtained by solving the quadratic equation,

λ1,2 =
−1

τ −
(2v⋆−γ p⋆)

L ni± (1
τ +

γ p⋆
L ni)

2
. (2.76)

27



Thus there are two sets of eigenvalues in the left half plane,

λ1 =
γ p⋆− v⋆

L
ni, λ2 =−1

τ
− v⋆

L
ni. (2.77)

The eigenvalue λ1 only contains the imaginary part. The longer of the relaxation time τ , the

smaller of the negative real part in the eigenvalue λ2. As τ → ∞ and n → ∞,

λ1 → Im(+∞), (2.78)

λ2 → Im(−∞). (2.79)

According to the above spectral analysis, two sets of eigenvalues locate along the imaginary axis.

The system is marginal stable and there are persistent oscillations in the domain of the zero input

system in (2.62)-(2.65). Therefore, it is meaningful to propose control design for the system.

2.3 DORM control design

The DORM control problem is given by

w̄t(x, t) =− v⋆w̄x(x, t), (2.80)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.81)

w̄(0, t) =− k0v̄(0, t)+Uin(t), (2.82)

v̄(L, t) =κw̄(L, t), (2.83)

where x ∈ D ≜ [0,L] and t > 0. The diagram of DORM control model is shown in Fig. 2.3.

If we choose the DORM controller as

Uin(t) =k0v̄(0, t), (2.84)
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Figure 2.3: Time response of DORM control model.

we get w̄(0, t) = 0. The explicit solution to the above (w̄, v̄)-system with the DORM control law

(2.84) is

w̄(x, t) =

 w̄(x− v⋆t,0), t < x
v⋆ ,

w̄
(
0, t − x

v⋆
)
, t ≥ x

v⋆ ,
(2.85)

and for t ≥ x
v⋆ ,

w̄(x, t)≡ 0. (2.86)

Solving for v̄(x, t), we have

v̄(x, t) =

 v̄(x+(γ p⋆− v⋆)t,0)+
∫ t

0 c(x+(γ p⋆− v⋆)(t − s))w̄(0,s)ds, t < L−x
γ p⋆−v⋆ ,

κw̄
(

L, t − L−x
γ p⋆−v⋆

)
+ 1

γ p⋆−v⋆
∫ L

x c(s)w̄
(

0, t + x−s
γ p⋆−v⋆

)
ds, t ≥ L−x

γ p⋆−v⋆ .
(2.87)

Thus for t ≥ t f , it holds that

v̄(x, t)≡ 0. (2.88)

where

t f =
L
v⋆

+
L

γ p⋆− v⋆
. (2.89)
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Substituting k0 in (2.36) and v̄ in (2.42), we get

Uin(t) =ρ1ṽ(0, t). (2.90)

The DORM boundary controller Uin(t) is obtained by the measurement of ṽ(0, t). To show

the exponential stability of the system in the L2 sense, we construct the following Lyapunov

functions

V1(t) =
1

2v⋆

∫ L

0
e−xw̄2(x, t)dx, (2.91)

V2(t) =
1

2(γ p⋆− v⋆)

∫ L

0
exv̄2(x, t)dx, (2.92)

and differentiate the Lyapunov functions in time. We obtain the following inequalities using

Cauchy-Schwarz Inequality and Young’s Inequality,

V̇1 ≤− e−L(w̄2(L)+ ||w̄||2), (2.93)

V̇2 ≤eLv̄2(L)− v̄2(0)−||v̄||2 + 1
γ p⋆− v⋆

∫ L

0
exv̄(x)c(x)w̄(x)dx.

According to the boundedness of c(x) in (7.34), we have

|c(x)| ≤C0 =
1
τ

(2.94)

Then it holds that

V̇2 ≤eLκ2w̄2(L)+
1

2d1(γ p⋆− v⋆)
||w̄||2 −

(
1−

d1C2
0e2L

2(γ p⋆− v⋆)

)
||v̄||2, (2.95)

where d1 is a positive constant and we choose d1 <
2τ2(γ p⋆−v⋆)

e2L . Consider the following Lyapunov
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function

V =d2V1 +V2, (2.96)

where d2 = max
(

e2Lκ2, e2L

2d1(γ p⋆−v⋆)

)
, it holds that

V̇ ≤−d0V, (2.97)

where d0 = min
(

d2
eL − 1

2d1(γ p⋆−v⋆) ,1−
d1C2

0e2L

2(γ p⋆−v⋆)

)
. The exponential stability of the system (2.80)-

(2.83) with the DORM boundary controller (2.84) is shown above. From the explicit solution of

the system, it holds for t ≥ t f ,

w̄(x, t)≡ 0, v̄(x, t)≡ 0. (2.98)

We summarize above result in the following Theorem.

Theorem 2.1. Consider system (2.80)-(2.83) with inital conditions w̄0, v̄0 ∈ L2[0,L] and the

control law (2.84). The equilibrium w̄ ≡ v̄ ≡ 0 is exponentially stable in the L2 sense and the

equilibrium is reached in finite time t = t f given in (2.89).

2.4 UORM control designs

For UORM control design, we have

w̄t(x, t) =− v⋆w̄x(x, t), (2.99)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.100)

w̄(0, t) =− k0v̄(0, t), (2.101)

v̄(L, t) =κw̄(L, t)+Uout(t), (2.102)
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Figure 2.4: Time response of UORM control model.

where x ∈ U ≜ [0,L] and t > 0. The diagram of the UORM control model is shown in Fig.4.

2.4.1 UORM full-state feedback control design

Using the following backstepping transformation, we transform the system of UORM

control design (2.99)-(2.102) into the target system,

α(x, t) =w̄(x, t), (2.103)

β (x, t) =v̄(x, t)−
∫ x

0
M(x−ξ )v̄(ξ , t)dξ −

∫ x

0
K(x,ξ )w̄(ξ , t)dξ . (2.104)

For boundary conditions, we have w̄(0, t) = α(0, t) and v̄(0, t) = β (0, t). The target system is

given by

αt(x, t) =− v⋆αx(x, t), (2.105)

βt(x, t) =(γ p⋆− v⋆)βx(x, t), (2.106)

α(0, t) =− k0β (0, t), (2.107)

β (L, t) =0. (2.108)
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To obtain the target system, we take time derivative and spatial derivative on (2.104). The fol-

lowing kernel equations and boundary condition need to be satisfied,

(γ p⋆− v⋆)Kx − v⋆Kξ =c(ξ )K(x−ξ ,0), (2.109)

K(x,x) =− c(x)
γ p⋆

, (2.110)

where K(x,ξ ) evolves in the triangular domain Z = {(x,ξ ) : 0≤ ξ ≤ x≤ L} and M(x) is defined

as

M(x) =−K(x,0). (2.111)

The well-posedness of the kernel equations (2.109)-(2.111) and the boundedness of kernel vari-

ables are obtained following the same steps of the proof in the Appendix of [108]. Therefore,

invertibility of the backstepping transformation in (2.103), (2.104) is established and we can

study the target system for stability of the plant.

The UORM full-state feedback controller is chosen as

Uout(t) =−κw̄(L, t)+
∫ L

0
M(L−ξ )v̄(ξ , t)dξ +

∫ L

0
K(L,ξ )w̄(ξ , t)dξ , (2.112)

so that β (L, t) = 0 is satisfied. One can easily find the explicit solution to the target system

(2.105)-(2.108) and obtain that

α(x, t)≡ β (x, t)≡ 0, (2.113)

after t f = tα + tβ = L
v⋆ +

L
γ p⋆−v⋆ . Thus α and β go to zeros in finite time t = t f . It is straight-

forward to prove that the α,β system is L2 exponentially stable. Due to the invertibility of the

transformation, (w̄, v̄)-system is also L2 exponentially stable.
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Theorem 2.2. Consider system (2.99)-(2.102) with inital conditions w̄0, v̄0 ∈ L2[0,L] and the

control law (2.112) where the kernels K(x,ξ ) and M(x) are obtained by solving (2.109)-(2.111).

The equilibrium w̄ ≡ v̄ ≡ 0 is exponentially stable in the L2 sense and the equilibrium is reached

in finite time t = t f given in (2.89).

Transforming w̄ and v̄ in (2.112) to q̃ and ṽ using the inverse transformation in (2.43)-

(2.44), we get the control law in (q̃, ṽ) as

Uout(t) =− q̃(L, t)+ρ1ṽ(L, t)+ρ1

∫ L

0
M(L−ξ )ṽ(ξ , t)dξ

−κ
∫ L

0
K(L,ξ )exp

(
ξ

τv⋆

)
ṽ(ξ , t)dξ

+ k0

∫ L

0
K(L,ξ )exp

(
ξ

τv⋆

)
q̃(ξ , t)dξ . (2.114)

Due to the invertibility of transformation (2.41)-(2.44) between (w̄, v̄) and (q̃, ṽ), the (q̃, ṽ)-

system is exponentially stable and converges to zero in the finite time. Therefore, the (q,v)

system is exponentially stable and converges to (q⋆,v⋆) in the finite time t f .

To obtain Uout(t), we need to take measurement of ṽ and q̃ in the domain U , which

might be realized by traffic camera and fleet GPS data. However, we propose the boundary

observer design, considering the difficulties and costs to implement sensors along the freeway.

We introduce two boundary observers; one is located at the same boundary with the full-state

feedback controller and the other one is anti-collocated with the controller.

2.4.2 UORM anti-collocated boundary observer design

We define the following anti-collocated boundary measurement

Ya(t) = v̄(0, t). (2.115)
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According to (2.42), we obtain v̄(0, t) = ρ2ṽ(0, t), by the measurement of ṽ(0, t). Then we design

an observer by constructing the following system,

ŵt(x, t) =− v⋆ŵx(x, t), (2.116)

v̂t(x, t) =(γ p⋆− v⋆)v̂x(x, t)+ c(x)ŵ(x, t), (2.117)

ŵ(0, t) =− k0Ya(t), (2.118)

v̂(L, t) =κŵ(L, t)+Uout(t), (2.119)

where ŵ and v̂ are the estimates of state variables w̄ and v̄. The error system is obtained by

subtracting the above estimates from (2.99)-(2.102),

w̌t(x, t) =− v⋆w̌x(x, t), (2.120)

v̌t(x, t) =(γ p⋆− v⋆)+ c(x)w̌(x, t), (2.121)

w̌(0, t) =0, (2.122)

v̌(L, t) =κw̌(L, t), (2.123)

where w̌= w̄− ŵ and v̌= v̄− v̂. The error system is same as (2.80)-(2.83) with (2.90). According

to Theorem 1, the error system is exponentially stable in the L2 sense and converges to zeros in

finite time t f .

Theorem 2.3. Consider system (2.120)-(2.123) with initial conditions w̌0, v̌0 ∈ L2[0,L]. The

equilibrium w̌ ≡ v̌ ≡ 0 is exponentially stable in the L2 sense, which implies that ||w̄(·, t)−

ŵ(·, t)|| → 0 and ||v̄(·, t)− v̂(·, t)|| → 0. The convergence to 0 is reached in finite time t = t f .
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2.4.3 UORM collocated boundary observer design

We define a collocated boundary measurement

Yc(t) = w̄(L, t). (2.124)

We obtain w̄(L, t) = (q̃(L, t)−ρ1ṽ(L, t))/κ, by the measurement of q̃(L, t) and ṽ(L, t). Then we

design a collocated boundary observer to estimate w̄(x, t) and v̄(x, t) by constructing the system

ŵt(x, t) =− v⋆ŵx(x, t)+ r(x)(w̄(L, t)− ŵ(L, t)), (2.125)

v̂t(x, t) =(γ p⋆− v⋆)v̂x(x, t)+ c(x)ŵ(x, t)

+ s(x)(w̄(L, t)− ŵ(L, t)), (2.126)

ŵ(0, t) =− k0v̂(0, t), (2.127)

v̂(L, t) =κYc(t)+Uout(t), (2.128)

where ŵ and v̂ are the estimates of the state variables w̄ and v̄. The term r(x) and s(x) are output

injection gains to be designed. The error system is obtained by subtracting the estimates from

(2.99)-(2.102),

w̌t(x, t) =− v⋆w̌x(x, t)− r(x)w̌(L, t), (2.129)

v̌t(x, t) =(γ p⋆− v⋆)v̌x(x, t)+ c(x)w̌(x, t)

− s(x)w̌(L, t), (2.130)

w̌(0, t) =− k0v̌(0, t), (2.131)

v̌(L, t) =0, (2.132)

where w̌ = w̄− ŵ and v̌ = v̄− v̂. We need to find the output injection gain r(x) and s(x) that

guarantee the error system decays to zero. Using backstepping transformation, we transform the
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error system (2.129)-(2.132) into the following system

λ̌t(x, t) =− v⋆λ̌x(x, t), (2.133)

ν̌t(x, t) =(γ p⋆− v⋆)ν̌x(x, t), (2.134)

λ̌ (0, t) =− k0ν̌(0, t), (2.135)

ν̌(L, t) =0. (2.136)

The backstepping transformation is

λ̌ (x, t) =w̌(x, t)−
∫ L

x
Ǩ(L+ x−ξ )w̌(ξ , t)dξ , (2.137)

ν̌(x, t) =v̌(x, t)−
∫ L

x
M̌(v⋆x+(γ p⋆− v⋆)ξ )w̌(ξ , t)dξ , (2.138)

where the kernel Ľ is given by

M̌(x) =− 1
γ p⋆

c
(

x
γ p⋆

)
. (2.139)

For boundary condition (2.135) to hold, the kernels Ǩ and M̌ satisfy the relation

Ǩ(L−ξ ) =M̌((γ p⋆− v⋆)ξ ). (2.140)

the kernel Ǩ is then obtained

Ǩ(x) =− 1
γ p⋆

c
(

γ p⋆− v⋆

γ p⋆
(L− x)

)
, (2.141)

and

|Ǩ(x)| ≤ 1
γ p⋆τ

, (2.142)
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according to the boundedness of c(x) in (2.94). The output injection gain r(x) and s(x) are

r(x) =v⋆Ǩ(x) =− v⋆

γ p⋆
c
(

γ p⋆− v⋆

γ p⋆
(L− x)

)
, (2.143)

s(x) =− v⋆M̌(v⋆x+(γ p⋆− v⋆)L)

=
v⋆

γ p⋆
c
(

v⋆

γ p⋆
x− γ p⋆− v⋆

γ p⋆
L
)
. (2.144)

The backstepping transformation is invertible. Therefore, we study the stability of the error

system through the target system (2.133)-(2.136). It is straightforward to prove the exponential

stability of error system in the L2 sense and finite-time convergence.

Theorem 2.4. Consider system (2.129)-(2.132) with inital conditions w̌0, v̌0 ∈ L2[0,L]. The

equilibrium w̌ ≡ v̌ ≡ 0 is exponentially stable in the L2 sense. It holds that ||w̄(·, t)− ŵ(·, t)||→ 0

and ||v̄(·, t)− v̂(·, t)|| → 0 and the convergence to equilibrium is reached in finite time t = t f .

We design an anti-collocated boundary observer and a collocated boundary observer.

Both of them achieve the exponential stability of estimation errors in the L2 sense and finite-

time convergence to 0. In comparison, the collocated boundary observer needs two spatially

varying output injection gain, but could be easier to install in practice since it is located at the

same boundary with UORM controller Uout(t).

2.4.4 UORM output feedback control design

Combining the state feedback controller and the boundary observers, we have the output

feedback controller

Uout(t) =−κŵ(L, t)+
∫ L

0
M(L−ξ )v̂(ξ , t)dξ

+
∫ L

0
K(L,ξ )ŵ(ξ , t)dξ , (2.145)
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where ŵ and v̂ can be obtained from the anti-collocated boundary observer in (2.116)-(2.119)

with measurement Ya(t) = v̄(0, t) or from the collocated boundary observer in (2.129)-(2.132)

with measurement Yc(t) = w̄(L, t) and observer gains given in (2.143), (2.144). The following

theorem summarizes the results from Theorem 2 to Theorem 4.

Theorem 2.5. Consider system (2.99)-(2.102) with inital conditions ŵ0, v̂0 ∈ L2[0,L] and with

output feed control law (2.145), where the kernels K(x,ξ ), M(x) are obtained by solving (2.109)-

(2.111). The equilibrium w̄ ≡ v̄ ≡ ŵ ≡ v̂ ≡ 0 is exponentially stable in the L2 sense.

2.5 Adaptive UORM control design

The previous feedback control designs are based on the knowledge of parameters in the

system. However, the relaxation time τ is hard to measure in practice and are affected by many

factors. In addition, coefficient γ in the pressure-density relation reflects the aggressiveness of

drivers’ behavior and relates to road situation. Due to the change of road at inlet or outlet with

on-ramp, values of γ are different for in-domain and boundaries. We consider γ to be unknown at

boundaries but a known coefficient within the domain U . According to (2.36), k0 is considered

as an unknown constant parameter at boundary. The adaptive control law that is proposed in

this section can also be used as an alternative non-adaptive output feedback control design if

parameters are given.

Consider the following hyperbolic system with adaptive control input U(t),

w̄t(x, t) =− v⋆w̄x(x, t), (2.146)

v̄t(x, t) =(γ p⋆− v⋆)v̄x(x, t)+ c(x)w̄(x, t), (2.147)

w̄(0, t) =− k0v̄(0, t), (2.148)

v̄(L, t) =κw̄(L, t)+U(t), (2.149)
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with the measurement Y (t) at the inlet and by (2.25),

Y (t) =ṽ(0, t), (2.150)

v̄(0, t) =ρ2Y (t), (2.151)

where x ∈U ≜ [0,L] and t > 0. The coefficients k0, ρ2 and κ = exp
(−L

τv⋆
)

are unknown constant

boundary parameters and c(x) = −1
τ exp

(
− x

τv⋆
)

is unknown spatially-varying parameter, since

τ is unknown. The steady states p⋆, q⋆ and v⋆ are known.

2.5.1 Scaling the states

First we scale w̄ with unknown constant κ and v̄ with unknown constant k2 for the con-

venience of the parameter estimation,

ω(x, t) =
κ
ρ2

w̄(x, t), (2.152)

ṽ(x, t) =
1
ρ2

v̄(x, t), (2.153)

and the system is mapped into

ωt(x, t) =− v⋆ωx(x, t), (2.154)

ṽt(x, t) =(γ p⋆− v⋆)ṽx(x, t)+ c̄(x)ω(x, t), (2.155)

ω(0, t) =−κk0ṽ(0, t), (2.156)

ṽ(L, t) =ω(L, t)+
1
ρ2

U(t), (2.157)

where the unknown parameters are defined as

c̄(x) =
c(x)

κ
, r0 =−κk0, r1 =

1
ρ2

, (2.158)
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with measurement ṽ(0, t) = Y (t). The scaling of w̄ and v̄ reduces the number of couplings

between unknown coefficients and state variables.

2.5.2 Observer canonical form

In order to decouple the (ω, v̄)-system in domain, we use the following backstepping

transformation.

α(x, t) =ω(x, t)−
∫ x

0
M̄(x−ξ )ω(ξ , t)dξ , (2.159)

β (x, t) =ṽ(x, t)−
∫ x

0
K̄(v⋆x+(γ p⋆− v⋆)ξ )ω(ξ , t)dξ . (2.160)

We transform the (ω, v̄)-system into an observer canonical form,

αt(x, t) =− v⋆αx(x, t)+θ1(x)Y (t), (2.161)

βt(x, t) =(γ p⋆− v⋆)βx(x, t)+θ2(x)Y (t) (2.162)

α(0, t) =r0β (0, t), (2.163)

β (L, t) =α(L, t)+ r1U(t), (2.164)

where θ1(x) =−v⋆r0M̄(x) and θ2(x) =−v⋆r0K̄(v⋆x). The measurement is

α(0, t) =r0Y (t), (2.165)

β (0, t) =Y (t). (2.166)

To obtain the target system, we take the time and spatial derivatives on both sides of (2.159),

(2.160). The kernels are

M̄(x) =− 1
γ p⋆

c̄
(

L− γ p⋆− v⋆

γ p⋆
x
)
, (2.167)
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K̄(x) =− 1
γ p⋆

c̄
(

x
γ p⋆

)
, (2.168)

and new spatial parameters are

θ1(x) =
r0v⋆

γ p⋆
c̄
(

L− γ p⋆− v⋆

γ p⋆
x
)
, (2.169)

θ2(x) =
r0v⋆

γ p⋆
c̄
(

v⋆

γ p⋆
x
)
. (2.170)

Remark 2.6. For ∀x ∈ [0,L], the following holds for Θ ≜ γ p⋆−v⋆
γ p⋆τ ,

|θ1(x)| ≤ Θ, (2.171)

|θ2(x)| ≤ Θ. (2.172)

2.5.3 Parametric model and parameter estimation

We can easily find the input/output relation for the observer canonical form by solving

the system (2.161)-(2.164) directly,

α(x, t) =

 α(x− v⋆t,0)+
∫ t

0 θ1(x− v⋆(t − s))Y (s)ds, t < x
v⋆ ,

α
(
0, t − x

v⋆
)
+ 1

v⋆
∫ x

0 θ1(s)Y
(
t − x−s

v⋆
)

ds, t ≥ x
v⋆ .

(2.173)

Substituting into α(0, t) = r0Y (t) and therefore we find, for t ≥ x
v⋆ :

α(x, t) =r0Y
(

t − x
v⋆

)
+

1
v⋆

∫ x

0
θ1(s)Y

(
t − x− s

v⋆

)
ds. (2.174)

Thus we can obtain α(L, t) by the knowledge of Y (t) from t − L
v⋆ to t,

α(L, t) =r0Y
(

t − L
v⋆

)
+

1
v⋆

∫ L

0
θ1(s)Y

(
t − L− s

v⋆

)
ds. (2.175)
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Given β (L, t) = α(L, t)+ r1U(t), we solve for β (x, t),

β (x, t) =

 β (x+(γ p⋆− v⋆)t,0)+
∫ t

0 θ2(x+(γ p⋆− v⋆)(t − s))Y (s)ds, t < L−x
γ p⋆−v⋆ ,

β
(

L, t − L−x
γ p⋆−v⋆

)
+ 1

γ p⋆−v⋆
∫ L

x θ2(s)Y
(

t − s−x
γ p⋆−v⋆

)
ds, t ≥ L−x

γ p⋆−v⋆ .

(2.176)

We now find for t ≥ L−x
γ p⋆−v⋆ :

β (x, t) =β
(

L, t − L− x
γ p⋆− v⋆

)
+

1
γ p⋆− v⋆

∫ L

x
θ2(s)Y

(
t − s− x

γ p⋆− v⋆

)
ds, (2.177)

thus for t ≥ L
γ p⋆−v⋆ , we have

β (0, t) =α
(

L, t − L
γ p⋆− v⋆

)
+ r1U

(
t − L

γ p⋆− v⋆

)
+

1
γ p⋆− v⋆

∫ L

0
θ2(s)Y

(
t − s

γ p⋆− v⋆

)
ds. (2.178)

By substituting α(L, t) in Y (t), we obtain the input/output parametric model,

Y (t) =r1U
(

t − L
γ p⋆− v⋆

)
+ r0Y

(
t − L

v⋆
− L

γ p⋆− v⋆

)
+
∫ t− L

γ p⋆−v⋆

t− L
v⋆−

L
γ p⋆−v⋆

θ1

(
v⋆(s− t)+

γ p⋆

γ p⋆− v⋆
L
)

Y (s)ds

−
∫ t

t− L
γ p⋆−v⋆

θ2 ((γ p⋆− v⋆)(t − s))Y (s)ds+ ε(t), (2.179)

where ε(t) is defined as the error of the parametric model. The value of ε(t) is abitrary for

t ∈ [0, L
v⋆ +

L
γ p⋆−v⋆ ], depending on the initial values of α(x,0),β (x,0) and ε(t) = 0 for t ∈ [ L

v⋆ +

L
γ p⋆−v⋆ ,∞). We use this input/output parametric model to estimate the unknown spatially-varying

parameters θ1(x), θ2(x) and unknown constant boundary parameter r0.

The following update laws are based on the gradient algoritheorem with normalization
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and projection,

∂t θ̂1(x) =Proj
(
τ1(x, t), θ̂1(x, t)

)
, (2.180)

∂t θ̂2(x) =Proj
(
τ2(x, t), θ̂2(x, t)

)
, (2.181)

∂t r̂0 =
γ3

σ(t)
Y
(

t − L
v⋆

− L
γ p⋆− v⋆

)
β̃ (0, t), (2.182)

∂t r̂1 =
γ4

σ(t)
U
(

t − L
γ p⋆− v⋆

)
β̃ (0, t), (2.183)

where γ1(x), γ2(x), γ3 and γ4 are positive adaptation gains and

τ1(x, t) =
γ1(x)Y

(
t − L−x

v⋆ − L
γ p⋆−v⋆

)
σ(t)v⋆

β̃ (0, t), (2.184)

τ2(x, t) =
γ2(x)Y

(
t − x

γ p⋆−v⋆

)
σ(t)(γ p⋆− v⋆)

β̃ (0, t). (2.185)

The normalization is given by

σ(t) =1+Y 2
(

t − L
v⋆

− L
γ p⋆− v⋆

)
+U2

(
t − L

γ p⋆− v⋆

)
+
∫ t

t− L
v⋆−

L
γ p⋆−v⋆

Y 2(s)ds. (2.186)

The adaptive estimation error β̃ (0, t) of parameter estimates θ̂1(x), θ̂2(x), r̂0 and r̂1 are obtained

from the input/output parametric model as follows,

β̃ (0, t) =β (0, t)− β̂ (0, t)

=Y (t)− r̂1U
(

t − L
γ p⋆− v⋆

)
− r̂0Y

(
t − L

v⋆
− L

γ p⋆− v⋆

)
+
∫ t− L

γ p⋆−v⋆

t− L
v⋆−

L
γ p⋆−v⋆

θ̂1

(
v⋆(s− t)+

γ p⋆

γ p⋆− v⋆
L
)

Y (s)ds

44



−
∫ t

t− L
γ p⋆−v⋆

θ̂2 ((γ p⋆− v⋆)(t − s))Y (s)ds− ε(t). (2.187)

The projection operator is given by

Proj(τi, θ̂i) =

 τi, |θ̂i|< Θ or θ̂iτi ≤ 0,

0, |θ̂i|= Θ and θ̂iτi > 0.
(2.188)

Denote the parameter estimation errors as

θ̃i(x, t) =θi(x)− θ̂i(x, t), i = 1,2 (2.189)

r̃ j(t) =r j − r̂ j(t), j = 0,1. (2.190)

Lemma 2.7. The update laws (2.180)-(2.182) guarantee that:

|θ̂1(x)| ≤ Θ, |θ̂2(x)| ≤ Θ, (2.191)

||θ̃1||, ||θ̃2||, r̃0, r̃1 ∈ L∞, (2.192)

||∂t θ̂1||, ||∂t θ̂2||,∂t r̂0,∂t r̂1,
β̃ (0, t)√

σ(t)
∈ L2 ∩L∞. (2.193)

By constructing Lyapunov function for the adaptive estimation errors θ̃i and r̃ j, it is

straightforward to prove the above lemma. The detailed proof is omitted here. The projection

in (2.188) guarantees that θ1(x), θ2(x) are pointwise bounded not only L2 bounded, as shown in

(2.191).

2.5.4 Filter-based observer design

We introduce the adaptive state estimates based on the input and output filters,

α̂(x, t) =r̂0ϕ1(x, t)+
1
v⋆

∫ x

0
θ̂1(ξ )ϕ1(x−ξ , t)dξ , (2.194)
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β̂ (x, t) =ψ̂(x, t)+
1

γ p⋆− v⋆

∫ L

x
θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ . (2.195)

We represent the signal β̂ (L, t), the output Y (t) with the following transport PDEs. The filter for

β̂ (L, t) is

ψ̂t(x, t) =(γ p⋆− v⋆)ψ̂x(x, t), (2.196)

ψ̂(L, t) =β̂ (L, t), (2.197)

ψ̂(x,0) =ψ̂0(x), (2.198)

where β̂ (L, t) = r̂1U(t) + α̂(L, t). The signal α̂(L, t) is obtained from (2.175) with updated

parameters θ̂1(x, t) and r̂1(t),

α̂(L, t) =r̂0Y
(

t − L
v⋆

)
+

1
v⋆

∫ L

0
θ̂1(s)Y

(
t − L− s

v⋆

)
ds. (2.199)

The filters for Y (t) are

∂tϕ1(x, t) =− v⋆∂xϕ1(x, t), (2.200)

ϕ1(0, t) =Y (t), (2.201)

ϕ1(x,0) =ϕ10(x), (2.202)

and

∂tϕ2(x, t) =(γ p⋆− v⋆)∂xϕ2(x, t), (2.203)

ϕ2(L, t) =Y (t), (2.204)

ϕ2(x,0) =ϕ20(x), (2.205)
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where x ∈ [0,L], and ψ̂0,ϕ10,ϕ20 are arbitrary initial conditions verifying boundary conditions.

The explicit solutions to the above PDE filters for t > max
(

L
v⋆ ,

L
γ p⋆−v⋆

)
are given by

ψ̂(x, t) =r̂1U
(

t − L− x
γ p⋆− v⋆

)
+ α̂

(
L, t − L− x

γ p⋆− v⋆

)
, (2.206)

ϕ1(x, t) =Y
(

t − x
v⋆

)
, (2.207)

ϕ2(x, t) =Y
(

t − L− x
γ p⋆− v⋆

)
. (2.208)

The adaptive estimates α̂(x, t) and β̂ (x, t) verify that

α̂t =− v⋆α̂x + θ̂1(x)Y (t)+ r̂0tϕ1(x, t)

+
1
v⋆

∫ x

0
∂t θ̂1(ξ )ϕ1(x−ξ , t)dξ , (2.209)

β̂t =(γ p⋆− v⋆)β̂x + θ̂2(x)Y (t)

+
1

γ p⋆− v⋆

∫ L

x
∂t θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ , (2.210)

with boundary conditions

α̂(0, t) =r̂0ϕ1(0, t) = r̂0Y (t), (2.211)

β̂ (L, t) =ψ̂(L, t) = r̂1U(t)+ α̂(L, t). (2.212)

Denote the adaptive observer errors as

α̃ = α − α̂, β̃ = β − β̂ , (2.213)

The error system is governed by

α̃t =− v⋆α̃x + θ̃1(x)Y (t)− r̂0tϕ1(x, t)
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− 1
v⋆

∫ x

0
∂t θ̂1(ξ )ϕ1(x−ξ , t)dξ , (2.214)

β̃t =(γ p⋆− v⋆)β̃x + θ̃2(x)Y (t)

− 1
γ p⋆− v⋆

∫ L

x
∂t θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ , (2.215)

with boundary conditions

α̃(0, t) =r̃0Y (t), (2.216)

β̃ (L, t) =r̃1U(t)+ α̃(L, t). (2.217)

2.5.5 Adaptive output feedback control design

To obtain the adaptive control law, we apply the backstepping transformation to the adap-

tive state estimate β̂ . The transformed state is given by

η(x) = β̂ (x)− 1
γ p⋆− v⋆

∫ x

0
K̂2(x−ξ )β̂ (ξ )dξ ≜ F [β̂ ](x), (2.218)

where K̂2 is obtained by solving online the following Volterra equation,

K̂2(x) =− θ̂2(x)+
1

γ p⋆− v⋆

∫ x

0
K̂2(x−ξ )θ̂2(ξ )dξ . (2.219)

Note that K̂2(x) and θ̂2(x) are functions of time. The inverse transformation is then given by

β̂ (x) =η(x)− 1
γ p⋆− v⋆

∫ x

0
θ̂2(x−ξ )η̂(ξ )dξ

≜η̂ − 1
γ p⋆− v⋆

θ̂2 ∗ η̂ . (2.220)
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With a lengthy but straightforward calculation, we obtain that

ηt =(γ p⋆− v⋆)ηx − K̂2(x)β̃ (0)+η ∗F [∂t θ̂2](x)

+
1

γ p⋆− v⋆

(∫ L

x
∂t θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ

)
, (2.221)

η(L) =0, (2.222)

and the adaptive control law is derived from (2.222).

We summarize the transformation and inverse transformation between the original sys-

tem (w̄, v̄, ψ̂,ϕ1,ϕ2) and the final target system (α̃, β̃ , ζ̂ , η̂ ,ϕ1,ϕ2) as:

ϕ1 =ϕ1, (2.223)

ϕ2 =ϕ2, (2.224)

α̂ =Tα [ϕ1], (2.225)

η =(I −F )[ψ̂ +Tβ [ϕ2]], (2.226)

β̃ =(I −G )[v̄/k2]− (ψ̂ +Tβ [ϕ2]), (2.227)

α̃ =(I −G )[−κw̄]−Tα [ϕ1], (2.228)

and we can obtain the original states from the inverse transformation as:

ϕ1 =ϕ1, (2.229)

ϕ2 =ϕ2, (2.230)

ψ̂ =η − 1
v⋆

θ̂2 ∗η −Tβ [ϕ2], (2.231)

w̄ =− 1
κ
(I −G )−1[α̃ + α̂], (2.232)

v̄ =k2(I −G )−1[β̃ + ψ̂ +Tβ [ϕ2]]. (2.233)
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Due to the invertibility of the above transformation, we can obtain the stability of the original

system (w̄, v̄, ψ̂,ϕ1,ϕ2) by studying the system in the equivalent variables (α̃, β̃ , α̂,η ,ϕ1,ϕ2).

