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Abstract of the Dissertation

Discrete ergodic Jacobi matrices: Spectral properties and

Quantum dynamical bounds

By

Rui Han

Doctor of Philosophy in Mathematics
University of California, Irvine, 2017

Professor Svetlana Jitomirskaya, Chair

In this thesis we study discrete quasiperiodic Jacobi operators as well as ergodic

operators driven by more general zero topological entropy dynamics. Such operators

are deeply connected to physics (quantum Hall effect and graphene) and have enjoyed

great attention from mathematics (e.g. several of Simon’s problems). The thesis has

two main themes. First, to study spectral properties of quasiperiodic Jacobi matrices,

in particular when off-diagonal sampling function has non-zero winding number or

singularities. Second, to address the consequences of positive Lyapunov exponent

for Schrödinger operators with a class of potentials of bounded discrepancy, prime

example being those driven by shifts and skew-shifts on multi-dimensional tori.

Within the first theme, one of our results provides an if and only if topological

criterion for obtaining localization from reducibility of the dual Jacobi cocycles. As an

application of this result to the extended Harper’s model, we obtain sharp arithmetic

spectral transition in the positive Lyapunov exponent regime. Two other results

about the extended Harper’s model include a proof of non-degeneracy of all possible

spectral gaps (known as Dry Ten Martini Problem) for the non-self-dual regions, and

an arithmetic result on purely continuous spectrum for the self-dual region that is

optimal and improves on a recent work by Avila-Jitomirskaya-Marx, who proved a

measure-theoretic version.

xi



The most important contribution among the second group is a general localization-

type result for ergodic potentials of bounded discrepancy. As concrete applications

of our general result, we build the first arithmetic localization-type results for poten-

tials defined by shifts and (the first non-perturbative ones for) skew-shifts of higher-

dimensional tori. Similar consideration also leads to the continuity of spectral data,

for Schrödinger operators with such underlying dynamics in the positive Lyapunov

exponent regime.
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Introduction

0.1 Discrete Jacobi matrices

Let (M, g) be a compact Riemannian manifold equipped with metric g. Let Volg

be its Riemannian volume density. Let f be an invertible uniquely ergodic volume

preserving map on M.

Consider the following 1-dimensional discrete Jacobi matrix on l2(Z) given by

(1) (Hc,v,f (θ)u)n = c(fnθ)un+1 + c(fn−1θ)un−1 + v(fnθ)un,

where θ ∈ M is called phase and c, v are functions on M. In particular, we will

assume v be a real-valued function.

Two prime examples of (M, f) are: shifts f = fs,α : θ → θ + α on Td and skew-

shifts f = fss,α : (θ1, θ2, ..., θd)→ (θ1 + α, θ2 + θ1, ..., θd + θd−1) on Td. When f = fs,α

operator Hc,v,fs,α , which we denote by Hc,v,α for short, is called discrete quasiperiodic

Jacobi matrix. We also mention that when c(θ) ≡ 1, H1,v,f is referred to as discrete

Schrödinger operator.

1



0.2 Motivation

Quasiperiodic Jacobi matrices arise naturally from the study of tight-binding electrons

on a two-dimensional lattice exposed to a perpendicular magnetic field. The most

prominent example of such operators is the Harper’s equation, mathematically known

as the almost Mathieu operator (AMO):

(Hu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un.(2)

In early 1970s, numerical studies of the spectrum of AMO (when λ = 1) generated

the first fractal in the physics literature, the “Hofstadter butterfly”. From that time

on, this operator has continuously drawn great attention from both mathematics and

physics societies. Up to now, it has already been connected to the work related to

three Nobel prizes (quantum Hall effect (1998, 2016) and graphene (2010)) and one

Fields medal (Ten Martini Problem).

After three decades of active research, much is known about the AMO. In this

thesis we mainly explore generalizations of AMO in two different directions: one-

frequency Jacobi matrices (with non-constant c(θ)) and multi-frequency Schrödinger

operator (multi-dimensional α).

In the first part of the thesis (Chapters 2-4), we explore the influence of non-

constant sampling function c on the spectral theory of quasiperiodic operators. It

turns out the spectral properties will be largely different from the Schrödinger case,

especially when c has non-zero winding number or singularities.

One prime example of (non-Schrödinger) Jacobi matrices is the extended Harper’s

model (EHM):

(Hλ,α(θ)u)n = cλ(θ + nα)un+1 + c̃λ(θ + (n− 1)α)un−1 + 2 cos 2π(θ + nα)un.(3)

where c(θ) = λ1e
−2πi(θ+α

2
) + λ2 + λ3e

2πi(θ+α
2

). This model was first proposed by D.J.

Thouless in 1983 [67] and arises when 2D electrons are allowed to hop to both near-

est neighboring (expressed through λ2) and the next-nearest lattice sites (expressed

through λ1 and λ3). It includes AMO as a special case (when λ1 = λ3 = 0). An in-

teresting feature of EHM is that it accounts for different lattice geometries: not only

2



square lattice (as AMO), but also triangular lattice (when one of λ1, λ3 vanishes).

Thus it is more closely connected to the Graphene, whose hexagonal lattice can be

viewed as two interlacing triangular lattices.

In the last decades, there have been many important advances about EHM, in-

cluding the explicit formula of the Lyapunov exponent [37], localization in the positive

Lyapunov exponent region for Diophantine frequencies [43] and spectral decomposi-

tion for all frequencies in the zero Lyapunov exponent regions [8].

While in the positive Lyapunov exponent region, there is definitely a different be-

havior for the Diophantine [43] and Liouville [57] α, thus it is interesting to determine

a transition. In the last few years, there have been several remarkable developments,

where in models with classical small denominator problems leading to arithmetic

transitions in spectral behavior, sharp results were obtained, with analysis up to the

very arithmetic threshold. For the Maryland model, the spectral phase diagram was

determined exactly for all α, θ in [52]. For the AMO, the transition in α (conjectured

in 1994 [51]) was recently proved in [12]. Even more recently, pure point spectrum

up to the transition was established by a different method in [47, 48] with also an

arithmetic condition on θ. Our result presented in Chapter 2 adds to this growing

collection by establishing a sharp transition in α for the extended Harper’s opera-

tor. This is achieved by establishing an if-and-only-if topological criterion for the

reducibility of general quasiperiodic Jacobi cocycles to imply pure point spectrum of

the dual model.

In Chapter 3, we answer a question by Avila-Jitomirskaya-Marx. Specifically, we

obtain an arithmetic result on purely continuous spectrum for the self-dual EHM that

improves on [8], where a measure-theoretic version was proved.

Aside from the aforementioned developments on the spectral decomposition of

EHM, little was known about the spectrum as a set. In Chapter 4, we study the

Cantor structure of the spectrum for non-self-dual EHM, and prove the Dry Ten

Martini Problem in the Diophantine case.

In the second part of the thesis (Chapters 5, 6), we explore the consequences of

positive Lyapunov exponent for Schrödinger operators with potentials driven by shift

3



and skew-shifts on multi-dimensional tori.

Positive Lyapunov exponents are generally viewed as a signature of localization.

While it is known that they can coexist even with almost ballistic transport [62]

[27], vanishing of certain dynamical exponents has been identified as a reasonable

expected consequence of hyperbolicity of the corresponding transfer-matrix cocycle.

Results in this direction were obtained in [25, 26] for one-frequency trigonometric

polynomials, and recently in [45], for one-frequency quasiperiodic potentials under

very mild assumptions on regularity of the sampling function. In Chapter 5 we identify

a general property responsible for positive Lyapunov exponents implying vanishing of

the dynamical quantities in the rather general case of underlying dynamics defined by

volume preserving maps of Riemannian manifolds with zero topological entropy, and

under very minimal regularity assumptions. This work presents the first localization-

type results that hold in such generality. Our general results allow us, in particular,

to obtain localization-type statements for potentials defined by shifts and (the first

non-perturbative ones for) skew-shifts of higher-dimensional tori.

A natural approach to quasiperiodic operators is through periodic approximants,

obtained by replacing the irrational frequency by a sequence of rationals. In partic-

ular, since the spectrum at rational frequencies can be obtained numerically and are

easier to study, continuity in frequency allows us to study the spectrum at irrational

frequencies via rational approximation. While many recent significant advances in

discrete Schrödinger operators, see e.g. [15, 40, 2], require one dimensional torus shift

and analytic potentials, our results presented in Chapter 6 reveal that continuity

of the spectrum is a much more general phenomenon: it holds for both shifts and

skew-shift of higher dimensional tori and also Hölder continuous potentials.

4



Chapter 1

Preliminaries

1.1 Notations

For x ∈ R, let ‖x‖T = dist(x,Z). For a bounded analytic function f defined on a strip

{|Imθ| < ε} we let ‖f‖ε = sup|Imθ|<ε |f(θ)|. If f is a bounded continuous function on

R, we let ‖f‖0 = supθ∈R |f(θ)|. For a set U ⊂ Rd let |U | be the Lebesgue measure of

U .

1.2 Rational approximation of α

First, let us introduce the Diophantine condition on Td:

DC(τ) = ∪c>0DC(c, τ) = ∪c>0{(α1, ..., αd)|‖〈~h, α〉‖T ≥
c

r(~h)τ
for any ~0 6= ~h ∈ Zd}

where r(~h) =
∏d

i=1 max (|hi|, 1). It is well-known that when τ > 1, DC(τ) is a full

measure set.

We also introduce the weak Diophantine condition:

WDC(τ) = ∪c>0WDC(c, τ) = ∪c>0{(α1, ..., αd)|max{‖hαi‖T} ≥
c

|h|τ
for any 0 6= h ∈ Z}.

It is well-known that when τ > 1
d
, WDC(τ) is a full measure set.

Clearly, in general DC(τ) ⊆WDC(τ), while in the single frequency case DC(τ) =

WDC(τ).

5



1.2.1 Single frequency

Let α be an irrational number and let {pn
qn
} be its continued fraction approximants.

The following properties (see e.g.[68]) are well-known:

(1.1)
1

2qn+1

≤ ‖qnα‖T ≤
1

qn+1

.

(1.2) ‖kα‖T > ‖qnα‖T for qn < |k| < qn+1.

Let β(α) ∈ [0,∞] be given by

β(α) = lim sup
n→∞

ln qn+1

qn
.(1.3)

Roughly speaking, β(α) being large means α can be approximated well by rational

numbers. We also mention that in some papers, Diophantine condition refers to

β(α) = 0, we denote it by α ∈ DC. Clearly, DC(τ) ⊂ DC for any τ > 0.

1. If α ∈ DC(c, τ) for some c > 0, we have

(1.4) ‖kα‖T ≥
c

|k|τ
for any k 6= 0.

In particular, combining (1.1) with (1.4) we have

(1.5) cqn+1 ≤ qτn.

2. If α /∈ DC(τ), there exists a subsequence of the continued fraction approximants

{pnk
qnk
} so that

(1.6) qnk+1 > qτnk .

1.2.2 Multiple frequencies

Let α = (α1, α2, ..., αd) be a set of irrational frequencies. Let { ~pn
qn
} be its best simul-

taneous approximation with respect to the Euclidean norm on Td, namely,

d∑
j=1

‖qnαj‖2
T <

d∑
j=1

‖kαj‖2
T for any 0 < |k| < qn.
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Clearly, by the pigeonhole principle, we have

(1.7)

√√√√ d∑
j=1

‖qnαj‖T2 ≤
2Γ(d

2
+ 1)

1
d

√
πq

1
d
n+1

.

By the definition of Diophantine and weak-Diophantine condition.

1. If α ∈ DC(c, τ), then

(1.8) ‖〈~k, α〉‖T ≥
c

r(~k)τ
for any ~k ∈ Zd\{~0}.

2. If α ∈WDC(c, τ), then

(1.9) max
1≤j≤d

‖kαj‖T ≥
c

|k|τ
for any k ∈ Z\{~0}.

In particular combining (1.7) with (1.9), we have for α ∈WDC(τ),

(1.10) c′q
1
d
n+1 ≤ qτn for some constant c′.

3. If α /∈WDC(τ), there exists a subsequence of the best simultaneous Diophantine

approximation { ~pnk
qnk
} so that

(1.11) lim
k→∞

qτnk max
1≤j≤d

‖qnkαj‖T = 0.

1.3 Cocycles and Lyapunov exponent

For a given z ∈ C, a formal solution u of Hc,v,fu = zu can be reconstructed via the

following equation. u(n+ 1)

u(n)

 = Ac,z(f
nθ)

 u(n)

u(n− 1)

 ,

where

Ac,z(θ) =
1

c(θ)

z − v(θ) −c(f−1θ)

c(θ) 0



7



Let Ac,z,k(θ) be the product of consecutive transfer matrices:

Ac,z,k(θ) = Ac,z(f
k−1θ) · · · Ac,z(fθ)Ac,z(θ) for k > 0, Ac,z,0(θ) = Id, and

Ac,z,k(θ) = (Ac,z,−k(f
kθ))−1 for k < 0.

Then for any k ∈ Z we have the following. u(k)

u(k − 1)

 = Ac,z,k(θ)

 u(0)

u(−1)

 .

The linear skew-product (f, Ac,z(·)), defined below, is called the associated cocycle

to Hc,v,f at energy z.

(f, Ac,z(·)) : (M, C2)→ (M, C2)

(θ, x)→ (fθ, Ac,z(θ)x)

We define the Lyapunov exponent

L(f, z) = lim
k→∞

1

k

∫
M

ln ‖Ac,z,k(θ)‖ dVolg(θ) = inf
k

1

k

∫
M

ln ‖Ac,z,k(θ)‖ dVolg(θ).

(1.12)

Furthermore, L(f, z) = limk→∞
1
k

ln ‖Ac,z,k(θ)‖ for Volg-a.e. θ ∈M.

In the case of quasiperiodic operators, we will always write (α,Ac,z(·)) instead of

(fs,α, Ac,z(·)) and L(α, z) rather than L(fs,α, z) for simplicity.

1.4 Spectral measures and Integrated density of

states

Let µc,v,f,θ be the spectral measure of Hc,v,f (θ) associated to δ0, namely for any Borel

set U , we have

µc,v,f,θ(U) = (δ0, χU(Hc,v,f (θ))δ0).

We define the density of states measure dNHc,v,f by

dNHc,v,f (U) =

∫
T
µc,v,f,θ(U) dθ.

NHc,v,f (E) := NHc,v,f (−∞, E) is called the integrated density of states (IDS) of

Hc,v,f (θ).
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1.5 Reducibility and rotation number

A quasiperiodic cocycle (α,A) is called L2-reducible (or Cω-reducible) if there exists

a matrix function B ∈ L2(T, SL(2,R)) (or B ∈ Cω(T, PSL(2,R)) respectively) and

a constant matrix A∗ such that

B(θ + α)A(θ)B−1(θ) = A∗ for a.e. θ ∈ T,(1.13)

Let

Rx =

cos 2πx − sin 2πx

sin 2πx cos 2πx

 .

Any A ∈ C0(T, PSL(2,R)) is homotopic to θ → Rn
2
x for some n ∈ Z, called the

degree of A, denoted by degA = n.

Assume now that A ∈ C0(T, SL(2,R)) is homotopic to identity. Then there exists

ψ : R/Z× R/Z→ R and u : R/Z× R/Z→ R+ such that

A(x) ·

cos 2πy

sin 2πy

 = u(x, y)

cos 2π(y + ψ(x, y))

sin 2π(y + ψ(x, y))

 .

The function ψ is called a lift of A. Let µ be any probability on R/Z × R/Z which

is invariant by the continuous map T : (x, y) 7→ (x + α, y + ψ(x, y)), projecting over

Lebesgue measure on the first coordinate (for instance, take µ as any accumulation

point of 1
n

∑n−1
k=0 T

k
∗ ν where ν is Lebesgue measure on R/Z×R/Z). Then the number

ρ(α,A) =

∫
ψdµ mod Z(1.14)

does not depend on the choices of ψ and µ, and is called the fibered rotation number

of (α,A).

It can be proved directly by the definition that

|ρ(α,A)− x| < C‖A−Rx‖0.(1.15)

The fibered rotation number is invariant under real conjugacies which are homo-

topic to the identity. In general, if (α,A(1)) and (α,A(2)) are real conjugate, namely
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there exists B ∈ C0(T, PSL(2,R)) so that B−1(x + α)A(2)(x)B(x) = A(1)(x) and

degB = k, then

ρ(α,A(1)) = ρ(α,A(2))− kα/2.(1.16)

We say that (α,A) is uniformly hyperbolic if there exists continuous splitting

C2 = Es(x)
⊕

Eu(x), x ∈ T such that for some constant C, η > 0 and all n ≥ 0,

‖An(x)v‖ ≤ Ce−ηn‖v‖ for v ∈ Es(x) and ‖A−n(x)v‖ ≤ Ce−ηn‖v‖ for v ∈ Eu(x).

For uniformly hyperbolic cocycles there is the following well-known result.

Theorem 1.5.1 Let (α,A) be a uniformly hyperbolic cocycle, with α ∈ R \Q. Then

2ρ(α,A) ∈ αZ + Z.

1.5.1 Normalized cocycle

Given a quasiperiodic Jacobi matrix Hc,v,α with continuous function v and analytic

c. Let c̃(θ) = c(θ) on T and its analytic extension off T. Let |c|(θ) =
√
c(θ)c̃(θ), then

|c|(θ) is an analytic function which coincides with |c(θ)| on T.

We define the normalized transfer matrix Ãc,z(θ) as below.

Ã|c|,z(θ) =
1√

|c|(θ)|c|(θ − α)

z − v(θ) −|c|(θ − α)

|c|(θ) 0

 .(1.17)

The advantage of Ã|c|,z over Ac,z is that it is a SL(2,R) matrix homotopic to identity.

The cocycle (α, Ãc,z(·)) will be called the normalized cocycle.

By (1.14), we can define the rotation number of the normalized cocycle (α, Ã|c|,E),

denoted by ρ(α, Ã|c|,E). It is a non-increasing continuous function of energy E.

Let H|c|,v,α be the normalized Jacobi matrix

(H|c|,v,α(θ)u)n = |c|(θ + nα)un+1 + |c|(θ + (n− 1)α)un−1 + v(θ + nα)un.(1.18)

The following relation between ρ(α, Ã|c|,E) and NH|c|,v,α(E) is well-known.

NH|c|,v,α(E) = 1− 2ρ(α, Ã|c|,E).(1.19)

Note that NH|c|,v,α(E) = NHc,v,α(E) since H|c|,v,α(θ) and Hc,v,α(θ) differ by a unitary

conjugation.
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1.6 Extended Harper’s model

The extended Harper’s model (EHM), defined as below, is a prime example of quasiperi-

odic Jacobi matrix.

(Hλ,α(θ)u)n = cλ(θ + nα)un+1 + c̃λ(θ + (n− 1)α)un−1 + 2 cos 2π(θ + nα)un.

where cλ(θ) = λ1e
−2πi(θ+α

2
) + λ2 + λ3e

2πi(θ+α
2

).

Note that in order to distinguish from general Jacobi matrix, we denote the ex-

tended Harper’s model by Hλ,α.

According to the duality transformation σ : λ = (λ1, λ2, λ3) → λ̂ = (λ3

λ2
, 1
λ2
, λ1

λ2
),

the coupling constant parameter space is naturally divided into three regions.

λ2

λ1 + λ3

λ1 + λ3 = λ2

1

1

Region I
Region II

Region III

LII

LI

LIII

Region I 0 ≤ λ1 + λ3 ≤ 1, 0 < λ2 ≤ 1,

Region II 0 ≤ λ1 + λ3 ≤ λ2, 1 ≤ λ2,

Region III max{1, λ2} ≤ λ1 + λ3, λ2 > 0.

1.6.1 Aubry duality of the extended Harper’s model

Observation 1.6.1 σ is a bijective map on 0 ≤ λ1 + λ3, 0 < λ2.

(i) σ(I◦) = II◦, σ(III◦) = σ(III◦)
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(ii) Letting LI := {λ1 + λ3 = 1, 0 < λ2 ≤ 1}, LII := {0 ≤ λ1 + λ3 ≤ 1, λ2 = 1}, and

LIII := {1 ≤ λ1 + λ3 = λ2}, σ(LI) = LIII and σ(LII) = LII.

As σ bijectively maps III ∪ LII onto itself, the literature refers to III ∪ LII as the

self-dual regime. We further divide III into IIIλ1=λ3 (isotropic self-dual regime) and

IIIλ1 6=λ3 (anisotropic self-dual regime).

Let Σλ,α,θ be the spectrum of Hλ,α,θ, and Σλ,α = ∪θ∈TΣλ,α,θ. It is a well-known

result that Σλ,α,θ is independent of θ if α is irrational.

By Aubry duality, the spectrum of Hλ,α and the spectrum of its dual model Hλ̂,α

are connected to each other in the following way.

Σλ,α = λ2Σλ̂,α.(1.20)

Moreover, the integrated density of states Nλ,α(E) of Hλ,α coincides with the IDS

Nλ̂,α(E/λ2) of Hλ̂,α,θ.

1.6.2 Lyapunov exponent of the extended Harper’s model

An remarkable feature of the extended Harper’s model is that Lyapunov exponents

when restricted to the spectrum are constant and depend only on λ. Indeed, according

to Avila’s Global theory, we have

Theorem 1.6.2 [[37], see also Appendix A] The extended Harper’s model is super-

critical in region Io and sub-critical in region IIo. Indeed, if λ belongs to region Io,

• for any E ∈ Σλ,α,

L(α,E) ≡ L(λ) = ln
1 +
√

1− 4λ1λ3

max (λ1 + λ3, λ2) +
√

max (λ1 + λ3, λ2)2 − 4λ1λ3

> 0.

(1.21)

• λ̂ belongs to region II, furthermore, for any E ∈ Σλ̂,α,

L(α,E) = L(α,Acλ̂,E(·+ iε)) = L(α, Ã|cλ̂|,E(·+ iε)) = 0 for |ε| ≤ L(λ)

2π
.

(1.22)
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1.6.3 Presence of singularities

Another interesting phenomenon of extended Harper’s model is the presence of sin-

gularities.

Observation 1.6.3 (e.g. [8]) cλ(θ) could take zero value when the parameters λ

satisfy some certain conditions. Indeed,

• when λ1 = λ3 ≥ λ2

2
, singular points are θ1 = 1

2π
arccos (− λ2

2λ1
) − α

2
and θ2 =

− 1
2π

arccos (− λ2

2λ1
)− α

2
(notice that when λ1 = λ2

2
there is a single singular point

θ1 = θ2 = 1
2
− α

2
).

• when λ1 6= λ3 and λ1 + λ3 = λ2, the singular point is θ1 = 1
2
− α

2
.

1.6.4 Spectral properties of the extended Harper’s model

Due to [43, 8], we have the following spectral properties for the extended Harper’s

model.

λ2

λ1 + λ3

λ1 + λ3 = λ2

1

1
pp

ac spectrum

ac spectrum

λ1 6= λ3

λ2

2λ3

2λ3 = λ2

1

1
pp

ac spectrum

sc spectrum

λ1 = λ3

• pp for Diophantine α and a.e. θ due to Jitomirskaya-Koslover-Schulteis [43].

• ac and sc for any irrational α and a.e. θ due to Avila-Jitomirskaya-Marx [8].
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Chapter 2

Full measure reducibility and

localization for Jacobi operators: a

topological criterion

2.1 Introduction

In this chapter we study the general class of Jacobi operators

(Hc,v,α(θ)u)n = c(θ + nα)un+1 + c̃(θ + (n− 1)α)un−1 + v(θ + nα)un,(2.1)

where c(θ) =
∑

k ĉke
2πik(θ+α

2
) ∈ Cω(T), c̃(θ) ∈ Cω(T), c̃(θ) = c(θ) on T, and

v(θ) =
∑

k v̂ke
2πikθ ∈ Cω(T). We will assume v̂k = v̂−k, ĉk ∈ R. Such operators

arise as effective Hamiltonians in a tight-binding description of a crystal subject to a

weak external magnetic field, with c, v reflecting the lattice geometry and the allowed

electron hopping between lattice sites. The prime example, both in math and in

physics literature, is the extended Harper’s model, see (3).

The Aubry dual of Hc,v,α is an operator H̃c,v,α defined by

(H̃c,v,α(x)u)m =
∑
m′

dm′(c, v)(x)um−m′ ,(2.2)

where dm′(c, v)(x) = ĉm′e
2πi(x−m

′
2
α) + v̂−m′ + ĉ−m′e

−2πi(x−m
′

2
α).
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The Aubry duality can be explained by the magnetic nature and corresponding

gauge invariance of operators Hc,v,α [63] and has been formulated and explored on

different levels, e.g. [63], [32], [7]. The dynamical formulation of Aubry duality is

an observation that if H̃c,v,α(θ) has an eigenvalue at E with respective eigenvector

{un}, then, considering its Fourier transform, u(x) :=
∑

n∈Z une2πinx ∈ L2(T) \ {0}

and letting

(2.3) Mθ(x) =

 u(x) u(−x)

e−2πiθu(x− α) e2πiθu(−(x− α))

 ,

Mθ provides an L2 semiconjugacy between the transfermatrix cocycle of Hc,v,α and

the rotation Rθ =

e2πiθ 0

0 e−2πiθ

 . For θ that are not α-rational, detMθ(x) doesn’t

vanish for a.e. x [8], leading to reducibility of the transfermatrix cocycle of Hc,v,α

to a constant rotation Rθ. In particular, pure point spectrum for a.e. θ of H̃c,v,α(θ)

leads to reducibility for cocycles of Hc,v,α for a.e. E with respect to the density of

states [65, 7], with the quality of reducibility governed by the rate of decay of un.

As there are well developed methods to prove localization (thus exponential decay

of the eigenfunctions) in various applications, this can be used to establish further

interesting consequences [7, 8, 34].

With the development of recent powerful methods [9, 5, 3] to establish non-

perturbative reducibility directly and independently of localization for the dual model,

the reverse direction: obtaining localization for H̃c,v,α from reducibility of Hc,v,α, first

used in a more restricted form back in [20], started gaining prominence. In the

Schrödinger case, reducibility provides a direct construction of eigenfunctions for the

dual model (with the decay governed by the quality of reducibility), so their com-

pleteness becomes the main issue. This has been considered a nontrivial question

even for the almost Mathieu family. It had been conjectured for a long time [51] that

λ = eβ, where β is the upper rate of exponential growth of denominators of continued

fractions approximants to α (see (5.1.2)), is the phase transition line from purely

singular continuous spectrum to pure point spectrum. A combination of the almost

reducibility conjecture [3] and techniques of [5, 35, 70] led to establishing reducibility
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throughout the dual of the entire conjectured localization region, yet completeness of

the resulting eigenfunctions remained a problem. This was recently resolved in [12]

where the authors used delicate quantitive information on the reducibility and there-

fore dual eigenfunctions with certain rate of decay to prove the pure point spectrum

part of the conjecture. More recently, in [42], the authors obtained an elementary

proof of complete localization for the dual model under the assumption of only cer-

tain L2-reducibility of the Schrödinger cocycle for H(θ) for almost all energies with

respect to the density of states measure.

For the Jacobi case the situation is more problematic. It was noticed (albeit in a

different form) in [63] that for c 6≡ 1 the existence of reducibility at E for the cocycle of

Hc,v,α may not lead to E being an eigenvalue of H̃c,v,α. The difficulty is also reflected

in the extended Harper’s model (see Section 1.6). On the positive side, in the dual

regions I and II, we do in general have purely absolutely continuous spectrum, which

is always associated to reducibility, in region II, and pure point spectrum in region I

[43, 8]. However on the negative side, purely absolutely continuous spectrum for a.e.

θ has been proved throughout the whole self-dual region III in the anisotropic case

[8]. Thus whether reducibility implies localization for the dual model could depend

on c, v, α, and even the existence of dual eigenvectors, automatic in the Schrödinger

case, becomes an issue.

In this paper, we answer this question for analytic c. We establish an if-and-only-if

topological criterion in terms of the function c only, for the reducibility for Hc,v,α to

imply pure point spectrum of H̃c,v,α. Thus we extend the result of [42] to the Jacobi

setting in a sharp way and also describe exactly what happens in the region to which

it does not extend. It turns out the winding number w(c) of c(θ) (see (2.4)) is the key

quantity.

With the normalized transfer matrix cocycle (α, Ã|c|,E) defined in (1.17), we have

Theorem 2.1.1 Suppose for c(θ) ∈ Cω
h
2π

(T,C\{0}), β(α) < h, the normalized cocy-

cles (α, Ã|c|,E) are L2-reducible for a.e. E with respect to the density of states measure.

Then for a.e. x ∈ T
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• if w(c) = 0, the spectra of H̃c,v,α(x) are pure point.

• if w(c) 6= 0, the spectra of H̃c,v,α(x) are purely absolutely continuous.

As an important application, we obtain sharp arithmetic phase transition result

for the extended Harper’s model (see (3)) in the positive Lyapunov exponent region.

Theorem 2.1.2 When L(λ) > 0,

• if β(α) < L(λ), Hλ,α(θ) has pure point spectrum for a.e. θ.

• if L(λ) < β(α), Hλ,α(θ) has purely singular continuous spectrum for a.e. θ.

Remark 2.1.1 L(λ) > 0 if and only if 1 > max (λ1 + λ3, λ2), see Theorem 1.6.2.

β(α)

scpp

0 L(λ)
••

The second statement of Theorem 2.1.2 does not require a specific form of c(θ)

and holds for general analytic c that are even allowed to vanish on T. Namely, one

can define a coefficient δc(α, θ) ∈ [−∞,∞], dependent on c(θ) through its zeros on T

only, see (2.36), and satisfying δc(α, θ) = β(α) for a.e. θ, so that

Theorem 2.1.3 For any Lipshitz v, Hc,v,α(θ) has no eigenvalues on {E : L(E) <

δc(α, θ)}. In particular, for a.e. θ it has no eigenvalues on {E : L(E) < β(α)}.

This immediately implies

Corollary 2.1.1 If L(E) > 0 for a.e. E (in particular, if there exists θ0 ∈ T with

c(θ0) = 0), then Hc,v,α(θ) has purely singular continuous spectrum on {E : L(E) <

δc(α, θ)}. If L(E) > 0 for a.e. E and c does not vanish on T, then Hc,v,α(θ) has

purely singular continuous spectrum on {E : L(E) < β(α)}, for all θ.

We prove Theorem 2.1.1 in Section 2.3. We first show that zero w(c) ensures that

elements of the reducibility matrix can be used to construct eigenfunctions for the
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dual model. Then we employ an argument of [42] to show completeness of those eigen-

functions. To prove the second part we establish a unitary conjugacy in L2(T × Z)

between H̃c,v,α and H̃s,v,α for a certain s with w(s) = 0, ensuring that, by part one,

H̃s,v,α(x) has pure point spectrum for a.e. x. We then use those eigenfunctions to

construct a large family of vector-valued functions ψq,`,jx (·) such that for a.e. x the

corresponding spectral measures are constant in x. Finally, we prove their absolute

continuity based again on the reducibility for the original model and argue complete-

ness. Once Theorem 3.1.4 is proved, to establish the pure point part of Theorem 2.1.2

all we need is the dual reducibility which follows quickly from a combination of [3, 5],

similarly to the argument of [12]. This is done in Section 2.5. In fact, Theorem 2.1.2

is an extension of the main theorem of [12], and specializes to it when λ1 = λ3 = 0.

