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Abstract of the Dissertation

Discrete ergodic Jacobi matrices: Spectral properties and
Quantum dynamical bounds

By
Rui Han

Doctor of Philosophy in Mathematics
University of California, Irvine, 2017
Professor Svetlana Jitomirskaya, Chair

In this thesis we study discrete quasiperiodic Jacobi operators as well as ergodic
operators driven by more general zero topological entropy dynamics. Such operators
are deeply connected to physics (quantum Hall effect and graphene) and have enjoyed
great attention from mathematics (e.g. several of Simon’s problems). The thesis has
two main themes. First, to study spectral properties of quasiperiodic Jacobi matrices,
in particular when off-diagonal sampling function has non-zero winding number or
singularities. Second, to address the consequences of positive Lyapunov exponent
for Schrodinger operators with a class of potentials of bounded discrepancy, prime
example being those driven by shifts and skew-shifts on multi-dimensional tori.

Within the first theme, one of our results provides an if and only if topological
criterion for obtaining localization from reducibility of the dual Jacobi cocycles. As an
application of this result to the extended Harper’s model, we obtain sharp arithmetic
spectral transition in the positive Lyapunov exponent regime. Two other results
about the extended Harper’s model include a proof of non-degeneracy of all possible
spectral gaps (known as Dry Ten Martini Problem) for the non-self-dual regions, and
an arithmetic result on purely continuous spectrum for the self-dual region that is
optimal and improves on a recent work by Avila-Jitomirskaya-Marx, who proved a

measure-theoretic version.
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The most important contribution among the second group is a general localization-
type result for ergodic potentials of bounded discrepancy. As concrete applications
of our general result, we build the first arithmetic localization-type results for poten-
tials defined by shifts and (the first non-perturbative ones for) skew-shifts of higher-
dimensional tori. Similar consideration also leads to the continuity of spectral data,
for Schrodinger operators with such underlying dynamics in the positive Lyapunov

exponent regime.
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Introduction

0.1 Discrete Jacobi matrices

Let (M, g) be a compact Riemannian manifold equipped with metric g. Let Vol,
be its Riemannian volume density. Let f be an invertible uniquely ergodic volume
preserving map on M.

Consider the following 1-dimensional discrete Jacobi matrix on [?(Z) given by
(1) (Hew,f()u)n = c(f"O) g1 + c(fr10)up—1 +v(f"0)un,

where 6 € M is called phase and c¢,v are functions on M. In particular, we will
assume v be a real-valued function.

Two prime examples of (M, f) are: shifts f = f,o : 0 — 0 + « on T¢ and skew-
shifts f = fosa @ (01,09, ...,04) — (01 +a, 0o+ 0y, ....,05+ 04_1) on T When f = f,,
operator H.,y, ., which we denote by H.,  for short, is called discrete quasiperiodic
Jacobi matrix. We also mention that when c¢(d) = 1, Hy, s is referred to as discrete

Schrodinger operator.



0.2 Motivation

Quasiperiodic Jacobi matrices arise naturally from the study of tight-binding electrons
on a two-dimensional lattice exposed to a perpendicular magnetic field. The most
prominent example of such operators is the Harper’s equation, mathematically known

as the almost Mathieu operator (AMO):
(2) (Hu)p = Ups1 + Up—1 + 2A cos 27(0 + na)u,,.

In early 1970s, numerical studies of the spectrum of AMO (when A = 1) generated
the first fractal in the physics literature, the “Hofstadter butterfly”. From that time
on, this operator has continuously drawn great attention from both mathematics and
physics societies. Up to now, it has already been connected to the work related to
three Nobel prizes (quantum Hall effect (1998, 2016) and graphene (2010)) and one
Fields medal (Ten Martini Problem).

After three decades of active research, much is known about the AMO. In this
thesis we mainly explore generalizations of AMO in two different directions: one-
frequency Jacobi matrices (with non-constant ¢(6)) and multi-frequency Schrédinger
operator (multi-dimensional «).

In the first part of the thesis (Chapters 2-4), we explore the influence of non-
constant sampling function ¢ on the spectral theory of quasiperiodic operators. It
turns out the spectral properties will be largely different from the Schrodinger case,
especially when ¢ has non-zero winding number or singularities.

One prime example of (non-Schrédinger) Jacobi matrices is the extended Harper’s

model (EHM):
(3)  (Hxo(0)u)n = cx(0 + na)u,i1 + (0 + (n — 1)a)u,—1 + 2 cos 27(0 + na)u,.

where c(f) = A\e 2™0+2) 1 )y + A\3e?™*+3) . This model was first proposed by D.J.
Thouless in 1983 [67] and arises when 2D electrons are allowed to hop to both near-
est neighboring (expressed through \y) and the next-nearest lattice sites (expressed
through Ay and A3). It includes AMO as a special case (when Ay = A3 = 0). An in-

teresting feature of EHM is that it accounts for different lattice geometries: not only

2



square lattice (as AMO), but also triangular lattice (when one of A\j, A3 vanishes).
Thus it is more closely connected to the Graphene, whose hexagonal lattice can be
viewed as two interlacing triangular lattices.

In the last decades, there have been many important advances about EHM, in-
cluding the explicit formula of the Lyapunov exponent [37], localization in the positive
Lyapunov exponent region for Diophantine frequencies [43] and spectral decomposi-
tion for all frequencies in the zero Lyapunov exponent regions [8].

While in the positive Lyapunov exponent region, there is definitely a different be-
havior for the Diophantine [43] and Liouville [57] c, thus it is interesting to determine
a transition. In the last few years, there have been several remarkable developments,
where in models with classical small denominator problems leading to arithmetic
transitions in spectral behavior, sharp results were obtained, with analysis up to the
very arithmetic threshold. For the Maryland model, the spectral phase diagram was
determined exactly for all «, 0 in [52]. For the AMO, the transition in « (conjectured
in 1994 [51]) was recently proved in [12]. Even more recently, pure point spectrum
up to the transition was established by a different method in [47, 48] with also an
arithmetic condition on #. Our result presented in Chapter 2 adds to this growing
collection by establishing a sharp transition in « for the extended Harper’s opera-
tor. This is achieved by establishing an if-and-only-if topological criterion for the
reducibility of general quasiperiodic Jacobi cocycles to imply pure point spectrum of
the dual model.

In Chapter 3, we answer a question by Avila-Jitomirskaya-Marx. Specifically, we
obtain an arithmetic result on purely continuous spectrum for the self-dual EHM that
improves on [8], where a measure-theoretic version was proved.

Aside from the aforementioned developments on the spectral decomposition of
EHM, little was known about the spectrum as a set. In Chapter 4, we study the
Cantor structure of the spectrum for non-self-dual EHM, and prove the Dry Ten
Martini Problem in the Diophantine case.

In the second part of the thesis (Chapters 5, 6), we explore the consequences of

positive Lyapunov exponent for Schrodinger operators with potentials driven by shift



and skew-shifts on multi-dimensional tori.

Positive Lyapunov exponents are generally viewed as a signature of localization.
While it is known that they can coexist even with almost ballistic transport [62]
[27], vanishing of certain dynamical exponents has been identified as a reasonable
expected consequence of hyperbolicity of the corresponding transfer-matrix cocycle.
Results in this direction were obtained in [25, 26] for one-frequency trigonometric
polynomials, and recently in [45], for one-frequency quasiperiodic potentials under
very mild assumptions on regularity of the sampling function. In Chapter 5 we identify
a general property responsible for positive Lyapunov exponents implying vanishing of
the dynamical quantities in the rather general case of underlying dynamics defined by
volume preserving maps of Riemannian manifolds with zero topological entropy, and
under very minimal regularity assumptions. This work presents the first localization-
type results that hold in such generality. Our general results allow us, in particular,
to obtain localization-type statements for potentials defined by shifts and (the first
non-perturbative ones for) skew-shifts of higher-dimensional tori.

A natural approach to quasiperiodic operators is through periodic approximants,
obtained by replacing the irrational frequency by a sequence of rationals. In partic-
ular, since the spectrum at rational frequencies can be obtained numerically and are
easier to study, continuity in frequency allows us to study the spectrum at irrational
frequencies via rational approximation. While many recent significant advances in
discrete Schrodinger operators, see e.g. [15, 40, 2], require one dimensional torus shift
and analytic potentials, our results presented in Chapter 6 reveal that continuity
of the spectrum is a much more general phenomenon: it holds for both shifts and

skew-shift of higher dimensional tori and also Holder continuous potentials.



Chapter 1

Preliminaries

1.1 Notations

For z € R, let ||z||r = dist(z,Z). For a bounded analytic function f defined on a strip
{ImO| < e} we let || f|lc = supjmgi<c [ f(0)]. If f is a bounded continuous function on
R, we let || f|lo = suppegr |f(0)]. For a set U C R? let |U| be the Lebesgue measure of
U.

1.2 Rational approximation of «

First, let us introduce the Diophantine condition on T¢:

DC(7) = UesoDC(c, 7) = Upsol (@1, o, ad) || (B @) |2 > (;) for any 0 # h € 2%}
/rn T

—

where r(h) = [[, max (|hs|,1). It is well-known that when 7 > 1, DC(7) is a full

measure set.

We also introduce the weak Diophantine condition:

WDC(7) = UesoWDC(e, 7) = Ueso{ (11, ..., ag) | max{||ha ||t} > ﬁ for any 0 # h € Z}.

It is well-known that when 7 > 1 'WDC(7) is a full measure set.
Clearly, in general DC(7) € WDC(7), while in the single frequency case DC(7) =
WDC(7).



1.2.1 Single frequency

Let o be an irrational number and let {%} be its continued fraction approximants.

The following properties (see e.g.[68]) are well-known:

1) o <l < -
(1.2) [kalr > llgnallr for g < |k < gni1-
Let () € [0, 00] be given by
(1.3) f(a) = limsup n ntl,
n—00 an

Roughly speaking, 5(«) being large means « can be approximated well by rational
numbers. We also mention that in some papers, Diophantine condition refers to

B(a) = 0, we denote it by a € DC. Clearly, DC(7) C DC for any 7 > 0.
1. If & € DC(¢, 1) for some ¢ > 0, we have

(1.4) |kallT > for any k # 0.

c
k|7
In particular, combining (1.1) with (1.4) we have
(1.5) Cn+1 < Gy

2. If a ¢ DC(7), there exists a subsequence of the continued fraction approximants

{zﬂ} so that
Tk

1.2.2 Multiple frequencies

Let o = (g, g, ..., ) be a set of irrational frequencies. Let {g—”} be its best simul-

taneous approximation with respect to the Euclidean norm on T¢, namely,

d d
D lanasllE < D ka3 for any 0 < |k| < g,

Jj=1 J=1



Clearly, by the pigeonhole principle, we have

=

d d
or(2 +1)
(1.7) > llgnayllr® < —2=—.
i=1

d
7an+1

By the definition of Diophantine and weak-Diophantine condition.

1. If a« € DC(¢, 7), then

(1.8) (&, a)||r > —=— for any k € Z%\{0}.
r(k)T
2. If « € WDC(e, 7), then
Al > — 0
(1.9) max |\ kollr > i for any k € Z\{0}.

In particular combining (1.7) with (1.9), we have for « € WDC(7),

1
(1.10) ¢l <q for some constant ¢

3. If a« ¢ WDC(7), there exists a subsequence of the best simultaneous Diophantine

approximation {Zﬂ} so that
7lk

(1.11) Jim g, max [lgn, aflr = 0.

1.3 Cocycles and Lyapunov exponent

For a given z € C, a formal solution u of H,., ju = zu can be reconstructed via the

following equation.

where




Let A. . x(0) be the product of consecutive transfer matrices:
Acon(0) = Ao (F7710) - Ac(fO)A..(0) for k>0, A..o(0) =1d, and
A i(0) = (Ac. 1 (fF0))* for k < 0.
Then for any k € Z we have the following.
u(k) u(0)
u(k —1) ’ u(—1)
The linear skew-product (f, A..(+)), defined below, is called the associated cocycle
to H., ¢ at energy z.
(fy AC,Z()) : (Mv CQ) — (Mv CQ)
0,2) — (f0, A..(0)x)
We define the Lyapunov exponent
(1.12)
1 1
L(f,2) = Jim [ W Aco(@)]] dVol,(6) = inf / || As.. (8] dVol,(6).
M

Furthermore, L(f,z) = limy_,0 1 In || Ac.x(0)] for Volg-a.e. 0 € M.

In the case of quasiperiodic operators, we will always write («, A..(-)) instead of

(fsasAc2(+)) and L(a, z) rather than L(f; , 2) for simplicity.

1.4 Spectral measures and Integrated density of
states

Let ficy 1o be the spectral measure of H,, r(f) associated to dyp, namely for any Borel

set U, we have

tew.£,0(U) = (00, Xv (Hew,f(0))d0).

We define the density of states measure dNy, , , by

dNw,, ,(U) = /Tuc,v,f,a(U) de.
Ng,, (E) == Ny, ,(—00,E) is called the integrated density of states (IDS) of
H.,(0).



1.5 Reducibility and rotation number

A quasiperiodic cocycle (a, A) is called L?-reducible (or C*-reducible) if there exists
a matrix function B € L*(T,SL(2,R)) (or B € C*(T, PSL(2,R)) respectively) and

a constant matrix A, such that

(1.13) B0+ a)A0)B™(#) = A, forae. €T,
Let
CoS 27X —sin 27x
’ sin 27x COS 27X

Any A € C%T, PSL(2,R)) is homotopic to § — Rz, for some n € Z, called the
degree of A, denoted by deg A = n.

Assume now that A € C°(T, SL(2,R)) is homotopic to identity. Then there exists
v :R/ZxR/Z— R and u:R/Z x R/Z — R such that

cos 27y cos 2 (y + ¥ (z,y))
A(:E ) = u(a:, Y

sin 27y sin 27 (y + ¢ (z,y))

The function ¢ is called a lift of A. Let p be any probability on R/Z x R/Z which
is invariant by the continuous map 7 : (z,y) — (z + o,y + ¥(x,y)), projecting over
Lebesgue measure on the first coordinate (for instance, take p as any accumulation

point of X ZZ;& T*v where v is Lebesgue measure on R/Z x R/Z). Then the number

(1.14) pla, A) = /wdu mod Z

does not depend on the choices of ¥ and pu, and is called the fibered rotation number
of (o, A).
It can be proved directly by the definition that

(1.15) Ipla, A) — 2| < CllA = R,l.

The fibered rotation number is invariant under real conjugacies which are homo-

topic to the identity. In general, if (o, AY) and (a, A?) are real conjugate, namely



there exists B € C°(T, PSL(2,R)) so that B~(z + a)A®(z)B(x) = AW (x) and
deg B = k, then

(1.16) pla, AM) = p(a, AD) — ka/2.

We say that («, A) is uniformly hyperbolic if there exists continuous splitting
C? = FE*(x) @ E“(x), * € T such that for some constant C,n > 0 and all n > 0,
| An(x)v|| < Ce™||v|| for v € E*(x) and ||A_,(x)v| < Ce ™| |v|| for v € E¥(z).

For uniformly hyperbolic cocycles there is the following well-known result.

Theorem 1.5.1 Let (a, A) be a uniformly hyperbolic cocycle, with o € R\ Q. Then
2p(o, A) € aZ + 7.

1.5.1 Normalized cocycle

Given a quasiperiodic Jacobi matrix H,, , with continuous function v and analytic
c. Let &) = ¢(0) on T and its analytic extension off T. Let |¢|(6) = \/c(A)é(6), then
lc[(0) is an analytic function which coincides with |¢(6)| on T.

We define the normalized transfer matrix Aw(@) as below.

1 2=v(6)  —ll0-a)
VIel@el(@ —a) \ |e/(o) 0

The advantage of A|C|7z over A, . is that it is a SL(2, R) matrix homotopic to identity.

(1.17) A2 (0)

The cocycle (o, A..(-)) will be called the normalized cocycle.
By (1.14), we can define the rotation number of the normalized cocycle (a, fl|c|7 E),
denoted by p(a, fl|c|, g). It is a non-increasing continuous function of energy E.

Let H.| ., be the normalized Jacobi matrix
(1.18)  (Higjwa(@)u)n = |c|(0 + na)tnir + |c|(0 + (0 — 1)a)up—1 + v(0 + na)u,.
The following relation between p(a, f~1|c|7E) and Np,, (E) is well-known.
(1.19) Ni, o (E) =1 =2p(a, Ay p).

Note that Ny, (E) = Nu,, . (E) since Hguq(0) and H.,o(0) differ by a unitary

conjugation.
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1.6 Extended Harper’s model

The extended Harper’s model (EHM), defined as below, is a prime example of quasiperi-

odic Jacobi matrix.
(Hxo(0)u)n = ca(0 + na)upir + Ex(0 + (n — D)a)u,—1 + 2 cos 2m(0 + na)uy,.

where ¢ (0) = A\e 2 0+2) 4\, 4 \ge2m(0+32),

Note that in order to distinguish from general Jacobi matrix, we denote the ex-
tended Harper’s model by H) ,.

According to the duality transformation o : A = (A, Ao, Ag) — A = (:\\—2, 7127 i—;),

the coupling constant parameter space is naturally divided into three regions.

AL+ A3
)\1 + )\3 = )\2
Region III Lt
L
1
Region II
Region I | Ly
1 Ao

Region I 0 < A\ + X3 <1,0< A < 1,
Region 11 OS )\1+)\3 < )\2,1 < )\2,

Region I11 max{l, /\2} < )\1 + )\3, )\2 > 0.

1.6.1 Aubry duality of the extended Harper’s model
Observation 1.6.1 ¢ is a bijective map on 0 < Ay + A3, 0 < Ag.
(i) o(I°) = 1I°, o(11I°) = o (I1I°)
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(ZZ) Lettmg L= {)\1 + /\3 = 1,0 < /\2 < 1}, L= {O < )\1 + )\3 < 1,)\2 = 1}, and
LIII = {1 S )\1 + )\3 == )\2}, U(LI) = LIII and U(LH) = LH.

As o bijectively maps III U Lj; onto itself, the literature refers to III U Ly as the
self-dual regime. We further divide III into IIIy,—y, (isotropic self-dual regime) and
Iy, 25, (anisotropic self-dual regime).

Let Xy a6 be the spectrum of Hy 49, and Xy o = UperXaag- It is a well-known
result that X 4 ¢ is independent of 0 if « is irrational.

By Aubry duality, the spectrum of H), , and the spectrum of its dual model Hy ,

are connected to each other in the following way.
(1.20) Yna = Aodg

Moreover, the integrated density of states N, ,(E) of Hy, coincides with the IDS
N3 o(E[X2) of Hy 4.

1.6.2 Lyapunov exponent of the extended Harper’s model

An remarkable feature of the extended Harper’s model is that Lyapunov exponents
when restricted to the spectrum are constant and depend only on A. Indeed, according

to Avila’s Global theory, we have

Theorem 1.6.2 [[37], see also Appendixz A] The extended Harper’s model is super-

critical in region 1° and sub-critical in region 11°. Indeed, if \ belongs to region 1°,
o for any £ € Xy ,,

(1.21)
1+ /1= 4A )

L(a, E) = L(\) =In
max ()\1 + )\3, )\2) + \/max ()\1 + )\3, )\2)2 — 4)\1)\3

> 0.

o\ belongs to region I, furthermore, for any E € X5 .,

(1.22)

- L
L(a, E) = L(a, Ae m(- +1i€)) = L(a, Aje,6(- +i€)) =0 for [ < _2(;‘)
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1.6.3 Presence of singularities

Another interesting phenomenon of extended Harper’s model is the presence of sin-

gularities.

Observation 1.6.3 (e.g. [8]) c\(0) could take zero wvalue when the parameters A

satisfy some certain conditions. Indeed,

_ A2 ; : _ 1 A2 o _
o when \y = A3 > =2, singular points are 0 = garccos(—x) — 5 and 0, =

>

21) —§ (notice that when A\ = % there is a single singular point

).

1
5= Arccos (

b =6=1-

2

>

NI

o when \i # A3 and A1 + A3 = Ay, the singular point is 01 = % —

R

1.6.4 Spectral properties of the extended Harper’s model

Due to [43, 8], we have the following spectral properties for the extended Harper’s

model.

M+ A3 = A 2 3 = A

A+ A 1 3 2 s 3 2

ac spectrumy

1 1
ac spectrum ac spectrum
pPp pp
1 Ao 1 Ao
AL # A3 A= A3

e pp for Diophantine o and a.e. 6 due to Jitomirskaya-Koslover-Schulteis [43].

e ac and sc for any irrational o and a.e. 6 due to Avila-Jitomirskaya-Marx [8].
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Chapter 2

Full measure reducibility and
localization for Jacobi operators: a

topological criterion

2.1 Introduction
In this chapter we study the general class of Jacobi operators
(2.1) (Hewo(0)u)n = c(0 + na)upr + (0 + (n — Da)u,—1 + v(0 + na)u,

where c(f) = 3, &2 0+3) ¢ C¥(T), &0) € C¥(T), &0) = c(0) on T, and
v(0) = Y, tpe?™* € C¥(T). We will assume 9, = 0_, ¢ € R. Such operators
arise as effective Hamiltonians in a tight-binding description of a crystal subject to a
weak external magnetic field, with ¢, v reflecting the lattice geometry and the allowed
electron hopping between lattice sites. The prime example, both in math and in
physics literature, is the extended Harper’s model, see (3).

The Aubry dual of H.,, is an operator Hc,ua defined by

(2.2) (Hewa(@)t)m =Y du (€, 0) (@)t

_m!

’
~ YO () ~ N _ .
where dpy (¢, v)(2) = Cpe®™ T 4§ 4 E_ e M),
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The Aubry duality can be explained by the magnetic nature and corresponding
gauge invariance of operators H,,, [63] and has been formulated and explored on
different levels, e.g. [63], [32], [7]. The dynamical formulation of Aubry duality is
an observation that if ﬁlcjv’a(Q) has an eigenvalue at F with respective eigenvector
{u,}, then, considering its Fourier transform, u(z) := Y _, u,e*™* € L*(T) \ {0}

and letting

(2.3 My = [ =) ,
e 7 0y(r —a) e¥yu(—(r — a))

M, provides an L? semiconjugacy between the transfermatrix cocycle of H., , and

627719

the rotation Ry = e For 6 that are not a-rational, det My(z) doesn’t
0 e—27rz

vanish for a.e. z [8], leading to reducibility of the transfermatrix cocycle of H,,
to a constant rotation Ry. In particular, pure point spectrum for a.e. 6 of ﬁqv,a(@)
leads to reducibility for cocycles of H.,, for a.e. E with respect to the density of
states [65, 7], with the quality of reducibility governed by the rate of decay of wu,,.
As there are well developed methods to prove localization (thus exponential decay
of the eigenfunctions) in various applications, this can be used to establish further
interesting consequences [7, 8, 34].

With the development of recent powerful methods [9, 5, 3] to establish non-
perturbative reducibility directly and independently of localization for the dual model,
the reverse direction: obtaining localization for }N[Cw’a from reducibility of H,, , first
used in a more restricted form back in [20], started gaining prominence. In the
Schrodinger case, reducibility provides a direct construction of eigenfunctions for the
dual model (with the decay governed by the quality of reducibility), so their com-
pleteness becomes the main issue. This has been considered a nontrivial question
even for the almost Mathieu family. It had been conjectured for a long time [51] that
A\ = e, where 3 is the upper rate of exponential growth of denominators of continued
fractions approximants to « (see (5.1.2)), is the phase transition line from purely
singular continuous spectrum to pure point spectrum. A combination of the almost

reducibility conjecture [3] and techniques of [5, 35, 70] led to establishing reducibility
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throughout the dual of the entire conjectured localization region, yet completeness of
the resulting eigenfunctions remained a problem. This was recently resolved in [12]
where the authors used delicate quantitive information on the reducibility and there-
fore dual eigenfunctions with certain rate of decay to prove the pure point spectrum
part of the conjecture. More recently, in [42], the authors obtained an elementary
proof of complete localization for the dual model under the assumption of only cer-
tain L?-reducibility of the Schrodinger cocycle for H(6) for almost all energies with
respect to the density of states measure.

For the Jacobi case the situation is more problematic. It was noticed (albeit in a
different form) in [63] that for ¢ # 1 the existence of reducibility at E for the cocycle of
H., ., may not lead to E being an eigenvalue of I—ifcﬂ,,a. The difficulty is also reflected
in the extended Harper’s model (see Section 1.6). On the positive side, in the dual
regions [ and II, we do in general have purely absolutely continuous spectrum, which
is always associated to reducibility, in region II, and pure point spectrum in region I
[43, 8]. However on the negative side, purely absolutely continuous spectrum for a.e.
f has been proved throughout the whole self-dual region III in the anisotropic case
[8]. Thus whether reducibility implies localization for the dual model could depend
on ¢, v, a, and even the existence of dual eigenvectors, automatic in the Schrodinger
case, becomes an issue.

In this paper, we answer this question for analytic ¢. We establish an if-and-only-if
topological criterion in terms of the function ¢ only, for the reducibility for H., . to
imply pure point spectrum of -Elc,v,oc- Thus we extend the result of [42] to the Jacobi
setting in a sharp way and also describe exactly what happens in the region to which
it does not extend. It turns out the winding number w(c) of ¢(f) (see (2.4)) is the key
quantity.

With the normalized transfer matrix cocycle (a, fl|c|7 g) defined in (1.17), we have

Theorem 2.1.1 Suppose for c(0) € C% (T,C\{0}), B(«) < h, the normalized cocy-
2m
cles (a, A|C|7E) are L2-reducible for a.e. E with respect to the density of states measure.