The target system (α̃, β̃ , α̂,η ,ϕ1,ϕ2) are governed by the following PDEs,

α̃t =− v⋆α̃x + θ̃1(x)Y (t)− r̂0tϕ1(x, t)

− 1
v⋆

∫ x

0
∂t θ̂1(ξ )ϕ1(x−ξ , t)dξ , (2.234)

α̃(0, t) =r̃0Y (t), (2.235)

β̃t =(γ p⋆− v⋆)β̃x + θ̃2(x)Y (t)

− 1
γ p⋆− v⋆

∫ L

x
∂t θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ , (2.236)

β̃ (L, t) =α̃(L, t)+ r̃1U(t), (2.237)

α̂t =− v⋆α̂x + θ̂1(x)Y (t)+ r̂0tϕ1(x, t)

+
1
v⋆

∫ x

0
∂t θ̂1(ξ )ϕ1(x−ξ , t)dξ , (2.238)

α̂(0, t) =r̂0Y (t), (2.239)

ηt =(γ p⋆− v⋆)ηx − K̂2(x)β̃ (0)+η ∗F [∂t θ̂2](x)

+
1

γ p⋆− v⋆
F

[∫ L

x
∂t θ̂2(ξ )ϕ2(L+ x−ξ , t)dξ

]
, (2.240)

η(L, t) =0, (2.241)

∂tϕ2(x, t) =(γ p⋆− v⋆)∂xϕ2(x, t), (2.242)

ϕ2(L, t) =Y (t), (2.243)

∂tϕ1(x, t) =− v⋆∂xϕ1(x, t), (2.244)

ϕ1(0, t) =Y (t). (2.245)

Note that Y (t) = η(0)+ β̃ (0). According to backstepping transformation (2.218), we can obtain
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from (2.241) that

β̂ (L, t) =
∫ L

0
K̂2(L−ξ )β̂ (ξ , t)dξ . (2.246)

Substituting β̂ (L, t) = r̂1U(t)+ α̂(L, t), we have

U(t) =
1
r̂1

∫ L

0
K̂2(L−ξ )β̂ (ξ , t)dξ − 1

r̂1
α̂(L, t). (2.247)

Using the adaptive estimates β̂ (x, t) in (2.195) and α̂(L, t) in (2.199), the adaptive controller is

then obtained in an explicit integral form, consisting delayed values of input and output,

U(t) =
1
r̂1

∫ t

t− L
γ p⋆−v⋆

K̂2 (v⋆(t −ξ ))U(ξ )dξ

− r̂0

r̂1
Ŷ
(

t − L
v⋆

)
− 1

r̂1

∫ t

t− L
v⋆

m1(ξ )Y (ξ )dξ

+
r̂0

r̂1

∫ t− L
v⋆

t− L
v⋆−

L
γ p⋆−v⋆

m2(ξ )Y (ξ )dξ

+
1
r̂1

∫ t

t− L
γ p⋆−v⋆

m3(ξ )
∫ ξ

ξ− L
v⋆

m4(µ)Y (µ)dµdξ

+
1
r̂1

∫ t

t− L
γ p⋆−v⋆

m5(ξ )Y (ξ )dξ , (2.248)

where mi are denoted as

m1(ξ ) =θ̂1(L− v⋆(t −ξ )), (2.249)

m2(ξ ) =K̂2

(
(γ p⋆− v⋆)

(
t −ξ − L

v⋆

))
, (2.250)

m3(ξ ) =K̂2 ((γ p⋆− v⋆)(t −ξ )) , (2.251)

m4(µ) =θ̂1 (L− v⋆(ξ −µ)) , (2.252)

m5(ξ ) =
∫ L

(γ p⋆−v⋆)(t−ξ )
K̂2(µ)θ̂2((γ p⋆− v⋆)(t −ξ )+L−µ)dµ. (2.253)
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The parameter estimates θ̂1(x, t), θ̂2(x, t), r̂0 and r̂1 are generated from the update laws. We can

obtain K̂2(x, t) by solving online the Volterra equation in (2.219). The Lyapunov stability proof

is shown in Appendix, which is derived from modifications of the proof in [116]. The key idea

in proving the stability of (α̃, β̃ , α̂,η ,ϕ1,ϕ2)-system is to take advantage of the cascade structure

of the system. Due to the invertibility between (q̃, ṽ)-system and (w̄, v̄)-system, we arrive our

main theorem for adaptive control design.

Theorem 2.8. Consider the plant (2.146)-(2.149) with the adaptive control law (2.248) and

update laws (2.180)-(2.182). For any initial conditions θ̂1(·,0), θ̂2(·,0),r0(0),r1(0) ∈ C 1[0,L],

w̄0, v̄0,ϕ10,ϕ20, ψ̂0 that verify boundary conditions, the solution (w̄, v̄,ϕ1,ϕ2,

ψ̂, θ̂1, θ̂2, r̂0, r̂1) is bounded for t ≥ 0 and for ∀x ∈ [0,L] it verifies that as t → ∞,

||w̄(x, t)|| → 0, ||v̄(x, t)|| → 0, (2.254)

||q̃(x, t)|| → 0, ||ṽ(x, t)|| → 0. (2.255)

The proof of Theorem 2.8 is completed by the following sections of Lyapunov stability

analysis.

2.6 Lyapunov stability analysis

2.6.1 L2 boundedness

The boundedness of θ̂2 is given by Lemma 2.7. Using (2.219) and Gronwall’s inequality,

we establish a bound on K̂2,

|K̂2(x)| ≤ Θe
Θ

γ p⋆−v⋆ ≜ K2. (2.256)
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To prove the L2 boundedness of system in (2.234)-(2.245), we construct the following Lyapunov

functions:

V1 =
1
2

∫ L

0
e−xα̃2(x)dx, V2 =

1
2

∫ L

0
exβ̃ 2(x)dx, (2.257)

V3 =
1
2

∫ L

0
e−xα̂2(x)dx, V4 =

1
2

∫ L

0
exη2(x)dx, (2.258)

V5 =
1
2

∫ L

0
exϕ 2

1 (x)dx V6 =
1
2

∫ L

0
exϕ 2

2 (x)dx. (2.259)

Then we get

V̇1 ≤− v⋆

2eL α̃2(L)− 1
2

(
v⋆

eL − c1

v⋆
− c2

)
||α̃||2

+
(
v⋆r̃2

0 + ||θ̃1||2
)

η̂(0)2 + l1||ϕ1||2 + l2, (2.260)

(2.261)

V̇2 ≤eL(γ p⋆− v⋆)α̃2(L)

− 1
2

(
γ p⋆− v⋆− eLc3

2(γ p⋆− v⋆)
− eLc4

)
||β̃ ||2

+
eL

2c4
||θ̃2||2η̂(0)2 + l3||ϕ2||2 + l4 + l5, (2.262)

V̇3 ≤− v⋆

2eL α̂2(L)− 1
2

(
v⋆

eL − c5

v⋆
− c6

)
||α̂||2

+

(
v⋆r̂2

0 +
1

2c6
||θ̂1||2

)
η̂(0)2 + l6||ϕ1||2 + l7, (2.263)

V̇4 ≤− 1
2

(
γ p⋆− v⋆− eLc7

2(γ p⋆− v⋆)
− eLc8 − c9

)
||η ||2

−
(

γ p⋆− v⋆

2
+

eLK2
2

2c8

)
η2(0)+l8||ϕ2||2+l9||η ||2+l10, (2.264)

V̇5 ≤− γ p⋆− v⋆

2
||ϕ2||2 + eL(γ p⋆− v⋆)η̂(0)2 + l11, (2.265)

V̇6 ≤− v⋆

2eL ||ϕ1||2 + v⋆η̂(0)2 + l12, (2.266)
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where li(t) are integrable, nonnegative function of time by applying Lemma 2.7. And li(t) are

denoted as

l1 =∂t r̂2
0 +

1
2v⋆c1

||∂t θ̂1||2, l2 =
(

v⋆r̃2
0 +

1
2c2

||θ̃1||2
)

β̃ (0)2, (2.267)

l3 =
eL||∂t θ̂2||2

4c2(γ p⋆− v⋆)
, l4 =

(
eL||θ̃2||2 −

γ p⋆− v⋆

2

)
β̃ (0)2, (2.268)

l5 =eL(γ p⋆− v⋆)r̃2
1U(t)2, l6 =

1
2v⋆c5

||∂t θ̂1||2 + r̂2
0, (2.269)

l7 =
(

v⋆r̂2
0 +

1
2c6

||θ̂1||2
)

β̃ (0)2, l8 =
eL(1+K2

2 )||∂t θ̂2||2

4c7(γ p⋆− v⋆)
, (2.270)

l9 =
2(1+K2

2 )

c9
||∂t θ̂2||2, l10 =

eLK2
2

2c8
β̃ 2(0), (2.271)

l11 =eL(γ p⋆− v⋆)β̃ (0)2, l12 = v⋆β̃ (0)2, (2.272)

and ci are positive constants chosen as

c1 =
v⋆2

2eL , c2 =
v⋆

4eL , c3 =
(γ p⋆)2

eL , (2.273)

c4 =
(γ p⋆− v⋆)

4eL , c5 =
v⋆2

2eL , c6 =
v⋆

4eL , (2.274)

c7 =
(γ p⋆)2

eL , c8 =
(γ p⋆− v⋆)

4eL , c9 =
(γ p⋆− v⋆)

8
. (2.275)

Consider the following Lyapunov function V = g1V1 +V2 +V3 +g2V4 +V5 +V6, and g1 and g2

are positive constants defined as

g1 =2e2L γ p⋆− v⋆

v⋆
, (2.276)

g2 =
2(γ p⋆− v⋆)

(γ p⋆− v⋆)2+4e2LK2
2

(
2e2L(γ p⋆− v⋆)

v⋆
(
v⋆r̃2

0+||θ̃1||2
)

+
2e2L

γ p⋆− v⋆
||θ̃2||2+

(
v⋆+

2eL

v⋆

)
Θ2+eLγ p⋆−eLv⋆+v⋆

)
, (2.277)
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we have

V̇ ≤−g0V + lV + l, (2.278)

where g0 is a positive constant defined as

g0 = min
(

v⋆

4
,
γ p⋆− v⋆

8

)
, (2.279)

and l is the linear combination of li and therefore is also integrable, nonnegative function of time.

Since 1
2eL ||α̃||2 ≤ V1 ≤ 1

2 ||α̃||2 ,1
2 ||β̃ ||

2 ≤ V2 ≤ eL

2 ||β̃ ||
2, 1

2eL ||α̂||2 ≤ V3 ≤ 1
2 ||α̂||2 , 1

2 ||η ||2 ≤

V4 ≤ eL

2 ||η ||2, 1
2eL ||ϕ1||2 ≤ V5 ≤ 1

2 ||ϕ1||2 and 1
2 ||ϕ2||2 ≤ V6 ≤ eL

2 ||ϕ2||2. Then V is bounded and

integrable (Lemma D.3. in [100]), and the following holds that

||α̃||, ||β̃ ||, ||α̂||, ||η ||, ||ϕ1||, ||ϕ2|| ∈ L2 ∩L∞. (2.280)

Then with the inverse transformation (2.231)-(2.233) from the final target system (α̃, β̃ , α̂,

η̂ ,ϕ1,ϕ2) to (w̄, v̄, ψ̂,ϕ1,ϕ2)-system, we have

||w̄||, ||v̄|| ∈ L2 ∩L∞. (2.281)

Finally, from the inverse transformation (7.65)-(7.66) from (w̄, v̄)-system to (q̃, ṽ)-system, we

get

||q̃||, ||ṽ|| ∈ L2 ∩L∞. (2.282)
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2.6.2 Convergence

The above Lyapunov proof shows that V̇ is bounded from above and V is positive and

integrable. According to Lemma D.2. in [100], we have

||w̄(x, t)|| → 0, ||v̄(x, t)|| → 0. (2.283)

The inverse transformation (2.43)-(2.44) from (w̄, v̄)-system to (q̃, ṽ)-system gives that

||q̃(x, t)|| → 0, ||ṽ(x, t)|| → 0. (2.284)

□

2.7 Simulation

We take γ = 1. The length of freeway section is chosen to be L = 1 km. The free speed

is v f = 40 m/s and the maximum density is ρm = 150 vehicles/km. The steady states (ρ⋆,v⋆)

are chosen as (120 vehicles/km,10 m/s) which is in the congested regime. The relaxation time

τ = 60 s. We use sinusoid initial conditions.

The Fig. 2.5 shows that in the open-loop system the density and velocity are slightly

damped and keeps oscillating. In Fig. 2.6, the closed-loop system with DORM control is stabi-

lized and converges to the steady states in the finite time about 2.5 min. The closed-loop system

with UORM full-state feedback control in Fig. 2.7 is stabilized and converges to the reference

and the finite convergence time is t f = L/v⋆+L/(γ p⋆− v⋆) = 150 s = 2.5 min. The evolution

of ramp metering control input is plotted with red color at outlet x = 1000 m. We see the con-

trol input oscillates around every half minute, which is reasonable in application. The Fig. 2.8

shows that the closed-loop system with UORM output feedback control (collocated observer) is

stabilized and converges to the steady states in about 5 min since it takes the collocated observer
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Figure 2.5: Open-loop system of the ARZ model.

Figure 2.6: Closed-loop system with DORM control.

2.5 min to estimate state variables and another 2.5 min for state feedback control to converge to

the steady states.

In the adaptive simulation, we choose τ = 100 s. The open-loop system is more oscillated

than that of the non-adaptive case. It takes longer time to stabilize with adaptive output feedback

control law. In Fig. 2.9, we can see that the open-loop system is unstable. The adaptive output

feedback result is shown in Fig. 2.10 The estimation of parameters in the system are given in

Fig. 2.11 and Fig. 2.12 The blue lines in Fig. 2.12. represents the true values of the constant
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Figure 2.7: Closed-loop system with UORM full-state feedback.

Figure 2.8: Closed-loop system with UORM output feedback.

parameters. The parameter estimates do not necessarily converge to the true values, due to the

local property of gradient methods.

2.8 Conclusion

This chapter addresses the boundary feedback control problem of ARZ traffic model with

relaxation term. To stabilize the oscillations of congested traffic regime, two control designs are
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Figure 2.9: Open-loop system without adaptive UORM output feedback.

Figure 2.10: Closed-loop system with adaptive UORM output feedback.

Figure 2.11: Estimates of spatially-varying parameters.

introduced for the second-order coupled hyperbolic system. The key idea in the DORM control

design is to cancel the forward coupling in the system. In the harder case, UORM control design
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Figure 2.12: Estimates of constant parameters.

uses backstepping method to cancel the coupling at outlet and thus achieves exponential stability

and finite time convergence to the steady states. In the absence of parameters knowledge, we

solve adaptive boundary control problem of linearized ARZ model using backstepping method,

gradient-based update laws and a filter-based approach. The main step is to develop upstream of

ramp metering control approach and transform the hetero-directional coupled hyperbolic system

to the observer canonical form that is suitable for adaptive design. It is of interest to explore

adaptive control design for this problem without over-parameterization and more research is

needed to be done on the property of relaxation time in the ARZ model. An useful extension is

to consider the effect of changing lanes and autonomous vehicles in traffic model.

Chapter 2 contains reprints and adaptations of the following paper: H. Yu and M. Krstic,

“Traffic congestion control of Aw-Rascle-Zhang model,” Automatica, vol. 100, pp. 38-51, 2019.

The dissertation author is the primary investigator and author of this paper.
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Chapter 3

Two-Lane Traffic Congestion Control

We develop output feedback boundary control to mitigate traffic congestion of a unidirec-

tional two-lane freeway segment. The macroscopic traffic dynamics are described by the ARZ

model respectively for both the fast and slow lanes. The traffic density and velocity of each of

the two lanes are governed by coupled 2× 2 nonlinear hyperbolic PDEs. Lane-changing inter-

actions between the two lanes lead to exchanging source terms between the two pairs second-

order PDEs. Therefore, we are dealing with 4× 4 nonlinear coupled hyperbolic PDEs. Based

on driver’s preference for the slow and fast lanes, a reference system of lane-specific uniform

steady states in congested traffic is chosen. To stabilize traffic densities and velocities of both

lanes to the steady states, two distinct VSLs are applied at outlet boundary, controlling the traffic

velocity of each lane. Using backstepping transformation, we map the coupled heterodirectional

hyperbolic PDE system into a cascade target system, in which traffic oscillations are damped

out through actuation of the velocities at the downstream boundary. Two full-state feedback

boundary control laws are developed. We also design a collocated boundary observer for state

estimation with sensing of densities at the outlet. Output feedback boundary controllers are ob-

tained by combining the collocated observer and full-state feedback controllers. The finite time

convergence to equilibrium is achieved for both the controllers and observer designs. Numerical
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Figure 3.1: A unidirectional freeway segment of the fast and slow lanes.

simulations validate our design in two different traffic scenarios.

In this problem, a two-lane ARZ model of a freeway segment presents heterodirectional

2+ 2 coupled nonlinear hyperbolic PDEs, governing the traffic densities and velocities of the

fast and slow lanes. We aim to stabilize the oscillations in the two-lane traffic using the PDE

backstepping method, based on the stabilization results in [80]. Actuation of traffic velocities at

the outlet boundary are realized by two VSLs.

The chapter is organized as follows: in Section 3.1 we introduce the two-lane ARZ traffic

model. We derive lane-specific uniform steady states according to the drivers’ overall preference

for the lanes and then linearize the nonlinear system around the steady states. In Section 3.2

backstepping transformation is derived for the linearized model in Riemann coordinates. We

present full-state feedback control laws to actuate outlet boundary velocities. In Section 3.3, we

design collocated boundary observers and then obtain output feedback control laws. In Section

3.4, control design in two different traffic scenarios are discussed and tested with numerical

simulation.

3.1 Two-lane traffic ARZ PDE model

The two-lane traffic on unidirectional roads is described with the following two-lane

traffic ARZ model by [60] [69]. The diagram in Fig. 3.1 is shown with the faster lane on the
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left and slower lane on the right. The two-lane traffic ARZ model is given by

∂tρ f +∂x(ρ f v f ) =
1
Ts

ρs −
1
Tf

ρ f , (3.1)

∂t(ρ f v f )+∂x(ρ f v2
f )− (γ p f )∂xv f =

1
Ts

ρsvs −
1
Tf

ρ f v f

+
ρ f (V (ρ f )− v f )

T e
f

, (3.2)

∂tρs +∂x(ρsvs) =
1
Tf

ρ f −
1
Ts

ρs, (3.3)

∂t(ρsvs)+∂x(ρsv2
s )− (γ ps)∂xvs =

1
Tf

ρ f v f −
1
Ts

ρsvs

+
ρs(V (ρs)− vs)

T e
s

. (3.4)

The traffic density ρi(x, t) and velocity vi(x, t) (i = f ,s) are defined in x ∈ [0,L], t ∈ [0,∞),

where L is the length of the freeway segment. The above nonlinear hyperbolic PDEs consist

of two subsystems of second-order nonlinear hyperbolic PDEs, each describing one-lane traffic

dynamics. Lane-changing interactions and drivers’ behavior adapting to the traffic appear as

source terms on the right hand side of PDEs.

The variable pi(ρi) is defined as the traffic density pressure

pi(ρi) = vm

(
ρi

ρm

)γ
, (3.5)

which is an increasing function of density ρi. vm is the maximum traffic velocity, ρm is the

maximum traffic density and the constant coefficient γ ∈R+ reflects the aggressiveness of drivers

on road. The parameter T e
i is defined as relaxation time that reflects driver’s behavior adapting

to the traffic equilibrium velocity in the lane i. The parameter Ti describes the driver’s preference

for remaining in lane i, which relates to the both lanes’ density and velocity. We consider them

to be constant coefficients in this paper.

The equilibrium velocity-density relationship V (ρ) is given in the form of the Green-
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shield’s model,

V (ρi) = vm

(
1−
(

ρi

ρm

)γ)
. (3.6)

We choose the Greenshield’s model for V (ρ) due to its simplicity but the control design pre-

sented later is not limited by this choice. Note that the equilibrium velocity-density model (3.6)

is for cumulative single lane traffic. Distinct velocity equilibrium does exist in each of the two

lanes [70]. The lane-specific steady traffic velocities will be discussed in the following section.

3.1.1 Driver’s preference for two lanes

We consider to linearize the nonlinear hyperbolic system (ρi,vi) around uniform steady

states (ρ⋆
i ,v

⋆
i ). We obtain the following equations

1
Ts

ρ⋆
s −

1
Tf

ρ⋆
f =0, (3.7)

1
Ts

ρ⋆
s v⋆s −

1
Tf

ρ⋆
f v⋆f +

ρ⋆
f (V (ρ⋆

f )− v⋆f )

T e
f

=0, (3.8)

1
Tf

ρ⋆
f v⋆f −

1
Ts

ρ⋆
s v⋆s +

ρ⋆
s (V (ρ⋆

s )− v⋆s )
T e

s
=0. (3.9)

The steady state density-velocity relations are defined based on (3.6). Thus the steady states

(ρ⋆
f ,v

⋆
f ,ρ

⋆
s ,v

⋆
s ) need to satisfy

ρ⋆
f =σρ⋆

s , (3.10)

v⋆f =vm

(
1− r f

(ρ⋆
f

ρm

)γ)
, (3.11)

v⋆s =vm

(
1− rs

(
ρ⋆

s
ρm

)γ)
, (3.12)
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Figure 3.2: Steady states of one lane, fast and slow lane in equilibrium density and velocity
relation and fundamental diagram.

where v⋆f and v⋆s differ from single-lane V (ρi). The ratio coefficients r f and rs are defined as

r f =
1+
( 1

σ
)γ T e

f
Tf

+
T e

s
Ts

1+
T e

f
Tf

+
T e

s
Ts

, (3.13)

rs =
1+

T e
f

Tf
+

T e
s

Ts
(σ)γ

1+
T e

f
Tf

+
T e

s
Ts

. (3.14)

The parameter σ defines driver’s preference for the fast lane over slow lane according to (3.7),

(3.10),

σ =
Tf

Ts
. (3.15)

Compared with the single-lane Greenshield’s model in (3.6), the relations of steady state traffic

velocities v⋆i and densities ρ⋆
i depend on the drivers lane-changing preference parameter σ .

Assuming that overall drivers prefer fast lane over slow lane, we use Fig. 3.2 (σ > 1,γ =

1) to show the equilibrium velocity-density relation and fundamental diagram of the single-lane,

the fast and slow lane. ρm represents the equivalent maximum density of the single-lane. The
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actual maximum density in the fast lane ρm
f and in the fast lane ρm

s are related to ρm by

ρm
f = γ

√
r f ρm, (3.16)

ρm
s = γ

√
rsρm. (3.17)

• σ > 1 =⇒ r f < 1 < rs

If drivers prefer the fast lane, the decrease of velocity gets steeper in the slow lane and

less steep in the fast lane. At the same density, the fast lane traffic is ”more tolerant to risk” of

high density than in the single-lane case, and the slow lane traffic is ”less tolerant to risk” than

in the single-lane case. As a result, the traffic flux of fast lane is higher than the slow lane at the

same density in the fundamental diagram shown in Fig. 3.2.

• σ < 1 =⇒ r f > 1 > rs

Drivers prefer the slow lane. The decrease of velocity is steeper in the fast lane than that

of slow lane at the same density. The slow lane is more tolerant to high density and the traffic

flux is higher in the slow lane.

In general, the activities of lane changing segregate the drivers into the more ”risk-

tolerant” ones in the fast lane and the more ”risk-averse” in the slow lane. The risk-tolerant

drivers prefer to drive with a faster speed at the same density, compared with risk-averse drivers.

3.1.2 Linearized two-lane ARZ model

Before linearizing the nonlinear system (3.1)-(3.4) to steady states (3.10)-(3.12), we con-

sider the following boundary conditions of (ρi,vi)-system. We assume constant traffic flux en-

tering from the inlet boundary x = 0 of the two lanes.

q⋆i = ρ⋆
i v⋆i . (3.18)
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Two VSLs implemented at the outlet U f (t) and Us(t) actuate the traffic velocity variations for

the fast and slow lanes respectively.

ρ f (0, t) =
ρ⋆

f v⋆f
v f (0, t)

, (3.19)

v f (L, t) =U f (t)+ v⋆f , (3.20)

ρs(0, t) =
ρ⋆

s v⋆s
vs(0, t)

, (3.21)

vs(L, t) =Us(t)+ v⋆s , (3.22)

Then we linearize the above nonlinear hyperbolic system (ρ f ,v f ,ρs,vs) around steady states

(ρ⋆
f ,v

⋆
f ,ρ

⋆
s ,v

⋆
s ) that satisfy (3.10)-(3.12). The deviations from the steady states are defined as

ρ̃ f =ρ f −ρ⋆
f , ṽ f = v f − v⋆f , (3.23)

ρ̃s =ρs −ρ⋆
s , ṽs = vs − v⋆s . (3.24)

The linearized hyperbolic system is obtained

∂t ρ̃s + v⋆s ∂xρ̃s +ρ⋆
s ∂xṽs =− 1

Ts
ρ̃s +

1
Tf

ρ̃ f , (3.25)

∂t ρ̃ f + v⋆f ∂xρ̃ f +ρ⋆
f ∂xṽ f =

1
Ts

ρ̃s −
1
Tf

ρ̃ f , (3.26)

∂t ṽs +(v⋆s − γ p⋆s )∂xṽs =− 1
Ts

v⋆f − v⋆s
ρ⋆

s
ρ̃s +

1
Tf

v⋆f − v⋆s
ρ⋆

s
ρ̃ f

+
1
Ts
(ṽ f − ṽs)+

ρ̃sV ′(ρ⋆
s )− ṽs

T e
s

, (3.27)

∂t ṽ f +(v⋆f − γ p⋆f )∂xṽ f =
1
Ts

v⋆s − v⋆f
ρ⋆

f
ρ̃s −

1
Tf

v⋆s − v⋆f
ρ⋆

f
ρ̃ f

+
1
Tf

(ṽs − ṽ f )+
ρ̃ fV ′(ρ⋆

f )− ṽ f

T e
f

, (3.28)
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with the linearized boundary conditions

ρ̃s(0, t) =− ρ⋆
s

v⋆s
ṽs(0, t), (3.29)

ρ̃ f (0, t) =−
ρ⋆

f

v⋆f
ṽ f (0, t), (3.30)

ṽs(L, t) =Us(t), (3.31)

ṽ f (L, t) =U f (t). (3.32)

In order to diagonalize the spatial derivatives on the left hand side of the equations, we write the

above linearized hyperbolic system in the Riemann coordinates (w̃ f , ṽ f , w̃s, ṽs) as

w̃s =
γ p⋆s
ρ⋆

s
ρ̃s + ṽs, ṽs = ṽs, (3.33)

w̃ f =
γ p⋆f
ρ⋆

f
ρ̃ f + ṽ f , ṽ f = ṽ f . (3.34)

We consider the congested regime in [121] where steady state traffic density disturbances convect

downstream and the velocity disturbances travel upstream. Therefore the following conditions

hold for the characteristic speeds of ṽi,

v⋆s − γ p⋆s < 0, v⋆f − γ p⋆f < 0. (3.35)

We obtain a coupled 4×4 first-order hetero-directional hyperbolic system in (w̃s, w̃ f , ṽs, ṽ f ),

∂tw̃s + v⋆s ∂xw̃s =aww
11 w̃s +aww

12 w̃ f +awv
11 ṽs +awv

12 ṽ f , (3.36)

∂tw̃ f + v⋆f ∂xw̃ f =aww
21 w̃s +aww

22 w̃ f +awv
21 ṽs +awv

22 ṽ f , (3.37)

∂t ṽs − (γ p⋆s − v⋆s )∂xṽs =avw
11 w̃s +avw

12 w̃ f +avv
11ṽs +avv

12ṽ f , (3.38)

∂t ṽ f − (γ p⋆f − v⋆f )∂xṽ f =avw
21 w̃s +avw

22 w̃ f +avv
21ṽs +avv

22ṽ f , (3.39)
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w̃s(0, t) =ksṽs(0, t), (3.40)

w̃ f (0, t) =k f ṽ f (0, t), (3.41)

ṽs(L, t) =Us(t), (3.42)

ṽ f (L, t) =U f (t), (3.43)

where the constant boundary coefficients ki are defined as

ki =−γ p⋆i − v⋆i
v⋆i

, (3.44)

and the constant parameter block matrix {A} is denoted by

A =

Aww Awv

Avw Avv

 . (3.45)

The elements of sub-matrices of {A} are defined as,

aww
11 =− 1

T e
s
− 1

Ts

v⋆f − v⋆s + γ p⋆s
γ p⋆s

, aww
12 =

1
Ts

v⋆f − v⋆s + γ p⋆s
γ p⋆f

, (3.46)

aww
21 =

1
Tf

v⋆s − v⋆f + γ p⋆f
γ p⋆s

, aww
22 =− 1

T e
f
− 1

Tf

v⋆s − v⋆f + γ p⋆f
γ p⋆f

, (3.47)

awv
11 =

1
Ts

v⋆f − v⋆s
γ p⋆s

, awv
12 =− 1

Ts

(γ p⋆s − v⋆s )− (γ p⋆f − v⋆f )

γ p⋆f
, (3.48)

awv
21 =− 1

Tf

(γ p⋆f − v⋆f )− (γ p⋆s − v⋆s )

γ p⋆s
, awv

22 =
1
Tf

v⋆s − v⋆f
γ p⋆f

, (3.49)

avw
11 =− 1

T e
s
− 1

Ts

v⋆f − v⋆s
γ p⋆s

, avw
12 =

1
Ts

v⋆f − v⋆s
γ p⋆f

, (3.50)

avw
21 =

1
Tf

v⋆s − v⋆f
γ p⋆s

, avw
22 =− 1

T e
f
− 1

Tf

v⋆s − v⋆f
γ p⋆f

, (3.51)

avv
11 =

1
Ts

v⋆f − v⋆s − γ p⋆s
γ p⋆s

, avv
12 =− 1

Ts

v⋆f − v⋆s − γ p⋆f
γ p⋆f

, (3.52)
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Figure 3.3: Flow diagram of linearized two-lane ARZ model.

avv
21 =− 1

Tf

v⋆s − v⋆f − γ p⋆s
γ p⋆s

, avv
22 =− 1

Tf

v⋆s − v⋆f − γ p⋆f
γ p⋆f

. (3.53)

The flow diagram of (w̃i, ṽi)-system is shown in Fig. 3.3. The 4 × 4 first-order hyperbolic

system is composed of two coupled second-order heterodirectional hyperbolic systems. States

w̃i convect downstream while states ṽi propagate upstream. We use two VSLs to damp out the

oscillations to zero from the outlet.