The singular continuous part as well as the general Theorem 2.1.3 are proved in

Section 2.4. The result is similar in spirit to the recent theorems on meromorphic

potentials [52, 53]. The non-singular case is simpler and could follow similarly to

the singular continuous part of [12] but we choose to treat it together with the more

involved singular case. While the Jacobi situation is quite different, the common

feature of singular Jacobi and meromorphic cocycles is their singularity, leading to

certain shared phenomena. It is an interesting question whether the first statement

of the Corollary 2.1.1 is sharp at least in some situations, so whether like in the

Maryland model [52], there is pure point spectrum for the complementary set of θ. It

is also interesting to see whether the second statement is sharp for general analytic

potentials (something still far from reach even in the Schrödinger case).

2.2 Preliminaries

2.2.1 Winding number

For c(θ) ∈ Cω(T,C\{0}) on T, let

w(c) =

∫
T

c′(θ)

c(θ)
dθ(2.4)
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be the winding number of c(θ). It describes how many times does the graph of c(θ)

circle around the origin when θ goes along T.

2.2.2 Integrated density of states of dual operators

The Aubry duality between Hc,v,α and H̃c,v,α implies the following relation between

their density of states measures, see e.g. a particular case of Theorem 2 in [63],

dNHc,v,α(E) = dNH̃c,v,α
(E).(2.5)

2.2.3 Cocycles and Lyapunov exponent

We have the following uniform control of the norm of transfer matrices.

Lemma 2.2.1 (e.g.[7]) Let (α,A) be a continous cocycle, then for any δ > 0 there

exists Cδ > 0 such that for any n ∈ N and θ ∈ T we have

‖An(θ)‖ ≤ Cδe
(L(α,A)+δ)n.

Remark 2.2.1 If we apply the previous lemma to one dimensional cocycle, we have

that for any continuous function z, if ln |z(θ)| ∈ L1(T) then for any ε > 0 there exists

constant C > 0 so that for any a ≤ b ∈ Z.

b∏
k=a

|z(θ + kα)| ≤ Ce(b−a+1)(
∫
T ln |z(θ)|dθ+ε) for any θ ∈ T.

2.3 Proof of Theorem 2.1.1

The proof of Theorem 3.1.4 mainly relies on Lemmas 2.3.1 and 2.3.6.

2.3.1 Proof of the first part of Theorem 3.1.4

Lemma 2.3.1 Let s(θ) = c(θ)e−2πik0(θ+α
2

), where k0 = w(c). Then under the condi-

tions of Theorem 3.1.4, the spectra of the dual Hamiltonians H̃s(x) are pure point for

a.e. x.
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Proof: We start with

Lemma 2.3.2 Suppose s(θ) =
∑

k∈Z ŝke
2πik(θ+α

2
), ŝk ∈ R. Suppose s(θ) is analytic

and nonzero on |Imθ| ≤ h
2π

and w(s) = 0. Then if β(α) < h there exists analytic

funtion f(θ) such that

s(θ)

|s|(θ)
= ef(θ+α)−f(θ).

Proof: Since w(s(· + iε)) ≡ 0, we can properly define log s(θ) and arg s(θ) on

|Imθ| ≤ h
2π

. Now that obviously s̃(θ) = s(−θ − α), we have∫
T

ln |s(θ)| dθ =

∫
T

ln |s̃(θ)| dθ.(2.6)

and ∫
T

arg s(θ) dθ −
∫
T

arg s̃(θ) dθ =

∫
T

arg s(θ) dθ −
∫
T

arg s(−θ − α) dθ = 0.(2.7)

Combining (2.6), (2.7) with β(α) < h we are able to solve a coholomogical equation,

hence there exists an analytic function g(θ) so that

g(θ + α)− g(θ) = ln s(θ)− ln s̃(θ).

This clearly implies

s(θ)

s̃(θ)
= eg(θ+α)−g(θ).

Hence

s(θ)

|s|(θ)
= ef(θ+α)−f(θ),

where f(θ) = 1
2
g(θ). �

Now let us come back to the proof of Lemma 2.3.1. We have for a.e. E with

respect to the density of states measure dNv,c,α
1 , there is BE ∈ L2(T, SL(2,R)) so

that

B−1
E (θ + α)Ã|c|,E(θ)BE(θ) = A∗,(2.8)

1It is the same as dNHs,v,α = dNH|c|,v,α = dNH|s|,v,α , since Hc,v,α(θ), Hs,v,α(θ), H|c|,v,α(θ) and

H|s|,v,α(θ) differ from each other by unitary conjugations for any fixed θ ∈ T.
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where A∗ is a constant matrix. Since for θ ∈ T, Ã|c|,E(θ) = Ã|s|,E(θ), we have

B−1
E (θ + α)Ã|s|,E(θ)BE(θ) = A∗.(2.9)

By [5] (see Lemma 1.4 therein), if (α, Ã|s|,E) is L2-reducible for a.e. E with re-

spect to the density of states measure, then (α, Ã|s|,E) is Cω-reducible for E ∈ U

where U is a set with dNv,|s|,α(U) = 1. Thus we could assume (2.9) holds for

BE ∈ Cω(T, PSL(2,R)).

Next we are going to show the following:

Lemma 2.3.3 For a.e. E with respect to the density of states measure, there exists

B̃E(θ) ∈ Cω(T, SL(2,R)) so that

B̃−1
E (θ + α)Ã|s|,E(θ)B̃E(θ) = Rρ|s|(E).(2.10)

Proof: By (2.9), we already have

B−1
E (θ + α)Ã|s|,E(θ)BE(θ) = A∗,

where BE(θ) ∈ Cω(T, PSL(2,R)) and A∗ is a constant matrix. We could assume

A∗ = Rφ or A∗ = J± =

±1 1

0 ±1

 or A∗ = ±Id. If E is such that A∗ = J± or ±Id,

we get ρ|s|(E) ∈ Zα+Z. Therefore such E’s form a measure zero set with respect to

the density of states measure. Now, let’s consider the case A∗ = Rφ. By (1.16), this

implies φ = ρ|s|(E) − kα/2, where k = degBE. Now let B̃E(θ) = BE(θ)R− k
2
θ. We

have

B̃−1
E (θ + α)Ã|s|,E(θ)B̃E(θ) = Rρ|s|(E).

Note that deg B̃E = 0, thus B̃E(θ) ∈ Cω(T, SL(2,R)). �

Now by Lemma 2.3.3, we could assume there exists B̃E(θ) ∈ Cω(T, GL(2,C)) so

that

B̃−1
E (θ + α)Ã|s|,E(θ)B̃E(θ) =

e2πiρ|s|(E) 0

0 e−2πiρ|s|(E)

 .(2.11)
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By Lemma 2.3.2, there exists analytic f(θ) so that s(θ) = |s|(θ)ef(θ+α)−f(θ). Then by

(2.11), we havee2πiρ|s|(E) 0

0 e−2πiρ|s|(E)

(2.12)

=B−1
E (θ + α)Ã|s|,E(θ)BE(θ)

=
s(θ)√

|s|(θ)|s|(θ − α)
{Ms(θ + α)BE(θ + α)}−1As,E(θ)Ms(θ)BE(θ)

=

{
Ms(θ + α)BE(θ + α)e−

f(θ+α)
2√

|s|(θ)

}−1

As,E(θ)

{
Ms(θ)BE(θ)e−

f(θ)
2√

|s|(θ − α)

}
.

Let D̃E(θ) =

DE,11(θ) DE,12(θ)

DE,21(θ) DE,22(θ)

 := {Ms(θ)BE(θ)e−
f(θ)

2√
|s|(θ−α)

}. (2.12) yields that

(E − v(θ))DE,11(θ) = e2πiρ|s|(E)s(θ)DE,11(θ + α) + e−2πiρ|s|(E)s̃(θ − α)DE,11(θ − α),

(2.13)

(E − v(θ))DE,21(θ) = e−2πiρ|s|(E)s(θ)DE,21(θ + α) + e2πiρ|s|(E)s̃(θ − α)DE,21(θ − α).

(2.14)

We now can follow the argument of [42]. We are going to show that

Lemma 2.3.4 For a.e. x, H̃s,v,α(x) has a complete set of normalized eigenfunctions

with simple eigenvalues.

Proof: As mentioned, this proof is essentially from [42], we include it here for

completeness. Since ρ|s| : R → [0, 1
2
] is bijective on the spectrum, for each x ∈

[0, 1
2
] there exists E(x) such that ρ|s|(E(x)) = x. By (2.13) and a straightforward

computation, there is F1 with |F1| = 0 so that for x ∈ [0, 1
2
] \ F1, H̃s,v,α(x) has

a normalized eigenfunction {uk(x)}k =

{
D̂E(x),11(k)

‖D̂E(x),11‖L2(T)

}
k

at energy E(x). Also for

x ∈ [−1
2
, 0] \ F2, |F2| = 0, H̃s,v,α(x) has a normalized eigenfunction {uk(x)}k ={

D̂E(x),12(k)

‖D̂E(x),12‖L2(T)

}
k

at energy E(−x). Let

F = (F1 + Zα) ∪ (F2 + Zα) ∪ {x ∈ [−1

2
,
1

2
] | 2x ∈ Zα + Z}.(2.15)
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Clearly, |F | = 0. Now for every x ∈ F c, every n ∈ Z, H̃s,v,α(x+nα) has a normalized

eigenfunction {uk(x+ nα)}k at energy E(x+ nα). Also for different m and n, E(x+

mα) 6= E(x + nα), since otherwise we would have x + mα = −(x + nα) mod Z,

which is impossible due to our definition of F , (2.15). Let En(x) := E(x+nα), Pn(x)

be the spectral projection of H̃s,v,α(x) onto En(x) and P (x) =
∑

n∈Z Pn(x). Notice

that H̃s,v,α(x+ nα) = T−nH̃s,v,α(x)T n, where (Tu)k = uk−1. Thus

Pn(x)T nu(x+ nα) = T nu(x+ nα),

in other words, T nu(x) is in the range of Pn(x− nα). Thus for any l ∈ Z, 〈δl, Pn(x−

nα)δl〉 ≥ |〈δl, T nu(x)〉|2, therefore
∑

n∈Z〈δl, Pn(x− nα)δl〉 ≥ 1. We have

1 ≥
∫
F c
〈δl, P (x)δl〉 =

∫
F c

∑
n∈Z

〈δl, Pn(x− nα)δl〉 ≥ 1.

This implies for a.e. x, 〈δl, P (x)δl〉 = 1 for every l, therefore P (x) = 1. Thus for a.e.

x ∈ T, ∪n∈ZT nu(x+ nα) forms a complete set of eigenfunctions and ∪n∈ZE(x+ nα)

forms the eigenvalues. �

Note that this immediately implies Lemma 2.3.1, and thus also the first part of

Theorem 3.1.4, since when w(c) = 0, we have H̃s,v,α = H̃c,v,α. �

As a byproduct of full measure Cω-reducibility (2.9), we could obtain the following

result about the absolute continuity of the density of states measure which will play

an important role in the proof of Lemma 2.3.6.

Lemma 2.3.5 The density of states measure of Hc,v,α (and thus of Hs,v,α, H̃c,v,α and

H̃s,v,α) is absolutely continuous.

Proof: By subordinacy theory [54], (α, Ã|c|,E) being analytically reducible for

E ∈ U implies that for any θ, the singular part of the spectral measure µ|c|,v,α,θ of

H|c|,v,α(θ) gives zero weight to U . By Lemma 2.3.3, this implies dNH|c|,v,α = dNHc,v,α =

dNHs,v,α are absolutely continuous. By (2.5) and Footnote 1, we get that dNH̃c,v,α
=

dNH̃s,v,α
, the density of states measures of the dual Hamiltonians H̃c,v,α and H̃s,v,α,

are absolutely continuous. �
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2.3.2 Proof of the second part of Theorem 3.1.4

Lemma 2.3.6 If w(c) = k0 6= 0, the spectra of H̃c,v,α are purely absolutely continuous

for a.e. x.

Proof of Lemma 2.3.6

The plan of the proof is to find a unitary transformation of L2(T×Z) relating H̃c,v,α

to H̃s,v,α, and prove that the (already established in the first part) a.e. pure point

spectrum of H̃s,v,α(x) for a.e. x leads to absolutely continuous spectrum of H̃c,v,α(x)

for a.e. x.

Let us introduce two unitary transformations on H = L2(T× Z),

(URψ)(x, n) =

∫ 1

0

e2πiβn
∑
p∈Z

ψ(β, p)e2πip(x+nα) dβ.(2.16)

(Ukφ)(x, n) = e2πi(nk(nα
2

+x))ψ(x, n).(2.17)

UR, first introduced in [23], is just the Aubry duality transformation, also given in a

more compact form as

URψ(x, n) = ψ̂(n, x+ αn),(2.18)

where ψ̂ ∈ L2(Z× T) is the Fourier transform. Operator Uk, first introduced in [63],

is unitary on each fiber. We have

(U−1
R ψ)(x, n) =

∫ 1

0

e−2πiβn
∑
p∈Z

ψ(β, p)e−2πip(x+nα) dβ.(2.19)

Define (Smψ)(x, n) = ψ(x+mα, n−m). Then (Smvl,j)(x, n) = vl,j(x+mα, n−m) =

vl,m+j(x, n).

Lemma 2.3.7 The following hold

(URSlψ)(x, n) =e2πilx(URψ)(x, n)(2.20)

(U−1
R Slψ)(x, n) =e−2πilx(U−1

R ψ)(x, n)(2.21)

(UkSlψ)(x, n) =e2πilk(x+ lα
2

)(SlUkψ)(x, n).(2.22)
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Proof: Straightforward computation. �

Define operators Hc,v,α, H̃c,v,α as acting on H via direct integrals in x of Hc,v,α(x)

and H̃c,v,α(x). Then one way to formulate the Aubry duality is

Lemma 2.3.8

H̃c,v,α = U−1
R Hc,v,αUR.(2.23)

Proof: A computation using Lemma 2.3.7. �

Now we establish a connection between H̃s,v,α and H̃c,v,α. It is given by the fol-

lowing

Lemma 2.3.9

H̃c,v,α = (U−1
R Uk0UR)H̃s,v,α(U−1

R Uk0UR)−1.(2.24)

Proof: A more involved computation using Lemma 2.3.7. �

By Lemma 2.3.4, for x ∈ F c with |F | = 0, H̃s,v,α(x) has a complete set of nor-

malized eigenfunctions with simple eigenvalues. First, we are going, following [32], to

prove there is a covariant measurable enumeration of this set.

For any x ∈ F c, let u(x, ·) be one of its normalized eigenfunctions. Define j(u(x))

be the leftmost maximum for |u(x, ·)|. We fix u(x, ·) by requiring u(x, j) > 0 and say

it is attached to j. The key observation is that the argument of Section 2 of [32], while

formulated there for discrete one dimensional Schrödinger operators, works verbatim

for any dicrete one-dimensional operator with simple eigenvalues 2. Thus we get for

a.e. x a complete set of eigenfunctions {vl,j(x, ·)}l,j with eigenvalues {el,j(x)} so that

1. for each fixed l, j, vl,j(x, ·) and el,j(x) are measurable functions of x.

2. {vl,j(x, ·)}j are attached to j.

3. vl,j(x, j) ≥ vl+1,j(x, j). If the equality holds then el,j(x) > el+1,j(x). 3

2The existence of measurable enumeration of eigenfunctions was proved, in great generality in

[31]. However, since we need a covariant representation satisfying (2.27) the argument of [32] is

better suited to our needs
3For fixed l, j, generally, vl,j(x) may vanish identically on a positive measure set of x
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By simplicity of the eigenvalues, for any (l, j) 6= (l′, j′) we have∑
n∈Z

vl,j(x, n)vl′,j′(x, n) = 0.(2.25)

Since H̃s,v,α(x+ pα) = T−pH̃s,v,α(x)T p, where Tψ(n) = ψ(n− 1), we have

vl,j(x+ pα, · − p) = vl,j+p(x, ·).(2.26)

Therefore by (2.25) and (2.26), for any l, l′, any p 6= 0,∑
n

vl,j(x+ pα, n− p)vl′,j(x, n) = 0.(2.27)

Fix any l, j and fq(x) ∈ L2(T). Let ψq,l,jx (n) = (U−1
R Uk0URfqvl,j)(x, n) ∈ l2(Z).

Let µq,l,jx be the spectral measure of H̃c,v,α(x) associated to ψq,l,jx (·).

Lemma 2.3.10 dµq,l,jx is a.e. independent of x.

Proof: Take any continuous function F and m 6= 0. By the definition of spectral

measure we have, by (2.24),

I ,|
∫
T
e2πimx

∫
F (E) dµq,l,jx (E) dx|

=|
∫
T
e2πimx〈ψq,l,jx , F (H̃c,v,α(x))ψq,l,jx 〉l2(Z) dx|

=|〈U−1
R Uk0URfqvl,j, e

2πimxU−1
R Uk0URF (H̃s,v,α)fqvl,j〉H|

Applying (2.20), (2.21) and (2.22) to this inner product we have

I =|〈U−1
R Uk0URfqvl,j, U

−1
R S−mUk0URF (H̃s,v,α)fqvl,j〉H|

=|〈Uk0URfqvl,j, e
2πimk0(x−mα

2
)Uk0S−mURF (H̃s,v,α)fqvl,j〉H|

=|〈URfqvl,j, e2πimk0xS−mURF (H̃s,v,α)fqvl,j〉H|

=|〈URfqvl,j, S−me2πimk0xURF (H̃s,v,α)fqvl,j〉H|

=|〈SmURfqvl,j, e2πimk0xURF (H̃s,v,α)fqvl,j〉H|

=|〈SmURfqvl,j, URSmk0F (H̃s,v,α)fqvl,j〉H|

=|〈U−1
R SmURfqvl,j, Smk0F (H̃s,v,α)fqvl,j〉H|

=|〈S−mk0e
−2πimxfqvl,j, F (H̃s,v,α)fqvl,j〉H|
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Thus, by (2.27),

I =|
∫
x∈T

∑
n∈Z

e−2πim(x−mk0α)fq(x−mk0α)vl,j(x−mk0α, n+mk0)F (el,j(x))fq(x)vl,j(x, n) dx|

(2.28)

=|
∫
x∈T

e2πimxfq(x−mk0α)fq(x)F (el,j(x))
∑
n∈Z

vl,j(x−mk0α, n+mk0)vl,j(x, n) dx|

=0,

This result implies
∫
F (E) dµq,l,jx (E) is a.e. independent of x for all continuous

functions F . Since the set of continuous function is separable, we conclude that

dµq,l,jx is a.e. independent of x. �

Lemma 2.3.10 is similar to the analogous (but much simpler) statement in [32] for

the Aubry duality transformation UR. After that the argument of [32] for absolute

continuity of the dual measures relies on the application of Deift-Simon theorem [29]

(the latter is still unproved for the zero L(E) case leading to a gap in [32], but correct

in case of L(E) > 0.) Here we however cannot employ this line of reasoning since

Deift-Simon theorem requires a second order operator while our H̃s,v,α is generally

long-range. Thus we employ a different strategy to obtain absolute continuity, which

has an additional advantage of being somewhat universal.

Lemma 2.3.11 For a.e. x, dµq,l,jx is absolutely continuous.

Proof: Note that by the definition of spectral measure, for any Borel set A we

have ∫
T
dµq,l,jx (A) dx(2.29)

=

∫
T
〈ψq,l,jx , χA(H̃c,v,α(x))ψq,l,jx 〉l2(Z) dx

=〈U−1
R Uk0URfqvl,j, χA(H̃c,v,α)U−1

R Uk0URfqvl,j〉H

=〈U−1
R Uk0URfqvl,j, U

−1
R Uk0URχA(H̃s,v,α)fqvl,j〉H

=〈fqvl,j, χA(H̃s,v,α)fqvl,j〉H

=dµfqvl,j(A),
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where dµfqvl,j is the spectral measure of H̃s,v,α : H → H associated to the vector

fq(x)vl,j(x, ·) ∈ H. Since dµq,l,jx is a.e. independent of x, by (2.29) we get

dµq,l,jx (A) = dµfqvl,j(A) for a.e. x.(2.30)

Now it suffices to show that for zero Lebesgue measure set A, dµfqvl,j(A) = 0. Note

that again by the definition of spectral measure,

dµfqvl,j(A)

=

∫
T

∑
n∈Z

fqvl,j(x, n)(χA(H̃s,v,α)fqvl,j)(x, n) dx.(2.31)

For a.e. x ∈ T,

(H̃s,v,αvl,j)(x, n) = el,j(x)vl,j(x, n),(2.32)

thus (H̃s,v,αfqvl,j)(x, n) = el,j(x)fq(x)vl,j(x, n). By (3.6),

dµfqvl,j(A)

=

∫
T

∑
n∈Z

fq(x)vl,j(x, n)(χA(H̃s,v,α)fqvl,j)(x, n) dx

=

∫
T

∑
n∈Z

fq(x)vl,j(x, n)χA(el,j(x))fq(x)vl,j(x, n) dx

=

∫
T
χA(el,j(x))|fq(x)|2 dx.(2.33)

It is thus enough to show for any q, l, j ∈ Z that (2.33)=0. We can prove this using

the absolutely continuity of the density of states measure. Note that for any k ∈ Z,

dNH̃s,v,α
(A) =

∫
T
dµδk,x(A) dx,(2.34)

where dµδk,x is the spectral measure of H̃s,v,α(x) associated to the vector δk ∈ l2(Z).

Since for a.e. x, vl,j(x, ·) is an orthonormal basis of l2(Z), we have that

δk(·) =
∑
l,j

〈δk(·), vl,j(x, ·)〉vl,j(x, ·) =
∑
l,j

vl,j(x, k)vl,j(x, ·).

By (2.25) and (2.32), this means for a.e. x,

dµδk,x(A) = 〈δk, χA(H̃s,v,α(x))δk〉 =
∑
l,j

|vl,j(x, k)|2χA(el(x, j)).(2.35)
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By Lemma 2.3.5, dNH̃s,v,α
(A) = 0. Thus combining (2.34) with (2.35) we get

∑
l,j

∫
χA(el,j(x)) dx =

∑
k∈Z

∫
T
dµδk,x(A) dx = 0.

This implies in particular

χA(el,j(x)) = 0 for a.e. x and any l, j.

By (2.33), dµfqvl,j(A) = 0. By (2.30), we conclude that for a.e. x, {dµq,l,jx }q,l,j are

absolutely continuous. �

Let {fq(x)}q be an orthonormal basis for L2(T). Note that the non-vanishing

{vl,j(x, ·)} form an orthonormal basis for H. It follows that {fq(x)vl,j(x, ·)}q,l,j form

a complete orthogonal set in H (but not necessarily orthonormal). Since U−1
R Uk0UR

is unitary, it follows that {(U−1
R Uk0URfqvl,j)(x, ·)}q,l,j is a complete orthogonal set in

H. Thus for a.e. x, {ψq,l,jx (·) = (U−1
R Uk0URfqvl,j)(x, ·)}q,l,j is a complete set in l2(Z).

Since ψq,l,jx is a complete set, we get that H̃c,v,α(x) only has absolutely continuous

spectrum for a.e. x. �

2.4 Absence of eigenvalues. Proof of Theorem 2.1.3

and the second part of Theorem 2.1.2

2.4.1 Preparation for the proof of Theorem 2.1.3

Consider a general Jacobi operator (Hc,v,α(θ)u)n = c(θ + nα)un+1 + c̃(θ + (n −

1)α)un−1 + v(θ + nα)un, where v(θ) is Lipshitz and c(θ) ∈ Cω(T) is allowed to have

zeros on T. Let c(θ) = f(θ)g(θ), where f(θ) =
∏m

j=1(e2πiθ− e2πiθj) with {θj}mj=1 being

zeros of c(θ) counting multiplicities, and g(θ) 6= 0 on T.

Let us define

δc(α, θ) = lim sup
n→∞

∑m
j=1 ln ‖qn(θ − θj)‖+ ln qn+1

qn
.(2.36)

Note that for a.e. θ, δc(α, θ) = β(α).
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We will assume θ does not belong to the following countable set (otherwise the

operator is not well defined).

θ /∈ Θ , ∪mj=1θj + Zα + Z(2.37)

Fix any θ /∈ Θ and energy E satisfying L(E) < δc(α, θ). Recall that a formal

solution to Hc(θ)u = Eu can be reconstructed via the following equation:un+1

un

 = Ac,E(θ + nα)

 un

un−1

 ,

where Ac,E(θ) =

E−v(θ)
c(θ)

− c̃(θ−α)
c(θ)

1 0

. We separate the singular and regular parts of

Ac,E and rewrite it in the following way:

Ac,E(θ) =
1

f(θ)

E−v(θ)
g(θ)

− c̃(θ−α)
g(θ)

f(θ) 0

 , 1

f(θ)
Fc,E(θ).(2.38)

From now on we will omit the dependence of these matrices on c, E and denote

A(θ) = Ac,E(θ) and F (θ) = Fc,E(θ). Let Ak = A(θ + kα), F k = F (θ + kα). For

any function z(θ) on T let zk = z(θ + kα), for simplicity. Note that clearly we have∫
T ln |f(θ)|dθ = 0, hence L(E) = L(α,A) = L(α, F ).

The first step is standard in Gordon-type methods. For A ∈ GL(2,C) we have

the following Caley-Hamilton equations:

A2 − TrA · A+ detA · Id = 0,(2.39)

A− TrA · Id + detA · A−1 = 0.(2.40)

Fix any 0 < ε < (δc(α, θ) − L(E))/4. By the definition of δc(α, θ), there exists a

subsequence {qnl} of {qn} such that

m∏
j=1

‖qnl(θ − θj)‖ ≥
e(δc−ε)qnl

qnl+1

.(2.41)

We will use the following estimate.

Lemma 2.4.1 [53]

qnl−1∏
j=0

|f(θ + jα)| ≥ e(δc−ε)qnl

qnl+1

.
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2.4.2 Proof of Theorem 2.1.3

Assume u is a bounded solution to Hc,v,α(θ)u = Eu. We could scale u so that

‖

 u0

u−1

 ‖ = 1. We will prove

Lemma 2.4.2 For qnl large enough

max

‖
 uqnl

uqnl−1

 ‖, ‖
 u2qnl

u2qnl−1

 ‖, ‖
 u−qnl

u−qnl−1

 ‖
 ≥ 1

4
,

Proof of Lemma 2.4.2

If ‖

 uqnl

uqnl−1

 ‖ = ‖Aqnl (θ)

 u0

u−1

 ‖ < 1
4
, we divide the discussion into 2 cases:

Case 1: |TrAqnl (θ)| ≤
1
2
.

Note that since | detAqnl (θ)| = |
c(θ−α)

c(θ+(qnl−1)α)
| → 1, (2.39) implies ‖A2

qnl
(θ)

 u0

u−1

 ‖ ≥
7
8

for qnl large enough. By telescoping,

(A2
qnl

(θ)− A2qnl
(θ))

 u0

u−1


=(

qnl−1∏
k=0

Ak −
2qnl−1∏
k=qnl

Ak)Aqnl (θ)

 u0

u−1


=

qnl−1∑
i=0

 qnl−1∏
k=i+1

Ak

 · (Ai − Aqnl+i) ·
qnl+i−1∏

k=qnl

Ak

 uqnl

uqnl−1


=

qnl−1∑
i=0

 qnl−1∏
k=i+1

Ak

 · (Ai − Aqnl+i) ·
 uqnl+i

uqnl+i−1



=

qnl−1∑
i=0

 qnl−1∏
k=i+1

F k

fk

 ·
Fi − Fqnl+i

fi
·

 uqnl+i

uqnl+i−1

+
fqnl+i − fi

fi
·

uqnl+i+1

uqnl+i

 .

(2.42)

Note that by our assumption u is a bounded solution, so there exists a constant
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C1 > 0 so that

‖

 ut

ut−1

 ‖ ≤ C1 for any t ∈ Z.(2.43)

Clearly

|fqnl+i − fi| ≤
C2

qnl+1

for some constant C2,(2.44)

and since v is Lipshitz we have

‖Fi − Fqnl+i‖ ≤
C3

qnl+1

for some constant C3.(2.45)

Also by Lemmas 2.4.1, 2.2.1 and Remark 2.2.1, we have

‖
∏qnl−1

k=i+1 F
k‖

|
∏qnl−1

k=i fk|
=
‖
∏qnl−1

k=i+1 F
k‖ · |

∏i−1
k=0 fk|

|
∏qnl−1

k=0 fk|
≤ qnl+1e

(L(E)−δc+3ε)qnl .(2.46)

Now we combine (2.42), (2.43), (5.5), (2.44) with (2.46),

‖(A2
qnl

(θ)− A2qnl
(θ))

 u0

u−1

 ‖ < e(L(E)−δc+4ε)qnl → 0.

Hence ‖A2qnl−1(θ)

 u0

u−1

 ‖ ∼ ‖A2
qnl

(θ)

 u0

u−1

 ‖ ≥ 7
8
.

Case 2: |TrAqnl (θ)| >
1
2
.

Then | detAqnl (θ)| = | c(θ−α)
c(θ+(qnl−1)α)

| → 1 and (2.40) imply ‖A−1
qnl

 u0

u−1

 ‖ ≥ 1
4

for

qnl large enough. Similar to Case 1, we can prove ‖A−qnl (θ)

 u0

u−1

 ‖ ∼ ‖A−1
qnl

(θ)

 u0

u−1

 ‖ ≥
1
4
. �

By Lemma 2.4.2, Hc,v,α(θ) has no decaying solutions on {E : L(E) < δc(α, θ)},

therefore no eigenvalues. �

2.4.3 Proof of the second part of Theorem 2.1.2

Now let’s come back to the extended Harper’s model, where cλ(θ) = λ1e
−2πi(θ+α

2
) +

λ2 +λ3e
2πi(θ+α

2
). Note that cλ(θ) could take zero value when the parameters λ satisfy

some certain conditions. In fact, recall Observation 1.6.3,
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• when λ1 = λ3 ≥ λ2

2
, singular points are θ1 = 1

2π
arccos (− λ2

2λ1
) − α

2
and θ2 =

− 1
2π

arccos (− λ2

2λ1
)− α

2
(notice that when λ1 = λ2

2
there is a single singular point

θ1 = θ2 = 1
2
− α

2
).

• when λ1 6= λ3 and λ1 + λ3 = λ2, the singular point is θ1 = 1
2
− α

2
.

Thus for the extended Harper’s model, the proper definition of δc(α, θ) depends on

the parameters:

• Case 1: (non-singular case): When (1) λ1 6= λ3 and λ1 + λ3 6= λ2 or (2)

λ1 = λ3 <
λ2

2
, we have δc(α, θ) = β(α) for all θ.

• Case 2: When λ1 + λ3 = λ2, then δc(α, θ) = lim supn→∞
ln ‖qn(θ−θ1)‖+ln qn+1

qn
=

β(α) for a.e. θ, where θ1 , 1
2
− α

2
.