Then for a.e. x € T
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e if w(c) =0, the spectra of ]:—Ic,'u,oz(m) are pure point.
o ifw(c) # 0, the spectra of H,,o(x) are purely absolutely continuous.

As an important application, we obtain sharp arithmetic phase transition result

for the extended Harper’s model (see (3)) in the positive Lyapunov exponent region.

Theorem 2.1.2 When L(X) > 0,
o if B(a) < L(N), Hxa(0) has pure point spectrum for a.e. 6.
o if L(\) < B(a), Hro(0) has purely singular continuous spectrum for a.e. 6.

Remark 2.1.1 L(\) > 0 if and only if 1 > max (A1 + A3, A2), see Theorem 1.6.2.

pp sc
L(A) Bla)

e

The second statement of Theorem 2.1.2 does not require a specific form of ¢(0)
and holds for general analytic ¢ that are even allowed to vanish on T. Namely, one
can define a coefficient d.(c, 0) € [—o0, o0, dependent on ¢(f) through its zeros on T

only, see (2.36), and satisfying d.(c,0) = B(«) for a.e. 6, so that

Theorem 2.1.3 For any Lipshitz v, H.,.(0) has no eigenvalues on {E : L(E) <
de(a, )}, In particular, for a.e. 6 it has no eigenvalues on {E : L(E) < B(«)}.

This immediately implies

Corollary 2.1.1 If L(E) > 0 for a.e. E (in particular, if there exists 0y € T with
c(6p) = 0), then H.,o(0) has purely singular continuous spectrum on {E : L(E) <
de(a,0)}. If L(E) > 0 for a.e. E and ¢ does not vanish on T, then H.,.(6) has
purely singular continuous spectrum on {E : L(E) < B(«)}, for all 6.

We prove Theorem 2.1.1 in Section 2.3. We first show that zero w(c) ensures that

elements of the reducibility matrix can be used to construct eigenfunctions for the
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dual model. Then we employ an argument of [42] to show completeness of those eigen-
functions. To prove the second part we establish a unitary conjugacy in L*(T x Z)
between ﬁc,v,a and f[sw,a for a certain s with w(s) = 0, ensuring that, by part one,
ﬁsm,a(x) has pure point spectrum for a.e. x. We then use those eigenfunctions to
construct a large family of vector-valued functions %% (-) such that for a.e. x the
corresponding spectral measures are constant in x. Finally, we prove their absolute
continuity based again on the reducibility for the original model and argue complete-
ness. Once Theorem 3.1.4 is proved, to establish the pure point part of Theorem 2.1.2
all we need is the dual reducibility which follows quickly from a combination of [3, 5],
similarly to the argument of [12]. This is done in Section 2.5. In fact, Theorem 2.1.2
is an extension of the main theorem of [12], and specializes to it when A; = A3 = 0.
The singular continuous part as well as the general Theorem 2.1.3 are proved in
Section 2.4. The result is similar in spirit to the recent theorems on meromorphic
potentials [52, 53]. The non-singular case is simpler and could follow similarly to
the singular continuous part of [12] but we choose to treat it together with the more
involved singular case. While the Jacobi situation is quite different, the common
feature of singular Jacobi and meromorphic cocycles is their singularity, leading to
certain shared phenomena. It is an interesting question whether the first statement
of the Corollary 2.1.1 is sharp at least in some situations, so whether like in the
Maryland model [52], there is pure point spectrum for the complementary set of 6. It
is also interesting to see whether the second statement is sharp for general analytic

potentials (something still far from reach even in the Schrodinger case).

2.2 Preliminaries

2.2.1 Winding number

For ¢(6) € C¥(T,C\{0}) on T, let

(2.4) w(c):/T 0 de
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be the winding number of ¢(f). It describes how many times does the graph of ¢(0)

circle around the origin when 6 goes along T.

2.2.2 Integrated density of states of dual operators

The Aubry duality between H.,, and lf[w’a implies the following relation between

their density of states measures, see e.g. a particular case of Theorem 2 in [63],

(2.5) dNw,, . (E) =dNg,, (E).

2.2.3 Cocycles and Lyapunov exponent

We have the following uniform control of the norm of transfer matrices.

Lemma 2.2.1 (e.g.[7)) Let (a, A) be a continous cocycle, then for any § > 0 there

exists Cs > 0 such that for any n € N and 6 € T we have
1A4(8)|] < CselHetom,

Remark 2.2.1 If we apply the previous lemma to one dimensional cocycle, we have
that for any continuous function z, if In|2(8)| € L*(T) then for any € > 0 there exists
constant C' > 0 so that for any a < b € Z.

b
H 12(0 + ka)| < CelmarDUrnlz0)d0+e) fo1 any § € T
k=a

2.3 Proof of Theorem 2.1.1

The proof of Theorem 3.1.4 mainly relies on Lemmas 2.3.1 and 2.3.6.

2.3.1 Proof of the first part of Theorem 3.1.4

Lemma 2.3.1 Let s(0) = c(0)e= 2" 0+%) where ky = w(c). Then under the condi-
tions of Theorem 3.1.4, the spectra of the dual Hamiltonians Hs(m) are pure point for

a.e. x.
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Proof: 'We start with

Lemma 2.3.2 Suppose s(0) = >, ., 8™ 0T2) 5 € R. Suppose s(6) is analytic
and nonzero on |Imf| < £ and w(s) = 0. Then if B(a) < h there exists analytic

funtion f(0) such that

s0) _ of(0+)=£(0)
[s1(0)

Proof:  Since w(s(- + i€)) = 0, we can properly define log s(f) and arg s(f) on

IImf| < 4-. Now that obviously §(d) = s(—6 — a), we have

(2.6) /Tln|s(9)| 49 = /Tln|§(9)| dé.

and

(2.7) /Targ s(0) do — /Targ 5(0) df = /Targ s(0) do — /Targ s(—0 —«a) df = 0.

Combining (2.6), (2.7) with 5(«) < h we are able to solve a coholomogical equation,

hence there exists an analytic function g(6) so that
g0 +a)—g(f) =1ns(f) —Ins(0).

This clearly implies
s(0)

(6)

_ p9(0+a)—g(6)

W

Hence

s0) _ of (0+a)—£(6)

5] (6)

where f(6) = 1g(0). O
Now let us come back to the proof of Lemma 2.3.1. We have for a.e. E with

respect to the density of states measure dN,, ., ' , there is Bg € L*(T,SL(2,R)) so

that

(2.8) Bg' (0 + a)Ajq,(0) Be(0) = A,

Tt is the same as dNy,,, = dNg,, . = dNg, ., since Heva(0), Hy,a(0), Higw,a(0) and
H|s),v,0(0) differ from each other by unitary conjugations for any fixed 6 € T.
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where A, is a constant matrix. Since for 6 € T, A\a|,E(9) = 121|5‘,E(0), we have
(2.9) Bi' (0 + a)Aly,2(0) Be(0) = A..

By [5] (see Lemma 1.4 therein), if (a,fl|s|7E) is L?-reducible for a.e. E with re-
spect to the density of states measure, then (OJ,A‘S‘,E) is C“-reducible for £ € U
where U is a set with dN, 5.(U) = 1. Thus we could assume (2.9) holds for
By € C¥(T, PSL(2,R)).

Next we are going to show the following:

Lemma 2.3.3 For a.e. E with respect to the density of states measure, there exists

Bgp(0) € C¥(T, SL(2,R)) so that

(2.10) By' (0 + ) Ay 6(0) Be(0) = R, (5)-
Proof: By (2.9), we already have
Bg'(0+ o)Ay 5(0)Be(0) = A,

where Bg(0) € C¥(T, PSL(2,R)) and A, is a constant matrix. We could assume

+1 1
A, =Ryor A, = Jy = or A, = £Id. If F is such that A, = J; or £Id,
0 +1

we get pjs|(E) € Za + Z. Therefore such E’s form a measure zero set with respect to
the density of states measure. Now, let’s consider the case A, = R4. By (1.16), this
implies ¢ = pj5|(£) — ka/2, where k = deg Bg. Now let Bgp(6) = BE(H)R_%Q. We

have
B'(0+ 0) Ay £(0) Be(9) = Ry, ()
Note that deg Bg = 0, thus Bg(#) € C¥(T, SL(2,R)). O
Now by Lemma 2.3.3, we could assume there exists Bg(f) € C“(T, GL(2,C)) so
that
~ ~ ~ 627TZp‘é‘(E) O
(2.11) Bp' (04 a)Aj4,5(0)Be(0) = ,
0 e~ 2mip|s| (E)
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By Lemma 2.3.2, there exists analytic f(#) so that s() = |s|(9)e/?*®) =/ Then by
(2.11), we have

519 e2mip|s|(E) 0
(2.12) 0 o—2mip|s| (E)
=B5'(0 + a) A5 z(0) Bg(0)
= \/|3|(9j|(§|)(9 —{(M.(0+)Bs(0+ )} " A, (0) M, (6) Bi(0)
_ { M,(0+ 0) By (0 + a)e "5 }1 Anlt) {Msw)BE(e)e—fz” } |
BIG) |s[(0 — )
~ Dg11(0) Dgaa(0) M.(0)Bg(0)e— 12> )
bet Det0) Dp21(0) Dpaa(9) - (0\)/|S\((:1a) b (2:12) yields that
(2.13)

(E —v(0))Dg11(0) = > P B s(0) Dy 11(0 + o) + e 11 B30 — a) D11 (0 — @),

(2.14)
(E — U(@))DEQl (6) = G_QWip‘s‘(E)8(0>DE721 (0 + Oé) + 627rip|s|(E)§(e — OZ)DE721 (9 — Ck).

We now can follow the argument of [42]. We are going to show that

Lemma 2.3.4 For a.e. x, ]:Is,v’a(x) has a complete set of normalized eigenfunctions

with simple eigenvalues.

Proof:  As mentioned, this proof is essentially from [42], we include it here for

1] is bijective on the spectrum, for each z €

completeness. Since p : R — [0,
[0, 2] there exists E(x) such that pi(E(z)) = «. By (2.13) and a straightforward
computation, there is Fy with |F| = 0 so that for z € [0,1]\ Fi, H,a(z) has

a normalized eigenfunction {u(z)}, = %} at energy E(x). Also for
E(x),11 LQ(T) k

T € [—%,0] \ Iy, |F3| = 0, ﬁsﬂ,,a(:r) has a normalized eigenfunction {ug(x)}p =

Dp(2),12(k)
HDE(a:),12HL2(1r)

at energy E(—x). Let
11
(2.15) F=(F+Zax)U (Fo+Za)U{z € [—5, 5] | 22 € Zao + Z}.
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Clearly, |F| = 0. Now for every x € F€, every n € Z, -Hs,v,a(x +na) has a normalized
eigenfunction {u(x +na)}y at energy E(z + na). Also for different m and n, E(x +
ma) # E(x + na), since otherwise we would have = + ma = —(z + na) mod Z,
which is impossible due to our definition of F', (2.15). Let E,(z) := E(z+na), P,(z)
be the spectral projection of Hi,o(x) onto E,(z) and P(x) = > nez Pn(x). Notice
that Izls,v,a(x + na) = T‘”ﬁM’a(x)T”, where (T'w)y = u—1. Thus

Py (x)T"u(z + no) = T"u(z + na),

in other words, T"u(z) is in the range of P,(x —na). Thus for any [ € Z, (0;, P, (z —
na)d;) > (6, T"u(x))|?, therefore Y _, (0, Po(z — na)d;) > 1. We have

1> /C<5l,P(x)5l> - / > (01, Pz — na)dy) > 1.

This implies for a.e. x, (0;, P(x)d;) = 1 for every [, therefore P(x) = 1. Thus for a.e.
x € T, UpezT"u(z + na) forms a complete set of eigenfunctions and U,cz F(z + na)
forms the eigenvalues. O
Note that this immediately implies Lemma 2.3.1, and thus also the first part of
Theorem 3.1.4, since when w(c) = 0, we have ﬁs,v,a = Iflc,vva. O
As a byproduct of full measure C*-reducibility (2.9), we could obtain the following

result about the absolute continuity of the density of states measure which will play

an important role in the proof of Lemma 2.3.6.

Lemma 2.3.5 The density of states measure of H., o (and thus of Hs .o, Heyo and

H, o) is absolutely continuous.

Proof: By subordinacy theory [54], (a,flm £) being analytically reducible for
E € U implies that for any ¢, the singular part of the spectral measure fi| a9 Of
H,¢j.v.a(0) gives zero weight to U. By Lemma 2.3.3, this implies dNp,, , . = dNg,,, =
dNp,,, are absolutely continuous. By (2.5) and Footnote 1, we get that dNp =
ngS‘v’a, the density of states measures of the dual Hamiltonians lf]c’v,a and gs,v,a,

are absolutely continuous. 0

23



2.3.2 Proof of the second part of Theorem 3.1.4

Lemma 2.3.6 [fw(c) = ko # 0, the spectra of ﬁc,v,a are purely absolutely continuous

for a.e. x.

Proof of Lemma 2.3.6

The plan of the proof is to find a unitary transformation of L*(T x Z) relating lflw,a
to ﬁsﬂ,,a, and prove that the (already established in the first part) a.e. pure point
spectrum of f[sw,a(a:) for a.e. z leads to absolutely continuous spectrum of PNIC,U,Q(:U)
for a.e. z.

Let us introduce two unitary transformations on # = L*(T x Z),

1
(2.16) Unt)(wam) = [0S 03, p)e ) ds.
0 PEZ
(2.17) (Ur) (1) = e2TOCE+D (5 ).

Ug, first introduced in [23], is just the Aubry duality transformation, also given in a

more compact form as
(2.18) Urtp(z,n) = (n, z + an),

where ¢ € L2(Z x T) is the Fourier transform. Operator Uy, first introduced in [63],

is unitary on each fiber. We have

1
(219) U0 an) = [ e S 08, ple ) as.
0 PEZL

Define (S,¢)(x,n) = ¢¥(x+ma,n—m). Then (S, ;)(x,n) = v j(x+ma,n—m) =

Ul,erj(x? n)

Lemma 2.3.7 The following hold

(2.20) (UrSih)(z,n) =e*™ " (Ugtp)(z,n)
(2.21) (Ug'Si) (@, ) =e 2™ (Ug' ) (2, n)
(2.22) (UnSit)) (z, n) =X @+ (S U0) (2, n).
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Proof: Straightforward computation. 0

Define operators H,, o, He o as acting on H via direct integrals in = of H., o(2)

and H’c,v,a(x). Then one way to formulate the Aubry duality is

Lemma 2.3.8
(2.23) Hepo =Ug'H,.\ oUg.
Proof: A computation using Lemma 2.3.7. U

Now we establish a connection between PN[S,U,O‘ and FNIC’U’a. It is given by the fol-

lowing
Lemma 2.3.9
(2.24) Hepo = (Ug' U Ur)Hy .0 (Ug ' Uy, Ur) L.
Proof: A more involved computation using Lemma 2.3.7. 0J

By Lemma 2.3.4, for x € F¢ with |F| = 0, H,,(z) has a complete set of nor-
malized eigenfunctions with simple eigenvalues. First, we are going, following [32], to
prove there is a covariant measurable enumeration of this set.

For any = € F°, let u(x,-) be one of its normalized eigenfunctions. Define j(u(z))
be the leftmost maximum for |u(x,-)|. We fix u(x,-) by requiring u(zx, j) > 0 and say
it is attached to j. The key observation is that the argument of Section 2 of [32], while
formulated there for discrete one dimensional Schrédinger operators, works verbatim
for any dicrete one-dimensional operator with simple eigenvalues 2. Thus we get for

a.e. = a complete set of eigenfunctions {v; j(x,-)};; with eigenvalues {e; ;(z)} so that
1. for each fixed [, j, v ;(z,-) and € ;(x) are measurable functions of z.
2. {v(x,)}; are attached to j.

3. v (x,7) > vy14(z, 7). If the equality holds then e ;(z) > e;41,(2). *

2The existence of measurable enumeration of eigenfunctions was proved, in great generality in
[31]. However, since we need a covariant representation satisfying (2.27) the argument of [32] is

better suited to our needs
3For fixed [, j, generally, v; ;(z) may vanish identically on a positive measure set of x
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/

By simplicity of the eigenvalues, for any (I, ) # (I

(2.25) Zvl,j(x,n)vlgj/(x,n) = 0.

nel

Since Hy oz + pa) = TPH,, o(z)T?, where T4)(n) = 1(n — 1), we have

,7') we have

(2.26) v (@ + pa, - —p) = vigap(a, ).

Therefore by (2.25) and (2.26), for any [,I’, any p # 0,

(2.27) Z v j(z + pa,n — p)uy j(x,n) = 0.

Fix any [,j and f,(z) € L*(T). Let v%%(n) = (Uy'UxUrf,ui;)(z,n) € 1*(Z).
Let pu&h7 be the spectral measure of H.,, o(z) associated to @7 (-).

Lemma 2.3.10 du%' is a.e. independent of x.

Proof: Take any continuous function F' and m # 0. By the definition of spectral

measure we have, by (2.24),

_‘/ 27r1mx/ qu )dx|

| [ 19, P(Hen @) 02 ey d
T
—[(Ug " Uy Urfqvrj, €™ Ui U URF (Ho ) f101.5) 3]
Applying (2.20), (2.21) and (2.22) to this inner product we have

I= |<URlUk;OUquUzJ7URIS mUkoURF (Hy.0) fyv15)7]
=|(U,Ur fyvrg, ™02 U S UR F(Hy0) f01,5)]
=|(Ur fqvij, €™ S_nUpF (Hy.0) fqvis) ]
= (Urfqv1j, S-m€ ™™ " U F(Hyp.a) fyv15)]
=[(SmUr fyvrj, €™ U F(Hy ) f015) 2]
=[{(SmUr fq01j, UrSmio F (Hs,0) fyvi)n

= (Ur" SmUr fq015, Smko F(Hs o) fyvi) ]

S_

mkoe_Qﬂimquvlyj’ F(Hs,U,a)fqvl,j>H|
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Thus, by (2.27),

(2.28)

T =| / ] Z e~ 2mim(z=—mkoa) f (1 — mkoav)vy j(x — mkoa, n + mko) F (e j(x)) fo(x)v;(x,n) dz|
xe

ne”

=| /eT 62ﬁimmqu($)f7(el,j($)) Z v j(x — mkoor,n + mko)vy j(z,n) dxl

nez

=0,

This result implies [ F(E) duf™(E) is a.e. independent of x for all continuous
functions F. Since the set of continuous function is separable, we conclude that
dp®hy is a.e. independent of . O

Lemma 2.3.10 is similar to the analogous (but much simpler) statement in [32] for
the Aubry duality transformation Ug. After that the argument of [32] for absolute
continuity of the dual measures relies on the application of Deift-Simon theorem [29]
(the latter is still unproved for the zero L(E) case leading to a gap in [32], but correct
in case of L(E) > 0.) Here we however cannot employ this line of reasoning since
Deift-Simon theorem requires a second order operator while our ]:-Is,v,a is generally
long-range. Thus we employ a different strategy to obtain absolute continuity, which

has an additional advantage of being somewhat universal.
Lemma 2.3.11 For a.e. z, dud'’ is absolutely continuous.

Proof: Note that by the definition of spectral measure, for any Borel set A we

have

(2.29) /T dudti(A) dx
:/T@/)g’l’j’XA(ﬁc,v,a(m))wg’l’j>l2(2) dx
= (Ui UnoUr f15, XA(Hew o) U Uk Unfyvr)n
=(Ur " UroUr fov1j, Ug " Uro UrX A(H0.0) f1015) 2

:<fq/Ul,ja XA(Hs,v,a)fqvl,j>H
:dl’[’fq’ul,j <‘A‘)7
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where dpiy,,, ; 1s the spectral measure of I:IS;U,Q : 'H — H associated to the vector

fo(x)vj(z,-) € H. Since dud' is a.e. independent of z, by (2.29) we get
(2.30) dpdti (A) = dpg,, ; (A) for a.e. z.

Now it suffices to show that for zero Lebesgue measure set A, dyy,., (A) = 0. Note

that again by the definition of spectral measure,

dft g, ; (A)
(231) -/ S Tt i)
For ae. z €T,
(2.32) (i) (,1m) = €1 (@) (z, ),

thus (Hsv.afqvi;)(z,n) = e j(z) fy(z)vi(z,n). By (3.6),

d:ufqvl,j (A>

:/TZW(X%\(FI&U,O&)fqWJ)(l‘,TL) dx

neL

:/TZfq(x)vlu’(xan)XA(elJ(x))fq(I)Ul,j(Ln) dx

ne”L

(2.33) - [ xalas@lso) de

It is thus enough to show for any ¢,l,j € Z that (2.33)=0. We can prove this using
the absolutely continuity of the density of states measure. Note that for any k € Z,
(2.34) AN, (A = [ dusalA) da,
o T

where dy;, ,» is the spectral measure of I:[M,a(x) associated to the vector &y € [*(Z).
Since for a.e. x, v j(z,-) is an orthonormal basis of [*(Z), we have that

0k () =D Ok, v, Doy, ) =D wila, k)o,(z, ).

Ly Lj

By (2.25) and (2.32), this means for a.e. z,
(2.35) s, x(A) = (Or Xa(Hawa(2)0) = D fong () Pxaler(x. 1),

l?j
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By Lemma 2.3.5, dNg_ (A) = 0. Thus combining (2.34) with (2.35) we get

5 [ aters) o =3 [ ds o) dr =0

kEZ

This implies in particular
xalej(z)) =0 for a.e. z and any [, j.

By (2.33), dyig,v,,(A) = 0. By (2.30), we conclude that for a.e. z, {duf"},,; are
absolutely continuous. O

Let {f,(x)}, be an orthonormal basis for L?(T). Note that the non-vanishing
{v;(z,-)} form an orthonormal basis for H. It follows that {f,(z)v ;(z,)}4.,; form
a complete orthogonal set in H (but not necessarily orthonormal). Since Ug'Uy, Ug
is unitary, it follows that {(U Uk, Urfyv1;)(z, ") }4u; is a complete orthogonal set in
H. Thus for a.e. @, {24 (-) = (Ug' Uk, Urfyvi;)(x, ) }qu  is a complete set in 12(Z).
Since ¥% is a complete set, we get that f[c,ua(x) only has absolutely continuous

spectrum for a.e. x. O

2.4 Absence of eigenvalues. Proof of Theorem 2.1.3

and the second part of Theorem 2.1.2

2.4.1 Preparation for the proof of Theorem 2.1.3

Consider a general Jacobi operator (He,o(0)u), = c(0 + na)u,41 + ¢(0 + (n —
Da)u,_1 + v(0 + na)u,, where v(f) is Lipshitz and ¢(6) € C¥(T) is allowed to have
zeros on T. Let ¢(0) = f(0)g(0), where f(0) = H;n:l(ezme — ™) with {6;}7", being

zeros of ¢(f) counting multiplicities, and g(#) # 0 on T.
Let us define

T'n— ln n 9 - 9 +1I1 n
(2.36) dc(x, ) = lim sup 2_j=1 0 [lgn( i)l q sy

n—oo Qn

Note that for a.e. 0, d.(c,0) = p(a).
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We will assume 6 does not belong to the following countable set (otherwise the

operator is not well defined).
(2.37) 0¢ 0L 0;+Za+Z

Fix any 6 ¢ © and energy F satisfying L(E) < d.(a,8). Recall that a formal

solution to H.(f)u = Eu can be reconstructed via the following equation:

un un
T = Aup(6+ na) ,
Unp Up—1
E—v(6) _ (0—a)
where A, g(6) = (9 @ |. We separate the singular and regular parts of
1 0
A. g and rewrite it in the following way:
WE T A
(2.38) Ap0)=—=1| ¢ g £ —F.x(0).
@)\ reo 0 f(0)

From now on we will omit the dependence of these matrices on ¢, £ and denote
A@0) = A.g(0) and F(0) = F.p(0). Let A* = A(0 + ka), F* = F(0 + ka). For
any function z(6) on T let z;, = z(0 + ka), for simplicity. Note that clearly we have
JpIn|f(0)|d0 = 0, hence L(E) = L(a, A) = L(a, F).

The first step is standard in Gordon-type methods. For A € GL(2,C) we have

the following Caley-Hamilton equations:
(2.39) A* —TrA-A+detA-1d =0,
(2.40) A—TrA-Id+detA- A7 =0.

Fix any 0 < € < (0.(ar,0) — L(E))/4. By the definition of d.(«, 8), there exists a
subsequence {qy, } of {g,} such that

m (6C_E)Qn
e l
241 qn, (0 —0,)| >
241 Tt (0= >
We will use the following estimate.
Lemma 2.4.1 [53]
in—l . (5676)(111[
[T 170 +j0) =
j=0 Gn;+1
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2.4.2 Proof of Theorem 2.1.3

Assume wu is a bounded solution to H.,(f)u = Eu. We could scale u so that

U—_1

Uo
|| = 1. We will prove

Lemma 2.4.2 For q,, large enough

U Ug U_ 1
RN RN BN =T

max | ||
Ugy,, —1 U2g,, -1 U—gp,—1

Proof of Lemma 2.4.2

u u
If || = | Agn, (6) ’ | < 1, we divide the discussion into 2 cases:
U/QnZ_l U—1

Case I: [TrA,, (0)] < :.