3.2 Full-state feedback control design with VSLs

To apply the backstepping approach and to design boundary control for the system in

(3.36)-(3.43), we scale the state variables ṽs and ṽ f in space to cancel the diagonal terms in their

equations. The Riemann variables w̃s and w̃ f remain to be the same. The scaled variables v̄s and

v̄ f are defined as

v̄s =exp
(

avv
11

µ1
x
)

ṽs, (3.54)
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v̄ f =exp
(

avv
22

µ2
x
)

ṽ f . (3.55)

Then we obtain the scaled system:

∂tw̃s + v⋆s ∂xw̃s =āww
11 w̃s + āww

12 w̃ f + āwv
11 (x)v̄s + āwv

12 (x)v̄ f , (3.56)

∂tw̃ f + v⋆f ∂xw̃ f =āww
21 w̃s + āww

22 w̃ f + āwv
21 (x)v̄s + āwv

22 (x)v̄ f , (3.57)

∂t v̄s − (γ p⋆s − v⋆s )∂xv̄s =āvw
11 (x)w̃s + āvw

12 (x)w̃ f + āvv
12(x)v̄ f , (3.58)

∂t v̄ f − (γ p⋆f − v⋆f )∂xv̄ f =āvw
21 (x)w̃s + āvw

22 (x)w̃ f + āvv
21(x)v̄s, (3.59)

w̃s(0, t) =ksv̄s(0, t), (3.60)

w̃ f (0, t) =k f v̄ f (0, t), (3.61)

v̄s(L, t) =lsUs(t), (3.62)

v̄ f (L, t) =l fU f (t). (3.63)

We denote the transports speeds as

ε1 =v⋆s , (3.64)

ε2 =v⋆f , (3.65)

µ1 =(γ p⋆s − v⋆s ), (3.66)

µ2 =(γ p⋆f − v⋆f ). (3.67)

Note that the steady velocity of the fast lane is larger than that of the slow lane, the constant

transport speeds satisfy the following inequalities,

−µ1 <−µ2 < 0 < ε1 < ε2. (3.68)
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where the constant coefficients l f and ls are defined as

ls =exp
(

avv
11

µ1
L
)
, (3.69)

l f =exp
(

avv
22

µ2
L
)
. (3.70)

The new in-domain coefficient matrix {Ā} is given by

Ā =

Āww Āwv

Āvw Āvv

 , (3.71)

where the sub-matrices are obtained as

Āww =Aww, (3.72)

Āwv(x) =Awv

exp
(
−avv

11
µ1

x
)

0

0 exp
(
−avv

22
µ2

x
)
 , (3.73)

Āvw(x) =Avw

exp
(

avv
11

µ1
x
)

0

0 exp
(

avv
22

µ2
x
)
 , (3.74)

Āvv(x) =Avv

 0 exp
(

avv
22

µ2
x− avv

11
µ1

x
)

exp
(

avv
11

µ1
x− avv

22
µ2

x
)

0

 . (3.75)

Among the transformed sub-matrices, the elements of {Āww} are constant and the elements of

{Āwv(x)}, {Āvw(x)} and {Āvv(x)} are spatially-varying coefficients. We summarize the trans-

formation between (w̃s, w̃ f , v̄s, v̄ f ) and (ρ̃s, ρ̃ f , ṽs, ṽ f ) from (3.33), (3.34) and (3.54), (3.55) as

follows:

ρ̃s =
ρ⋆

s
γ p⋆s

(
w̃s − exp

(
−

avv
11

µ1
x
)

v̄s

)
, (3.76)
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ρ̃ f =
ρ⋆

f

γ p⋆f

(
w̃ f − exp

(
−

avv
22

µ2
x
)

v̄s

)
, (3.77)

ṽs =exp
(
−

avv
11

µ1
x
)

v̄s, (3.78)

ṽ f =exp
(
−

avv
22

µ2
x
)

v̄ f . (3.79)

Then we introduce the backstepping transformation to the scaled (w̃i, v̄i)-system in (3.56)-(3.63),

αs(x, t)

α f (x, t)

=

w̃s(x, t)

w̃ f (x, t)

 , (3.80)

βs(x, t)

β f (x, t)

=

 v̄s(x, t)

v̄ f (x, t)

−∫ x

0
K(x,ξ )

w̃s(x, t)

w̃ f (x, t)

dξ

−
∫ x

0
L(x,ξ )

 v̄s(x, t)

v̄ f (x, t)

dξ , (3.81)

where the kernel matrices are denoted as

K =

K11 K12

K21 K22

 , L =

L11 L12

L21 L22

 . (3.82)

The kernel variables {K} and {L} evolve in the triangular domain T = {(x,ξ ) : 0 ≤ ξ ≤ x ≤ 1}.

Taking derivative with respect to time and space on both sides of (3.80)-(3.81) along the solution

of a target system given later, we obtain the following kernel equations. The kernels {K(x,ξ )}

and {L(x,ξ )} are governed by

µ1∂xK11 − ε1∂ξ K11 = āww
11 K11 + āww

21 K12 + āvw
11 L11 + āvw

21 L12, (3.83)

µ1∂xK12 − ε2∂ξ K12 = āww
12 K11 + āww

22 K12 + āvw
12 L11 + āvw

22 L12, (3.84)

µ2∂xK21 − ε1∂ξ K21 = āww
11 K21 + āww

21 K22 + āvw
11 L21 + āvw

21 L22, (3.85)
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µ2∂xK22 − ε2∂ξ K22 = āww
12 K21 + āww

22 K22 + āvw
12 L21 + āvw

22 L22, (3.86)

µ1∂xL11 +µ1∂ξ L11 = āvv
21L12 + āvw

11 K11 + āvw
21 K12, (3.87)

µ1∂xL12 +µ2∂ξ L12 = āvv
12L11 + āvw

12 K11 + āvw
22 K12, (3.88)

µ2∂xL21 +µ1∂ξ L21 = āvv
21L22 + āvw

11 K21 + āvw
21 K22, (3.89)

µ2∂xL22 +µ2∂ξ L22 = āvv
12L21 + āvw

12 K21 + āvw
22 K22, (3.90)

K11(x,x) =−
āvw

11 (x)
ε1 +µ1

, K12(x,x) =−
āvw

12 (x)
ε2 +µ1

, (3.91)

K21(x,x) =−
āvw

21 (x)
ε1 +µ2

, K22(x,x) =−
āvw

22 (x)
ε2 +µ2

, (3.92)

L11(x,0) =
ε1ks

µ1
K11(x,0), L12(x,x) =−

āvv
12(x)

µ1 −µ2
, (3.93)

L12(x,0) =
ε2k f

µ2
K12(x,0), L21(x,x) =−

āvv
21(x)

µ2 −µ1
, (3.94)

L21(L,ξ ) = 0, L22(x,0) =
ε2k f

µ2
K22(x,0). (3.95)

The well-possedness of the kernel equations (3.83)-(3.95) is proved using the method of char-

acteristics and the successive approximations following the result for a general class of kernel

system in [80]. There exists a unique solution K,L ∈ L∞(T ). Therefore, we establish the in-

vertibility of the backstepping transformation (3.80),(3.81) and can study the stability of the

following target system due to its equivalence to the (w̃i, v̄i)-system.

Note that we impose an artificial boundary condition L21(L,ξ ) in (3.95) for the well-

posedness of the kernel equations. This leads to one degree of freedom in backstepping transfor-

mation of the hyperbolic system as well as the following control design. The stabilization of the

following target system is achieved with two controllers and the one degree of freedom enables

the coordination between the two VSLs.

With the backstepping transformation and the above kernel equations, we map the (w̄i, v̄i)-
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system to the cascade target system (αi,βi),

∂tαs + v⋆s ∂xαs =āww
11 αs + āww

12 α f + āwv
11 (x)βs + āwv

12 (x)β f

+
∫ x

0
b11(x,ξ )αs(ξ )dξ +

∫ x

0
b12(x,ξ )α f (ξ )dξ

+
∫ x

0
c11(x,ξ )βs(ξ )dξ +

∫ x

0
c12(x,ξ )β f (ξ )dξ , (3.96)

∂tα f + v⋆f ∂xα f =āww
21 αs + āww

22 α f + āwv
21 (x)βs + āwv

22 (x)β f

+
∫ x

0
b21(x,ξ )αs(ξ )dξ +

∫ x

0
b22(x,ξ )α f (ξ )dξ

+
∫ x

0
c21(x,ξ )βs(ξ )dξ +

∫ x

0
c22(x,ξ )β f (ξ )dξ , (3.97)

∂tβs − (γ p⋆s − v⋆s )∂xβs =0, (3.98)

∂tβ f − (γ p⋆f − v⋆f )∂xβ f =θ(x)βs(0, t), (3.99)

α f (0, t) =k f β f (0, t), (3.100)

αs(0, t) =ksβs(0, t), (3.101)

βs(L, t) =0, (3.102)

β f (L, t) =0, (3.103)

where the spatially varying parameter matrices {B} and {C} are denoted as

B =

b11 b12

b21 b22

 , C =

c11 c12

c21 c22

 , (3.104)

and given by the following equations in the matrix form,

B(x,ξ ) =ĀwvK(x,ξ )+
∫ x

ξ
B(x,s)K(s,ξ )dξ , (3.105)

C(x,ξ ) =ĀwvL(x,ξ )+
∫ x

ξ
C(x,s)L(s,ξ )dξ , (3.106)
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and θ(x) is obtained from the kernel variables K21 and L21,

θ(x) =−ε1ksK21(x,0)−µ1L21(x,0). (3.107)

Considering the cascade structure of the target system, the following conclusion is arrived.

Lemma 3.1. Consider the target system (3.96)-(3.99) and actuated boundary conditions (3.96)-

(3.103), the zero equilibrium

α f (x, t) = αs(x, t) = β f (x, t) = βs(s, t)≡ 0, (3.108)

is reached in finite time t = t f , where

t f =
L
v⋆s

+
L

γ p⋆f − v⋆f
+

L
γ p⋆s − v⋆s

. (3.109)

Proof. By solving (3.99) and (3.103) directly, we obtain that after t > L
γ p⋆f−v⋆f

,

β f (x, t)≡ 0. (3.110)

Using the cascade structure of the target system in (3.98), we have after t > L
γ p⋆f−v⋆f

+ L
γ p⋆s−v⋆s

,

βs(s, t)≡ 0. (3.111)

Then after t > L
γ p⋆f−v⋆f

+ L
γ p⋆s−v⋆s

+ L
v⋆s

, we obtain that

α f (x, t)≡ 0, αs(x, t)≡ 0, (3.112)

which concludes the proof.
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Boundary conditions (3.102),(3.103) and backstepping transformation (3.81) yield full-

state feedback control laws given by (w̄i, v̄i),

 lsUs(t)

l fU f (t)

=
∫ L

0

K11(L,ξ ) K12(L,ξ )

K21(L,ξ ) K22(L,ξ )


w̄s(x, t)

w̄ f (x, t)

dξ

+
∫ L

0

L11(L,ξ ) L12(L,ξ )

L21(L,ξ ) L22(L,ξ )


 v̄s(x, t)

v̄ f (x, t)

dξ . (3.113)

Using the invertible transformation (3.76)-(3.79), we obtain the full-state feedback control laws

given in traffic flow variables (ρ f ,v f ,ρs,vs) and the steady states (ρ⋆
f ,v

⋆
f ,ρ

⋆
s ,v

⋆
s ). We reach the

main stabilization result of full-state feedback control design.

Theorem 3.2. Consider the two-lane traffic ARZ model in (3.1)-(3.4) with boundary conditions

(3.19)-(3.22), initial conditions ρ f (x,0),v f (x,0),ρs(x,0),vs(x,0) ∈ L∞ ([0,L]) and the following

control laws

Us(t) =exp
(
−

avv
11

µ1
L
)∫ L

0

γ p⋆s
ρ⋆

s
K11(L,ξ )(ρs(ξ , t)−ρ⋆

s )

+
γ p⋆f
ρ⋆

f
K12(L,ξ )

(
ρ f (ξ , t)−ρ⋆

f
)

+

[
K11(L,ξ )+L11(L,ξ )exp

(
avv

11
µ1

ξ
)]
(vs(ξ , t)− v⋆s )

+

[
K12(L,ξ )+L12(L,ξ )exp

(
avv

22
µ2

ξ
)](

v f (ξ , t)− v⋆f
)
dξ , (3.114)

U f (t) =exp
(
−

avv
22

µ2
L
)∫ L

0

γ p⋆s
ρ⋆

s
K21(L,ξ )(ρs(ξ , t)−ρ⋆

s )

+
γ p⋆f
ρ⋆

f
K22(L,ξ )

(
ρ f (ξ , t)−ρ⋆

f
)

+

[
K21(L,ξ )+L21(L,ξ )exp

(
avv

11
µ1

ξ
)]
(vs(ξ , t)− v⋆s )

+

[
K22(L,ξ )+L22(L,ξ )exp

(
avv

22
µ2

ξ
)](

v f (ξ , t)− v⋆f
)
dξ , (3.115)
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where the kernels are obtained by solving (3.83)-(3.95). The steady states (ρ⋆
f ,v

⋆
f ,ρ

⋆
s ,v

⋆
s ) are

finite-time stable and the convergence is reached in t f given in (3.109).

Proof. Lemma 1 for the closed-loop target system in (3.96)-(3.103) with the existence of the

backstepping transformation in (3.80),(3.81) yields the convergence of the states variables (w̃s,w̃ f ,

v̄s,v̄ f ) defined by (3.56)-(3.63) to zero for t > t f . Given the transformation in (3.76)-(3.79), the

finite-time convergence to zero is arrived for the linearized state variables (ρ̃s(x, t), ρ̃ f (x, t), ṽs(x, t),

ṽ f (x, t)), which yields the convergence of the two-lane ARZ PDE model by (ρs(x, t),ρ f (x, t),

vs(x, t),v f (x, t)) to the steady states.

3.3 Collocated observer design

In this section, we develop a collocated observer by taking measurement of density states

at the outlet of the segment,

ys(t) =ρ̃s(L, t), (3.116)

y f (t) =ρ̃ f (L, t). (3.117)

Using the state estimates obtained form the observer design and the full-state feedback control

laws, we construct output feedback controllers.

Note that the anti-collocated observer can also be designed here by taking measurement

of velocity states ṽs(0, t) and ṽ f (0, t) at the inlet. The anti-collocated observer design is trivial

in our case which presents as a copy of the (w̃ f , w̃s, v̄s, v̄ f )-system. More importantly, collocated

observer design is practical in implementation along with the full-state feedback control design.

For state estimation of the scaled system in (3.56)-(3.63), we obtain the measurement of
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w̃s(L, t) and w̃ f (L, t) from (3.33),(3.34),

Ys(t) =w̃s(L, t) =
γ p⋆s
ρ⋆

s
ρ̃s(L, t)+ ṽs(L, t), (3.118)

Yf (t) =w̃ f (L, t) =
γ p⋆f
ρ⋆

f
ρ̃ f (L, t)+ ṽ f (L, t), (3.119)

thus the values of Ys(t) and Yf (t) are obtained from ys(t), y f (t) and control inputs Us(t), U f (t),

Ys(t) =
γ p⋆s
ρ⋆

s
ys(t)+Us(t), (3.120)

Yf (t) =
γ p⋆f
ρ⋆

f
y f (t)+U f (t). (3.121)

The observer equations (ŵ f , ŵs, ûs, û f ) that estimate (w̃ f , w̃s, v̄s, v̄ f ) read as follows:

∂tŵs + v⋆s ∂xŵs =āww
11 ŵs + āww

12 ŵ f + āwv
11 (x)ûs + āwv

12 (x)û f

+ p11(x)w̌s(L, t)+ p12(x)w̌ f (L, t), (3.122)

∂tŵ f + v⋆f ∂xŵ f =āww
21 ŵs + āww

22 ŵ f + āwv
21 (x)ûs + āwv

22 (x)û f

+ p21(x)w̌s(L, t)+ p22(x)w̌ f (L, t), (3.123)

∂t ûs − (γ p⋆s − v⋆s )∂xûs =āvw
11 (x)ŵs + āvw

12 (x)ŵ f + āvv
12(x)û f

+q11(x)w̌s(L, t)+q12(x)w̌ f (L, t), (3.124)

∂t û f − (γ p⋆f − v⋆f )∂xû f =āvw
21 (x)ŵs + āvw

22 (x)ŵ f + āvv
21(x)ûs

+q21(x)w̌s(L, t)+q22(x)w̌ f (L, t), (3.125)

ŵs(0, t) =ksûs(0, t), (3.126)

ŵ f (0, t) =k f û f (0, t), (3.127)

ûs(L, t) =lsUs(t), (3.128)

û f (L, t) =l fU f (t). (3.129)
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The output injections in (3.122)-(3.125) are defined as

w̌s(L, t) =w̃s(L, t)− ŵs(L, t), (3.130)

w̌ f (L, t) =w̃ f (L, t)− ŵ f (L, t). (3.131)

The observer output injection gains matrices {P} and {Q} are denoted as

P =

p11 p12

p21 p22

 , Q =

q11 q12

q21 q22

 . (3.132)

The output injection gains are to be designed so that the output injection terms can drive the

estimation error system of the observer to converge to zero in finite-time.

The estimation errors are defined as

w̌s =w̃s − ŵs, v̌s = v̄s − ûs, (3.133)

w̌ f =w̃ f − ŵ f , v̌ f = v̄ f − û f . (3.134)

The error system (w̌s, w̌ f , v̌ f , v̌s) of the observer is given by subtracting (3.122)-(3.129) from

(3.56)-(3.63),

∂tw̌s + v⋆s ∂xw̌s =āww
11 w̌s + āww

12 w̌ f + āwv
11 (x)v̌s + āwv

12 (x)v̌ f

− p11(x)w̌s(L, t)− p12(x)w̌ f (L, t), (3.135)

∂tw̌ f + v⋆f ∂xw̌ f =āww
21 w̌s + āww

22 w̌ f + āwv
21 (x)v̌s + āwv

22 (x)v̌ f ,

− p21(x)w̌s(L, t)− p22(x)w̌ f (L, t), (3.136)

∂t v̌s − (γ p⋆s − v⋆s )∂xv̌s =āvw
11 (x)w̌s + āvw

12 (x)w̌ f + āvv
12(x)v̌ f

−q11(x)w̌s(L, t)−q12(x)w̌ f (L, t), (3.137)
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∂t v̌ f − (γ p⋆f − v⋆f )∂xv̌ f =āvw
21 (x)w̌s + āvw

22 (x)w̌ f + āvv
21(x)v̌s,

−q21(x)w̌s(L, t)−q22(x)w̌ f (L, t), (3.138)

w̌s(0, t) =ksv̌s(0, t), (3.139)

w̌ f (0, t) =k f v̌ f (0, t), (3.140)

v̌s(L, t) =0, (3.141)

v̌ f (L, t) =0, (3.142)

We apply the backstepping transformation to the error system given by

w̌s(x, t)

w̌ f (x, t)

=

α̌s(x, t)

α̌ f (x, t)

+∫ L

x
M(x,ξ )

α̌s(ξ , t)

α̌ f (ξ , t)

dξ , (3.143)

 v̌s(x, t)

v̌ f (x, t)

=

β̌s(x, t)

β̌ f (x, t)

+∫ L

x
N(x,ξ )

α̌s(ξ , t)

α̌ f (ξ , t)

dξ , (3.144)

where the kernel matrices {M}, {N} are denoted as

M =

M11 M12

M21 M22

 , N =

N11 N12

N21 N22

 . (3.145)

The kernels {M}, {N} evolve in the triangular domain T = {(x,ξ ) : 0 ≤ x ≤ ξ ≤ L} and are

defined later. We map the error system in (3.135)-(3.142) into the following cascade target

system

∂tα̌s + v⋆s ∂xα̌s =āww
11 α̌s + āwv

11 (x)β̌s + āwv
12 (x)β̌ f

+
∫ L

x
d11(x,ξ )β̌s(ξ )dξ +

∫ L

x
d12(x,ξ )β̌ f (ξ )dξ , (3.146)

∂tα̌ f + v⋆f ∂xα̌ f =āww
22 α̌ f + āwv

21 (x)β̌s + āwv
22 (x)β̌ f
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+
∫ L

x
d21(x,ξ )β̌s(ξ )dξ +

∫ L

x
d22(x,ξ )β̌ f (ξ )dξ , (3.147)

∂t β̌s − (γ p⋆s − v⋆s )∂xβ̌s =āvv
12(x)β̌ f

+
∫ L

x
f11(x,ξ )β̌s(ξ )dξ +

∫ L

x
f12(x,ξ )β̌ f (ξ )dξ , (3.148)

∂t β̌ f − (γ p⋆f − v⋆f )∂xβ̌ f =āvv
21(x)β̌s

+
∫ L

x
f21(x,ξ )β̌s(ξ )dξ +

∫ L

x
f22(x,ξ )β̌ f (ξ )dξ , (3.149)

α̌s(0, t) =ksβ̌s(0, t), (3.150)

α̌ f (0, t) =k f β̌ f (0, t)−
∫ L

0
λ (x)α̌s(x, t)dξ , (3.151)

β̌s(L, t) =0, (3.152)

β̌ f (L, t) =0, (3.153)

where the coefficient matrices {D} and {F} are denoted as

D =

d11 d12

d21 d22

 , F =

 f11 f12

f21 f22

 . (3.154)

and given by

D(x,ξ ) =−M(x,ξ )Āwv +
∫ x

ξ
M(x,s)D(s,ξ )dξ , (3.155)

F(x,ξ ) =−N(x,ξ )Āww +
∫ x

ξ
N(x,s)F(s,ξ )dξ . (3.156)

The spatially varying coefficient λ (x) is obtained from the kernel variables

λ (x) = M21(0,x)− k f N21(0,x). (3.157)

Lemma 3.3. Consider the target system (3.146)-(3.149) with the boundary conditions (3.150)-
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(3.153). The zero equilibrium is reached in finite time t = to, where

to =
L
v⋆s

+
L
v⋆f

+
L

γ p⋆f − v⋆f
. (3.158)

Proof. Noting the cascade structure of α̌s, α̌ f and β̌s, β̌ f system, β̌ variables appear as the right

hand source terms in α̌ equations and through the inlet boundaries. The integral of variable α̌s

enters the boundary condition of α̌ f . Therefore we solve the target system explicitly by recursion.

The β̌ -system is independent of the α̌ system. Given the boundary conditions in (3.152), (3.153),

the explicit solutions hold for β̌s and β̌ f after t > 1
γ p⋆f−v⋆f

,

β̌s(x, t)≡ 0, β̌ f (x, t)≡ 0. (3.159)

When t > 1
γ p⋆f−v⋆f

, α̌-system becomes

∂tα̌s + v⋆s ∂xα̌s =āww
11 α̌s, (3.160)

∂tα̌ f + v⋆f ∂xα̌ f =āww
22 α̌ f , (3.161)

α̌s(0, t) =0, (3.162)

α̌ f (0, t) =−
∫ L

0
λ (x)α̌s(x, t)dξ . (3.163)

After t > 1
v⋆s
+ 1

γ p⋆f−v⋆f
, we have α̌s satisfies

α̌s(x, t)≡ 0. (3.164)

Then α̌ f (x, t) ≡ 0 follows after another time period 1
v⋆f

. Therefore, α̌-system eventually identi-

cally vanishes for

to =
1
v⋆s

+
1
v⋆f

+
1

γ p⋆f − v⋆f
, (3.165)
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which concludes the proof.

Taking spatial and temporal derivatives of the backstepping transformation (3.143),(3.144)

along the target system (3.146)-(3.153), then plugging into the error system (3.135)-(3.142), we

obtain the kernel equations that govern the kernels {M(x,ξ )} and {N(x,ξ )},

ε1∂xM11 + ε1∂ξ M11 =− āww
12 M21 − āwv

11 N11 − āwv
12 N21, (3.166)

ε1∂xM12 + ε2∂ξ M12 =− āww
11 M12 − āww

12 M22 − āwv
11 N12 − āwv

12 N22, (3.167)

ε2∂xM21 + ε1∂ξ M21 =− āww
21 M11 − āww

22 M21 − āwv
21 N11 − āwv

22 N21, (3.168)

ε2∂xM22 + ε2∂ξ M22 =− āww
21 M12 − āwv

21 N12 − āwv
22 N22, (3.169)

µ1∂xN11 − ε1∂ξ N11 =āww
11 N11 + āvv

12N21 + āvw
11 M11 + āvw

12 M21, (3.170)

µ1∂xN12 − ε2∂ξ N12 =āww
22 N12 + āvv

12N22 + āvw
11 M12 + āvw

12 M22, (3.171)

µ2∂xN21 − ε1∂ξ N21 =āww
11 N21 + āvv

21N11 + āvw
21 M11 + āvw

22 M21, (3.172)

µ2∂xN22 − ε2∂ξ N22 =āww
22 N22 + āvv

21N12 + āvw
21 M12 + āvw

22 M22, (3.173)

N11(x,x) =
āvw

11 (x)
ε1 +µ1

, N12(x,x) =
āvw

12 (x)
ε2 +µ1

, (3.174)

N21(x,x) =
āvw

21 (x)
ε1 +µ2

, N22(x,x) =
āvw

22 (x)
ε2 +µ2

, (3.175)

M11(0,ξ ) = ksN11(0,ξ ), M22(0,ξ ) = k f N22(0,ξ ), (3.176)

M12(0,ξ ) = ksN12(0,ξ ), M21(x,x) =−
āww

21
ε2 − ε1

, (3.177)

M21(x,L) =−
āww

21
ε2 − ε1

, M12(x,x) =−
āww

12
ε1 − ε2

. (3.178)

Considering the following variables by defining

x̄ = L− x, ξ̄ = L−ξ , (3.179)
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and new kernels M̄
(
x̄, ξ̄
)

and N̄
(
x̄, ξ̄
)

M̄
(
x̄, ξ̄
)
=M(L− x̄,L− ξ̄ ) = M(x,ξ ), (3.180)

N̄
(
x̄, ξ̄
)
=N(L− x̄,L− ξ̄ ) = N(x,ξ ), (3.181)

which are defined in the triangular domain D = {(x̄, ξ̄ ) : 0 ≤ ξ̄ ≤ x̄ ≤ L}. We find that the

following kernel equations obtained from (3.166) and (3.178) have the same structure with the

controller kernel system in (3.83)-(3.95).

ε1∂x̄M̄11 + ε1∂ξ̄ M̄11 =āww
12 M̄21 + āwv

11 N̄11 + āwv
12 N̄21, (3.182)

ε1∂x̄M̄12 + ε2∂ξ̄ M̄12 =āww
11 M̄12 + āww

12 M̄22 + āwv
11 N̄12 + āwv

12 N̄22, (3.183)

ε2∂x̄M̄21 + ε1∂ξ̄ M̄21 =āww
21 M̄11 + āww

22 M̄21 + āwv
21 N̄11 + āwv

22 N̄21, (3.184)

ε2∂x̄M̄22 + ε2∂ξ̄ M̄22 =āww
21 M̄12 + āwv

21 N̄12 + āwv
22 N̄22, (3.185)

µ1∂x̄N̄11 − ε1∂ξ̄ N̄11 =− āww
11 N̄11 − āvv

12N̄21 − āvw
11 M̄11 − āvw

12 M̄21, (3.186)

µ1∂x̄N̄12 − ε2∂ξ̄ N̄12 =− āww
22 N̄12 − āvv

12N̄22 − āvw
11 M̄12 − āvw

12 M̄22, (3.187)

µ2∂x̄N̄21 − ε1∂ξ̄ N̄21 =− āww
11 N̄21 − āvv

21N̄11 − āvw
21 M̄11 − āvw

22 M̄21, (3.188)

µ2∂x̄N̄22 − ε2∂ξ̄ N22 =− āww
22 N̄22 − āvv

21N̄12 − āvw
21 M̄12 − āvw

22 M̄22, (3.189)

N̄11(x̄, x̄) =
āvw

11 (L− x̄)
ε1 +µ1

, N̄12(x̄, x̄) =
āvw

12 (L− x̄)
ε2 +µ1

, (3.190)

N̄21(x̄, x̄) =
āvw

21 (L− x̄)
ε1 +µ2

, N̄22(x̄, x̄) =
āvw

22 (L− x̄)
ε2 +µ2

, (3.191)

M̄11(L, ξ̄ ) = ksN̄11(L, ξ̄ ), M̄22(L, ξ̄ ) = k f N̄22(L, ξ̄ ), (3.192)

M̄12(L, ξ̄ ) = ksN̄12(L, ξ̄ ), M̄21(x̄, x̄) =−
āww

21
ε2 − ε1

, (3.193)

M̄21(x̄,0) = 0, M̄12(x̄, x̄) =−
āww

12
ε1 − ε2

. (3.194)

The well-posedness of the above kernel system is obtained following the same steps
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of the proof for (3.83)-(3.95). Therefore, there exists a unique solution M,N ∈ L∞(T ). The

stability of target system (3.146)-(3.153) is equivalent to the error system (3.135)-(3.142). The

artificial boundary condition M̄21(x̄,0) in (3.95) is imposed for the well-posedness of the kernel

equations.

The observer gains matrices {P(x)} and {Q(x)} are obtained from the kernel matrices

P(x) = M(x,L)

v⋆s 0

0 v⋆f

 , (3.195)

Q(x) = N(x,L)

v⋆s 0

0 v⋆f

 . (3.196)

Note that the states estimation of the original traffic flow variables (ρ̂ f , v̂ f , ρ̂s, v̂s) are obtained by

the invertible transformation given in the following,

ρ̂s =ρ⋆
s +

ρ⋆
s

γ p⋆s

(
ŵs − exp

(
−

avv
11

µ1
x
)

ûs

)
, (3.197)

ρ̂ f =ρ⋆
f +

ρ⋆
f

γ p⋆f

(
ŵ f − exp

(
−

avv
22

µ2
x
)

û f

)
, (3.198)

v̂s =v⋆s + exp
(
−

avv
11

µ1
x
)

ûs, (3.199)

v̂ f =v⋆f + exp
(
−

avv
22

µ2
x
)

û f . (3.200)

Therefore, the state estimates (ŵ f , ŵs, ûs, û f ) can be transformed into the state estimates (ρ̂ f , v̂ f ,

ρ̂s, v̂s). The following conclusion is reached.

Theorem 3.4. Consider the two-lane traffic ARZ model in (3.1)-(3.4) with boundary conditions

(3.19)-(3.22), initial conditions ρ f (x,0),v f (x,0),ρs(x,0),vs(x,0) ∈ L∞ ([0,L]), state estimates

(ρ̂s(x, t), ρ̂ f (x, t), v̂s(x, t), v̂ f (x, t)) are obtained from collocated observer design (3.122)-(3.129)

for (ŵs, ŵ f , v̂s, v̂ f ) and the invertible transformation between them is given in (3.197)-(3.200).
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The output injection gains {P(x)} and {Q(x)} are obtained in (3.195), (3.196) by solving the

kernels {M} and {N} from (3.166)-(3.178). The finite-time convergence of estimation errors to

zero equilibrium is reached in to given by (3.158).

Proof. Lemma 3.3 with the existence of the backstepping transformation for the observer in

(3.143), (3.144) yields the convergence of estimation errors (w̌s, w̌ f , v̌s, v̌ f ) defined by (3.135)-

(3.142) to zero for t > to. Given the transformation in (3.197)-(3.200), the finite-time conver-

gence to zero equilibrium is arrived for the estimation errors (ρ̃s(x, t), ρ̃ f (x, t), ṽs(x, t), ṽ f (x, t)).

3.4 Output feedback controller

The output feedback controllers are constructed by employing the states estimates in the

full-state feedback laws which yield the finite-time stability of the closed-loop system to zero

equilibrium. Combining the collocated observer design (3.122)-(3.129) and full-state feedback

controllers (3.114),(3.115), we obtain the following output feedback controllers,

Us(t) =exp
(
−

avv
11

µ1
L
)∫ L

0

γ p⋆s
ρ⋆

s
K11(L,ξ )(ρ̂s(ξ , t)−ρ⋆

s )

+
γ p⋆f
ρ⋆

f
K12(L,ξ )

(
ρ̂ f (ξ , t)−ρ⋆

f
)

+

[
K11(L,ξ )+L11(L,ξ )exp

(
avv

11
µ1

ξ
)]
(v̂s(ξ , t)− v⋆s )

+

[
K12(L,ξ )+L12(L,ξ )exp

(
avv

22
µ2

ξ
)](

v̂ f (ξ , t)− v⋆f
)
dξ , (3.201)

U f (t) =exp
(
−

avv
22

µ2
L
)∫ L

0

γ p⋆s
ρ⋆

s
K21(L,ξ )(ρ̂s(ξ , t)−ρ⋆

s )

+
γ p⋆f
ρ⋆

f
K22(L,ξ )

(
ρ̂ f (ξ , t)−ρ⋆

f
)

+

[
K21(L,ξ )+L21(L,ξ )exp

(
avv

11
µ1

ξ
)]
(v̂s(ξ , t)− v⋆s )
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+

[
K22(L,ξ )+L22(L,ξ )exp

(
avv

22
µ2

ξ
)](

v̂ f (ξ , t)− v⋆f
)
dξ , (3.202)

where (ρ̂ f , ρ̂s, v̂s, v̂ f ) are obtained from (ŵs, ŵ f , v̂s, v̂ f ) using transformation in (3.197)-(3.200).

Theorem 3.5. Consider the two-lane traffic ARZ model in (3.1)-(3.4) with boundary condi-

tions (3.19)-(3.22), initial conditions ρ f (x,0),v f (x,0),ρs(x,0),vs(x,0) ∈ L∞ ([0,L]) and the out-

put feedback laws in (3.201),(3.202), where the kernels {K} and {L} are obtained by solving

(3.83)-(3.95) and output injection gains obtained by solving the kernels {M} and {N} in (3.166)-

(3.173). The steady states (ρ⋆
f ,v

⋆
f ,ρ

⋆
s ,v

⋆
s ) are finite-time stable and the convergence is reached

in tout defined as

tout = to + t f , (3.203)

where to is given in (3.158) and t f in (3.109).

Proof. Theorem 3.3 yields that state estimates (ρ̂ f , ρ̂s, v̂s, v̂ f ) converge to (ρ f ,ρs,vs,v f ) after

t = to. Applying Theorem 3.2, one has that (ρ f ,ρs,vs,v f ) converge to (ρ⋆
f ,ρ

⋆
s ,v

⋆
s ,v

⋆
f ) after t = t f .

Therefore, after t = to + t f , we have the convergence of state variables to steady states.