• Case 3: When λ1 = λ3 >
λ2

2
, then δ(α, θ) = lim supn→∞

∑
j=1,2 ln ‖qn(θ−θj)‖+ln qn+1

qn
=

β(α) for a.e. θ, where θ1 = 1
2π

arccos (− λ2

2λ1
)− α

2
and θ2 = − 1

2π
arccos (− λ2

2λ1
)− α

2
.

Note that for each of the three cases, L(λ) < β(α) implies absence of eigenvalues for

either all or an arithmetic explicit full measure set of θ. Thus the purely singular

continuous part simply comes from the fact that L(λ) > 0. �

2.5 Pure point spectrum. Proof of the first part

of Theorem 2.1.2

2.5.1 Preparation

Note that if λ = (λ1, λ2, λ3) is in region Io, its dual λ̂ = (λ3

λ2
, 1
λ2
, λ1

λ2
) belongs to region

IIo. By Theorem 1.6.2, for λ in region Io and any E ∈ Σλ,α, L(E) ≡ L(λ) > 0; also

for any E ∈ Σλ̂,α, (α, Ã|cλ̂|,E) is subcritical on |Imθ| ≤ L(λ)
2π

. It is straightforward that

w(cλ̂) = 0, since cλ̂(θ) is explicitly given by

cλ̂(θ) =
λ1

λ2

e−2πi(θ+α
2

)

(
e2πi(θ+α

2
) − −1 +

√
1− 4λ1λ3

2λ1

)(
e2πi(θ+α

2
) − −1−

√
1− 4λ1λ3

2λ1

)
.

The following theorems provide full measure reducibility of (α, Ã|cλ̂|,E).
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Theorem 2.5.1 [3] For α ∈ R\Q such that β(α) > 0, if a cocycle (α,A) is subcriti-

cal on |Imθ| ≤ h
2π

, then for every 0 < h′ < h, there exists C > 0 such that if δ > 0 is

sufficiently small, then there exist a subsequence {pnk
qnk
} of the continued fraction ap-

proximants of α, sequences of matrices Bnk ∈ Cω
h′
2π

(T,PSL(2,R)) and Rnk ∈ SO(2,R)

such that ‖Bnk‖ h′
2π
≤ eCδqnk and ‖Bnk(θ + α)A(θ)B−1

nk
(θ)−Rnk‖ h′

2π
≤ e−δqnk .

Theorem 2.5.2 [5, 35, 70] Let (α,A) ∈ R\Q × Cω
h
2π

(T, SL(2,R)) with 0 < h̃ < h′,

R ∈ SO(2, R), for every τ > 0, γ > 0, if rotf (α,A) ∈ DCα(τ, γ), where

DCα(τ, γ) = {φ ∈ T|‖2φ−mα‖T ≥
γ

(1 + |m|)τ
, for any nonzero m ∈ Z}

then there exists T = T (τ), κ = κ(τ) such that if

‖A(θ)−R‖ h′
2π
< T (τ)γκ(τ)(h′ − h̃)κ(τ),(2.47)

then there exists B ∈ Cω
h̃
2π

(T, SL(2,R)) and ϕ ∈ Cω
h̃
2π

(T,R) such that

B(θ + α)A(θ)B−1(θ) = Rϕ(θ),

with estimates ‖B(θ)− Id‖ h̃
2π

≤ ‖A(θ)−R‖
1
2
h
2π

and ‖ϕ(θ)− ϕ̂(0)‖ h̃
2π

≤ 2‖A(θ)−R‖ h
2π

.

Moreover if β(α) < h̃, (α,A) is reducible.

2.5.2 Proof of the pure point part of Theorem 2.1.2

This proof follows that of Proposition 4.2 in [12], however some modifications are

needed. We include it here for reader’s convenience. Let us consider energy E ∈

Σλ̂,α so that ρ(α, Ã|cλ̂|,E) ∈ ∪γ>0DCα(τ, γ) for some τ > 1. Note that since | ∪γ>0

DCα(τ, γ)| = 1, this is a full density of states measure set of energies. Fix ε > 0 small

enough so that β(α) < L(λ)− 2ε.

First, by Theorem 2.5.1, for h = L(λ) and h′ = L(λ) − ε, there exists constant

C > 0 so that for δ > 0 small there exists a subsequence {pnk
qnk
} of the continued

fraction approximants and Bnk ∈ Cω
L(λ)−ε

2π

(T,PSL(2,R)), Rnk ∈ SO(2,R), such that

‖Bnk‖L(λ)−ε
2π

≤ eCδqnk and

‖Bnk(θ + α)Ã|cλ̂|,E(θ)B−1
nk

(θ)−Rnk‖L(λ)−ε
2π

≤ e−δqnk .(2.48)
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As is pointed out in [12], one could consult footnote 5 of [3] to prove the following

estimate on the degBnk

| degBnk | ≤ C(λ, ε)qnk(2.49)

Clearly by (1.16),

ρ(α,Bnk(θ + α)Ã|cλ̂|,E(θ)B−1
nk

(θ)) = ρ(α, Ã|cλ̂|,E) + degBnkα.(2.50)

Thus since ρ(α, Ã|cλ̂|,E) ∈ DCα(τ, γ) for some γ > 0, by (2.49) and (2.50) we have

‖ρ(α,Bnk(θ + α)Ã|cλ̂|,E(θ)B−1
nk

(θ)) +mα‖T

=‖ρ(α, Ã|cλ̂|,E) + (degBnk +m)α‖T

≥ γ

(1 + Cqnk + |m|)τ

≥(1 + Cqnk)
−τγ

(1 + |m|)τ
.

This implies ρ(α,Bnk(θ + α)Ã|cλ̂|,E(θ)B−1
nk

(θ)) ∈ DCα(τ, (1 + Cqnk)
−τγ).

Secondly, fix h̃ = L(λ)−2ε. For qnk large enough, in particular when the following

holds, with T (τ), κ(τ) from (2.47),

(1 + Cqnk)
τκ(τ) < T (τ)e

1
2
δqnk (γε)κ(τ),(2.51)

we have by (2.48)

‖Bnk(θ + α)Ã|cλ̂|,E(θ)B−1
nk

(θ)−Rnk‖L(λ)−ε
2π

< T (τ)(1 + Cqnk)
−τκ(τ)(γε)κ(τ).(2.52)

Thus by Theorem 4.2.3, since β(α) < h̃ = L(λ)− 2ε, we get (α, Ã|cλ̂|,E) is reducible.

Note that this provides us with the requirement to apply our Theorem 3.1.4, and

taking into account that w(cλ̂) = 0 we get that Hλ,α(θ) has pure point spectrum for

a.e. θ. �
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Chapter 3

Absence of point spectrum for the

self-dual extended Harper’s model

3.1 Introduction

In this chapter we present a new way to exclude point spectrum for self-dual extended

Harper’s model.

Recall that we have the following decomposition of the parameter space.

λ2

λ1 + λ3

λ1 + λ3 = λ2

1

1

Region I
Region II

Region III

LII

LI

LIII

Region I 0 ≤ λ1 + λ3 ≤ 1, 0 < λ2 ≤ 1,

36



Region II 0 ≤ λ1 + λ3 ≤ λ2, 1 ≤ λ2,

Region III max{1, λ2} ≤ λ1 + λ3, λ2 > 0.

According to the action of the duality transformation σ : λ = (λ1, λ2, λ3) → λ̂ =

(λ3

λ2
, 1
λ2
, λ1

λ2
), we have the following observation [37]:

Observation 3.1.1 σ is a bijective map on 0 ≤ λ1 + λ3, 0 < λ2.

(i) σ(I◦) = II◦, σ(III◦) = σ(III◦)

(ii) Letting LI := {λ1 + λ3 = 1, 0 < λ2 ≤ 1}, LII := {0 ≤ λ1 + λ3 ≤ 1, λ2 = 1}, and

LIII := {1 ≤ λ1 + λ3 = λ2}, σ(LI) = LIII and σ(LII) = LII.

As σ bijectively maps III ∪ LII onto itself, the literature refers to III ∪ LII as the

self-dual regime. We further divide III into IIIλ1=λ3 (isotropic self-dual regime) and

IIIλ1 6=λ3 (anisotropic self-dual regime).

Recently, a complete understanding of the spectral properties of the extended

Harper’s model for a.e. θ has been established:

Theorem 3.1.2 [8]The following Lebesgue decomposition of the spectrum of Hλ,α(θ)

holds for a.e. θ.

• For all Diophantine α, for Region Io, Hλ,α(θ) has pure point spectrum.

• For all irrational α, for Regions IIo, IIIo
λ1 6=λ3

, Hλ,α(θ) has purely absolutely

continuous spectrum.

• For all irrational α, for Regions IIIo
λ1=λ3

∪ LI ∪ LII ∪ LIII, Hλ,α(θ) has purely

singular continuous spectrum.

As pointed out in [8], the main missing link between [37, 38] and Theorem 3.1.2 is

the following theorem, excluding eigenvalues in the self-dual regime. We say θ is

α-rational if 2θ ∈ Zα + Z, otherwise we say θ is α-irrational.

Theorem 3.1.3 [8] For all irrational α,
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• for λ ∈ IIIλ1 6=λ3 ∪ LII, Hλ,α(θ) has empty point spectrum for all α-irrational θ.

• for λ ∈ IIIλ1=λ3, Hλ,α(θ) has empty point spectrum for a.e. θ.

In [8] the authors had to exclude more phases than α-rational θ in the isotropic

self-dual regime.

In this paper we give a simple proof of the following theorem.

Theorem 3.1.4 For all irrational α, for λ ∈ III, Hλ,α(θ) has empty point spectrum

for all α-irrational θ.

Remark 3.1.1 Our result for the isotropic self-dual regime IIIλ1=λ3 is sharp. In-

deed, according to Proposition 5.1 in [8], for α-rational θ, for a dense set of coupling

constants, Hλ,α(θ) has point spectrum.

We organize this chapter in the following way: in Section 2 we include some

preliminaries, in Section 3 we present two lemmas that will be used in Section 5, then

we deal with IIIλ1=λ3 and IIIλ1 6=λ3∩{λ1+λ3 = 1} in Section 4 and IIIλ1 6=λ3∩{λ1+λ3 >

1} in Section 5.

3.2 Preliminaries

3.2.1 Singularities of the self-dual extended Harper’s model

The presence of singularities of cλ(θ) is explicit. Indeed, recall Observation 1.6.3,

For λ ∈ III, necessary conditions for real roots of cλ(θ) are λ ∈ IIIλ1=λ3 or λ ∈

IIIλ1 6=λ3 ∩ {λ1 + λ3 = λ2}. Moreover,

• for λ ∈ IIIλ1=λ3 , cλ(θ) has real roots determined by

2λ3 cos 2π(θ +
α

2
) = −λ2,(3.1)

and giving rise to a double root at θ = 1
2
− α

2
if λ ∈ IIIλ1=λ3 ∩ {λ1 + λ3 = λ2}.

• for λ ∈ IIIλ1 6=λ3∩{λ1+λ3 = λ2}, cλ(θ) has only one simple real root at θ = 1
2
− α

2
.
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Remark 3.2.1 By the definition of the duality transformation σ: λ → λ̂,

cλ̂(θ) has singular points if and only if λ ∈ IIIλ1=λ3 or λ ∈ IIIλ1 6=λ3 ∩ {λ1 + λ3 = 1}.

It will be clear in Section 4 that presence of singularities of cλ̂(θ) indeed simplifies

the proof of empty point spectrum of Hλ,α(θ).

3.3 Lemmas

Lemma 3.3.1 For λ ∈ IIIλ1 6=λ3 ∩ {λ1 + λ3 > 1}, when λ3 > λ1, we have

cλ̂(θ)

|c|λ̂(θ)
= e−2πi(θ+α

2
)+if(θ) and

c̃λ̂(θ)

|c|λ̂(θ)
= e2πi(θ+α

2
)−if(θ),

for a real analytic function f(θ) on T with
∫
T f(θ)dθ = 0.

Proof: By the definition of cλ̂(θ) we have

cλ̂(θ) =
λ3

λ2

e−2πi(θ+α
2

) +
1

λ2

+
λ1

λ2

e2πi(θ+α
2

)(3.2)

=
λ1

λ2

e−2πi(θ+α
2

)(e2πi(θ+α
2

) − y+)(e2πi(θ+α
2

) − y−),(3.3)

where y± = −1±
√

1−4λ1λ3

2λ1
. Note that

y+ = y− with |y+| = |y−| =
√
λ3

λ1

> 1, when 1 ≤ 2
√
λ1λ3,

(3.4)

y+, y− ∈ R with |y+| > |y−| =
2λ3

λ1 +
√

1− 4λ1λ3

> 1, when λ1 + λ3 > 1 > 2
√
λ1λ3.

(3.5)

Note that

cλ̂(θ)

|c|λ̂(θ)
=

√
cλ̂(θ)

c̃λ̂(θ)
= e−2πi(θ+α

2
)

√
(e2πi(θ+α

2
) − y+)(e2πi(θ+α

2
) − y−)

(e−2πi(θ+α
2

) − y+)(e−2πi(θ+α
2

) − y−)
.(3.6)

By (3.4), we have ∫
T

arg
(e2πi(θ+α

2
) − y+)(e2πi(θ+α

2
) − y−)

(e−2πi(θ+α
2

) − y+)(e−2πi(θ+α
2

) − y−)
dθ = 0,(3.7)
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and

| (e2πi(θ+α
2

) − y+)(e2πi(θ+α
2

) − y−)

(e−2πi(θ+α
2

) − y+)(e−2πi(θ+α
2

) − y−)
| ≡ 1.(3.8)

Thus there exists a real analytic function g(θ) on T such that

(e2πi(θ+α
2

) − y+)(e2πi(θ+α
2

) − y−)

(e−2πi(θ+α
2

) − y+)(e−2πi(θ+α
2

) − y−)
= eig(θ),(3.9)

with
∫
T g(θ)dθ = 0. Taking f(θ) = g(θ)/2 yields the desired the result. �

Lemma 3.3.2 There is a subsequence {pml
qml
} of the continued fraction approximants

of α so that for any analytic function f on T with
∫
T f(θ)dθ = 0, we have

lim
l→∞

f(x) + f(x+ α) + · · ·+ f(x+ qmlα− α) = 0

uniformly in x ∈ T.

Proof: Suppose f is analytic on |Imθ| ≤ δ0, then |f̂(n)| ≤ ce−2πδ0|n| for some

constant c > 0.

Case 1 If β(α) = 0, then by solving the coholomogical equation we get f(x) =

h(x+ α)− h(x) for some analytic h(x). Then

lim
m→∞

(f(x) + f(x+ α) + · · ·+ f(x+ qmα− α))

= lim
m→∞

(h(x+ qmα)− h(x)) = 0

uniformly in x.

Case 2 If β(α) > 0, choose a sequence ml such that qml+1 ≥ e
β
2
qml . Then

|f(x) + f(x+ α) + · · ·+ f(x+ qmlα− α)|

=|
∑
|n|≥1

f̂(n)(1 + e2πinα + · · ·+ e2πin(qml−1)α)e2πinx|

=|
∑
|n|≥1

f̂(n)
1− e2πinqmlα

1− e2πinα
e2πinx|

≤
∑

1≤|n|≤qml−1

c

∣∣∣∣1− e2πinqmlα

1− e2πinα

∣∣∣∣+
∑
|n|≥qml

ce−2πδ0|n|qml

≤c
q3
ml

qml+1

+ cqmle
−2πδ0qml → 0 as l→∞

uniformly in x. �
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3.4 Consequence of point spectrum

This part follows from [8]. We present the material here for completeness and readers’

convenience.

Suppose {un} is an l2(Z) solution to Hλ,α(θ)u = Eu, where λ = (λ1, λ2, λ3). This

means

(3.10) cλ(θ + nα)un+1 + c̃λ(θ + (n− 1)α)un−1 + 2 cos(2π(θ + nα))un = Eun.

Let u(x) =
∑

n∈Z une
2πinx ∈ L2(T). Multiplying (3.10) by e2πinx and then summing

over n, we get

(3.11) e2πiθcλ̂(x)u(x+ α) + e−2πiθc̃λ̂(x− α)u(x− α) + 2 cos 2πx u(x) =
E

λ2

u(x),

where λ̂ = (λ3

λ2
, 1, λ1

λ2
). If we multiply (3.10) by e−2πinx and sum over n, we get

(3.12) e−2πiθcλ̂(x)u(−x−α)+e2πiθc̃λ̂(x− α)u(−x+α)+2 cos 2πx u(−x) =
E

λ2

u(−x).

Thus writing (3.11), (3.12) in terms of matrices, we get

1

cλ̂(x)

 E
λ2
− 2 cos 2πx −c̃λ̂(x− α)

cλ̂(x) 0

 u(x) u(−x)

e−2πiθu(x− α) e2πiθu(−(x− α))



=

 u(x+ α) u(−(x+ α))

e−2πiθu(x) e2πiθu(−x)

 e2πiθ 0

0 e−2πiθ


(3.13)

Let Mθ(x) ∈ L2(T) be defined by

Mθ(x) =

 u(x) u(−x)

e−2πiθu(x− α) e2πiθu(−(x− α))

 .

Let

Aλ̂,E/λ2
(x) =

1

cλ̂(x)

 E
λ2
− 2 cos 2πx −c̃λ̂(x− α)

cλ̂(x) 0


be the transfer matrix associated to Hλ̂,α(θ) and

Rθ =

 e2πiθ 0

0 e−2πiθ


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be the constant rotation matrix. Then (3.13) becomes

Aλ̂,E(x)Mθ(x) = Mθ(x+ α)Rθ.(3.14)

Taking determinant, we have the following proposition.

Proposition 3.4.1 [8] If θ is α-irrational, then

| detMθ(x)| = b

|c|λ̂(x− α)
(3.15)

for some constant b > 0 and a.e. x ∈ T.

3.5 Regions IIIλ1=λ3 and IIIλ1 6=λ3 ∩ {λ1 + λ3 = 1}

We will show the following lemma.

Lemma 3.5.1 If θ is α-irrational, then for λ ∈ IIIλ1=λ3 or λ ∈ IIIλ1 6=λ3 ∩{λ1 + λ3 =

1}, Hλ,α,θ has no point spectrum.

Proof: According to Remark 3.2.1, we have cλ̂(x0) = 0 for some x0 ∈ T. Note

that presence of singularity implies 1
cλ̂(x)

/∈ L1(T). Thus by (3.15), detMθ(x) /∈ L1(T).

This contradicts with Mθ(x) ∈ L2(T). �

3.6 Region IIIλ1 6=λ3 ∩ {λ1 + λ3 > 1}

Without loss of generality, we assume λ3 > λ1. Fix θ. Denote detMθ(x) = g(x) for

simplicity.

Lemma 3.6.1 If θ is α-irrational, then Hλ,α(θ) has no point spectrum in the anisotropic

self-dual region.

Proof: Taking determinant in (3.14), we get:

c̃λ̂(x− α)

cλ̂(x)
g(x) = g(x+ α).
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This implies

g(x+ kα) =
c̃λ̂(x+ kα− 2α) · · · c̃λ̂(x) c̃λ̂(x− α)

cλ̂(x+ kα− α) · · · cλ̂(x+ α)cλ̂(x)
g(x).(3.16)

Taking k = qml , as in Lemma 3.3.2, on one hand, since g(x) is an L1 function, as the

determinant of an L2 matrix, and liml→∞ ‖qmlα‖T = 0, we have

lim
l→∞
‖g(x+ qmlα)− g(x)‖L1 = 0.

By (3.16), this implies

0 = lim
l→∞
‖g(x+ qmlα)− g(x)‖L1 = lim

l→∞

∫ ∣∣∣∣∣1−
∏qml−2

j=−1 c̃λ̂(x+ jα)∏qml−1

j=0 cλ̂(x+ jα)

∣∣∣∣∣ · |g(x)|dx.(3.17)

On the other hand, by Lemma 3.3.1

lim
l→∞

∫ ∣∣∣∣∣1−
∏qml−2

j=−1 c̃λ̂(x+ jα)∏qml−1

j=−1 cλ̂(x+ jα)

∣∣∣∣∣ · |g(x)|dx

= lim
l→∞

∫ ∣∣∣∣1− |c|λ̂(x− α)

|c|λ̂(x+ qmlα− α)
e
−i
(∑qml

−2

j=−1 f(x+jα)+
∑qml

−1

j=0 f(x+jα)
)
e4πiqmlxe2πiqml (qml−1)α

∣∣∣∣ · |g(x)|dx

≥ lim inf
l→∞

(∫
|1− e4πiqmlx+2πiq2

ml
α||g(x)|dx

−
∫ ∣∣∣∣1− |c|λ̂(x− α)

|c|λ̂(x+ qmlα− α)
e
−i
(∑qml

−2

j=−1 f(x+jα)+
∑qml

−1

j=0 f(x+jα)
)
e−2πiqmlα

∣∣∣∣ · |g(x)|dx
)

:= lim inf
l→∞

(I1 − I2).

(3.18)

Combining the fact ‖qmlα‖T → 0 with Lemma 3.3.2, we get pointwise convergence,

|c|λ̂(x− α)

|c|λ̂(x+ qmlα− α)
e
−i
(∑qml

−2

j=−1 f(x+jα)+
∑qml

−1

j=0 f(x+jα)
)
e−2πiqmlα → 1 as l→∞.

Then by dominated convergence theorem, we get liml→∞ I2 = 0. Then (3.18) implies

that for any small constant δ > 0,

lim
l→∞
‖g(x+ qmlα)− g(x)‖L1

≥ lim inf
l→∞

I1

≥ lim inf
l→∞

∫
‖2qmlx+q2

ml
α‖T≥δ

4δ|g(x)|dx,
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where |{x : ‖2qmlx+ q2
ml
α‖ ≥ δ}| , |Fml,δ| = 1− 2δ. Thus

lim
l→∞
‖g(x+ qmlα)− g(x)‖L1

≥ lim inf
l→∞

(4δ‖g‖L1 − 4δ

∫
F cml,δ

|g(x)|dx)

≥ lim inf
l→∞

(4δ‖g‖L1 − 8δ2‖g‖L∞).

By (3.15) |g(x)| = b
|c|λ̂(x−α)

for some constant b > 0, thus ‖g‖L1 , ‖g‖L∞ are positive

finite numbers, so one can choose δ ∼ 0 such that 4δ‖g‖L1 − 8δ2‖g‖L∞ is strictly

positive. This contradicts with (3.17). �
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Chapter 4

Dry Ten Martini Problem for the

non-self-dual extended Harper’s

model

4.1 Introduction

For the almost Mathieu operator, it was proved in [6] that the spectrum is a Cantor

set for any α ∈ R \Q and λ 6= 0. This is the Ten Martini Problem dubbed by Barry

Simon, after an offer of Mark Kac. A much more difficult problem, known as the

dry version of the Ten Martini Problem, is to prove that the spectrum is not only a

Cantor set, but that all gaps predicted by the Gap-Labelling theorem [13], [39] are

open. The first result was obtained for Liouvillean α [21], and later it was proved

for a set of (λ, α) of positive Lebesgue measure [65]. The most recent result is [7], in

which they were able to deal with all Diophantine frequencies and λ 6= 1. A solution

for all irrational frequencies and λ 6= 1 was also recently announced in [12].

In this chapter we prove the dry version of the Ten Martini Problem for the ex-

tended Harper’s model in the non-self-dual regions (Io and IIo) under the Diophantine

condition.
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Let pn/qn be the continued fraction appoximants of α ∈ R \Q. Let

β(α) = lim sup
n→∞

ln qn+1

qn
.

Throughout this chapter, we say α satisfies the Diophantine condition if β(α) = 0,

denoted by α ∈ DC.

It is known that when energy E is in the closure of a spectral gap, the integrated

density of states Nλ,α(E) ∈ αZ + Z (see [13, 39]). Here we prove the inverse is true.

Theorem 4.1.1 If α ∈ DC and λ belongs to region Io or region IIo, all possible

spectral gaps are open.

Remark 4.1.1 We note the Dry Ten Martini problem has not yet been solved for the

self-dual AMO. In the self-dual region III, Cantor spectrum is known in the isotropic

case (when λ1 = λ3), see Fact 2.1 in [8]. In fact one could prove the operator has

zero Lebesgue measure spectrum for all frequencies.

In order to prove Theorem 4.1.1, we first establish almost localization (see section

4.3.1) in region Io, then a quantitative version of Aubry duality to obtain almost

reducibility (see section 4.3.2) in region IIo which enables us to deal with all energies

whose rotation numbers are α-rational.

Thus the strategy follows that of [7], but we need to extend the almost localization

and quantitative duality, as well as the final argument to our Jacobi setting, which

is non-trivial on a technical level. At the same time unlike [7], we only deal with a

short-range dual operator, leading to a significant streamlining of some arguments of

[7].

We organize the paper as follows: in section 4.2 we present some preliminaries, in

section 4.3 we state our main results about almost localization and almost reducibility,

relying on which we provide a proof of Theorem 4.1.1. In section 4.4 and 4.5 we prove

the main results that we present in section 4.3.
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4.2 Preliminaries

4.2.1 Generalized eigenfunctions for every phase

By Sch’nol’s theorem and Aubry duality, we have the following.

Theorem 4.2.1 [14], [66] For any λ, θ, there exists a dense set of E ∈ Σλ,α such

that there exists a non-zero solution of Hλ̂,α(θ)u = E
λ2
u with |uk| ≤ 1 + |k|.

4.2.2 Bounded eigenfunction for every energy

The next result from [7] allows us to pass from a statement of every θ to every E.

Theorem 4.2.2 [7] If E ∈ Σλ then there exists θ(E) ∈ T and a bounded solution of

Hλ̂,α(θ)u = E
λ2
u with u0 = 1 and |uk| ≤ 1.

4.2.3 Localization and reducibility

Theorem 4.2.3 Given α irrational, θ ∈ R and λ in region IIo, fix E ∈ Σλ,α, and

suppose Hλ̂,α(θ)u = E
λ2
u has a non-zero exponentially decaying eigenfunction u =

{uk}k∈Z, |uk| ≤ e−c|k| for |k| large enough. Then the following statements hold:

• (A) If 2θ /∈ αZ + Z, then there exists M : R/Z→ SL(2,R) analytic, such that

M−1(x+ α)Ã|cλ̂|,E(x)M(x) = R±θ.

In this case ρ(α, Ã|cλ̂|,E) = ±θ + m
2
α modZ, where m = degM (here since

M ∈ SL(2,R), we have that m is an even number) and 2ρ(α, Ã|cλ̂|,E) /∈ αZ+Z.

• (B) If 2θ ∈ αZ + Z and α ∈ DC, then there exists M : R/Z → PSL(2,R)

analytic, such that

M−1(x+ α)Ã|cλ̂|,E(x)M(x) =

±1 a

0 ±1


with a 6= 0. In this case ρ(α, Ã|cλ̂|,E) = m

2
α modZ, where m = degM , i.e.

2ρ(α, Ã|cλ̂|,E) ∈ αZ + Z.
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Proof: Let u(x) =
∑

k∈Z ûke
2πikx, U(x) =

e2πiθu(x)

u(x− α)

. Then

Acλ,E(x)U(x) = e2πiθU(x+ α),

Ã|cλ̂|,E(x)Ũ(x) = e2πiθŨ(x+ α).

Notice Ũ(x) = Qλ(x)U(x) is analytic in |Imx| < c̃
2π

, where c̃ = min (L(λ̂), c), and Qλ

as in A.0.2. Define Ũ(x) to be the complex conjugate of Ũ(x) on T and its analytic

extension to |Imx| < c̃
2π

. Let M(x) be the matrix with columns Ũ(x) and Ũ(x).

Then,

Ã|cλ̂|,E(x)M(x) = M(x+ α)

e2πiθ 0

0 e−2πiθ

 on T.

Then since detM(x+ α) = detM(x), we know detM(x) is a constant on T.

Case 1. If detM(x) 6= 0, then let M(x) = M̃(x)

1 1

i −i

.

M̃−1(x+ α)Ã|cλ̂|,E(x)M̃(x) = Rθ =

cos 2πθ − sin 2πθ

sin 2πθ cos 2πθ

 .

Case 2. If detM(x) = 0, then if we denote Ũ(x) =

u1(x)

u2(x)

, then detM(x) = 0

means there exists η(x) such that u1(x) = η(x)u1(x) and u2(x) = η(x)u2(x). This

implies that η(x) ∈ Cω(T,C), and |η(x)| = 1 on T. Therefore there exists φ(x) ∈

Cω(R/2Z,C) such that φ2(x) = η(x) and |φ(x)| = 1. It is easy to see φ(x)u1(x) =

φ(x)u1(x) and φ(x)u2(x) = φ(x)u2(x). Then we define W (x) =

φ(x)u1(x)

φ(x)u2(x)

, it

is a real vector on R/2Z with W (x + 1) = ±W (x), and Ũ(x) = φ(x)W (x). Now

let us define M̃(x) to be the matrix with columns W (x) and 1
‖W (x)‖−2R 1

4
W (x), then

det M̃(x) = 1 and M̃(x) ∈ PSL(2,R). Since

Ã|cλ̂|,E(x)W (x) =
e2πiθφ(x+ α)

φ(x)
W (x+ α).
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We have

Ã|cλ̂|,E(x)M̃(x) = M̃(x+ α)

d(x) τ(x)

0 d(x)−1


where d(x) = e2πiθφ(x+α)

φ(x)
, |d(x)| = 1 and d(x) being real number, therefore d(x) = ±1.

Also τ(x) ∈ Cω(R/2Z,C). But in fact M̃−1(x+ α)Ã|cλ̂|,E(x)M̃(x) is well-defined on

T. Therefore τ(x) ∈ Cω(T,C). Now since we assumed α ∈ DC, we can further reduce

τ(x) to the constant τ =
∫
T τ(x)dx. In fact there exists ψ(x) ∈ Cω(T,C) such that

−ψ(x+ α) + ψ(x) + τ(x) =
∫
T τ(x)dx. This implies

1 −ψ(x+ α)

0 1

 M̃−1(x+ α)Ã|cλ̂|,E(x)M̃(x)

1 ψ(x)

0 1

 =

±1 τ

0 ±1

 .

In fact if detM(x) = 0, then e2πiθφ(x+α)
φ(x)

= ±1, which implies that 2θ ∈ αZ + Z.

Therefore if 2θ /∈ αZ+Z, we must be in case (A). If on the other hand, 2θ ∈ αZ+Z,

2θ = kα + n, suppose M̃−1(x + α)Ã|cλ̂|,E(x)M̃(x) = Rθ, then R− k
2

(x+α)M̃
−1(x +

α)Ã|cλ̂|,E(x)M̃(x)R k
2
x = Rn

2
= ±I leading to a contradiction. Therefore if 2θ ∈

αZ + Z, we must be in case (B). �

4.2.4 Characterization of the Diophantine condition

Recall that the Diophantine condition of α is β(α) = lim supn→∞
ln qn+1

qn
= 0. Thus

for any ξ > 0, there exists Cξ > 0 such that

(4.1) ‖kα‖R/Z ≥ Cξe
−ξ|k| for any k 6= 0.