2 to
_1 e —nm| — L (2.39) implies [ A (0) | >

U

Note that since | det A,, (0)] = \ 9+(q
ny

7 .
g for g, large enough. By telescoping,

2 o
(A2, () — Ay, (0))
U—1
Qn;— 2qn;—1 "
H AP — T AMA,,, 09)
k=qn, U
qnlfl q’ﬂlfl qnl+i71 u
_ H AF | . (Az _ Ain+i> . H Ak any
i=0 \ k=i+1 k=qn, Ugn,—1

qnlfl (Inlfl

_ [T 4% - (ai = Ay [ Mot

i=0 k=i+1 Ugp, +i—1
(2.42)
_ Rl qﬁl F_k ] Fz - FqnlJri ] anl+i 4 Lt IR anl+Z fz anl—i-z’—&-l
=0\ k=it1 fr fi Ugp,, +i—1 fi Ug,, +i

Note that by our assumption u is a bounded solution, so there exists a constant
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C1 > 0 so that

u
(2.43) I ' | < C, for any t € Z.
Ut—1
Clearly
(2.44) | fon,+i — fil < for some constant Cj,
Gn;+1
and since v is Lipshitz we have
(2.45) |F; — Fy, || < —2—for some constant Cj.
! Qn;+1

Also by Lemmas 2.4.1, 2.2.1 and Remark 2.2.1, we have

qn;—1 Gn;—1
oy M PTG P awscsom,

T il T il
Now we combine (2.42), (2.43), (5.5), (2.44) with (2.46),

U

0 . Van
(A2 (8) = Ay, (0)) | < BB =det1dan g

Hence Hqunl_l | ~ ’Ain
-1 U—1

Case 2: |TrA,, (0 | > 1

Ug

Then |det Ay, (0)] = | 9+(qnl_1 a)| — 1 and (2.40) imply [|A;! ) | >  for
-1
Ug Uo
Gn, large enough. Similar to Case 1, we can prove ||A_, (6) | ~ [lA,}(0) | >
U_q l U—_1
1
1 O
By Lemma 2.4.2, H., ,(f) has no decaying solutions on {E : L(E) < d.(«,0)},
therefore no eigenvalues. 0

2.4.3 Proof of the second part of Theorem 2.1.2

Now let’s come back to the extended Harper’s model, where cy(6) = Aje=27(0+2) 1
Ay + A3e2™0+3) Note that cy(#) could take zero value when the parameters \ satisfy

some certain conditions. In fact, recall Observation 1.6.3,
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_ A2 o : 1 Ao o _
e when A\; = A3 > 22, singular points are ¢; = ;- arccos (—ﬁ) — 5 and 0 =

a

— 5 (notice that when \; = % there is a single singular point

1 A
— 5~ arccos (—ﬁ)

91:92:% a).

T2

n[e

e when \; # A3 and A\; + A3 = Ay, the singular point is #; = %

Thus for the extended Harper’s model, the proper definition of é.(«, ) depends on

the parameters:

e (Case I: (non-singular case): When (1) A\; # A3 and A\ + A3 # g or (2)
A1 = A3 < 22, we have 6.(cv,6) = B(a) for all 6.

e Case 22 When A\ + A3 = Ay, then 0.(c,0) = limsup,,_, In llgn (0=01) [+ gns1 - _

qn
B(a) for a.e. §, where 6; =1 —

[

e Case 3 When \; = A3 > 22, then §(«, 0) = limsup,,_, L=tz |0 G0 Fnan iy _

dn

B(a) for a.e. 0, where 6, = 5- arccos (—2’\721) —2 and 0, = —5- arccos (—2’\721) —

Slis

Note that for each of the three cases, L(\) < B(«) implies absence of eigenvalues for
either all or an arithmetic explicit full measure set of #. Thus the purely singular

continuous part simply comes from the fact that L(A) > 0. U

2.5 Pure point spectrum. Proof of the first part
of Theorem 2.1.2

2.5.1 Preparation

Note that if A = (A1, A2, A3) is in region I°, its dual A= (i—z, %2, i—;) belongs to region
II°. By Theorem 1.6.2, for A in region I° and any £ € X, ,, L(E) = L(\) > 0; also
for any £ € X5, (a, A|ci|,E) is subcritical on |Imf| < % It is straightforward that
w(cy) = 0, since ¢;(0) is explicitly given by

c(0) = ﬁe—2m(0+%) e2mi(0+%) _ —14+V1I-4hA; e2mi(0+5) _ —1—V1—4MAs '
()
A Ao 2\ 2\

The following theorems provide full measure reducibility of («, A‘cﬂ, E)-
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Theorem 2.5.1 [3] For a € R\Q such that 5(«) > 0, if a cocycle (a, A) is subcriti-
cal on |Imf| < %, then for every 0 < h' < h, there exists C' > 0 such that if 6 > 0 is
sufficiently small, then there exist a subsequence {Z%:} of the continued fraction ap-
proximants of a, sequences of matrices By, € C%, (T,PSL(2,R)) and R,, € SO(2,R)

2m

such that | By, || w < €% and || B, (0 + @) A(0)B; 1 (0) — Ry, || w < e7%%%.

Nk

Theorem 2.5.2 [5, 35, 70] Let (o, A) € R\Q x C% (T,SL(2,R)) with 0 < h < I/,
R € SO(2,R), for every T >0, v > 0, if rots(a, A) € DC,(7,7), where

v
———— for any nonzero m € Z}
(1+ |m[)7

then there exists T = T(1), k = k(T) such that if

DCau(7,7) = {¢ € T|[[2¢ — mallr =

(2.47) 1A(8) = Rllw < T(r)y* (W — h)™7,

then there exists B € C% (T,SL(2,R)) and ¢ € C% (T,R) such that
2 2

27

B(0 + a)A(0)B~(0) = Ry),

with estimates ||B(0) —1d|| . < ||A(9) —RH%L and [|o(0) —@(0)]| 5 < 2||A(0) _RHQL'
2 27 27 ™
Moreover if B(a) < h, (a, A) is reducible.

2.5.2 Proof of the pure point part of Theorem 2.1.2

This proof follows that of Proposition 4.2 in [12], however some modifications are
needed. We include it here for reader’s convenience. Let us consider energy E €
35, SO that p(a,flh‘,E) € Uys0DCy(T,7) for some 7 > 1. Note that since | Uysg
DC,(7,7)| = 1, this is a full density of states measure set of energies. Fix ¢ > 0 small
enough so that f(a) < L(\) — 2e.

First, by Theorem 2.5.1, for h = L(A) and ' = L()\) — ¢, there exists constant
C > 0 so that for 6 > 0 small there exists a subsequence {IqO;_L:} of the continued
fraction approximants and B,, € C“LJ%,E (T,PSL(2,R)), R,, € SO(2,R), such that

By, || Loy < ¥ and
27

(2.48) ||Bnk (Q + Q)A|CS\‘7E(Q>B7’:’3(0) - Ry, || LO)=c < e 0y
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As is pointed out in [12], one could consult footnote 5 of [3] to prove the following

estimate on the deg B,,,

(2.49) | deg By, | < C(X, €)qn,

Clearly by (1.16),

(2.50) P, Buy (0 + @) Ay 6(0) B, (0)) = plev, Aoy ) + deg By,

Thus since p(a, A|Cx|vE> € DC,(,7) for some v > 0, by (2.49) and (2.50) we have

lp(er. By (0 + ) Ay £(6) B, (6)) + mo|

=|lp(a, Aje;).6) + (deg By, +m)alr
v
(14 Cgy,, + Im|)™
(1+Cqn,) "y
(L4 |m])™

v

v

This implies p(a, By, (6 + @) Ay 5(0)B;(0)) € DCo(7, (1 + Cgn,) ™).
Secondly, fix h = L(\) —2e. For gy, large enough, in particular when the following
holds, with T'(7), k(1) from (2.47),

(2.51) (1+ Cgp )™ < T(7)e2%m (€)=,
we have by (2.48)

(2.52)  [|1By, (0 + @) Ay .5(0) B, (0) = Ruyll son-c < T(r)(1+ Cgp) ™7 (7€),

27

Thus by Theorem 4.2.3, since (a) < h = L(\) — 2¢, we get (a, A‘CXLE) is reducible.
Note that this provides us with the requirement to apply our Theorem 3.1.4, and
taking into account that w(c;) = 0 we get that H) ,(f) has pure point spectrum for

a.e. 0. ]
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Chapter 3

Absence of point spectrum for the

self-dual extended Harper’s model

3.1 Introduction

In this chapter we present a new way to exclude point spectrum for self-dual extended
Harper’s model.

Recall that we have the following decomposition of the parameter space.

A1+ A3
)\1 + )\3 = )\2
Region III Lt
L
1
Region II
Region I | Ly
1 Ao

Region I 0 < A\ + X3 <1,0< A < 1,
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Region II 0 S )\1 -+ )\3 S )\2,1 S /\27

Region IIT max{1, A2} < A1 + A3, Ay > 0.

According to the action of the duality transformation o @ X = (A1, Ag, A\3) — A =

()\3 1 )\1

2, 55 &), we have the following observation [37]:

Observation 3.1.1 o is a bijective map on 0 < A\; + A3, 0 < \s.
(i) o(I°) =11°, o(111°) = o(111°)

(i1) Letting Ly :={ A\ + X3 =1,0< X <1}, Lp:={0< A+ X3 <1, Ay =1}, and
L = {1 <A+ A= )\2}; U(LI) = L1 and U(LH) = Ly.

As o bijectively maps III U Ly onto itself, the literature refers to III U Ly as the
self-dual regime. We further divide III into IIIy,—), (isotropic self-dual regime) and
Iy, 25, (anisotropic self-dual regime).

Recently, a complete understanding of the spectral properties of the extended

Harper’s model for a.e. # has been established:

Theorem 3.1.2 [8/The following Lebesque decomposition of the spectrum of Hy .(0)
holds for a.e. 6.

e For all Diophantine «, for Region 1°, Hy ,(0) has pure point spectrum.

e For all irrational «, for Regions 11°, 113 .., Hxa(0) has purely absolutely

continuous spectrum.

e For all irrational «, for Regions 1113 _,, U Ly U Ly U Lir, Hy(0) has purely

singular continuous spectrum.

As pointed out in [8], the main missing link between [37, 38] and Theorem 3.1.2 is
the following theorem, excluding eigenvalues in the self-dual regime. We say 6 is

a-rational if 20 € Za + Z, otherwise we say 6 is a-irrational.

Theorem 3.1.3 [§] For all irrational «,
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o for A € IIIy, 2y, ULy, Hy o(0) has empty point spectrum for all a-irrational 6.
o for A € Ill\,_»,, Hyo(0) has empty point spectrum for a.e. 6.

In [8] the authors had to exclude more phases than a-rational € in the isotropic
self-dual regime.

In this paper we give a simple proof of the following theorem.

Theorem 3.1.4 For all irrational «, for A € 111, Hy ,(0) has empty point spectrum

for all a-irrational 6.

Remark 3.1.1 Our result for the isotropic self-dual regime 11I,—y, @s sharp. In-
deed, according to Proposition 5.1 in [8], for a-rational 6, for a dense set of coupling

constants, Hy ,(0) has point spectrum.

We organize this chapter in the following way: in Section 2 we include some
preliminaries, in Section 3 we present two lemmas that will be used in Section 5, then
we deal with IITy,—y, and IITy, 2y, N{A\1+A3 = 1} in Section 4 and III,, .y, N{ A\ + A5 >
1} in Section 5.

3.2 Preliminaries

3.2.1 Singularities of the self-dual extended Harper’s model

The presence of singularities of ¢, (6) is explicit. Indeed, recall Observation 1.6.3,
For A € III, necessary conditions for real roots of ¢,(f) are A € III,,_y, or \ €

I, 20, N {A1 + A3 = A2} Moreover,
o for \ € III),_»,, cx(A) has real roots determined by
a
(3.1) 23 cos 27 (60 + 5) = —\o,

and giving rise to a double root at § = 5 — § if A € IIIy,—x; N {A1 + A3 = Ao}

1
2

o for A € ITI, 2, N{ A1 +2A3 = A2}, €A(0) has only one simple real root at 6 =

1_a
27 2
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Remark 3.2.1 By the definition of the duality transformation o: A\ — A

)

c5(0) has singular points if and only if X € Iy =5, or A € IIIy, 2, N { A1 + A3 = 1}.

It will be clear in Section 4 that presence of singularities of ¢5(#) indeed simplifies

the proof of empty point spectrum of H) ,(6).

3.3 Lemmas

Lemma 3.3.1 For A € Il 2x, N { A1 + A3 > 1}, when A3 > Ay, we have

Cﬁ\(9> — o 2mi(0+5)+if(0) 4n(d 5&@) — 2mi(0+3)—if(0)

|[5(6) |¢[5(0)
for a real analytic function f(0) on T with [ f(#)d6 = 0.

Proof: By the definition of ¢;(6) we have

)\3 Y, J a 1 )\1 . a
32 N 0 — 27”(9-1—2) 27T’L(9+2)
(3.2) 5 (0) /\26 + " +—/\2€
A wi(0+5 mi(0+< (04
(33) _/\—26 2 (9+2)(€2 0+3) _ y+>(62 0+3) _ y,),

where y4. = _li\é@. Note that

(3.4)
A /
y+ =y- with |y, = [y =y )\_3 > 1, when 1 < 2v/ Mg,
1
(3.5)

2)3

> 1, when A\ + A3 > 1> 2/ A\ As.
Mt VI WHER AL As 13

Yy+,y- € Rwith [y, [ > |y-| =

Note that

(3.6) c;(0)  [es(0) o 2mi(0+5) (e2™0F%) — gy )(e™0T2) —y )
. - (6—27ri(9+%) _ y+)(e—2m'(0+%) _ y_)'

By (3.4), we have

(3.7) / arg (ETOD —y (@O —y)
T (6—27r7,(9+§) _ y+)(6—27”(0+5) — y_)
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and

(e2ﬂi(9+%) _ y+>(627ri(9+%) _ y,) |

(3.8) | ————= —
(6 27i(0+5) —y+)(e 27mi(0+5) _y_)

=1.

Thus there exists a real analytic function ¢g(#) on T such that
(ezm'(9+%) _ y+)(627ri(9+%) _ y,)
(6—27ri(9+%) _ y+)(6—27ri(9+%) _ y_)

with [, g(#)dd = 0. Taking f(#) = g(#)/2 yields the desired the result. O

(3.9) = ¢9)

Lemma 3.3.2 There is a subsequence {zﬂ} of the continued fraction approrimants
mg
of a so that for any analytic function f on T with fT f(0)dd = 0, we have
lim f(2) + (2 +0) + 4 f(2F g — ) = 0
uniformly in x € T.

Proof:  Suppose f is analytic on [Im#| < Jy, then | f(n)\ < ce~Zolnl for some

constant ¢ > 0.

Case 1 If f(a) = 0, then by solving the coholomogical equation we get f(z) =
h(x + ) — h(x) for some analytic h(x). Then

lim (f(z) + fz + )+ + f(z+ gna — a))

m—o0

= lim (h(x + gna) — h(x)) =0

m—r00

uniformly in x.

Case 2 If f(a) > 0, choose a sequence my; such that ¢, 4+1 > 29 Then

If(x)+ flx+a)+- -+ f(z+ gma — )]
:| Z f(n)(l + g2mina + -4 627rin(qml—1)a)62mmc|

[n|>1
27rmqml )
| § f e27mnx|
o 2mino
— €
In|>1
1 _ eQﬂinqmla
< § E —278p|n|
— ¢ 1 — e2mina + ce 4y
1§‘”|Sle_1 ‘n‘ZQ’ml
3
<c + cgm,e —2m0dm; 5 () as [ — 00
qu—l
uniformly in x. O
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3.4 Consequence of point spectrum

This part follows from [8]. We present the material here for completeness and readers’

convenience.
Suppose {u,} is an [*(Z) solution to Hy,(0)u = Eu, where A = (A1, A9, A3). This

means
(3.10) (0 + na)upyr + (0 + (n — Da)u,—1 + 2 cos(2m(6 + na) )u,, = Euy,.

Let u(z) = Y, cq un€®™™* € L*(T). Multiplying (3.10) by e*™™* and then summing

over n, we get

. . E
(3.11)  e*™es(@)u(z + @) + e 2™ (v — a)u(z — ) + 2 cos 2mz u(x) = /\—Qu(x),
where \ = (’\—z, 1, i—;) If we multiply (3.10) by e2™® and sum over n, we get

(3.12) e ™cs (z)u(—z—a)+e>™& (z — a)u(—z+a)+2cos 2mx u(—x) = )\Eu(—x)
2

Thus writing (3.11), (3.12) in terms of matrices, we get

1 /\% —2cos2mz —&5(x — ) u(z) u(—x)
c5 (@) ¢ () 0 e 2y (z — o) e 0u(—(z — )
(3.13)
_ wr+a) u(—(z+a)) et 0
e m0y(z)  e*™0y(—x) 0 e 20

Let Mp(x) € L*(T) be defined by

My(z) = | |
6_2meu(:€ ) 62m0u(_($ —a))
Let
1 L _2cos2mx —&5(r — a)
Aj T) = A2 A
e () cs () () 0

be the transfer matrix associated to H; () and

e2m’9 0

0 6727”'9

Ry =
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be the constant rotation matrix. Then (3.13) becomes
(3.14) Az p(x)Mp(z) = My(z + o) Ry.
Taking determinant, we have the following proposition.

Proposition 3.4.1 [8] If 0 is a-irrational, then

b

(3.15) | det My(x)| = m

for some constant b >0 and a.e. v € T.

3.5 Regions IH,\lZ/\3 and HI)\HA)\?) M {)\1 + A3 = 1}
We will show the following lemma.

Lemma 3.5.1 If 0 is a-irrational, then for A € 111, —x, or A € III, ., N {1 + A3 =

1}, Hy.ap has no point spectrum.

Proof:  According to Remark 3.2.1, we have ¢;(zo) = 0 for some 2y € T. Note

that presence of singularity implies %(m) ¢ L'(T). Thus by (3.15), det My(z) ¢ L*(T).
A

This contradicts with My(z) € L*(T). O

3.6 Region III) _, N{A\ + X3 > 1}
Without loss of generality, we assume A3 > A;. Fix 6. Denote det My(z) = g(x) for

simplicity.

Lemma 3.6.1 If0 is a-irrational, then Hy (0) has no point spectrum in the anisotropic

self-dual region.

Proof: Taking determinant in (3.14), we get:

é(r — a)

o) Y =gl + ).
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This implies

G + ko —2a) - &(x) é(x — a)
c5(z 4+ ka—a)--ci(z+ a)es(x)

(3.16) g(x + ka) = g(x).

Taking k = ¢y,,, as in Lemma 3.3.2, on one hand, since g(z) is an L' function, as the

determinant of an L? matrix, and lim;_,«, ||gm, |/t = 0, we have

i llg(z + gma) = g(@)[| 1+ = 0.

By (3.16), this implies

(3.17) 0 = lim lg(z + g,2) — 9(2) |12 =

On the other hand, by Lemma 3.3.1

erjlq e(x +ja)

lim [ [1-— —~ -lg(z)|dz
I [T e+ ja)

— lim 1— Cl T — Oé) e*i(ijil f(l"Jrja)JFqul ' f(erja)) e47riqmlac627riqml (gm,—De| | | (:L')ld:L‘
=00 lcls (@ + gm0 — @) g

>11m 1nf (/ 11— 47r“Iml”““27”‘1"”0‘||g( )|dz

C|)\ x + qm, & — Oé)

—27riqml «

(&

loto)lds

(3.18)
::li{ninf(fl — ).

Combining the fact ||¢y,, |l — 0 with Lemma 3.3.2, we get pointwise convergence,

lels(@ —a) (S5 st S fia))  2rigua

—1 as ! — oo.
|5 (7 + g — @)

Then by dominated convergence theorem, we get lim;_,o, I> = 0. Then (3.18) implies
that for any small constant § > 0,

A {lg(z + g @) = g(@)][11

—00

> liminf [

l—o00

> lim inf / 48)g(x)|dz,
=00 J||2gm, -+, ol|r>6
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where [{z : ||2gm,x + ¢, 0l > 6} £ |Fy, 5] =1 —20. Thus

lim [lg(z + gy ) = g(a)|12

> liminf (18]~ 16 [ lg(o)ldo)
—00

c
my,6

> lim inf (49 2+ — 86%[lgllz<).

By (3.15) |g(z)| = m for some constant b > 0, thus ||g|/z1, |||z~ are positive
A
finite numbers, so one can choose § ~ 0 such that 46]|g||z1 — 86%||g||z= is strictly

positive. This contradicts with (3.17). O
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Chapter 4

Dry Ten Martini Problem for the
non-self-dual extended Harper’s

model

4.1 Introduction

For the almost Mathieu operator, it was proved in [6] that the spectrum is a Cantor
set for any aw € R\ Q and A # 0. This is the Ten Martini Problem dubbed by Barry
Simon, after an offer of Mark Kac. A much more difficult problem, known as the
dry version of the Ten Martini Problem, is to prove that the spectrum is not only a
Cantor set, but that all gaps predicted by the Gap-Labelling theorem [13], [39] are
open. The first result was obtained for Liouvillean « [21], and later it was proved
for a set of (A, ) of positive Lebesgue measure [65]. The most recent result is [7], in
which they were able to deal with all Diophantine frequencies and A # 1. A solution
for all irrational frequencies and A # 1 was also recently announced in [12].

In this chapter we prove the dry version of the Ten Martini Problem for the ex-
tended Harper’s model in the non-self-dual regions (I° and I1I°) under the Diophantine

condition.
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Let p,/q, be the continued fraction appoximants of & € R\ Q. Let

In g,
f(a) = lim sup Rlntt

n—oo Qn

Throughout this chapter, we say « satisfies the Diophantine condition if («) = 0,
denoted by o € DC.
It is known that when energy F is in the closure of a spectral gap, the integrated

density of states Ny (E) € aZ + Z (see [13, 39]). Here we prove the inverse is true.

Theorem 4.1.1 If o € DC and X belongs to region 1° or region 11°, all possible

spectral gaps are open.

Remark 4.1.1 We note the Dry Ten Martini problem has not yet been solved for the
self-dual AMO. In the self-dual region 111, Cantor spectrum is known in the isotropic
case (when Ay = X3), see Fact 2.1 in [8]. In fact one could prove the operator has

zero Lebesgue measure spectrum for all frequencies.

In order to prove Theorem 4.1.1, we first establish almost localization (see section
4.3.1) in region I°, then a quantitative version of Aubry duality to obtain almost
reducibility (see section 4.3.2) in region I1° which enables us to deal with all energies
whose rotation numbers are a-rational.

Thus the strategy follows that of [7], but we need to extend the almost localization
and quantitative duality, as well as the final argument to our Jacobi setting, which
is non-trivial on a technical level. At the same time unlike [7], we only deal with a
short-range dual operator, leading to a significant streamlining of some arguments of
[7].

We organize the paper as follows: in section 4.2 we present some preliminaries, in
section 4.3 we state our main results about almost localization and almost reducibility,
relying on which we provide a proof of Theorem 4.1.1. In section 4.4 and 4.5 we prove

the main results that we present in section 4.3.
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4.2 Preliminaries

4.2.1 Generalized eigenfunctions for every phase

By Sch’nol’s theorem and Aubry duality, we have the following.

Theorem 4.2.1 [14], [66] For any X, 0, there exists a dense set of E € X, , such

that there exists a non-zero solution of Hj (0)u = /\%u with |ug| < 14 |k|.

4.2.2 Bounded eigenfunction for every energy

The next result from [7] allows us to pass from a statement of every 6 to every E.

Theorem 4.2.2 [7] If E € ¥ then there exists §(E) € T and a bounded solution of

H; ,(0)u = /\%u with ug = 1 and |ug| < 1.

4.2.3 Localization and reducibility

Theorem 4.2.3 Given « irrational, € R and X in region 11°, fix E € ¥, ,, and
suppose H;W(@)u = %u has a non-zero exponentially decaying eigenfunction u =

{ur}reg |ue| < e ¥ for k| large enough. Then the following statements hold:

o (A) If20 ¢ oZ + Z, then there exists M : R/Z — SL(2,R) analytic, such that
Mz + a)A‘CXLE(as)M(x) = Ryy.

In this case P(OQA\CXLE) = 0 4+ Fa modZ, where m = degM (here since
M € SL(2,R), we have that m is an even number) and 2p(«, A|CX‘7E) ¢ aZ+7.

e (B) If 20 € aZ + Z and o € DC, then there exists M : R/Z — PSL(2,R)

analytic, such that

+1 a

M~z + OZ)A|CX\,E($)M($) =
0 =1

with a # 0. In this case p(OZ)A‘CS\LE) = Ja modZ, where m = deg M, i.e.

2p(cv, A|c5\\,E) € al + 7.
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4 Xm0y (x)
Proof: Let u(z) =Y, ., we*™™, U(z) = . Then
)

u(r — «

A, 5(2)U(z) = e%ieU(x + o),

A|CM,E($)U($) =700 (2 4 ).

Notice U(z) = Qx(z)U(z) is analytic in [Imz| < +, where ¢ = min (L(A),¢), and Q,

as in A.0.2. Define U(z) to be the complex conjugate of U(z) on T and its analytic
extension to [Imz| < . Let M(x) be the matrix with columns U(z) and U(x).

Then,

0 6—271'1'9

. et 0
Ay e(x)M(2) = M (2 + ) on T.

Then since det M (z + «) = det M(x), we know det M (z) is a constant on T.