3.5 Numerical simulation

To validate our control design including the full-state feedback controllers and the col-

located boundary observer, we perform the numerical simulation for the two-lane ARZ model

under two different secenrios of traffic congestion. For the first scenario, we consider the stop-

and-go traffic appearing in the freeway segment of interest and therefore implement sinusoid

initial conditions. For second scenario, we consider a single shock wave front for the initial

state of traffic where the upstream vehicles are blocked by denser traffic downstream. This is

a common phenomenon when slow moving vehicles block the road or changes of local road
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Table 3.1: Model Parameter Table
Name Slow lane Fast lane Unit
Freeway segment length L 1000 1000 m
Pressure exponent γ 0.8 0.8 1
Maximum density ρm

i 240 150 veh/km
Maximum velocity vm 144 144 km/h
Steady state densities ρ⋆

i 180 80 veh/km
Steady state velocity v⋆i 32 40 km/h
Relaxation time T e

i 200 100 s
Driver’s lane preference Ti 50 25 s

situations like hills and curves. Traffic bottleneck forms as a result. It follows the appearance

of a moving shock wave consisting of high-density traffic downstream and relative low-density

traffic upstream on the road.

The control design presented in the previous sections are tested and illustrated for both

secenrios. The model parameters used in the numerical simulation are given in Table 3.1. Both

the fast-lane and slow-lane are considered in the congested regime where the vehicles on the

road are relatively dense so that the velocity disturbances propagate from the leading vehicle to

the following vehicle. Steady states density ρ⋆
i are chosen given the maximum density ρm

i and

Maximum velocity vm so that the traffic of both lanes are lightly congested. We consider the

situation that in general drivers prefer the slow lane rather than the fast lane. Tf is smaller than

Ts since drivers prefer remaining in the slow lane rather than changing to the fast lane. Therefore,

higher density traffic appears in the slow lane and it can contain higher traffic flow. Steady state

velocity v⋆i are obtained based on this parameter choice.

In the following figures, the evolution of the state variables are illustrated with surface

plots. The initial conditions of the states are highlighted with color blue and the outlet boundary

control inputs are highlighted with color red.
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Figure 3.4: Scenario 1: density and velocity of slow lane traffic of open-loop system with
sinusoid initial conditions.

Figure 3.5: Scenario 1: density and velocity of fast lane traffic of open-loop system with sinu-
soid initial conditions.

3.5.1 Scenario 1: stop-and-go traffic

In this scenario, we consider the initial traffic states are oscillated around the equilibrium

states and thus we implement sinusoid initial conditions for traffic density and velocity. The

constant incoming flow and outgoing flow are considered for the open-loop simulation as shown

in Fig. 3.4 and Fig. 3.5. For the steady state velocity, it takes around 100 s for both fast-lane

and slow-lane vehicles to leave the considered freeway segment. But the oscillations sustain for

more than 6 min.

The full state feedback stabilization results are shown in Fig. 3.6 and Fig. 3.7. The finite-
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Figure 3.6: Scenario 1: density and velocity of slow lane traffic of closed-loop system with
full-state feedback controllers.

Figure 3.7: Scenario 1: density and velocity of fast lane traffic of closed-loop system with
full-state feedback controllers.

time convergence of the density and velocity states to the steady states is achieved in t f = 260 s.

The simulation results of the collocated observer design is shown in Fig. 3.8 and Fig. 3.9.

The estimation errors are plotted in Fig. 3.10 and Fig. 3.11. Here we choose open-loop system

to validate observer design since the oscillations are not damped out to zero by control design

and therefore estimation result could be illustrated better in this case. Without knowledge of

the initial state of the system, we implement uniform steady state value for initial conditions,

highlighted with blue lines. From Fig. 3.10 and Fig. 3.11, we can see that after to = 310 s, the

estimation errors converge to zero, indicating that the state estimates in Fig. 3.8 and Fig. 3.9
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Figure 3.8: Scenario 1: density and velocity estimates of slow lane traffic of open-loop system
with sinusoid initial conditions.

Figure 3.9: Scenario 1: density and velocity estimates of fast lane traffic of open-loop system
with sinusoid initial conditions.

converge to the open-loop simulation of the states in Fig. 3.4 and Fig. 3.5.

Combining the observer design and the full-state feedback controllers, we derive the

output feedback controllers and then simulate the closed-loop system in Fig. 3.12 and Fig. 3.13.

The finite convergence time of the closed-loop with output feedback controllers are t = to+ t f =

570s. It is shown in the figures that the states converge to the steady state values before 10 min.
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Figure 3.10: Scenario 1: density and velocity estimation errors of slow lane traffic of closed-
loop system with full-state feedback controllers.

Figure 3.11: Scenario 1: density and velocity estimation errors of fast lane traffic of open-loop
system with full-state feedback controllers.

3.5.2 Scenario 2: traffic bottleneck

Consider in Scenario 2 that there are some local changes of road situations like uphill

and downhill gradients, curves downstream of the freeway segment. Therefore, traffic bottleneck

forms from the downstream. We implement a shockwave front shape of the initial conditions

for the slow-lane where traffic densities close to the outlet of the segment are denser and light

densities traffic is blocked at the upstream. As a result, the traffic velocity is faster near the inlet

while the velocity become slower near the outlet. On the other hand, we consider for the fast-

lane that there is traffic flow of high density entering from the inlet. In general, drivers prefer the
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Figure 3.12: Scenario 1: density and velocity of slow lane closed-loop system with output
feedback controllers.

Figure 3.13: Scenario 1: density and velocity of fast lane closed-loop system with output feed-
back controllers.

slow lane and the relative light traffic flow close to the inlet will trigger the lane-changing from

the fast lane to slow lane close to the inlet. This worsens the traffic congestion on the slow lane

since the traffic bottleneck appears in the downstream of slow lane.

In the open-loop simulation shown by Fig. 3.14 and Fig. 3.15, soft shock wave initial

traffic states result in the stop-and-go traffic on the freeway segment. Here we omit the state

estimation results by collocated observer which has been demonstrated in Scenario 1. The sim-

ulation result of the output feedback control applied to Scenario 2 is given with Fig. 3.16 and

Fig. 3.17. We can see that the oscillated traffic congestion of 1km in Fig. 3.14 and Fig. 3.15 is

damped out in a fast manner for around 4 min.
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Figure 3.14: Scenario 2: density and velocity of slow lane traffic of open-loop system with
shockwave initial conditions.

Figure 3.15: Scenario 2: density and velocity of fast lane traffic of open-loop system with
shockwave initial conditions.

With the numerical simulation of the two-lane ARZ model with lane changing in two dif-

ferent secenrios, we demonstrate that the full-state feedback controllers, the collocated observer

and the output feedback controllers achieve the finite-time convergence of the state variations

from the steady states and estimation errors to zero.

3.6 Conclusion

This chapter solves the output feedback stabilization of a two-lane traffic congestion

problem with lane-changing. Using coordinate transformation and backstepping method, the
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Figure 3.16: Scenario 2: density and velocity of slow lane closed-loop system with output
feedback controllers.

Figure 3.17: Scenario 2: density and velocity of fast lane closed-loop system with output feed-
back controllers.

linearized first-order coupled 4×4 coupled hyperbolic PDE system is transformed into a cascade

target system. The finite-time convergence to the steady states is achieved with two VSLs control

inputs actuating velocities at the outlet. By taking measurement of density variations at the outlet,

a collocated observer design is proposed for state estimation, which is theoretically novel and

practically sound. This result paves the way for applying PDE backstepping techniques for

multi-lane traffic with inter-lane activities. There are concerns on modeling the lane-changing

as density exchanging source terms. However, the control design and the methodology proposed

in this paper should not be limited by possible modifications on these terms.

Chapter 3 contains reprints and adaptations of the following paper: H. Yu and M. Krstic,
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“Output Feedback Control of Two-lane Traffic Congestion,” Automatica, under review. The

dissertation author is the primary investigator and author of this paper.
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Chapter 4

Two-Class Traffic Congestion Control

This chapter considers the control problem of freeway traffic with heterogeneous vehicle

sizes and drivers’ behavior. The overall challenge addressed is the stabilization problem of the

traffic oscillations in the congested regime while distinguishing two different vehicle classes. We

develop boundary feedback control laws in order to damp out traffic oscillations in the congested

regime of the linearized two-class Aw-Rascle (AR) traffic model. The macroscopic second-order

two-class AR traffic model consists of four hyperbolic PDEs describing the dynamics of densi-

ties and velocities on freeway. The concept of area occupancy is used to express the traffic

pressure and equilibrium speed relationship yielding a coupling between the two classes of ve-

hicles. Each vehicle class is characterized by its own vehicle size and driver’s behavior. The

considered equilibrium profiles of the model represent evenly distributed traffic with constant

densities and velocities of both classes along the investigated track section. After linearizing the

model equations around those equilibrium profiles, it is observed that in the congested traffic one

of the four characteristic speeds is negative, whereas the remaining three are positive. Backstep-

ping control design is employed to stabilize the 4× 4 heterodirectional hyperbolic PDEs. The

control input actuates the traffic flow at outlet of the investigated track section and is realized by

a ramp metering. A full-state feedback is designed to achieve finite time convergence of the den-
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sity and velocity perturbations to the equilibrium at zero. This result is then combined with an

anti-collocated observer design in order to construct an output feedback control law that damps

out stop-and-go waves in finite time by measuring the velocities and densities of both vehicle

classes at the inlet of the investigated track section.

This chapter is structured as follows: Section 4.1 introduces the two-class AR traffic

model, the parameters characterizing the two classes and where they occur as well as the assumed

boundary conditions. Section 4.2 includes the preparation of the linearized model for the control

design and the formulation of the control design model. Furthermore, the full-state feedback

controller result is presented in section 4.3 and the following section 4.4 presents the output

feedback controller design. Section 4.6 verifies the performance of the presented controllers

with simulation results.

4.1 Two-class AR traffic model

The extended AR model for heterogeneous traffic in [87] is presented in consideration of

the two classes. This two-class AR traffic model is given by

∂tρ1 +∂x(ρ1v1) =0, (4.1)

∂t(v1 + p1(AO))+ v1∂x(v1 + p1(AO)) =
Ve,1(AO)− v1

τ1
, (4.2)

∂tρ2 +∂x(ρ2v2) =0, (4.3)

∂t(v2 + p2(AO))+ v2∂x(v2 + p2(AO)) =
Ve,2(AO)− v2

τ2
, (4.4)

where each vehicle class is described by traffic density ρi(x, t) and velocity vi(x, t) with (x, t) ∈

[0,L]× [0,∞). The parameter L is the length of the investigated track section. The traffic density

ρi(x, t) is defined as vehicles per unit length. The higher the traffic density, the more crowded is

the traffic of class i vehicles at a specific spatial point. In addition, the velocity vi(x, t) describes

99



the velocity of class i vehicles at a specified spatial point along the investigated track section.

The traffic density ρ1(x, t) and velocity v1(x, t) correspond to the first vehicle class and the traffic

density ρ2(x, t) and velocity v2(x, t) correspond to the second vehicle class. The non-zero terms

on the right hand side represent the adaption of the vehicles to their desired velocities, where τi

is the adaptation time.

The variable AO(ρ1,ρ2) describes the area occupancy, based on the definition introduced

in [6]. In [87], the expression for the area occupancy is simplified to

AO(ρ1,ρ2) =
a1Lρ1 +a2Lρ2

WL
, (4.5)

where ai is the occupied surface per vehicle class i and W the width of the investigated track.

Assuming that the traffic densities are ρ1(x, t) and ρ2(x, t) along the entire considered highway

section, the area occupancy AO(ρ1,ρ2) is the percentage of occupied road space by any class. It

holds that 0 ≤ AO ≤ 1. The area occupancy depends on both densities since the occupied road

surface is influenced by the vehicles of both classes.

The traffic pressure function pi(AO) is formulated as

pi(AO) =Vi

(
AO(ρ1,ρ2)

AOi

)γi

, (4.6)

where Vi corresponds to the free-flow velocity, γi > 1 to the traffic pressure exponent and 0 <

AOi ≤ 1 to the maximum area occupancy. The traffic pressure pi(AO) is the experienced traffic

pressure by class i vehicles and depends on the area occupancy. The higher the area occupancy,

the higher the experienced traffic pressure. For instance, if a vehicle suddenly decelerates, then

the following vehicle experiences a high traffic pressure forcing another deceleration. Thereby,

the free-flow velocity Vi represents the desired velocity of a driver, if no other vehicles of any

class are present. The pressure exponent γi is a parameter that models the experience of the

traffic pressure. Higher traffic pressure exponents lead to less experienced pressure. However,
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the maximum experienced pressure remains the same and is given by the free-flow velocity. The

maximum area occupancy AOi describes the percentage of occupied road surface for which the

corresponding vehicle class is jammed. To obtain physically meaningful results, 0 < AO ≤ 1

holds. For instance, AO2 = 0.8 means that if 80% of the highway are covered by vehicles of any

class, then the class 2 vehicles are jammed and therefore their desired velocity is zero. Finally,

the equilibrium speed-AO relationship is

Ve,i(AO) =Vi

(
1−
(

AO(ρ1,ρ2)

AOi

)γi
)
, (4.7)

according to the model of Greenshield [52], and represents the desired velocity of the class i

vehicles. It depends on the area occupancy since a very crowded road implies a lower desired

speed in contrast to a nearly empty road. If the area occupancy is at the maximum AOi, then

the corresponding equilibrium speed-AO relationship value is Ve,i(AOi) = 0. In order to show

the qualitative behavior of the traffic pressure function (4.6) and the equilibrium speed-AO re-

lationship (4.7), both functions are plotted in Figure 4.1 using an example parameter set. It is

illustrated, that a more crowded highway, corresponding to a higher area occupancy, implies a

higher experienced traffic pressure and a lower equilibrium speed.

4.1.1 Linearized two-class AR traffic model

The two-class AR traffic model (4.1) to (4.4) is linearized around a constant equilibrium

state (ρ∗
1 ,v

∗
1,ρ

∗
2 ,v

∗
2). Inserting this constant state in (4.1) to (4.4) yields the conditions

v∗1(ρ
∗
1 ,ρ

∗
2 ) =Ve,1(AO(ρ∗

1 ,ρ
∗
2 )), (4.8)

v∗2(ρ
∗
1 ,ρ

∗
2 ) =Ve,2(AO(ρ∗

1 ,ρ
∗
2 )). (4.9)
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Figure 4.1: Traffic pressure functions p1(AO) and p2(AO) (left) and equilibrium speed-AO
relationships Ve,1(AO) and Ve,2(AO) (right) for the example parameter set γ1 = 2.5, V1 = 80km/h,
AO = 0.9 for class 1 and γ2 = 2, V2 = 60km/h, AO2 = 0.85 for class 2.

Thus, the equilibrium velocities are determined by the equilibrium densities ρ∗
1 and ρ∗

2 . The

perturbations of the distributed variables ρi(x, t) and vi(x, t) are defined as

ρ̃i(x, t) = ρi(x, t)−ρ∗
i , (4.10)

ṽi(x, t) = vi(x, t)− v∗i , (4.11)

for each class i and the linearized model equations are given by

Jt



ρ̃1t

ṽ1t

ρ̃2t

ṽ2t


+ Jx



ρ̃1x

ṽ1x

ρ̃2x

ṽ2x


+ J



ρ̃1

ṽ1

ρ̃2

ṽ2


=



0

0

0

0


, (4.12)
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where the introduced Jacobian matrices are

Jt =



1 0 0 0

β11 1 β12 0

0 0 1 0

β21 0 β22 1


, (4.13)

Jx =



v∗1 ρ∗
1 0 0

v∗1β11 v∗1 v∗1β12 0

0 0 v∗2 ρ∗
2

v∗2β21 0 v∗2β22 v∗2


, (4.14)

J =



0 0 0 0

1
τ1

β11
1
τ1

1
τ1

β12 0

0 0 0 0

1
τ2

β21 0 1
τ2

β22
1
τ2


, (4.15)

and the abbreviations

βi j(ρ∗
1 ,ρ

∗
2 ) =

∂ pi(AO(ρ1,ρ2))

∂ρ j

∣∣∣∣
ρ1=ρ∗

1 ,ρ2=ρ∗
2

(4.16)

are introduced with i, j = 1,2. The abbreviations βi j(ρ∗
1 ,ρ

∗
2 ) represent the derivative of the class

i traffic pressure function with respect to class j traffic density. The boundary conditions are

assumed to be

ρ1(0, t) = ρ∗
1 , (4.17)

ρ2(0, t) = ρ∗
2 , (4.18)

q1(0, t)+q2(0, t) = q∗1 +q∗2, (4.19)

q1(L, t)+q2(L, t) = q∗1 +q∗2, (4.20)
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where (4.19) and (4.20) assume that the same total traffic flow enters and leaves the track section

which is given by the sum of the class 1 and class 2 equilibrium flows q∗1 and q∗2. The traffic flow

of class i is defined as

qi(x, t) = ρi(x, t)vi(x, t). (4.21)

Boundary conditions (4.17) and (4.18) indicate that the traffic densities of the incoming traffic

flow are equivalent to the equilibrium densities. Thus, not only the entering traffic flow is con-

stant, in fact the densities of both classes in this traffic flow are assumed to be constant. The

linearization of the introduced boundary conditions (4.17) to (4.20) is

0 = ρ̃1(0, t), (4.22)

0 = ρ̃2(0, t), (4.23)

0 = v∗1ρ̃1(0, t)+ρ∗
1 ṽ1(0, t)+ v∗2ρ̃2(0, t)+ρ∗

2 ṽ2(0, t), (4.24)

0 = v∗1ρ̃1(L, t)+ρ∗
1 ṽ1(L, t)+ v∗2ρ̃2(L, t)+ρ∗

2 ṽ2(L, t). (4.25)

4.1.2 Free/congested regime analysis

In general, two different regimes of traffic are distinguished: the free-flow regime and

the congested regime. The free-flow regime is characterized by the fact that the total informa-

tion of the system travels downstream along with the vehicles. In that case, the model equations

correspond to four homodirectional hyperbolic PDEs. On the other hand, a partial upstream

propagation of information characterizes the traffic flow in the congested regime. The corre-

sponding heterodirectional behavior causes the formation of the stop-and-go traffic. Therefore,

it is reasonable to investigate which choices of equilibrium densities and parameters lead to het-

erodirectional information propagation. Therefore, the characteristic speeds are computed and

their signs are considered in the following. First, the linearized model equations (4.12) need to
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be decoupled in time leading to



ρ̃1t

ṽ1t

ρ̃2t

ṽ2t


+ J̃x



ρ̃1x

ṽ1x

ρ̃2x

ṽ2x


= J̃



ρ̃1

ṽ1

ρ̃2

ṽ2


(4.26)

with the new Jacobian matrices

J̃x =



v∗1 ρ∗
1 0 0

0 v∗1 −β11ρ∗
1 β12(v∗1 − v∗2) −β12ρ∗

2

0 0 v∗2 ρ∗
2

β21(v∗2 − v∗1) −β21ρ∗
1 0 v∗2 −β22ρ∗

2


and

J̃ =



0 0 0 0

− 1
τ1

β11 − 1
τ1

− 1
τ1

β12 0

0 0 0 0

− 1
τ2

β21 0 − 1
τ2

β22 − 1
τ2


. (4.27)

The characteristic speeds are given by the eigenvalues of J̃x which are

λ1 =v∗1(ρ
∗
1 ,ρ

∗
2 ), (4.28)

λ2 =v∗2(ρ
∗
1 ,ρ

∗
2 ), (4.29)

λ3 =
v∗1(ρ

∗
1 ,ρ

∗
2 )+ v∗2(ρ

∗
1 ,ρ

∗
2 )−α1(ρ∗

1 ,ρ
∗
2 )−α2(ρ∗

1 ,ρ
∗
2 )

2

+
∆(ρ∗

1 ,ρ
∗
2 )

2
, (4.30)

λ4 =
v∗1(ρ

∗
1 ,ρ

∗
2 )+ v∗2(ρ

∗
1 ,ρ

∗
2 )−α1(ρ∗

1 ,ρ
∗
2 )−α2(ρ∗

1 ,ρ
∗
2 )

2

−
∆(ρ∗

1 ,ρ
∗
2 )

2
, (4.31)
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where

∆(ρ∗
1 ,ρ

∗
2 ) =

√(
α2ρ∗

2 −α1ρ∗
1 + v∗1 − v∗2

)2
+4α1α2ρ∗

1 ρ∗
2 (4.32)

and

αi(ρ∗
1 ,ρ

∗
2 ) = βii(ρ∗

1 ,ρ
∗
2 ) =

∂ pi(AO(ρ1,ρ2))

∂ρi

∣∣∣∣
ρ1=ρ∗

1 ,ρ2=ρ∗
2

. (4.33)

For model validity, the equilibrium velocities of both vehicle classes are chosen to be positive,

i.e. v∗1 > 0 and v∗2 > 0 and all vehicles travel downstream. Thus, the first two characteristic

speeds (4.28) and (4.29) are positive. In addition, it is shown in [127] that

λ4 ≤ min{λ1,λ2} ≤ λ3 ≤ max{λ1,λ2} (4.34)

holds. Because λ1 > 0 and λ2 > 0, (4.34) implies that λ3 is positive as well. Hence, the only

characteristic speed that may have a negative sign is λ4. Therefore, traffic is defined to be in the

free regime if the equilibrium densities and parameters satisfy

λ1,λ2,λ3,λ4 > 0 (4.35)

and in the congested regime if they meet

λ1,λ2,λ3 > 0, λ4 < 0. (4.36)

While λ1 and λ2 correspond to the flow of class 1 vehicles and class 2 vehicles, λ3 is related to

the fact that the faster vehicle class overtakes the slower one. For that reason, it is reasonable to

obtain λ1 = λ2 = λ3, if v∗1 = v∗2 is assumed.

According to the definitions in (4.35) and (4.36), the boundary between the two regimes

is defined as λ4 = 0. In case of the two-class AR traffic model, this boundary is a line which

can be drawn in the ρ∗
1 -ρ∗

2 -plane. Compared to the single class consideration, the boundary is
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Figure 4.2: Contour plot of λ4 for the parameter set γ1 = 2.5, V1 = 80km/h, AO = 0.9 for class
1 and γ2 = 2, V2 = 60km/h, AO2 = 0.85 for class 2. The contour line λ4 = 0 describes the
boundary between the free-flow and congested regime.

equivalent to a single density which is the critical density. The numerically computed boundary

between the two regimes is plotted as a contour plot for an example parameter set in Figure 4.2.

The figure also indicates that small values for both equilibrium densities ρ∗
1 and ρ∗

2 correspond

to a positive value of λ4 and therefore homodirectional behavior. On the other hand, large values

of densities lead to a negative value of λ4 indicating heterodirectional behavior. Hence, smaller

equilibrium densities correspond to free-flow regime and large equilibrium densities correspond

to congested regime.

4.2 Boundary control design model

The control objective and the linearized two-class AR traffic model is introduced in this

section. The preparation for control design is done using two transformations, the transformation

to Riemann coordinates and a second transformation to further simplify the equations expressed
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in Riemann coordinates resulting in the control design model.

The overall goal is to damp out stop-and-go traffic in the congested regime and achieve

convergence to the equilibrium states in a finite time. The ramp metering is considered to be

installed at the outlet of the investigated track section regulating the traffic outflow. In this work,

the ramp metering is used to damp out the introduced stop-and-go waves. Thus, the boundary

condition (4.25) becomes

U(t) = v∗1ρ̃1(L, t)+ρ∗
1 ṽ1(L, t)+ v∗2ρ̃2(L, t)+ρ∗

2 ṽ2(L, t). (4.37)

Compared to the application of multi-phase flow in oil pipelines, [39], a ramp metering works

as a valve at the end of the pipe to control the outgoing flow.

The system is transformed to Riemann coordinates to accomplish a decoupling of the

spatial derivatives. The Riemann variables (w̄1, w̄2, w̄3, w̄4) are defined in the new coordinates.

The linear state transformation is given by



w̄1

w̄2

w̄3

w̄4


=V−1



ρ̃1

ṽ1

ρ̃2

ṽ2


(4.38)

where the constant invertible transformation matrix V satisfies



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4


=V−1J̃xV (4.39)
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and therefore diagonalizes the Jacobian J̃x. The entries of V are denoted as

V =
{

vi j
}

1≤i≤4,1≤ j≤4 . (4.40)

The matrix V is straightforward to obtain and omitted due to its complexity and length. Inserting

the transformation in (4.12) yields the model equations in Riemann coordinates



w̄1t

w̄2t

w̄3t

w̄4t


+



λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4





w̄1x

w̄2x

w̄3x

w̄4x


= Ĵ



w̄1

w̄2

w̄3

w̄4


, (4.41)

where

Ĵ =V−1J̃V (4.42)

and the entries of the Jacobian Ĵ are denoted by

Ĵ = {Ĵi j}1≤i≤4,1≤ j≤4. (4.43)

Since the coefficient matrix of the spatial derivatives is now diagonal, a decoupling in spatial

derivatives is achieved. The characteristic speeds (4.28) to (4.31) form the diagonal because

they are the eigenvalues of J̃x. In addition, the same transformation is applied to the boundary

conditions (4.22), (4.23), (4.24) and (4.37) yielding


w̄1(0, t)

w̄2(0, t)

w̄3(0, t)

= Q̂0w̄4(0, t), (4.44)
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w̄4(L, t) = R̂1


w̄1(L, t)

w̄2(L, t)

w̄3(L, t)

+Û(t). (4.45)

The matrices are given by

Q̂0 =−


v11 v12 v13

v31 v32 v33

κ1 κ2 κ3


−1

v14

v34

κ4

 , (4.46)

R̂1 =− 1
κ4

[
κ1 κ2 κ3

]
(4.47)

and are obtained by formulating the linearized boundary conditions in matrix form, inserting

the transformation law to Riemann coordinates and decoupling afterwards. Besides, in (4.46)

and (4.47), the abbreviations

κi = v∗1v1i +ρ∗
1 v2i + v∗2v3i +ρ∗

2 v4i, i = 1,2,3,4, (4.48)

are inserted. The input transformation, used in (4.45), is

Û(t) =
1
κ4

U(t). (4.49)

The next transformation achieves zero elements on the diagonal of Ĵ in (4.41) and sorts the pos-

itive characteristic speeds (4.28) to (4.30) in ascending order on the diagonal of the coefficient

matrix of the spatial derivatives. We define an ascending order λ1 > λ2 without loss of gener-

ality, according to (4.34). It is assumed that class 1 vehicles represent small and fast average

vehicles whereas class 2 describes big trucks which are large and slow. Thus, for the equilibrium

velocities v∗1 > v∗2 holds and therefore the ascending order of positive characteristic speeds is
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λ2 < λ3 < λ1. Hence, the transformation law

w1 = e
− Ĵ22

v∗2
x
w̄2, (4.50)

w2 = e
− Ĵ33

λ3
x
w̄3, (4.51)

w3 = e
− Ĵ11

v∗1
x
w̄1, (4.52)

w4 = e−
Ĵ44
λ4

xw̄4 (4.53)

is applied to (4.41) yielding the transformed PDEs


w1t

w2t

w3t

+Λ+


w1x

w2x

w3x

= Σ++(x)


w1

w2

w3

+Σ+−(x)w4, (4.54)

w4t −Λ−w4x = Σ−+(x)


w1

w2

w3

 . (4.55)

with

Λ+ =


v∗2 0 0

0 λ3 0

0 0 v∗1

 , (4.56)

Λ− =−λ4, (4.57)

Σ++(x) =


0 J̄12(x) J̄13(x)

J̄21(x) 0 J̄23(x)

J̄31(x) J̄32(x) 0

 , (4.58)

Σ+−(x) =
[

J̄14(x) J̄24(x) J̄34(x)

]T

, (4.59)
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Σ−+(x) =
[

J̄41(x) J̄42(x) J̄43(x)

]
. (4.60)

The abbreviations for the coefficients of the source term, J̄i j(x), i, j = 1,2,3,4, are:

J̄12(x) = Ĵ23e

(
Ĵ33
λ3

− Ĵ22
v∗2

)
x
, J̄13(x) = Ĵ21e

(
Ĵ11
v∗1

− Ĵ22
v∗2

)
x
,

J̄14(x) = Ĵ24e

(
Ĵ44
λ4

− Ĵ22
v∗2

)
x
, J̄21(x) = Ĵ32e

(
Ĵ22
v∗2

− Ĵ33
λ3

)
x
,

J̄23(x) = Ĵ31e

(
Ĵ11
v∗1

− Ĵ33
λ3

)
x
, J̄24(x) = Ĵ34e

(
Ĵ44
λ4

− Ĵ33
λ3

)
x
,

J̄31(x) = Ĵ12e

(
Ĵ22
v∗2

− Ĵ11
v∗1

)
x
, J̄32(x) = Ĵ13e

(
Ĵ33
λ3

− Ĵ11
v∗1

)
x
,

J̄34(x) = Ĵ14e

(
Ĵ44
λ4

− Ĵ11
v∗1

)
x
, J̄41(x) = Ĵ42e

(
Ĵ22
v∗2

− Ĵ44
λ4

)
x
,

J̄42(x) = Ĵ43e

(
Ĵ33
λ3

− Ĵ44
λ4

)
x
, J̄43(x) = Ĵ41e

(
Ĵ11
v∗1

− Ĵ44
λ4

)
x
.

The diagonal elements of Λ+ are sorted in an ascending order and the relations λ1 = v∗1, (4.28),

and λ2 = v∗2, (4.29), are inserted. In addition, Σ++(x), Σ+−(x) and Σ−+(x) are depending on the

spatial coordinate. Their entries J̄i j(x) are bounded and either positive or negative on the whole

domain, depending on the sign of the corresponding Ĵi j. Applying the transformation (4.50)

to (4.53) on the boundary conditions (4.44) and (4.45) yields


w1(0, t)

w2(0, t)

w3(0, t)

= Q̄0w4(0, t), (4.61)

w4(L, t) = R̄1


w1(L, t)

w2(L, t)

w3(L, t)

+Ū(t) (4.62)
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with

Q̄0 =


0 0 1

1 0 0

0 1 0


−1

Q̂0,

R̄1 = R̂1


0 0 e

(
Ĵ11
v∗1

− Ĵ44
λ4

)
L

e

(
Ĵ22
v∗2

− Ĵ44
λ4

)
L

0 0

0 e

(
Ĵ33
λ3

− Ĵ44
λ4

)
L

0

 . (4.63)

In addition, the input given in (4.62) is defined as

Ū(t) = e−
Ĵ44
λ4

LÛ(t). (4.64)

All in all, the control design model is given by (4.54), (4.55), (4.61) and (4.62). In Figure 4.3,

the qualitative behavior of the control design model is illustrated. According to the sign of the

characteristic speeds, the propagation direction for each state wi(x, t) is drawn in Figure 4.3. It

shows that the control input Ū(t) acts at the outlet of system, first propagating upstream and,

after it is carried through the boundary condition at the inlet of the investigated track section,

affecting downstream traffic. The summary of the two transformations is



w1

w2

w3

w4


= T−1(x)



ρ̃1

ṽ1

ρ̃2

ṽ2


⇔



ρ̃1

ṽ1

ρ̃2

ṽ2


= T (x)



w1

w2

w3

w4


, (4.65)
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Figure 4.3: Schematic diagram of the control design model. The green arrow indicates the
location where the control input acts on the system. The blue arrows represent the couplings
between all four states.

where

T−1(x) =



0 e
− Ĵ22

v∗2
x

0 0

0 0 e
− Ĵ33

λ3
x 0

e
− Ĵ11

v∗1
x

0 0 0

0 0 0 e−
Ĵ44
λ4

x


V−1, (4.66)

T (x) =V



0 0 e
Ĵ11
v∗1

x
0

e
Ĵ22
v∗2

x
0 0 0

0 e
Ĵ33
λ3

x 0 0

0 0 0 e
Ĵ44
λ4

x


. (4.67)
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The overall transformation law depends on the spatial coordinate. In addition, we have

Ū(t) = e−
Ĵ44
λ4

L 1
κ4

U(t) (4.68)

and the inversion is given by

U(t) = κ4e
Ĵ44
λ4

LŪ(t). (4.69)

Since all transformations are invertible, the stability properties of the linearized model in density

and velocity perturbations and the control design model are the same.

4.3 Full-state feedback control design

In the following, a full-state feedback control design for the system of four coupled

hyperbolic PDEs given by (4.54) and (4.55) with boundary conditions (4.61) and (4.62) is carried

out in order to achieve finite time convergence to zero for initial conditions wi(x,0) ∈ L ∞[0,L].

The full-state feedback controller is designed by applying the backstepping control design in [80].

The general idea is to transform the coupled hyperbolic PDEs to a cascade target system. The

control law is chosen such that the instabilities in the system are eliminated through the boundary

conditions of the target system. The states of the target system are denoted as (α1,α2,α3,β ).