4.2.5 Rational approximation

Lemma 4.2.1 [6] Let α ∈ R\Q, x ∈ R and 0 ≤ l0 ≤ qn − 1 be such that | sin π(x +

l0α)| = inf0≤l≤qn−1 | sin π(x+ lα)|, then for some absolute constant C1 > 0,

−C1 ln qn ≤
∑

0≤l≤qn−1,l 6=l0

ln | sinπ(x+ lα)|+ (qn − 1) ln 2 ≤ C1 ln qn
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Lemma 4.2.2 [7] Let 1 ≤ r ≤ [qn+1/qn]. If p(x) has essential degree at most k =

rqn − 1 and x0 ∈ R/Z, then for some absolute constant C2,

‖p(x)‖0 ≤ C2q
C2r
n+1 sup

0≤j≤k
|p(x0 + jα)|.

4.2.6 Cocycles and Lyapunov exponent

Recall the following uniform control of norm of transfer matrices.

Lemma 4.2.3 (e.g.[7]) Let (α,A) be a continous cocycle, then for any δ > 0 there

exists Cδ > 0 such that for any n ∈ N and θ ∈ T we have

‖An(θ)‖ ≤ Cδe
(L(α,A)+δ)n.

4.3 Main estimates and proof of Theorem 4.1.1

4.3.1 Almost localization for every θ

Definition 4.3.1 Let α ∈ R \ Q, θ ∈ R, ε0 > 0. We say that k is an ε0−resonance

of θ if ‖2θ − kα‖ ≤ e−ε0|k| and ‖2θ − kα‖ = min|l|≤|k| ‖2θ − lα‖.

Definition 4.3.2 Let 0 = |n0| < |n1| < ... be the ε0−resonances of θ. If this sequence

is infinite, we say θ is ε0−resonant, otherwise we say it is ε0−non-resonant.

Definition 4.3.3 We say the extended Harper’s model {Hλ,α(θ)}θ exhibits almost lo-

calization if there exists C0, C3, ε0, ε̃0 > 0, such that for every solution u to Hλ,α(θ)u =

Eu satisfying u(0) = 1 and |u(m)| ≤ 1 + |m|, and for every C0(1 + |nj|) < |k| <

C−1
0 |nj+1|, we have |u(k)| ≤ C3e

−ε̃0|k| (where nj are the ε0−resonances of θ).

Theorem 4.3.1 If λ belongs to region IIo, {Hλ̂,α(θ)}θ is almost localized for every

α ∈ DC.

Remark 4.3.1 It is clear from Theorem 4.3.1 that almost localization implies local-

ization for non-resonant θ.
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We will actually prove the following explicit lemma:

Lemma 4.3.1 Let λ be in region IIo. Let C4 be the absolute constant in Lemma

4.4.3, then for any 0 < ε0 <
L(λ̂)

100C4
, there exists constant C3 > 0, which depends on

λ, α and ε0, so that for every solution u of Hλ̂,α,θu = Eu satisfying u(0) = 1 and

|uk| ≤ 1 + |k|, if 3(|nj| + 1) < |k| < 1
3
|nj+1|, then |uk| ≤ C3e

−L(λ̂)
5
|k|, where {nj} are

the ε0-resonances of θ.

The proof of Lemma 4.3.1 (and thus of Theorem 4.3.1) is given in Section 4.4.

4.3.2 Almost reducibility

Let λ be in region IIo. For every E ∈ Σλ,α, let θ(E) ∈ T be given in Theorem

4.2.2. Let 0 < ε0 <
L(λ̂)

100C4
and {nj} be the set of ε0− resonances of θ(E). Then for

some positive constants N0, C and c, independent of E and θ, we have the following

theorem:

Theorem 4.3.2 For any fixed j, with N0 < n = |nj|+1 <∞, let N = |nj+1|, L−1 =

‖2θ − njα‖. Then there exists W : T → SL(2,R) analytic such that | degW | ≤ Cn,

‖W‖0 ≤ CLC and ‖W−1(x+ α)Ã|cλ̂|,E(x)W (x)−R∓θ‖ ≤ Ce−cN .

Remark 4.3.2 Notice that this theorem requires n > N0, which is not always ensured

when θ(E) is non-resonant, however in that case we have localization for Hλ̂,α,θ instead

of almost localization. We will prove Theorem 4.3.2 in Section 5.

4.3.3 Spectral consequences of Almost reducibility

Let C4 be as in Lemma 4.3.1.

Theorem 4.3.3 Assume α ∈ DC. For λ in region IIo, fix E ∈ Σλ,α. Assume

θ(E) ∈ T is such that Hλ̂,α(θ)u = E
λ2
u has solution satisfying u0 = 1 and |uk| ≤ 1.

Let C be the constant in Theorem 4.3.2. Then θ(E) and ρ(α, Ã|cλ̂|,E) have the following

relation:
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• (A) If θ is ε0-non-resonant for some L(λ̂)
100C4

> ε0 > 0, then 2θ ∈ Zα + Z if and

only if 2ρ(α, Ã|cλ̂|,E) ∈ Zα + Z.

• (B) If θ is ε0-resonant for some L(λ̂)
100C4

> ε0 > 0, then ρ(α, Ã|cλ̂|,E) is ε0
C+2

-

resonant.

Proof of Theorem 4.3.3

(A): When θ is ε0-non-resonant for some L(λ̂)
100C4

> ε0 > 0, Theorem 4.3.1 implies

Hλ̂,α(θ) has exponentially decaying eigenfunction. Then applying Theorem 4.2.3 we

get 2θ ∈ Zα + Z if and only if 2ρ(α, Ã|cλ̂|,E) ∈ Zα + Z.

(B): Assume θ is ε0-resonant for some L(λ̂)
100C4

> ε0 > 0. Fix any ξ < ε0
2C+2

, then

there exists Cξ > 0 such that for any k 6= 0 we have ‖kα‖ ≥ Cξe
−ξ|k|. Now take

an ε0-resonance nj of θ such that n = |nj| > max (
− lnCξ/2

ε0−(2C+2)ξ
, N0). Then there exists

|m| ≤ Cn such that 2ρ(α, Ã|cλ̂|,E)−mα = −2θ. Then

‖2ρ(α, Ã|cλ̂|,E)− (m− nj)α‖ = ‖2θ − njα‖ < e−ε0n ≤ e−
ε0
C+2
|m−nj |.

Take any |l| ≤ |m− nj|, l 6= m− nj. Then

‖(l − (m− nj))α‖ ≥ Cξe
−2ξ|m−nj | > 2e−ε0n > 2‖2ρ(α, Ã|cλ̂|,E)− (m− l0)α‖.

Thus ‖2ρ(α, ÃE)−lα‖ > ‖2ρ(α, Ã|cλ̂|,E)−(m−nj)α‖ for any |l| ≤ |m−nj|, l 6= m−nj.

This by definition means ρ(α, Ã|cλ̂|,E) is ε0
C+2

-resonant. �

Now based on Theorem 4.3.3, we can complete the proof of the dry version of Ten

Martini Problem for extended Harper’s model in regions Io and IIo.

Proof of Theorem 4.1.1

It is enough to consider λ in region IIo. Let E ∈ Σλ,α be such that Nλ,α(E) ∈ Zα+Z.

We are going to show E belongs to the boundary of a component of R \ Σλ,α. Now

by (1.19) we have 2ρ(α, Ã|cλ̂|,E) ∈ αZ + Z, thus by Theorem 4.3.3, 2θ(E) ∈ αZ +

Z. By Theorem 4.2.3, this means there exist M(x) ∈ Cω
h (T,PSL(2,R)) such that

M−1(x + α)Ã|cλ̂|,E(x)M(x) =

±1 a

0 ±1

 . Without loss of generality, we assume
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M−1(x+ α)Ã|cλ̂|,E(x)M(x) =

1 a

0 1

 . Let M̃(x) = M(x)√
|c|(x−α)

, then

M̃−1(x+ α)

E−v(x)
|c|(x)

− |c|(x−α)
|c|(x)

1 0

 M̃(x) =

1 a

0 1

 .

Now let M̃(x) =

M11(x) M12(x)

M21(x) M22(x)

 . Then M21(x) = M11(x − α) and M22(x) =

M12(x− α)− aM11(x− α) and

M̃−1(x+ α)

E+ε−v(x)
|c|(x)

− |c|(x−α)
|c|(x)

1 0

 M̃(x)

=

1 a

0 1

+ ε

M11(x)M12(x)− aM2
11(x) M2

12(x)− aM11(x)M12(x)

−M2
11(x) −M11(x)M12(x)

 .

,M0 + εM1(x).

Now we look for Zε(x) of the form eεY (x) such that

Z−1
ε (x+ α)(M0 + εM1(x))Zε(x) = M0 + ε[M1] +O(ε2).

We then just need to solve the equation:

(I − εY (x+ α) +O(ε2))(M0 + εM1(x))(I + εY (x) +O(ε2)) = M0 + ε[M1] +O(ε2).

It is sufficient to solve the coholomogical equation:

Y (x+ α)M0 −M0Y (x) = M1(x)− [M1],

which is guaranteed by the Diophantine condition on α. Thus

(M(x+ α)Zε(x+ α))−1Ã|cλ̂|,E(x)(M(x)Zε(x))

=

1 + ε[M11M12]− aε[M2
11] a+ ε[M2

12]− aε[M11M12]

−ε[M2
11] 1− ε[M11M12]

+O(ε2)

,Mε +O(ε2).

Notice that Ã|cλ̂|,E is uniformly hyperbolic iff Trace(Mε) > 2 which is fulfilled when

−aε[M2
11] > 0. Thus for ε small, satisfying −aε[M2

11] > 0, E + ε /∈ Σλ,α, which means

this spectral gap is open. �
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4.4 Almost localization in region Io

In this section we will prove Lemma 4.3.1. For fixed λ in region IIo and E, let

Dλ̂,E(θ) = cλ̂(θ)Aλ̂,E(θ).

Recall the following result in [37]. For any E ∈ Σλ̂,α, we have,

L(α,Aλ̂,E) = L(α,Dλ̂,E)−
∫
T

ln |cλ̂(θ)|dθ , L̃−
∫

ln |cλ̂| > 0,

where L̃ = ln
λ2+
√
λ2

2−4λ1λ3

2λ2
and

∫
ln |cλ̂| = ln

max (λ1+λ3,1)+
√

max (λ1+λ3,1)2−4λ1λ3

2λ2
.

Proof of of Lemma 4.3.1

Suppose u is a solution satisfying the condition of Lemma 4.3.1. For an interval

I = [x1, x2], let ΓI be the coupling operator between I and Z \ I:

ΓI(i, j) =



c̃λ̂(θ + (x1 − 1)α), (i, j) = (x1, x1 − 1)

cλ̂(θ + (x1 − 1)α), (i, j) = (x1 − 1, x1)

c̃λ̂(θ + x2α), (i, j) = (x2 + 1, x2)

cλ̂(θ + x2α), (i, j) = (x2, x2 + 1)

0 otherwise.

Let HI = RIHλ̂,α(θ)R∗I be the restricted operator of Hλ̂,α(θ) to I. Then for x ∈ I, we

have (HI + ΓI − E)u(x) = 0. Thus u(x) = GIΓIu(x), where GI = (E − HI)
−1. By

matrix multiplication:

u(x) =
∑

y∈I,(y,z)∈ΓI

GI(x, y)ΓI(y, z)u(z)

= c̃λ̂(θ + (x1 − 1)α)GI(x, x1)u(x1 − 1) + cλ̂(θ + x2α)GI(x, x2)u(x2 + 1).

Let us denote Pk(θ) = det (E −H[0,k−1](θ)). Then the k−step matrix Dλ̂,E,k(θ)

satisfies:

Dλ̂,E,k(θ) =

 Pk(θ) −c̃(θ − α)Pk−1(θ + α)

c(θ + (k − 1)α)Pk−1(θ) −c̃(θ − α)c(θ + (k − 1)α)Pk−2(θ + α)

 .
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This relation between Pk(θ) and Dλ̂,E,k(θ) gives a general upper bound of Pk(θ) in

terms of L̃. Indeed by Lemma 4.2.3, for any ε > 0 there exists C(ε) > 0 so that

|Pn(θ)| ≤ C(ε)e(L̃+ε)n for any n ∈ N.

By Cramer’s rule:

|GI(x1, y)| =
y−1∏
j=x1

|cλ̂(θ + jα)||
det (E −H[y+1,x2](θ))

det (E −HI(θ))
| =

y−1∏
j=x1

|cλ̂(θ + jα)||Px2−y(θ + (y + 1)α)

Pk(θ + x1α)
|,

|GI(y, x2)| =
x2∏

j=y+1

|cλ̂(θ + jα)||
det (E −H[x1,y−1](θ))

det (E −HI(θ))
| =

x2∏
j=y+1

|cλ̂(θ + jα)||Py−x1(θ + x1α)

Pk(θ + x1α)
|.

Notice that Pk(θ) is an even function about θ + k−1
2
α, it can be written as a

polynomial of degree k in cos 2π(θ + k−1
2
α). Let Pk(θ) = Qk(cos 2π(θ + k−1

2
α)). Let

Mk,r = {θ ∈ T, |Qk(cos 2πθ)| ≤ e(k+1)r}.

Definition 4.4.1 Fix m > 0. A point y ∈ Z is called (k,m)−regular if there exists

an interval [x1, x2] containing y, where x2 = x1 + k − 1 such that

|GI(y, xi)| ≤ e−m|y−xi| and dist(y, xi) ≥
1

3
k for i = 1, 2,

otherwise y is called (k,m)−singular.

Lemma 4.4.1 Suppose y ∈ Z is (k, L̃−
∫

ln |cλ̂| − ρ)−singular. Then for any ε > 0

and any x ∈ Z satisfying y − 2
3
k ≤ x ≤ y − 1

3
k, we have θ + (x + 1

2
(k − 1))α belongs

to Mk,L̃− 1
3
ρ+ε for k > k(λ, ε, ρ).

Proof: Suppose there exists ε > 0 and x1: y − (1− δ)k ≤ x1 ≤ y − δk, such that

θ+(x1+ 1
2
(k−1))α does not belong to Mk,L̃− 1

3
ρ+ε, that is |Pk(θ+x1α)| > e(k+1)(L̃−ρδ+ε),

|GI(x1, y)| ≤
y−1∏
j=x1

|cλ̂(θ + jα)|e(k−|x1−y|)(L̃+ε)e−(k+1)(L̃− 1
3
ρ+ε)

< e−(L̃−
∫

ln |cλ̂|−ρ)|y−x1| for k > k(λ, ε, ρ).

Similarly

|GI(x2, y)| ≤ e−(L̃−
∫

ln |cλ̂|−ρ)|y−x2|.
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x
yy − (1

2
− δ)k y + (1

2
− δ)ky − (1− δ)k y − δk

x+ 1
2
(k − 1)αx

�

Definition 4.4.2 We say that the set {θ1, ..., θk+1} is γ−uniform if

max
x∈[−1,1]

max
i=1,...,k+1

k+1∏
j=1,j 6=i

|x− cos 2πθj|
| cos 2πθi − cos 2πθj|

< ekγ

Lemma 4.4.2 Let γ1 < γ. If θ1, ..., θk+1 ∈Mk,L̃−γ, then {θ1, ..., θk+1} is not γ1−uniform

for k > k(γ, γ1).

Proof: Otherwise, using Lagrange interpolation form we can get |Qk(x)| < ekL̃

for all x ∈ [−1, 1]. This implies |Pk(x)| < ekL̃ for all x. But by Herman’s subharmonic

function argument,
∫
R/Z ln |Pk(x)|dx ≥ kL̃. This is impossible. �

Now take ξ and ε0 such that 0 < 1000ξ < ε0. Then for |nj+1| > N(ξ) we have

2e−4ξ|nj+1| ≤ Cξe
−2ξ|nj+1| ≤ ‖(nj+1 − nj)α‖ = ‖nj+1α− 2θ + 2θ − njα‖ ≤ 2‖2θ − njα‖ ≤ 2e−ε0|nj |,

which yields that

(4.2) |nj+1| >
ε0
4ξ
|nj| > 250|nj|.

Without loss of generality, assume 3(|nj|+ 1) < y <
|nj+1|

3
and y > N(ξ). Select n

such that qn ≤ y
8
< qn+1 and let s be the largest positive integer satisfying sqn ≤ y

8
.

Set I1, I2 ⊂ Z as follows

I1 = [1− 2sqn, 0] and I2 = [y − 2sqn + 1, y + 2sqn], if nj < 0

I1 = [0, 2sqn − 1] and I2 = [y − 2sqn + 1, y + 2sqn], if nj ≥ 0

Lemma 4.4.3 Let θj = θ+ jα, then set {θj}j∈I1∪I2 is C4ε0 +C4ξ−uniform for some

absolute constant C4 and y > y(α, ε0, ξ).
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Proof: Without loss of generality, we assume nj > 0. Take x = cos 2πa. Now it

suffices to estimate∑
j∈I1∪I2, j 6=i

(ln | cos 2πa− cos 2πθj| − ln | cos 2πθi − cos 2πθj|) ,
∑

1

−
∑

2

.

Lemma 4.2.1 reduces this problem to estimating the minimal terms.

First we estimate
∑

1:∑
1

=
∑

j∈I1∪I2,j 6=i

ln | cos 2πa− cos 2πθj|

=
∑

j∈I1∪I2,j 6=i

ln | sin π(a+ θj)|+
∑

j∈I1∪I2,j 6=i

ln | sinπ(a− θj)|+ (6sqn − 1) ln 2

,
∑
1,+

+
∑
1,−

+(6sqn − 1) ln 2.

We cut
∑

1,+ or
∑

1,− into 6s sums and then apply Lemma 4.2.1, we get that for

some absolute constant C1: ∑
1

≤ −6sqn ln 2 + C1s ln qn.

Next, we estimate
∑

2.∑
2

=
∑

j∈I1∪I2,j 6=i

ln | cos 2πθj − cos 2πθi|

=
∑

j∈I1∪I2,j 6=i

ln | sin π(2θ + (i+ j)α)|+
∑

j∈I1∪I2,j 6=i

ln | sin π(i− j)α|+ (6sqn − 1) ln 2

,
∑
2,+

+
∑
2,−

+(6sqn − 1) ln 2.

We need to carefully estimate the minimal terms. For
∑

2,+, we use the property of

resonant set; and for
∑

2,−, we use the Diophantine condition on α.

For any 0 < |j| < qn+1 , we have ‖jα‖ ≥ ‖qnα‖ ≥ Cξe
−ξqn . Therefore

max(ln | sinx|, ln | sin(x+ πjα)|) ≥ −2ξqn for y > y(α, ξ).

This means in any interval of length sqn, there can be at most one term which is less

than −2ξqn. Then there can be at most 6 such terms in total.
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For the part
∑

2,−, since ‖(i− j)α‖ ≥ Cξe
−ξ|i−j| ≥ e−20ξsqn , these 6 smallest terms

must be bounded by −20ξsqn from below. Hence
∑

2,− ≥ −6sqn ln 2−Cξsqn−Cs ln qn

for y > y(ξ) and some absolute constant C.

For the part
∑

2,+, notice |i+ j| ≤ 2y + 4sqn < 3y < |nj+1| and i+ j > 0 > −nj.

Suppose ‖2θ+ k0α‖ = minj∈I1∪I2 ‖2θ+ (i+ j)α‖ ≤ e−100ε0sqn < e−ε0|k0|. Then for any

|k| ≤ |k0| ≤ 40sqn (including |nj|),

‖2θ − kα‖ ≥ ‖(k + k0)α‖ − ‖2θ + k0α‖ > ‖2θ + k0α‖ for y > y(α, ε0, ξ).

This means −k0 must be a ε0−resonance, therefore |k0| ≤ |nj−1|. Then

‖2θ−njα‖ ≥ ‖(nj+k0)α‖−‖2θ+k0α‖ ≥ Cξe
−12ξsqn−e−100ε0sqn > e−100ε0sqn ≥ ‖2θ+k0α‖

leads to a contradiction. Thus the smallest terms must be greater than−100ε0sqn. We

can bound
∑

2,+ by −6sqn ln 2− 600ε0sqn − 12ξsqn −Cs ln qn from below. Therefore∑
2 ≥ −6sqn ln 2 − Cε0sqn − Cξsqn − Cs ln qn. Thus the set {θj}j∈I1∪I2 is C4ε0 +

C4ξ−uniform for y > y(α, ε0, ξ) and some absolute constant C4. �

Now let C4 be the absolute constant in Lemma 4.4.3. Choose 0 < 1000ξ < ε0 <

L(λ̂)
100C4

. Combining Lemma 4.4.2 and Lemma 4.4.3, we know that when y > y(α, ε0, ξ),

{θj}j∈I1∪I2 can not be inside the set M6sqn−1,L̃−2C4ε0
at the same time. Therefore 0

and y can not be (6sqn − 1, L̃ −
∫

ln |cλ̂| − 9C4ε0) at the same time. However 0 is

(6sqn − 1, L̃−
∫

ln |cλ̂| − 9C4ε0)−singular given n large enough. Therefore

{θj}j∈I1 ⊂M6sqn−1,L̃−2C4ε0
.

Thus y must be (6sqn − 1, L̃−
∫

ln |cλ̂| − 9C4ε0)−regular. This implies

|u(y)| ≤ e−(L̃−
∫

ln |cλ̂|−9C4ε0) 1
4
|y| < e−

L(λ̂)
5
|y| for |y| ≥ y(λ, α, ε0, ξ).

Thus there exists C3 = Cλ,α,ε0,ξ such that |u(y)| ≤ C3e
−L(λ̂)

5
|y| for any 3|nj| ≤ |y| ≤

1
3
|nj+1| and j ∈ N.
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4.5 Almost reducibility in region IIo

Proof of Theorem 4.3.2

For any E ∈ Σλ,α, take θ(E) and {uk} as in Theorem 4.2.2. Let C4 be the absolute

constant from Lemma 4.4.3, and C2 be the absolute constant from Lemma 4.2.2.

Fix max (32C2ξ, 1000ξ) < ε0 < min (L(λ̂)
200

, L(λ̂)
100C4

). By Lemma 4.3.1, there exists C

depending on λ and α such that for any 3|nj| < |k| < 1
3
|nj+1|, we have |uk| ≤

Ce−
L(λ̂)

5
|k|.

For any n, 9|nj| < n < 1
9
|nj+1|, of the form

(4.3) n = rqm − 1 < qm+1.
1

Let u(x) = uI(x) =
∑

k∈I uke
2πikx with I = [−[n

2
], [n

2
]] = [x1, x2]. Define

U(x) =

e2πiθu(x)

u(x− α)

 .

Let A(θ) = Acλ,E(θ) and Ã(θ) = Ã|cλ̂|,E(θ). By direct computation:

A(x)U(x) = e2πiθU(x+ α) +

g(x)

0

 , e2πiθU(x+ α) +G(x).

The Fourier coefficients of g(x) are possibly nonzero only at four points x1, x2, x1− 1

and x2 + 1. Since |uk| ≤ C1e
−L(λ̂)

5
|k| when 3|nj| < |k| < 1

3
|nj+1|, we know that

‖G(x)‖L(λ̂)
20π

≤ C1e
−L(λ̂)

20
n.

Combining Theorem 1.6.2 and 4.2.3, we have exponential control of the growth of

the transfer matrix, for any δ > 0 there exists Cδ > 0 such that

‖Ãk(x)‖L(λ̂)
2π

≤ Cδe
δ|k|, for any k.

With some effort we are able to get the following significantly improved upper bound:

Theorem 4.5.1 For some C > 0 depending on λ and α,

‖Ãk(x)‖T ≤ C(1 + |k|)C .
1The existence of such n comes from (4.2).
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Proof: Let Ũ(x) = Q(x)U(x), G̃(x) = Q(x + α)G(x), where Q = Qλ is given in

(A.0.2). Since

max (‖Q(x)‖L(λ̂)
20π

, ‖Q−1(x)‖L(λ̂)
20π

) ≤ C,

we have

Ã(x)Ũ(x) = e2πiθŨ(x+ α) + G̃(x),

where ‖G̃(x)‖L(λ̂)
20π

≤ Ce−
L(λ̂)
20

n.

Lemma 4.5.1 Let C2 be the constant from Lemma 4.2.2, then for any δ, 2C2ξ < δ <

ε0
16

, we have

inf
|Im(x)|≤L(λ̂)

20π

‖Ũ(x)‖ ≥ e−2δn,

for n > n(α, δ).

Proof: We will prove the statement by contradiction. Suppose for some x0 ∈

{|Im(x)| ≤ L(λ̂)
20π
} we have ‖Ũ(x0)‖ < e−2δn. Notice that for any l ∈ N,

e2πilθŨ(x0 + lα) = Ãl(x0)Ũ(x0)−
l∑

m=1

e2πi(m−1)θÃl−m(x0 +mα)G̃(x0 + (m− 1)α).

This implies for n > n(δ) large enough and for any 0 ≤ l ≤ n, ‖Ũ(x0 + lα)‖ ≤ e−δn,

thus ‖u(x0 + lα)‖ ≤ Cδe
−δn. By Lemma 4.2.2, ‖u(x+ iIm(x0))‖T ≤ C2Cδe

C2ξne−δn ≤

e−
δ
2
n. This contradicts with

∫
T u(x+ iIm(x0))dx = u0 = 1. �

Lemma 4.5.2 [3] Let V : T → C2 be analytic in |Im(x)| < η. Assume that δ1 <

‖V (x)‖ < δ−1
2 holds on |Im(x)| < η. Then there exists M : T→ SL(2,C) analytic on

|Im(x)| < η with first column V and ‖M‖η ≤ Cδ−2
1 δ−1

2 (1− ln(δ1δ2)).

Applying Lemma 4.5.2, let M(x) be the matrix with first column Ũ(x). Then e−2δn ≤

‖Ũ(x)‖ δ
π
≤ eδn and hence ‖M(x)‖ δ

π
≤ Ce6δn. Therefore

M−1(x+ α)Ã(x)M(x) =

e2πiθ 0

0 e−2πiθ

+

β1(x) b(x)

β3(x) β4(x)


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where ‖β1(x)‖ δ
π
, ‖β3(x)‖ δ

π
, ‖β4(x)‖ δ

π
≤ Ce−

L(λ̂)
40

n, and ‖b(x)‖ δ
π
≤ Ce13δn. Let

Φ(x) = M(x)

eL(λ̂)
160

n 0

0 e−
L(λ̂)
160

n

 .

Then we would have:

Φ(x+ α)−1Ã(x)Φ(x) =

e2πiθ 0

0 e−2πiθ

+H(x),

where ‖H(x)‖ δ
π
≤ Ce−

L(λ̂)
160

n, and ‖Φ(x)‖ δ
π
≤ Ce

L(λ̂)
80

n. Thus

sup

0≤s≤e
L(λ̂)
320 n

‖Ãs(x)‖T ≤ e
L(λ̂)
20

n

for n ≥ n(λ, α) satisfying (4.3). For s large, there always exists 9|nj| < n < 1
9
|nj+1|

satisfying (4.3) such that cn ≤ 320

L(λ̂)
ln s ≤ n with some absolute constant c. Thus

there exists C depending on λ and α such that ‖Ãk(x)‖T ≤ C(1 + |k|)C . �

Now we come back to the proof of Theorem 4.3.2. Fix some n = |nj|, and

N = |nj+1|. Let u(x) = uI2(x) with I2 = [−[N
9

], [N
9

]] and U(x) =

e2πiθu(x)

u(x− α)

. Then

A(x)U(x) = e2πiθU(x+ α) +G(x) with ‖G(x)‖L(λ̂)
20π

≤ Ce−
L(λ̂)
90

N .

Define U0(x) = eπinjxU(x). Notice that if nj is even, then U0(x) is well-defined on T,

otherwise U0(x+ 1) = −U0(x).

Ã(x)Ũ0(x) = e2πiθ̃Ũ0(x+ α) +H(x),

where θ̃ = θ − nj
2
α, Ũ0(x) = Q(x)U0(x) and ‖H(x)‖L(λ̂)

20π

≤ Ce−
L(λ̂)
100

N . Consider the

matrix W (x) with Ũ0(x) and Ũ0(x) being its two columns. Then

Ã(x)W (x) = W (x+ α)

e2πiθ̃ 0

0 e−2πiθ̃

+ H̃(x).

Theorem 4.5.2 Let L−1 = ‖2θ − njα‖. Then for n > N0(λ, α) we have

| detW (x)| ≥ L−4C for any x ∈ T,

where C is the constant appeared in Theorem 4.5.1.
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Proof: First, we fix ξ1 <
ε0

1600
so that ‖kα‖ ≥ Cξ1e

−ξ1|k| for any k 6= 0. We have

the following estimate about L:

Lemma 4.5.3 eε0n ≤ L ≤ e4ξ1N .

e−2ξ1N ≤ ‖(nj+1 − nj)α‖ ≤ 2‖njα− 2θ‖ = 2L−1 ≤ 2e−ε0n for n ≥ N(ξ1).

Now we prove by contradiction. Suppose there exists κ and x0 ∈ T such that ‖Ũ0(x0)−

κŨ0(x0)‖ < L−4C . Then

‖Ũ0(x0 + lα)e2πilθ̃ − κŨ0(x0 + lα)e−2πilθ̃‖

≤‖
l−1∑
m=0

Ãl−m(x0 +mα)H(x0 +mα)− κ
l−1∑
m=0

Ãl−m(x0 +mα)H(x0 +mα)‖+ ‖Al(x0)‖L−4C

≤CL2Ce−
L(λ̂)
100

N + CL−2C < L−C .

for 0 ≤ |l| ≤ L2. If we take j = L
4
, then

‖Ũ0(x0 +
L

4
α) + κŨ0(x0 +

L

4
α)‖ < L−1.(4.4)

Next since ‖U0(x)‖T ≤ n, we have ‖Ũ0(x)‖T ≤ Cn. Thus

‖Ũ0(x0 + lα)− κŨ0(x0 + lα)‖ < L−
1
3 for 0 ≤ |l| ≤ L

1
2 .

For any analytic function f(x) =
∑

k∈Z f̂ke
2πikx, define f[−m,m](x) =

∑
|k|≤m f̂ke

2πikx.

For any column vector V (x) =

v(1)(x)

v(2)(x)

, let V[−m,m](x) =

v(1)
[−m,m](x)

v
(2)
[−m,m](x)

. Now let

us define Ũ
[9n]
0 (x) = Q(x)eπinjxU[−9n,9n](x). Then

‖Ũ [9n]
0 (x)− Ũ0(x)‖T ≤ Ce−

9
5
L(λ̂)n.