~ 1 1
Case 1. If det M (z) # 0, then let M(z) = M(x) ( ) :

T —1

- N - cos2mf  —sin 27l
M~ (z 4+ a)A; ()M (z) = Ry = .
sin 276 cos 270

. up (x
Case 2. If det M(z) = 0, then if we denote U(x) = 1) , then det M (z) =0

ug ()

means there exists 7(x) such that u;(z) = n(x)uy(z) and uy(z) = n(x)us(x). This
implies that n(z) € C¥(T,C), and |n(z)] = 1 on T. Therefore there exists ¢(z) €
C¥(R/2Z,C) such that ¢?(z) = n(z) and |p(z)] = 1. It is easy to see o(z)ui(x) =
¢(x)us ()
) P(a)us()
is a real vector on R/2Z with W(z + 1) = £W(z), and U(z) = ¢(x)W(z). Now
let us define M(x) to be the matrix with columns W (z) and WR%W(I), then
det M(x) =1 and M(x) € PSL(2,R). Since

)

o(x)ur(z) and @(z)ug(z) = ¢(z)uz(z). Then we define W(z) =

bl

e (x + )
¢()
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We have

where d(z) = %, |d(x)| = 1 and d(z) being real number, therefore d(z) = £1.
Also 7(z) € C*(R/2Z,C). But in fact M~ (x + Oz)flm‘,E(x)M(:c) is well-defined on
T. Therefore 7(z) € C¥(T,C). Now since we assumed a € DC, we can further reduce

7(x) to the constant 7 = fT z)dx. In fact there exists ¢(z) € C¥(T,C) such that

—(x + a) + ¥(x) fT x)dz. This implies
I =Yz +a) YT a)Aw,E(x)M(x) 1 (z) =
0 1 0 1 0 =1

In fact if det M (z) = 0, then % = +1, which implies that 20 € aZ + Z.

Therefore if 20 ¢ aZ + 7, we must be in case (A). If on the other hand, 20 € aZ + Z,
20 = ka + n, suppose M~ (x + a)Ap | p(x)M(z) = Ry, then R_ : HQ)M—l(x -
oz)fl|cﬁ|7E(x)]\Z/(x)R§x = Rn» = =+I leading to a contradiction. Therefore if 20 €
aZ + 7, we must be in case (B). O

4.2.4 Characterization of the Diophantine condition

Recall that the Diophantine condition of « is () = limsup,, ., 1“‘;%“ = 0. Thus

for any £ > 0, there exists C¢ > 0 such that

(4.1) [ka|lryz > Cee ¥l for any & # 0.

4.2.5 Rational approximation

Lemma 4.2.1 /6] Let « € R\Q, x € R and 0 < Iy < g, — 1 be such that |sinm(x +

loa)| = info<i<g,—1 | sinm(x + lav)|, then for some absolute constant Cy > 0,

—Cilng, < Z In|sin7(z + la)| + (¢, — 1) In2 < CiIng,
0<I<qn—1,Ilo
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Lemma 4.2.2 [7] Let 1 < 1 < [gns1/qn]. If p(x) has essential degree at most k =

rgn — 1 and xy € R/Z, then for some absolute constant Cs,

Ip(2)[lo < Caql?) sup |p(zo + ja)l.
0<5<k

4.2.6 Cocycles and Lyapunov exponent

Recall the following uniform control of norm of transfer matrices.

Lemma 4.2.3 (e.g.[7]) Let (o, A) be a continous cocycle, then for any & > 0 there

exists Cs > 0 such that for any n € N and 6 € T we have

||An(6)H < an(L(a,A)—&-é)n'

4.3 Main estimates and proof of Theorem 4.1.1

4.3.1 Almost localization for every 0

Definition 4.3.1 Let « € R\ Q, 6 € R, ¢ > 0. We say that k is an eg—resonance
of 0 if |20 — ka|| < e~ and |20 — ka|| = ming < |20 — lo|.

Definition 4.3.2 Let 0 = |ng| < |n1| < ... be the eg—resonances of 0. If this sequence

is infinite, we say 0 is eg—resonant, otherwise we say it is €g—non-resonant.

Definition 4.3.3 We say the extended Harper’s model {Hy »(0)}o exhibits almost lo-
calization if there exists Cy, Cs, €y, € > 0, such that for every solution u to Hy ,(0)u =
Eu satisfying w(0) = 1 and |u(m)| < 14 |m|, and for every Co(1 + |n;|) < |k| <

Co Hnjra|, we have [u(k)| < Cse=®* (where n; are the eg—resonances of 0).

Theorem 4.3.1 If X\ belongs to region 11°, {Hj\@(@)}g 1s almost localized for every
a € DC.

Remark 4.3.1 It is clear from Theorem 4.3.1 that almost localization implies local-

ization for non-resonant 6.
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We will actually prove the following explicit lemma:

Lemma 4.3.1 Let \ be in region 11°. Let Cy be the absolute constant in Lemma

L)

4.4.3, then for any 0 < ¢y < 10007

there exists constant C3 > 0, which depends on
A a and €y, so that for every solution u of Hj ,,u = Eu satisfying u(0) = 1 and
lue| < 1+ k|, if 3(|nj| + 1) < |k| < 3|njs1l, then |uy| < Cye= 5Kl where {n;} are

the eg-resonances of 6.

The proof of Lemma 4.3.1 (and thus of Theorem 4.3.1) is given in Section 4.4.

4.3.2 Almost reducibility

Let A be in region II°. For every E € X, ,, let 0(E) € T be given in Theorem

422 Let 0 < ¢ < 1390)4 and {n,} be the set of ey— resonances of #(E). Then for

some positive constants Ny, C' and ¢, independent of E' and 6, we have the following

theorem:

Theorem 4.3.2 For any fized j, with Ng < n = |n;|+1 < oo, let N = |n; 44|, L7' =
120 — nja||. Then there exists W : T — SL(2,R) analytic such that |degW| < Cn,
IWlo < CLE and W= (x + a)Ap, | 5(x)W (z) — Reol| < Ce.

Remark 4.3.2 Notice that this theorem requires n > Ny, which is not always ensured
when O(E) is non-resonant, however in that case we have localization for Hj, , , instead

of almost localization. We will prove Theorem 4.3.2 in Section 5.

4.3.3 Spectral consequences of Almost reducibility

Let C4 be as in Lemma 4.3.1.

Theorem 4.3.3 Assume o € DC. For X in region 1I°, fix £ € X,,. Assume
0(E) € T is such that H; ,(0)u = /\—EQu has solution satisfying ug = 1 and |ug| < 1.
Let C' be the constant in Theorem 4.3.2. Then 60(E) and p(«, A|CS\|7E) have the following

relation:

51



L(})
100Cy

e (A) If 0 is eg-non-resonant for some > ¢y > 0, then 20 € Za + Z if and

only if 2p(a, 121|ci|,E) € Za+Z.

e (B) If 0 is ey-resonant for some % > ¢y > 0, then p(oz,flhw) S o5-
resonant.
Proof of Theorem 4.3.3
L(})

(A): When 6 is ep-non-resonant for some > €y > 0, Theorem 4.3.1 implies

100Cy

H ;\7a(6’) has exponentially decaying eigenfunction. Then applying Theorem 4.2.3 we

get 20 € Zo + 7 if and only if 2p(a,14~1|ci|,E) € Za+ 7.

L(})
100C7

> ¢y > 0. Fix any £ < 55%, then

. 3 (0]
(B): Assume 6 is eg-resonant for some 56

there exists C¢ > 0 such that for any k # 0 we have ||ka| > Cee 8. Now take

an ep-resonance n; of 6 such that n = |n;| > max (%, Np). Then there exists
|m| < Cn such that 2p(«, A‘C;LE) — ma = —26. Then
120(, Aiegp6) = (m = my)al| = 1|20 — nja]| < emom < e etaimml,

Take any |I| < |m —n,|, { # m —n;. Then
(= (m = ny))al| = Cee Ml > 2e7" > 2)|2p(ar, Apeg)5) — (m — lo)e|.

Thus ||2p(ce, Ap)—la|| > ||12p(e, A|CX‘7E)—(m—nj)oz|| for any [I| < |m—n;|, | # m—n;.

This by definition means p(a, AM\» ) is &%5-resonant. O
Now based on Theorem 4.3.3, we can complete the proof of the dry version of Ten

Martini Problem for extended Harper’s model in regions I° and I1°.

Proof of Theorem 4.1.1

It is enough to consider A in region I1°. Let E € X, , be such that N, ,(F) € Za+Z.
We are going to show E belongs to the boundary of a component of R\ X, ,. Now
by (1.19) we have 2p(a,/~1‘ci|7E) € aZ + Z, thus by Theorem 4.3.3, 20(E) € aZ +

Z. By Theorem 4.2.3, this means there exist M(z) € Cy(T,PSL(2,R)) such that
+1

. a
M~z + a)Aje p(x)M(z) = . Without loss of generality, we assume
0 +1
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0 1 le|(z—a)’
~ E—v(z) le[(z—a) ~ 1 a
M 1(m + a) le] () lef(z) M(m)
1 0 0 1
Mn(x Mu(l"

Now let M(:c) = M ; Vi (2) . Then Moy (x) = Mi1(z — «) and May(x) =
)

Mis(x — ) — aMyi(x — «) and

~ E+e—v(x) _eJ(z—a) ~
M (z+a)| MO 9@ | W)
1 0

L a e My (x)Miz(z) — aMiy(z)  Miy(x) — aM(z) Mia(z)
0 1 —M121(IE) —MH(IE)MlQ(Q?)

2 My + eM; ().
Now we look for Z(z) of the form e ® such that
Z7 N w + a) (Mo + eMy (7)) Z(x) = My + €[M;] + O(€?).
We then just need to solve the equation:
(I — €Y (z +a)+ O(e))( My + eMy(z))(I + €Y (z) + O(€®)) = My + €[ M;] + O(€?).

It is sufficient to solve the coholomogical equation:

Y(z+a)My— MyY (z) = My(z) — [My],
which is guaranteed by the Diophantine condition on a. Thus

(M(z +a)Z.(x + @)~ Ay, p(2) (M (2) Z(x))

_ 1 +€[M11M12] —CLE[MEI] CL+6[M122] —CLG[MHMlQ] _|_O(62)
—e[M7,] 1 — €[ M1 M)
2M, + O(é%).
Notice that A|0x|» g is uniformly hyperbolic iff Trace(M,) > 2 which is fulfilled when
—ae[M%)] > 0. Thus for € small, satisfying —ae[M3] > 0, E + € ¢ X, ., which means

this spectral gap is open. O
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4.4 Almost localization in region [°

In this section we will prove Lemma 4.3.1. For fixed X\ in region II° and FE. let

DXE(Q) = CJ\(Q)AS\,E(Q)-
Recall the following result in [37]. For any E € Y5 o» We have,

L(O‘>AX,E> = L(a,D;\yE) —/ln\c;\(9)|d9 2T — /ln\c;\| > 0,
T

~ A +\/A2_4A A A4Az, 1)+ JVESY J,2—4A N
WhereL:lnM andflnycj\‘zlnmax( 1+2A3,1) \/max(l 3,1) s

2o 22

Proof of of Lemma 4.3.1

Suppose u is a solution satisfying the condition of Lemma 4.3.1. For an interval
I = [z1, 5], let I'; be the coupling operator between I and Z \ I:

(

&0+ (21— Do), (i,)) = (21,21 — 1)
cs(0+ (z1 — 1)), (i,)) = (w1 — 1, 29)
Ir(i,j) = (0 + xoa), (i,7) = (z2 + 1, 22)
5 (0 + z200), (1,7) = (2,22 + 1)
0 otherwise.

\
Let Hy = RrHj ,(0) R} be the restricted operator of Hj ,(0) to I. Then for z € I, we
have (H; + T'; — E)u(z) = 0. Thus u(z) = G;Tru(zx), where G; = (E — H;)™'. By

matrix multiplication:

u(x) = Z Gr(z,y)T'1(y, z)u(z)

ye[v(y»'z) EFI

=0+ (x1 — 1)o)Gr(x, x)u(zr — 1) + ¢ (0 + 220) Gz, x2)u(zs + 1).
Let us denote P(0) = det (B2 — Hjoy—1)(#)). Then the k—step matrix Dy ,(0)
satisfies:

Pk<9) —é(& — Oé)Pk71<9 + Oé)

D5 pi(0) =
o c@+ (k—1Da)P,1(0) —¢(0—a)e(@+ (k—1)a)P_2(0 + «)

o4



This relation between P;(0) and Dj 5, (0) gives a general upper bound of Py (f) in
terms of L. Indeed by Lemma 4.2.3, for any € > 0 there exists C'(¢) > 0 so that

1P, (0)] < C(e)e™+9™ for any n € N.

By Cramer’s rule:

y—1
B o det (B — Hy+1x2] B sz—y(9 +(y+1)a)
’Gl(xlay”_jl:_z[l |C)\<9—|—]CK)H de t(E H ’ Jl_xll‘c)‘ 9+] Pk(0+$1&> |,
_ - . det (E H[my 1 . y z1(9—|—$1a)
Grly.a2)l = T les(@+ja)ll— B 1.0) )| H 5@+ il =5 )

Jj=y+1 J=y+1
Notice that Py(#) is an even function about § + ¥-=q, it can be written as a
polynomial of degree k in cos2m(f + £-1a). Let Py(6) = Qx(cos2m(d + £1a)). Let

My, ={0 €T, |Qx(cos2r0)| < 1},

Definition 4.4.1 Fiz m > 0. A point y € Z is called (k, m)—regular if there exists

an interval [x1, x5] containing y, where x9 = x1 + k — 1 such that
—mly—zi . 1 .
Gy, xi)| <e ‘and dist(y, z;) > §k for i = 1,2,
otherwise y is called (k, m)—singular.

Lemma 4.4.1 Suppose y € Z is (k, L — [ In|es| — p)—singular. Then for any e >0
and any v € 7 satisfying y — %k <rx<y-— %k, we have 6 + (x + %(k —1))a belongs
to My ; 1, for k> k(X € p).

Lpte

Proof: Suppose there exists € > 0 and z1: y — (1 — §)k < x; <y — 0k, such that

0+ (21+3(k—1))ar does not belong to M ;1. ., that is [P, (0+z1a)| > (kD) (Lpite)

zpte
y—1 ~ ~
Gy (21, )| < H |Cx(9+ja)|e(k—lwl—yl)(L+e)e—(k+1)(L—%p+e)
Jj=x1

< e—(i—fln|05\\—0)‘y—931‘ fOI' k’ > kj()\’ €7p)

Similarly

|Gr(z2,y)] < e~ (L= [nles|=p)ly—=2|
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Definition 4.4.2 We say that the set {0y, ...,0p 11} is y—uniform if

kt1
H |z — cos 276, _ ok

| cos 2m6; — cos 270, |

max Imax
ze[-1,1]i=1,...k+1 +4L
J=1,5#i

Lemma 4.4.2 Lety, <7. If0y,...,0k11 € My, then {by, ..., 0r11} is not vy —uniform
fO?" k > k(%%)

Proof:  Otherwise, using Lagrange interpolation form we can get |Qg(x)| < ekl
for all # € [—1,1]. This implies | P, (z)| < e* for all z. But by Herman’s subharmonic

function argument, [; , In|P;(z)|dz > kL. This is impossible. O

Now take £ and €y such that 0 < 1000 < €. Then for |nj1| > N(§) we have
2e~MMin1l < Cee il < ||(njy1 — ny)al| = ||nja — 20 4+ 20 — njal| < 2(120 —njal| < 2e”ml
which yields that
€o
(4.2) nj4a] > 4—§’"j| > 250]n;].

Without loss of generality, assume 3(|n;|+1) <y < @ and y > N(§). Select n
such that g, < ¥ < gu41 and let s be the largest positive integer satisfying sq, < £.
Set I, Iy C 7Z as follows

I = [1 —25q,,0] and I, = [y — 2sq, + 1,y + 25¢,], if n; <0

I =10,2sq, — 1] and I, = [y — 2sq, + 1,y + 2sqy,], if n; > 0

Lemma 4.4.3 Let 0; = 0+ ja, then set {0;}jer,ur, is Cueg + Ca§—uniform for some

absolute constant Cy and y > y(«, €, §).
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Proof: Without loss of generality, we assume n; > 0. Take x = cos2wa. Now it

suffices to estimate
Z (In | cos 2ma — cos 2m0;| — In | cos 2m0; — cos 276,]) = Z - Z :
JENLUIy, ji 1 2

Lemma 4.2.1 reduces this problem to estimating the minimal terms.

First we estimate ) ,:

Z = Z In | cos 2ma — cos 270, |

1 JEN UL, j#i

= Z In|sin7(a+6;)] + Z In|sin7(a — ;)| + (6sg, —1)In2

JENUI,j#i JehUIy,j#i

Z + Z +(65g, — 1) In2.
1+ 1

lI>

We cut )3, , or >, _ into 6s sums and then apply Lemma 4.2.1, we get that for

some absolute constant Cf:
Z < —6sg¢,In2 4+ Cslng,.
1

Next, we estimate ) _,.

Z — Z In | cos 276, — cos 27|

2 JEN UL, j#i
= Z In|sinm(20 + (i + j)a)| + Z In|sinm(i — j)a| + (6sg, — 1) In2
JENUI,j#i JENUIy,j#i

4 Z + Z +(6sg, — 1) In2.
2+ 2

We need to carefully estimate the minimal terms. For ), ., we use the property of
resonant set; and for >, , we use the Diophantine condition on a.

For any 0 < |j| < gns1 , we have ||ja|| > ||gna| > Cee=%%. Therefore
max(In|sinz|,In|sin(z + 7ja)|) > —2€q, for y > y(a, &).

This means in any interval of length sq,, there can be at most one term which is less

than —2£q,,. Then there can be at most 6 such terms in total.
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For the part ), _, since [|(i —j)af > Cee8li=l > 720850 these 6 smallest terms
must be bounded by —20¢sq,, from below. Hence 22,7 > —65q,In2—Cé¢sq,—Cslngq,
for y > y(§) and some absolute constant C'.

For the part ), ., notice |i + j| < 2y + 4sq, < 3y < ;1] and i +j >0 > —n;.
Suppose [|20 + koar|| = minjer,ur, |20 + (i + j)a|| < e71000san < e=<olkol Then for any

k| < |ko| < 40sg,, (including |n,|),
120 = k|| = [|(k + ko)all = 1120 + kocrl| > [[26 + Koe|| for y > y(a €0, §).
This means —ky must be a eg—resonance, therefore |kg| < |n;_1|. Then
[20—nsall > || (ny--ho)al—126-+koal] > Cee™ 12650 —100wstn > (=100 > 29,4 oo

leads to a contradiction. Thus the smallest terms must be greater than —100¢ysg,,. We
can bound 227+ by —6sg, In2 — 600¢ysq, — 12£sq, — C's1n g, from below. Therefore
Y = —65¢,In2 — Ceysq, — C&sq, — Cslng,. Thus the set {0;},er,01, is Caeg +
Cy&—uniform for y > y(«, €, £) and some absolute constant Cj. O

Now let Cy be the absolute constant in Lemma 4.4.3. Choose 0 < 1000§ < ¢y <

L)
100C; °

Combining Lemma 4.4.2 and Lemma 4.4.3, we know that when y > y(«, €, §),

{0;}jenun, can not be inside the set M,

6sqn—1.1—2Csco AU the same time. Therefore 0

and y can not be (6sg, — 1,L — [In|c;] — 9C4€0) at the same time. However 0 is

(6sq, — 1, L — [ 1n]es| — 9Cyep)—singular given n large enough. Therefore
{0;}ier C Mgy, 1790
Thus y must be (6s¢, — 1, L — [In]|c5] — 9C4ey)—regular. This implies
[u(y)] < e F-ImIel=900 il < o= 50 for Jy] > y(A, a, 0, €).

Thus there exists C5 = C) 4.¢,,¢ such that |u(y)| < Cye= 571! for any 3[n;| < |y| <

%|Nj+1| and ] € N.
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4.5 Almost reducibility in region II°

Proof of Theorem 4.3.2

For any F € ¥, ,, take 0(E) and {uy} as in Theorem 4.2.2. Let C4 be the absolute
constant from Lemma 4.4.3, and C5 be the absolute constant from Lemma 4.2.2.

Fix max (3205, 1000€) < ¢ < min(%j(‘)), 1L0(();\c)4)' By Lemma 4.3.1, there exists C

depending on A and « such that for any 3|n;| < [k| < $|nji1], we have |u;| <
L()\)
Ce "5 Ikl

For any n, 9|n;| <n < §nj41|, of the form

(4.3) n=1r¢n—1< @ni1. *
Let u(z) = u'(x) = 3 cp upe®™* with T = [—[2], [2]] = [21,22]. Define
2mif
Ulz) = e ™ u(x)
u(r — «)

Let A(6) = A, £(6) and A(f) = AIC;I,E(Q)- By direct computation:

g(z)
0

A()U(z) = U (z + a) + 2 20U (2 + @) + G(2).

The Fourier coefficients of g(z) are possibly nonzero only at four points z1, z2, 1 — 1

and xo + 1. Since |ug| < Cre~ 5 when 3In;| < k| < 3|nj41|, we know that
oy,
1G(@) oy < Crem =0
207
Combining Theorem 1.6.2 and 4.2.3, we have exponential control of the growth of

the transfer matrix, for any o > 0 there exists Cs > 0 such that

| Ak ()] 1y < Cse’™! for any k.

27

With some effort we are able to get the following significantly improved upper bound:

Theorem 4.5.1 For some C' > 0 depending on A and «,

1Ak(x)llz < C(1+ k).

IThe existence of such n comes from (4.2).
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Proof: Let U(z) = Q(z)U(z), G(z) = Q(z 4+ a)G(x), where Q = Q, is given in
(A.0.2). Since

max (| Q@) ]z, 1Q7 (@) i) < €

207

we have

A(z)U(x) = U (z + a) + G(x),

L))

where ||G(z )||L(A) <Ce 20",

Lemma 4.5.1 Let C5 be the constant from Lemma 4.2.2, then for any 6, 205§ < § <

€0

&, we have

for n > n(a,0).

Proof: ~We will prove the statement by contradiction. Suppose for some zy €

{{Im(z)| < LQE))T‘F } we have ||U(x)|| < e=2". Notice that for any [ € N,
~ ~ l ~
> O (10 4 la) = Ay(ao)U(20) Z e2mim=D0 4, (0 + ma)G(zo + (m — 1)a).
m=1

This implies for n > n() large enough and for any 0 < 1 < n, ||U(zo + la)| < e,

thus [Ju(zo +la)| < Cse™". By Lemma 4.2.2, ||u(x + ilm(zq))||r < CoCse2mem <

e~3™. This contradicts with Jpu(z 4+ ilm(xp))da = ug = 1. O

Lemma 4.5.2 [3] Let V : T — C? be analytic in [Im(z)| < n. Assume that §; <
|V (z)]] < 65" holds on |Im(x)| < n. Then there exists M : T — SL(2,C) analytic on
Im(z)| < n with first column V and ||M||,, < C6;%65 (1 — In(6,62)).

Applying Lemma 4.5.2, let M (x) be the matrix with first column (7(33) Then e~2" <
|U(z)||s < e and hence ||[M(x)||s < Ce%". Therefore

e2rif 0 N Bi(z)  b(x)

M_1($+Q)A(x)M(ﬂf) = 0 —27if) B ( ) 6( )
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where [81(2)15, [18(@)]l 2. 1Ba(@)lls < Ce™ 8", and [o(x)]|s < Ce™n. Let

e160 " 0
@(l’) = M(QE) L(i)
0 e 160 "
Then we would have:
5 627ri9 0
Oz +a) "A(z)d(z) = + H(x),
0 6727”'9

L)) L\

where ||H(z)||s < Ce 10", and ||®(z)]|s < Ce™so0 ™. Thus

s

~ N
sup || A (@) r < e
L(})
0<s<e320 "

for n > n(X, a) satisfying (4.3). For s large, there always exists 9|n;| < n < §|n;i1|

satisfying (4.3) such that en < 3(2;)) Ins < n with some absolute constant c¢. Thus

there exists C' depending on A and a such that || A, (z)|r < C(1 + |k])C. O
Now we come back to the proof of Theorem 4.3.2. Fix some n = |n,;|, and
. N N eQwieu(x)
N = |nj41|. Let u(x) = u(x) with I, = [-[5], [§]] and U(z) = . Then
u(r — «a)

A@)U(z) = 20U (z + ) + G(x) with |G(@)] g < Ce Y.

Define Uy(z) = e™™*U(x). Notice that if n; is even, then Uy(z) is well-defined on T,
otherwise Uy(z 4+ 1) = =Up(x).

A(2)To(z) = Ty (x + a) + H(x),

LY

where 6 = 6 — S a, Us(z) = Q(z)Up(z) and || H(z )HL(M < Ce 10 V. Consider the

matrix W (z) with Uy(x) and Up(x) being its two Columns. Then

. 2l 8
A(x)W(z) = W(x + «) | + H(x).

0 672771‘0

Theorem 4.5.2 Let L™ = ||20 — n;al|. Then for n > Ny(\, ) we have
et z)| > L~ or any x € T,
|det W (x)] > L™*¢ for any 2 € T

where C' is the constant appeared in Theorem 4.5.1.
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Proof: First, we fix & < —2 so that ||ka| > Ce e Skl for any k # 0. We have
1600 &

the following estimate about L:

Lemma 4.5.3 eo" < [ < ¥V
e 2N < |(njp1 — ny)all < 2|nja — 20| =207 < 2e7" for n > N(&).

Now we prove by contradiction. Suppose there exists x and xo € T such that ||Uy(z)—

kUo(x0)|| < L. Then

| ~0(960 + la)egmlé — Kme—%ilén

-1 -1
A (w0 + ma)H(wo + ma) — £ Ay (0 + ma) H(zo +ma) | + || Ai(xo) | L*¢
m=0 m=0
<CL*e w0 4+ OL7¢ < L7°.

for 0 < [I] < L% If we take j = £, then

~ L ~ L .
(44) HUO<£L'0 + ZO&) + HU()(iL'O + ZCY)H < L.
Next since ||Up(z)|r < n, we have ||Uy(z)||r < Cn. Thus

1T (0 + la) — kUp(zo + 1a)|| < L73 for 0 < |I| < Le.