The kernels of the backstepping transformation are denoted by K(x,ξ ) and L11(x,ξ ). Then, the

backstepping transformation is defined as

α1(x, t) = w1(x, t), (4.70)

α2(x, t) = w2(x, t), (4.71)

α3(x, t) = w3(x, t), (4.72)
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β (x, t) = w4(x, t)−
∫ x

0

K(x,ξ )


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

+L11(x,ξ )w4(ξ , t)

dξ , (4.73)

where

K(x,ξ ) =
[

k11(x,ξ ) k12(x,ξ ) k13(x,ξ )
]

(4.74)

and L11(x,ξ ) are defined on a triangular domain

T = {0 ≤ ξ ≤ x ≤ 1}. (4.75)

The introduced kernels K(x,ξ ) and L11(x,ξ ) are unknown and will be determined later on. Fur-

thermore, the choice of the target system is


α1t

α2t

α3t

=−Λ+


α1x

α2x

α3x

+Σ++(x)


α1

α2

α3



+Σ+−(x)β +
∫ x

0
C+(x,ξ )


α1(ξ , t)

α2(ξ , t)

α3(ξ , t)

dξ

+
∫ x

0
C−(x,ξ )β (ξ , t)dξ , (4.76)

βt =Λ−βx. (4.77)
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The coefficients C+(x,ξ )∈R3×3 and C−(x,ξ )∈R3×1 are defined on the same triangular domain

T and are determined later on. Besides, the boundary conditions of the target system are


α1(0, t)

α2(0, t)

α3(0, t)

= Q̄0β (0, t), (4.78)

β (L, t) = 0. (4.79)

The target system (4.76) to (4.79) converges to its equilibrium at zero

αe,i(x)≡ βe(x)≡ 0, i = 1,2,3, t ≥ 0, x ∈ [0,L] (4.80)

in the finite time

tF =
L
v∗2

+
L

−λ4
. (4.81)

The proof is given in Lemma 3.1 in [80]. It remains to compute the kernels K(x,ξ ) and L11(x,ξ ),

coefficients C+(x,ξ ) and C−(x,ξ ) and the control input Ū(t) such that the transformation is

completed and to show the existence of the kernels. Deriving (4.73) with respect to space and

time, inserting the resulting derivatives and (4.61) in (4.77) yields the kernel equations that

determine K(x,ξ ) and L11(x,ξ ) after partial integration. The kernel equations are given by four

coupled first order hyperbolic PDEs as well as four boundary conditions

−Λ−Kx(x,ξ )+Kξ (x,ξ )Λ+ =−K(x,ξ )Σ++(ξ )

−L11(x,ξ )Σ−+(ξ ), (4.82)

−Λ−L11x(x,ξ )−L11ξ (x,ξ )Λ− =−K(x,ξ )Σ+−(ξ ), (4.83)

K(x,0)Λ+Q̄0 −L11(x,0)Λ− = 0, (4.84)

K(x,x)Λ++Λ−K(x,x) =−Σ−+(x). (4.85)
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Inserting expressions for Λ−, K(x,ξ ), Λ+, Σ++(ξ ), Σ−+(ξ ), Σ+−(ξ ) and denoting the entries

of Q̄0 =
{

Q̄0i1
}

1≤i≤3, the kernel equations in matrix form become

λ4



k11x

k12x

k13x

L11x


+



v∗2 0 0 0

0 λ3 0 0

0 0 v∗1 0

0 0 0 λ4





k11ξ

k12ξ

k13ξ

L11ξ


=



0 −J̄21(ξ ) −J̄31(ξ ) −J̄41(ξ )

−J̄12(ξ ) 0 −J̄32(ξ ) −J̄42(ξ )

−J̄13(ξ ) −J̄23(ξ ) 0 −J̄43(ξ )

−J̄14(ξ ) −J̄24(ξ ) −J̄34(ξ ) 0





k11

k12

k13

L11



(4.86)

with boundary condition at ξ = 0,

[
Q̄011v∗2 Q̄021λ3 Q̄031v∗1 λ4

]


k11(x,0)

k12(x,0)

k13(x,0)

L11(x,0)


= 0, (4.87)

and boundary conditions at ξ = x,

k11(x,x) =
J̄41(x)
λ4 − v∗2

, (4.88)

k12(x,x) =
J̄42(x)

λ4 −λ3
, (4.89)

k13(x,x) =
J̄43(x)
λ4 − v∗1

. (4.90)

As shown in Theorem 3.3 of [80], the kernel equations (4.82) to (4.85) are a well-posed system

of equations and thus there exist unique solutions K(x,ξ ) and L11(x,ξ ) in L∞(T ). Moreover,
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solving the equations (4.83) and (4.84) with the method of characteristics yields

L11(x,ξ ) =− 1
λ4

K(x−ξ ,0)Λ+Q̄0

+
∫ − ξ

λ4

0
K(λ4ν + x,λ4ν +ξ )Σ+−(λ4ν +ξ )dν . (4.91)

Inserting this result in the remaining PDEs (4.82) reduces the kernel equations to three coupled

first order hyperbolic PDEs with three boundary conditions

0 =λ4Kx(x,ξ )+Λ+Kξ (x,ξ )+K(x,ξ )Σ++(ξ )

− 1
λ4

K(x−ξ ,0)Λ+Q̄0Σ−+(ξ )

+
∫ − ξ

λ4

0
K(λ4ν + x,λ4ν +ξ )Σ+−(λ4ν +ξ )dνΣ−+(ξ ) (4.92)

0 =K(x,x)Λ++Λ−K(x,x)+Σ−+(x) (4.93)

Furthermore, deriving (4.70) to (4.72) with respect to space and time and inserting the obtained

derivatives, (4.73) and (4.54) in (4.76) yields

C−(x,ξ ) = Σ+−(x)L(x,ξ )+
∫ x

ξ
C−(x,s)L(s,ξ )ds, (4.94)

C+(x,ξ ) = Σ+−(x)K(x,ξ )+
∫ x

ξ
C−(x,s)K(s,ξ )ds. (4.95)

Finally, inserting (4.62) and (4.79) in (4.73) evaluated at x = L delivers

Ū(t) =−R̄1


w1(L, t)

w2(L, t)

w3(L, t)


∫ L

0

K(L,ξ )


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

+L11(L,ξ )w4(ξ , t)

dξ (4.96)
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and therefore determines the control input. Before the results of the controller design are sum-

marized in a theorem, the control law is formulated in dependence of the original physical vari-

ables, i.e. the densities and velocities of both classes. For that reason, the transformation matrix

T−1(x), (4.66), is separated in two parts

T−1(x) =

 T−1
u (x)

T−1
l (x)

 , (4.97)

where T−1
u (x) ∈ R3×4 and T−1

l (x) ∈ R1×4. Hence, the states of the control design model can be

formulated as


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

= T−1
u (ξ )



ρ̃1(ξ , t)

ṽ1(ξ , t)

ρ̃2(ξ , t)

ṽ2(ξ , t)


, (4.98)

w4(L, t) = T−1
l (ξ )



ρ̃1(ξ , t)

ṽ1(ξ , t)

ρ̃2(ξ , t)

ṽ2(ξ , t)


(4.99)

and the control law after applying the inverse input transformation (4.69) becomes

U(t) =−κ4e
Ĵ44
λ4

LR̄1T−1
u (L)



ρ1(L, t)−ρ∗
1

v1(L, t)− v∗1

ρ2(L, t)−ρ∗
2

v2(L, t)− v∗2


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−κ4e
Ĵ44
λ4

L
∫ L

0
K(L,ξ )T−1

u (ξ )



ρ1(ξ , t)−ρ∗
1

v1(ξ , t)− v∗1

ρ2(ξ , t)−ρ∗
2

v2(ξ , t)− v∗2


dξ

−κ4e
Ĵ44
λ4

L
∫ L

0
L11(L,ξ )T−1

l (ξ )



ρ1(ξ , t)−ρ∗
1

v1(ξ , t)− v∗1

ρ2(ξ , t)−ρ∗
2

v2(ξ , t)− v∗2


dξ (4.100)

using the definitions of the perturbations (4.10) and (4.11). The result is now summarized in the

following theorem.

Theorem 4.1. Traffic density and velocity perturbations (ρ̃1, ρ̃2, ṽ1, ṽ2) governed by the lin-

earized two-class AR traffic model (4.12), with the boundary conditions (4.22) to (4.24) and (4.37)

as well as initial profiles

ρ̃1(x,0), ṽ1(x,0), ρ̃2(x,0), ṽ2(x,0) ∈ L ∞ ([0,L]) , (4.101)

converge to the equilibrium at zero

ρ̃e,1(x)≡ ṽe,1(x)≡ ρ̃e,2(x)≡ ṽe,2(x)≡ 0 (4.102)

in finite time tF given by (4.81), if the control law (4.100) is applied. Thereby, the kernels K(x,ξ )

and L11(x,ξ ) are obtained by solving the kernel equations (4.92) and (4.93) on the triangular

domain (4.75) and using (4.91) afterwards.

The full-state feedback law in (4.100) requires measurements of the densities and veloc-

ities of both classes at every spatial point. In practice, it is possible to measure the densities and
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velocities at every spatial point by installing traffic cameras, collecting GPS data or helicopter

data recordings.

4.4 Anti-collocated boundary observer design

The installation of traffic cameras or the gain of GPS data in order to supply the full-state

feedback control (4.100) with the required in-domain measurements is expensive. Therefore, a

boundary observer design for full-state observation is proposed. In this work, an anti-collocated

boundary observer is designed, i.e. the densities and velocities of both classes are measured at

the opposite of the boundary where the control input acts. Therefore, it is assumed that only the

traffic density and velocity of both classes at the inlet of the track section

y1(t) = ρ1(0, t), (4.103)

y2(t) = v1(0, t), (4.104)

y3(t) = ρ2(0, t), (4.105)

y4(t) = v2(0, t) (4.106)

are measured. In terms of the control design model coordinates, inserting the measurements

in (4.65) yields that

ȳ(t) = w4(0, t) (4.107)

is known.

The observer states (ŵ1, ŵ2, ŵ3, ŵ4) are estimates of the control design model states
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(w1,w2,w3,w4). Thus, the observer equations become


ŵ1t

ŵ2t

ŵ3t

=−Λ+


ŵ1x

ŵ2x

ŵ3x

+Σ++(x)


ŵ1

ŵ2

ŵ3

+Σ+−(x)ŵ4

−P+(x)(ŵ4(0, t)−w4(0, t)) (4.108)

ŵ4t =Λ−ŵ4x +Σ−+(x)


ŵ1

ŵ2

ŵ3


−P−

11(x)(ŵ4(0, t)−w4(0, t)) (4.109)

where the gains of the output injections P+(x) and P−
11(x) need to be designed. The boundary

conditions of the observer are
ŵ1(0, t)

ŵ2(0, t)

ŵ3(0, t)

= Q̄0w4(0, t), (4.110)

ŵ4(L, t) = R̄1


ŵ1(L, t)

ŵ2(L, t)

ŵ3(L, t)

+Ū(t). (4.111)

As a next step, the system describing the dynamic behavior of the error between the states and

their estimations is formulated. The estimation errors are defined as

w̃i(x, t) = ŵi(x, t)−wi(x, t), i = 1,2,3,4. (4.112)

Subtracting the model equations of the control design model (4.54), (4.55), (4.61) and (4.62)
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from the observer equations (4.108), (4.109), (4.110) and (4.111) yields the following error sys-

tem 
w̃1t

w̃2t

w̃3t

=−Λ+


w̃1x

w̃2x

w̃3x

+Σ++(x)


w̃1

w̃2

w̃3


+Σ+−(x)w̃4 −P+(x)w̃4(0, t), (4.113)

w̃4t =Λ−w̃4x +Σ−+(x)


w̃1

w̃2

w̃3


−P−

11(x)w̃4(0, t) (4.114)

with the boundary conditions


w̃1(0, t)

w̃2(0, t)

w̃3(0, t)

= 0, (4.115)

w̃4(L, t) = R̄1


w̃1(L, t)

w̃2(L, t)

w̃3(L, t)

 . (4.116)

Using the backstepping method, the output injection gains can be designed such that the

error system converges to the equilibrium at zero in a finite time. Similar to the control design,

a target system and a backstepping transformation are defined in the observer design as well.

The output injections gains P+(x) and P−
11(x) are chosen such that the target converges to its

equilibrium at zero in finite time. The state of the target system is denoted as (α̃1, α̃2, α̃3, β̃ ) and

the kernels introduced in the backstepping transformation are M(x,ξ ) and N11(x,ξ ). Thus, the
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backstepping transformation is given by


w̃1(x, t)

w̃2(x, t)

w̃3(x, t)

=


α̃1(x, t)

α̃2(x, t)

α̃3(x, t)

+
∫ x

0
M(x,ξ )β̃ (ξ , t)dξ , (4.117)

w̃4(x, t) = β̃ (x, t)+
∫ x

0
N11(x,ξ )β̃ (ξ , t)dξ (4.118)

where

M(x,ξ ) =
[

m11(x,ξ ) m21(x,ξ ) m31(x,ξ )
]T

. (4.119)

The kernels M(x,ξ ) and N11(x,ξ ) are defined in the triangular domain (4.75). In addition, the

target system is defined as


α̃1t

α̃2t

α̃3t

=−Λ+


α̃1x

α̃2x

α̃3x

+Σ++(x)


α̃1

α̃2

α̃3



+
∫ x

0
D+(x,ξ )


α̃1(ξ , t)

α̃2(ξ , t)

α̃3(ξ , t)

dξ , (4.120)

β̃t =Λ−β̃x +Σ−+(x)


α̃1

α̃2

α̃3



+
∫ x

0
D−(x,ξ )


α̃1(ξ , t)

α̃2(ξ , t)

α̃3(ξ , t)

dξ (4.121)
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with the boundary conditions


α̃1(0, t)

α̃2(0, t)

α̃3(0, t)

= 0, (4.122)

β̃ (L, t) = R̄1


α̃1(L, t)

α̃2(L, t)

α̃3(L, t)

 . (4.123)

It can be shown that the target system converges in finite time tF , given by (4.81). Besides, the

coefficients D+(x,ξ ) ∈ R3×3 and D−(x,ξ ) ∈ R1×3 still need to be determined in the following.

The equations for the output injection gains P+(x) and P−(x), the kernels of the back-

stepping transformation M(x,ξ ) and N11(x,ξ ) and the coefficients in the target system D+(x,ξ )

and D−(x,ξ ) need to be deduced in a next step. The kernel equations for M(x,ξ ) and N11(x,ξ )

are

Mξ (x,ξ )Λ−−Λ+Mx(x,ξ ) =−Σ++(x)M(x,ξ )

−Σ+−(x)N11(x,ξ ), (4.124)

N11ξ (x,ξ )Λ−+Λ−N11x(x,ξ ) =−Σ−+(x)M(x,ξ ), (4.125)

M(ξ ,ξ )Λ−+Λ+M(ξ ,ξ ) =Σ+−(ξ ), (4.126)

N11(L,ξ )− R̄1M(L,ξ ) =0, (4.127)

where (4.124), (4.125) and (4.126) are obtained by inserting the transformation (4.117) and (4.118)

as well as derivatives with respect to time and space of (4.117) and (4.118) in the PDEs of the er-

ror system (4.113) and (4.114), followed by partial integration and noticing that β̃ (0, t) = w̃(0, t).

In addition, (4.127) is deduced by evaluating (4.118) at x = L, plugging in the boundary condi-

tions at the outlet of error system and target system, (4.116) and (4.123), and inserting (4.117)
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evaluated at x = L afterwards. Plugging in the expressions for Λ+, M(x,ξ ), Λ−, Σ++(x), Σ+−(x)

and Σ−+(x), yields the kernel equations in matrix form:

λ4



m11ξ (x,ξ )

m21ξ (x,ξ )

m31ξ (x,ξ )

N11ξ (x,ξ )


+



v∗2 0 0 0

0 λ3 0 0

0 0 v∗1 0

0 0 0 λ4





m11x(x,ξ )

m21x(x,ξ )

m31x(x,ξ )

N11x(x,ξ )



=



0 J̄12(x) J̄13(x) J̄14(x)

J̄21(x) 0 J̄23(x) J̄24(x)

J̄31(x) J̄32(x) 0 J̄34(x)

J̄41(x) J̄42(x) J̄43(x) 0





m11(x,ξ )

m21(x,ξ )

m31(x,ξ )

N11(x,ξ )


(4.128)

with boundary conditions at x = ξ and x = L:

m11(ξ ,ξ ) =
J̄14(ξ )
v∗2 −λ4

, (4.129)

m21(ξ ,ξ ) =
J̄24(ξ )
λ3 −λ4

, (4.130)

m31(ξ ,ξ ) =
J̄34(ξ )
v∗1 −λ4

, (4.131)

N11(L,ξ ) = R̄1


m11(L,ξ )

m21(L,ξ )

m31(L,ξ )

 . (4.132)

It can be shown that the well-posedness of the kernel equations (4.124) to (4.127) is

equivalent to the kernel equations (4.82) to (4.85). In fact, a transformation is introduced which

achieves the exact same structure as the kernel equations which are developed during the full-

state feedback design. Similar to the full-state feedback design, solving the PDE (4.125) and
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boundary condition (4.127) with the method of characteristics delivers the expression

N11(x,ξ ) =R̄1M(L,L− (x−ξ ))

+
∫ x−L

λ4

0
Σ−+(−λ4ν + x)M(−λ4ν + x,−λ4ν +ξ )dν , (4.133)

in dependence of M(x,ξ ). Inserting this result in (4.124) reduces the kernel equations to three

PDEs and three boundary conditions

0 =−Λ−Mξ (x,ξ )+Λ+Mx(x,ξ )−Σ++(x)M(x,ξ )

−Σ+−(x)R̄1M(L,L− (x−ξ ))

−Σ+−(x)
∫ x−L

λ4

0
Σ−+(x−λ4ν)M(x−λ4ν ,ξ −λ4ν)dν , (4.134)

0 =M(ξ ,ξ )Λ−+Λ+M(ξ ,ξ )−Σ+−(ξ ) (4.135)

Besides, the computation that yields the kernel equations (4.124) to (4.126) for M(x,ξ ) and

N11(x,ξ ) implies

D+(x,ξ ) =−M(x,ξ )Σ−+(ξ )+
∫ x

ξ
M(x,s)D−(s,ξ )ds, (4.136)

D−(x,ξ ) =−N11(x,ξ )Σ−+(ξ )

+
∫ x

ξ
N11(x,s)D−(s,ξ )ds, (4.137)

and

P+(x) =−λ4M(x,0), (4.138)

P−
11(x) =−λ4N11(x,0). (4.139)

Since the kernels M(x,ξ ) and N11(x,ξ ) are well-posed, (4.136) to (4.139) imply that the output

128



injection gains as well as the target system coefficients are well-posed, too. Thus, the observer

design is completed and is summarized in a theorem.

Theorem 4.2. The error states (w̃1, w̃2, w̃3, w̃4) between the observer (4.108) to (4.111) and

control design model (4.54) to (4.62) are described by (4.113) to (4.116). If the output injections

gains P+(x) and P−
11(x) are chosen as (4.138) and (4.139), where the kernel M(x,ξ ) is obtained

by the well-posed equations (4.134) and (4.135) and N11(x,ξ ) by (4.133), and the initial error

profiles are assumed to be

w̃i(x,0) ∈ L ∞ ([0,L]) , i = 1,2,3,4, (4.140)

then the errors converge to the equilibrium at zero

w̃e,i(x)≡ 0, i = 1,2,3,4 (4.141)

in the finite time tF given by (4.81).

The estimates of the observer (ŵ1, ŵ2, ŵ3, ŵ4) can be transformed to the estimates of the

density and velocity perturbations ( ˆ̃ρ1, ˆ̃v1, ˆ̃ρ2, ˆ̃v2) of both vehicle classes according to



ˆ̃ρ1

ˆ̃v1

ˆ̃ρ2

ˆ̃v2


= T (x)



ŵ1

ŵ2

ŵ3

ŵ4


. (4.142)

Furthermore, the estimates of the original state variables are obtained by

ρ̂i(x, t) = ˆ̃ρi(x, t)+ρ∗
i , (4.143)

v̂i(x, t) = ˆ̃vi(x, t)+ v∗i (4.144)
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with respect to the estimates of the densities and velocities (ρ̂1, v̂1, ρ̂2, v̂2).

4.5 Output feedback control design

So far, a full-state feedback, that requires measurements of all states at every spatial point

and damps out stop-and-go traffic, and an observer, that generates estimates of all states at every

spatial point based on a measurement at the inlet of the track section, has been designed. Both

results are combined resulting in an output feedback control. Therefore, the control law (4.100)

is reformulated in terms of the generated estimates. This is done by replacing the densities and

velocities by their estimates yielding the output feedback controller

U(t) =−κ4e
Ĵ44
λ4

LR̄1T−1
u (L)



ρ̂1(L, t)−ρ∗
1

v̂1(L, t)− v∗1

ρ̂2(L, t)−ρ∗
2

v̂2(L, t)− v∗2



−κ4e
Ĵ44
λ4

L
∫ L

0
K(L,ξ )T−1

u (ξ )



ρ̂1(ξ , t)−ρ∗
1

v̂1(ξ , t)− v∗1

ρ̂2(ξ , t)−ρ∗
2

v̂2(ξ , t)− v∗2


dξ

−κ4e
Ĵ44
λ4

L
∫ L

0
L11(L,ξ )T−1

l (ξ )



ρ̂1(ξ , t)−ρ∗
1

v̂1(ξ , t)− v∗1

ρ̂2(ξ , t)−ρ∗
2

v̂2(ξ , t)− v∗2


dξ (4.145)

where the estimates (ρ̂1, v̂1, ρ̂2, v̂2) are obtained by transforming the states of the anti-collocated

observer (4.108) to (4.111) according to (4.142), (4.143) and (4.144), the transformation matrices

T−1
u (·) and T−1

l (·) are given by (4.97), the kernel K(x,ξ ) is the solutions of (4.92) and (4.93)
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and L11(x,ξ ) is given by (4.91). Finally, the abbreviation κ4 is introduced in (4.48). This

combination of the results obtained by the first two theorems is summarized in a final third

theorem.

Theorem 4.3. The linearized two-class AR model is given by (4.12) with the assumptions (4.22)

to (4.24) and (4.37) as boundary conditions. If the control law (4.145) is applied in (4.37),

where the estimates are generated by the anti-collocated observer (4.108) to (4.111) with the

transformed control law (4.68) as input and transformation (4.142), (4.143) and (4.144) after-

wards, and the initial profiles satisfy

ρ̃1(x,0), ṽ1(x,0), ρ̃2(x,0), ṽ2(x,0) ∈ L ∞ ([0,L]) , (4.146)

then the perturbations converge to the equilibrium at zero

ρ̃e,1(x)≡ ṽe,1(x)≡ ρ̃e,2(x)≡ ṽe,2(x)≡ 0 (4.147)

in the finite time 2tF , where tF is given by (4.81). The kernels K(x,ξ ) and L11(x,ξ ) are obtained

by solving the well-posed kernel equations (4.92), (4.93) and using (4.91) and the observer

gains are given by (4.138) and (4.139), where the kernels M(x,ξ ) represents the solution of the

well-posed system of equations (4.134) and (4.135) and N11(x,ξ ) is given by (4.133).

The finite convergence time is twice as large as the time proposed in the previous the-

orems, because it requires tF to obtain correct state estimates and afterwards the control needs

another tF to achieve convergence of the state variable to equilibrium state.

4.6 Numerical simulation

The performance of the full-state feedback and output feedback control is investigated

by simulation. The linearized model equations (4.12) are approximated by using an upwind
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Table 4.1: Simulation parameters.
Name Symbol Value Unit

Relaxation time τ1 10 s
τ2 25 s

Pressure exponent γ1 2.5 1
γ2 2 1

Free-flow velocity V1 80 km/h
V2 60 km/h

Maximum AO AO1 0.9 1
AO2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 40 m2

Equilibrium density ρ∗
1 150 veh/h

ρ∗
2 75 veh/h

Track width W 6.5 m
Track length L 1000 m

Amount of grid points N 40 1

scheme. In order to achieve numerical stability, the grid sizes for the spatial coordinate and time

are chosen such that the Courant-Friedrichs-Lewy condition,

∣∣∣∣λi∆t
∆x

∣∣∣∣≤ 1, i = 1,2,3,4, (4.148)

is satisfied for all four characteristic speeds.

The assumed parameter values are stated in Table 4.1. In addition, the type of vehicles

that are represented by the vehicle classes are denoted in Table 4.2. Typically, it holds that the

larger the vehicle size the larger the relaxation time which is why τ1 < τ2. Since vehicle class

1 corresponds to smaller and faster average vehicles, the free-flow velocity V1 is higher than V2

and the highway needs to be occupied in a greater extent such that the average vehicles become

jammed, i.e. AO1 > ¯AO2. Furthermore, it is assumed that faster and smaller vehicles experience

less traffic pressure for low AO values and therefore γ1 > γ2. Finally, the equilibrium densities are

chosen such that the investigated traffic is in the congested regime. The equilibrium velocities

are determined by the choice of the equilibrium densities and result in v∗1 ≈ 38 km
h and v∗2 ≈ 20 km

h .
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Table 4.2: Traffic classes with length and width of each vehicle.
Name Class number Length Width

Average vehicle 1 5m 2m
Big trucks 2 10m 4m

Figure 4.4: Traffic density and velocity of class 1 without control.

Although v∗1 and v∗2 seem to be low, the equilibrium velocities are realistic in case of congested

traffic which is evenly distributed.

The initial profiles represent stop-and-go traffic with oscillations in density and velocity

of sinusoidal shape. The mean value of the oscillations are the equilibrium values. At spatial

points where the densities of both classes are increased, their velocities are decreased and thus

the profiles

ρi(x,0) = ρ∗
i +

ρ∗
i

4
sin
(

4π
L

x
)
, i = 1,2, (4.149)

vi(x,0) = v∗i −
v∗i
4

sin
(

4π
L

x
)
, i = 1,2 (4.150)

are assumed as initial profiles.

The simulation results of the open loop simulation are illustrated in Figure 4.4 for vehicle

class 1 and in Figure 4.5 for vehicle class 2. In each figure, the left plot shows the density of
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Figure 4.5: Traffic density and velocity of class 2 without control.

Figure 4.6: Traffic density and velocity of class 1 with full-state feedback control. The green
line indicates tF .

the corresponding vehicle class, whereas the plot on the right hand side illustrates the velocity.

The values of the states at the outlet of the track section are marked with a red line, whereas

the blue line emphasizes the initial profiles (4.149). The four plots indicate that the stop-and-go

oscillations do not vanish without the influence of control. Next, the Figures 4.6 and 4.7 illus-

trate the simulation results for the same initial condition but with activated full-state feedback

control. The green line marks the finite convergence time tF ≈ 237s. Thus, it is easy to see that
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Figure 4.7: Traffic density and velocity of class 2 with full-state feedback control. The green
line indicates tF .

Figure 4.8: Traffic density and velocity of class 1 with output feedback control. The green line
indicates 2tF .

the convergence to the constant equilibrium profile in tF is achieved. Finally, Figure 4.8 and

Figure 4.9 show the simulation results for the initial profiles using the designed output feedback

control. Since the observer requires tF to estimate the states without error and afterwards the

controller needs tF to achieve finite time convergence, the total finite convergence time is now

2tF ≈ 474s and therefore green line is adjusted accordingly.
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Figure 4.9: Traffic density and velocity of class 2 with output feedback control. The green line
indiciates 2tF .

4.7 Conclusion

This chapter discusses ramp metering control for the linearized Two-Class Aw-Rascle

Traffic model in order to damp out stop-and-go traffic in the congested regime upstream. The

concept of area occupancy is used to model the coupling between the vehicle classes and is

described by its own driving behavior and average vehicle size. The model equations consist out

of four coupled hyperbolic PDEs whose characteristic speeds are analyzed in order to investigate

whether a specific linearization point and parameter values represent a scenario of congested

traffic. It is explained that only one of the characteristic speeds may have a negative sign causing

information propagating upstream. The UORM control design model is deduced by applying

two transformations to the linearized model equations resulting in a simplified representation of

the model in Riemann coordinates. First, a full-state feedback controller is designed by using

the backstepping technique. The controller achieves finite time damping of stop-and-go traffic.

The uncollocated boundary observer is developed which generates estimates of the based on a

measurement of the density and velocity of each class only at the inlet of the investigated track

section. The full-state feedback and the observer are combined to an output feedback controller
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achieving the elimination of stop-and-go traffic only by the measurement at the inlet of the track

section in finite time.

This work leads to some interesting topics that could be explored in future. First, it is

typically preferred that the measurement for the observer is at the same spot where the control

input acts on the system. Therefore, the design of the collocated observer is a result of great

interest. In addition, the extended AR traffic model presented in [87] is formulated for n classes

and there are results for n+m heterodirectional behaving linear PDEs in the literature which

enables the extension to more than two classes and hence even more realistic considerations.

Especially the definition of the congestion boundary in case of three or more classes would be

an interesting result. Finally, a combination of the results presented in this work with the results

regarding two lanes [122] is of interest for further research.

Chapter 4 contains reprints and adaptations of the following paper: M. Burkhardt, H. Yu

and M. Krstic, “Traffic Congestion Control of Two-Class Aw-Rascle Model,” Automatica, under

review. The dissertation author is the primary investigator and author of this paper.
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Chapter 5

Bilateral Control of Moving Traffic

Shockwave

We develop backstepping state feedback control to stabilize a moving shockwave in a

freeway segment under bilateral boundary actuations of traffic flow. A moving shockwave, con-

sisting of light traffic upstream of the shockwave and heavy traffic downstream, is usually caused

by changes of local road situations. The density discontinuity travels upstream and drivers caught

in the shockwave experience transitions from free to congested traffic. Boundary control design

in this paper brings the moving shockwave front to a static setpoint position, hindering the up-

stream propagation of traffic congestion. The traffic dynamics are described with LWR model,

leading to a system of two first-order PDEs. Each represents the traffic density of a spatial

domain segregated by the moving interface. By Rankine-Hugoniot condition, the interface posi-

tion is driven by flux discontinuity and thus governed by a PDE state dependent ODE. For the

PDE-ODE coupled system. the control objective is to stabilize both the PDE states of traffic den-

sity and the ODE state of moving shock position to setpoint values. Using delay representation

and backstepping method, we design predictor feedback controllers to cooperatively compen-

sate state-dependent input delays to the ODE. From Lyapunov stability analysis, we show local
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free congested
D
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Figure 5.1: Traffic moving shockwave front on freeway, the arrows represent propagation direc-
tions of density variations. In LWR model, the propagation directions are given by the character-
istic speeds of density Q′(ρ).

stability of the closed-loop system in H1 norm. The performance of controllers is demonstrated

by numerical simulation.

The outline of this chapter: we introduce the LWR model in section to describe the

moving shockwave problem. Then we linearized the coupled PDE-ODE model around steady

states. The predictor state feedback control design follows and using Lyapunov analysis, we

prove the local exponential stability of the closed-loop system. Model validity is guaranteed

with the control design. In the end, the result is validated with numerical simulations.

5.1 LWR traffic model

The moving shockwave front is the head of a shockwave, segregating traffic on a segment

of freeway into two different schemes. The upstream traffic of the shockwave front is in free

regime and the downstream is in congested regime, as shown in Fig.1. The traffic densities are

described with the first-order macroscopic LWR model.

In LWR model, traffic density ρ(x, t) is governed by the following first-order nonlinear
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⇢f ⇢c⇢jump

Figure 5.2: Fundamental digram of traffic density and traffic flux relation

hyperbolic PDE, where x ∈ [0,L], t ∈ [0,∞),

∂tρ +Q′(ρ)∂xρ =0, (5.1)

where Q(ρ) is a fundamental diagram which shows the relation of equilibrium density and traffic

flux. The fundamental diagram Q(ρ) is defined as Q(ρ) = ρV (ρ). The equilibrium velocity

V (ρ) is a decreasing function of density. We choose the following Greenshield’s model for V (ρ)

in which velocity is a linear decreasing function of density.

V (ρ) = vm

(
1− ρ

ρm

)
. (5.2)

where vm is the maximum speed, ρm is the maximum density. Greenshield’s model V (ρ) yields

that the fundamental diagram Q(ρ) is a quadratic map, shown in Fig. 5.2. The jump density

ρjump segregates densities into two sections, the density smaller than ρ jump is defined as free-

regime while the density greater than ρjump is defined as congested regime.
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In the LWR PDE (5.1), density variations propagate with the characteristic speed Q′(ρ).

The free regime with light traffic, equivalently, ρf < ρjump, has its density variations transported

downstream with

Q′(ρ)|ρ=ρf =V (ρf)+ρfV ′(ρf)> 0, (5.3)

while the congested regime with denser traffic, namely, ρc > ρjump has its density variations

transported upstream with

Q′(ρ)|ρ=ρc =V (ρc)+ρcV ′(ρc)< 0. (5.4)

As shown in figure Fig. 5.1, the moving shockwave considered here is the shock of a traffic wave

which physically represents the discontinuity of density. The congested traffic density propagates

upstream while the light traffic density propagates downstream. Therefore, the upstream front

of the shockwave becomes steeper in propagation and eventually, the gradient ∂xρ tends to be

infinity [105]. In this context, drivers located in the upstream front of the shock will experience

transition from free to congested traffic. The position of the shockwave front is later defined by

an ODE according to Rankine-Hugoniot condition.