Consider [e−πinjxŨ
[9n]
0 (x)][−18n,18n](x)eπinjx. This function differs from a polynomial

with essential degree 36n only by a multiple of eπinjx. Notice that Q(x) is analytic in

{x : |Im(x)| ≤ L(λ̂)
4π
}, thus |Q̂(k)| ≤ Ce−

L(λ̂)
2
|k|. Then

| ̂
e−πinjxŨ

[9n]
0 (k)| ≤

∑
|m|≤9n

|Q̂(k −m)Û(m)| ≤ Cne−
L(λ̂)

2
(|k|−9n) for |k| ≥ 18n.
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Thus

‖e−πinjxŨ [9n]
0 (x)− [e−πinjxŨ

[9n]
0 ][−18n,18n](x)‖T ≤ e−4L(λ̂)n,

‖Ũ0(x)− [e−πinjxŨ
[9n]
0 ][−18n,18n](x)eπinjx‖T ≤ e−4L(λ̂)n.

Hence

‖[e−πinjxŨ [9n]
0 ][−18n,18n](x0 + lα)e2πinj(x0+lα) − κ[e−πinjxŨ

[9n]
0 ][−18n,18n](x0 + lα)‖T

<2L−
1
3 + e−4L(λ̂)n,

for |l| ≤ L
1
2 . Notice that

[e−πinjxŨ
[9n]
0 ][−18n,18n](x)e2πinjx − κ[e−πinjxŨ

[9n]
0 ][−18n,18n](x)

is a polynomial whose essential degree is at most 37n. Thus by Lemma 4.2.2, we

would have

‖[e−πinjxŨ [9n]
0 ][−18n,18n](x)eπinjx − κ[e−πinjxŨ

[9n]
0 ][−18n,18n](x)eπinjx‖T < L−

1
4 + e−2L(λ̂)n.

Hence ‖Ũ0(x)− κŨ0(x)‖T < L−
1
4 + 2e−2L(λ̂)n. But combining with (9.1) we would get

‖Ũ0(x0 + L
4
α)‖ < 2L−

1
4 + 2e−2L(λ̂)n, but this contradicts with infx∈T ‖Ũ0(x)‖ > e−2δn

since δ < ε0
16

. �

Now for n > N0(λ, α), take S(x) = ReŨ0(x) and T (x) = ImŨ0(x). Let W1(x)

be the matrix with columns S(x) and T (x). Notice that detW1(x) is well-defined

on T and detW1(x) 6= 0 on T, hence without loss of generality we could assume

detW1(x) > 0 on T, otherwise we simply take W1(x) to be the matrix with columns

S(x) and −T (x). Then

‖Ã(x)W1(x)−W1(x+ α)R−θ̃‖T ≤ Ce−
L(λ̂)
45

N .

By taking determinant, we get

detW1(x) = detW1(x+ α) +O(e−
L(λ̂)
50

N) on T.
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Since detW1(x) is analytic on |Imx| ≤ L(λ̂)
20π

, by considering the Fourier coefficients we

could get

detW1(x) = w0 +O(e−
L(λ̂)
100

N) on T,

where w0 ≥ L−5C . Thus detW1(x) is almost a positive constant.

Define W2(x) = detW1(x)−
1
2W1(x). Then W2(x) ∈ Cω(T) and detW2(x) = 1.

We have

W−1
2 (x+ α)Ã(x)W2(x) =

detW1(x+ α)
1
2

detW1(x)
1
2

R−θ̃ +O(e−
L(λ̂)
100

N) on T,

W−1
2 (x+ α)Ã(x)W2(x) = R−θ̃ +O(e−

L(λ̂)
200

N) on T.

Now let’s prove degW2(x) ≤ 36n. degW2(x) is the same as the degree of its columns.

For

M : R/2Z→ R2, we say degM = k if M is homotopic to

cos kπx

sin kπx

.

For some constant c > 0, we obviously have∫
T
‖S(x)‖ dx+

∫
T
‖T (x)‖ dx ≥

∫
T
‖S(x) + iT (x)‖ dx =

∫
T
‖Ũ0(x)‖ dx ≥ c.

Without loss of generality we could assume
∫
T ‖S(x)‖ dx > c

2
. Also

Ã(x)S(x) = S(x+ α) cos 2πθ̃ − T (x+ α) sin 2πθ̃ +O(e−
L(λ̂)
45

N) on T.

Then since ‖2θ̃‖ = L−1,

Ã(x)S(x) = S(x+ α) +O(L−
1
2 ) on T.

First we prove infx∈T ‖S(x)‖ ≥ e−2L(λ̂)n. Suppose otherwise. Then there exists x0 ∈ T,

so that ‖S(x0)‖ < e−2L(λ̂)n. Then ‖ReŨ0(x0 + lα)‖ < e−
ε0
8
n for |l| < e

ε0
4C
n, where C is

the constant that appeared in Theorem 4.5.1. We have already shown that

‖Ũ0(x)− [e−πinjxŨ
[9n]
0 ][−18n,18n]e

πinjx‖T < e−4L(λ̂)n.

Thus

‖Re[e−πinjxŨ
[9n]
0 ][−18n,18n](x0 + lα)‖ < e−

ε0
16
n
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for |l| < e
ε0
4C
n. However Re[e−πinjxŨ

[9n]
0 ][−18n,18n] is a polynomial with essential degree

at most 36n. Using Lemma 4.2.2 we are able to get ‖Re[e−πinxŨ
[9n]
0 ][−18n,18n]e

πinjx‖T <

e−
ε0
32
n, and thus ‖ReŨ0(x)‖T < e−

ε0
64
n which is a contradiction to

∫
T ‖ReŨ0(x)‖ dx > c

2
.

At the meantime, we also get ‖S(x)− Re[e−πinjxŨ
[9n]
0 ][−18n,18n](x)eπinjx‖T , ‖S(x)−

h(x)‖T ≤ e−4L(λ̂)n. The first column of W2(x) is detW1(x)−
1
2S(x). We have

‖ S(x)

detW1(x)
1
2

− h(x)

w0
1
2

‖

≤ 1

|detW1(x)
1
2 |
‖S(x)− h(x) + (1− detW1(x)

1
2

w0
1
2

)h(x)‖

≤L2C(e−4L(λ̂)n + L8Ce−
L(λ̂)
100

N)

≤e−3L(λ̂)n < ‖ S(x)

detW1(x)
1
2

‖ on T.

Thus by Rouché’s theorem | degW2(x)| = | deg h(x)| ≤ 19n. Notice that

|ρ(α,W−1
2 ÃW2) + θ̃| < Ce−

L(λ̂)
200

N .

Then, by 1.16 for some |m| ≤ 19n:

|ρ(α, Ã)− m

2
α + θ̃| < Ce−

L(λ̂)
200

N .

�
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Chapter 5

Quantum dynamical bounds for

ergodic potentials with underlying

dynamics of zero topological

entropy

5.1 Introduction

Positive Lyapunov exponents are generally viewed as a signature of localization.

While it is known that they can coexist even with almost ballistic transport [62] [27],

vanishing of certain dynamical exponents has been identified as a reasonable expected

consequence of hyperbolicity of the corresponding transfer-matrix cocycle. Results

in this direction were obtained in [25] [26] for one-frequency trigonometric polynomi-

als, and recently in [45], for one-frequency quasiperiodic potentials under very mild

assumptions on regularity of the sampling function. In this paper we identify a gen-

eral property responsible for positive Lyapunov exponents implying vanishing of the

dynamical quantities in the rather general case of underlying dynamics defined by

volume preserving maps of Riemannian manifolds with zero topological entropy, and

under very minimal regularity assumptions. This work presents the first localization-
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type results that hold in such generality. We expect that positive topological entropy

should also lead to vanishing of the dynamical quantities for a.e. (but not every!)

phase, but this should be approached by completely different methods and will be

explored in a future work.

Our general results allow us, in particular, to obtain localization-type statements

for potentials defined by shifts and skew-shifts of higher-dimensional tori. Pure point

spectrum with exponentially decaying eigenfunctions has been obtained for a.e. multi-

frequency shifts in the regime of positive Lyapunov exponents in [17] and for the skew-

shift on T2 with a perturbative condition in [18], both very delicate results. While

bounds on transport exponents are certainly weaker than dynamical localization that

often (albeit not always [49]) accompanies pure point spectrum [19], we note that

pure point spectrum can be destroyed by generic rank one perturbations [28] while

vanishing of the transport exponents is robust in this respect. Finally, our results are

the first ones for both of these families that hold under purely arithmetic conditions

and the first non-perturbative ones for the skew-shift.

Let (M, g) be a d-dimensional compact (smooth) Riemannian manifold with a

metric g. Let Volg be its Riemannian volume density (see (5.3)). Let f be a uniquely

ergodic volume preserving map onM, which means Volg is its unique invariant prob-

ability measure. We will study the dynamical properties of the Schrödinger operator

acting on l2(Z):

Hv,f (θ)u(n) = u(n+ 1) + u(n− 1) + v(fnθ)u(n).(5.1)

The time dependent Schrödinger equation

i∂tu = Hv,f (θ)u,

leads to a unitary dynamical evolution

u(t) = e−itHv,f (θ)u(0).

Under the time evolution, the wavepacket will in general spread out with time. For

operators with absolutely continuous spectrum, scattering theory already leads to
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a good understanding of the quantum dynamics. In this paper we will study the

spreading of the wavepacket under positive Lyapunov exponent assumption, which

automatically implies the absence of absolutely continuous spectrum.

Let e−itHv,f (θ)δ0 be the time evolution with the localized initial state δ0. Let

aθ(n, t) = |〈e−itHv,f (θ)δ0, δn〉|2.

aθ(n, t) describes the probability of finding the wavepacket at site n at time t. We

denote the p-th moment of aθ(n, t) by

〈|X|pθ(t)〉 =
∑
n

(1 + |n|)paθ(n, t).

Dynamical localization is defined as boundedness of 〈|X|pθ(t)〉 in time t. This

implies purely point spectrum, therefore for general operators with positive Lyapunov

exponent such a strong control of the wavepacket is not possible. Thus we need to

define proper transport exponents which decribe the rate of the spreading of the

wavepacket. For p > 0 define the upper and lower transport exponents

β+
θ (p) = lim sup

t→∞

ln 〈|X|pθ(t)〉
p ln t

; β−θ (p) = lim inf
t→∞

ln 〈|X|pθ(t)〉
p ln t

.

Obtaining upper bounds for the two transport exponents above implies a power-law

control of the spreading rate of the entire wavepacket.

It is also interesting to consider a portion of the wavepacket. For a nonnegative

function A(t) of time, let

〈A(t)〉T =
2

T

∫ ∞
0

e−2t/TA(t) dt

be its time average. Set

Pθ,T (L) =
∑
|n|≤L

〈aθ(n, t)〉T .

Roughly speaking, Pθ,T (T a) > τ means that, in average, over time T , a portion of

the wavepacket stays inside a box of size T a. Let us introduce two other scaling

exponents:

ξθ = lim
τ→0

lim sup
T→∞

ln inf{L|Pθ,T (L) + Pfθ,T (L) > τ}
lnT

ξθ = lim
τ→0

lim inf
T→∞

ln inf{L|Pθ,T (L) + Pfθ,T (L) > τ}
lnT
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The vanishing of β± and ξ, ξ can be viewed as localization-type statements. For

M = T the one-dimensional torus, f = fs,α : θ → θ + α the irrational rotation by α,

the Lebesgue measure m is the unique invariant probability measure of f . It was first

proved in [25], [26] that for v being trigonometric polynomial, under the assumption

of positive Lyapunov exponent, β+
θ (p) = 0 for all p > 0, all θ and Diophantine α;

β−θ = 0 for all p > 0, all θ and all α. It was recently proved in [45] that under very

mild restrictions on regularity of the potential, under the assumption of positivity and

continuity of the Lyapunov exponent, β+
θ (p) = 0 for all p > 0, all θ and Diophantine

α; β−θ (p) = 0 for all p > 0, all θ and all α. It was also proved in [45] that for piecewise

Hölder function, under the assumption of positive Lyapunov exponent, ξθ = 0 for

a.e.θ and Diophantine α, ξ
θ

= 0 for a.e.θ and all α.

Remark 5.1.1 The two Diophantine sets of α are different between [25], [26] and

[45]. They are both full measure sets, but [45] covers slightly thinner set of frequencies

because they need to handle potentials with weaker regularity.

In this paper we consider d-dimensional compact Riemannian manifold M and

uniquely ergodic volume preserving map f . We consider maps with the following

volume scaling property. For 1 ≤ l ≤ d, let Σ(l) be the set of C∞ mappings σ : Ql →

M where Ql is the l-dimensional unit cube. Let Volg,l(σ) be the induced l-dimensional

volume of the image of σ in M counted with multiplicity, i.e. if σ is not one-to-one,

and the image of one part coincides with that from another part, then we will count

the set as many times as it iscovered. For n = 1, 2, ... and 1 ≤ l ≤ d, let

Vl(f) = sup
σ∈Σ(l)

lim sup
n→∞

1

n
log Volg,l(f

nσ) and V (f) = max
l
Vl(f).(5.2)

Volume preserving f always satisfies Vd(f) = Vd(f
−1) = 0. Here we need to make an

extra assumption that V (f) = V (f−1) = 0. It is known that for smooth invertible

map f , V (f) = V (f−1) is equal to the topological entropy of f [69], thus our class

of maps includes all smooth maps with zero topological entropy. In particular, it

includes both the irrational rotation and the skew-shift.

For such maps we will assume that f has a bounded discrepancy.
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Let JN(θ) = J(θ, fθ, ..., fN−1θ) (see (5.9)) be the isotropic discrepancy function

of the sequence {fnθ}N−1
n=0 . For δ > 0, we will say f has strongly δ-bounded isotropic

discrepancy if JN(θ) ≤ |N |−δ uniformly in θ for |N | > N0; f has weakly δ-bounded

isotropic discrepancy if there exists a sequence {Nj} such that JNj(θ) ≤ |Nj|−δ uni-

formly in θ. It turns out many concrete dynamical systems feature these properties.

We will show in Lemmas 5.3.6 - 5.3.8 that the following holds.

• For the shifts of higher dimensional tori, f = fs,α : θ → θ + α has strongly

bounded isotropic discrepancy for Diophantine α;

• For the skew-shift f = fss,α : (y1, y2, ..., yd)→ (y1 +α, y2 + y1, ..., yd + yd−1), has

strongly bounded isotropic discrepancy for Diophantine α, and weakly bounded

isotropic discrepancy for Liouvillean α.

Under the assumption of boundedness of discrepancy and scaling property of f ,

we are ready to formulate the following two abstract results.

Let µθ be the spectral measure of Hθ corresponding to δ0. Let N =
∫
M µθ dVolg

be the integrated density of states.

Theorem 5.1.1 Let v be a piecewise Hölder function, suppose L(E) is positive on a

Borel subset U with N(U) > 0. Suppose f is a uniquely ergodic volume preserving

map satisfying V (f) = V (f−1) = 0 and for some δ > 0

• f has weakly δ-bounded isotropic discrepancy, then ξθ = 0 for Volg-a.e. θ ∈M;

• f has strongly δ-bounded isotropic discrepancy, then ξθ = 0 for Volg-a.e. θ ∈M.

Remark 5.1.2 The full measure set of θ appearing in Theorem 5.1.1 is precisely the

set {θ : µθ + µfθ(U) > 0}.

Theorem 5.1.2 Let v be a piecewise Hölder function, suppose L(E) is continuous in

E and L(E) > 0 for every E ∈ R. Suppose f is a uniquely ergodic volume preserving

map satisfying V (f) = V (f−1) = 0 and for some δ > 0

• f has weakly δ-bounded isotropic discrepancy, then β−θ (p) = 0 for all θ ∈ M

and p > 0;
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• f has strongly δ-bounded isotropic discrepancy, then β+
θ (p) = 0 for all θ ∈ M

and p > 0.

Theorems 5.1.1, 5.1.2 extend the results of [45] from irrational rotations of the

circle to general uniquely ergodic maps of compact Riemannian manifolds with zero

topologogical entropy and bounded discrepancy. One key to achieving such gener-

ality is a new argument that does not rely on harmonic analysis/ approximation by

trigonometric polynomials.

By [24], β−θ (p) ≥ p dimH(µθ) where dimH(µ) is the Hausdorff dimension of µ.

Thus as a consequence of β−θ (p) = 0 we have the following

Corollary 5.1.1 Under the assumption of Theorem 5.1.2, dimH(µθ) = 0 for all

θ ∈M.

Remark The point here is that we obtain zero Hausdorff dimension of the spec-

tral measure for all rather than a.e. θ ∈ M (the latter follows for general ergodic

potentials). The following Theorems 5.1.3 - 5.1.6 are all corollaries of our abstract

results. Theorems 5.1.7 and 5.1.8 depend on a somewhat different technique (bypass-

ing the discrepancy considerations), which allow us to cover more frequencies in case

of the shift of T2. To our knowledge, Theorems 5.1.3 -5.1.8 are the first arithmetic

localization-type results.

Theorem 5.1.1 reduces vanishing of (upper or lower) ξθ to bounds on the isotropic

discrepancy. As corollaries, we obtain

Theorem 5.1.3 Let (M, f) = (Td, fs,α). For piecewise Hölder v, suppose L(E) is

positive on a Borel subset U with N(U) > 0. Then if α ∈ DC(τ) ⊂ Td, ξθ = 0 for

a.e. θ ∈ Td.

Remark 5.1.3 The Diophantine condition is essential for the vanishing of ξ [50].

Theorem 5.1.4 Let (M, f) = (Td, fss,α). For piecewise Hölder v, suppose L(E) is

positive on a Borel subset U with N(U) > 0. Then

• for all irrational α, ξy1,y2,...,yd = 0 for a.e. (y1, y2, ..., yd) ∈ Td,
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• if α ∈ DC(τ) for some τ > 1, ξy1,y2,...,yd = 0 for a.e. (y1, y2, ..., yd) ∈ Td.

Remark 5.1.4 The full measure set appearing in Theorems 5.1.3 and 5.1.4 are pre-

cisely the set {θ : µθ + µfθ(U) > 0}.

Similarly, for systems with continuous Lyapunov exponent, Theorem 5.1.2 reduces

vanishing of β±θ (p) to the same discrepancy bounds, and we obtain

Theorem 5.1.5 Let (M, f) = (Td, fs,α). For piecewise Hölder φ, suppose L(E) is

continuous in E and L(E) > 0 for every E ∈ R. Then if α ∈ DC(τ) ⊂ Td, β+
θ (p) = 0

for all θ ∈ Td, p > 0.

Corollary 5.1.2 Under the assumption of Theorem 5.1.5, if α ∈ DC(τ), dimH(µθ) =

0 for all θ ∈ Td.

Remark 5.1.5 The Diophantine condition is essential for β+ = 0 [50].

Theorem 5.1.6 Let (M, f) = (Td, fss,α). For piecewise Hölder v, suppose L(E) is

continuous in E and L(E) > 0 for every E ∈ R. Then

• for all irrational α, β−y1,y2,...,yd
(p) = 0 for all (y1, y2, ..., yd) ∈ Td, p > 0,

• if α ∈ DC(τ) for some τ > 1, β+
y1,y2,...,yd

(p) = 0 for all (y1, y2, ..., yd) ∈ Td,

p > 0.

Corollary 5.1.3 Under the assumption of Theorem 5.1.6, for all irrational α, dimH(µθ) =

0 for all (y1, y2, ..., yd) ∈ Td.

Finally, for the case of the irrational shift T2 we can make two more delicate

statements, using a different technique to obtain arithmetic estimates.

Theorem 5.1.7 Let (M, f) = (T2, fs,α). For piecewise Hölder v, suppose L(E) is

positive on a Borel subset U with N(U) > 0. Then if α = (α1, α2) ∈ ∪τ>1WDC(τ),

ξθ = 0 for a.e. θ ∈ T2.
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Remark 5.1.6 The full measure set appearing in Theorem 5.1.7 is precisely the set

{θ : µθ + µfθ(U) > 0}.

Theorem 5.1.8 Let (M, f) = (T2, fs,α). For piecewise Hölder v, suppose L(E)

is continuous in E and L(E) > 0 for every E ∈ R. Then if α = (α1, α2) ∈

∪τ>1WDC(τ), β−θ (p) = 0 for all θ ∈ T2, p > 0.

Corollary 5.1.4 Under the assumption of Theorem 5.1.8, if α ∈ ∪τ>1WDC(τ),

dimH(µθ) = 0 for all θ ∈ T2.

The most technically complex part of the paper consists in obtaining arithmetic

estimates on covering of the torus by the trajectory of a small ball in a polynomial (in

the inverse radius) time, which we obtain by estimating the discrepancy in Theorems

5.1.3 - 5.1.6, and by the bounded remainder set technique in Theorems 5.1.7, 5.1.8.

The discrepancy estimates are standard for the Diophantine shifts and are ideologi-

cally similar to the known results on equidistribution of nkα, for the case of higher

dimensional Diophantine skew shifts. We still develop the proof for the Diophantine

skew shift case in full detail because we did not find it in the literature and also be-

cause it serves as a good preparation to the Liouville higher dimensional skew shift,

for which to the best of our knowledge, our estimates are new. We note that for the

Diophantine skew shift of T2 and shifts of Td the results on the covering of the torus

by a trajectory of a ball are shown in [4] by a completely different technique, through

solving the cohomological equation. By the nature of the cohomological equation that

technique is not extandable to the Liouville or weakly Diophantine case.

We organize this paper as follows: in section 2 we introduce some basic definitions.

Some of them have been mentioned in the introduction but not in details. In section

3 we will present some key lemmas and proofs of Theorems 5.1.1 - 5.1.8. In sections

4-8 we prove the key lemmas that are listed in section 3.
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5.2 Preparation

5.2.1 Riemannian manifold

LetM be a d-dimensional compact Riemannian manifold with a Riemannian metric

g.

Let K be a compact set in some coordinate patch (U, x1, ..., xd). We define the

volume of K to be

Volg(K) :=

∫
x(K)

√
|G ◦ x−1|dx1 · · · dxd,

where G = det gij, gij = g( ∂
∂xi
, ∂
∂xj

) and dx1 · · · dxd is the Lebesgue measure on

Rd. This definition is free of choice of coordinate. If K is not contained in a single

coordinate patch, one could apply partition of unity to define Volg(K). More precisely,

we pick an atlas (Uα, x
1
α, ..., x

d
α) of M and a partition of unity {ρα} subordinate to

this atlas. Now we can set

Volg(K) =
∑
α

∫
xα(K∩Uα)

(ρα
√
|Gα|) ◦ (xα)−1dx1

α · · · dxdα.

The Riemannian volume density (see e.g.[64], section 3.4) on (M, g) is

dVolg =
∑
α

(ρα
√
|Gα|) ◦ (xα)−1dx1

α · · · dxdα.(5.3)

In the above definition, we do not assume M to be oriented. If M is oriented, then

the volume density is actually a positive n-form, called the volume form.

If % : [a, b]→M is a continuously differentiable curve in the Riemannian manifold

M, then we define its length l(%) by

l(%) =

∫ b

a

√
g%(t)(%̇(t), %̇(t)) dt,

where g%(t) is the inner product g at the point %(t). One could define the distance

between any two point x, y ∈M as follows

dist(x, y)

= inf{l(%) : % is a continuous, piecewise continuously differentiable curveconnecting x and y}.
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With the definition of distance, geodesics in a Riemannian manifold are then the

locally distance-minimizing paths.

Let v ∈ TxM be a tangent vector to the manifold M at x. Then there is a

unique geodesic %v satisfying %v(0) = x with initial tangent vector %̇v(0) = v. The

corresponding exponential map is defined by expx(v) = %v(1).

Let Br(x) = {y ∈ M : dist(x, y) < r} be a geodesic ball centered at x ∈ M

with radius r. It is known that Br(x) = expx(B(0, r)) where B(0, r) = {v ∈ TxM :

gx(v, v) < r}.

Proposition 5.2.1 There exists rg > 0 so that for all r < rg, there exists positive

constants Cg and cg which are independent of x ∈M so that

cgr
d ≤ Volg(Br(x)) ≤ Cgr

d for any x ∈M.(5.4)

Proof: We will discuss about the proof briefly. We could identify the tangent

space TxM isometrically with Rd. Now expx : Rd →M is a diffeomorphism on some

small ball BRd(0, r). On this ball, straight lines are mapped to length-minimizing

geodesics ([22], Proposition 3.6), and thus Euclidean balls are mapped to geodesic

balls of the same radius. Taking r smaller if necessary, we can assume the Jacobian of

expx is bounded away from 0 and∞ on BRd(0, r), thus for r < rx we have that cgxr
d ≤

Volg(Br(x)) ≤ Cgxr
d. Since M is a compact manifold, we could take rx, cgx , Cgx

independent of x ∈M. �

We call a subset C of M is said to be a geodesically convex set if, given any two

points in C, there is a minimizing geodesic contained within C that joins those two

points.

The convexity radius at a point x ∈ M is the supremum (which may be +∞) of

rx ∈ R such that for all r < rx the geodesic ball Brx(x) is geodesically convex. The

convexity radius of (M, g) is the infimum over the points x ∈ M of the convexity

radii at these points.

Proposition 5.2.2 [16] For compact manifold M, the convexity radius r′g of (M, g)

is positive.

This clearly implies for any x ∈M, any r < r′g, Br(x) is geodesically convex.
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5.2.2 Piecewise Hölder function

Let Lγ(M) be the space of γ-Lipschitz functions on M. For v ∈ Lγ(M) define

‖v‖Lγ = ‖v‖∞ + sup
θ1,θ2∈M

|v(θ1)− v(θ2)|
dist(θ1, θ2)γ

.(5.5)

We say v is piecewise Hölder if there exists γ > 0, positive integer K and {vj}Kj=1 ⊂

Lγ(M) so that

v(θ) =
K∑
j=1

χSj(θ)vj(θ)

where {Sj}Mj=1 are sets with “good boundary”, namely {∂Sj}Kj=1 are d−1 dimensional

smooth submanifolds of M. Clearly the discontinuity set Jv of v is ∪Kj=1∂Sj, and

Volg,d−1(Jv) ≤
K∑
j=1

Volg,d−1(∂Sj) <∞.(5.6)

Clearly for any two points θ1, θ2 so that dist(θi, Jv) ≥ r, if dist(θ1, θ2) < r then we

have

|v(θ1)− v(θ2)| ≤ dist(θ1, θ2)γ
K∑
j=1

‖vj‖Lγ .(5.7)

5.2.3 Spectral measure and integrated density of states

Let µθ be the spectral measure of Hθ corresponding to δ0 defined by

〈(Hθ − z)−1δ0, δ0〉 =

∫
R

dµθ(x)

x− z
.

Then clearly µfθ is the spectral measure of Hθ corresponding to δ1. Let N =∫
M

µθ+µfθ
2

dVolg(θ) be the integrated density of states. Clearly N(U) > 0 for some

set U implies
µθ+µfθ

2
(U) > 0 for Volg-a.e. θ ∈M.

5.2.4 Discrepancy

Let ~x1, ..., ~xN ∈M, for a subset C of M, let the counting function

A(C; {~xn}Nn=1) =
N∑
n=1

χC(~xn)(5.8)
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The isotropic discrepancy JN({~xn}Nn=1) is defined as

JN({~xn}Nn=1) = sup
C∈C
|A(C; {~xn}Nn=1

N
− Volg(C)|,(5.9)

where C is the family of all geodesically convex subsets of M.

For a point θ ∈ M, let JN(θ) = J({fnθ}N−1
n=0 ). We say a map f : M → M

has strongly δ-bounded isotropic discrepancy if for some N > N0, JN(θ) ≤ N−δ

uniformly in θ ∈ M. We say f has weakly δ-bounded isotropic discrepany if there is

a subsequence {Nj} such that JNj(θ) ≤ N−δj uniformly in θ ∈M.

IfM = Td be the d-dimensional torus, we define the discrepancy DN({~xn}Nn=1) as

follows

D({~xn}Nn=1) = sup
C∈J

|A(C; {~x}Nn=1)

N
−m(C)|,(5.10)

where J is the family of any subinterval C of the form C = {(θ1, ..., θd) ∈ Td : βi ≤

θi < κi for 1 ≤ i ≤ d}.

For a point θ ∈ Td, let DN(θ) = D({fnθ}N−1
n=0 ). We say a map f : Td → Td

has strongly δ-bounded discrepancy if for some N > N0, DN(θ) ≤ N−δ uniformly in

θ ∈ Td. We will f has weakly δ-bounded discrepany if there is a subsequence {Nj}

such that DNj(θ) ≤ N−δj uniformly in θ ∈ Td.

WhenM = Td, the isotropic discrepancy and discrepancy can be tightly controled

by each other:

Lemma 5.2.1 ([58], Theorem 1.6 in Chapter 2) For any sequence {~xn}Nn=1 in Td,

we have

DN({~xn}Nn=1) ≤ JN({~xn}Nn=1) ≤ (4d
√
d+ 1)DN({~xn}Nn=1)

1
d .(5.11)

Therefore, by (5.11), when M = Td,

Proposition 5.2.3 f has strong (weak) δ-bounded isotropic discrepancy for some

δ > 0 is equivalent to f has strong (weak) δ̃-bounded discrepancy for some δ̃ > 0.

In section 5 and 6 we are going to apply the following two inequalities to estimate

the upper bound of discrepancy.
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Lemma 5.2.2 [56] [Erdös-Turán-Koksma inequality] For any positive integer H0,

we have

(5.12) D({~xn}Nn=1) ≤ Cd(
1

H0

+
∑

0<|~h|≤H0

1

r(~h)
| 1
N

N∑
n=1

e2πi〈~h,~xn〉|)

where |~h| = maxdj=1 |hj|.

Lemma 5.2.3 (e.g.[58], Lemma 3.1 in Chapter 1) [Van der Corput’s Fundamental Inequality]

For any integer 1 ≤ H ≤ N , we have

(5.13)

| 1
N

N∑
n=1

un|2 ≤
N +H − 1

N2H

N∑
n=1

|un|2 +
2(N +H − 1)

N2H2

H−1∑
k=1

(H − k)Re
N−k∑
n=1

unun+k.

5.3 Key lemmas and proofs of Theorem 5.1.1 -

5.1.8

5.3.1 CoveringM with the orbit of a geodesic ball and Proofs

of Theorem 5.1.1, 5.1.7, 5.1.2 and 5.1.8

Lemma 5.3.1 Let v be a piecewise Hölder function with 1 ≥ γ > 0. Suppose L(E)

is positive on a Borel subset U with N(U) > 0.

1. If there exists a sequence rk → 0 so that any geodesic ball in M with radius rk

covers the whole M in r−Mk steps, then ξθ = 0 for Volg-a.e. θ ∈M;

2. If for any small r > 0, any geodesic ball with radius r covers the whole M in

r−M steps, then ξθ = 0 for Volg-a.e. θ ∈M;

Lemma 5.3.2 Let v be a piecewise Hölder function with 1 ≥ γ > 0. Suppose L(E)

is continuous in E and L(E) > 0 for every E ∈ R.

1. If there exists a sequence rk → 0 so that any geodesic ball in M with radius rk

covers the whole M in r−Mk steps, then β−θ (p) = 0 for all θ ∈M and p > 0;
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2. If for any small r > 0, any geodesic ball with radius r covers the whole M in

r−M steps, then β+
θ (p) = 0 for all θ ∈M and p > 0.

Lemmas 5.3.1 and 5.3.2 are key to our abstract argument. They are proved in section

4. The connection to bounded discrepancy comes in the following

Let rg be as in Proposition 5.2.1 and r′g as in Proposition 5.2.2.