For any analytic function f(z) = 3, fre>™*, define fi_ym(z) = > < Foe2mike.

W) (x) 0y (@)
For any column vector V(z) = et Vil () = o . Now let
[ ’ ] (2)
®)(z) YUl m,m] (z)

us define Uy (x) = Q(2)€™ "5 Ui_py, 90 (). Then
1T () — Ty ()|} < Ce 31O,

Consider [e*”injxﬁggn] (2)]j=18n,18n) (2)e™"3*. This function differs from a polynomial
with essential degree 36n only by a multiple of €™, Notice that Q(z) is analytic in
(o [Im(z)| < 2V}, thus [Q(k)| < Ce“5*# . Then

le= ’”"J"”U[gn] k)| < Z 1Q(k —m)U(m)| < Cne~ k=90 g |k| > 18n.

|m|<9n



Thus

||e—7rinjxﬁ(£9n}(l,) . [e_mnjx(j(ggn]][—wn,wn} ({L‘) ||'JI‘ < 6—4L(>\)"’

||U0(l.) _ [e—winjxﬁ(EQn]][_lgn,lSn] (x>e7rinj$||’]r < 6_4L(>‘)n,

Hence

|| [e_mnsz(EQn]][iwmlgn}(xo + la)€27rinj (zo+la) _ K[eiﬂinjxﬁ(ggn}][71877,71871}(xo + la)”?l‘

<OL73 4 =4O,

for || < L=. Notice that

[e~mini® U(Egn}] [—18n,18n] () I — glemminse U(ggn]] [~ 18n,18n) ()

is a polynomial whose essential degree is at most 37n. Thus by Lemma 4.2.2, we

would have

in;x 79N TN x —min;x TN in; -1 —2L(M\)n
e 05" mrsm sy ()™ = sle=m 5705 |y asn ()57 g < L5 4 72O

Hence ||Uy(z) — kUq(z)||r < L™1 + 2¢7220" But combining with (9.1) we would get
1To(z0 + £a)|| < 2L74 + 2e~2LO Bug this contradicts with inf,er ||Ug(z)|| > e~20
since 0 < 2. O

Now for n > Ny(\, ), take S(z) = RelUy(z) and T(x) = ImUy(x). Let Wi ()
be the matrix with columns S(x) and T'(x). Notice that det Wy (z) is well-defined
on T and det Wi(z) # 0 on T, hence without loss of generality we could assume
det Wi (x) > 0 on T, otherwise we simply take Wj(z) to be the matrix with columns

S(x) and —T'(x). Then

|A(z)Wy (2) — Wiz + a)R_gllp < Ce™ 5.
By taking determinant, we get

det Wi (z) = det Wy (z + o) + O(e_%é)N) on T.
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Since det Wy (z) is analytic on [Imz| < %, by considering the Fourier coefficients we

could get

det Wi (x) = wo + O(e’%N) on T,

where wy > L7°¢. Thus det W;(x) is almost a positive constant.
Define Wy(z) = det Wl(x)_%Wl(w). Then Wy(z) € C¥(T) and det Wy(x) = 1.
We have

1
. det W' : ;
Wil(z + a)A(2)Walz) = SEMEF D 5 e 50Y) on T,

det Wy (x)?

Wy (2 + ) A(x)Wa(z) = R_j + O(G_WO)N) on T.

Now let’s prove deg Wh(x) < 36n. deg Wh(x) is the same as the degree of its columns.
For

cos kmx
M :R/27Z — R?, we say deg M = k if M is homotopic to
sin kmx

For some constant ¢ > 0, we obviously have

/7r 15()]| de + / IT(@)] dz > / 15(x) +iT(2)]| dz = / 100(@) | dz > c.

Without loss of generality we could assume [, [|S(z)|| dz > £. Also

A(z)S(z) = S(z + a) cos 270 — T(z + a) sin 276 + O(ef%i)N) on T.
Then since ||20]| = L™,

A(z)S(z) = S(z+a) +O(L™2) onT.

First we prove inf,er [|S(z)| > e 22V, Suppose otherwise. Then there exists o € T,
so that ||S(z)|| < e 223", Then [|Rel(zo + lo)|| < e %7 for |I| < eie™, where C' is

the constant that appeared in Theorem 4.5.1. We have already shown that
HUO<5U) _ [e_ﬂmjxﬁ(ggn}][718n,18n}€7rmjxH’]T < 6_4L(/\)n.

Thus

IRe[e ™% U™ g 1sm (20 + )| < e "
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for |I| < ei¢™. However Re[e‘”i”ﬂf](gg"]][_1871,18”] is a polynomial with essential degree
at most 36n. Using Lemma 4.2.2 we are able to get ||Re[e_”"x(7([)9"]][_18,1718"} emni||p <
e~3" and thus |[ReUy(z)||r < e 5" which is a contradiction to Jr IRelUy(z)|| dz > 5
At the meantime, we also get || S(x) — Re[e‘“”]’mﬁ([)gn}][,lgmgn} (z)e™m®||p = ||S(z) —

h(z)||lr < e *=On The first column of Wa(z) is det Wl(x)_%S(x). We have

| e,
det Wl(x)% wo?
1 det W (m)%

<————||S(z) = h(w) + (1 - ——5——)h(z)|

|det Wy (x)2| Wo?2
§L2C’<e—4L(5\)n " Lsce—%?m
<e 3L < ||L)1|| on T.

det Wy (x)?

Thus by Rouché’s theorem |deg Wy (z)| = | deg h(x)| < 19n. Notice that
—1 t Y _Lj\)N
|p(a, Wy " AW,) + 0] < Ce™ 200

Then, by 1.16 for some |m| < 19n:

lp(a, A) — %Oz +0] < Ce 500N
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Chapter 5

Quantum dynamical bounds for
ergodic potentials with underlying
dynamics of zero topological

entropy

5.1 Introduction

Positive Lyapunov exponents are generally viewed as a signature of localization.
While it is known that they can coexist even with almost ballistic transport [62] [27],
vanishing of certain dynamical exponents has been identified as a reasonable expected
consequence of hyperbolicity of the corresponding transfer-matrix cocycle. Results
in this direction were obtained in [25] [26] for one-frequency trigonometric polynomi-
als, and recently in [45], for one-frequency quasiperiodic potentials under very mild
assumptions on regularity of the sampling function. In this paper we identify a gen-
eral property responsible for positive Lyapunov exponents implying vanishing of the
dynamical quantities in the rather general case of underlying dynamics defined by
volume preserving maps of Riemannian manifolds with zero topological entropy, and

under very minimal regularity assumptions. This work presents the first localization-
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type results that hold in such generality. We expect that positive topological entropy
should also lead to vanishing of the dynamical quantities for a.e. (but not every!)
phase, but this should be approached by completely different methods and will be
explored in a future work.

Our general results allow us, in particular, to obtain localization-type statements
for potentials defined by shifts and skew-shifts of higher-dimensional tori. Pure point
spectrum with exponentially decaying eigenfunctions has been obtained for a.e. multi-
frequency shifts in the regime of positive Lyapunov exponents in [17] and for the skew-
shift on T? with a perturbative condition in [18], both very delicate results. While
bounds on transport exponents are certainly weaker than dynamical localization that
often (albeit not always [49]) accompanies pure point spectrum [19], we note that
pure point spectrum can be destroyed by generic rank one perturbations [28] while
vanishing of the transport exponents is robust in this respect. Finally, our results are
the first ones for both of these families that hold under purely arithmetic conditions
and the first non-perturbative ones for the skew-shift.

Let (M, g) be a d-dimensional compact (smooth) Riemannian manifold with a
metric g. Let Vol, be its Riemannian volume density (see (5.3)). Let f be a uniquely
ergodic volume preserving map on M, which means Vol is its unique invariant prob-
ability measure. We will study the dynamical properties of the Schrodinger operator

acting on [%(Z):
(5.1) H, ;(@)u(n) =u(n+1)+u(n—1)+o(f"0)u(n).
The time dependent Schrodinger equation
i0u = H, £(0)u,
leads to a unitary dynamical evolution
u(t) = e~ o @y ().

Under the time evolution, the wavepacket will in general spread out with time. For

operators with absolutely continuous spectrum, scattering theory already leads to
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a good understanding of the quantum dynamics. In this paper we will study the
spreading of the wavepacket under positive Lyapunov exponent assumption, which
automatically implies the absence of absolutely continuous spectrum.

Let e "Hv.r ()5, be the time evolution with the localized initial state &y. Let
ag(n,t) = |(e " HerOg, 5.)]2.
ag(n,t) describes the probability of finding the wavepacket at site n at time t. We
denote the p-th moment of ag(n,t) by

(XI50) = D (1+ |n|) ag(n, ).

n

Dynamical localization is defined as boundedness of (|X|j(¢)) in time ¢. This
implies purely point spectrum, therefore for general operators with positive Lyapunov
exponent such a strong control of the wavepacket is not possible. Thus we need to
define proper transport exponents which decribe the rate of the spreading of the

wavepacket. For p > 0 define the upper and lower transport exponents

B+ — 1 In (| XT5(t)) - .. n (| X))
m NN — 0
0 (p) ht sup Int ; /69 (p) = h}:ﬁ(n inf —1 : .

Obtaining upper bounds for the two transport exponents above implies a power-law
control of the spreading rate of the entire wavepacket.
It is also interesting to consider a portion of the wavepacket. For a nonnegative

function A(t) of time, let

(A)r = 7 /Ooo e 2TA(t) dt

be its time average. Set
Pyr(L) = {ag(n,t))r.
In|<L
Roughly speaking, Py r(7T*) > 7 means that, in average, over time 7', a portion of
the wavepacket stays inside a box of size T*. Let us introduce two other scaling

exponents:

— Ininf{L|Py (L) + P L
&y = lim lim sup ninf{L|Pyr(L) + Pror(L) > 7}
T—0 T—00 IHT
Ininf{L|Py (L) + P L
&y = lim lim inf ninf{L|Pyr(L) + Pror(L) > 7}
i 70 T—o00 IHT
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The vanishing of 8+ and &, § can be viewed as localization-type statements. For
M =T the one-dimensional torus, f = f;, : 0 = 0 + a the irrational rotation by «,
the Lebesgue measure m is the unique invariant probability measure of f. It was first
proved in [25], [26] that for v being trigonometric polynomial, under the assumption
of positive Lyapunov exponent, 3, (p) = 0 for all p > 0, all # and Diophantine «;
By =0 for all p > 0, all # and all «. It was recently proved in [45] that under very
mild restrictions on regularity of the potential, under the assumption of positivity and
continuity of the Lyapunov exponent, 34 (p) = 0 for all p > 0, all § and Diophantine
a; B, (p) =0 for all p > 0, all 6 and all . It was also proved in [45] that for piecewise
Holder function, under the assumption of positive Lyapunov exponent, 59 = 0 for

a.e.f and Diophantine «, §9 = 0 for a.e.f and all «.

Remark 5.1.1 The two Diophantine sets of a are different between [25], [26] and
[45]. They are both full measure sets, but [45] covers slightly thinner set of frequencies

because they need to handle potentials with weaker regqularity.

In this paper we consider d-dimensional compact Riemannian manifold M and
uniquely ergodic volume preserving map f. We consider maps with the following
volume scaling property. For 1 <[ < d, let () be the set of C* mappings o : Q' —
M where @' is the [-dimensional unit cube. Let Vol,;(c) be the induced I-dimensional
volume of the image of ¢ in M counted with multiplicity, i.e. if o is not one-to-one,
and the image of one part coincides with that from another part, then we will count
the set as many times as it iscovered. For n =1,2,... and 1 <[ < d, let

(5.2) Vi(f) = sup limsupllogVolg,l(f”a) and V(f) :mlaXVl(f).

cex(l) n—ooo M

Volume preserving f always satisfies Vy(f) = V4(f~!) = 0. Here we need to make an
extra assumption that V(f) = V(f~!) = 0. It is known that for smooth invertible
map f, V(f) = V(f™!) is equal to the topological entropy of f [69], thus our class
of maps includes all smooth maps with zero topological entropy. In particular, it
includes both the irrational rotation and the skew-shift.

For such maps we will assume that f has a bounded discrepancy.
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Let Jn(0) = J(0, f0,..., fN710) (see (5.9)) be the isotropic discrepancy function
of the sequence {f"0}"-\'. For § > 0, we will say f has strongly §-bounded isotropic
discrepancy if Jy(0) < |N|=° uniformly in 6 for |[N| > Ny; f has weakly 5-bounded
isotropic discrepancy if there exists a sequence {N;} such that Jy,(f) < |N;|~° uni-
formly in #. It turns out many concrete dynamical systems feature these properties.

We will show in Lemmas 5.3.6 - 5.3.8 that the following holds.

e For the shifts of higher dimensional tori, f = fso : 8 = 6 + a has strongly

bounded isotropic discrepancy for Diophantine «;

e For the skew-shift f = foa: (Y1, Y2, -, Ya) = (Y1 + @, Y2 + Y1,y -y Ya + Ya—1), has
strongly bounded isotropic discrepancy for Diophantine «, and weakly bounded

isotropic discrepancy for Liouvillean «.

Under the assumption of boundedness of discrepancy and scaling property of f,
we are ready to formulate the following two abstract results.

Let g be the spectral measure of Hy corresponding to dg. Let N = f Mz dVol,
be the integrated density of states.

Theorem 5.1.1 Let v be a piecewise Holder function, suppose L(E) is positive on a
Borel subset U with N(U) > 0. Suppose f is a uniquely ergodic volume preserving
map satisfying V(f) = V(f~') =0 and for some § > 0

o [ has weakly d-bounded isotropic discrepancy, then § = 0 for Voly-a.e. 6 € M;
e f has strongly 5-bounded isotropic discrepancy, then & = 0 for Voly-a.e. 0 € M.

Remark 5.1.2 The full measure set of 0 appearing in Theorem 5.1.1 is precisely the
set {0 D e + /Lf@(U) > O}

Theorem 5.1.2 Let v be a piecewise Hélder function, suppose L(E) is continuous in
E and L(E) > 0 for every E € R. Suppose f is a uniquely ergodic volume preserving
map satisfying V(f) = V(f~') =0 and for some § > 0

o [ has weakly d-bounded isotropic discrepancy, then [, (p) = 0 for all 6 € M
andp > 0;
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e [ has strongly 6-bounded isotropic discrepancy, then 34 (p) = 0 for all 6 € M
and p > 0.

Theorems 5.1.1, 5.1.2 extend the results of [45] from irrational rotations of the
circle to general uniquely ergodic maps of compact Riemannian manifolds with zero
topologogical entropy and bounded discrepancy. One key to achieving such gener-
ality is a new argument that does not rely on harmonic analysis/ approximation by
trigonometric polynomials.

By [24], B, (p) > pdimp(pe) where dimg(p) is the Hausdorff dimension of p.

Thus as a consequence of 3, (p) = 0 we have the following

Corollary 5.1.1 Under the assumption of Theorem 5.1.2, dimpy(ug) = 0 for all
0e M.

Remark The point here is that we obtain zero Hausdorff dimension of the spec-
tral measure for all rather than a.e. § € M (the latter follows for general ergodic
potentials). The following Theorems 5.1.3 - 5.1.6 are all corollaries of our abstract
results. Theorems 5.1.7 and 5.1.8 depend on a somewhat different technique (bypass-
ing the discrepancy considerations), which allow us to cover more frequencies in case
of the shift of T2. To our knowledge, Theorems 5.1.3 -5.1.8 are the first arithmetic
localization-type results.

Theorem 5.1.1 reduces vanishing of (upper or lower) & to bounds on the isotropic

discrepancy. As corollaries, we obtain

Theorem 5.1.3 Let (M, f) = (T% f. ). For piecewise Hélder v, suppose L(E) is
positive on a Borel subset U with N(U) > 0. Then if « € DC(7) C T?, & = 0 for

a.e. § € T
Remark 5.1.3 The Diophantine condition is essential for the vanishing of & [50].

Theorem 5.1.4 Let (M, f) = (T% fso). For piecewise Hélder v, suppose L(E) is
positive on a Borel subset U with N(U) > 0. Then

e for all irrational o, &y 4,y = 0 for a.e. (y1,y2,...,ya) € T¢,
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e ifa € DC(1) for some T > 1, & 4oy = 0 for a.e. (y1,y2,...,ya) € T

Remark 5.1.4 The full measure set appearing in Theorems 5.1.83 and 5.1.4 are pre-
cisely the set {0 : pg + ppo(U) > 0}.

Similarly, for systems with continuous Lyapunov exponent, Theorem 5.1.2 reduces

vanishing of ﬂgt (p) to the same discrepancy bounds, and we obtain

Theorem 5.1.5 Let (M, f) = (T, f,.). For piecewise Hélder ¢, suppose L(E) is
continuous in E and L(E) > 0 for every E € R. Then if a« € DC(1) C T¢, B (p) =0
for all § € T4, p > 0.

Corollary 5.1.2 Under the assumption of Theorem 5.1.5, if « € DC(7), dimpy (pg) =
0 for all 6 € T?.

Remark 5.1.5 The Diophantine condition is essential for T =0 [50].

Theorem 5.1.6 Let (M, f) = (T% f.a). For piecewise Holder v, suppose L(E) is
continuous in E and L(E) > 0 for every E € R. Then

e for all irrational o, B, . (p) =0 for all (y1,Y2, ..., ya) € T% p >0,

e if a € DC(1) for some T > 1, B (p) =0 for all (y1,ys,...,ya) € T

p > 0.

Corollary 5.1.3 Under the assumption of Theorem 5.1.6, for all irrational o, dimp (ug) =
0 for all (y1,%s, ..., ya) € TY.

Finally, for the case of the irrational shift T? we can make two more delicate

statements, using a different technique to obtain arithmetic estimates.

Theorem 5.1.7 Let (M, f) = (T?, fs.). For piecewise Holder v, suppose L(E) is
positive on a Borel subset U with N(U) > 0. Then if o = (aq, ) € Uy WDC(7),
§o =0 forae. 0 T2.
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Remark 5.1.6 The full measure set appearing in Theorem 5.1.7 is precisely the set
{0 po + ppe(U) > 0}

Theorem 5.1.8 Let (M, f) = (T2, fsn). For piecewise Hdlder v, suppose L(E)
is continuous in E and L(E) > 0 for every E € R. Then if « = (a1,) €
U,=1WDC(7), 8, (p) =0 for all € T?, p > 0.

Corollary 5.1.4 Under the assumption of Theorem 5.1.8, if a € U.~;WDC(1),
dimy (pg) = 0 for all 6 € T

The most technically complex part of the paper consists in obtaining arithmetic
estimates on covering of the torus by the trajectory of a small ball in a polynomial (in
the inverse radius) time, which we obtain by estimating the discrepancy in Theorems
5.1.3 - 5.1.6, and by the bounded remainder set technique in Theorems 5.1.7, 5.1.8.
The discrepancy estimates are standard for the Diophantine shifts and are ideologi-
cally similar to the known results on equidistribution of n*a, for the case of higher
dimensional Diophantine skew shifts. We still develop the proof for the Diophantine
skew shift case in full detail because we did not find it in the literature and also be-
cause it serves as a good preparation to the Liouville higher dimensional skew shift,
for which to the best of our knowledge, our estimates are new. We note that for the
Diophantine skew shift of T? and shifts of T¢ the results on the covering of the torus
by a trajectory of a ball are shown in [4] by a completely different technique, through
solving the cohomological equation. By the nature of the cohomological equation that
technique is not extandable to the Liouville or weakly Diophantine case.

We organize this paper as follows: in section 2 we introduce some basic definitions.
Some of them have been mentioned in the introduction but not in details. In section
3 we will present some key lemmas and proofs of Theorems 5.1.1 - 5.1.8. In sections

4-8 we prove the key lemmas that are listed in section 3.
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5.2 Preparation

5.2.1 Riemannian manifold

Let M be a d-dimensional compact Riemannian manifold with a Riemannian metric
g.
Let K be a compact set in some coordinate patch (U, x!,...,z%). We define the

volume of K to be

Vol,(K) ::/ V|G o z=1|dat - - - da?,

where G = detg,;j, g;; = g(a%i, %) and dx'---dz? is the Lebesgue measure on
R?. This definition is free of choice of coordinate. If K is not contained in a single
coordinate patch, one could apply partition of unity to define Vol,(K'). More precisely,
we pick an atlas (Uy, 2k, ...,2%) of M and a partition of unity {p,} subordinate to

this atlas. Now we can set
Vo)=Y [ (/G o o) el
o Jz(KNUa)
The Riemannian volume density (see e.g.[64], section 3.4) on (M, g) is

(5.3) dVol, = "(pay/1G°]) 0 (z) Mda}, - - dal.

[e3%
In the above definition, we do not assume M to be oriented. If M is oriented, then
the volume density is actually a positive n-form, called the volume form.
If o : [a,b] = M is a continuously differentiable curve in the Riemannian manifold

M, then we define its length (o) by

o) = [ \fomolete). o)

where g, is the inner product g at the point o(t). One could define the distance

between any two point x, y € M as follows

dist(x,y)

=inf{l(p) : 0 is a continuous, piecewise continuously differentiable curveconnecting x and y}.
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With the definition of distance, geodesics in a Riemannian manifold are then the
locally distance-minimizing paths.

Let v € T, M be a tangent vector to the manifold M at z. Then there is a
unique geodesic g, satisfying 0,(0) = = with initial tangent vector ¢,(0) = v. The
corresponding ezponential map is defined by exp,(v) = 0,(1).

Let B.(z) = {y € M : dist(x,y) < r} be a geodesic ball centered at = € M
with radius r. It is known that B,(z) = exp,(B(0,7)) where B(0,7) = {v € T,M :
gz(v,v) <1}

Proposition 5.2.1 There exists vy > 0 so that for all r < ry, there exists positive

constants C, and c, which are independent of x € M so that
(5.4) cgr® < Voly(B,(z)) < Cyr® for any z € M.

Proof: We will discuss about the proof briefly. We could identify the tangent
space T, M isometrically with R¢. Now exp, : R? — M is a diffeomorphism on some
small ball Bra(0,7). On this ball, straight lines are mapped to length-minimizing
geodesics ([22], Proposition 3.6), and thus Euclidean balls are mapped to geodesic
balls of the same radius. Taking r smaller if necessary, we can assume the Jacobian of
exp, is bounded away from 0 and 0o on Bga(0,r), thus for 7 < r, we have that ¢, r¢ <
Vol,(B,(z)) < Cy,r?. Since M is a compact manifold, we could take r,,c¢,,,C,,
independent of x € M. O

We call a subset C' of M is said to be a geodesically convex set if, given any two
points in C, there is a minimizing geodesic contained within C' that joins those two
points.

The convexity radius at a point x € M is the supremum (which may be +00) of
r; € R such that for all » < r, the geodesic ball B, (z) is geodesically convex. The
convexity radius of (M, g) is the infimum over the points x € M of the convexity

radii at these points.

Proposition 5.2.2 [16] For compact manifold M, the convexity radius r;, of (M, g)

18 positive.
This clearly implies for any x € M, any r < r}, B,(r) is geodesically convex.
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5.2.2 Piecewise Holder function

Let L,(M) be the space of y-Lipschitz functions on M. For v € L. (M) define

[v(61) — v(6)]
5.5 Vliz, = Wil +_ s1
(5.5) lollz, = llelleo + s = a0,y

We say v is piecewise Holder if there exists v > 0, positive integer K and {v; }JK:1 -
L. (M) so that

K

0(0) = 3" xs, (0)5(0)

j=1
where {S;}}Z, are sets with “good boundary”, namely {0.5;}/<, are d—1 dimensional

smooth submanifolds of M. Clearly the discontinuity set .J, of v is szlasj, and

(5.6) Voly g_1(J,) < ZVolgd 1(8S;)) <

7j=1
Clearly for any two points 61,60y so that dist(0;,J,) > r, if dist(61,605) < r then we

have

=

(5.7) l0(61) — v(B)| < dist(0y,6,)" Z vjl .,

5.2.3 Spectral measure and integrated density of states

Let ug be the spectral measure of Hy corresponding to dy defined by

dpe(x)

x—z

((Ho =) 60800 = |

Then clearly fif9 is the spectral measure of Hy corresponding to d;. Let N =
fM w dVol,(f) be the integrated density of states. Clearly N(U) > 0 for some
set U implies ““H°(U) > 0 for Voly-a.e. § € M.

5.2.4 Discrepancy

Let 71, ...,y € M, for a subset C' of M, let the counting function

(5.8) ACHTI) = xe(@
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The isotropic discrepancy Jy({Z,}_,) is defined as

A(C {Zn

Lnhamt voly(0))

(5.9) In({Z ) = sup |

where € is the family of all geodesically convex subsets of M.

For a point § € M, let Jy(0) = J{f"0}"2)). We say a map f : M — M
has strongly d-bounded isotropic discrepancy if for some N > Ny, Jy(0) < N7
uniformly in § € M. We say f has weakly d-bounded isotropic discrepany if there is
a subsequence {N;} such that Jy,(0) < N j_5 uniformly in § € M.

If M = T be the d-dimensional torus, we define the discrepancy Dy ({Z,})_,) as

follows

(5.10) DUE L) = s [ A2 ()

where ¢ is the family of any subinterval C of the form C = {(y,...,0;) € T : 3; <
0; < k; for 1 < i < d}.