5.2 Moving shockwave model

The moving shockwave model consists of upstream, downstream traffic densities and a

moving interface located at the density discontinuity spatial coordinate. The dynamics of the

upstream free traffic, the downstream congested traffic and the position of the moving interface

are presented below, respectively.

Define the traffic density of the congested regime as ρc(x, t) for x ∈ [0, l(t)], t ∈ [0,+∞],

and the free regime as ρf(x, t), for x ∈ [l(t),L], t ∈ [0,+∞], the LWR model that describes the
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traffic is given by

∂tρf +∂x(ρfvf) =0, x ∈ [0, l(t)] (5.5)

∂tρc +∂x(ρcvc) =0, x ∈ [l(t),L] (5.6)

where l(t) ∈ [0,L] is the location of moving interface. The density and velocity relation is given

by Greenshield’s model in (5.2), (i = f,c),

vi(x, t) =Vi(ρi(x, t)) = vm

(
1− ρi(x, t)

ρm

)
. (5.7)

Due to the flux discontinuity at the moving boundary, a traveling vehicle leaves the free regime

to enter the congested regime. Dynamics of moving interface l(t) is derived under the Rankine-

Hugoniot condition which guarantees that the mass of traffic flow is conserved at the moving

interface. The upstream propagation of the shockwave front is driven by the flux discontinuity.

l̇(t) =
ρc(l(t), t)vc(l(t), t)−ρf(l(t), t)vf(l(t), t)

ρc(l(t), t)−ρf(l(t), t)
, (5.8)

where the initial position of the shockwave front 0 < l(0) < L. The following inequalities for

initial conditions of PDEs (5.5),(5.6) are assumed

ρc(l(0),0)vc(l(0),0)<ρf(l(0),0)vf(l(0),0), (5.9)

ρc(l(0),0)>ρf(l(0),0). (5.10)

Initially, the traffic downstream the interface is denser but with a smaller flux which lets less

vehicles to pass through while the traffic upstream is light and let more vehicles to come in

the segment. With the above assumptions to hold, we obtain from (5.8) that l̇(0) < 0. The
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moving interface is traveling upstream and is driven by a flux difference induced by the density

discontinuity.

Substituting density-velocity relation in (5.7) into (5.5),(5.6), and (5.8), we have two

nonlinear PDEs and an ODE coupled system describing the dynamics of ρf(x, t), ρc(x, t) and

l(t) given by

∂tρf(x, t) =− vm∂x

(
ρf(x, t)−

ρ2
f (x, t)
ρm

)
, (5.11)

∂tρc(x, t) =− vm∂x

(
ρc(x, t)−

ρ2
c (x, t)
ρm

)
, (5.12)

l̇(t) =vm − vm

ρm
(ρc(l(t), t)+ρf(l(t), t)). (5.13)

Remark 5.1. For model validity, we assume that there exists a constant L > 0 such that the ODE

state l(t) satisfies

0 < l(t)< L, (5.14)

so that (5.11),(5.12), and (5.13) are well-defined for x ∈ [0,L], t ∈ [0,+∞]. We emphasize that

the proposed control law needs to guarantee the above condition.

Our control objective is to stabilize both free and congested regime traffic ρi(x, t) to

uniform steady states ρ⋆
i and at the same time, the moving interface l(t) to a desirable static

setpoint l⋆. Therefore, the shockwave becomes standstill within the freeway segment instead of

moving upstream.

We consider the following controlled boundary condition for the nonlinear coupled PDE-

ODE system consisting of (5.11), (5.12), and (5.13)

ρf(0, t) =Uin(t)+ρ⋆
f , (5.15)

ρc(L, t) =Uout(t)+ρ⋆
c , (5.16)
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where we control the incoming and outgoing density variations of the freeway segment Uin(t)

and Uout(t). The control of density can be realized with on-ramp metering actuating the flux at

both boundaries:

qin(t) =Q(ρf(0, t)), (5.17)

qout(t) =Q(ρc(L, t)). (5.18)

Now, we linearize the coupled PDE-ODE model (ρf(x, t),ρc(x, t), l(t))-system defined in

(5.11),(5.12) and (5.13) around steady states and setpoint (ρ⋆
f ,ρ

⋆
c , l

⋆). The constant equilibrium

setpoint values are chosen so that the following conditions that ensure the model validity hold

0 < ρ⋆
f < ρjump < ρ⋆

c < ρm, (5.19)

0 < l⋆ < L. (5.20)

At steady-state, the flux equilibrium needs to be achieved for both sides of the moving interface.

Hence,

ρ⋆
f V (ρ⋆

f ) = ρ⋆
c V (ρ⋆

c ). (5.21)

Using condition (5.21), the quadratic fundamental diagram yields that

ρ⋆
f +ρ⋆

c = ρm. (5.22)

Define the state deviations from the system reference as

ρ̃i(x, t) =ρi(x, t)−ρ⋆
i , (5.23)

X(t) =l(t)− l⋆, (5.24)

144



where Ẋ(t) = l̇(t) is satisfied.

The linearized PDE-ODE model (5.11)-(5.13) with the boundary conditions (5.15) and

(5.16) around the system reference (ρ⋆
f ,ρ

⋆
c , l

⋆) is defined as the following (ρ̃f(x, t), ρ̃c(x, t),X(t))-

system

∂t ρ̃f(x, t) =−u∂xρ̃f(x, t), x ∈ [0, l(t)] (5.25)

∂t ρ̃c(x, t) =u∂xρ̃c(x, t), x ∈ [l(t),L] (5.26)

ρ̃f(0, t) =Uin(t), (5.27)

ρ̃c(L, t) =Uout(t), (5.28)

Ẋ(t) =−b(ρ̃f(l(t), t)+ ρ̃c(l(t), t)) , (5.29)

where the transport speed is defined as

u = vm

(
1−

2ρ⋆
f

ρm

)
, (5.30)

and satisfy 0 < u < vm. The constant coefficient b in ODE is defined as

b =
vm

ρm
> 0. (5.31)

The linearized model (5.25)-(5.29) is a PDE-ODE coupled system with bilateral boundary con-

trol inputs from inlet and outlet.

5.3 Predictor-based control design

In this section, we first introduce the equivalent delay system representation to the system

(5.25)-(5.29). Then, a backstepping transformation is applied to obtain predictor-based state

feedback controls to compensate the PDE state-dependent delays to the ODE.
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5.3.1 Coupled PDE-ODE to delay system representation

The system (5.25)-(5.29) can be represented by an unstable ODE with two distinct state-

dependent input delays. Introduce the following state-dependent delays for the two transport

PDEs

Df(t) =
l(t)
u

, (5.32)

Dc(t) =
L− l(t)

u
, (5.33)

where l(t) = X(t)+ l⋆. The PDE states are represented by

ρ̃f(l(t), t) =Uin (t −Df(t)) , (5.34)

ρ̃c(l(t), t) =Uout (t −Dc(t)) , (5.35)

where Uin(t) and Uout(t) are the boundary control inputs defined in (5.27) and (5.28). Substi-

tuting (5.34) and (5.35) into the ODE (5.29), the following state-dependent input delay system

representation is derived

Ẋ(t) =−b(Uin(t −Df(X(t)))+Uout(t −Dc(X(t))) . (5.36)

Remark 5.2. If the position of the moving shock front is close to the inlet half segment such

that l(t) ∈
[
0, L

2

]
, it holds that ∀t ∈ [0,∞), Df(t) ≤ Dc(t). As a result, delayed inlet control

input Uin (t −Df(t)) reaches the moving shock front faster than delayed outlet control input

Uout (t −Dc(t)). If l(t) ∈
[L

2 ,L
]
, ∀t ∈ [0,∞), Df(t)≥ Dc(t) holds. Then Uout (t −Dc(t)) reaches

the moving shock front faster than Uin (t −Df(t)).
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We introduce a new coordinate z defined as

z =


l(t)− x

u
, x ∈ [0, l(t)],

x− l(t)
u

, x ∈ [l(t),L],
(5.37)

and new variables ρ̃f(z, t) and ρ̃c(z, t) defined in z-coordinate. The transformations between

ρ̃f(x, t), ρ̃c(x, t) and ρ̃f(z, t), ρ̃c(z, t) are given by

ρ̃f(z, t) =ρ̃f(l(t)−uz, t), z ∈ [0,Df(t)], (5.38)

ρ̃c(z, t) =ρ̃c(l(t)+uz, t), z ∈ [0,Dc(t)], (5.39)

and the associated inverse transformations of (5.38) and (5.39) are given by

ρ̃f(x, t) =ρ̃f

(
l(t)− x

u
, t
)
, x ∈ [0, l(t)], (5.40)

ρ̃c(x, t) =ρ̃c

(
x− l(t)

u
, t
)
, x ∈ [l(t),L]. (5.41)

Using (5.38) and (5.39), the original system (5.25)-(5.29) is rewritten in the new z-coordinate as

∂t ρ̃f(z, t) =
(

1− l̇(t)
u

)
∂zρ̃f(z, t), z ∈ [0,Df(t)], (5.42)

∂t ρ̃c(z, t) =
(

1+
l̇(t)
u

)
∂zρ̃c(z, t), z ∈ [0,Dc(t)], (5.43)

ρ̃f(Df(t), t) =Uin(t), (5.44)

ρ̃c(Dc(t), t) =Uout(t), (5.45)

with the ODE given by

Ẋ(t) =−b(ρ̃f(0, t)+ ρ̃c(0, t)) . (5.46)
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5.3.2 Predictor-based backstepping transformation

We consider the following backstepping transformation, motivated by the predictor-based

transformation for delay representation ρf(z, t) and ρc(z, t) defined in (5.42)-(5.45),

wf(z, t) =ρ̃f(z, t)−Kf

(
X(t)−b

∫ z

0
ρ̃f(ξ , t)dξ

−b
∫ min{Dc(t),z}

0
ρ̃c(ξ , t)dξ

)
, z ∈ [0,Df(t)], (5.47)

wc(z, t) =ρ̃c(z, t)−Kc

(
X(t)−b

∫ z

0
ρ̃c(ξ , t)dξ

−b
∫ min{Df(t),z}

0
ρ̃f(ξ , t)dξ

)
, z ∈ [0,Dc(t)]. (5.48)

where Kf,Kc > 0 are positive constant gain kernels.

The above transformation in the original PDE state variables ρf(x, t) for x ∈ [0, l(t)] and

ρc(x, t) for x ∈ [l(t),L], is given by

wf(x, t) =ρ̃f(x, t)−Kf

(
X(t)− b

u

∫ l(t)

x
ρ̃f(ξ , t)dξ

−b
u

∫ min{L,2l(t)−x}

l(t)
ρ̃c(ξ , t)dξ

)
, x ∈ [0, l(t)], (5.49)

wc(x, t) =ρ̃c(x, t)−Kc

(
X(t)− b

u

∫ x

l(t)
ρ̃c(ξ , t)dξ

−b
u

∫ l(t)

max{0,2l(t)−x}
ρ̃f(ξ , t)dξ

)
, x ∈ [l(t),L]. (5.50)

• For the case Df(t)≤ Dc(t), it follows that l(t) ∈
[
0, L

2

]
and the following holds

x ∈ [0, l(t)] =⇒ min{L,2l(t)− x}= 2l(t)− x. (5.51)
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• For the case Df(t)≥ Dc(t), it follows that l(t) ∈
[L

2 ,L
]
, the following holds

x ∈ [l(t),L] =⇒ max{0,2l(t)− x}= 2l(t)− x. (5.52)

Later on, two pairs of state feedback controllers are obtained respectively for l(t) ∈
[
0, L

2

]
and

l(t) ∈
[L

2 ,L
]
. The inverse transformation of (5.49),(5.50) is given by

ρ̃f(x, t) =wf(x, t)+Kf

(
X(t)− b

u

∫ l(t)

x
wf(ξ , t)dξ

−b
u

∫ min{L,2l(t)−x}

l(t)
wc(ξ , t)dξ

)
, x ∈ [0, l(t)], (5.53)

ρ̃c(x, t) =wc(x, t)+Kc

(
X(t)− b

u

∫ x

l(t)
wc(ξ , t)dξ

−b
u

∫ l(t)

max{0,2l(t)−x}
wf(ξ , t)dξ

)
, x ∈ [l(t),L]. (5.54)

Let us denote the above transformations as

ρ̃f = Tf[wf,wc], (5.55)

ρ̃c = Tc[wf,wc]. (5.56)

At the moving interface, we have

wf(l(t), t) =ρ̃f(l(t), t)−KfX(t), (5.57)

wc(l(t), t) =ρ̃c(l(t), t)−KcX(t). (5.58)

Taking temporal and spatial derivative on both sides of (5.49),(5.50) and substituting into the

149



PDE-ODE original system (5.25)-(5.29), we obtain target system by wf(x, t) and wc(x, t),

∂twf +u∂xwf =
Kfb
u

l̇(t)(g(t)+2εc(x, t)), x ∈ [0, l(t)], (5.59)

∂twc −u∂xwc =
Kcb

u
l̇(t)(g(t)−2εf(x, t)), x ∈ [l(t),L], (5.60)

wf(0, t) =0, (5.61)

wc(L, t) =0, (5.62)

Ẋ(t) =−aX(t)−b(wc(l(t), t)+wf(l(t), t)) , (5.63)

where the constant coefficient a = b(Kf +Kc) > 0 is obtained by substituting (5.57),(5.58) into

(5.29), given b,Kf,Kc > 0. The time-varying term g(t) is defined as

g(t) =(Kf −Kc)X(t)+wf(l(t), t)−wc(l(t), t), (5.64)

and the space and time-varying terms εc(x, t) and εf(x, t) are given by

εc(x, t) =ρ̃c(2l(t)− x, t)

=Tc[wf,wc](2l(t)− x, t), (5.65)

εf(x, t) =ρ̃f(2l(t)− x, t)

=Tf[wf,wc](2l(t)− x, t). (5.66)

We assume that densities outside freeway segment [0,L] are at steady states, therefore ρ̃c(2l(t)−

x, t) = 0 when 2l(t)− x > L, and ρ̃f(2l(t)− x, t) = 0 when 2l(t)− x < 0. Hence, the followings

hold for εf(x, t) and εc(x, t),
εf(x, t) = 0, l(t) ∈ [0,L/2] and x ∈ [2l(t),L],

εc(x, t) = 0, l(t) ∈ [L/2,L] and x ∈ [0,2l(t)−L].
(5.67)
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Otherwise, εf(x, t) and εc(x, t) are given by expressions in (5.65) and (5.66). The bilateral state

feedback boundary actuations for inlet and outlet of the segment are derived from (5.49),(5.50)

and (5.61),(5.62) as

Uin(t) =Kf

(
X(t)− b

u

∫ l(t)

0
ρ̃f(ξ , t)dξ − b

u

∫ min{L,2l(t)}

l(t)
ρ̃c(ξ , t)dξ

)
, (5.68)

Uout(t) =Kc

(
X(t)− b

u

∫ L

l(t)
ρ̃c(ξ , t)dξ − b

u

∫ l(t)

max{0,2l(t)−L}
ρ̃f(ξ , t)dξ

)
. (5.69)

We obtain two pairs of controller designs for l(t) ∈
[
0, L

2

]
and l(t) ∈

[L
2 ,L
]
, respectively. When

l(t) ∈
[
0, L

2

]
, it holds true that min{L,2l(t)} = 2l(t),max{0,2l(t)−L} = 0 and when l(t) ∈[L

2 ,L
]

one gets min{L,2l(t)}= L,max{0,2l(t)− x}= 2l(t).

In addition, when l(t) = L
2 , controller integral forms become identical for l(t) ∈

[
0, L

2

]
and l(t) ∈

[L
2 ,L
]
:

Uin(t) =Kf

(
X(t)− b

u

∫ L
2

0
ρ̃f(ξ , t)dξ − b

u

∫ L

L
2

ρ̃c(ξ , t)dξ

)
, (5.70)

Uout(t) =Kc

(
X(t)− b

u

∫ L
2

0
ρ̃f(ξ , t)dξ − b

u

∫ L

L
2

ρ̃c(ξ , t)dξ

)
. (5.71)

It is remarkable that the bilateral control input smoothly switches between the above control

laws when the moving interface position passes through the middle of the freeway segment.

Due to the invertibility of the transformation in (5.49),(5.50), stability of the target system

(wc(x, t),wf(x, t),X(t)) and stability the plant (ρ̃f(x, t), ρ̃c(x, t),X(t)) are equivalent. In the next

section, we apply Lyapunov analysis to prove the stability of the target system. Define the H1-

norm || f (·, t)||H1
[a,b]

as

|| f (·, t)||H1
[a,b]

=

(∫ b

a
f 2(x, t)+ f 2

x (x, t)dx
)1/2

. (5.72)
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We now state the main result of the chapter.

Theorem 5.3. Consider a closed-loop system consisting of the PDE-ODE system (5.11)-(6.77)

and the bilateral full-state feedback control laws for inlet and outlet (5.68),(5.69). For any

system reference (ρ⋆
f ,ρ

⋆
c , l

⋆) which satisfies conditions (5.19),(5.20) and (5.22) , and for any

given L > 0, there exist c > 0, γ > 0, ζ > 0 such that if the initial conditions of the system

(ρf(x,0),ρc(x,0), l(0)) satisfy Z(0) < ζ , local exponential stability of the closed-loop system

with bilateral control laws holds ∀t ∈ [0,∞), namely,

Z(t)≤ ce−γtZ(0), (5.73)

where Z(t) is defined as

Z(t) =||ρf(x, t)−ρ⋆
f ||H1

[0,l(t)]
+ ||ρc(x, t)−ρ⋆

c ||H1
[l(t),L]

+ |l(t)− l⋆|2,

and condition (5.14) is satisfied for model validity.

5.4 Lyapunov stability analysis

In the proof, the local stability of the closed-loop system in the H1 sense is shown with

Lyapunov analysis and the following condition of model validity (5.14) is guaranteed by our

control design. The proof of Theorem 5.3 is established through following steps: we firstly prove

the local stability of the target system (5.59)-(5.63) for a given time interval ∀t ∈ [0, t⋆) under the

assumption that condition (5.14) is satisfied. Then we prove that with initial conditions of states

variables bounded, the local exponential stability of the above target system holds for ∀t ∈ [0,∞)

with the assumption removed. This is achieved by comparison principle and contradiction proof

in Lemma 5.6. In the end, the stability analysis of the target system leads to stability of the

original PDE-ODE system in (5.11)-(6.77).
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Let us define the Lyapunov functional

V (t) =V1(t)+V2(t)+λV3(t)+λV4(t)+V5(t), (5.74)

where λ > 0 with the component Lyapunov functions

V1(t) =
∫ l(t)

0
e−xw2

f (x, t)dx, (5.75)

V2(t) =
∫ L

l(t)
ex−Lw2

c(x, t)dx, (5.76)

V3(t) =
∫ l(t)

0
e−x∂xw2

f (x, t)dx, (5.77)

V4(t) =
∫ L

l(t)
ex−L∂xw2

c(x, t)dx, (5.78)

V5(t) =X(t)2. (5.79)

Lemma 5.4. Assume ∃t⋆ > 0 such that the condition in (5.14) is satisfied, then there exists σ > 0

such that the following holds ∀t ∈ [0, t⋆),

V̇ (t)≤−σV + τV 3/2. (5.80)

Proof. Taking time derivative of the Lyapunov function (5.74) along the solution of the target

system (5.59)-(5.63), we have

V̇1(t)=−u
∫ l(t)

0
e−xw2

f (x, t)dx−(u−l̇(t))e−l(t)w2
f (l(t), t)

+
2Kfb

u
l̇(t)g(t)

∫ l(t)

0
e−xwf(x, t)dx

+
4Kfb

u
l̇(t)

∫ l(t)

0
e−xεc(x, t)wf(x, t)dx, (5.81)

V̇2(t)=−u
∫ L

l(t)
ex−Lw2

c(x, t)dx− (u+l̇(t))el(t)−Lw2
c(l(t), t)
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+
2Kcb

u
l̇(t)g(t)

∫ L

l(t)
ex−Lwc(x, t)dx

− 4Kcb
u

l̇(t)
∫ L

l(t)
ex−Lεf(x, t)wc(x, t)dx, (5.82)

V̇3(t) =−u
∫ l(t)

0
e−x∂xw2

f (x, t)dx

− (u− l̇(t))e−l(t)∂xw2
f (l(t), t)+u∂xw2

f (0, t)

+
4Kfb

u
l̇(t)

∫ l(t)

0
e−x∂xεc(x, t)∂xwf(x, t)dx, (5.83)

V̇4(t) =−u
∫ L

l(t)
ex−L∂xw2

c(x, t)dx

− (u+ l̇(t))el(t)−L∂xw2
c(l(t), t)+u∂xw2

c(L, t)

− 4Kcb
u

l̇(t)
∫ L

l(t)
ex−L∂xεc(x, t)∂xwc(x, t)dx, (5.84)

V̇5(t) =−aX(t)2 −b(wc(l(t), t)+wf(l(t), t))X(t). (5.85)

By Agmon’s inequality, the followings hold

w2
f (l(t), t)≤ ||wf||2∞ ≤ 4||∂xwf||22 = 4V3, (5.86)

w2
c(l(t), t)≤ ||wc||2∞ ≤ 4||∂xwc||22 = 4V4. (5.87)

Plugging the above inequalities into the ODE (5.63) yields that there exists δ > 0 such that

|l̇(t)|< a
√

V5 +b(
√

V3 +
√

V4)

< δ
√

V . (5.88)

Using Young’s inequality, Cauchy-Schwarz inequality for (5.64) and (5.86),(5.87), we have

g(t)2 ≤ µ1V3 +µ2V4 +µ3V5, (5.89)
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where µ j > 0, j = 1,2,3. By definition of εc(x, t) in (5.65), there exist ηk > 0, k = 1,2,4 such

that

∫ l(t)

0
ε2

c (x, t)dx ≤ η1V1 +η2V2 +η4V4. (5.90)

It follows that

V̇1(t)≤−uV1 + |l̇(t)|w2
f (l(t), t)

+
2Kfb

u
|l̇(t)|

(
g2(t)+

∫ l(t)

0
w2

f (x, t)dx
)

+
4Kfb

u
|l̇(t)|

(∫ l(t)

0
ε2

c (x, t)dx+
∫ l(t)

0
w2

f (x, t)dx
)
, (5.91)

Plugging (5.86) and (5.88)-(5.90) into the above inequality, there exists κ1 > 0 such that

V̇1(t)≤−uV1 +κ1V 3/2, (5.92)

Taking total time derivative of boundary condition (5.61) yields,

∂xwf(0, t) =
Kfb
u2 l̇(t)(g(t)+2εc(0, t)), (5.93)

Given definition of εc(x, t) in (5.65), there exist ν0, ν > 0 such that

εc(0, t)< ν0V, (5.94)∫ l(t)

0
∂xε2

c (x, t)< νV. (5.95)

Using Young’s inequality and plugging (5.89) and (5.94) into (5.93), we obtain that there exists
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θ > 0 such that

∂xw2
f (0, t)≤

Kcb
u2 |l̇(t)|

(
g2(t)+4ε2

c (0, t)
)

< θV 3/2, (5.96)

Plugging (5.86), (5.88), (5.95) and (5.96) into (5.83), we obtain that there exists κ3 > 0 such

that

V̇3(t)≤−uV3 +κ3V 3/2. (5.97)

In the same fashion, we could obtain that there exist κ2,κ4 > 0 such that

V̇2(t)≤−uV2 +κ2V 3/2, (5.98)

V̇4(t)≤−uV4 +κ4V 3/2, (5.99)

For the last Lyapunov component, the following holds

V̇5(t)≤−aV5 +
4b
a

V3 +
4b
a

V4. (5.100)

Using inequalities (5.92) and (5.97)-(5.100) into (5.74), it follows that

V̇ (t)≤−uV1 −uV2 −
(

λu− 4b
a

)
V3

−
(

λu− 4b
a

)
V4 −aV5 + τV 3/2. (5.101)

where τ = κ1 +κ2 +λκ3 +λκ4 > 0. We choose λ such that

λ >
4b
au

, (5.102)

156



thus it holds that for σ = min
{

u− 4b
λa ,a

}
,

V̇ (t)≤−σV + τV 3/2. (5.103)

Lemma 5.5. According to (5.80), for any σ0 such that 0 < σ0 < σ , there exists δ0 > 0 such that

for any V (0)< δ0,

τ|V 3/2|< (σ −σ0)V (5.104)

and,

V̇ (t)≤−σ0V. (5.105)

By comparison principle, the exponential stability is satisfied that ∀t ∈ [0, t⋆),

V (t)≤V (0)e−σ0t < δ0. (5.106)

Lemma 5.6. If the initial conditions of the target system (wf(x,0),wc(x,0),X(0)) satisfy the

following

V (0)≤ min{δ0,δ1}, (5.107)

where the positive constant δ1 is defined as

δ1 = min
{
(L− l⋆)2, l⋆

}
. (5.108)

Then Lyapunov functional inequality (5.105) and condition (5.14) hold for t ∈ [0,∞).
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Proof. We assume that there exists t⋆ > 0 such that condition (5.14) is satisfied for t ∈ [0, t⋆) but

is violated at t = t⋆. Given (5.107) and by comparison principle, the following inequality holds

V (t⋆)≤V (0)< δ1. (5.109)

According to the definition of V (t) in (5.74), we obtain that

X2(t⋆)<V (t⋆). (5.110)

Combining (5.108) and (5.109), we have

X2(t⋆)< δ1 = min
{
(L− l⋆)2,(l⋆)2} . (5.111)

Since l(t⋆) = X(t⋆)+ l⋆ and 0 < l⋆ < L, we obtain from (5.111) that

0 < l(t⋆)< L. (5.112)

We conclude that (5.112) contradicts the assumption that (5.14) is violated at t = t⋆. Therefore,

the condition (5.14) is guaranteed for t ∈ [0,∞) when the initial condition V (0) satisfies (5.107).

This completes the proof Lemma 5.6.

Due to invertibility of the transformation in (5.49),(5.50), we conclude that the system

(5.25)-(5.29) with control laws (5.68),(5.69) is locally exponentially stable in the H1 norm,

which completes the proof of Theorem 5.3.

5.5 Simulation

We simulate the previous control design considering a moving traffic shockwave in a 500-

meter freeway segment. The initial condition of the traffic profile and the desirable target traffic
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Figure 5.3: Traffic density profiles for initial condition with a soft shockwave and target system
on freeway.
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Figure 5.4: Evolution of the moving interface position l(t) for open-loop system and for closed-
loop system with bilateral boundary control.

profile ρ⋆
f = 32 vehs/km,ρ⋆

c = 128 vehs/km, l⋆ = 200 m,ρjump = 80 vehs/km are shown in Fig.

5.3, where the position of the shockwave front is initially located at 330-meter and the final

setpoint location is at 200-meter. The initial position of the shockwave front is in the right-half

plane of the segment while its final position is located at the left-half plane of the segment. The

control objective is to regulate PDE states and ODE state from the initial profile to the reference

profile.
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Figure 5.5: Evolution of bilateral control inputs over time.

In Fig. 5.4, after around 40s, the moving interface position stops at the setpoint location

l = 200 m with bilateral control while in open-loop system it propagates upstream and travels

out of the freeway segment before 1 min. In Fig. 5.5, one can observe that the bilateral control

signals, the control inputs also converge to zeros after around 40s.

5.6 Conclusion

This chapter addresses boundary feedback control problem of moving shockwave in con-

gested traffic described by an PDE-ODE system. To stabilize the coupled system to a desired

setpoint, we use predictor-based backstepping method to transform the state-dependent PDE-

ODE coupled system to a target system, where the PDE state-dependent input delays to ODE

are compensated by the bilateral boundary control inputs to PDEs. Actuations of traffic densities

at both boundaries are considered. The local exponential stability in H1 norm is achieved and

the model validity is guaranteed with the control designs. For future work, general theoretical re-

sults on multiple PDEs state-dependent input delays cascading to a nonlinear ODE is of authors’

interest.
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Chapter 6

Extremum Seeking Control of

Downstream Traffic Bottleneck

We develop boundary control for freeway traffic with a downstream bottleneck. Traffic

on a freeway segment with capacity drop at outlet of the segment is a common phenomenon lead-

ing to traffic bottleneck problem. The capacity drop can be caused by lane-drop, hills, tunnel,

bridge or curvature on the road. If incoming traffic flow remains unchanged, traffic congestion

forms upstream of the bottleneck due to outgoing traffic overflowing its capacity. Therefore, it is

important for us to regulate the incoming traffic flow of the segment so that the outgoing traffic

at the bottleneck can be discharged with the maximum flow rate. Traffic densities on the freeway

segment are described with LWR macroscopic PDE model. To prevent the traffic congestion

forming upstream of the bottleneck, incoming flow at the inlet of the freeway segment is con-

trolled so that the optimal density could be achieved to maximize the outgoing flow and not to

surpass the capacity at outlet. The density and traffic flow relation, described with fundamental

diagram, is assumed to be unknown at the bottleneck area. We tackle this problem using ES

Control with delay compensation for LWR PDE. ES control, a non-model based approach for

real-time optimization, is adopted to find the optimal density for the unknown fundamental dia-
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gram. A predictor feedback control design is proposed to compensate the delay effect of traffic

dynamics in the freeway segment. In the end, simulation results validate a desired performance

of the controller on the nonlinear LWR model with an unknown fundamental diagram.

The outline of this chapter: we firstly introduce LWR PDE model for the freeway seg-

ment upstream of bottleneck and describe density-flow relation at bottleneck with a nonlinear

map. For the linearized error system, we design a predictor feedback control law with delay

compensation. Stability analysis is conducted for the closed-loop system using backstepping

transformation and averaging approach. To illustrate our result, simulation is performed on the

nonlinear LWR PDE model and a quadratic fundamental diagram is considered. The conclusion

and discussion of future work are given in the end.

6.1 Downstream bottleneck problem

We consider a traffic problem on a freeway-segment with lane drop downstream of the

segment. The freeway segment upstream of the bottleneck and the lane-drop area are shown in

Fig. 6.1 which illustrates the clear Zone C and the bottleneck Zone B respectively. To prevent the

traffic in Zone B overflowing its capacity and then causing congestion in the freeway segment,

we aim to find out the optimal density ahead of Zone C that maximizes outgoing flux of Zone B

given unknown density-flow relation. Traffic dynamics in Zone C is described with macroscopic

traffic model for aggregated values of traffic density. The traffic dynamics in lane-drop Zone B

is usually difficult to describe with mathematical model and thus assumes that the fundamental

diagram is unknown.

Here we choose the first-order LWR model instead of more sophisticated second-order

ARZ model for the following reasons. The second-order ARZ model consisting of two PDEs

governs both the traffic density and velocity. The second-order ARZ PDE model was brought

up to resolve the issue that equilibrium fundamental diagram are not suited for the congested
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Figure 6.1: Traffic on a freeway segment with lane-drop.

regime. Traffic velocity could vary from the single-valued equilibrium function. In this problem,

we consider the free regime for freeway segment to prevent the formation of traffic congestion

in bottleneck area. LWR model therefore suit our needs.

We control traffic flow entering at the inlet of Zone C upstream of block Zone B. Traffic

dynamics of Zone C is described with the first-order LWR model. Therefore, we design ES

control for an unknown static map with actuation dynamics governed by a nonlinear hyperbolic

PDE. The control objective is to find the optimal input density at inlet of Zone C that drives

the measurable output flux of Zone B to its unknown optimal value of an unknown fundamental

diagram.

The traffic dynamics in Zone C upstream of Zone B is described with the first-order,

hyperbolic LWR model. Traffic density ρ(x, t) in Zone C is governed by the following nonlinear

hyperbolic PDE, where x ∈ [0,L], t ∈ [0,∞),

∂tρ +∂x(ρV (ρ)) =0, (6.1)

where traffic velocity follows an equilibrium velocity-density relation V (ρ). The fundamental

diagram of traffic flow and density function Q(ρ) is given by

Q(ρ) = ρV (ρ). (6.2)
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There are different models to describe the flux and density relation. A basic and popular choice

is Greenshield’s model for V (ρ) which is given by

V (ρ) = v f

(
1− ρ

ρm

)
, (6.3)

where v f ∈ R+ is defined as maximum velocity and ρm ∈ R+ is maximum density for Zone

C. Then the fundamental diagram of flow and density function Q(ρ) is in a quadratic form of

density,

Q(ρ) =−
v f

ρm
ρ2 + v f ρ. (6.4)

In practice, quadratic fundamental diagram does not provide a good fitting with real traffic

density-flow data. The critical density usually happens at 20% of the maximum value of den-

sity. There are several other equilibrium model e.g. Greenberg model, Underwood model and

diffusion model for which fundamental diagrams are nonlinear functions. According to Taylor

expansion, second-order differentiable nonlinear function can be approximated as a quadratic

function in the neighborhood of its extremum. The following assumption is made for the nonlin-

ear fundamental diagram. The stability results derived in this paper holds locally for the general

form of Q(ρ) that satisfy the following assumption.