Lemma 5.3.3 If f has weakly δ-bounded isotropic discrepancy, then there exists rk →

0 as k →∞ such that any geodesic ball in M with radius rk will cover the whole M

in r
− 2d
δ

k steps.

Proof: There exists a sequence {Nk} and k0 > 0 such that for any k >

k0 we have JNk({fnθ}N−1
n=0 ) ≤ N−δk . This means for any geodesically convex set

C ⊂ M,
∑Nk−1
n=0 χC(fnθ)

Nk
− Volg(C) ≥ −N−δk holds for all θ ∈ M. Thus if we take

rk = N
− δ

2d
k < min (rg, r

′
g), then by Proposition 5.2.2, we know Brk(θ) is geodesi-

cally convex. By Proposition 5.2.1, Volg(Brk(θ)) ≥ cgr
d
k = cgN

− δ
2

k > N−δk . Thus∑r
− 2d
δ

k −1
n=0 χBrk (θ)(f

nθ) > 0 for any θ ∈M. �

Lemma 5.3.4 If f has strongly δ-bounded isotropic discrepancy, then for any 0 <

r < min (rg, r
′
g), any geodesic ball in M with radius r will cover the whole M in r−

2d
δ

steps.

Proof: There exists N0 such that for any N > N0 we have JN({fnθ}N−1
n=0 ) ≤ N−δ

for all θ ∈M. This means for any 0 < r < min (rg, r
′
g), any geodesic ball Br(θ) (it is

geodesically convex by Proposition 5.2.2) and N = r−
2d
δ we have

∑r
− 2d
δ −1

n=0 χBr(θ)(f
nθ)

r−
2d
δ

−

Volg(Br(θ)) ≥ −r2d. Since by Proposition 5.2.1, Volg(Br(θ)) ≥ cgr
d > r2d, we have∑r−

2d
δ −1

n=0 χBr(θ)(f
nθ) > 0 for any θ ∈M. �

In the case of 2-dimensional irrational rotation, we also have

Lemma 5.3.5 For any (α1, α2) ∈ ∪τ>1WDC(τ), there exists rk(α1, α2, τ) → 0 as

k → ∞ such that any Euclidean ball with radius rk covers the whole T2 in r−800τ4

k

steps.

Remark 5.3.1 This lemma will be proved in section 8.

We are now ready to complete the proof of the main Theorems.
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Proof of Theorem 5.1.1

Combining Lemma 5.3.3, 5.3.4 with Lemma 5.3.1.

Proof of Theorem 5.1.7

Combining Lemma 5.3.5 with Lemma 5.3.1.

Proof of Theorem 5.1.2

Combining Lemma 5.3.3, 5.3.4 with Lemma 5.3.2.

Proof of Theorem 5.1.8

Combining Lemma 5.3.5 with Lemma 5.3.2.

5.3.2 Estimation of Discrepancy and Proofs of Theorems 5.1.3,

5.1.5, 5.1.4 and 5.1.6

For irrational rotation and skew-shift, we have the following control of their discrep-

ancies.

Lemma 5.3.6 If α ∈ DC(τ), then for some constant δ > 0, DN({θ+nα}N−1
n=0 ) ≤ N−δ

uniformly in θ ∈ Td.

Let ~Yn = (y1 +
(
n
1

)
α, y2 +

(
n
1

)
y1 +

(
n
2

)
α, ..., yd +

(
n
1

)
yd−1 + · · ·+

(
n
d

)
α).

Lemma 5.3.7 If α ∈ DC(τ), then for some constant δ > 0, DN({~Yn}Nn=1) ≤ N−δ

uniformly in (y1, ..., yd) ∈ Td.

Lemma 5.3.8 If α /∈ DC(d), then for some constant δ > 0 there exists a sequence

{Nj} so that DNj({~Yn}
Nj
n=1) ≤ N−δj uniformly in (y1, ..., yd) ∈ Td.

Remark 5.3.2 The proof of Lemma 5.3.6 will be given in section 5, the proofs of

Lemma 5.3.7 and 5.3.8 will be given in section 6.
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Proof of Theorem 5.1.3, 5.1.5

Follows from Lemma 5.3.6 and Theorems 5.1.1, 5.1.2.

Proof of Theorem 5.1.4, 5.1.6

Follows from Lemma 5.3.7, 5.3.8 and Theorems 5.1.1, 5.1.2.

5.4 Proofs of Lemmas 5.3.1 and 5.3.2

5.4.1 Upper and lower bounds of transfer matrices

The following lemma about uniform upper bound of transfer matrix is essentially

from [45]. We have adapted it into the following form for convenience.

Lemma 5.4.1 ([45], Theorem 3.1) Let v be a function whose discontinuity set has

measure 0 and f be a uniquely ergodic map on M. Then

5.4.1.1 Let L(E) be positive on a Borel set U and µ be a measure with µ(U) > 0.

Then for any ζ > 0 there exists a number Dζ > 0, and for any ε > 0 there exists a

set Bζ,ε with 0 < µ(Bζ,ε) < ζ, and an integer Nζ,ε so that for any E ∈ U \Bζ,ε:

1. L(E) ≥ Dζ,

2. for n > Nζ,ε, |z − E| < e−4εn and θ ∈M, we have 1
n

ln ‖An(θ, z)‖ < L(E) + ε.

5.4.1.2 Furthermore, if L(E) is continuous in E and U is a compact set, there

exists D > 0 and for any ε > 0 there exists an integer Nε so that for any E ∈ U :

1. L(E) ≥ D

2. for n > Nε, |z − E| < e−4εn and θ ∈M, we have 1
n

ln ‖An(θ, z)‖ < L(E) + ε.

We are also able to formulate the following lower bound for the norm of transfer

matrices.
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Lemma 5.4.2 Let v be a piecewise Hölder function with 1 ≥ γ > 0 and f be a

uniquely ergodic volume preserving map on M with V (f) = V (f−1) = 0. Then

5.4.2.1 Let L(E) be positive on a Borel set U and µ be a measure with µ(U) > 0.

Then for any ζ, ε > 0, let Dζ, Bζ,ε and Nζ,ε be defined as in 5.4.1.1.

1. If there exists a sequence rk → 0 so that any geodesic ball in M with radius

rk covers the whole M in r−Mk steps, then there exists a sequence {nk(ε)} such

that for k > kζ,ε, any E ∈ U \Bζ,ε, |z − E| < e−4εnk and θ ∈M we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f jθ, z)‖ ≥ enk(L(E)−3ε).

2. If for any small r > 0, any geodesic ball with radius r covers the whole M in

r−M steps, then for n > N ′ζ,ε, any E ∈ U \Bζ,ε, |z −E| < e−4εn and θ ∈M we

have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ n

‖An(f jθ, z)‖ ≥ en(L(E)−3ε).

5.4.2.2 Furthermore, if L(E) is continuous in E and U is a compact set, let D be

defined as in 5.4.1.2 and for any ε > 0 let Nε be defined as in 5.4.1.2. Then for any

E ∈ U we have L(E) ≥ D and for any |z − E| < e−4εn we have

1. if there exists a sequence rk → 0 so that any geodesic ball in M with radius

rk covers the whole M in r−Mk steps, then there exists a sequence {nk(ε)} such

that for k > kε and any θ ∈M,

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f jθ, z)‖ ≥ enk(L(E)−3ε).

2. if for any small r > 0, any geodesic ball with radius r covers the whole M in

r−M steps, then for n > N ′ε and any θ ∈M,

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ n

‖An(f jθ, z)‖ ≥ en(L(E)−3ε).
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Proof of Lemma 5.4.2

We will focus on the proof of part (1) of 5.4.2.1. The other three proofs will be

discussed briefly at the end of this section.

For any E ∈ U \ Bζ,ε and n > Nζ,ε, by Lemma 5.4.1.1 we have 1
n
‖An(θ, E)‖ <

L(E) + ε. Since
∫
M

1
n

ln ‖An(θ, E)‖ dVolg(θ) ≥ L(E), we have

(5.14) Volg(Mn,E,L(E),ε) := Volg({θ ∈M :
1

n
ln ‖An(θ, E)‖ > L(E)− ε}) > 1

2
.

Now we take any θ ∈ Mn,E,L(E),ε and |z − E| < e−4εn. When n > 2Nζ,ε + 3 by the

standard telescoping we have,

‖An(θ, z)‖ ≥ ‖An(θ, E)‖ − ‖An(θ, z)− An(θ, E)‖

≥ en(L(E)−ε) − (n+ 2(Nζ,ε + 1)‖A‖Nζ,ε∞ )en(L(E)−3ε)

> en(L(E)−2ε)

for large enough n > N ′ζ,ε. This means

(5.15) Mn,E,L(E),ε ⊂Mn,z,L(E),2ε.

We know the discontinuity set of 1
n

ln ‖An(θ, z)‖ is Jn = ∪n−1
l=0 f

−l(Jv), where Jv =

∪Kj=1∂Sj is defined in section 5.2.2. By our assumption (5.6) and the fact the Vd−1(f−1) =

0 (by the definition (5.2) of V (f−1)). For n large enough, we have

Volg,d−1(Jn) ≤ enεVolg,d−1(Jv),(5.16)

note that the largeness depends only on f . Define

M̃n,z,L(E),2ε = Mn,z,L(E),2ε \ F2e−5εn/γ (Jn),

where a neighborhood is defined as

Fr(A) = {θ ∈M : dist(θ, A) < r}.

Then by (5.16),

Volg(M̃n,z,L(E),2ε) ≥ Volg(Mn,z,L(E),2ε)− 4e−5εn/γVolg,d−1(Jn)

≥ Volg(Mn,z,L(E),2ε)− 4e−n( 5ε
γ
−ε)Volg,d−1(Jv) >

2

5
.
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In particular, it is a non-empty set. Now we take any θ̃ ∈ M̃n,z,L(E),2ε and θ ∈

Be−5εn/γ (θ̃). We have, by telescoping, (5.7) and the fact that V1(f) = 0 (by the

definition (5.2) of V (f)),

‖An(θ, z)‖

≥‖An(θ̃, z)‖ − ‖An(θ, z)− An(θ̃, z)‖

≥en(L(E)−2ε) − (
K∑
l=1

‖vl‖Lγ )(n+ 2(Nζ,ε + 1)‖A‖Nζ,ε∞ )en(L(E)+ε) max
j=0,...,n−1

(dist(f jθ, f j θ̃))γ

≥en(L(E)−2ε) − (
K∑
l=1

‖vl‖Lγ )(dist(θ, θ̃))γ(n+ 2(Nζ,ε + 1)‖A‖Nζ,ε∞ )en(L(E)+ε+γε)

>en(L(E)−3ε).

for n > N ′′ζ,ε. This means

Fe−5εn/γ (M̃n,z,L(E),2ε) ⊂Mn,z,L(E),3ε.

Hence for E ∈ U \Bζ,ε, n > N ′′ζ,ε and |z −E| < e−4εn, Mn,z,L(E),3ε contains a geodesic

ball with radius e−
5ε
γ
n. Then there exists a sequence {nk(ε)} such that a geodesic

ball with radius e−
5ε
γ
nk ∼ rk covers the whole M in at most e

5Mε
γ
nk steps. Thus for

E ∈ U \ Bζ,ε, k > kζ,ε so that nk(ε) > N ′′ζ,ε, any |z − E| < e−4εnk and any θ ∈ Td we

have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f jθ, z)‖ > enk(L(E)−3ε).

Remark 5.4.1 Notice that Part (2) of Lemma 5.4.2.1 follows without taking a sub-

sequence {nk(ε)}, 5.4.2.2 follows without excluding the set Bζ,ε.

�

5.4.2 Dynamical bounds on ξθ

The key to estimate ξθ is to apply the following lemma by Killip, Kiselev and Last.
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For f : Z→ H where H is a Banach space, the truncated l2 norm in the positive

and negative directions are defined by

‖f‖2
L =

bLc∑
n=1

|f(n)|2 + (L− bLc)|f(bLc+ 1)|2 for L > 0

‖f‖2
L =

bLc+1∑
n=0

|f(n)|2 + (bLc+ 1− L)|f(bLc)|2 for L < 0

The truncated l2 norm in both directions is defined by

‖f‖2
L1,L2

=

bL2c∑
n=−bL1c

|f(n)|2 + (L1 − bL1c)|f(−bL1c − 1)|2 + (L2 − bL2c)|f(bL2c+ 1)|2 for L1, L2 ≥ 1.

With A•(θ, z) being a function on Z, define L̃+
ε (θ, z) ∈ R+ and L̃−ε (θ, z) ∈ R− by

requiring

‖A•(θ, z)‖L̃±ε (θ,z) = 2‖A(θ, z)‖ε−1.

Lemma 5.4.3 ([55], Theorem 1.5) Let Hθ be a Schrödinger operator and µθ be the

spectral measure of H and δ0. Let T > 0 and L1, L2 > 2, then

〈1
2

(‖e−itHθδ0‖2
L1,L2

+ ‖e−itHθδ1‖2
L1,L2

)〉T > C
µθ + µfθ

2
({E : |L̃−T−1| ≤ L1; L̃+

T−1 ≤ L2})

(5.17)

where C is an universal constant.

This lemma directly implies Pθ,T (L) + Pfθ,T (L) > C
µθ+µfθ

2
({E : ‖A•(θ, z)‖±L >

2‖A(θ, z)‖T}). The plan is to show that for any η > 1, any θ0 satisfying (µθ0 +

µfθ0)(U) > 0, we have (µθ0 + µfθ0)({E : ‖A•(θ0, z)‖±T > T η}) & (µθ0 + µfθ0)(U).

Proof of Lemma 5.3.1

We will prove part (1) in detail. Part (2) will be discussed briefly at the end of this

proof.
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Fix η > 1. Fix θ0 such that (µθ0 + µfθ0)(U) > 0. Let ζ = 1
2
(µθ0 + µfθ0)(U), so a

constant. Let D = Dζ from Lemma 5.4.1. Let ε = min ( γD
40Mη

, D
6

). Then by Lemmas

5.4.1, there exists a set B, 0 < |B| < 1
2
(µθ0 + µV θ0)(U), and a sequence {nk}, s.t.

L(E) ≥ D on U \B and for E ∈ U \B, k ≥ k0, |z − E| < e−4εnk and any θ ∈M,

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f jθ, z)‖ > enk(L(E)−3ε).

Using that As+t(θ, z) = At(f
s(θ), z)As(θ, z), this implies, by the condition on ε,

‖A•(θ, z)‖
±e

10Mε
γ nk

> e
nk(L(E)−3ε)

2 ≥ e
10Mε
γ

nkη.

If we take Tk = e
10Mε
γ

nk , then U \ B ⊂ {E : ‖A•(θ, E)‖±Tk > T ηk } for any θ, in

particular θ0. Then by (5.17),

Pθ0,T ηk (Tk) + Pfθ0,T ηk (Tk) ≥ C
µθ0 + µfθ0

2
({E : ‖A•(θ0, E)‖±Tk > T ηk }) ≥ C̃

µθ0 + µfθ0
2

(U).

This implies ξθ = 0 for all θ ∈M such that (µθ + µfθ)(U) > 0.

Remark 5.4.2 Using Lemmas 5.4.1.1 (2), 5.4.2.1 (2) instead of 5.4.1.1 (1), 5.4.2.1

(1), Part (2) can be proved without taking a subsequence nk therefore the conclusion

holds for all T large enough rather than a sequence Tk. �

5.4.3 Bounds on β

The key to the bounds on β is to apply the following lemma by Damanik and Tcherem-

chansev.

Lemma 5.4.4 (Theorem 1 of [25] plus Corollary 1 of [26]) Let H be the Schrödinger

operator, with f real valued and bounded, and K ≥ 4 such that σ(H) ⊂ [−K+1, K−1].

Suppose for all ρ ∈ (0, 1) we have∫ K

−K

(
min

ι∈{−1,1}
max

1≤n≤T ρ
‖An(E +

i

T
)‖2

)−1

dE = O(T−η).(5.18)

for any η ≥ 1. Then β+(p) = 0 for all p > 0. If (5.18) is satisfied for a sequence

Tk →∞, then β−(p) = 0 for all p > 0.
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Proof of Lemma 5.3.2

We will prove part (1) in detail. A modification needed for part (2) is discussed briefly

at the end of this proof.

It suffices to consider small ρ ∈ (0, 1). Fix any ρ ∈ (0, 1) small and η ≥ 1. Aussme

σ(H) ⊂ [−K+ 1, K− 1]. Since L(E) is continous in E on a compact set [−K,K], we

have L(E) ≥ D > 0 on [−K,K]. Fix εη = min ( ργD
20Mη

, D
6

). By Lemma 5.4.2.2 there

exists a sequence {nη,k} such that for any E ∈ [−K,K], k > kη, any |z−E| < e−4εηnη,k

and any θ ∈M,

min
ι∈{−1,1}

max
ιj=0,...,e

5Mεη
γ nη,k

‖Anη,k(f jθ, z)‖ > enη,k(L(E)−3εη).

Thus

min
ι∈{−1,1}

max
j=0,...,e

10Mεη
γ nη,k

‖Aj(θ, z)‖2 ≥ enη,k(L(E)−3εη) ≥ e
10Mεη
γρ

nη,kη

holds for any θ ∈ M, any E ∈ [−K,K] and |z − E| < e−4εηnη,k . Now we take

Tη,k = e
10Mεη
γρ

nη,k ,

|E +
i

Tη,k
− E| = 1

Tη,k
< e−4εηnη,k .

Thus

min
ι∈{−1,1}

max
ιj=0,...,T ρη,k

‖Aj(θ, E +
i

Tη,k
)‖2 ≥ T ηη,k

holds for any E ∈ [−K,K]. Therefore∫ K

−K

(
min

ι∈{−1,1}
max

1≤ιn≤T ρη,k
‖An(θ, E +

i

Tη,k
)‖2

)−1

dE ≤ 2KT−ηη,k .

Now take a sequence {ki} such that T1,k1 < T2,k2 < ... Let Tm = Tm,km . Then∫ K

−K

(
min

ι∈{−1,1}
max

1≤ιn≤T ρm
‖An(θ, E +

i

Tm
)‖2

)−1

dE ≤ 2KT−mm .

By (5.18), we have β−θ (p) ≤ ρ for all θ ∈ M, any ρ ∈ (0, 1) and any p > 0, thus

β−θ (p) = 0 for all θ ∈M and any p > 0.

Remark 5.4.3 Using Lemmas 5.4.1.2 (2) and 5.4.2.2 (2), part (2) follows without

taking a subsequence {nη,k}. Therefore the conclusion holds for all T large rather than

a sequence Tk. �
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5.5 Irrational rotation with diophantine frequen-

cies. Proof of Lemma 5.3.6

Lemma 5.3.6 is a standard result (see e.g. Chapter 2.3 in [58]). We include the proof

here for completeness.

Proof of Lemma 5.3.6

For sufficiently small ε > 0, fix an integer H0 ∼ N1/(d(τ−1)+1+dε), define g(n) = 1
n(n+1)

for 1 ≤ n < H0 and g(H0) = 1
H0

. For (n1, ..., nd) ∈ Zd with 1 ≤ ni ≤ H0, define

f(n1, ..., nd) =
∏d

i=1 g(ni). By Lemma 5.2.2, we have

DN(θ) ≤ Cd(
1

H0

+
∑

0<|h|≤H0

1

r(~h)
| 1
N

N∑
n=1

e2πi〈~h,α〉n|)

≤ C̃d(
1

H0

+
1

N

∑
0<|h|≤H0

1

r(~h)

1

‖〈~h, α〉‖T
)

= C̃d(
1

H0

+
1

N

H0∑
n1,...,nd=1

f(n1, ..., nd)
∑

~h=(h1,...,hd)6=~0,|hj |≤nj

1

‖〈~h, α〉‖T
)

≤ C̃d(
1

H0

+
1

N

H0∑
n1,...,nd=1

f(n1, ..., nd)

3dr(~n)∑
j=1

r(~n)τ

j
)

≤ C̃d(
1

H0

+
1

N

H0∑
n1,...,nd=1

f(n1, ..., nd)r(~n)τ log r(~n))

≤ C̃d(
1

H0

+
H0

d(τ−1+ε)

N
)

. N−1/(d(τ−1)+1+dε).

�
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5.6 Skew-shift. Proof of Lemmas 5.3.7 and 5.3.8

Skew-shift

Let f : Td → Td be defined as follows

f(y1, y2, ..., yd) = (y1 + α, y2 + y1, ..., yd + yd−1).

Let ~Yn = fn(y1, ..., yd), then

(5.19) ~Yn = (y1 +

(
n

1

)
α, y2 +

(
n

1

)
y1 +

(
n

2

)
α, ..., yd +

(
n

1

)
yd−1 + · · ·+

(
n

d

)
α),

where
(
n
m

)
= 0 if n < m.

5.6.1 Preparation. Combinatorial identities

Lemma 5.6.1 Let rt ∈ N for 1 ≤ t ≤ s, then we have

lt=0,1∑
1≤t≤s

(−1)s−
∑s
t=1 lt

(∑s
t=1 ltrt
s− 1

)
= 0,(5.20)

lt=0,1∑
1≤t≤s

(−1)s−
∑s
t=1 lt

(∑s
t=1 ltrt
s

)
=

s∏
t=1

rt.(5.21)

Proof: Let us consider the coefficient Ca of xa in the product (1 +x)r1 · (1 +x)r2 ·

· · · · (1 + x)rs = (1 + x)
∑s
i=1 ri . Let us denote

A(a) = {(~j1,~j2, ...,~js),where ~jt = (jt,1, jt,2, ..., jt,rt), jt,k ∈ {0, 1}|
s∑
t=1

rt∑
k=1

jt,k = a}

(5.22)

Each element in A(a) corresponds to one way of choosing 1 or x in each term of the

product (1 + x)r1 · (1 + x)r2 · · · · · (1 + x)rs in order to get xa, where jt,k = 0 means we

choose 1 out of the k-th 1 + x from (1 + x)rt , and jt,k = 1 means we choose x instead

of 1. Thus the capacity of A(a), denoted by |A(a)|, is equal to Cα =
(∑

t=1 rt
a

)
. Let us

futher denote

A
(a)
t = A(a) ∩ {~jt = ~0}(5.23)
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For a = s− 1, since it is impossible to obtain xs−1 with ~jt 6= ~0 for any 1 ≤ t ≤ s, we

have

A(s−1) \ (∪st=1A
(s−1)
t ) = ∅.(5.24)

For a = s,

A(s) \ (∪st=1A
(s)
t ) = D,(5.25)

where

D = {(~j1,~j2, ...,~jt)|
rt∑
k=1

jt,k = 1 for 1 ≤ t ≤ s}.(5.26)

Clearly,

| ∪st=1 A
(a)
t | =

s∑
i=1

(−1)i−1
∑

1≤t1<t2<···<ti≤s

| ∩il=1 A
(a)
tl
|,(5.27)

in which

∑
1≤t1<t2<···<ti≤s

| ∩il=1 A
(a)
tl
| =

lt=0,1∑
∑s
t=1 lt=s−i

(∑s
t=1 ltrt
a

)
.(5.28)

Thus

|A(a) \ (∪st=1A
(a)
t )| =

(∑s
t=1 rt
a

)
+

s∑
i=1

(−1)i
lt=0,1∑

∑s
t=1 lt=s−i

(∑s
t=1 ltrt
a

)
,

=

lt=0,1∑
1≤t≤s

(−1)s−
∑s
t=1 lt

(∑s
t=1 ltrt
a

)
.(5.29)

For a = s − 1, (5.20) follows directly from (5.24 and (5.29). While for a = s, (5.21)

follows from (5.25), (5.29) and the fact that |D| =
∏s

t=1 rt. �

5.6.2 Diophantine α. Proof of Lemma 5.3.7

For α ∈ DC(τ), we take integers

(5.30) Hj ∼ N
2j

(2d−1)(τ+ε) for 0 ≤ j ≤ d− 1.
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By Lemma 5.2.2,

D(~Y1, ..., ~YN) ≤ Cd(
1

H0

+
∑

0<|~h|≤H0

1

r(~h)
| 1
N

N∑
n=1

e2πi〈~h,~Yn〉|)

= Cd(
1

H0

+
∑

0<|~h|≤H0

1

r(~h)
| 1
N

N∑
n=1

u(0)
n |),(5.31)

where

u(0)
n = exp{2πi

d∑
j=1

(hjα +

d−j∑
r=1

hj+ryr)

(
n

j

)
}.(5.32)

For 1 ≤ s ≤ d− 2, let

u
(s)
k1,...,ks,n

= exp
{

2πi
d∑

j=s+1

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
1≤t≤s

(−1)s−
∑s
t=1 lt

(
n+

∑s
t=1 ltkt
j

)}(5.33)

Then by Lemma 5.2.3,

| 1

N −
∑s

t=1 ks

N−
∑s
t=1 kt∑

n=1

u
(s)
k1,...,ks,n

|2

(5.34)

.
1

Hs+1

+
1

(N −
∑s

t=1 kt)H
2
s+1

Hs+1∑
ks+1=1

(Hs+1 − ks+1)|
N−

∑s+1
t=1 kt∑

n=1

u
(s)
k1,...,ks,n

u
(s)
k1,...,ks,n+ks+1

|.
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Here

|
N−

∑s+1
t=1 kt∑

n=1

u
(s)
k1,...,ks,n

u
(s)
k1,...,ks,n+ks+1

|

=|
N−

∑s+1
t=1 kt∑

n=1

exp 2πi
d∑

j=s+1

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
1≤t≤s

(−1)s−
∑s
t=1 lt(

(
n+

∑s
t=1 ltkt
j

)
−(

n+ ks+1 +
∑s

t=1 ltkt
j

)
)|

=|
N−

∑s+1
t=1 kt∑

n=1

exp
{

2πi
d∑

j=s+1

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
1≤t≤s+1

(−1)s+1−
∑s+1
t=1 lt

(
n+

∑s+1
t=1 ltkt
j

)}
|

=|
N−

∑s+1
t=1 kt∑

n=1

exp
{

2πi
d∑

j=s+1

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
0≤t≤s+1

(−1)s+2−
∑s+1
t=0 lt

(
l0n+

∑s+1
t=1 ltkt
j

)}
|

=|
N−

∑s+1
t=1 kt∑

n=1

exp
{

2πi
d∑

j=s+2

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
0≤t≤s+1

(−1)s+2−
∑s+1
t=0 lt

(
l0n+

∑s+1
t=1 ltkt
j

)}
|

(5.35)

=|
N−

∑s+1
t=1 kt∑

n=1

exp
{

2πi
d∑

j=s+2

(hjα +

d−j∑
r=1

hj+ryr)

lt=0,1∑
1≤t≤s+1

(−1)s+1−
∑s+1
t=1 lt

(
n+

∑s+1
t=1 ltkt
j

)}
|

=|
N−

∑s+1
t=1 kt∑

n=1

u
(s+1)
k1,...,ks+1,n

|.

(5.36)

Notice that in (5.35), we applied (5.21),

exp
{

(hs+1α +
d−s−1∑
r=1

hs+1+ryr)

lt=0,1∑
0≤t≤s+1

(−1)s+2−
∑s+1
t=0 lt

(
l0n+

∑s+1
t=1 ltkt

s+ 1

)}
= 1.

Combining (5.34) with (5.36), we get for any 0 ≤ s ≤ d− 3,

| 1

N −
∑s

t=1 ks

N−
∑s
t=1 kt∑

n=1

u
(s)
k1,...,ks,n

|2

(5.37)

≤ 1

Hs+1

+
1

(N −
∑s

t=1 kt)H
2
s+1

Hs+1∑
ks+1=1

(Hs+1 − ks+1)(N −
s+1∑
t=1

kt)|
1

N −
∑s+1

t=1 kt

N−
∑s+1
t=1 kt∑

n=1

u
(s+1)
k1,...,ks+1,n

|.
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By (5.34), for s = d− 2,

| 1

N −
∑d−2

l=1 kl

N−
∑d−2
l=1 kl∑

n=1

u
(d−2)
k1,...,kd−2,n

|2

(5.38)

.
1

Hd−1

+
1

(N −
∑d−2

l=1 kl)H
2
d−1

Hd−1∑
kd−1=1

(Hd−1 − kd−1)|
N−

∑d−1
l=1 kl∑

n=1

u
(d−2)
k1,...,kd−2,n

u
(d−2)
k1,...,kd−2,n+kd−1

|

.
1

Hd−1

+
1

(N −
∑d−2

l=1 kl)Hd−1

Hd−1∑
kd−1=1

|
N−

∑d−1
l=1 kl∑

n=1

u
(d−2)
k1,...,kd−2,n

u
(d−2)
k1,...,kd−2,n+kd−1

|,

and

|
N−

∑d−1
l=1 kl∑

n=1

u
(d−2)
k1,...,kd−2,n

u
(d−2)
k1,...,kd−2,n+kd−1

|

=|
N−

∑d−1
l=1 kl∑

n=1

exp{2πihdα
jl=0,1∑

1≤l≤d−1

(−1)d−1−
∑d−1
l=1 jl

(
n+

∑d−1
j=1 jlkl
d

)
}|

=|
N−

∑d−1
l=1 kl∑

n=1

exp{2πihdα
jl=0,1∑

0≤l≤d−1

(−1)d−
∑d−1
l=0 jl

(
l0n+

∑d−1
j=1 jlkl
d

)
}|

=|
N−

∑d−1
l=1 kl∑

n=1

exp{2πihdnα
d−1∏
l=1

kl}|(5.39)

.
1

‖hdα
∏d−1

l=1 kl‖T
,(5.40)

where in (5.39) we used (5.21).

Since α ∈ DC(τ), by the property of Diophantine condition (1.4) and since |hi| ≤

H0, 1 ≤ ki ≤ Hi we have

(5.41)

Hd−1∑
kd−1=1

1

‖hdα
∏d−1

l=1 kl‖T
≤

Hd−1∑
j=1

mτ
∏d−1

l=1 H
τ
l

j
≤ mτHτ+ε

d−1

d−2∏
l=1

Hτ
l .

Thus combining (5.38), (5.40) with (5.41), we have

| 1

N −
∑d−2

l=1 kl

N−
∑d−2
l=1 kl∑

n=1

u
(d−2)
k1,...,kd−2,n

|2 . 1

Hd−1

+
mτHτ+ε

d−1

∏d−2
l=1 H

τ
l

Hd−1(N −
∑d−2

l=1 Hl)
.

1

Hd−1

=
1

H2
d−2

.
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Lemma 5.6.2 For any α ∈ T, if for any 1 ≤ ks ≤ Hs,v,α,

| 1

N −
∑s

l=1 kl

N−
∑s
l=1 kl∑

n=1

u
(s)
k1,...,ks,n

|2 . 1

H2
s,v,α

,

then for any 0 ≤ t ≤ s− 1, 1 ≤ kt ≤ Ht we have

| 1

N −
∑t

l=1 kl

N−
∑t
l=1 kl∑

n=1

u
(t)
k1,...,kt,n

|2 . 1

H2
t

.