For a point § € T? let Dy(0) = D({f"0})-)). We say a map f : T¢ — T¢
has strongly 6-bounded discrepancy if for some N > Ny, Dy (#) < N~ uniformly in
6 € T?. We will f has weakly §-bounded discrepany if there is a subsequence {N;}
such that Dy, (f) < Nj_‘S uniformly in 6 € T¢.

When M = T, the isotropic discrepancy and discrepancy can be tightly controled
by each other:

Lemma 5.2.1 (/58/, Theorem 1.6 in Chapter 2) For any sequence {Z,}Y_, in T4,

we have
(5.11) Dy({Z, 100 < In({F10)) < (4dvd + 1) Dy ({7, 1,) 1.
Therefore, by (5.11), when M = T,

Proposition 5.2.3 [ has strong (weak) d-bounded isotropic discrepancy for some

d > 0 is equivalent to f has strong (weak) o-bounded discrepancy for some § > 0.

In section 5 and 6 we are going to apply the following two inequalities to estimate

the upper bound of discrepancy.
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Lemma 5.2.2 [56] [Erdos-Turan-Koksma inequality] For any positive integer Hy,

we have
1 N .
(512) ({:L'n}n 1) < Cd — _|_ Z (h) Z€2ﬂi<h,_’n>‘)
n=1

0<|h|<H0

where |h| = max?_, |h;].

Lemma 5.2.3 (e.g./58], Lemma 3.1 in Chapter 1) [Van der Corput’s Fundamental Inequality|

For any integer 1 < H < N, we have

(5.13)
N H-1 N—k
1 N+ H — 2(N+H-1)
‘N Z un|? < T Z | + NI (H — k)Re Z UpUp 1 -
n=1 k=1 n=1

5.3 Key lemmas and proofs of Theorem 5.1.1 -
5.1.8

5.3.1 Covering M with the orbit of a geodesic ball and Proofs
of Theorem 5.1.1, 5.1.7, 5.1.2 and 5.1.8

Lemma 5.3.1 Let v be a piecewise Hélder function with 1 > ~v > 0. Suppose L(FE)
is positive on a Borel subset U with N(U) > 0.

1. If there exists a sequence r, — 0 so that any geodesic ball in M with radius 7y

covers the whole M in r,;M steps, then §g = 0 for Volg-a.e. 6 € M;

2. If for any small r > 0, any geodesic ball with radius r covers the whole M in

M steps, then & = 0 for Voly-a.e. 6 € M;

Lemma 5.3.2 Let v be a piecewise Hélder function with 1 > v > 0. Suppose L(FE)

is continuous in E and L(E) > 0 for every E € R.

1. If there exists a sequence r — 0 so that any geodesic ball in M with radius ry

covers the whole M in r;;™ steps, then B, (p) = 0 for all € M and p > 0;
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2. If for any small r > 0, any geodesic ball with radius r covers the whole M in
r—M steps, then B (p) =0 for all € M and p > 0.

Lemmas 5.3.1 and 5.3.2 are key to our abstract argument. They are proved in section
4. The connection to bounded discrepancy comes in the following

Let 4 be as in Proposition 5.2.1 and r as in Proposition 5.2.2.

Lemma 5.3.3 If f has weakly d-bounded isotropic discrepancy, then there exists r, —

0 as k — oo such that any geodesic ball in M with radius ry will cover the whole M
2d

, B
m Ty, ° Steps.

Proof: ~ There exists a sequence {N;} and kg > 0 such that for any k& >

ko we have Jy, ({f"0}"2)) < N.°. This means for any geodesically convex set

Nj—1 "
C Cc M, MOTW — Vol,(C) > —N.° holds for all # € M. Thus if we take

)

re = N 2 < min (rg, 1

y), then by Proposition 5.2.2, we know B, (f) is geodesi-

_s
cally convex. By Proposition 5.2.1, Vol,(B,,(0)) > c,r{ = ¢,N, > > N°. Thus
2d

o
ano

Lemma 5.3.4 If f has strongly d-bounded isotropic discrepancy, then for any 0 <

' XBrk(o)(f"Q) > ( for any 6 € M. 0

r < min (rg,7), any geodesic ball in M with radius v will cover the whole M in I

steps.

Proof: There exists Ny such that for any N > Ny we have Jy({f"0}N-) < N9

for all # € M. This means for any 0 < 7 < min (r,,7;), any geodesic ball B,(0) (it is
_2d

r 8 —1 n
geodesically convex by Proposition 5.2.2) and N = 7~3 we have 2= _Xir(g)(f o _
r 8

Vol,(B,(0)) > —r?®. Since by Proposition 5.2.1, Vol,(B,(6)) > c,r¢ > r?** we have

2d

St XB,(0)(f"0) > 0 for any § € M. O

n=0

In the case of 2-dimensional irrational rotation, we also have

Lemma 5.3.5 For any (a1, az) € U, WDC(1), there exists ri(aq, an,7) — 0 as

k — oo such that any Fuclidean ball with radius r;, covers the whole T? in rk_SOOT4
steps.

Remark 5.3.1 This lemma will be proved in section 8.

We are now ready to complete the proof of the main Theorems.
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Proof of Theorem 5.1.1

Combining Lemma 5.3.3, 5.3.4 with Lemma 5.3.1.

Proof of Theorem 5.1.7

Combining Lemma 5.3.5 with Lemma 5.3.1.

Proof of Theorem 5.1.2

Combining Lemma 5.3.3, 5.3.4 with Lemma 5.3.2.

Proof of Theorem 5.1.8

Combining Lemma 5.3.5 with Lemma 5.3.2.

5.3.2 Estimation of Discrepancy and Proofs of Theorems 5.1.3,
5.1.5, 5.1.4 and 5.1.6

For irrational rotation and skew-shift, we have the following control of their discrep-

ancies.

Lemma 5.3.6 Ifa € DO(T), then for some constant § > 0, Dy ({0+na}-}) < N7°

uniformly in 6 € TY.

Let Y, = (g1 + (Ma, v+ Dy + (e, oy va+ (Dyas + -+ (D).

Lemma 5.3.7 If a € DC(1), then for some constant 6 > 0, DN({YH};V:l) < N9

uniformly in (y1, ..., yq) € T%.

Lemma 5.3.8 If a ¢ DC(d), then for some constant § > 0 there ezists a sequence
{N;} so that DNj({?n},]:fil) < Nj_‘s uniformly in (y1, ..., ya) € T%

Remark 5.3.2 The proof of Lemma 5.3.6 will be given in section 5, the proofs of

Lemma 5.3.7 and 5.3.8 will be given in section 6.
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Proof of Theorem 5.1.3, 5.1.5

Follows from Lemma 5.3.6 and Theorems 5.1.1, 5.1.2.

Proof of Theorem 5.1.4, 5.1.6

Follows from Lemma 5.3.7, 5.3.8 and Theorems 5.1.1, 5.1.2.

5.4 Proofs of Lemmas 5.3.1 and 5.3.2

5.4.1 Upper and lower bounds of transfer matrices

The following lemma about uniform upper bound of transfer matrix is essentially

from [45]. We have adapted it into the following form for convenience.

Lemma 5.4.1 (/45], Theorem 3.1) Let v be a function whose discontinuity set has

measure 0 and f be a uniquely ergodic map on M. Then

5.4.1.1 Let L(E) be positive on a Borel set U and p be a measure with p(U) > 0.
Then for any ¢ > 0 there exists a number D¢ > 0, and for any € > 0 there exists a

set Be . with 0 < pu(Bee) < ¢, and an integer N¢ . so that for any E € U\ Bep:
1. L(E) > D,

2. forn > Nee, |z — E| < e and 0 € M, we have = In||A,(0,2)|| < L(E) + €.

5.4.1.2 Furthermore, if L(E) is continuous in E and U is a compact set, there

exists D > 0 and for any € > 0 there exists an integer N, so that for any E € U:
1. L(E)> D

2. forn> N, |z — E| <e™*" and 0 € M, we have + In||A,(0,2)|| < L(E) + e.

We are also able to formulate the following lower bound for the norm of transfer

matrices.

81



Lemma 5.4.2 Let v be a piecewise Holder function with 1 > v > 0 and [ be a

uniquely ergodic volume preserving map on M with V(f) =V (f~') =0. Then

5.4.2.1 Let L(FE) be positive on a Borel set U and p be a measure with pu(U) > 0.
Then for any C,e > 0, let D¢, B¢ and N¢ e be defined as in 5.4.1.1.

1. If there exists a sequence r, — 0 so that any geodesic ball in M with radius
7 covers the whole M in 1™ steps, then there exists a sequence {ny(e)} such

that for k > k¢, any E € U\ Bey, |2 — E| < e *™ and § € M we have

. j ng(L(E)—3e€)
e Y R -

2. If for any small r > 0, any geodesic ball with radius r covers the whole M in
r~M steps, then forn > N[, any E € U\ B, |z — E| < e™*" and § € M we
have

min max || A, (f76, 2)|| > enEE)=3),

_ 5M
e{-1,1} 1J=0,....e 7 £n

5.4.2.2 Furthermore, if L(FE) is continuous in E and U is a compact set, let D be
defined as in 5.4.1.2 and for any € > 0 let N, be defined as in 5.4.1.2. Then for any
E € U we have L(E) > D and for any |z — E| < e™*" we have

1. if there exists a sequence r, — 0 so that any geodesic ball in M with radius

7y, covers the whole M in ;™ steps, then there exists a sequence {ny(e)} such

that for k > k. and any 0 € M,
min max | A, (f76,2)|| > ems(EE)=39)
5Me,,
2. if for any small v > 0, any geodesic ball with radius r covers the whole M in
r~M steps, then for n > N! and any 6 € M,

min max || A, (f76, 2)|| > enEE)=30),

_ 5M
{11} Lj:O,...,eTEn
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Proof of Lemma 5.4.2

We will focus on the proof of part (1) of 5.4.2.1. The other three proofs will be
discussed briefly at the end of this section.

For any E € U \ B¢ and n > N¢., by Lemma 5.4.1.1 we have 1||A,(0, E)| <
L(E) +e. Since [, +1In||A,(6, E)|| dVoly(0) > L(E), we have

1 1
(514) VOlg(Mn,E,L(E),e) = Volg({é’ eM: Eln ||An(9,E)|| > L(E) — E}) > 5

Now we take any 6 € M, g g and |z — E| < e”*". When n > 2N, + 3 by the

standard telescoping we have,

14 (0, 2)[| = [ An (8, E)]| = [[An(8, 2) — An(6, E)|

> 6n(L(E)—e) . (TL + Q(Ng,e + 1)||A||évo¢,e)6n(L(E)—3s)

S L(B)=2¢)

for large enough n > N/ . This means
(5.15) M, g.rB),e C M, . 1(E) 2

We know the discontinuity set of 2 In|[|A4,(6,2)| is J, = U} f7(J,), where J, =
UZ 08} is defined in section 5.2.2. By our assumption (5.6) and the fact the Vg, (f~') =
0 (by the definition (5.2) of V/(f~')). For n large enough, we have

(5.16) Volg a—1(J) < e™Voly a-1(Jy),
note that the largeness depends only on f. Define
Mn,z,L(E),25 = M, . L(E) 2 \ Foesensy (Jn),
where a neighborhood is defined as
F.(A) ={0 € M :dist(9, A) <r}.
Then by (5.16),

VOlg(Mn,z,L(E),2e) Z VOlg(Mn,z,L(E),Qe) - 46756n/’y\/01g,d71(t]n)

> Voly(My-.1(5)2¢) — 4e ™5 ~Wol, 1 (J,) >

ot DN
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In particular, it is a non-empty set. Now we take any 0 e Mnjva(E),ge and 0 €
B.scs-(f). We have, by telescoping, (5.7) and the fact that Vi(f) = 0 (by the
definition (5.2) of V(f)),

14 (6, 2)]]
>[40, 2)]| — HA (0,2) = Au(6,2)|

>en(L(E) Z lenllzn) (n+ 2N+ DIA)emHED max (dist(6, 10))"

=1

>en(HE729 <Z orll ) (dist(8, B)) (n + 2( N + 1)[| Af|36)enE B+t

for n > N7 . This means
Fe—5€n/'y (Mn,z,L(E),Qe) C Mn,z,L(E),ZBe

Hence for £ € U\ B¢, n > NéﬁE and |z — E| < e %", M,, . (g3 contains a geodesic
ball with radius e =". Then there exists a sequence {ny(€)} such that a geodesic

Ienk

5e . 5M
"k~ . covers the whole M in at most e ~

ball with radius e~ steps. Thus for

E € U\ Bee, k> ke so that ng(e) > N, any |z — E| < ¢”*" and any 6 € T¢ we

have

min max  ||An, (f76, 2)|| > e LE)=39)
SMe,,

Ve

Remark 5.4.1 Notice that Part (2) of Lemma 5.4.2.1 follows without taking a sub-

sequence {ny(e)}, 5.4.2.2 follows without excluding the set B .

5.4.2 Dynamical bounds on &

The key to estimate & is to apply the following lemma by Killip, Kiselev and Last.
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For f : Z — H where H is a Banach space, the truncated [? norm in the positive

and negative directions are defined by

L)
IF1IZ = Z [f()* + (L = [LDIS(LL] + D for L >0

LL J+1

1£117 = Z F()2+ (LL] + 1 — L)|f(|L))J? for L <0

The truncated [? norm in both directions is defined by

1%, 2
[L2]

= > P+ (L= (L) (= L] = DP + (Lo = [La])I f([Le] + 1) for Ly, Ly > 1.

=—|L1]

With A,(6, z) being a function on Z, define Lt (0, z) € Rt and L7 (0, 2) € R~ by

requiring

146(0, 2|22 (5.2 = 21 A6, 2)ll€™

Lemma 5.4.3 (/55], Theorem 1.5) Let Hy be a Schridinger operator and pg be the
spectral measure of H and 6g. Let T > 0 and Ly, Ly > 2, then

(5.17)
Lo —i + 7— 7
G 08|13, 1, + e 6113, 1, ))r > CESHEAE | L] < Ly L < La))

where C is an universal constant.

This lemma directly implies Py (L) + Pror(L) > C%({E C A (0, 2) ||l >
2||A(, 2)||T'}). The plan is to show that for any n > 1, any 6, satistying (g, +
#6,)(U) > 0, we have (g, + piro0)(LE : [ Ae(b0, 2)|[ 2 > T7}) Z (g + p500) (V).

Proof of Lemma 5.3.1

We will prove part (1) in detail. Part (2) will be discussed briefly at the end of this

proof.

85



Fix n > 1. Fix 6, such that (g, + f16,)(U) > 0. Let ¢ = £ (ug, + f150,)(U), so a

constant. Let D = D, from Lemma 5.4.1. Let ¢ = min (%, £). Then by Lemmas
5.4.1, there exists a set B, 0 < |B| < 3(ug, + fiva,)(U), and a sequence {ny}, s.t.

L(E)>DonU\ B and for E€ U\ B, k> kg, |z — E| < e and any § € M,

: A ig > "k(L(E)=3¢)
Leﬂn—lill}bjzorjla?%" My (776, ]| > e

Using that As:(0, 2) = Ai(f*(0), 2)As(0, z), this implies, by the condition on e,

ny (L(E)—3e€) €
1A, 2, e, > T > M

nEn

10Me

If we take T, = e » ™, then U\ B C {E : ||Ad(0,E)| 1, > T;'} for any 0, in
particular 6. Then by (5.17),

+ = g, +
Pooirg (T0) + Pragp (Te) 2 O ER (B < || A0, Bl s, > T})) 2 CFAHIR (),
This implies { = 0 for all & € M such that (ug + 150)(U) > 0.

Remark 5.4.2 Using Lemmas 5.4.1.1 (2), 5.4.2.1 (2) instead of 5.4.1.1 (1), 5.4.2.1
(1), Part (2) can be proved without taking a subsequence ny, therefore the conclusion

holds for all T large enough rather than a sequence Tj,. 0

5.4.3 Bounds on j

The key to the bounds on f is to apply the following lemma by Damanik and Tcherem-

chansev.

Lemma 5.4.4 (Theorem 1 of [25] plus Corollary 1 of [26]) Let H be the Schrodinger
operator, with f real valued and bounded, and K > 4 such thato(H) C [-K+1, K—1].
Suppose for all p € (0,1) we have

(5.18) /_K < min  max [|A,(E + %)n?) T aE— o),

K \t€{-1,1} 1<n<TP

for any n > 1. Then T (p) = 0 for all p > 0. If (5.18) is satisfied for a sequence
Ty — oo, then f~(p) =0 for all p > 0.
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Proof of Lemma 5.3.2

We will prove part (1) in detail. A modification needed for part (2) is discussed briefly
at the end of this proof.

It suffices to consider small p € (0,1). Fix any p € (0,1) small and n > 1. Aussme
o(H) C [-K+1,K —1]. Since L(F) is continous in £ on a compact set [— K, K], we
have L(E) > D > 0 on [-K, K|. Fix e, = min(é%]\%, 2). By Lemma 5.4.2.2 there

exists a sequence {n, x} such that for any £ € [-K, K], k > k,, any |z— E| < e~k
and any 6 € M,

i j Py ke (L(E)—3en)
A (0, > ),
1j=0,....e ¥ n,k
Thus
min max  [|A;(6, 2)||? > e (BEIBe) > o5

LE 71’1 101%69
{ }j:0 ..... e 7 'mk

holds for any § € M, any £ € [-K,K| and |z — E| < e "™+ Now we take
ka = 6%”"”67
1 1
E+ — —E|=— <e ik,
| Tk | Tk

Thus

1
i Aj0,E+—)|>>T
Ler{rilln,l}tjzr(??);ﬁ,k 14,6, £+ Tn,k)” -k

holds for any F € [—K, K]. Therefore

—1
K , i _
/ ( min ~ max |[A,(0, F + T—)||2 dE <2KT, .

_r \te{-1,1} 1§Ln§TT’;k nk

Now take a sequence {k;} such that T}, < Ty, < ... Let T,;, = Ty, 1,,. Then

_r \ee{-1,1} 1<un<Ts, m

K . -1
/ ( min  max ||A,(0, F + TL)H2> dE <2KT, ™.

By (5.18), we have 3, (p) < p for all @ € M, any p € (0,1) and any p > 0, thus
By (p) = 0 for all § € M and any p > 0.

Remark 5.4.3 Using Lemmas 5.4.1.2 (2) and 5.4.2.2 (2), part (2) follows without
taking a subsequence {n, }. Therefore the conclusion holds for all T large rather than

a sequence Tj. O
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5.5 Irrational rotation with diophantine frequen-
cies. Proof of Lemma 5.3.6

Lemma 5.3.6 is a standard result (see e.g. Chapter 2.3 in [58]). We include the proof

here for completeness.

Proof of Lemma 5.3.6

For sufficiently small € > 0, fix an integer Hy ~ N @r=1D+1+d9) " define g(n) = ﬁ
for 1 < n < Hy and g(Hy) = Hio For (ny,...,ng) € Z* with 1 < n; < Hy, define
flny,...,nq) = [I°, g(n;). By Lemma 5.2.2, we have
N
1 1 1 g
DN(Q) < Cd(_ + __‘|_Z 27rz(h,oz>n|)
0 o<inl<mH r(h) V13
~ 1 1 1 1
< d(ﬁ ~ Z = )
0 N () )
1 1 &
- d(F N Z f(nh 7nd) Z )
0 ni,...,ng=1 7 5 . ||< ) >||T
(hl 7777 hd)7£01|h‘]|§n]
Hy 3r(it) _
-1 1 r(n)"
< 4=
> d(HO + N Z f(nlu 7nd) ] )
ni,...,nqg=1 7j=1
L1 1 &
S d(FO N Z X f(nla 7nd)r(n)7— logr(n))
N1y Ng=
B 1 Hod(‘rfl+e)
<Cy(—+—+———
< d(HO + N )
< N—l/(d(T—1)+1+de)‘
]
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5.6 Skew-shift. Proof of Lemmas 5.3.7 and 5.3.8

Skew-shift

Let f: T¢ — T? be defined as follows

f(ylvyZa -'-7?/d) = (yl + Q, Ya + Y1, -, Yd + yd—l)‘

Let Y, = f™(y1, s ya), then

(5.19) Y, = (y; + G)a s + (?)yl + (Z)a s Ya (Tf)ydl ot (Z)a),

where (;ﬁb) =0ifn<m.

5.6.1 Preparation. Combinatorial identities

Lemma 5.6.1 Let r, € N for 1 <t <'s, then we have

1,=0,1 S
(5.20) Z (_1)S—Zf_llt( =1 t> _ 0’
1<t<s s—1
1;=0,1 s s
oyt (2o b
(5.21) > (1) 1( : >—H”
1<t<s paiey

Proof: Let us consider the coefficient C, of 2 in the product (1 +z)™ - (1+2z)"-
oo (T4 2) = (1 + x)2=1"". Let us denote

(5.22)

S Tt

A(a) = {(5’175’27 "')jS)?Where .;t = (jt,hjt,?a "'7jt,7‘t)7 jt,k € {07 1}| szt,k = a}

t=1 k=1
Each element in A corresponds to one way of choosing 1 or z in each term of the
product (14+x)™ - (1+z)™2----- (14 2)" in order to get x*, where j;, = 0 means we
choose 1 out of the k-th 1+ z from (1 +2)™, and j;, = 1 means we choose x instead
of 1. Thus the capacity of A®, denoted by |A®|, is equal to C, = (thl ™). Let us

futher denote
(5.23) Al = A@ A (7, =0}
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For a = s — 1, since it is impossible to obtain z*~! with j; #* 0 for any 1 < ¢ < s, we

have

(5.24) AG=DN (U ATy = g,

For a = s,

(5.25) AGN (U, A) = D,

where

(5.26) D = {(J1,J2> - J1)] ig‘t,k =1for 1 <t<s}.
k=1

Clearly,

(5.27) U AP=3" -0 ST i A,

i=1 1<ty <ta<-<t;<s
in which
1,=0,1 B
i (@), _ Zt:l liry
(5.28) S, A - ().
1<ti1<to<---<t;<s Z§:1 lt=s—1
Thus

A A = (B e ey S (B,

i=1 >i— ly=s—i

(5.29) _ lti’l(_l)s_zg_l I (2;1 lt'rt> |

a
1<t<s

For a = s — 1, (5.20) follows directly from (5.24 and (5.29). While for a = s, (5.21)
follows from (5.25), (5.29) and the fact that |D| = [];_, 7. O

5.6.2 Diophantine a. Proof of Lemma 5.3.7

For a € DC(1), we take integers

(5.30) Hy ~ NT—0059 for 0< j <d— 1.
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By Lemma 5.2.2,

N
- - 1 1 1 R
D(Yy,...Yy) < Cd(ﬁo + E @ ~ E :62 (h, n>|>
n=1

1 1 1Y
— Oy — 15,0
(5.31) Cal g+ > =l 2wl

0<|h|<Ho ( ) n=1

where
d d—j "
(5.32) uld) = exp{2mi » “(hja+ ) hjy,) (;) 1.
7=1 r=1
For1 <s<d-—2,let
(5.33)
d d—j 1;=0,1 s
s . s—S78 n + _ Ik
u,(ﬂ)kn = exp {27rz Z (hjo + Z hitrYr) Z (1) Ztllt( Z§_1 t t)}
j=s+1 r=1 1<t<s J
Then by Lemma 5.2.3,
(5.34)
1 N*Zle k¢
| — U’(S)... Sn2
N — Zt:l ks ; b
1 1 HS+1 N*Zfi% k¢
< 4 . H,. 1 — ks u®) u'® '
~Heor o (N=Y0  k)HZ, k;ﬂ( +1 +1)| ; Kt yeonsksn Wk, ks mobhs s 1
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Here

N— Zs+1kt
n=1
Ntk 1;=0,1 s
s Lk
=| Z exp 2mi Z (h; a—i—ZhﬁryT Z 1)82t=1lt((n+2751 ' t)—
n=1 Jj=s+1 1<t<s J
n -+ k5+1 + Zle ltl{?t
j )|
N— Zs-‘rl ke d d—j 14=0,1 n+ Zs+1l L
s+1
1Y oo 3 O o) 3 (it )
n=1 Jj=s+1 r=1 1<t<s+1 J
N-S5t d d—j 1:=0,1 s+1
s [ lik
:| Z exp {Qﬂ'i Z (thé + Z hj—i—ryr) Z (_1)3—1—2—2;‘3 ly ( on + Zt:l t t) }|
n=1 Jj=s+1 r=1 0<t<s+1 J
(5.35)
N-itlky d d—j 1;=0,1 s+1
i s+l lon -+ Zt—l ltkt
S e 3 e St 3 (e (o DR
n=1 j=s+2 r=1 0<t<s+1 J
N-5tl g, 1:=0,1 s+1
’ : 1 Uk
3 oot 3 e Yo S (e (M T,
n=1 j=s5+2 1<t<s+1 J
(5.36)
N— Es+1kt
(s+1)
:| Z uk'l ..... k:g+17n|‘
n=1

Notice that in (5.35), we applied (5.21),

d—s—1 1=0,1 s+1
s l Ik
exp {(hs—i-la + E hs+1+ryr) 2 : (_1)5—%2—2;3 It ( on + Zt:l t t)} -1
r=1

s+1
0<t<s+1 +

Combining (5.34) with (5.36), we get for any 0 < s < d — 3,

(5.37)
1 N=3i_ ke
AT NS 1. (s) 2
|N — 21 ks nz:l Wk ko
1 1 Hspq s+1 N-tl, .
s+
< +1 (N S k) HZ Z (Hop1 — kst1) Zkt s+1 Tt Z Y ksﬂ,n‘-
S S k 1= 1 n:1
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By (5.34), for s = d — 2,

(5.38)
) N-1"2k
(d—2) 2
_ U
’N o Z;i:_lQ kl ; k1,...,k‘d_2,n|
1 1 Hy 4 N-Yil g
S + (Ha1 — ka1) ul(cdi..?)k nul(cdi..z.)k ntk
Hd—l (N Zld 12kl) 2. k;l ; 1yeskd—2, 1,-kg—2,ntkg_1
1 1 Hyoy N-2"'k
5 + _ | ul(cd_2)k nul(cd_2)k n—+k )
and
N-Yil g
(d—2) (d—2)
‘ Z ukl,...,kdfg,nukl,...,kd,Q,TL—l—kd,l |
n=1
N-Y{" ke 5i=0,1 Yk
= Y eof2riha Y (—1) TR (n o l)}|
n=1 1<i<d—1
N- 1"k j1=0,1 a1 .
= 3 exp{2mihga Y (~1)FEioa <ZO”+ %jﬂ ﬂk’>}|
n=1 0<i<d—1
N-Yi k d—1
(5.39) =l Y exp{2mihana ]k}
n=1 =1
1
(5.40) <

haa T Kall
where in (5.39) we used (5.21).

