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ABSTRACT OF THE THESIS 

 

Prediction of Building Power Loads Using Statistical and Machine Learning Methods: A Case 
Study of a LEED-Certified Institutional Building 

by 

Dongyang Li 

Master of Science in Mechanical Engineering 

University of California, Irvine, 2020 

Professor Yun Wang, Chair 

 

 

In response to the growing challenge of energy and power management caused by increasing 

implementation of volatile sustainable energy sources, a case study of forecasting building 

electric loads using statistical and machine learning methods is conducted for a multi-purpose 

LEED-certified institutional building on the UC Irvine campus. Four data-driven methods,  

which require no detailed building information and strong building energy knowledge, are 

employed and compared, including the polynomial regression, Autoregressive Integrated 

Moving Average (ARIMA), TBATS (Trigonometric seasonal formulation, Box-Cox 

transformation, ARMA errors, Trend, and Seasonal components), and backpropagation Artificial 

Neural Networks (ANN).  These models are investigated to satisfy the ASHRAE standards and 

optimize the prediction performance. A full year of hourly electric load and meteorological data 

of the building in 2019 was obtained using the existing meters for this data-driven study. Root 

Mean Square Error (RMSE), Coefficient of Variance (CV), Mean Absolute Percentage of Error 

(MAPE) and R2 are calculated as evaluation criteria to compare the performances of these data-

driven methods in terms of prediction accuracy. Akaike’s Information Criteria (AIC) is 

introduced as a guideline to determine the optimal model for several prediction models. The 
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polynomial regression is performed using MATLAB and is shown capable of only data fitting 

instead of forecasting when the total hour is used as the independent variable. When using the 

daily and weekly data, the polynomial regression method fails for forecasting. For the whole-

month data, ARIMA, TBATS, and ANN methods are used to predict hourly power load in the 

next month with Python. The ARIMA model shows relatively low accuracy, indicating that it is 

unable to handle multiple seasonlities in the data. TBATS shows a substantially improved 

accuracy and satisfactory prediction. The backpropagation ANN is also conducted with its 

configuration, including inputs, number of hidden layers and neurons, optimizer, and activation 

functions, optimized after extensive testing. Different sets of training data are examined for both 

TBATS and ANN. The ANN’s forecasting accuracy is found to be about 5~20% better than 

TBATS’ when only using one month’s data for training. The residuals of these forecasting 

methods show there could be information uncaptured in forecasting. It is speculated that 

operation and activity schedules can serve as additional inputs for the ANN to achieve better 

forecasting accuracy. 
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CHAPTER 1. INTRODUCTION 

The building sector consumes a large portion of energy worldwide. Approximately 20% of 

global delivered energy consumption was used in the building sector in 2018, which includes 

residential and commercial structures [1]. The residential and commercial sectors accounted for 

up to 40% of total U.S. energy consumption in 2018. The U.S. Energy Information 

Administration (EIA) predicts that global energy consumption by buildings will possibly 

continue to grow by 1.3% or even a few times more per year on average from 2018 to 2050, 

depending on different countries.  

At the meantime, energy consumption and emissions reduction has become the relatively 

universal goals for policy makers worldwide in response to emerging environmental issues such 

as global warming and pollution. State of California ambitiously aims for the development of 

zero net energy buildings. All new residential and commercial construction will be zero net 

energy by 2020 and 2030 respectively [2]. Sustainable energy sources have become widely 

implemented in recent years to achieve on-site renewable energy generation goals. However, 

these energy sources are volatile in nature, rendering energy management increasingly 

challenging as their proportion in the energy generation profile grows.  

In particular, clean and renewable power sources, such as photovoltaics (PV), wind power, 

polymer electrolyte membrane (PEM) fuel cells and flow batteries, are emerging technologies 

for building power applications [3]. PEM fuel cells produce electric power, water, and waste 

heat, which can benefit the multiple needs of buildings [4]. However, the water and thermal 

management needs to be carefully controlled in practice. Distributed PEM fuel cell systems can 

serve as heat-power co-generation and uninterruptable power supply for the residential and 

commercial sectors [5]. Ham et al. proposed a simplified PEM fuel cell simulation model for 
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commercial cogeneration systems and validated the model by comparing observed data from 

experiments with model predictions [6]. Ellamla et al. reviewed the state of fuel cell 

cogeneration systems for the residential sector and believed they are the most beneficial and 

promising technology for cogeneration [7]. In addition, flow battery has been implemented as an 

advanced energy storage solution in the commercial and residual sector with significant efforts in 

modeling and analysis that aim to widen the adoption of these battery technologies [8] [9]. Kear 

et al. reviewed the state of development of the all-vanadium redox flow battery for energy 

storage and found a significant level of battery commercialization in terms of grid load leveling, 

utility-scale renewable electricity generation and distributed-energy/remote area power supply 

[10]. A vanadium redox flow battery model was developed and validated through experiments 

for distributed storage implementation in residential building energy systems by D‘Agostino et al 

[11].  