Proof: For t = s− 1, by (5.37),

| 1

N −
∑s−1

l=1 kl

N−
∑s−1
l=1 kl∑

n=1

u
(s−1)
k1,...,ks−1,n

|2

.
1

Hs

+
1

(N −
∑s−1

l=1 kl)H
2
s

Hs∑
ks=1

(Hs − ks)(N −
s∑
l=1

kl)|
∑N−

∑s
l=1 kl

n=1 u
(s)
k1,...,ks,n

(N −
∑s

l=1 kl)
|

.
1

Hs

=
1

H2
s−1

.

Then by reverse induction. �

At the final step we obtain

| 1
N

N∑
n=1

u(0)
n |2 .

1

H2
0

Plugging it into (5.31), we have

D(~Y1, ..., ~YN) .
1

H0

+
∑

0<|~h|≤H0

1

r(~h)

1

H0

.
1

H1−ε
0

∼ N
− 1−ε

(2d−1)(τ+ε) .

�

5.6.3 Liouvillean α, Proof of Lemma 5.3.8

For α /∈ DC(d), by property (1.6), we could find a subsequence {pn
qn
} of the continued

fraction approximants of α, so that qn+1 > qdn. In the following we will use q instead of

qn and q̃ instead of qn+1 for simplicity. Here we would like to show Dq(~Y1, ..., ~Yq) ≤ q−δ

for some δ > 0. Take

(5.42) Hj ∼ q
2j

2d for 0 ≤ j ≤ d− 2 and Hd−1 ∼ q
2d−1(1+ε)

2d ,
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where ε > 0 is small enough so that

(5.43)
d−1∏
l=0

Hl = q
2d−1+2d−1ε

2d < q.

Now by Lemma 5.2.2

D(~Y1, ..., ~Yq) ≤ Cd(
1

H0

+
∑

0<|~h|≤H0

1

r(~h)
| 1

q

q∑
n=1

exp{2πi
d∑
j=1

(hjα + hj+1y1 + ...+ hdyd−j)

(
n

j

)
} |)

(5.44)

Consider the following difference

1

q
|

q∑
n=1

exp{2πi
d∑
j=1

(hjα + hj+1y1 + ...+ hdyd−j)

(
n

j

)
}−

q∑
n=1

exp{2πi
d∑
j=1

(hj
p

q
+ hj+1y1 + ...+ hdyd−j)

(
n

j

)
}|(5.45)

≤1

q

q∑
n=1

| exp{2πi
d∑
j=1

hj(α−
p

q
)

(
n

j

)
} − 1|

.
1

q

q∑
n=1

d∑
j=1

(
n

j

)
H0|α−

p

q
|

.
H0

q
,

where in the last step we use (1.1), |α− p
q
| ≤ 1

qq̃
< 1

qd+1 .

Then combining (5.44) with (5.45), we have

(5.46) D(~Y1, ..., ~Yq) . Cd(
1

H0

+
∑

0<|~h|≤H0

1

r(~h)
| 1

q

q∑
n=1

u(0)
n |) +

H0

q
,

where ũ
(0)
n = exp{2πi

∑d
j=1(hj

p
q

+ hj+1y1 + ... + hdyd−j)
(
n
j

)
}, that is u

(0)
n as in (5.32)

with α replaced with p
q
. Thus with ũ

(s)
k1,...,ks,n

defined as in (5.33) with α replaced with

p
q
, similar to (5.38) and (5.39), we have

| 1

N −
∑d−2

l=1 kl

N−
∑d−2
l=1 kl∑

n=1

ũ
(d−2)
k1,...,kd−2,n

|2

.
1

Hd−1

+
1

(N −
∑d−2

l=1 kl)Hd−1

Hd−1∑
kd−1=1

|
N−

∑d−1
l=1 kl∑

n=1

ũ
(d−2)
k1,...,kd−2,n

ũ
(d−2)
k1,...,kd−2,n+kd−1

|,(5.47)
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and

|
q−
∑d−1
l=1 kl∑

n=1

ũ
(d−2)
k1,...,kd−2,n

ũ
(d−2)
k1,...,kd−2,n+kd−1

|

=|
q−
∑d−1
l=1 kl∑

n=1

exp{2πihdn
p

q

d−1∏
l=1

kl}|

.
1

‖hd pq
∏d−1

l=1 kl‖R/Z
.(5.48)

Since |hd| ≤ H0, 1 ≤ ki ≤ Hi and (5.43), for any 1 ≤ k ≤ Hd−1 we have ‖khd pq
∏d−2

l=1 kl‖R/Z ≥
1
q
. Thus

(5.49)

Hd−1∑
kd−1=1

1

‖hd pq
∏d−1

l=1 kl‖R/Z
.

Hd−1∑
j=1

q

j
≤ q lnHd−1.

Then combining (5.47), (5.48) with (5.49), we get

(5.50)

| 1

q −
∑d−2

l=1 kl

q−
∑d−2
l=1 kl∑

n=1

ũ
(d−2)
k1,...,kd−2,n

|2 . 1

Hd−1

+
q lnHd−1

(q −
∑d−2

l=1 Hl)Hd−1

.
1

H
1

1+ε

d−1

=
1

H2
d−2

.

By Lemma 5.6.2,

|1
q

q∑
n=1

ũ(0)
n |2 .

1

H0

.

Plugging it into (5.46), we get

D(~Y1, ..., ~Yq) .
1

H0

+
(logH0)d

H0

+
H0

q
.

1

q
1−ε
2d

.

5.7 Bounded remainder set

Most of the material covered in this section comes from [30]. We briefly discuss it here

for completeness and readers’ convenience. From now on we restrict our attention

to irrational rotation on Td. For a measurable set U ⊂ Td, consider the function

AN(U, ~x)−N |U | := A(U, {~x+nα}N−1
n=0 )−N |U | =

∑N−1
n=0 χU(~x+nα)−N |U |. We will

say U is a bounded remainder set (BRS) with respect to α if there exists a constant

C(U, α) > 0 such that |AN(U, ~x)−N |U || ≤ C(U, α) for any N and a.e. ~x ∈ Td. We
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will call a measurable function g on Td a transfer function for U if its characteristic

function satisfies

χU(~x)− |U | = g(~x)− g(~x− α) a.e.

Obviously if g is a transfer function for U , then its Fourier coefficients satisfy

ĝ(~m) =
χ̂U(~m)

1− e−2πi〈~m,α〉 , ~m 6= 0.(5.51)

Proposition 5.7.1 [30] For a measurable set U ⊂ Td, the following are equivalent:

• U is a bounded remainder set.

• U has a bounded transfer function g.

Theorem 5.7.1 Any interval I ⊂ T of length 0 < |qα− p| < 1 is a BRS with respect

to α, furthermore its transfer function h satisfies ‖g‖∞ ≤ |q|.

Proof: Without loss of generality, we consider an interval I = [0, κ], where

κ = qα− p > 0. Then

χI(x)− |I| = −{x}+ {x− κ}

= −{x}+ {x− qα}

= (−{x} − ...− {x− (q − 1)α}) + ({x− α}+ ...+ {x− qα})

= g(x)− g(x− α),

where g(x) = −
∑q−1

j=0{x− jα}, ‖g‖∞ ≤ |q|. �

Theorem 5.7.2 Let ~v = (v1, v2, ..., vd) = qα−~p ∈ Zα+Zd, v /∈ Zd, and let Σ ∈ Td−1

be a BRS with respect to the vector ( v1

vd
, v2

vd
, ...vd−1

vd
) with transfer function h. Then the

set

U = U(Σ, ~v) = {(~x, 0) + t~v : ~x ∈ Σ, 0 ≤ t < 1},

is a BRS with respect to α, whose transfer function g satisfies ‖g‖∞ ≤ |q|(‖h‖∞+ 1).
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Proof: Let ~v0 = (v1, ..., vd−1) be the vector in Td−1, which consists of the first

d − 1 entries of ~v. First, we wish to find a bounded function g̃ on Td satisfying the

cohomological equation

χU(~x, y)− |U | = g̃(~x, y)− g̃(~x− ~v0, y − vd) for a.e. (~x, y) ∈ Td−1 × T.

This means the Fourier coefficients satisfy the equation

ˆ̃g(~m, n)(1− e−2πi(〈~m,~v0〉+nvd)) =

∫ vd

0

∫
Σ+ y

vd
~v0

e
−2πi〈~m,~x+ y

vd
~v0〉d~x e−2πinydy, (~m, n) 6= (~0, 0).

(5.52)

Which implies

ˆ̃g(~m, n) =
χ̂Σ(~m)

2πi(〈~m,~v0〉/vd + n)
, (~m, n) 6= (~0, 0).(5.53)

We know Σ is a BRS with respect to ~v0/vd, by (5.51) its transfer function h : Td−1 →

R satisfies

ĥ(~m) =
χ̂Σ(~m)

1− e−2πi〈~m,~v0〉/vd
, ~m 6= 0.

It is straightforward to check that the bounded function g̃ defined by

g̃(~x, y) = h(~x− ~v0

vd
{y})− |Σ| · {y},

satisfies the coholomogical equation (5.53). Hence g̃ is a bounded transfer function

for U with respect to ~v.

Indeed, ‖g̃‖∞ ≤ ‖h‖∞+ 1. Since ~v = qα− ~p, letting g(~x) = g̃(~x) + g̃(~x−α) + ...+

g̃(~x − (q − 1)α) we have that U is a BRS with respect to α with bounded transfer

function g satisfying ‖g‖∞ ≤ |q|‖g̃‖∞ ≤ |q|(‖h‖∞ + 1). �

The following corollary will be used several times in section 8.

Corollary 5.7.1 Let U ⊂ T2 be the parallelogram spanned by two vectors m(α1, α2)−

(l1, l2) and (qmα1−l1
mα2−l2 − p, 0), then U is a BRS with respect to (α1, α2) with transfer

function g satisfying ‖g‖∞ ≤ |m|(|q|+ 1) ≤ 2|mq|.

Proof: In this case v = (v1, v2) = m(α1, α2)− (l1, l2) ∈ Zα+Z2, Σ = [0, q v1

v2
−p]×

{0}. We know the transfer function h of Σ with respect to v1/v2 satisfies ‖h‖∞ ≤ |q|.

Thus ‖g‖∞ ≤ |m|(|q|+ 1) ≤ 2|mq|. �
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5.8 2-dimensional irrational rotation with weak dio-

phantine frequencies

In this section we deal with 2-dimensional weakly Diophantine frequencies. Our goal

is to prove Lemma 5.3.5.

Proof of Lemma 5.3.5

Assume (α1, α2) ∈ WDC(c0, τ/4), for some τ > 4 and c0 > 0. We divide the

discussion into two parts.

First, we introduce the coprime Diophantine condition:

PDC(τ) = ∪c>0PDC(c, τ) = ∪c>0{(α1, α2)|‖〈~h, α〉‖T ≥
c

|~h|τ
for any gcd(h1, h2) = 1

(5.54)

or h1h2 = 0 but ~h 6= ~0}.

Obviously if α ∈ PDC(c, τ) both α1 and α2 belong to DC(c, τ).

Case A

(α1, α2) ∈ PDC(c1, τ) for some c1 > 0.

Let’s take the best simultaneous approximation {( l1,n
mn
, l2,n
mn

)} of (α1, α2). They

feature the following property.

Lemma 5.8.1 ([59], Theorem 3.5) If {1, α1, α2} is linearly independent over Q, then

there are infinitely many nk such that∣∣∣∣∣∣∣∣∣
mnk l1,nk l2,nk

mnk+1 l1,nk+1 l2,nk+1

mnk+2 l1,nk+2 l2,nk+2

∣∣∣∣∣∣∣∣∣ 6= 0

Now we take rk > 0 such that

mnk ≤
4

π
r−2
k < mnk+1.(5.55)
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By (1.7), the choice of rk guarantees that for n ≥ nk,

(mnα1 − l1,n,mnα2 − l2,n) ∈ Brk(0, 0),(5.56)

where Br(x1, x2) := {y = (y1, y2) ∈ T2 : ‖y1 − x1‖2
T + ‖y2 − x2‖2

T < r2
k}. Let {pn,s

qn,s
}∞s=1

be the continued fraction approximants of mnα1−l1,n
mnα2−l2,n . For each n choose sn such that

qn,sn ≤ r−1
k < qn,sn+1.(5.57)

By (1.1), the choice of sn guarantees that

(qn,sn
mnα1 − l1,n
mnα2 − l2,n

− pn,sn , 0) ∈ Brk(0, 0).(5.58)

By (1.7) and (1.9) we have

(5.59)
c0

m
τ/4
n

≤ max{|mnα1 − l1,n|, |mnα2 − l2,n|} ≤
2√

π
√
mn+1

,

by (5.55) we have mnk ≤ 4
π
r−2
k , thus

max (mnk ,mnk+1,mnk+2) ≤ Cc0,τr
− τ

2

2
k .(5.60)

Case A.1

If for some n ∈ {nk, nk + 1, nk + 2}, we have qn,sn+1 ≤ r−2τ4

k .

Let U be the parallelogram spanned by the two vectors mn(α1, α2) − (l1,n, l2,n)

and (qn,sn
mnα1−l1,n
mnα2−l2,n − pn,sn , 0). By (5.56) and (5.58), U ⊂ B2rk(0, 0). Corollary 5.7.1

implies that |
∑M−1

j=0 χU(x + jα1, y + jα2)−M |U || ≤ 4|mnqn,sn| for a.e. (x, y). Thus

as long as M > 4|mnqn,sn |
|U | , we should have ∪M−1

j=0 U − (jα1, jα2) covers the whole T2 up

to a measure zero set. Then

T2 ⊆ ∪M−1
j=0 B2rk(−jα1,−jα2) for M >

4|mnqn,sn|
|U |

.(5.61)

Now we want to estimate |U |. Since α2 ∈ DC(c1, τ), by (1.4) we have

|U | = |mnα2 − l2,n| · |qn,sn
mnα1 − l1,n
mnα2 − l2,n

− pn,sn| ≥
c1

|mn|τ
1

2qn,sn+1

.

Thus by (5.57) and (5.60),

4|mn|qn,sn
|S|

≤ 8

c1

|mn|1+τqn,snqn,sn+1 ≤ Cc0,c1,τr
−3τ4

k .

This means it takes B2rk(0, 0) at most Cα1,α2,τr
−3τ4

k steps to cover the whole T2.
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Case A.2

We will show now it is impossible to have qn,sn+1 > r−2τ4

k for all n ∈ {nk, nk+1, nk+2}.

In this case by (1.1), (1.7) and (5.55), we have:

|qn,snmnα1 − pn,snmnα2 +Mn| =|mnα2 − l2,n| · |qn,sn
mnα1 − l1,n
mnα2 − l2,n

− pn,sn |

<
2

√
π
√
|mn+1|qn,sn

< r2τ4+1
k(5.62)

where Mn = pn,snl2,n − qn,snl1,n.

We have the following estimates on the upper bounds of pn,sn and Mn. Combining

(1.4), (5.55), (5.57), (5.59) with (5.60),

|pn,sn| ≤ qn,sn|
mnα1 − l1,n
mnα2 − l2,n

|+ 1

qn,sn+1

≤ 2qn,sn|mn|τ

c1

√
π
√
|mn+1|

+ r2τ4

k ≤ Cc0,c1,τr
− τ

3

2
k .(5.63)

By (5.62), (5.55), (5.60), (5.57) and (5.63),

|Mn| < |qn,snmnα1 − pn,snmnα2|+ r2τ4

k ≤ Cc0,c1,τr
−τ3

k .(5.64)

Case A.2.1

If pn,sn = 0 for some n ∈ {nk, nk + 1, nk + 2}, then by (1.1), (1.7) and (5.54),

(1.4),(5.55), (5.60)

r2τ4

k >
1

qn,sn+1

≥ |qn,sn
mnα1 − l1,n
mnα2 − l2,n

| ≥
c1

√
π
√
|mn+1|

2mτ
n

≥ Cc0,c1,τr
τ3

2
+1

k ,

contradiction.

Case A.2.2

If Mn = 0 for some n ∈ {nk, nk + 1, nk + 2}, then by (5.62), (5.55), (5.63) and the

fact that (α1, α2) ∈ PDC(c1, τ),

r2τ4

k > |mn||qn,snα1 − pn,snα2| ≥
c1|mn|

max (pn,sn , qn,sn)τ
≥ Cc0,c1,τr

τ4

2
k ,

contradiction.
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Case A.2.3

If pn,sn 6= 0 and Mn 6= 0 for any n ∈ {nk, nk + 1, nk + 2}, then for any i, j ∈

{nk, nk + 1, nk + 2}, we have:

|(qi,simiMj − qj,sjmjMi)α1 − (pi,simiMj − pj,sjmjMi)α2|(5.65)

≤|(qi,simiα1 − pi,simiα2 +Mi)Mj|+ |(qj,sjmjα1 − pj,sjmjα2 +Mj)Mi|

<(|Mi|+ |Mj|)r2τ4

k .

Case A.2.3.1

If (qi,simiMj − qj,sjmjMi, pi,simiMj − pj,sjmjMi) 6= (0, 0) for some i, j ∈ {nk, nk +

1, nk + 2}.

Let h = gcd(qi,simiMj−qj,sjmjMi, pi,simiMj−pj,sjmjMi) be the greatest common

divisor of the two numbers if they are both nonzero, let h = 1 otherwise. Then by

(5.65),

|
qi,simiMj − qj,sjmjMi

h
α1 −

pi,simiMj − pj,sjmjMi

h
α2| <

|Mi|+ |Mj|
h

r2τ4

k .

However on one hand by (5.64),

|Mi|+ |Mj|
h

r2τ4

k ≤ (|Mi|+ |Mj|)r2τ4

k ≤ Cc0,c1,τr
2τ4−τ3

k .

On the other hand by the fact that (α1, α2) ∈ PDC(c1, τ) and (5.55), (5.60), (5.63),

(5.64),

|
qi,simiMj − qj,sjmjMi

h
α1 −

pi,simiMj − pj,sjmjMi

h
α2|

≥ c1h
τ

|(qi,simiMj − qj,sjmjMi, pi,simiMj − pj,sjmjMi)|τ

≥Cc0,c1,τr
7
4
τ4

k ,

contradiction.
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Case A.2.3.2

If for any i, j ∈ {nk, nk + 1, nk + 2}

qi,simiMj = qj,sjmjMi

pi,simiMj = pj,sjmjMi.

Then for n = nk,

pn,sn
qn,sn

=
pn+1,sn+1

qn+1,sn+1

=
pn+2,sn+2

qn+2,sn+2

.

Hence we can let p = pn,sn = pn+1,sn+1 = pn+2,sn+2 and q = qn,sn = qn+1,sn+1 =

qn+2,sn+2 . Then we would have (after plugging in Mn = ql1,n − pl2,n)

(5.66) q(mnl1,n+1 −mn+1l1,n) = p(mnl2,n+1 −mn+1l2,n)

(5.67) q(mnl1,n+2 −mn+2l1,n) = p(mnl2,n+2 −mn+2l2,n)

(5.68) q(mn+1l1,n+2 −mn+2l1,n+1) = p(mn+1l2,n+2 −mn+2l2,n+1)

Then consider (5.66) · (−l1,n+2) + (5.67) · l1,n+1 + (5.68) · (−l1,n), we get

p ·

∣∣∣∣∣∣∣∣∣
mnk l1,nk l2,nk

mnk+1 l1,nk+1 l2,nk+1

mnk+2 l1,nk+2 l2,nk+2

∣∣∣∣∣∣∣∣∣ = q · 0 = 0,

contradiction with the choice of nk.

Case B

(α1, α2) /∈ PDC(τ). By the definition of PDC(τ), the sequence ~hn = (h1,n, h2,n) for

which (5.54) fails has to satisfy either gcd (h1,n, h2,n) = 1 (Case B.1) or h1,nh2,n = 0

(Case B.2).
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Case B.1

We can find a sequence {nj}, such that |~hnj | = max (|h1,nj |, |h2,nj |)→∞ as j →∞,

gcd (h1,nj , h2,nj) = 1 and ‖h1,njα1 + h2,njα2‖T < 1

|~hnj |τ
.

Without loss of generality, we can assume |h1,nj | = |~hnj |. In this case we can take

rnj = 1
|h1,nj

| . For simplicity we will replace nj with n.

Now that ‖h1,nα1 +h2,nα2‖T < 1
|h1,n|τ , we can find l1,n, l2,n ∈ Z such that |h1,n(α1−

l1,n)+h2,n(α2− l2,n)| < 1
|h1,n|τ . Since replacing (α1, α2) with (α1 + l1,n, α2 + l2,n) would

not change anything, we will assume |h1,nα1 + h2,nα2| < 1
|h1,n|τ . Then

|α2

α1

− (−h1,n

h2,n

)| < 1

|h1,n|τα1

.(5.69)

We consider the following two lines on T2:

l1(t) = ({t}, {α2

α1

t}) and l2(t) = ({t}, {−h1,n

h2,n

t}).

These two lines are close to each other in the sense that for |t| ≤ |h1,n|3τ/4, by (5.69),

‖{α2

α1

t} − {−h1,n

h2,n

t}‖T ≤ |
α2

α1

t+
h1,n

h2,n

t| ≤ |t|
|h1,n|τα1

≤ 1

|h1,n|τ/4α1

.

The graph of l2(t) is the hypotenuse of a right triangle with two legs of lengths

|h1,n| and |h2,n| (mod Z2). We consider the orbit of (α1,−h1,n

h2,n
α1) under the rotation

(α1,−h1,n

h2,n
α1). These points lie on l2(t). Under this rotation the point moves a distance

√
h2

1,n+h2
2,n

|h2,n| α1 at each step by a big interval with length
√
h2

1,n + h2
2,n. Let {pm

qm
}∞m=1 be

the continued fraction approximants of α1

h2,n
. Choose m such that

qm−1 ≤ |h1,n|
√
h2

1,n + h2
2,n < qm.(5.70)

Then it would take a point on T at most qm + qm−1 steps (under the α1

h2,n
-rotation)

to enter each interval of length 1

|h1,n|
√
h2

1,n+h2
2,n

on T (e.g. [46]), which means it would

take a point on l2(t) at most qm + qm−1− 1 steps (under the

√
h2

1,n+h2
2,nα1

|h2,n| -rotation) to

enter each interval of length 1
|h1,n| = rn on the graph of l2(t). Moreover, it is easy to

see that the distance from any x ∈ T2 to l2(t) is bounded by 1√
h2

1,n+h2
2,n

< rn. Thus

T2 ⊆ ∪qm+qm−1

k=0 B2rn(kα1,−
h1,n

h2,n

kα1).(5.71)
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By (1.1) and (5.69),

|pm−1 + qm−1
α2

h1,n

| = |pm−1 − qm−1
α1

h2,n

+ qm−1(
α1

h2,n

+
α2

h1,n

)| ≤ 1

qm
+

qm−1

|h1,n|τ−1
.

This implies, by (1.1) and (5.70),

‖qm−1α1‖T ≤ |qm−1α1 − h2,npm−1| ≤
|h2,n|
qm

,

‖qm−1α2‖T ≤
|h1,n|
qm

+
2

|h1,n|τ−4
.

Then by the fact that α ∈ WDC(c0,
τ
4
) and (5.70),

max{|h2,n|
qm

,
|h1,n|
qm

+
2

|h1,n|τ−4
} ≥ max (‖qm−1α1‖T, ‖qm−1α2‖T) ≥ c0

q
τ/4
m−1

≥ c0

2
τ
4 |h1,n|τ/2

.

This implies

qm + qm−1 < 2qm ≤
2
τ
4

+2

c0

|h1,n|τ/2+1.(5.72)

Since 0 ≤ k ≤ 2
τ
4 +2

c0
|h1,n|τ/2+1 < r

− 3τ
4

n , by (5.69) the points (kα1, kα2) and (kα1,−h1,n

h2,n
kα1)

differ at most by r
τ
4
n we obtain using (5.71) and (5.72),

T2 ⊆ ∪r
−3τ/4
n
k=0 B3rn(kα1, kα2).

Case B.2

We can find a sequence {nj} such that h2,nj ≡ 0 and |h1,nj | → ∞ such that

‖h1,njα1‖T <
1

|h1,nj |τ
.(5.73)

For simplicity we will replace nj with n. We can find Mn such that |h1,nα1 −Mn| <
1

|h1,n|τ . Let dn = gcd(h1,n,Mn) be the greatest common divisor. Let h̃1,n = h1,n

dn
and

M̃n = Mn

dn
. We have

|α1 −
M̃n

h̃1,n

| < 1

|h1,n|τ+1
→ 0.(5.74)

If h̃1,n is bounded in n, then α1 can be approximated arbitrarily closely by rationals

with bounded donominators, which is impossible. Thus |h̃1,n| → ∞. Now take radius

105



rn = 1
|h̃1,n|

. For each 0 ≤ i ≤ h̃1,n − 1 consider {(iα1 + kh̃1,nα1, iα2 + kh̃1,nα2)}∞k=0.

Let {pm
qm
}∞m=1 be the continued fraction approximants of h̃1,nα2. Choose m such that

qm−1 ≤ |h̃1,n| = r−1
n < qm.(5.75)

Then it takes any point on T at most qm+qm−1−1 steps (under the h̃1,nα2−rotation)

to enter each interval of length rn [46]. By (1.1),

|pm−1 − qm−1h̃1,nα2| ≤
1

qm
.(5.76)

By (5.73), (5.75) and since τ > 4, we have ‖qm−1h̃1,nα1‖ ≤ qm−1

|h̃1,n|τ
< c0

(qm−1|h̃1,n|)τ/4
. By

the fact that α ∈ WDC(c0,
τ
4
), ‖qm−1h̃1,nα2‖ ≥ c0

(qm−1|h̃1,n|)τ/4
. By (5.76) and (5.75),

we have

qm ≤
1

c0

|h̃1,n|
τ
2 .(5.77)

Now for 0 ≤ k ≤ qm+qm−1−1, by (5.74), (5.73) and (5.77), ‖iα1 +kh̃1,nα1− iM̃n

h̃1,n
‖T ≤

C

|h̃1,n|
τ
2

= Cr
τ
2
n . Since gcd (h̃1,n, M̃n) = 1, any interval of length rn = 1

|h̃1,n|
contains iM̃n

h̃1,n

for some 0 ≤ i ≤ h̃1,n − 1. Thus

T2 ⊆ ∪(qm+qm−1)|h̃1,n|
k=0 Brn(kα1, kα2).

By (5.77), (qm + qm−1)|h̃1,n| ≤ r−τn , so we have

T2 ⊆ ∪r
−τ
n
k=0Brn(kα1, kα2).(5.78)

�.
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Chapter 6

Continuity of measure of the

spectrum for Schrödinger

operators with potentials driven by

shifts and skew-shifts on tori

6.1 Introduction

Consider Schrödinger operators acting on l2(Z):

Hv,f (θ)u(n) = u(n+ 1) + u(n− 1) + v(fnθ)u(n).(6.1)

where v is the potential, θ ∈ Td is the phase and f is shift or skew-shift with fre-

quency α on the torus Td. We study continuity of the spectra in frequency α. In

particular, since the spectrum at rational frequencies can be obtained numerically

and are easier to study, continuity in frequency allows us to study the spectrum at

irrational frequencies via rational approximation. While many recent significant ad-

vances in discrete Schrödinger operators, see e.g. [15, 40, 2], require one dimensional

torus shift and analytic potentials, our results reveal that continuity of the spectrum

is a much more general phenomenon: it holds for both shift and skew-shift on higher

dimensional torus and also Hölder continuous potentials. Our results can be viewed
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as a generalization of [44], where a similar result was obtained for d = 1 and f is a

rotation of the circle.

Let fs,α : θ → θ+α be the shift and fss,α : (θ1, θ2, ..., θd)→ (θ1 +α, θ2 +θ1, ..., θd+

θd−1) be the skew-shift. For a fixed v, f∗,α, let us denote the spectrum of Hv,f∗,α,θ by

S(α, θ). Let S(α) = ∪θ∈TdS(α, θ). It is known that if α is irrational, S(α) = S(α, θ)

for any θ ∈ Td, while if α is rational, S(α, θ) depends on θ and S( ~pn
qn

) is a union of

at most qn bands. We would like to establish that limn→∞ S( ~pn
qn

) = S(α) in the sense

that limn→∞ χS( ~pn
qn

)(E) = χS(α)(E) for a.e. E ∈ R.

This question first arose from the Aubry-Andre conjecture [1] on the measure of

the spectrum of the almost Mathieu operator (d = 1, f = fs,α and v(θ) = 2λ cos 2πθ)

to be 4|1 − |λ||. This conjecture has been proved for all irrational α, with partial

results obtained in [10, 60, 61, 21, 47] and the extension to all irrational α was made

in [41, 9] 1 (see e.g. [44] for a complete history). The proof of the Aubry-Andre

conjecture contains two important ingredients: one is to obtain estimates about the

rational frequencies [10, 61]: |S(pn
qn

)| → 4|1 − |λ||; the other is to prove continuity

of measure of the spectrum in frequency at irrationals. While the first ingredient

clearly specializes to the almost Mathieu operator, the second ingredient, related to

quantitative estimates on the Hausdorff continuity of the spectrum, have been studied

for much more general potentials.

When d = 1 and f = fs,α, it was proved [41] that for any analytic f in the

regime of positive Lyapunov exponent, |S(pn
qn

)| → |S(α)| for every Diophantine α and

its continued fraction approximants. Later, it was shown [37] that positivity of the

Lyapunov exponent is not need for this result, in particular, S(pn
qn

) → S(α) for any

analytic v and all irrational α. More recently, it has been proved [44] that under the

condition of positive Lyapunov exponent, the regularity of v can be relaxed to Hölder

continuity.

One of the key ingredients of the proof of [44] is strongly (weakly) M -dense prop-

erty of the irrational rotation of the circle defined in the abstract form in Section 2.3.

We say a dynamical system is strongly M -dense if any point will enter a ball with

1The argument of [9], applies to the critical value λ = 1, did not involve continuity in frequency
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radius r within r−M steps under the map as long as r is small, while the weak ver-

sion requires only a sequence of lengths rk → 0. The strongly M -dense property for

the irrational rotation of the circle is guaranteed by the Diophantine condition on α

and proved using continued fraction expansion. For the higher dimensional shift and

skew-shift, strongly M -dense properties have been studied using different methods in

[4, 33], and some results on weakly M -dense property were obtained in [33]. These

properties are important in our generalization of the results of [44] to both (Td, fs,α)

and (Td, fss,α) cases.

Let L(α,E) be the Lyapunov exponent of the operator Hv,f∗,α(θ) at energy E (see

(1.12)). Let L+(α) = {E : L(α,E) > 0} and Lε+(α) = {E : L(α,E) > ε}.

With the Diophantine conditions defined in section 1.2, our main results are:

Theorem 6.1.1 Let fs,α be an irrational shift on Td. Let 1 ≥ γ > d
d+1

be a constant.

Then if α /∈ WDC( 1
γ
) or α ∈ DC(τ) for some τ > 1, there exists a sequence of

rationals ~pn
qn

= (p1,n

qn
, ...,

pd,n
qn

)→ α such that for any v ∈ Cγ(Td),

lim
n→∞

S(
~pn
qn

) ∩ L+(α) = S(α) ∩ L+(α).