Assumption 6.1. We assume the fundamental diagram Q(ρ) is a C 2 function, then Q(ρ) can be

decomposed at the critical density ρc as follows:

Q(ρ) = qc +
Q′′(ρ)

2
(ρ(t)−ρc)

2, (6.5)

where qc =Q(ρc) defined as the road capacity or maximum flow, with assumption that Q′′(ρ)< 0

is satisfied.

When there is a bottleneck present downstream, the density at outlet of Zone C is ρ(L, t)
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governed by PDE in (6.1) for x ∈ [0,L], t ∈ [0,∞) and boundary condition at inlet in (6.6). The

inlet boundary flow is,

qin(t) = Q(ρ(0, t)). (6.6)

The control objective is to design the traffic flow input qin(t) so that the outgoing flow in lane-

drop area Zone B qout(t) is maximized.

The traffic dynamics in Zone B is described by an unknown fundamental diagram since

density and traffic flow relation at the bottleneck area is hard to determine. Therefore, we assume

that the equilibrium fundamental diagram for Zone B is an unknown quadratic map QB(ρ),

shown in Fig. 6.2. The measurement of traffic flow in Zone B, qout(t) is defined by QB(ρ) with

outlet density ρ(L, t) at outlet,

qout(t) =QB(ρ(L, t)). (6.7)

Due to the lane-drop at outlet, maximum density and road capacity reduced at Zone B compared

with Zone C. We consider that optimal density of Zone B is smaller than critical density ρ⋆ ∈R+

of Zone C. We aim to find out the critical outlet density ρ⋆ of Zone C that maximize qout(t) in

Zone B,

qout(t) = q⋆+
H
2
(ρ(L, t)−ρ⋆)2, (6.8)

where q⋆ ∈ R+ is the unknown optimal output flow for Zone B and H < 0 is the unknown

Hessian of the static map QB.
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Figure 6.2: Quadratic fundamental diagram with distant bottleneck.

6.1.1 Linearized reference error system

We linearize the nonlinear LWR model around a constant reference density ρr ∈ R+,

which is assumed to be close to the optimal density ρ⋆. Note that the reference density ρr is in

the free regime of Q(ρ) of Zone C thus is smaller than the critical density ρc and therefore the

following is satisfied

ρr < ρc. (6.9)

Here we do not specify fundamental diagram Q(ρ) for Zone C but require assumption 6.1 to be

satisfied. Define the reference error density as

ρ̃(x, t) = ρ(x, t)−ρr, (6.10)

and reference flux qr is

qr =Q(ρr)> 0. (6.11)
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By the governing equation (6.1) together with (6.3), the linearized reference error model is de-

rived as

∂t ρ̃(x, t)+u∂xρ̃(x, t) =0, (6.12)

ρ̃(0, t) =ρ(0, t)−ρr, (6.13)

where the constant transport speed u is given by

u =Q′(ρ)|ρ=ρr

=V (ρr)+ρrV ′(ρ)|ρ=ρr . (6.14)

The equilibrium velocity-density relation V (ρ) is a strictly decreasing function. The reference

density ρr is in the left-half plane of the fundamental diagram Qc(ρ) which yields the following

inequality for the propagation speed u,

u > 0. (6.15)

According to (6.6) and (6.13), we define the input density as

ρ(t) =ρ(0, t), (6.16)

and the linearized input at inlet is

ρ̃(t) =ρ(t)−ρr. (6.17)
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The linearized error dynamics in (6.12), (6.13) is a transport PDE with an explicit solution for

t > x
u and thus is represented with input density

ρ̃(x, t) = ρ̃
(

t − x
u

)
, (6.18)

The density variation at outlet is

ρ̃(L, t) =ρ̃ (t −D) . (6.19)

where the time delay D is defined as

D =
L
u
. (6.20)

Therefore, the density at outlet is given by a delayed input density variation and the reference

ρ(L, t) =ρr + ρ̃(L, t). (6.21)

Finally, substituting (6.19), (6.21) into the static map (6.8), we arrive at the following

qout(t) =q⋆+
H
2
(ρ̃ (t −D)+ρr −ρ⋆)2

=q⋆+
H
2
(ρ (t −D)−ρ⋆)2 . (6.22)

The control objective is to regulate the input qin(t) so that ρ (t −D) reaches to an unknown

optimal ρ⋆ and the maximum of the uncertain quadratic flux-density map qout(t) can be achieved.

We can apply the method of extremum seeking for static map with delays developed in [90]. The

extremum seeking control is designed for finding the extremum of the unknown map.

In practice, control of density at inlet can be realized with simultaneous operation of a
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Figure 6.3: Block diagram for implementation of ES control design for nonlinear LWR PDE
model.

ramp metering and a VSL at inlet. The controlled density is then given by

ρ(t) =
qin(t)

vc
. (6.23)

where vc is the speed limit implemented by VSL and qin(t) is actuated by a on-ramp metering

upstream of the inlet. Note that the linearized model is valid at the optimal density ρ⋆ since the

reference density is assumed to be chosen near the optimal value.

6.2 Online optimization by extremum seeking control

In this section, we present the design of extremum seeking control with delay by fol-

lowing analogously the procedure in [90]. The block diagram of the delay-compensated ES

algorithm applied to LWR PDE model is depicted in Fig. 6.3.

Let ρ̂(t) be the estimate of ρ⋆, and e(t) be the estimation error defined as

e(t) = ρ̂(t)−ρ⋆. (6.24)

170



From Fig. 6.3, the error dynamics can be written as

ė(t −D) =U(t −D). (6.25)

First, we introduce the dither signals (M(t),N(t)) given by

M(t) =
2
a

sin(ωt) , (6.26)

N(t) =− 8
a2 cos(2ωt) , (6.27)

where a and ω are amplitude and frequency of a slow periodic perturbation signal asin(ωt)

introduced later. Using the dither signals, we calculate estimates of the gradient and Hessian of

the cost function, denoted as (G(t), Ĥ(t)),

G(t) =M(t)qout(t), (6.28)

Ĥ(t) =N(t)qout(t), (6.29)

where Ĥ(t) is to estimate the unknown Hessian H. The averaging of G(t) and Ĥ(t) yields that

Gav(t) =Heav(t −D), (6.30)

Ĥav =(Nqout)av = H. (6.31)

Taking average of (6.25), we have

ėav(t −D) =Uav(t −D), (6.32)

where Uav(t) is the averaged value for U(t) designed later. Substituting the above equation into

171



(6.30) gives that

Ġav(t) = HUav(t −D). (6.33)

The motivation for predictor feedback design is to compensate for the delay by feeding back

future states in the equivalent averaged system Gav(t+D). Given an arbitrary control gain k > 0,

we aim to design

Uav(t) = kGav(t +D), ∀t ≥ 0. (6.34)

which requires knowledge of future states. Therefore we have the following by plugging (6.34)

into (6.25),

ėav(t) =Uav(t) = kHeav(t), ∀t ≥ D. (6.35)

Reminding that k > 0,H < 0, the equilibrium of the average system eav(t) = 0 is exponentially

stable.

Applying the variation of constants formula

Gav(t +D) = Gav(t)+ Ĥav(t)
∫ t

t−D
Uav(τ)dτ, (6.36)

and from (6.34), one has:

Uav(t) = k
(

Gav(t)+ Ĥav(t)
∫ t

t−D
Uav(τ)dτ

)
, (6.37)

which represents the future state Gav(t+D) in (6.33) in terms of the average control signal Uav(τ)

for τ ∈ [t −D, t]. The control input is infinite-dimensional due to its use of history over the past

D time units.
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For the stability analysis in which the averaging theorem for infinite dimensional systems

is used, we employ a low-pass filter for the above basic predictor feedback controller and then

derive an infinite dimensional and averaging based predictor feedback given by

U(t) = T

{
k
(

G(t)+ Ĥ(t)
∫ t

t−D
U(τ)dτ

)}
, (6.38)

where k > 0 is an arbitrary control gain, the Hessian estimate Ĥ(t) is updated according to (6.29),

satisfying average property in (6.31). T {} is the low pass filter operator defined by

T {φ(t)}= L −1
{

c
s+ c

}
∗φ(t), (6.39)

where c ∈ R+ is the corner frequency, L −1 is the inverse Laplace transformation, and ∗ is the

convolution in time.

6.3 Stability analysis

This section is devoted to the proof of the main theorem for delay-compensated ES algo-

rithm, following [90]. Although the results in [90] are oriented to multiple and distinct delays,

the derivation for the case of single delay was omitted there and it will be completely detailed

here as a further contribution.

Theorem 6.2. Consider the closed-loop system in Fig. 6.3. There exits c0 > 0 such that ∀c ≥ c0,

there exists ω0(c0) > 0 such that ∀ω > ω0, the closed-loop system has a unique exponentially

stable periodic solution in period T = 2π
ω , denoted by eT (t−D), UT (τ), ∀τ ∈ [t−D, t], satisfying

∀t > 0

(
|eT (t −D)|2 + |UT (t)|2 +

∫ D

0
|UT (τ)|2dτ

) 1
2

≤ O(1/ω). (6.40)
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Furthermore,

lim
t→+∞

sup |ρ(t)−ρ⋆|=O(a+1/ω), (6.41)

lim
t→+∞

sup |qout(t)−q⋆|=O(a2 +1/ω2). (6.42)

The proof of Theorem 6.2 is carried out in the following sections.

6.3.1 Closed-loop system

The estimate ρ̂(t) of the unknown optimal outgoing ρ⋆ is an integrator of the predictor-

based feedback signal U(t) as

˙̂ρ(t) =U(t), (6.43)

and it follows that

ė(t −D) =U(t −D). (6.44)

The input ρ(t) to LWR PDE model is given by

ρ(t) = ρ̂(t)+S(t), (6.45)

where the dither signal S(t) is the inverse operator of a delayed perturbation signal asin(ωt),

described as

S(t) = asin(ω(t +D)) . (6.46)
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Substituting S(t) into (6.45), we have

ρ(t) = ρ̂(t)+asin(ω(t +D)) . (6.47)

The delayed estimation error dynamics can be written as transport PDE system, x ∈ [0,L]

ė(t −D) =ε(L, t), (6.48)

∂tε(x, t) =−u∂xε(x, t), (6.49)

ε(0, t) =U(t). (6.50)

where

ε(x, t) =U
(

t − x
u

)
. (6.51)

Combining (6.22), (6.24), and (6.46), the relation among the estimation error e(t), the input

density ρ(t), and optimal outlet density ρ⋆ is given by

e(t)+asin(ωt) = ρ(t)−ρ⋆, (6.52)

Substituting the above relation into the output map in (6.22), we obtain the following equation

qout(t) =q⋆+
H
2
(e(t −D)+asin(ωt))2 . (6.53)

Plugging M(t) and G(t) into (6.28) and (6.29) and representing the delayed input with PDE state

ε(x, t), we have

U(t) =T

{
k
(

G(t)+ Ĥ(t)
∫ L

0
ε(τ, t)dτ

)}
, (6.54)
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G(t) =
2
a

sin(ωt)qout(t), (6.55)

Ĥ(t) =− 8
a2 cos(2ωt)qout(t). (6.56)

It yields

U(t) =T

{
kqout(t)

(
2
a

sin(ωt)− 8
a2 cos(2ωt)

∫ L

0
ε(τ, t)dτ

)}
, (6.57)

and by substituting qout with (6.53) and combining with transport PDE in (6.48)-(6.50), we can

write the closed-loop system as

ė(t −D) =ε(L, t), (6.58)

∂tε(x, t) =−u∂xε(x, t), (6.59)

ε(0, t) =T

{
k

(
q⋆+

H
2
(e(t −D)+asin(ωt))2

)
(

2
a

sin(ωt)− 8
a2 cos(2ωt)

∫ L

0
ε(τ, t)dτ

)}
. (6.60)

6.3.2 Average system

Expanding (6.60) and taking average of the closed-loop system, we obtain average model

by setting the averages of sine and cosine functions of nω,(n = 1,2,3,4) to zeros. Note that the

averaged controller satisfies

U̇av(t)+ cUav(t) = ck
(

Gav(t)+H
∫ L

0
εav(τ, t)dτ

)
, (6.61)

where c > 0 is the corner frequency of the low pass filter and k > 0 is the control gain. Denoting

θ(t) = e(t −D), (6.62)
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the average system of (6.58)-(6.60) is rewritten by

θ̇av(t) =εav(L, t), (6.63)

∂tεav(x, t) =−u∂xεav(x, t), (6.64)

∂tεav(0, t)=− cεav(0, t)+ckH
(

θav(t)+
∫ L

0
εav(τ, t)dτ

)
. (6.65)

6.3.3 Backstepping transformation

We apply backstepping transformation for the averaged delay state

w(x, t) = εav(x, t)− kH
[

θav(t)+
∫ L

x
εav(τ, t)dτ

]
, (6.66)

where k > 0 and H < 0. The average system (6.63)-(6.65) is mapped into the target system:

θ̇av(t) = kHθav(t)+w(L, t), (6.67)

∂tw(x, t) = −u∂xw(x, t), (6.68)

∂tw(0, t) = −(c+ kH)w(0, t)

−(kH)2
[

e
kHL

u θav(t)+
∫ L

0
e

kH(L−τ)
u w(τ, t)dτ

]
. (6.69)

We explain how to derive (6.69) in detail. Combining (6.65) and (6.66), we have

w(0, t) =− 1
c

∂tεav(0, t). (6.70)

Taking time derivative on (6.66) for w(0, t), we obtain

∂tw(0, t) =∂tεav(0, t)− kHεav(0, t). (6.71)
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The inverse transformation is given by

εav(x, t) =w(x, t)+ kH

[
e

kH(L−x)
u θav(t)

∫ L

x
e

kH(L−x+τ)
u εav(τ, t)dτ

]
. (6.72)

Plugging (6.72) and (6.65) into (6.71), we obtain (6.69) in the target system.

6.3.4 Lyapunov stability analysis

Now consider the following Lyapunov functional for the target system

V (t)=
aθ 2

av(t)
2

+
∫ L

0
e−xw2(x, t)dx+

1
2

w2(0, t) , (6.73)

where the parameter a > 0 is chosen later. Taking time derivative of the Lyapunov function, we

have

V̇ (t) =akHθ 2
av +aθavw(L, t)+

u
2

w2(0, t)− ue−L

2
w2(L, t)

− u
2

∫ L

0
e−xw2(x, t)dx+w(0, t)wt(0, t)

≤akHθ 2
av +

a
2b

θ 2
av +

(
ab−ue−L

2

)
w2(L, t)

− u
2

∫ L

0
e−xw2(x, t)dx

+w(0, t)
(

wt(0, t)+
u
2

w(0, t)
)

(6.74)

where the positive constant b satisfies the following,

b =
ue−L

a
, (6.75)
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so that ab−ue−L = 0. The positive constant a is chosen as

a =−ukHe−L. (6.76)

Substituting wt(0, t) by (6.69) and using Young’s, Cauchy-Schwarz inequalities, the last term in

(6.74) is bounded by

w(0, t)
(

wt(0, t)+
u
2

w(0, t)
)

≤−
(

c− u
2
+ kH

)
w2(0, t)

+
eLa2

4u
θ 2

av(t)+
ue−L

a2

∣∣∣(kH)2e
kHL

u

∣∣∣2 w(0, t)2

+
ue−L

4
∥w(t)∥2 +

eL

u

∥∥∥(kH)2e
kH(L−τ)

u

∥∥∥2
w(0, t)2 (6.77)

Plugging (6.75)–(6.77) into (6.74), one can arrive at

V̇ (t)≤− eLa2

4u
θ 2

av(t)−
ue−L

4

∫ L

0
w2(x, t)dx

− (c− c0)w2(0, t), (6.78)

where c0 is defined as

c0 =
u
2
− kH +

ue−L

a2

∣∣∣(kH)2e
kHL

u

∣∣∣2 + eL

u

∥∥∥(kH)2e
kH(L−τ)

u

∥∥∥2
(6.79)

where τ ∈ [0,L]. An upper bound for c0 can be obtained from lower and upper bounds of the

unknown Hessian H. Therefore, by choosing c such that c > c∗, we obtain

V̇ (t)≤−µV (t) , (6.80)

179



for some µ > 0. Thus, the closed-loop system is exponentially stable in the sense of the L2 norm

(
|θav(t)|2 +

∫ L

0
w2(x, t)dx+w2(0, t)

)1/2

. (6.81)

By the invertibility of the transformation, we can see that there exist constants α1 and α2 such

that the following inequality is obtained

α1Ψ(t)≤V (t)≤ α2Ψ(t) , (6.82)

where Ψ(t)≜ |θav(t)|2 +
∫ L

0 ε2
av(x, t)dx+ ε2

av(L, t), or equivalently,

Ψ(t)≜ |θav(t −D)|2 +
∫ t

t−D
U2

av(τ)dτ +U2
av(t) . (6.83)

Hence, with (6.80), we get

Ψ(t)≤ α2

α1
e−µtΨ(0), (6.84)

which completes the proof of exponential stability of the averaged system.

6.3.5 Averaging theorem

The closed-loop system is written as

ė(t −D) =U(t −D), (6.85)

U̇(t) =− cU(t)+ c
{

k
(

G(t)+ Ĥ(t)
∫ t

t−D
U(τ)dτ

)}
. (6.86)
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Defining the state vector z(t) as z(t)= [e(t−D),U(t)]T , and noting that
∫ t

t−DU(τ)dτ =
∫ 0
−DU(t+

τ)dτ , we can write the dynamics of z as a functional differential equation described by

ż(t) = f (ωt,zt), (6.87)

where zt(τ)= z(t+τ) for −D≤ τ ≤ 0. According to (6.84), the origin of the average closed-loop

system with transport PDE is exponentially stable. Applying the averaging theorem for infinite

dimensional systems developed in [56], for ω sufficiently large, (6.58)-(6.60) has a unique expo-

nentially stable periodic solution around its equilibrium satisfying (6.40).

6.3.6 Asymptotic convergence to a neighborhood of the extremum

By using the change of variables (6.62) and then integrating both sides of (6.58) within

the interval [t,σ +D], we have:

θ(σ +D) = θ(t)+
∫ σ+D

t
ε(L,s)ds . (6.88)

From (6.51), we can rewrite (6.88) in terms of U , namely

θ(σ +D) = θ(t)+
∫ σ

t−D
U(τ)dτ . (6.89)

We define

ϑ(σ) = θ(σ +D) , ∀σ ∈ [t −D, t] . (6.90)

Applying (6.89) to the above equation, we get

ϑ(σ) = ϑ(t −D)+
∫ σ

t−D
U(τ)dτ , ∀σ ∈ [t −D, t] . (6.91)
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By applying the supremum norm in both sides of (6.91) and using Cauchy-Schwarz inequality,

we have

sup
t−D≤σ≤t

|ϑ(σ)|= sup
t−D≤σ≤t

|ϑ(t −D)|+ sup
t−D≤σ≤t

∣∣∣∣∫ σ

t−D
U(τ)dτ

∣∣∣∣
≤ sup

t−D≤σ≤t
|ϑ(t −D)|+ sup

t−D≤σ≤t

∫ t

t−D
|U(τ)|dτ

≤|ϑ(t −D)|+
∫ t

t−D
|U(τ)|dτ

≤|ϑ(t −D)|+
(∫ t

t−D
dτ
)1/2(∫ t

t−D
|U(τ)|2 dτ

)1/2

≤|ϑ(t −D)|+
√

D
(∫ t

t−D
U2(τ)dτ

)1/2

. (6.92)

One can easily derive

|ϑ(t −D)| ≤
(
|ϑ(t −D)|2 +

∫ t

t−D
U2(τ)dτ

)1/2

, (6.93)(∫ t

t−D
U2(τ)dτ

)1/2

≤
(
|ϑ(t −D)|2 +

∫ t

t−D
U2(τ)dτ

)1/2

. (6.94)

By using (6.93) and (6.94), one has

|ϑ(t −D)|+
√

D
(∫ t

t−D
U2(τ)dτ

)1/2

≤(1+
√

D)

(
|ϑ(t −D)|2 +

∫ t

t−D
U2(τ)dτ

)1/2

. (6.95)

From (6.92), it is straightforward to conclude that

sup
t−D≤σ≤t

|ϑ(σ)| ≤ (1+
√

D)

(
|ϑ(t −D)|2 +

∫ t

t−D
U2(τ)dτ

)1/2

, (6.96)

and thus

|ϑ(t)| ≤(1+
√

D)

(∣∣θ̃(t −D)
∣∣2 +∫ t

t−D
U2(τ)dτ

)1/2

. (6.97)
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The above inequality (6.97) can be given in terms of the periodic solution ϑ Π(t −D), UΠ(σ),

∀σ ∈ [t −D, t] as follows

|ϑ(t)| ≤(1+
√

D)
(∣∣ϑ(t −D)−ϑ Π(t −D)+ϑ Π(t −D)

∣∣2
+
∫ t

t−D

[
U(τ)−UΠ(τ)+UΠ(τ)

]2
dτ
)1/2

. (6.98)

Applying Young’s inequality, the right-hand side of (6.98) and |ϑ(t)| can be majorized by

|ϑ(t)| ≤
√

2 (1+
√

D)
(∣∣ϑ(t −D)−ϑ Π(t −D)

∣∣2 + ∣∣ϑ Π(t −D)
∣∣2

+
∫ t

t−D

[
U(τ)−UΠ(τ)

]2
dτ +

∫ t

t−D

[
UΠ(τ)

]2
dτ
)1/2

. (6.99)

From the averaging theorem [56], we have the exponential convergence

ϑ(t −D)−ϑ Π(t −D)→ 0 (6.100)∫ t

t−D

[
U(τ)−UΠ(τ)

]2
dτ → 0 (6.101)

Hence,

limsup
t→+∞

|ϑ(t)|=
√

2 (1+
√

D)

×
(∣∣ϑ Π(t −D)

∣∣2 +∫ t

t−D
[UΠ(τ)]2dτ

)1/2

. (6.102)

From (6.40) and (6.102), we can write

limsup
t→+∞

|ϑ(t)|=O(1/ω). (6.103)

From (6.24) and recalling that ρ(t) = ρ̂(t)+asin(ω(t +D)) and θ(t) = e(t −D), one has that

ρ(t)−ρ⋆ = ϑ(t)+asin(ω(t +D)) . (6.104)
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Since the first term in the right-hand side of (6.104) is ultimately of order O(1/ω) and the second

term is of order O(a), then

limsup
t→+∞

|ρ(t)−ρ⋆|= O(a+1/ω) . (6.105)

Finally, from (6.22), we get (6.42) and the proof is complete. □

6.4 Simulation

In simulation, we choose Greenshield’s model for equilibrium velocity-density relation.

For clear section Zone C, the fundamental diagram of traffic flow-density relation is given by

Q(ρ) =−
v f

ρm
ρ2 + v f ρ. (6.106)

The maximum density is chosen to be

ρm =
5 lanes
7.5 m

= 0.8 vehicles/m, (6.107)

where the 7.5 m equals to the average vehicle length 5 m plus 50% safety distance. The maxi-

mum velocity is v f = 40 m/s = 144 km/h. This Q(ρ) is used in the nonlinear LWR PDE model

simulation which describes the traffic dynamics upstream of bottleneck area. The maximum

output flow also known as road capacity of Zone C is

qc = max
0≤ρ≤ρm

Q(ρ) = 8 vehicles/s. (6.108)

The fundamental diagram in bottleneck area QB(ρ), optimal/critical density ρ⋆ and maximum

output flow q⋆ are unknown in practical implementation. The following function and parameters

are chosen only for simulation purpose. For bottleneck section Zone B, we consider the situation
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that only 3 out of 5 lanes still function. As a result, the road capacity reduces and we define the

capacity reduction rate as Cd = 60% compared with Zone C. Thus the following fundamental

diagram is considered

QB(ρ) =CdQ(ρ) =−
v f

ρm
ρ2 + v f ρ, (6.109)

where ρm = 0.48 vehicles/m is the maximum density for reduced lanes in the bottleneck area

and the same maximum velocity v f = 40 m/s = 144 km/h is considered. The length of freeway

segment is L = 100 m. If we consider a linearized LWR for Zone C, the characteristic speed is

u =Q′(ρ)|ρ=ρr = 20 s. (6.110)

The time delay for input is D = L
u = 5 s. The outgoing flow qout(t) of the bottleneck area is

qout(t) =QB(ρ(L, t))

=q⋆+
H
2
(ρ (t −D)−ρ⋆)2 , (6.111)

where the optimal/critical density ρ⋆ and maximum output flow q⋆ are

ρ⋆ =
1
2

ρm = 0.24 vehicles/m, (6.112)

q⋆ =Cdqc = 4.8 vehicles/s. (6.113)

The Hessian is obtained by taking second derivative of QB(ρ)

H =−
2v f

ρm
=−166.7. (6.114)
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Figure 6.4: Traffic density ρ(L, t) at the outlet of Zone C by nonlinear LWR model which is the
input density for bottleneck area.

The Godnov scheme is employed for simulation of nonlinear LWR PDE model, which is com-

monly used in traffic flow application. The method is derived from the solution of local Riemann

problems. The road segment is divided into spatial cell ∆x and the solution is advanced in time

step ∆t, which satisfy the following CFL condition

umax
∆t
∆x

< 1, (6.115)

where umax is the maximum characteristic speed. We choose the spatial cell ∆x = 0.05 m suffi-

ciently small so that numerical errors are negligibly small relative to the errors of the model.

The simulation result of the closed-loop system with ES control is shown in Fig. 6.4,

Fig. 6.5 and Fig. 6.6. The parameters of the sinusoidal input and the designed controller are

chosen to be ω = 2.75π,a = 0.05,c = 50,K = 0.005. One can observe that density in Fig. 6.4

converges to a neighborhood of the optimal value ρ⋆ = 0.24 veh/m and the output flow of the

bottleneck in Fig. 6.5 converges to a neighborhood of the extremum point q⋆ = 4.8 veh/s. The
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Figure 6.5: Outgoing traffic flow of the bottleneck area qout(t) which is also the output flow for
bottleneck area and the optimal value of outgoing flow q⋆.

Figure 6.6: Hessian estimate Ĥ(t) of the ES control and prescribed Hessian value H.

Hessian estimate converges to the prescribed value −166.7. The convergence to optimal values

is achieved in 40 s. In contrast, if we do not employ ES control for input density and the incoming

flow depends only on upstream traffic. The open-loop system is shown in Fig. 6.7. The evolution

of outgoing flow at the bottleneck area is run for 100 s. We can see that the outgoing flow of the

bottleneck area keeps decreasing and therefore congestion at the bottleneck area is getting worse
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Figure 6.7: Output traffic flow of the bottleneck area without ES Control.

till a bumper-to-bumper jam.

6.5 Conclusion

In this chapter, we employ ES control to find a optimal density input for freeway traffic

when there is a downstream bottleneck. To prevent traffic flow in bottleneck area overflowing

the road capacity and furthermore causing congestion upstream in the freeway segment, the

incoming traffic density at inlet of the freeway segment is regulated. The control design is

achieved with delay compensation for ES control considering the upstream traffic is governed

by the linearized LWR model. The optimal density and flow are achieved in the bottleneck

area. The theoretical result is validated in simulation with the control design being applied on

a nonlinear LWR PDE model along with an unknown fundamental diagram. Our future interest

lies in conducting experimental validation of this problem. In a more sophisticated situation

when there is multiple distant delays in presence of multi-lanes are going to be considered. It

would also be interesting for authors to develop ES control with bounded update rates [98]

under input delays exhibited through the LWR model and to develop a stochastic version of the

algorithm presented in the paper by applying the results from [83] and [95].
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Chapter 7

Data Validation of Freeway Traffic State

Estimation

Traffic state estimation plays an important role in traffic management. In order to miti-

gate freeway traffic congestion, various control algorithms are developed for ramp metering or

variable speed limit. The effective implementation of control algorithms on traffic infrastructure

relies on accurate information of traffic state. Due to the financial and technical limitations, traf-

fic state on freeways is difficult to be measured everywhere at all times. Traffic state estimation

refers to foresee of traffic state information with a model by accessing partially observed traffic

data and some prior knowledge of the traffic. This topic has been extensively studied and gained

an increasing attention in recent decades.

The comprehensive review of different models and approaches in traffic estimation prob-

lem by [97] proposes three categories including model-driven, data-driven and streaming data

driven. Among them, the model driven approach is mostly widely used in traffic estimation

problem which firstly develops traffic flow model to describe the traffic dynamics and then ob-

tain state estimates based on the model and real-time data input. The physical model is calibrated

with the historical data. In this section, we propose a model-driven approach by applying PDE
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backstepping technique for the second-order macroscopic ARZ traffic model.

Freeway traffic dynamics in spatial and temporal domain are usually described with

macroscopic models of the aggregated values of traffic states, including traffic density, veloc-

ity and flux. The aggregated values average out the small-scale noises of the freeway traffic.

Furthermore, a lot of field data use macroscopic quantiles which can be directly recorded by the

stationary sensors like loop-detector.

Several studies have used the LWR model for traffic states estimation in [28] [29] [30]

[68] due to its simplicity and efficiency in the model calibration and numerical simulation. How-

ever, LWR model fails to describe stop-and-go traffic, which represents the oscillatory behaviors

of the congested traffic. The static equilibrium density-velocity relation of the LWR model is un-

able to reproduce the non-equilibrium relation appearing in the stop-and-go traffic. In addition to

the density conservation equation, second-order models employ additional nonlinear hyperbolic

PDE for traffic velocity to overcome the limitation of the LWR model. The deviations from the

equilibrium traffic relation are allowed in the second-order model since the dynamics of velocity

PDE is included.

The first well-known second-order PW model by [92] [114] predicts negative traffic ve-

locity and information propagation faster than traffic which is physically unrealistic. Compared

with the PW model, Aw-Rascle-Zhang model by [8] and [123] improves the second-order model

by successfully addressing anisotropic behavior of traffic and correcting the PW model’s predic-

tion of traffic waves. For this reason, ARZ model has been studied intensively for the stop-and-go

traffic over the recent years [18] [44] [45] [59] [67] [96]. In order to accurately estimate the

non-equilibrium traffic states for congested traffic, this work considers the second-order ARZ

model for observer design and data validation.

Traffic estimation by the particle filter in comparison with unscented Kalman filter is

studied by [85] for a second-order extended cell-transmission model. The second-order PW

model is used to develop an extended Kalman filter for state estimation in [112]. To author’s
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best knowledge, state estimation problem of the nonlinear ARZ PDE model has never been

studied before.

In dealing with the second-order coupled nonlinear hyperbolic system, PDE control of

the ARZ model has been studied through many recent efforts including [18] [65] [117] [66] [121]

[124] [125]. The previous work by authors [117] [121] firstly consider adopts the PDE backstep-

ping methodology for control of the ARZ model. Boundary control and observer design using

PDE backstepping method have been developed for 2×2 coupled hyperbolic systems [31] [116]

and the theoretical result for the general hetero-directional hyperbolic systems developed in [7]

[41] [80]. The applications of the theoretical results include open-channel flow, oil drilling, heat

exchangers and multi-phase flow problems, but have never been considered in traffic problems.

In [121], an observer design is proposed for the linearized ARZ model in an effort to construct

an output feedback controller. In this paper, we generalize the previous observer design to ad-

dress the freeway traffic estimation problem from a more practical perspective. In specific, the

observer design is proposed for the nonlinear ARZ model. In addition, assumptions of boundary

conditions are removed. The observer design accepts a general functional form of the equilib-

rium density-velocity relation, rather than the Greenshield’s model.

In validation of the observer, vehicle trajectory data is used to obtain the aggregated

values of traffic states. The ARZ model is calibrated with the historical field data. The model

parameters are mostly obtained from historical data. The rest is determined from part of the

dataset. Then the observer is constructed using the model parameters and real-time sensing of

the data at boundaries. The performance of the PDE boundary observer is then evaluated with

the field data in the temporal and spatial domain.

The contribution of this work: a systematic model-driven approach is developed for traf-

fic state estimation. The PDE boundary observer based on the macroscopic ARZ traffic model

is designed and validated. The theoretical observer design by backstepping method is general-

ized and adapted for the field-data validation. Vehicle trajectories data [48] and stationary loop
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detector data are used to construct and test the performance of the observer design. This result

paves the way for implementing the PDE observer design in practice and give rise to a variety of

opportunities to incorporate the PDE backstepping techniques in traffic estimation problem.