Since v € DC(7), by the property of Diophantine condition (1.4) and since |h;| <

Hy, 1 < k; < H; we have

Hg_y Hq1 mr H -2
(5.41) —— < me oy HY <m H || H.

kﬁ;l [hacy Hz L kil jzl 11
Thus combining (5.38), (5.40) with (5.41), we have

N-0"2k mTHTFETT 2 g

| 1 zl: lu(d—2) 2 < 1 4 Hit 112H < 1
IS DS R T NI S ST Ll P
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Lemma 5.6.2 For any a € T, if for any 1 < ks < Hy 0,

N=Yi—1 ki

1 () 2o |
VoTnh el S
then for any 0 <t <s—1, 1<k, < H, we have
N-Yi_i ki
1 () oo 1
‘N . Z;f:l kl ; ki,... kt, ‘ Ht2
Proof: For t =s—1, by (5.37),
1 N-e Tl Ky
| T
N — 21211 k; ; k1,..,ks—1,
1 1 Hs N— Zl 1 k;) &
5_ ( kl Lyeees S,’I’L|
H (N Zl 1 kl) Zl Z N Zl 1kl)
<t _ 1
~H, HI,
Then by reverse induction. 0
At the final step we obtain
N
1 1
il 012 < _—_

Plugging it into (5.31), we have

" . 1 1 1 1 o 1-e
DYy, ...Yy) < — — < ~ N @-1@+e
( 1, Y N) ~ H[) + Z ~

5.6.3 Liouvillean a, Proof of Lemma 5.3.8

For a ¢ DC(d), by property (1.6), we could find a subsequence {£*} of the continued
fraction approximants of a, so that g,,1 > ¢?. In the following we will use ¢ instead of
¢» and ¢ instead of g, ; for simplicity. Here we would like to show Dq(?l, s 37;,) <q°
for some o > 0. Take

29 1(14¢)

(5.42) ijq%forOSde—Q and Hgqq~q 27
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where € > 0 is small enough so that

-1 2d_1y0d—1,
(5.43) [[E=0 =+ <«
=0
Now by Lemma 5.2.2
(5.44)
1 11 d n
D(Yy,...Y,) < Calr + e 5Zexp{27ri > (hja+ hjayr + .+ haya-;) (j)} )
0 = -
0<|h|<Ho n=1 i=1

Consider the following difference

n
—| Zexp{Qm Z (hjo+ hjpayn + ... + haya—;) (j) +—

7j=1
q d P n
(5.45) > expf2mi Z(hja + hjsts + - + hava_j) (j) }
n=1 j—l
n
exp{2mi ha——(_) -1
<3 Slewien 3wt =2} -
@yl )Hoia——|
n=1 j=1
o
~q
where in the last step we use (1.1), o — B[ < = < d+1

Then combining (5.44) with (5.45), we have
(5.46) DYy, ..., Yy) S Cal3- +

where @) = expq{2mi Zfi (i B+ h-Hyl + ...+ hdyd,j)(?)}, that is u as in (5.32)

with o replaced with 2. Thus with @ uk . defined as in (5.33) with « replaced with

-----

£, similar to (5.38) and (5.39), we have

N-Yi2
’ 1 E u(d*Q) ’2
d—2 ki, kqg—2,m
N - Zl:l kjl n=1
Hyoy N-2"'hk
1 1 !

S S Ay,
~ d—2 klv"'7kd727n kla"'vkd727n+kd71 ’
Hov (N =305 ki) Hy &

d71=1 n=1
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and

=31k
’ Z agf 2)kd_2,nal(c(f,..2.,)k:d_2,n+kd_1|
n=1
=0 Ky d—1
=] Z exp{27m'hdn£ H ki }]
n=1 q =1
1

(5.48) < : .
1ha2 TT=) Falleyz

Since [ha| < Ho, 1 < k; < H; and (5.43), for any 1 < k < Hy_y we have [[kha2 [T[2] killz/z >
é. Thus

Hy 1

1 q
(5.49) kdgl::l et 1 kalleye ™ ]z_: J <qlnHy ;.
Then combining (5.47), (5.48) with (5.49), we get
(5.50)
| 1d . . %Q ; U’](gd_z)k 2 < 1 " qln Hy o < 1 _ ‘
Q=2 ke o bt ™ Har o (g - 7:_12 H)Hyy ™ Hf Hi,

By Lemma 5.6.2,

5.7 Bounded remainder set

Most of the material covered in this section comes from [30]. We briefly discuss it here
for completeness and readers’ convenience. From now on we restrict our attention
to irrational rotation on T¢. For a measurable set U C T¢, consider the function
An(U, @) = N|U| == AU, {Z 4+ na}=}) = N|U| = SN xu(Z+na) — N|U|. We will
say U is a bounded remainder set (BRS) with respect to « if there exists a constant

C(U,«) > 0 such that |Ax(U,7) — N|U|| < C(U, ) for any N and a.e. & € T¢ We
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will call a measurable function g on T¢ a transfer function for U if its characteristic

function satisfies

—

xu(Z) = [U] = g(Z) — g(T — @) ae.
Obviously if g is a transfer function for U, then its Fourier coefficients satisty

ooy Xu(m) .
(5.51) g(m) = T pamimay: M # 0.
Proposition 5.7.1 [30] For a measurable set U C T9, the following are equivalent:

o U is a bounded remainder set.

e U has a bounded transfer function g.

Theorem 5.7.1 Any interval I C T of length 0 < |ga—p| < 1 is a BRS with respect

to «, furthermore its transfer function h satisfies ||g|loo < |q|-

Proof: ~ Without loss of generality, we consider an interval I = [0, x|, where

k =qa —p > 0. Then

xi(@) = [I| = —{z} +{z — r}

= {2} +{r —qa}
=({a}— . —{z—(¢=Dah) + {z—a} + .. + {z — qa})
- g(l‘) - g(l’ - Oé)7
where g(z) = — 315 {z — ja}, gll < lal- [

Theorem 5.7.2 Let T = (v1, vy, ...,0q) = qu—p € Za+7% v ¢ 74, and let ¥ € T ?
be a BRS with respect to the vector (2,22 ... 2=2) with transfer function h. Then the

Vg’ vg’ " Vg

set
U=U(X,7)={(z,0)+tv:2€X,0<t<1},

is a BRS with respect to o, whose transfer function g satisfies ||gllco < |q|(||1]|co +1)-
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Proof: Let ¥y = (v1,...,v4_1) be the vector in T?!, which consists of the first
d — 1 entries of 7. First, we wish to find a bounded function § on T¢ satisfying the

cohomological equation
xu(Z,y) — |U| = §(Z,y) — (& — v,y —vg) for ae. (Z,y) € T x T.
This means the Fourier coefficients satisfy the equation

(5.52)

5(771»7 n)(l 672m( (M, To) +nvd / / _2ﬂi(ﬁ’f+%ﬁo>df e,gﬂ.mydy? (Tﬁ, n) 7£ (6, 0)
E+

Which implies

- . XE(m) T n 0
(n) = ey (o 00

We know ¥ is a BRS with respect to t/va, by (5.51) its transfer function h : T~ —

Qv

(5.53)

R satisfies

h(im) = Xs() M % 0.

1 — e—2mi{m,vo)/vq’

It is straightforward to check that the bounded function g defined by

9(7,y) = (ﬂf——{y}) %[ {y},

satisfies the coholomogical equation (5.53). Hence g is a bounded transfer function
for U with respect to v.

Indeed, |§]lco < ||h]|oc + 1. Since ¥ = qa — p, letting g(Z) = §(Z) + §(Z —a) + ... +
§(Z — (¢ — 1)a) we have that U is a BRS with respect to o with bounded transfer
function g satisfying [|gllec < |g/l|glloc < lg|(|Aflc + 1). O

The following corollary will be used several times in section 8.

Corollary 5.7.1 Let U C T? be the parallelogram spanned by two vectors m(oy, cip) —
(I1,13) and (q% —p, 0), then U is a BRS with respect to (o, as) with transfer
function g satisfying ||g]lec < |m|(|¢| + 1) < 2|mq|.

Proof: In this case v = (v, v3) = m(a1, ag) — (I1, ls) € Za+7Z% % = [0, —p| X
{0}. We know the transfer function h of ¥ with respect to vy /vy satisfies ||hl < |q].
Thus |[glle < [m|([g] +1) < 2[mg]. [
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5.8 2-dimensional irrational rotation with weak dio-
phantine frequencies

In this section we deal with 2-dimensional weakly Diophantine frequencies. Our goal

is to prove Lemma 5.3.5.

Proof of Lemma 5.3.5

Assume (aq,a2) € WDC(co,7/4), for some 7 > 4 and ¢y > 0. We divide the
discussion into two parts.

First, we introduce the coprime Diophantine condition:

(5.54)

PDC(1) =UwoPDC(c, 1) = Uc>0{(a1,a2)|\|<ﬁ,a>||qr > ﬁ for any ged(hy, hy) =1

or hihs = 0 but h =+ 6}

Obviously if « € PDC(¢, ) both  and ay belong to DC(c, 7).

Case A

(a1, a2) € PDC(cy, ) for some ¢; > 0.

Let’s take the best simultancous approximation {(%2 22)} of (a;, ). They

My’ Mp

feature the following property.

Lemma 5.8.1 (/59/, Theorem 3.5) If {1, a1, s} is linearly independent over Q, then

there are infinitely many ny such that

mnk ll,nk l2,n;C
My, +1 ll,nkJrl l2,nk+1 7é 0
Mp,+2 ll,nk+2 l2,nk+2

Now we take r, > 0 such that

4
(5.55) M, < ;r,f < My 41
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By (1.7), the choice of r; guarantees that for n > ny,
(5.56) (mnal - ll,m mpQy — lZ,n) S BTk (07 0)7

where B (x1,22) == {y = (y1,92) € T?: ly1 — 21| + lly2 — w27 <7} Let {22232,

mpa1—I1n

. For each n choose s,, such that
mna27l2,n

be the continued fraction approximants of

(5.57) sy < T < nyst1-

By (1.1), the choice of s,, guarantees that

mpQy — ll,n

(5.58) (Gn.s,, — Dns,,0) € B, (0,0).

mpQg — l2,n

By (1.7) and (1.9) we have

¢
0 < max{|mpoq — linl, mnoe = lop|} <

2
my/* VMgt

by (5.55) we have m,, < 2r.?, thus

(5.59)

72

(560) max (mnky Mpp+1, mnk+2) < 000777;7 :

Case A.1

If for some n € {ny, ny + 1,ny + 2}, we have g, 5,+1 < r,;274.

Let U be the parallelogram spanned by the two vectors my, (a1, @) — (l1n,lo)
and (gn,s, 225258 — p, . 0). By (5.56) and (5.58), U C By, (0,0). Corollary 5.7.1
implies that |Z;‘gl xv(z + jay,y + jaz) — M|U|| < 4)muqy.s,| for a.e. (z,y). Thus
as long as M > %, we should have Ujj‘/iglU — (jau, jag) covers the whole T? up

to a measure zero set. Then

4‘ann,sn’
U]

Now we want to estimate |U|. Since aa € DC(cq,7), by (1.4) we have

(5.61) T2 C Uj]\inggrk(—jal, —jag) for M >

C1 1

|mn|T 2(]n,sn+1 .

mpQq — ll,n

|U| - |mna2 - l2,n| . |Qn,sn - pn,sn| Z

nQlg — l2,n

Thus by (5.57) and (5.60),

4 | mpy | Adn,s,

B

8 4
1+ =37
< C_‘mn‘ An,spQn,sp+1 < Ccorclﬂ'rk ’
1

37

This means it takes Bs,, (0,0) at most Cy, a4y 77 ! steps to cover the whole T?2.
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Case A.2

We will show now it is impossible to have g, 5, +1 > 7",;274 foralln € {ng, ng+1,np+2}.

In this case by (1.1), (1.7) and (5.55), we have:

mpoq — 1
|Qn,snmna1 - pn,snmnOQ + Mnl :|mn052 - l2,n| : |Qn,snu - pn,sn|

nQ2 — lQ,n

2
(5.62) < < 2
VT [Mn11]Gn,s,

where M, = pps,lon — Gns,lin-

)

We have the following estimates on the upper bounds of p,, 5, and M,,. Combining

(1.4), (5.55), (5.57), (5.59) with (5.60),

3
mpQy — ll,n 1 2qn,5n |mn|7— 274 TT

| + < Ceper T

< +re <
An,sn+1 Cl\/7_T\/ |mn+1| F

By (5.62), (5.55), (5.60), (5.57) and (5.63),

(5.63) |Pnsn| < Gnosl
mpae — la

(564) |Mn| < |Qn,snmna1 - pn,snmna2’ + TI?A S CCO,cl,Tr];TB-

Case A.2.1

If pos, = 0 for some n € {ng,ny + 1,n, + 2}, then by (1.1), (1.7) and (5.54),
(1.4),(5.55), (5.60)

3
974 Mpay — lip VT [Mpg | ®
T > 2 |Qn,sn l | Z T Z CCchlvTTk‘ )
An,sn+1 mpQao — lon Zmn
contradiction.
Case A.2.2

If M,, = 0 for some n € {ng,ny + 1,04 + 2}, then by (5.62), (5.55), (5.63) and the
fact that (a1, as) € PDC(¢q,7),

c1|ma| !

274 =
7 2 Coper rTi s
max (pn,sna Qn,sn)

Ty > |mn||Qn,sn051 - pn,sna2| Z

contradiction.
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Case A.2.3

If pps, # 0 and M, # 0 for any n € {ng,ng + 1,n; + 2}, then for any i,j €
{ng, ni. + 1,ny + 2}, we have:

(5.65) (3,6, M — qj,s,m5 M) o — (ps s, miMy — pj.smi M)l
<|(gi,s;mics — pis;micg + M;)M;| + |(Qj,sjmj041 — Pj,s; M0 + M) M;)|

T4
<(IM;] + [ M)k

Case A.2.3.1

If (qis;miM; — qj,miM;, pigmiM; — pjmiM;) # (0,0) for some 4,5 € {ng,ny, +
1, e + 2}

Let h = ged(qs,s,mi Mj—qj,5,m;M;, pis,;miM;—pjs,m;M;) be the greatest common
divisor of the two numbers if they are both nonzero, let h = 1 otherwise. Then by
(5.65),

Qi,simiMj - Qj,sjijz' pi,simiMj - Pj,sjiji ‘M7,| + \M]] o4
I @ I I

However on one hand by (5.64),

3

M;| + |M; N
WL ML ot < (0t [0 3 < G

h
On the other hand by the fact that (ay,as) € PDC(cq,7) and (5.55), (5.60), (5.63),
(5.64),
Qi,simiMj - Qj,s]-iji pi,simiMj - Pj,sjiji
| a1 — Q|
h h
ClhT

>
(g5, mi My — gy, M, i My — pjg i M)|T

7.4
4
>Ceo 1Ty

contradiction.
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Case A.2.3.2

If for any 4,5 € {ng,np + 1,0 + 2}

qi,simi]\/[j = Qj,Sjiji

pmimiMj = pj,s]-iji-

Then for n = ng,

pn,sn o pn+1,sn+1 o pn+2,sn+2

qnysn qn+173n+1 qn+275n+2

Hence we can let P = Pnsp, = Pn+lspnir — Pnd2,s,40 and q = Gns, = Gntlspir —

Qnt2,5,.0- LThen we would have (after plugging in M,, = qly, — pls,)

(5-66) Q(mnl1,n+1 - mn+1l1,n) = p(ngZ,n—i-l - mn+1l2,n)
(5'67) Q(mnl1,n+2 - mn+2l1,n) = P(mnlzn+2 - mn+2l2,n)
(5-68) Q(mn+1l1,n+2 - mn+2ll,n+1) = p(mn+1l2,n+2 - mn+2l2,n+1)

Then consider (5.66) - (=11 42) + (5.67) - Iy ny1 + (5.68) - (—l1.), we get

My, ll,mc lQ,nk
P Mpyq1 b1 lopt1 | =4 0=0,

My, +2 ll,nk+2 l2,nk+2

contradiction with the choice of ny.

Case B

(o, 0) ¢ PDC(7). By the definition of PDC(7), the sequence Ry, = (h1n, hay) for
which (5.54) fails has to satisfy either ged (hy,, hoyn) = 1 (Case B.1) or hy zho, =0
(Case B.2).
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Case B.1

We can find a sequence {n;}, such that |Enj\ = max (|hy |, [hom,|) — 00 as j — oo,

ged (hin,, hop,) = 1 and ||hyn a1 + hopcoflT < —‘,;1 I
n;

Without loss of generality, we can assume |hy,,| = |Enj |. In this case we can take

T, = ﬁ For simplicity we will replace n; with n.

Now that ||hy a1+ he nOéQH’]I‘ < |T , we can find ly ,,, lo,, € Z such that |hy,(a; —

lin) 4 hon(ag —la,)| < Smce replacmg (o1, arp) with (oq + 1, g+ 1l2,,) would
not change anything, we Wlll assume |hy a1 + hopo| <TmiF . Then
(6] hl n 1
5.69 — — (== )
( ) Qq ha n)l A |0

)

We consider the following two lines on T?:

hln

h(t) = (18}, {00) and b(0) = ({t}, {=320))

These two lines are close to each other in the sense that for |t| < k1274, by (5.69),

hin It 1

< .
|hip|Tar = [han| ey

hin
t}lhr |—t+

Tt <
h2,n |_

||{ t} =1

The graph of l5(t) is the hypotenuse of a right triangle with two legs of lengths

|h1.,| and |ha,| (mod Z?). We consider the orbit of (as, —hl—’:al) under the rotation

o,
(o, —Zl—’"al). These points lie on lo(t). Under this rotation the point moves a distance
/h h2
ﬁal at each step by a big interval with length /A3, + h3,,. Let {E=} =1 be

the continued fraction approximants of 0‘21 Choose m such that
(570) dm—1 S |h1,n’ + h2n < m-

Then it would take a point on T at most g, + ¢mn_1 steps (under the h‘;—l -rotation)

to enter each interval of length m on T (e.g. [46]), which means it would
1,n 1,n 2n

NGRS

take a point on l3(¢) at most ¢, + gm-1 — 1 steps (under the -rotation) to

|h2,n|
enter each interval of length | = 1, on the graph of l5(t). Moreover, it is easy to
see that the distance from any x € T? to l»(¢) is bounded by hz—+h2 < rp. Thus
2,n
(5.71) T2 C Ui By, (kay, — h2 “kay).
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By (1.1) and (5.69),

a1 a1 Q2 1 Gm—1
| = |pm—1 —Qm-17—*F qm_l(— + —)| < — +

Q9
hQ,n hQ,n hl,n qm |h1,n|‘r71

m— + m—
|P 1T4q 1h1,n

This implies, by (1.1) and (5.70),

hom
lgm—10a]lT < |gm—1001 = hoppm—1| < | q27 |’
lgmraglly < el 2
" T qm |t
Then by the fact that o € WDC(co, §) and (5.70),
’h2n’ ‘hl n‘ 2 Co Co
max — — > maX (||¢gm_191||T, ||Gm-10 > > — .
{ qm qm |h17n|7-_4}— (Hq 1 1||T ||q 1 2||’I[‘) q;—n/ill 2Z|h17n|7—/2

This implies

95+2
(572) dm + dm—1 < 2Qm S ‘hl,n|‘r/2+1-

Co

. _sr
Since 0 < k < 27‘;;2 |12 < 1 * ) by (5.69) the points (kay, kag) and (kay, —Z;—’Zkal)

differ at most by rd we obtain using (5.71) and (5.72),

9 7"737—/4
T gUkn:O Bgrn(l{?al,k&g).

Case B.2

We can find a sequence {n;} such that hy,, =0 and |hy,,| — oo such that

1

(5.73) 1m0l < ——.
|h1,nj|

For simplicity we will replace n; with n. We can find M,, such that |hy a1 — M, | <

ﬁ. Let d,, = ged(hy ,, M,,) be the greatest common divisor. Let Bl,n = }3—’" and

M, = %. We have
mn

(574) |Oél — = | < |h1n|7—+1 — 0.

1n

If l~117n is bounded in n, then «; can be approximated arbitrarily closely by rationals

with bounded donominators, which is impossible. Thus |i~zl7n| — 00. Now take radius
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Ty = ﬁ For each 0 < i < leyn — 1 consider {(iay + kﬁl,nal, iog + kﬁlﬁnag)}z"zo.

Let {&2}77_; be the continued fraction approximants of hy nas. Choose m such that
(5.75) G < [hin] =770 < gm.

Then it takes any point on T at most ¢, +¢,—1 — 1 steps (under the ﬁl,naz—rotation)

to enter each interval of length r, [46]. By (1.1),

. 1
(576) |pm—1 - Qm—lhl,na2| S -
By (5.73), (5.75) and since 7 > 4, we }iave | Gm—1h1n| < \%ﬁ;llf < (melllglol,n|)7/4. By
the fact that « € WDC(co, 1), ||gm-1h1n02| > W. By (5.76) and (5.75),
we have

L oz
(5.77) Gm < —|h1n|?.

Co

Now for 0 < k < o+ Gm-1 — 1, by (5.74), (5.73) and (5.77), |liay + khy noy — ’BM” T <

1,n

C
= T
|h1,n|2

for some 0 <3 < }NLLn — 1. Thus

= Crg. Since ged (711,”, Mn) = 1, any interval of length r, = Iﬁll | contains Zhl%

T2 g Ulg‘12"6+qm71)|hl’nlBrn(kf()é1, l{ag).
By (5.77), (¢m + qm_1)|iL1,n] < 7.7, so we have

5.78 T2 C U™ B, (ko kas).
k=0
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Chapter 6

Continuity of measure of the
spectrum for Schrodinger
operators with potentials driven by

shifts and skew-shifts on tori

6.1 Introduction

Consider Schrodinger operators acting on [%(Z):
(6.1) H, ;(@)u(n) =u(n+1)+u(n—1)+o(f"0)u(n).

where v is the potential, § € T? is the phase and f is shift or skew-shift with fre-
quency « on the torus T¢. We study continuity of the spectra in frequency a. In
particular, since the spectrum at rational frequencies can be obtained numerically
and are easier to study, continuity in frequency allows us to study the spectrum at
irrational frequencies via rational approximation. While many recent significant ad-
vances in discrete Schrodinger operators, see e.g. [15, 40, 2], require one dimensional
torus shift and analytic potentials, our results reveal that continuity of the spectrum
is a much more general phenomenon: it holds for both shift and skew-shift on higher

dimensional torus and also Holder continuous potentials. Our results can be viewed
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as a generalization of [44], where a similar result was obtained for d = 1 and f is a
rotation of the circle.

Let fso : 0 — 0+« be the shift and fos o 1 (01, 02,...,04) = (61 +a,02+601,...,04+
fa-1) be the skew-shift. For a fixed v, fi o, let us denote the spectrum of H,y, . ¢ by
S(a,0). Let S(a) = UgeraS(av, 0). It is known that if « is irrational, S(a) = S(a, 0)
for any 6 € T?, while if « is rational, S(a, ) depends on 6 and S (%) is a union of
at most ¢, bands. We would like to establish that lim, ., S (%) = S(a) in the sense
that lim,,_o XS(%)(E) = XS(a) (&) for a.e. £ €R.

This question first arose from the Aubry-Andre conjecture [1] on the measure of
the spectrum of the almost Mathieu operator (d = 1, f = fs, and v(0) = 2\ cos 270)
to be 4|1 — |A||. This conjecture has been proved for all irrational «, with partial
results obtained in [10, 60, 61, 21, 47] and the extension to all irrational « was made
in [41, 9] ! (see e.g. [44] for a complete history). The proof of the Aubry-Andre
conjecture contains two important ingredients: one is to obtain estimates about the
rational frequencies [10, 61]: |S(22)] — 41 — |A[[; the other is to prove continuity
of measure of the spectrum in frequency at irrationals. While the first ingredient
clearly specializes to the almost Mathieu operator, the second ingredient, related to
quantitative estimates on the Hausdorff continuity of the spectrum, have been studied
for much more general potentials.

When d = 1 and f = f,,, it was proved [41] that for any analytic f in the
regime of positive Lyapunov exponent, [S(2*)[ — [S(«)| for every Diophantine o and
its continued fraction approximants. Later, it was shown [37] that positivity of the
Lyapunov exponent is not need for this result, in particular, S(2) — S(a) for any
analytic v and all irrational «. More recently, it has been proved [44] that under the
condition of positive Lyapunov exponent, the regularity of v can be relaxed to Holder
continuity.