Remark 6.1.1 The sequence of rationals can be taken as the full sequence of best

simultaneous approximation, of α (see section 2.2.2) when α ∈ DC(τ), and a proper

subsequence when α /∈ WDC( 1
γ
).

A direct corollary is:

Corollary 6.1.1 Let ~pn
qn

be the chosen sequence of rationals as in Theorem 6.1.1, we

have,

lim
n→∞

|S(
~pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

Theorem 6.1.2 Let fss,α be a skew-shift on Td. For any α ∈ R \Q. There exists a

sequence of rationals pn
qn
→ α such that for any v ∈ Cγ(Td) with 1 ≥ γ > 1

2
,

lim
n→∞

S(
pn
qn

) ∩ L+(α) = S(α) ∩ L+(α).
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Remark 6.1.2 The sequence of rationals will the be full sequence of continued frac-

tion approximants if α ∈ DC(τ) for some τ > 1, and a proper subsequence otherwise.

A direct corollary is:

Corollary 6.1.2 Let pn
qn

be the chosen sequence of rationals as in Theorem 6.1.2, we

have,

lim
n→∞

|S(
pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

For shifts on two dimensional torus, as for the skew-shifts, we are able to cover all

frequencies.

Theorem 6.1.3 Let fs,α be an irrational shift on T2. Let 1 ≥ γ > 2
3

be a constant.

Then for any ε0 > 0 and for any irrational α, there exists a sequence of rationals

~pn
qn
→ α (depending on ε0) such that for any v ∈ Cγ(T2),

lim
n→∞

S(
~pn
qn

) ∩ Lε0+(α) = S(α) ∩ Lε0+(α).

Similarly, we have

Corollary 6.1.3 Let ~pn
qn

be the chosen sequence of rationals as in Theorem 6.1.3, we

have,

lim
n→∞

|S(
~pn
qn

) ∩ L+(α)| = |S(α) ∩ L+(α)|.

We organize this paper as follows: some preliminaries are presented in section

2, then the two key lemmas proved in section 3 prepare us for the proofs of main

theorems in section 4.

6.2 Preparation

For x ∈ Rd, let ‖x‖Td = dist(x,Zd). For a Borel set U ⊆ Rd, let |U | be its Lebesgue

measure. Let d0 be the dimension of the frequency α and d1 = d− d0 + 1, hence we

have d0 = d and d1 = 1 when f∗,α = fs,α, while d0 = 1 and d1 = d when f∗,α = fss,α.

Let Dr(x) ⊂ Td be the Euclidean ball centred at x with radius r.
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6.2.1 Covering Td with the orbit of a ball

We say a point θ in Td is (f, r,M)-dense for some r > 0, M ≥ 1, if ∪r−Mj=0 Dr(f
jθ) = Td.

This means, the ball Dr(θ) with radius r will cover the whole Td in r−M steps under

the map f . We say (Td, f) is strongly M-dense if there exists r0 > 0 such that any

point in Td is (f, r,M)-dense. We say (Td, f) is weakly M-dense if there exists a

sequence rk → 0 as k →∞ such that any point in Td is (f, rk,M)-dense.

The following lemmas are extracted from section 3 of [33].

Lemma 6.2.1 Let fs be an irrational shift on Td and fss be a skew-shift. We have,

• if α ∈ DC(τ) ⊂ Td, then (Td, fs) is strongly M-dense for some M ≥ 1.

• if α ∈ DC(τ) ⊂ T, then (Td, fss) is strongly M-dense for some M ≥ 1.

• if α /∈ DC(d) ⊂ T, then (Td, fss) is weakly M-dense for some M ≥ 1.

• if α ∈ WDC(τ) ⊂ T2, then (T2, fs) is weakly M-dense for some M ≥ 1.

6.2.2 Upper and lower bounds on transfer matrices

The following lemma on the uniform upper bound of transfer matrix is essentially

from [45], we have adapted it into the following form for convenience.

Lemma 6.2.2 [45] Let v be a function whose discontinuity set has Lebesgue measure

0 and f be a uniquely ergodic map on Td. Let L(E) be positive on a Borel set U and µ

be a measure such that µ(U) > 0. Then for any ζ, ε > 0 there exists a number Dζ > 0,

a set Bζ,ε with 0 < µ(Bζ,ε) < ζ, and an integer Nζ,ε such that for any E ∈ U\Bζ,ε:

• L(E) ≥ Dζ,

• for n > Nζ,ε, |z − E| < e−4εn and θ ∈ Td, we have 1
n

ln ‖An(θ, z)‖ < L(E) + ε.

We also have the following lemma on the lower bound of transfer matrix.

Lemma 6.2.3 [33] Let v ∈ Cγ(Td) with 1 ≥ γ > 0 and f∗,α = fs,α or fss,α. Let L(E)

be positive on a Borel set U and a measure µ with µ(U) > 0. For any ζ, ε, let Dζ , Bζ,ε

and Nζ,ε be defined as in Lemma 6.2.2. Then
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1. if (Td, f∗,α) is strongly M-dense for some M > 0, then for n > N ′ζ,ε, any

E ∈ U\Bζ,ε, |z − E| < e−4εn and θ ∈ Td we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ n

‖An(f j∗,αθ, z)‖ ≥ en(L(E)−3ε).

2. if (Td, f∗,α) is weakly M-dense for some M > 0, then there exists a sequence

{nk(ε)} such that for any k > kζ,ε, any E ∈ U\Bζ,ε, |z−E| < e−4εnk and θ ∈ Td

we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f j∗,αθ, z)‖ ≥ enk(L(E)−3ε).

6.2.3 Continuity of the spectrum for well approximated fre-

quencies

The following lemma enables us to establish the continuity of the spectrum at fre-

quencies that are well approximated by the rationals, it is an extension of the (T, fs,α)

case in [10, 44].

Lemma 6.2.4 Let v ∈ Cγ(Td) with 1 ≥ γ > 0 and f∗,α = fs,α or fss,α. Then for

each E ∈ S(α), for ‖α′ − α‖Td0 small enough, there exists E ′ ∈ S(α′) such that

|E − E ′| < Cv‖α− α′‖
γ

1+d1γ

Td0 .(6.2)

Two direct corollaries of Lemma 6.2.4 are:

Lemma 6.2.5 Let f = fs,α. If α /∈ WDC( 1
γ
), then there exists a proper subsequence

of the best simultaneous approximation { ~pnk
qnk
} of α, such that for any f ∈ Cγ(Td), we

have

S(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).(6.3)

Lemma 6.2.6 Let f = fss,α. If α /∈ DC(d − 1 + 1
γ
), then there exists a proper

subsequence of the continued fraction approximants {pnk
qnk
} of α, such that for any

f ∈ Cγ(Td), we have

S(α) ⊆ lim inf
k→∞

S(
pnk
qnk

).(6.4)

The proofs of Lemmas 6.2.4, 6.2.5, 6.2.6 will be included in Section 6.5.

In the next sections, we therefore focus on the Diophantine α.
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6.3 Key Lemmas

Lemma 6.3.1 Let v ∈ Cγ(Td) with 1 ≥ γ > 0 and f∗,α = fs,α or fss,α. Recall that

d0 = d, d1 = 1 for fss,α and d0 = 1, d1 = d for fss,α. Then

1. for any ζ, ε > 0, let Dζ , Bζ,ε and Nζ,ε be defined as in Lemma 6.2.2. If (Td, f∗,α)

is strongly M-dense, then for n > N ′ζ,ε, where N ′ζ,ε is defined as in Lemma 6.2.3,

E ∈ S(α) ∩ L+(α) \Bζ,ε and ‖α′ − α‖Td0 small enough, there exists E ′ ∈ S(α′)

so that

|E − E ′| ≤ Ce−n(
Dζ
4
− 5Mε

γ
) + Cv‖α− α′‖γTd0e

5Mεd1n,(6.5)

where C is an absolute constant.

2. for any ζ, ε > 0, let Bζ,ε and Nζ,ε be defined as in Lemma 6.2.2. If (Td, f∗,α)

is weakly M-dense, then for k > kζ,ε, where {nk(ε)} and kζ,ε are defined as in

Lemma 6.2.3, E ∈ S(α) ∩ Lε0+(α) \ Bζ,ε and ‖α′ − α‖Td0 small enough, there

exists E ′ ∈ S(α′) so that

|E − E ′| ≤ Ce−nk(
ε0
4
− 5Mε

γ
) + Cv‖α− α′‖γTd0e

5Mεd1nk ,(6.6)

where C is an absolute constant.

Proof of Lemma 6.3.1

We will prove part (2). Part (1) will be discussed briefly at the end of the proof. For

E ∈ S(α) ∩ Lε0+ \Bζ,ε, by Lemma 6.2.2, for n > Nζ,ε and |z − E| < e−4εn we have

‖An(θ, z)‖ ≤ en(L(E)+ε).(6.7)

By Lemma 6.2.3, for k > kζ,ε, |z − E| < e−4εnk and any θ ∈ Td we have

min
ι∈{−1,1}

max
ιj=0,...,e

5Mε
γ nk

‖Ank(f j∗,αθ, z)‖ ≥ enk(L(E)−3ε).(6.8)

Let E0 be a generalized eigenvalue of Hv,f∗,α,θ such that |E−E0| < e−nk(L(E)+4ε), with

generalized eigenvector ψ satisfying |ψ(x)| = o((1 + |x|)1/2+ε). Then there exists xm
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so that

(6.9)
|ψ(xm)|
1 + |xm|

= max
x

|ψ(x)|
1 + |x|

.

Let ψ be normalized so that

(6.10)
|ψ(xm)|
1 + |xm|

= 1.

For k > kζ,ε, let Qnk = e
5Mε
γ
nk . There exists an x′1 with xm − Qnk − nk ≤ x′1 ≤

xm − nk such that ‖Ank(f
x′1
∗,αθ, E0)‖ > enk(L(E)−3ε). Similarly there exists an x′3 with

xm ≤ x′3 ≤ xm +Qnk such that ‖Ank(f
x′3
∗,αθ, E0)‖ > enk(L(E)−3ε). In general, we have

An(f l∗,αθ, z) =

 Pn(f l∗,αθ, z) −Pn−1(f l−1
∗,α θ, z)

Pn−1(f l−1
∗,α θ, z) −Pn−2(f l−2

∗,α θ, z)

 .

This implies for x1 = x′1 or x′1 − 1 and kl = nk, nk − 1 or nk − 2, we have

(6.11) |Pkl(fx1
∗,αθ, E0)| > 1

4
ekl(L(E)−3ε).

Similarly, for x3 = x′3 or x′3 − 1 and kr = nk, nk − 1 or nk − 2, we have

(6.12) |Pkr(fx3
∗,αθ, E0)| > 1

4
ekr(L(E)−3ε).

Let

(6.13) xl = x1 +

[
kl
2

]
; xr = x3 +

[
kr
2

]
.

Also set x2 = x1 + kl − 1 and x4 = x3 + kr − 1. By Cramer’s rule and (6.7), (6.11),

|GE0

[x1,x2](xl, x1)| = |
Px2−xl(f

xl+1
∗,α θ, E0)

Pkl(f
x1
∗,αθ, E0)

| ≤ e
kl
2

(L(E)+ε)

1
4
ekl(L(E)−3ε)

< e−
nk
4
L(E).(6.14)

Similarly

|GE0

[x3,x4](xr, x3)| < e−
nk
4
L(E).(6.15)

For similar reasons, (6.14) holds if we replace (xl, x1) with (xl, x2), (xl − 1, x1) or

(xl−1, x2); (6.15) holds if we replace (xr, x3) with (xr, x4), (xr + 1, x3) or (xr + 1, x4).
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Let Λ = [xl, xr], we have |Λ| < 3Qnk = 3e
5Mε
γ
nk . Let ψΛ be the truncation of ψ to Λ.

For x = xi ± 1, i = 1, 2, 3, 4, by (6.9) and (6.10),

|ψ(x)|
1 + |xm|

=
|ψ(x)|
1 + |x|

· 1 + |x|
1 + |xm|

≤ 1 + |xm|+ |xm − x|
1 + |xm|

≤ 2e
5Mε
γ
nk .(6.16)

For x1 ≤ x ≤ x2,

ψ(x) = −GE0

[x1,x2](x, x1)ψ(x1 − 1)−GE0

[x1,x2](x, x2)ψ(x2 + 1).(6.17)

Thus by (6.14) and (6.16),

|ψ(xl)| ≤ 4(1 + |xm|)e−nk(
L(E)

4
− 5Mε

γ
).

Similarly

|ψ(xr)| ≤ 4(1 + |xm|)e−nk(
L(E)

4
− 5Mε

γ
).

Hence the cut-off function satisfies

‖(Hv,f∗,α,θ − E0)ψΛ‖ ≤ C(1 + |xm|)e−nk(
L(E)

4
− 5Mε

γ
).

Let φΛ = ψΛ

‖ψΛ‖
. Then by (6.10),

‖(Hv,f∗,α,θ − E0)φΛ‖ ≤ Ce−nk(
L(E)

4
− 5Mε

γ
).(6.18)

For f∗,α′ , set θ′ = f
−xl+xr

2

∗,α′ f
xl+xr

2
∗,α θ. Then f

xl+xr
2

∗,α′ θ′ = f
xl+xr

2
∗,α θ, furthermore for |k| ≤

xr−xl
2

,

‖fk+
xl+xr

2

∗,α′ θ′ − fk+
xl+xr

2
∗,α θ‖ = ‖fk∗,α′f

xl+xr
2

∗,α θ − fk∗,αf
xl+xr

2
∗,α θ‖ ≤ C|k|d1‖α− α′‖Td0 .(6.19)

Thus since f ∈ Cγ(Td),

‖(Hv,f∗,α,θ −Hv,f∗,α′ ,θ
′)φΛ‖ ≤ max

|k|≤(xr−xl)/2
|v(f

k+
xl+xr

2
∗,α θ)− v(f

k+
xl+xr

2

∗,α′ θ′)|(6.20)

≤ Cv(|Λ|d1‖α− α′‖d0)γ

= Cv‖α− α′‖γTd0e
5Mεd1nk .
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Then by the choice of E0 and (6.18), (6.20),

‖(E −Hv,f∗,α′ ,θ
′)φΛ‖ ≤ |E − E0|+ ‖(E0 −Hv,f∗,α,θ)φΛ‖+ ‖(Hv,f∗,α,θ −Hv,f∗,α′ ,θ

′)φΛ‖

(6.21)

≤ Ce−nk(
L(E)

4
− 5Mε

γ
) + Cv‖α− α′‖γTd0e

5Mεd1nk .

This implies there exists E ′ ∈ S(α′) so that

|E − E ′| ≤ Ce−nk(
ε0
4
− 5Mε

γ
) + Cv‖α− α′‖γTd0e

5Mεd1nk .

Remark 6.3.1 Part (1) can be proved by considering S(α)∩L+(α) instead of S(α)∩

Lε0+(α) and without taking a subsequence {nk(ε)}. �

Lemma 6.3.2 Let v ∈ Cγ(Td) with 1 ≥ γ > 0 and f∗,α = fs,α or fss,α.

1. If (Td, f∗,α) is strongly M-dense for some M > 1, then for any ζ > 0 and

γ > β > 0 there exists a set Bβ
ζ with 0 < |Bβ

ζ | < ζ such that for any E ∈

S(α)∩L+(α)\Bβ
ζ and ‖α′−α‖Td0 small enough, there exists E ′ ∈ S(α′) satisfying

|E − E ′| < Cv‖α− α′‖βTd0 .

2. Let d = 2, f = fs,α and α ∈ WDC( 1
γ
). Then for any ε0 > 0 and γ > β > 0 there

exists a sequence
~pmk
qmk
→ α, with the property that for any ζ > 0 there exists a

set Bβ,ε0
ζ with 0 < |Bβ,ε0

ζ | < ζ such that for any E ∈ S(α)∩Lε0+(α)\Bβ,ε0
ζ there

exists E ′ ∈ S(
~pmk
qmk

) satisfying

|E − E ′| < Cv‖α−
~pmk
qmk
‖βT2 .

Proof of Lemma 6.3.2

Part (1)

Given ζ > 0, let Dζ > 0 be from Lemma 6.2.2. Fix ε = ε(ζ, β) =
γ(γ−β)Dζ

20M(γ−β+4d1γβ)
<

Dζ
4

.

Let Bβ
ζ := Bζ,ε(ζ,β), N

β
ζ := Nζ,ε(ζ,β) with Bζ,ε, Nζ,ε as in Lemma 6.2.2. Let Ñβ

ζ :=

N ′ζ,ε(ζ,β) be defined as in Lemma 6.2.3. By Lemma 6.3.1, for any n > Ñβ
ζ , E ∈
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S(α) ∩ L+(α) \ Bβ
ζ and ‖α′ − α‖Td0 small enough, there exists E ′ ∈ S(α′) so that E ′

is close to E, namely,

|E − E ′| ≤ Ce−n(
Dζ
4
− 5Mε

γ
) + Cv‖α− α′‖γTd0e

5Mεd1n.(6.22)

There exists a small constant %ζ,β > 0 so that when ‖α− α′‖Td0 < %ζ,β we have

N ′ζ,β <
γ − β + 2d1γβ

d1γDζ

(− ln ‖α− α′‖Td0 ).

Then we could take n > N ′ζ,β satisfying

γ − β + 4d1γβ

d1γDζ

(− ln ‖α− α′‖Td0 ) ≤ n ≤ 4(γ − β + 4d1γβ)

d1γDζ

(− ln ‖α− α′‖Td0 ),

so that by (6.22) there exists E ′ ∈ S(α′) with

|E − E ′| < Cv‖α− α′‖βTd0 .(6.23)

�

Part (2)

For ε0 > 0, fix a constant ε = ε(β, ε0) = γ(γ−β)ε0
20M(γ−β+4β)

< ε0
4

. For any ζ > 0, let

Bβ,ε0
ζ := Bζ,ε(β,ε0) and Nβ,ε0

ζ := Nζ,ε(β,ε0) be as in Lemma 6.2.2. Let {nk(β, ε0)} :=

{nk(ε(β, ε0))} and kβ,ε0ζ := kζ,ε(β,ε0) be as in Lemma 6.2.3. By Lemma 6.3.1, for any

k > kβ,ε0ζ , E ∈ S(α) ∩ Lε0+(α) \ Bβ,ε0
ζ and ‖α′ − α‖T2 small enough, there exists

E ′ ∈ S(α′) so that

|E − E ′| ≤ Ce−nk(
ε0
4
− 5Mε

γ
) + Cv‖α− α′‖γT2e

5Mεnk .(6.24)

α ∈ WDC(c, 1
γ
) for some c > 0. Take the sequence of best simultaneous approxima-

tion { ~pm
qm
}. By (1.10) we have qm ≥ cγq

γ
2
m+1. Combining this with (1.9) and (1.7), we

have

‖α− ~pm+1

qm+1

‖T2 ≥ c

q
1+ 1

γ

m+1

≥ c(
1

qm

1
√
qm+1

)
2
γ ≥ c‖α− ~pm

qm
‖

2
γ

T2 .

Which implies

− ln ‖α− ~pm
qm
‖T2 < − ln ‖α− ~pm+1

qm+1

‖T2 . −2

γ
ln ‖α− ~pm

qm
‖T2 .
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Therefore for each nk(β, ε0) there must be a corresponding mk(β, ε0) such that that

γε0
4(γ − β + 4β)

nk ≤ − ln ‖α− ~pmk
qmk
‖T2 ≤ ε0

γ − β + 4β
nk.

By (6.24) and the choice of mk, there exists E ′ ∈ S(
~pmk
qmk

) so that

|E − E ′| ≤ Cv‖α−
~pmk
qmk
‖βT2 .(6.25)

�

6.4 Proof of Theorems 6.1.1, 6.1.2 and 6.1.3

First of all, the continuity of S(α) in the Hausdorff metric implies that for any se-

quence ~pn
qn
→ α,

lim sup
n→∞

S(
~pn
qn

) ⊆ S(α).(6.26)

By (6.26) and Lemmas 6.2.5, 6.2.6, the proofs are all reduced to proving a state-

ment of the following type

S(α) ∩ L+(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).

Since the proofs for (Td, fs,α), (Td, fss,α) and (T2, fs,α) (weakly M -dense) relying on

Lemma 6.3.2 are quite similar, we will only give the proof for (Td, fss,α) in detail. The

other two proofs will be discussed briefly at the end of this section.

Proof of Theorem 6.1.2

Let pn
qn

be the full sequence of continued fraction approximants of α. Since γ > 1
2
,

we could fix 1
2
< β < γ. By Lemma 6.3.2, for any ζ > 0 there exists Bζ := Bβ

ζ ,

0 < |Bζ | < ζ, such that for n large enough we have

S(α) ∩ L+(α) \Bζ ⊂ ∪q
′
n
i=1[an,i − Cv‖α−

pn
qn
‖βT, bn,i + Cv‖α−

pn
qn
‖βT] := S(

pn
qn

) ∪ Fn,

where q′n ≤ qn and

S(
pn
qn

) = ∪q
′
n
i=1[an,i, bn,i].
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This implies

S(α) ∩ L+(α) \Bζ ⊂ lim inf
n→∞

S(
pn
qn

) ∪ Fn,

furthermore,

|S(α) ∩ L+(α) \ (lim inf
n→∞

S(
pn
qn

) ∪ Fn)| < ζ.(6.27)

By (1.1),

|Fn| ≤ 2Cvqn‖α−
pn
qn
‖βT ≤ 2Cvq

1−2β
n+1 ,(6.28)

which implies
∑

n |Fn| <∞, thus | lim supn→∞ Fn| = 0. This implies

| lim inf
n→∞

S(
pn
qn

) ∪ Fn| = | lim inf
n→∞

S(
pn
qn

)|.(6.29)

Combining (6.27) with (6.29), we have

|S(α) ∩ L+(α) \ lim inf
n→∞

S(
pn
qn

)| < ζ

for any ζ > 0. Thus

S(α) ∩ L+(α) ⊆ lim inf
n→∞

S(
pn
qn

).(6.30)

�

Theorem 6.1.1 could be proved by taking ~pn
qn

to be the full sequence of best simul-

taneous approximation. One needs to apply (1.8) to obtain the following (similar to

(6.28))

|Fn| ≤ 2Cvq
1− d+1

d
β

n+1 .(6.31)

Theorem 6.1.3 could be proved by applying part (2) of Lemma 6.3.2. �

6.5 Proofs of Lemmas 6.2.4, 6.2.5, 6.2.6

6.5.1 Lemma 6.2.4

The proof is very similar to that of [10, 44]. Given ε > 0 and E ∈ S(α), there exists

an approximate eigenfunction φε ∈ l2(Z) such that ‖(Hf∗,α,θ − E)φε‖ < ε‖φε‖. Set
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gj,L(n) = max (1− |j−n|
L
, 0). Avron-van Mouche-Simon [10] proved that for sufficiently

large L, for any bounded v : Td → R there exists j such that gj,Lφε 6= 0 and for any

ε > 0,

‖(Hf∗,α,θ − E)gj,Lφε‖2 ≤ C(ε2 + L−2)‖gj,Lφε‖2,(6.32)

where C is universal. Now let θ′ = f−j∗,α′f
j
∗,αθ. By the Hölder assumption on v and

j − L ≤ n ≤ j + L, we have

|v(fn∗,α′θ
′)− v(fn∗,αθ)| ≤ Cv(L

d1‖α′ − α‖Td0 )γ.

Thus,

‖(Hf∗,α′θ
′ − E)gj,Lφε‖ ≤ ‖(Hf∗,α′θ

′ −Hf∗,α,θ)gj,Lφε‖+ ‖(Hf∗,α,θ − E)gj,Lφε‖(6.33)

≤ (Cv(L
d1‖α′ − α‖Td0 )γ + C(ε2 + L−2)

1
2 )‖gj,Lφε‖.(6.34)

Choosing ε = L−1 = Cv‖α− α′‖
− γ

1+d1γ

Td0 , we obtain the statement of Lemma 6.2.4. �

6.5.2 Lemma 6.2.5

Assume α /∈ WDC( 1
γ
). Then by (1.11), there exists a subsequence of the best simul-

taneous Diophantine approximation { ~pnk
qnk
} so that

lim
k→∞

q
1

1+γ
nk max

1≤j≤d
‖qnkαj‖

γ
1+γ

T = 0.(6.35)

By Lemma 6.2.4, we have

S(α) ⊂ ∪
q′nk
i=1[ank,i − Cv‖α−

~pnk
qnk
‖

γ
1+γ

Td , bnk,i + Cv‖α−
~pnk
qnk
‖

γ
1+γ

Td ] := S(
~pnk
qnk

) ∪ Fnk ,

where q′nk ≤ qnk and

S(
~pnk
qnk

) = ∪
q′nk
i=1[ank,i, bnk,i].

Thus, by (6.35),

S(α) ⊆ lim inf
k→∞

S(
~pnk
qnk

).

�
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6.5.3 Lemma 6.2.6

Assume α /∈ DC(d − 1 + 1
γ
). Then by (1.11), there exists a subsequence of the

continued fraction approximants
pnk
qnk

so that

lim
k→∞

q
1+(d−1)γ

1+dγ
nk ‖qnkα‖

γ
1+dγ

T = 0(6.36)

By Lemma 6.2.4, we have

S(α) ⊂ ∪
q′nk
i=1[ank,i − Cv‖α−

pnk
qnk
‖

γ
1+dγ

T , bnk,i + Cv‖α−
pnk
qnk
‖

γ
1+dγ

T ] := S(
pnk
qnk

) ∪ Fnk ,

where q′nk ≤ qnk and

S(
pnk
qnk

) = ∪
q′nk
i=1[ank,i, bnk,i].

Thus, by (6.36),

S(α) ⊆ lim inf
k→∞

S(
pnk
qnk

).

�
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APPENDICES



Appendix A

When λ belongs to region IIo, let ε2 = ln
λ2+
√
λ2

2−4λ1λ3

λ1+λ3+
√

(λ1+λ3)2−4λ1λ3

> L(λ̂). Then

cλ(x) is analytic and nonzero on |Im(x)| < ε2
2π

. Furthermore, the winding number

of cλ(·+ iε) is equal to zero when |ε| < ε2
2π

.

Lemma A.0.1 When λ belongs to region IIo, we can find an analytic func-

tion f(x) on |Im(x)| ≤ L(λ̂)
2π

such that cλ(x) = |cλ|(x)ef(x+α)−f(x) and c̃λ(x) =

|cλ|(x)e−f(x+α)+f(x).

Proof: Since the winding numbers of cλ(x) and c̃λ(x) are 0 on |Im(x)| ≤ L(λ̂)
2π

,

there exist analytic functions g1(x) and g2(x) on |Im(x)| ≤ L(λ̂)
2π

, such that cλ(x) =

eg1(x) and c̃λ(x) = eg2(x). Notice that∫
T

ln |cλ(x)| dx =

∫
T

ln |c̃λ(x)| dx∫
T

arg cλ(x) dx =

∫
T

arg c̃λ(x) dx,

so there exists an analytic function f(x) such that 2f(x+ α)− 2f(x) = g1(x)−

g2(x). Then cλ(x) = |cλ|(x)ef(x+α)−f(x). �

Lemma A.0.2 When λ belongs to region IIo, there exists an analytic matrix

Qλ(x) defined on |Im(x)| ≤ L(λ̂)
2π

such that

Q−1
λ (x+ α)Ã|cλ̂|,E(x)Qλ(x) = Acλ,E(x).
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Proof:

Ã|cλ̂|,E(x) =
1√

|cλ|(x)|cλ|(x− α)

1 0

0
√

c̃λ(x)
cλ(x)

E − v(x) −c̃λ(x− α)

cλ(x) 0

1 0

0
√

cλ(x−α)
c̃λ(x−α)


=

cλ(x)√
|cλ|(x)|cλ|(x− α)

1 0

0
√

c̃λ(x)
cλ(x)

Acλ,E(x)

1 0

0
√

cλ(x−α)
c̃λ(x−α)


=ef(x+α)

√
|cλ|(x)

1 0

0
√

c̃λ(x)
cλ(x)

Acλ,E(x)

ef(x)
√
|cλ|(x− α)

1 0

0
√

c̃λ(x−α)
cλ(x−α)


−1

=Qλ(x+ α)Acλ,E(x)Q−1
λ (x).

�

Lemma A.0.3 If α is irrational, λ belongs to region IIo, E ∈ Σλ,α, then

L(α,Acλ,E(·+ iε)) = L(α, Ã|cλ̂|,E(·+ iε)) = 0 for |ε| ≤ L(λ̂)
2π

.

Proof: L(Acλ,E(·+ iε)) = L(Dλ,E(·+ iε))−
∫

ln |cλ(x+ iε)|dx

Dλ,E(x+ iε)

=

 E − e2πi(x+iε) − e−2πi(x+iε) −λ1e
2πi(x−α

2
+iε) − λ2 − λ3e

−2πi(x−α
2

+iε)

λ1e
−2πi(x+α

2
+iε) + λ2 + λ3e

2πi(x+α
2

+iε) 0


=e2πε

 −e2πix + o(1) −λ3e
−2πi(x−α

2
) + o(1)

λ1e
−2πi(x+α

2
) + o(1) 0

 .

Thus the asymptotic behaviour of L(Dλ,E(·+ iε)) is:

L(Dλ,E(·+ iε)) = ln |1 +
√

1− 4λ1λ3

2
|+ 2πε when ε→∞,

L(Dλ,E(·+ iε)) = ln |1 +
√

1− 4λ1λ3

2
| − 2πε when ε→ −∞.

Then it suffices to calculate
∫

ln |cλ(x+ iε)|dx in region II. We have∫
ln |cλ(x+ iε)|dx

= lnλ3 − 2πε+

∫
ln |e2πix − y1,ε|+

∫
ln |e2πix − y2,ε|.
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where y1,ε =
−λ2+
√
λ2

2−4λ1λ3

2λ3
e2πε and y2,ε =

−λ2−
√
λ2

2−4λ1λ3

2λ3
e2πε.

∫
ln |cλ(x+ iε)|dx =



2πε+ lnλ1 ε > 1
2π ln

λ2+
√
λ2

2−4λ1λ3

2λ1
,

ln
λ2+
√
λ2

2−4λ1λ3

2
1

2π ln
λ2−
√
λ2

2−4λ1λ3

2λ1
≤ ε ≤ 1

2π ln
λ2+
√
λ2

2−4λ1λ3

2λ1
,

−2πε+ lnλ3 ε < 1
2π ln

λ2−
√
λ2

2−4λ1λ3

2λ1
.

Thus L(Acλ,E(· + iε)) = 0 when |ε| ≤ 1
2π

ln
λ2+
√
λ2

2−4λ1λ3

max (1,λ1+λ3)+
√

max (1,λ1+λ3)2−4λ1λ3

=

L(λ̂)
2π

. Since Ã|cλ̂|,E(x+ iε) = Qλ(x+α+ iε)Acλ,E(x+ iε)Q−1
λ (x+ iε), the statement

about Ã|cλ̂|,E is also true. �
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