The outline of this chapter is as follows: in section 7.1, we firstly introduce the nonlinear

ARZ modele with a general choice of velocity and density equilibrium function, and analyze the

linearized ARZ model for distinguishing the free and congested traffic. Section 7.2 designs the

boundary observer for the linearized ARZ model using the backstepping method and the non-

linear boundary observer is developed using the output injections obtained from the linearized

model. In section 7.3, numerical simulations of the nonlinear ARZ PDE model and state estima-

tion by the nonlinear boundary observer are conducted firstly from an ad-hoc choice of model

parameters. In section 7.4, we calibrate the ARZ model with some field data and test the observer.

The estimation errors are then analyzed.

7.1 Nonlinear ARZ Model

The nonlinear ARZ model for (x, t) ∈ [0,L]× [0,+∞) is given

∂tρ +∂x(ρv) =0, (7.1)

∂tv+(v+ρV (ρ))∂xv =
V (ρ)− v

τ
. (7.2)

The equilibrium velocity-density relationship V (ρ) satisfy that the flux function Q(ρ) is smooth,

strictly concave Q(ρ)′′ < 0 and a strictly decreasing velocity functional form V ′(ρ) < 0. The

equilibrium flux function Q(ρ), also known as fundamental diagram, is defined as

Q(ρ) = ρV (ρ). (7.3)
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Small deviations from the nominal profile are defined as

q̃(x, t) =q(x, t)−q⋆, (7.4)

ṽ(x, t) =v(x, t)− v⋆. (7.5)

The steady density is given as ρ⋆ = q⋆/v⋆ and setpoint density-velocity relation satisfy the equi-

librium relation V (ρ),

v⋆ =V (ρ⋆). (7.6)

The linearized ARZ model in (q̃, ṽ) around the reference system (q⋆,v⋆) with boundary condi-

tions is given by

q̃t +λ1q̃x =− q⋆

v⋆

(
v⋆+

q⋆

v⋆
V ′
(

q⋆

v⋆

))
ṽx

−q⋆
(v⋆)2 +q⋆V ′

(
q⋆
v⋆

)
τ(v⋆)3 ṽ+

q⋆V ′
(

q⋆
v⋆

)
τ(v⋆)2 q̃, (7.7)

ṽt +λ2ṽx =−
(v⋆)2 +q⋆V ′

(
q⋆
v⋆

)
τ(v⋆)2 ṽ+

V ′
(

q⋆
v⋆

)
τv⋆

q̃, (7.8)

where the two characteristic speeds of the above linearized PDE model are

λ1 =v⋆, (7.9)

λ2 =v⋆+
q⋆

v⋆
V ′
(

q⋆

v⋆

)
. (7.10)

• Free-flow regime : λ1 > 0, λ2 > 0

In the free-flow regime, both the disturbances of traffic flux and velocity travel down-

stream, at respective characteristic speeds λ1 and λ2. The linearized ARZ model in free-

regime is a homo-directional hyperbolic system.
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• Congested regime : λ1 > 0, λ2 < 0

In the congested regime, the traffic density is greater than the critical value ρc that satisfies

Q(ρ)′|ρc = 0 and the second characteristic speed λ2 becomes the negative value. There-

fore, disturbances of the traffic speed travel upstream with λ2 while the disturbances of

the traffic flow flux are carried downstream with the characteristic speed λ1. The hetero-

directional propagations of disturbances force vehicles into the stop-and-go traffic.

In the free-flow regime, the linearized homo-directional hyperbolic PDEs can be solved

explicitly by the inlet boundary values and therefore state estimates can be obtained by solving

the hyperbolic PDEs. In this work, we focus on the congested regime with two hetero-directional

hyperbolic PDEs. It is a more relevant and challenging problem for traffic states estimation.

7.2 Boundary Observer Design

In this section, boundary sensing is employed for the observer design. The state estima-

tion of the nonlinear ARZ model is achieved using backstepping method. The output injection

gains are designed for the linearized ARZ model and then adding to a copy of the nonlinear

plant.

Boundary values of state variations from the steady states are defined as

Yq,in(t) =q̃(0, t), (7.11)

Yq,out(t) =q̃(L, t), (7.12)

Yv(t) =ṽ(L, t). (7.13)

where the values of q̃(0, t), q̃(L, t) and ṽ(L, t) are obtained by subtracting setpoint values (q⋆,v⋆)

from the sensing of incoming traffic flux q(0, t), outgoing flux q(L, t) and outgoing velocity
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v(L, t),

yq(t) =q(0, t), (7.14)

yout(t) =q(L, t), (7.15)

yv(t) =v(L, t). (7.16)

Sensing of the aggregated values of the traffic flux and velocity can be obtained by high-speed

camera or induction loop detectors. The induction loops are coils of wire embedded in the

surface of the road to detect changes of inductance when vehicles pass. The high-speed cameras

record the vehicle trajectories for a freeway segment.

7.2.1 Output injection for linearized ARZ model

We diagonalize the linearized equations and therefore write (q̃, ṽ)-system in the Riemann

coordinates. The Riemann variables are defined as

ξ1 =
ρ⋆λ2

λ1 −λ2
ṽ+ q̃, (7.17)

ξ2 =
q⋆

λ1 −λ2
ṽ. (7.18)

The inverse transformation is given by

ṽ =
λ1 −λ2

q⋆
ξ2, (7.19)

q̃ =ξ1 −
λ2

λ1
ξ2. (7.20)

The measurements are taken at boundaries lead to the following boundary conditions

ξ1(0, t) =
λ2

λ1
ξ2(0, t)+Yq(t), (7.21)
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ξ2(L, t) =
q⋆

λ1 −λ2
Yv(t). (7.22)

Therefore the linearized ARZ model in Riemann coordinates is obtained

∂tξ1 +λ1∂xξ1 =− 1
τ

ξ1, (7.23)

∂tξ2 +λ2∂xξ2 =− 1
τ

ξ1, (7.24)

ξ1(0, t) =
λ2

λ1
ξ2(0, t), (7.25)

ξ2(L, t) =ξ1(L, t). (7.26)

In order to diagonalize the right hand side to implement the backstepping method, we introduce

a scaled state as follows:

w̄(x, t) =exp
(

x
τλ1

)
ξ1(x, t), (7.27)

v̄(x, t) =ξ2(x, t). (7.28)

The (ξ1,ξ2)-system is then transformed to a first-order 2×2 hyperbolic system

w̄t(x, t)+λ1w̄x(x, t) =0, (7.29)

v̄t(x, t)+λ2v̄x(x, t) =c(x)w̄(x, t), (7.30)

w̄(0, t) =
λ2

λ1
v̄(0, t)+Yq,in(t), (7.31)

v̄(L, t) =
q⋆

λ1 −λ2
Yv(t), (7.32)

where the spatially varying parameter c(x) is defined as

c(x) =−1
τ

exp
(
− x

τλ1

)
, (7.33)
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Parameter c(x) is a strictly increasing function and bounded by

−1
τ
≤ c(x)≤−1

τ
exp
(
− L

τλ1

)
. (7.34)

Then we design a boundary observer for the linearized ARZ model to estimate w̄(x, t)

and v̄(x, t) by constructing the following system

ŵt(x, t)+λ1ŵx(x, t) =r(x)(w̄(L, t)− ŵ(L, t)), (7.35)

v̂t(x, t)+λ2v̂x(x, t) =c(x)ŵ(x, t)

+ s(x)(w̄(L, t)− ŵ(L, t)), (7.36)

ŵ(0, t) =
λ2

λ1
v̂(0, t)+Yq,in(t), (7.37)

v̂(L, t) =
q⋆

λ1 −λ2
Yv(t), (7.38)

where ŵ(x, t) and v̂(x, t) are the estimates of the state variables w̄(x, t) and v̄(x, t). The value

w̄(L, t) is obtained by plugging in the measured outgoing flow flux Yq,out(t) and velocity Yv(t)

into (7.27),

w̄(L, t) = exp
(

L
τλ1

)(
ρ⋆λ2

λ1 −λ2
Yv(t)+Yq,out(t)

)
. (7.39)

The term r(x) and s(x) are output injection gains to be designed. We denote estimation

errors as

w̌(x, t) =w̄(x, t)− ŵ(x, t), (7.40)

v̌(x, t) =v̄(x, t)− v̂(x, t). (7.41)
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The error system is obtained by subtracting the estimates (7.35)-(7.38) from (7.29)-(7.32),

w̌t(x, t)+λ1w̌x(x, t) =r(x)w̌(L, t), (7.42)

v̌t(x, t)+λ2v̌x(x, t) =c(x)w̌(x, t)+ s(x)w̌(L, t),

w̌(0, t) =
λ2

λ1
v̌(0, t), (7.43)

v̌(L, t) =0. (7.44)

The design of output injection gains r(x) and s(x) needs to guarantee that the error system

(w̌, v̌) decays to zero. Using the backstepping transformation, we transform the error system

(7.42)-(7.44) into the following target system

αt(x, t)+λ1αx(x, t) =0, (7.45)

βt(x, t)+λ2βx(x, t) =0, (7.46)

α(0, t) =
λ2

λ1
β (0, t), (7.47)

β (L, t) =0. (7.48)

The explicit solution to the target system (7.45)-(7.48) is easily found

α(x, t) =α
(

0, t − x
λ1

)
, t >

L
|λ1|

, (7.49)

β (x, t) =β
(

L, t +
L− x

λ2

)
, t >

L
|λ2|

. (7.50)

Thus we have

α(x, t)≡ β (x, t)≡ 0, (7.51)

199



after a finite time t = t f where

t f =
L
|λ1|

+
L
|λ2|

. (7.52)

It is straightforward to prove that the α,β system is L2 exponentially stable.

The backstepping transformation is given in the form of spatial Volterra integral

α(x, t) =w̌(x, t)−
∫ L

x
K(L+ x−ξ )w̌(ξ , t)dξ , (7.53)

β (x, t) =v̌(x, t)−
∫ L

x
M(λ1x−λ2ξ )w̌(ξ , t)dξ , (7.54)

where the kernel variables K(x) and M(x) map the error system into the target system where the

coupling term on the right hand-side is eliminated by the output injections. The kernel M(x) is

defined as

M(x) =− 1
λ1 −λ2

c
(

x
λ1 −λ2

)
. (7.55)

For boundary condition (7.47) to hold, the kernels K(x) and M(x) satisfy the relation

K(L−ξ ) =M((λ2 −λ1)ξ ). (7.56)

The kernel K is then obtained

K(x) =− 1
λ1 −λ2

c
(

−λ2

λ1 −λ2
(L− x)

)
. (7.57)

According to the boundedness of c(x) in (7.34), the kernels are bounded by

|K(x)| ≤ 1
(λ1 −λ2)τ

, (7.58)
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and therefore M(x) is bounded. The output injection gain r(x) and s(x) are given by

r(x) =λ1K(x) =− λ1

λ1 −λ2
c
(
− λ2

λ1 −λ2
(L− x)

)
, (7.59)

s(x) =−λ1M(λ1x−λ2L)

=
λ1

λ1 −λ2
c
(

x− λ2

λ1 −λ2
(L− x)

)
. (7.60)

The backstepping transformation in (7.53) and (7.54) is invertible. Therefore, we study the

stability of the error system through the target system (7.45)-(7.48). We arrive at the following

theorem.

Theorem 7.1. Consider system (7.42)-(7.44) with inital conditions w̌0, v̌0 ∈ L2([0,L]). The equi-

librium w̌ ≡ v̌ ≡ 0 is exponentially stable in the L2 sense. It holds that

||w̄(·, t)− ŵ(·, t)|| → 0 (7.61)

||v̄(·, t)− v̂(·, t)|| → 0 (7.62)

and the convergence to the equilibrium is reached in the finite time t = t f given in (7.52).

7.2.2 Boundary observer design for Nonlinear ARZ model

For nonlinear boundary observer, we construct the system by keeping the output injec-

tions that are designed for the linearized ARZ model, then add them to the copy of the original

nonlinear ARZ model.

We summarize the transformation from the linearized ARZ model in (q̃, ṽ)-system to

(w̄, v̄)-system,

w̄(x, t) =exp
(

x
τλ1

)(
ρ⋆λ2

λ1 −λ2
ṽ(x, t)+ q̃(x, t)

)
, (7.63)
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v̄(x, t) =
q⋆

λ1 −λ2
ṽ(x, t). (7.64)

And the inverse transformation is given by

q̃(x, t) =exp
(
− x

τλ1

)
w̄(x, t)− λ2

λ1
v̄(x, t), (7.65)

ṽ(x, t) =
λ1 −λ2

q⋆
v̄(ξ , t). (7.66)

Due to the equivalence of (w̌, v̌) and (q̃, ṽ)-system, we arrive at the following theorem for the

linearized ARZ model.

Theorem 7.2. Consider system (7.7)-(7.8) with inital conditions q̃0, ṽ0 ∈ L2([0,L]). The equilib-

rium q̃ ≡ ṽ ≡ 0 is exponentially stable in the L2 sense. It holds that

||q(·, t)−q⋆|| → 0 (7.67)

||v(·, t)− v⋆|| → 0 (7.68)

and the convergence to set points is reached in finite time t = t f .

We denote the error injections designed for the linearized ARZ model (7.35)-(7.38) as

Ew(t) =r(x)(w̄(L, t)− ŵ(L, t)), (7.69)

Ev(t) =s(x)(w̄(L, t)− ŵ(L, t)). (7.70)

The output injection gains r(x), s(x) are designed in (7.59) and (7.60). According to (7.39),

w̄(L, t) is obtained from the real-time measurement of the traffic boundary data in (7.11)-(7.13).

Therefore, the values of output injections Ew(t) and Ev(t) are known.

The nonlinear observer for state estimation of density and velocity (ρ̂(x, t), v̂(x, t)) is

obtained by combining the copy of the nonlinear ARZ model (ρ,v) given by (7.1), (7.2) and the

202



Table 7.1: Parameter choice for numerical simulation.
Parameter Name Value
Maximum traffic density ρm 160 vehicles/km
Traffic pressure and coefficient γ 1
Maximum traffic velocity v f 40 m/s
Relaxation time τ 60 s
Reference density ρ⋆ 120 vehicles/km
Reference velocity v⋆ 10 m/s
Freeway segment length L 400 m

above linear injection errors in original state variables density and velocity,

∂t ρ̂ +∂x(ρ̂ v̂) =
1
v⋆

(
exp
(
− L

τλ1

)
Ew −Ev

)
, (7.71)

∂t v̂+(v̂+ ρ̂V ′(ρ̂))∂xv̂ =
V (ρ̂)− v̂

τ
+

λ1 −λ2

q⋆
Ev, (7.72)

where the linear injection on the right hand side are obtained by transforming (ŵ, v̂) to (ρ,v)

given in (7.65),(7.66). The boundary conditions are

ρ̂(0, t) =
yq(t)
v̂(0, t)

, (7.73)

v̂(L, t) = yv(t). (7.74)

When the initial states of the system is close to the set points, the linearized part dominates

the nonlinear estimation error system. Therefore L2 exponential stability and finite-time con-

vergence are achieved for the linearized ARZ model. The local H2 exponential stability can be

derived for the estimation error system of the nonlinear ARZ model, following approach in [31].

The estimation result is firstly validated in the following numerical simulation with an ad-hoc

choice of parameters.
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7.3 Numerical Simulation

For simulation of the nonlinear ARZ PDE model, we assume that the initial conditions

are sinusoidal oscillations around the steady states (ρ⋆,v⋆) which are in the congested regime.

The initial conditions are assumed to be

ρ(x,0) =0.1sin
(

3πx
L

)
ρ⋆+ρ⋆, (7.75)

v(x,0) =−0.1sin
(

3πx
L

)
v⋆+ v⋆. (7.76)

Model parameters of a one-lane traffic in the congested regime is considered and chosen as

shown in the table 1.

We consider a constant incoming flow and constant outgoing density for boundary con-

ditions,

q̃(0, t) =0, (7.77)

ṽ(L, t) =
1

ρ⋆
q̃(L, t). (7.78)

In the next section, we validate the observer design with the traffic filed data, we do not prescribe

any boundary conditions beforehand but directly take the measurement of the boundary data.

We use the finite volume method which is common in traffic flow applications. The

numerical approach divides the freeway segment into cells and then approximates the cell values

considering the balance of fluxes through the boundaries of the adjacent cells. In order to obtain

the numerical fluxes, we write the ARZ model in the conservative variables, then apply two-stage

Lax-Wendroff scheme to discretize the ARZ model in spatio-temporal domain. The scheme is

second-order accurate in space and first-order in time. The spatial grid resolution is chosen to

be smaller than the average vehicle size so that the numerical errors are smaller than the model

errors. Therefore the numerical simulation is valid for this continuum model.
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Figure 7.1: Density ρ(x, t) and velocity v(x, t) of nonlinear ARZ model.

Figure 7.2: States estimates ρ̂(x, t) and v̂(x, t) of nonlinear boundary observer.

Figure 7.3: Estimation errors ρ̌(x, t) and v̌(x, t).
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The inhomogeneous nonlinear ARZ model written in the conservative form is given by

ρt +(ρv)x =0, (7.79)

yt +(yv)x =− y
τ
, (7.80)

where ρ and y are conservative variables, and y is defined as

y = ρ(v−V (ρ)). (7.81)

The numerical fluxes are then obtained by

Fρ =y+ρV (ρ), (7.82)

Fy =
y2

ρ
+ yV (ρ). (7.83)

The Lax-wendroff numerical scheme is performed through two-stage update from
(

ρn
j ,y

n
j

)
to(

ρn+1
j ,yn+1

j

)
.

At the first stage, the update law of
(

ρn
j ,y

n
j

)
to
(

ρn+ 1
2

j+ 1
2
,y

n+ 1
2

j+ 1
2

)
is given by

ρn+ 1
2

j+ 1
2
=

1
2
(
ρn

j +ρn
j+1
)
− ∆t

2∆x

(
(Fρ)

n
j+1 − (Fρ)

n
j
)
, (7.84)

y
n+ 1

2
j+ 1

2
=

1
2
(
yn

j + yn
j+1
)
− ∆t

2∆x

(
(Fy)

n
j+1 − (Fy)

n
j
)

− ∆t
4τ
(
yn

j + yn
j+1
)
, (7.85)

Then we calculate the numerical flux at the intermediate points of state variables and the obtain

the final stage as

ρn+1
j =ρn

j −
∆t
∆x

(
(Fρ)

n+ 1
2

j+ 1
2
− (Fρ)

n+ 1
2

j− 1
2

)
, (7.86)
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(
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2
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2
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n+ 1
2

j− 1
2

)
. (7.87)

For the numerical stability of the Lax-Wendroff scheme, the spatial grid size ∆x and time step

∆t is chosen so that CFL condition is satisfied:

max |λ1,2| ≤
∆x
∆t

, (7.88)

We specify state values at both x = 0 and x = L boundaries. ARZ model will pick up

some combination of ρ and v at each of the two boundaries, depending on the direction of

characteristics at the boundary cells. We implement the boundary conditions in (7.77) and (7.78).

The numerical simulation result of the nonlinear ARZ, the nonlinear boundary observer

estimation and the estimation errors are plotted in Fig. 1-3. Blue lines represent the initial con-

ditions while the red lines represent the evolution of outlet state values in the temporal domain.

The simulation is performed for a 500 m length of freeway segment and evolution of traffic states

density and velocity are plotted for 4 min.

In Fig. 1, traffic density and velocity are slightly damped and keeps oscillating in the

domain. It takes the initial disturbance-generated vehicles to leave the domain in 50 s but the

oscillations sustain for more than 4 min which means the following incoming vehicles entering

the acceleration-deceleration cycles under the influence of stop-and-go waves. The traffic states

are chosen to be in the congested regime and the stop-and-go phenomenon is demonstrated in

the simulation.

State estimation of traffic density and velocity by the nonlinear observer is shown in Fig.

2. The measurement is taken for the outgoing velocity and outgoing flow. The incoming flow

is assumed to be at setpoint traffic flux. We do not assume any prior knowledge of the initial

conditions and set the initial conditions to be at the setpoint density and velocity. We can see
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that state estimates converges to the values of plant after 75 s.

In Fig. 3, the evolution of estimation errors are shown. After 75 s, the estimation errors

for density and velocity converge to value less than 1% of the setpoint value. There are still

relatively very small estimation errors remain in the domain for two reasons. Our result only

guarantees the convergence of estimates in the spatial L2 norm. In addition, there could be non-

linearities of the error system not driven to zero by the linear output injections of the nonlinear

boundary observer design.

7.4 Data Validation

In this section, we validate our boundary observer design with Next Generation Sim-

ulation (NGSIM) traffic data [48] which provides vehicle trajectories with great details and

accuracy. The NGSIM trajectory data set is collected on April 13, 2005 by the Federal Highway

Administration’s project. The study area is a segment of Intestate 80 located at Emeryville, Cal-

ifornia. The dataset gathers trajectories of vehicles over a total of 45 minutes during rush hour:

4:00pm - 4:15pm, 5:00pm - 5:15pm, 5:15pm - 5:30pm.

Firstly, we calibrate the nonlinear ARZ model with part of the NGSIM data to obtain

calibrated model parameters including the steady state values, the equilibrium velocity-density

function V (ρ) and the relaxation time τ . Then the rest datasets are used to test the observer

design for the calibrated ARZ model. The estimation results of traffic states are compared with

the NGSIM data. The boundary data is measured directly from the NGSIM data and traffic states

are estimated for the considered domain. The result of reconstructed traffic data and boundary

observer estimation of the traffic states are compared.
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7.4.1 Model calibration with NGSIM data

Reconstruction from Data

We aim to calibrate the ARZ model which is a macroscopic model describing aggregated

values. However, the NGSIM data set consists of microscopic measurements. The data was

recorded with high-speed cameras for every 0.1 seconds. We need to process NGSIM trajectory

data into macroscopic scale so that it can be used to calibrate the ARZ model.

The data was recorded on a 537-meter long freeway segment with six lanes for a time

period of 15-minutes. Due to insufficient data collection at boundaries of segment, onset and

offset of recording, the viable domain we choose to use in calibration and validation is 400-

meter during a time period around 10-minutes. When we calibrate the parameters in ARZ model

and fundamental diagram, we consider the freeway segment as a macroscopic general one-lane

problem. That being said, six-lane densities need to be taken into account.

We will use the Edie’s formula [43] to calculate aggregated traffic states ρ(x, t), v(x, t),q(x, t)

from the trajectory data of vehicles x(t) with a resolution 0.1 s. At each time instance, positions

of the multiple vehicles are collected. Consider a time-space domain [0,T ]× [0,L], we divide it

into N ×M grids

[i∆t,(i+1)∆t] × [ j∆x,( j+1)∆x],

where i ∈ 1,2, ..,N and j ∈ 1,2, ..,M. Within each cell, we consider ρi, j,qi, j,vi, j to be constant.

We use the following Edie’s formula to map a set of vehicles’ traces to speed, flow and density

over the space-time grid. For each cells, suppose there are Ni j vehicle traces passing through the

cell [i∆t,(i+1)∆t] × [ j∆x,( j+1)∆x],

ρi, j =
ΣNi j

k=1tk
∆x∆t

, (7.89)
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Figure 7.4: Density and velocity reconstructed from data of 4:00pm-4:15pm.

Figure 7.5: Density and velocity reconstructed from data of 5:00pm-5:15pm.

qi, j =
ΣNi j

k=1xk

∆x∆t
, (7.90)

vi, j =
qi, j

ρi, j
. (7.91)

After obtaining the cell values ρi, j,qi, j,vi, j, they can be later on compared with the observer

estimates ρ̂i, j, q̂i, j, v̂i, j with same griding. The number of cells are chosen such that in each cell,

there are enough trajectory data. Otherwise, there could be cells that no trajectory has crossed.

On the other hand, noises appear if a very fine discretization of grids is chosen. The following

simulation is performed in a 41×41 grid.
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Table 7.2: Averaged aggregate traffic data.
Data Set Density

(veh/km)
Velocity
(km/h)

Flow
(veh/h)

4:00 - 4:15pm 267 28.27 7548
5:00 - 5:15pm 353 20.23 7141
5:15 - 5:30pm 375 19.35 7256

We reconstruct the aggregated traffic states from all the three dataset. In Fig. 7.4 and

Fig. 7.5, we show the surface plot of the density and velocity states for the dataset of 4:00pm

- 4:15pm and the dataset of 5:00pm - 5:15pm. The initial conditions are highlighted with color

red and the boundary conditions at outlet are highlighted with color blue. The congestion forms

up as time goes by and propagates from the downstream to upstream. The most congested traffic

appears at the inlet where the traffic density is relatively high and velocity is low.

We are mostly interested in the congested traffic where estimation of the traffic states

becomes more relevant. The linearized ARZ model around the uniform reference is analyzed

and employed for the observer design. By taking average of traffic aggregated values, we obtain

the reference system ρ⋆, v⋆ and q⋆ of each dataset. Therefore, the average density, average

velocity and average flow of each time period is calculated and shown in the Table 7.2. We

observe that among the three data set, the traffic is most congested during 5:15pm - 5:30pm with

largest averaged density and smallest velocity. Whether the traffic states are in congested or free

regime need to be determined after we introduce the calibrated fundamental diagram.

Calibration of model parameters

For the ARZ model, the model parameters to be calibrated from the dataset is the equi-

librium density-velocity relation V (ρ) and relaxation time τ .

∂tρ +∂x(ρv) =0, (7.92)

∂tv+(v+ρV ′(ρ))∂xv =
V (ρ)− v

τ
, (7.93)
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Figure 7.6: Density and flow from data of 4:00pm-4:15pm, 5:00pm-5:15pm and 5:15pm-
5:30pm.

The fundamental diagram defined as Q(ρ) = ρV (ρ) describing the equilibrium density and

flow rate relation is usually obtained by long-term measurements via loop-detectors. The loop-

detector data set provides macroscopic density and flow rate data and its recording resolution is

30 s. In the previous section, we use Greenshield’s model (6.3) for V (ρ) as a simple choice for

the boundary observer design. The Greenshield’s fundamental diagram Q(ρ) is given by

Q(ρ) = ρv f

(
1−
(

ρ
ρm

)γ)
. (7.94)

But Greenshield’s model cannot accurately represent the fundamental diagram data. The critical

density ρc satisfies Q′(ρ)|ρc = 0 and thus segregates the free and congested regimes. The critical

density ρc of the Greenshield’s model (γ = 1) occurs at ρc =
1
2ρm. However, the critical density

obtained from empirical traffic data usually shows up at ρc =
1
4ρm. Hence, we need to consider

a more realistic functional form for Q(ρ). Here we employ a three-parameter fundamental

diagram proposed by [45].

In [45], the following three-parameter (λ , p,α) fundamental diagram is calibrated with

the NGSIM detector data set of the same freeway segement,

Q(ρ) = α

a+(b−a)
ρ

ρm
−

√
1+λ 2

(
ρ

ρm
− p
)2
 , (7.95)
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where a and b are denoted by

a =
√

1+(λ p)2, (7.96)

b =
√

1+(λ (1− p))2. (7.97)

The parameters (λ , p,α) do not have physical meaning but represent the shape of the functional

form where λ represents the roundness, p tunes the critical density, α determines the maximum

flow rate. The hyperbolicity Q′′(ρ)< 0,V ′(ρ)< 0 is guaranteed. The three parameters (λ , p,α)

are determined using Least Square fitting with historical loop detector data.

Due to the lack of data near the maximum density, the value of ρm is prescribed according

to the following equation

ρm =
number of lanes

typical vehicle length× safety distance factor
. (7.98)

The freeway segment in the dataset consists of 6 lanes and we consider the typical vehicle length

to be 5-meter and the safety distance factor is 50% of vehicle length. Therefore, we have ρm for

all lanes in our simulation

ρm = 800 veh/km. (7.99)

The calibrated fundamental diagram is plotted in Fig. 7.6. The traffic density and flow

rate of the three dataset are plotted on the calibrated fundamental diagram. We can see that

4:00pm-4:15pm are in the transition region where the data points are partially in the free regime

and partially in the congested regime. The traffic data of 5:00pm-5:15pm and 5:15pm-5:30pm

are scattered in the congested regime of the fundamental diagram.

With the calibrated fundamental diagram V (ρ), we choose the relaxation time τ from

a range from 10s to 100s and calibrate it with the dataset of 5:00pm-5:15pm. The optimal
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Figure 7.7: Density and velocity reconstructed from the data of 5:15pm-5:30pm.

Figure 7.8: Estimates of density and velocity from the data of 5:15pm-5:30pm.

relaxation time is τ = 30s where the total error between the calibrated model and data is the

lowest. In the next step, we use the calibrated fundamental diagram V (ρ) and the relaxation

time τ to construct the boundary observer.

7.4.2 Simulation for the nonlinear observer with calibrated parameters

We use the data of 5:15pm-5:30pm to test the boundary observer design. The reference

system (ρ⋆,v⋆,q⋆) is obtained from Table 7.2. Along with the calibrated parameters V (ρ) and

τ , the nonlinear observer is constructed with a copy of the nonlinear ARZ model with the output

injection gains that drive the estimation errors to zero. The numerical solution of the nonlinear
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Figure 7.9: Density and velocity estimation errors for the data of 5:15pm-5:30pm.

PDEs are approximated with the Lax-Wendroff method. The boundary data is implemented with

the ghost cell. The ARZ model collects the boundary values based both on flux of the compu-

tational domain and the boundary data of the ghost cells. Using the boundary measurements

of the inlet and outlet of the freeway segment, the state estimation (ρ̂(x, t), v̂(x, t)) is generated

without the knowledge of the initial condition. In Fig. 7.7, (ρ(x, t),v(x, t)) is obtained from the

reconstruction of the data set of 5:15pm-5:30pm. In Fig. 7.8, it shows the evolution of the state

estimates (ρ̂(x, t), v̂(x, t)). The initial condition, highlighted with color blue, is assumed to be the

uniform reference system (ρ⋆,v⋆,q⋆) which represents the averaged values of the dataset. The

boundary conditions at outlet are highlighted with right color which gives the output injections in

the observer. We notice that when density value is higher than 600 veh/km at inlet around 7 min,

the estimation result is not satisfying at inlet. This could be related to the ARZ model’s inac-

curacy in predicting traffic states near maximum density since non-unique maximum densities

exist for the ARZ model.

For the error analysis of the observer estimation, the estimation errors are considered in

the L2-norm, defined as

Eρ(t) =

[
1
L

∫ L

0

(
ρ(x, t)− ρ̂(x, t)

ρ⋆

)2

dx

]1/2

, (7.100)
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Ev(t) =

[
1
L

∫ L

0

(
v(x, t)− v̂(x, t)

v⋆

)2

dx

]1/2

, (7.101)

where ρ⋆ and v⋆ are the averaged state values of the data. We choose the L2 of the estimation

errors and average it over space. The convergence of the local stability in the L2-sense for

estimation errors to zero is guaranteed in Theorem 2. In addition, the spatial averaged errors can

remove the influence of noises and outliers of the traffic data.

The temporal evolution of the space-averaged errors of density and velocity estimates in

the L2-sense is shown in Fig. 7.9. It reveals that at the initial time, density and velocity estimation

errors start from 20% and 40% respectively. The finite convergence time is around t f = 3 min.

The estimation errors in the end converge at 10%. The linearization of output injections design,

the data noise, the reconstruction errors and the numerical approximation errors could contribute

to the remaining spatial averaged errors between the estimation and NGSIM traffic data after the

convergence time.

7.5 Conclusion

In this chapter, we develop a nonlinear boundary observer for the second-order nonlinear

hyperbolic PDEs, estimating traffic states of ARZ model and then validate the design with traffic

field data. Analysis of the linearized ARZ model leads our main focus to the congested regime

where stop-and-go happens. Using spatial transformation and PDE backstepping method, we

construct a boundary observer with a copy of the nonlinear plant and output injection of mea-

surement errors so that the exponential stability of estimation errors in the L2 norm and finite-

time convergence to zero are guaranteed. Simulations are performed for traffic estimation on a

stretch of freeway. The nonlinear observer is tested with a calibrated ARZ model obtained from

the NGSIM data.

For future work, observer design may be considered for a generalized ARZ model pro-
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posed by [44] to address the non-unique maximum density associated with ARZ model. The

estimation accuracy in predicting the heterogeneous behaviors of drivers and spread of data for

the congested regime could be improved. On the other hand, defining the fundamental diagram

requires the calibration with the historical data. This assumption of using the historical data to de-

termine model parameters may no hold when traffic becomes unpredictable in case of accidents.

It is practically preferable if the model parameters could be estimated real-time. Therefore, it is

of authors’ interest to consider adaptive observer design for this problem.

Chapter 7 contains reprints and adaptations of the following paper: H. Yu, Q. Gan, A.

M. Bayen and M. Krstic, “Boundary Observer Design and Validation for Freeway Traffic State

Estimation via Aw-Rascle-Zhang model,” IEEE Transactions on Control Systems Technology,

under review. The dissertation author is the primary investigator and author of this paper.
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