One of the key ingredients of the proof of [44] is strongly (weakly) M-dense prop-
erty of the irrational rotation of the circle defined in the abstract form in Section 2.3.

We say a dynamical system is strongly M-dense if any point will enter a ball with

!The argument of [9], applies to the critical value A = 1, did not involve continuity in frequency
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radius r within 7= steps under the map as long as r is small, while the weak ver-
sion requires only a sequence of lengths r, — 0. The strongly M-dense property for
the irrational rotation of the circle is guaranteed by the Diophantine condition on «
and proved using continued fraction expansion. For the higher dimensional shift and
skew-shift, strongly M-dense properties have been studied using different methods in
[4, 33], and some results on weakly M-dense property were obtained in [33]. These
properties are important in our generalization of the results of [44] to both (T, f;.)
and (T?, fys.) cases.

Let L(a, E) be the Lyapunov exponent of the operator H, y, () at energy E (see
(1.12)). Let Ly(a) ={F: L(o, E) > 0} and L.y (o) = {E : L(a, E) > €}.

With the Diophantine conditions defined in section 1.2, our main results are:

Theorem 6.1.1 Let f,,, be an irrational shift on T¢. Let 1>~ > #‘ll be a constant.

Then if a ¢ WDC'(%) or a € DC(1) for some T > 1, there exists a sequence of

rationals g—z = (%2, .., ) = « such that for any v € C7(T7),

lim S(@) NLy(a) =S(a)N Li(a).

n—oo q’I’L

Remark 6.1.1 The sequence of rationals can be taken as the full sequence of best
simultaneous approzimation, of a (see section 2.2.2) when o € DC(7), and a proper

subsequence when o ¢ WDC’(%).

A direct corollary is:

Corollary 6.1.1 Let ’;—: be the chosen sequence of rationals as in Theorem 6.1.1, we

have,

lim [S(22) A L ()] = [S(e) N L (o).

n—o0 qn

Theorem 6.1.2 Let fq, be a skew-shift on T¢. For any o € R\ Q. There exists a

sequence of rationals Z—” — « such that for any v € C7(TY) with 1 > v > %,

lim S(Z2) N Ly (a) = S(a) N Li(a).

n—0o0 qn
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Remark 6.1.2 The sequence of rationals will the be full sequence of continued frac-

tion approximants if « € DC(7) for some T > 1, and a proper subsequence otherwise.

A direct corollary is:

Corollary 6.1.2 Let Z—: be the chosen sequence of rationals as in Theorem 6.1.2, we

have,

lim |S(22) N Ly ()] = [S(a) N Ly (a)].

n—o0 qn

For shifts on two dimensional torus, as for the skew-shifts, we are able to cover all

frequencies.

Theorem 6.1.3 Let f,, be an irrational shift on T?. Let 1 > v > % be a constant.
Then for any € > 0 and for any irrational o, there exists a sequence of rationals

I;_Z — a (depending on €y) such that for any v € C7(T?),

lim S(@) N Leyt () = S(a) N Legs ().

n—oo qn

Similarly, we have

Corollary 6.1.3 Let % be the chosen sequence of rationals as in Theorem 6.1.3, we

have,

lim [S(2) A L. ()] = [S(@) N L (o).

n—roo qn

We organize this paper as follows: some preliminaries are presented in section
2, then the two key lemmas proved in section 3 prepare us for the proofs of main

theorems in section 4.

6.2 Preparation

For z € R4, let ||z||ra = dist(z,Z%). For a Borel set U C R?, let |U| be its Lebesgue
measure. Let dy be the dimension of the frequency a and d; = d — dy + 1, hence we
have dy = d and d; = 1 when f, o = fsq, while dy = 1 and d; = d when f, o = fss.a-
Let D,(z) C T? be the Euclidean ball centred at z with radius 7.
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6.2.1 Covering T? with the orbit of a ball

—M

We say a point 6 in T%is (f,r, M)-dense for some r > 0, M > 1,if Uj_, D,(f70) = T
This means, the ball D, (0) with radius 7 will cover the whole T? in 7~ steps under
the map f. We say (T, f) is strongly M-dense if there exists ro > 0 such that any
point in T¢ is (f,r, M)-dense. We say (T¢, f) is weakly M-dense if there exists a
sequence 17, — 0 as k — oo such that any point in T? is (f, g, M )-dense.

The following lemmas are extracted from section 3 of [33].
Lemma 6.2.1 Let f, be an irrational shift on T¢ and f.s be a skew-shift. We have,
o ifa € DC(1) C TY then (TY, f,) is strongly M-dense for some M > 1.
o ifa e DC(7) C T, then (T, f,,) is strongly M-dense for some M > 1.
o ifad DC(d) CT, then (T4, f,,) is weakly M-dense for some M > 1.

o ifa € WDC(7) C T?, then (T?, f,) is weakly M-dense for some M > 1.

6.2.2 Upper and lower bounds on transfer matrices

The following lemma on the uniform upper bound of transfer matrix is essentially

from [45], we have adapted it into the following form for convenience.

Lemma 6.2.2 [45] Let v be a function whose discontinuity set has Lebesque measure
0 and f be a uniquely ergodic map on T¢. Let L(E) be positive on a Borel set U and u
be a measure such that u(U) > 0. Then for any ¢, e > 0 there exists a number D¢ > 0,
a set Be with 0 < pu(Bee) < ¢, and an integer N such that for any E' € U\Bg:

e L(E)> D¢,
o forn> Ne., |z—E| <e ™ and € T, we have +In ||A,(6, 2)|| < L(E) + .
We also have the following lemma on the lower bound of transfer matrix.

Lemma 6.2.3 [33] Let v € CV(T¢) with 1 >~ > 0 and f.o = fsa O fssa- Let L(E)
be positive on a Borel set U and a measure p with p(U) > 0. For any (€, let D¢, B¢ .
and N¢ . be defined as in Lemma 6.2.2. Then
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1. if (T% f.o) is strongly M-dense for some M > 0, then for n > N, any
E € U\B¢y, |z — E| < e and 0 € T we have

Ay Sy P02 2 O

2. if (T f.o) is weakly M-dense for some M > 0, then there exists a sequence
{ni(e)} such that for any k > k¢, any E € U\B¢,, |z—E| < e™* and § € T?

we have

”Ank(fi aeu Z) ” Z enk(L(E)—?;e)‘
5Me ,

.....

6.2.3 Continuity of the spectrum for well approximated fre-

quencies

The following lemma enables us to establish the continuity of the spectrum at fre-
quencies that are well approximated by the rationals, it is an extension of the (T, fs o)
case in [10, 44].

Lemma 6.2.4 Let v € C?'(T?) with 1 > v > 0 and feo = fsa 07 fssa- Then for

each E € S(a), for ||/ — al|pa, small enough, there exists E' € S(a/) such that

(6.2) B = E'| < Colla— ol

Two direct corollaries of Lemma 6.2.4 are:

Lemma 6.2.5 Let f = f;o. Ifa ¢ WDC(%), then there exists a proper subsequence

of the best simultaneous approximation {jﬂ} of o, such that for any f € C7(TY), we
"k
have
(6.3) S(a) C liminf S(22).
k—o0

Qny,
Lemma 6.2.6 Let f = fos0. If a ¢ DC(d— 1+ %), then there exists a proper

subsequence of the continued fraction approrimants {Zﬂ} of o, such that for any
TLk

f € C(T?), we have
(6.4) S(a) C liminf S(22).
k—oo an

The proofs of Lemmas 6.2.4, 6.2.5, 6.2.6 will be included in Section 6.5.

In the next sections, we therefore focus on the Diophantine a.
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6.3 Key Lemmas

Lemma 6.3.1 Let v € C7(T¢) with 1 > v > 0 and foo = fou 0T fesa- Recall that
do =d,dy =1 for fsso and dy = 1,dy = d for feso. Then

1. for any (,e >0, let D¢, B¢ and N¢ . be defined as in Lemma 6.2.2. If (T%, f. »)
is strongly M -dense, then for n > N[ _, where N _ is defined as in Lemma 6.2.3,
E e S(a)NLy(a)\ Bee and ||o — a|pa, small enough, there exists E' € S(o/)
so that

D¢ s5Me
1

Y4 Clla — [ e,

(6.5) |E— E'| < Ce™
where C is an absolute constant.

2. for any C,e > 0, let B¢, and N¢. be defined as in Lemma 6.2.2. If (T% f..)
is weakly M-dense, then for k > k., where {ny(€)} and k. are defined as in
Lemma 6.2.3, E € S(a) N Leyy (@) \ Bee and ||o — a|pay small enough, there
exists E' € S(o') so that

GZO_E)J:,/[E) I CUHOZ . Oé/H%doe5Meal1n;C7

(6.6) B — E'| < Ce !

where C' is an absolute constant.

Proof of Lemma 6.3.1

We will prove part (2). Part (1) will be discussed briefly at the end of the proof. For
E € S(a) N Leyy \ Bee, by Lemma 6.2.2, for n > N¢ and |z — E| < e*" we have

(6.7) |A,(0, 2)|| < e EEFe),
By Lemma 6.2.3, for k > ke, |z — E| < e *™ and any § € T¢ we have

(6.8) min ~ max  ||An (f7,0,2)| > emsLE) =3,
Le{fl,l} [,J:O e%nk )

,,,,,

Let Ey be a generalized eigenvalue of H, y, . o such that |E — Ey| < e (L)) " with

generalized eigenvector 1 satisfying |1 (z)| = o((1 + |z[)'/?*). Then there exists x,,
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so that

69) plaw)l _ 0]

1—|—|33m] T 1+]x|'

Let 1) be normalized so that

6.10 Rk LrA e
(6.10) 1+ |2

S5Me

For k > ke, let Q,, = e » ™. There exists an 2} with z,, — Q,, —np < 2] <

xm — ng such that || A, (ffllcﬁ, Ey)| > e"’c(L(E)*&{). Similarly there exists an z with

m < 2y < T, + Qp, such that ||A,, (fs 50 L Ep)|| > e (HE)=39) I general, we have

Z — 1 =1 z
An( l 9,2): (*aeJ ) Pﬂ (f 8 )

Poi(f1200,2) —Pus(f1226, 2)

This implies for z; = 2 or 2} — 1 and k; = ng, ng — 1 or ny — 2, we have
1
(611) |Pkl(ff,1a@7 EO)' > Z_lekz(L(E)—?)e)'

Similarly, for x5 = 2% or 2§ — 1 and k, = ng, np — 1 or n, — 2, we have

1
(612) |Pkr (f:g;e) EO)’ > Z_lekr(L(E)—?)e).
Let
k k,
(613) T = I + |:2l:| ;. Ty = T3 + |:§:| .

Also set 9 = x1 + k; — 1 and x4 = x3 + k. — 1. By Cramer’s rule and (6.7), (6.11),

k
P, ., (fxﬂrlé) EO) eil(L(E)—l-e) -

( ’ [z1, 2]( 1 ’ ‘ Pkl<f*,a97 EO) ‘ iekl(L(E)—&)

Similarly

(6.15) GE (e ws)| < ™ FHE),

For similar reasons, (6.14) holds if we replace (z;,z1) with (z;,z5), (2, — 1,21) or

(x;—1,x9); (6.15) holds if we replace (z,, x3) with (z,,x4), (z,+1,23) or (. +1,24).
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Let A = [z, z,], we have |A| < 3Q,, = 3" Let Ya be the truncation of 1 to A.
Forz=x;+1,i=1,2,3,4, by (6.9) and (6.10),

(6.16) I o e P B A R e o
L+ fom| 14z 14 |zm| — 1+ |2

For 1 <z < x9,
(617) () = =GR (@ r)u@ — 1) =GB (2, 22)t (s + 1).
Thus by (6.14) and (6.16),

| ($Z)| < 4(1 + |xm|) —ng( L(E) 5Me)
Similarly

[(2,)] < 41 + | )e T 5
Hence the cut-off function satisfies

L(E) 5Me)

H(Hv,f*,aﬁ — Eg)yal| £ C(1+ |xm|)e*”k(T* b

Let¢A::”$mr'Thm1by(6J0),
_ L(E) 5Me
(6.18) (g0 = Eo)gall < Ce™ =50
Ttz zl-‘,—zr Tt Ttz

For f. ., set 8 = *_a > fia 0. Then f, 7 ¢ = f.o7 0, furthermore for k| <

(6.19) 115270 — 25500 = 1 ff s fome 0= fEufor Ol < ClE® o — 1.
Thus since f € C7(TY),
(6.20) |(Ho,fo00 — Hopz, 0) 04l < DX ]v(ffZZWT 0) — v(ff;,zl;m )|

< Co(|AI o = o [lag)”

= CUHCK o HTdo 5M6d1nk'
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Then by the choice of Ey and (6.18), (6.20),

(6.21)
I(E'— Huy, ,0)0all < [E — Eo|l + [[(Eo = Ho,p. 0 0) 6l + [[(Ho pra0 — Hog. o) Ol

L(E) y
< Ce™™ T L Oy la = ||y, Mo,

This implies there exists E' € S(a’) so that

Me

B — B < Ce ™ @59 4 O la — o |1, M,

Remark 6.3.1 Part (1) can be proved by considering S(a) N Ly («) instead of S(a) N

Lo+ (@) and without taking a subsequence {ny(€)}.

Lemma 6.3.2 Let v € CV(T?) with 1>~ >0 and foo = foo OT fesa-

1. If (T% f. o) is strongly M-dense for some M > 1, then for any ¢ > 0 and
v > [ > 0 there exists a set BC'B with 0 < |B?| < (¢ such that for any E €
S(a)ﬂL+(a)\B? and ||o/ —al|pa, small enough, there exists E' € S() satisfying

|E— E'| < Cylla— o)

Tdo

2. Letd =2, f = fso anda € WDC(2). Then for any ey > 0 andy > [ > 0 there

1
B!
exrists a sequence zﬂ — «, with the property that for any ( > 0 there exists a
M
set B?’EO with 0 < |B?’€°] < ( such that for any E € S(a) N L60+(a)\B?’6° there
exists B’ € S(Iqh) satisfying
m

B~ B < Clla— 225

mg

Proof of Lemma 6.3.2
Part (1)

. . —B)D, D
Given ¢ > 0, let D¢ > 0 be from Lemma 6.2.2. Fix e = €((, 8) = Wﬂlﬁwﬁ) <7
Let B! = Beec,s), N = Neec,p) With Bee, N as in Lemma 6.2.2. Let N/ :=

Né,e(g,,g) be defined as in Lemma 6.2.3. By Lemma 6.3.1, for any n > Nﬁ, E e
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S(a) N Ly(ar)\ B? and ||/ — a|p4, small enough, there exists E' € S(a/) so that E’
is close to F, namely,

Do

(622) ’E _ E/‘ S Ce*n( 1 STMG) + CUHOé _ a/H%der)Medln'

There exists a small constant o3 > 0 so that when ||a — /|14y < 0¢g We have

v — B+ 2d1y5
dl’yDC

N(g < (—In|la — a'||pda).

Then we could take n > N[ ;5 satisfying

v — B+ 4diyS / 4(y — B+ 4diyp) /
—1 — <n< —1 _
o ) < 0 O TE Ca — )
so that by (6.22) there exists £’ € S(a’) with
(6.23) |E— E'| < Cylla — o||2,.
U
Part (2)
For ¢, > 0, fix a constant ¢ = €(3,¢) = % < 2. For any ¢ > 0, let

B?’m i= B¢ e(8,eo) and NCB’EO = Nc¢e(gep) be as in Lemma 6.2.2. Let {ny(5,€)} =
{nk(e(5,€0))} and /{:?’60 = k¢.e(8e0) b€ as in Lemma 6.2.3. By Lemma 6.3.1, for any
k > k’?’eo, E € S(a) N Lev(a) \ BC’B’60 and ||/ — al|r2 small enough, there exists
E' € S(a/) so that

%0_51’\;16) n OUHOZ N O/H%QBSMU%-

(6.24) |E— E'| < Ce ™!

a € WDC/(c, %) for some ¢ > 0. Take the sequence of best simultaneous approxima-

tion {IZ—::}. By (1.10) we have ¢, > c”qn%m. Combining this with (1.9) and (1.7), we

have
Prm+1 c L1 2 P 2
loo = === lre > 5 > e(— )7 > clla— ==l
qm+ Y dm v/ 9m+1 m
m+1
Which implies
. o 9 .
e =2 < —Infla = 2" e < —Znfla — 27
m m+1 m
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Therefore for each ng(f3, €y) there must be a corresponding my (3, €g) such that that

760 ﬁmk 60
— . < —Inlla— 2 < ———— Ny,
4(y— B +48) | Gy, | v —B+4p

By (6.24) and the choice of my, there exists £’ € S(fﬂ) so that
m

(6.25) |E—E'| < Cylla - Zm’“ I

M

6.4 Proof of Theorems 6.1.1, 6.1.2 and 6.1.3

First of all, the continuity of S(«) in the Hausdorff metric implies that for any se-
quence g—: — a,

(6.26) lim sup S(&) C S(a).

n—00 dn
By (6.26) and Lemmas 6.2.5, 6.2.6, the proofs are all reduced to proving a state-
ment of the following type
S(a)N Li(a) C lilggioglf S(%)
Since the proofs for (T%, fa), (T%, fesa) and (T2, f, o) (weakly M-dense) relying on
Lemma 6.3.2 are quite similar, we will only give the proof for (T%, f. ) in detail. The

other two proofs will be discussed briefly at the end of this section.

Proof of Theorem 6.1.2

Let IZ—” be the full sequence of continued fraction approximants of a. Since v > %,

we could fix % < f < 7. By Lemma 6.3.2, for any ¢ > 0 there exists B¢ = B?,

0 < |B¢| < ¢, such that for n large enough we have

. DPn Pn Pn
S(e) N Ly(a) \ Be € Ui y[an; — Colla — q—HTﬁr, bui + Colla — q—Hg] = S(Q—) U Fy,

where ¢/, < g, and

Pn .
S(q—) = U [an,i; bng).
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This implies

S(a) N Lo(a)\ Be € liminf S(Z2) U F,,

dn
furthermore,
(6.27) [S(a) N1 Ly (@) \ (tim inf S(Z—:) UF,)| <.
By (1.1),
(6.28) Ful < 2Canlle = 7 < 200,07,

which implies ) |F,| < oo, thus |limsup,,_,. F,| = 0. This implies

(6.29) |lim infS(%) U F,| = |liminf S(22)).
n—o0

n n—o0 an
Combining (6.27) with (6.29), we have
1S(c) N Ly (a) \ lim infs<§—")| <¢
n—oo n
for any ¢ > 0. Thus

(6.30) S(a) N L. (a) C liminf S(22),

oo gy

O

Theorem 6.1.1 could be proved by taking g—: to be the full sequence of best simul-
taneous approximation. One needs to apply (1.8) to obtain the following (similar to

(6.28))

_dt1
(6.31) |l < 2Cuqny" "
Theorem 6.1.3 could be proved by applying part (2) of Lemma 6.3.2. O

6.5 Proofs of Lemmas 6.2.4, 6.2.5, 6.2.6

6.5.1 Lemma 6.2.4

The proof is very similar to that of [10, 44]. Given € > 0 and E € S(«), there exists
an approximate eigenfunction ¢, € (*(Z) such that ||(Hy, .9 — E)de|| < €||@c]|. Set
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gj..(n) = max (1 — g znl ,0). Avron-van Mouche-Simon [10] proved that for sufficiently

large L, for any bounded v : T — R there exists j such that g; ¢, # 0 and for any

e >0,

(6.32) I(H. 00 = B)gjrdell” < C(e* + L72)||gj06 1%,

where C' is universal. Now let 6’ = f,° i/ fia@. By the Holder assumption on v and

7—L<n<j+ L, we have
[0(f10t') = v(f220) < Co( LM 0" = allpay ).
Thus,

(6.33) N(Hy, yo = E)gjnoell < (Hy, o = Hr.o0) 95,00l + [ (H. o0 = E)Gj 10|
(6.34) < (Co(L|0" = allya)Y + C(€ + L7)2) g.00c].

1+d1w

Choosing € = L™ = C, ||a — , we obtain the statement of Lemma 6.2.4. O

0l ay

6.5.2 Lemma 6.2.5

Assume o ¢ WDC (%) Then by (1.11), there exists a subsequence of the best simul-

taneous Diophantine approximation {fﬂ} so that
N
(6.35) hm Iny T max ankozjﬂlM =0.
k—o0 1<
By Lemma 6.2.4, we have

n p p p
S(a) C U4 an, i — Cyllor — == prﬁ”, i T Colla — = H ””] ' (q”’“) U Fy,,
n

where ¢, < gy, and
ﬁn qn
S( k) =U; k[ nk:i7bnk:i]'
q?’Lk
Thus, by (6.35),
. DPny,
S(a) C liminf S(=%).

k—oo an
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6.5.3 Lemma 6.2.6

Assume o ¢ DC(d — 1+ %) Then by (1.11), there exists a subsequence of the

continued fraction approximants 2& so that

Gny,
S oo
. 1
(6.36) Jim g, lgng a7 =0

By Lemma 6.2.4, we have

g Iy, - _Zﬁﬁb O _Zﬂﬁ._slﬂ Ia
(@) C Ulilan, i — Colex 27, bnyi + Collx lr7"] = S(==) U Fy,,

Nk ng an
where ¢, < gy, and
Pn an
S<_k) = Uz‘:kl [ank,iv bnk:i]'
qTLk
Thus, by (6.36),

S(a) C liminf S(22).

k—o0 Qn,,
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Appendix A

WARVES BT > L()\). Then

A1+As+4/(A1+23)2 =41 A3
cx(z) is analytic and nonzero on [Im(x)| < $2. Furthermore, the winding number

When A belongs to region II°, let €5 = In

of cx(- + 7€) is equal to zero when |e| < £2.

Lemma A.0.1 When X\ belongs to region 11°, we can find an analytic func-
tion f(x) on |Im(x)| < % such that cx(z) = |cy|(2)ef@EFI=F@) gnd ¢\ (x) =

N (I)e—f(era)Jrf(x) ]

Proof:  Since the winding numbers of ¢)(x) and ¢é,(z) are 0 on |[Im(x)| < L;\),

2m
there exist analytic functions g;(z) and go(x) on |Im(x)| < ==, such that cy(x) =
here exi lytic functi d I < 2Y “quch th

e91@ and é,(r) = %™, Notice that

/Tln|cA(x)| de = /Tln|6,\(:v)| dx
/Targ ex(z) dx :/arg éx(z) dz,

T

so there exists an analytic function f(z) such that 2f(z + «) — 2f(z) = g1(z) —
g2(). Then cx(z) = |ex|(w)e/ )=/, O

Lemma A.0.2 When X belongs to region 11°, there exists an analytic matrix

Qx(z) defined on |Im(z)| < %i‘) such that

Qx'(x + a) A, 5(2)Qx(x) = A, p(2).

131



A o) 1 1 0 E—v(x) —é\(z—a) 1 0
les | B r) = ENE cx(r—a
: Vial@lallz—a) \o /20 ] | @) 0 0/ 2ua
ex(x 1 0 1 0
= i i | Ao —a)
Vial@)alz —a) \o /24 0 /2=
ex(z) éx(z—a)
-1
fz+a) 1 0 f(x) 1 0
=e Viel(@) 5w | Aevrl@) g eVl —a) =)
0 ex(x) 0 ex(z—a)
=Qx\ (7 + o)A, p(7)Qy ().
O

Lemma A.0.3 If a is rrational, X\ belongs to region 1I°, E € X,,, then
L(a, Ay (- +1i€)) = La, Ay, p(- +1i€)) = 0 for [¢] < 52

Proof: L(Ac, p(- +1i€)) = L(Dy g(- + i€)) — [ In|en(z + i€)|dx

D)\7E(.f17 + Z€)
E — e2m’(:r+ie) _ 672m'(m+ie) _)\16271'7;(567%4’1'6) — Xy — A36727T’L'(CC*%+’L'€)
N )\16727ri(z+%+ie) + Ao + )\362wi(x+%+ie) 0
ore —e™ 4 o(1) —Aze2m@=%) 4 o(1)
e 2mi@r3) 4 o(1) 0

Thus the asymptotic behaviour of L(D) g(- + i€)) is:

1+V1 =4\
2

1+V1 =4\
2

L(D) g(- +i€)) = In| | + 2me when € — oo,

L(D) g(- +i€)) = In| | — 2me when € — —o0.

Then it suffices to calculate [In|cy(z + i€)|dz in region II. We have

/ln lex(x + te)|dx

=In A3 — 2me + /ln |e* ™ — Yre| + /ln > — Yoel-
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_ et/ AN or

where y; . = e e“™ and Yz =

—A2—14/ )\%—4>\1/\3 627“E

23

1 )\24»\/)\%74)\1)\3
27T€+1n)\1 €>ﬂlnT,

/ln e(z + ie)|dz = § 22tV

Ao—/AZ—4X1 A Ao+/A2—4X1 A
11n2 3 IBSGSLIHQ—"—Q 1A3

o 2 P2 2 ;
1 1 de—y/A2—axiNg
| —27e+In)s €< g In 2Vt
, A2+4/A3—4M A
Thus L(Ac, (- + i€)) = 0 when [¢] < = 1In Ty 08 -

R max(l,A1+)\3)+\/max (1,)\14-)\3)2—4)\1)\3
%. Since AM‘,E(x%—ie) = Qx(z+a+ie)A., p(z+i€)Qy " (z+ie), the statement

about fl|ci|,E is also true. O
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