All of these renewable and clean energy sources require proper design and control in order to 

meet the building energy demand, which accentuates the significance of energy load forecasting. 

Building energy consumption prediction is essential for energy planning, management, and 

sustainability. For example, the wind and solar PV energies generate power varying with time 

and weather, which need to be stored properly in batteries or hybrid with a power generator such 

as fuel cells for building energy demand that is relatively constant. PEM fuel cells and batteries 

are dynamic systems with dynamics determined by their internal physics and component 

dimensions. In practice, they require proper power management to optimize their reaction, 

operation, and efficiency [12] [13].  

There are two main approaches for building energy consumption prediction: physical 

modelling approach and data-driven approach. Physical modelling method constructs a building 
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model based on fundamental thermodynamic rules. A wide range of building energy simulation 

software employs physical modelling approach and is popular among the industries, including 

EnergyPlus, OpenStudio, eQuest, etc. Detailed inputs related to building characteristics and 

meteorological information such as lighting density, operation schedules and dry-bulb 

temperature are imported to this type of software for building energy simulation. Such inputs are 

often not available or not accessible in time to the involved engineers or technicians [14]. In 

addition, on-site commissioning is required to obtain detailed and accurate building information. 

The building models are validated through comparing simulation results with utilities bills or 

real-time data capture with installed metering devices. This process is referred to model 

calibration and usually consumes considerable time and manpower, strongly depending on the 

experiences and expertise of the tasked engineers.  

On the other hand, data-driven method does not require detailed parameters of simulated 

buildings or the time-consuming calibration process for load prediction. Only historical energy 

consumption data is necessary. Data-driven energy consumption forecasting method has been 

extensively researched in recent years. Fang et al. used a simple regression model added with 

weekly rhythm of heat consumption and the seasonal autoregressive integrated moving average 

model (SARIMA) with exogenous variables that accounted weather factors to forecast hourly 

heat demand for the city of Espoo in Finland [15]. Bagnasco et al. proposed a backpropagation 

multi-layer artificial neural network (ANN) to predict the electrical energy consumption of a 

hospital facility in Italy [16]. Wang et al. employed several data-driven methods including 

multiple linear regression, adaptive linear filter algorithms and Gaussian mixture model 

regression to predict the hourly energy usage of a U.S. Department of Energy (DOE) reference 

building and an existing office building in Des Moines, Iowa [17]. Solomon et al. developed a 
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predictive computer model using Support Vector Machine Regression (SVMR) to improve the 

energy efficiency of a Manhattan skyscraper [18]. Brozyna et al. showcased the capabilities of 

the TBATS models to forecast the electric energy demand of a Polish internet service in hourly, 

daily, and monthly time resolution with multiple present seasonalities [19]. Edwards et al. 

compared forecasting accuracy of various methods including linear regression, feed forward 

neural network, support vector regression, and least square vector machine for hourly electrical 

consumption data from an ASHRAE data set and real residential buildings [20]. Yokoyama et al. 

adopted a global optimized backpropagation ANN to predict the cooling demand of a 

commercial building with the two-phase method, where in the first phase the temperature and 

relative humidity are initially predicted to enable energy demand prediction in the second phase 

[21]. Fan et al. proposed a semi-parametric addictive model that estimated the relationships 

between energy demand and exogenous inputs for short-term half-hourly electric demand 

forecast for power systems in Australia [22]. Zhao et al. statistically analyzed variable refrigerant 

volume system in office buildings located in several cities in East China and employed ARIMA, 

SVM, and ANN to develop a case study for the office building in Shanghai by predicting hourly 

energy consumption based on three months’ data of the building’s variable refrigerant volume 

system [23]. Catalina et al. proposed a polynomial regression model to predict the monthly 

heating energy demand of a Romanian building based on the relationship between weather data 

and heating energy consumption found by analyzing TRNSYS building model simulations of 

buildings located in multiple cities including Moscow, Nice, and Burcharest [24]. An ANN 

model based on the Levenberg-Marquardt algorithm was adopted by Leung et al. to predict 

hourly electrical power demand of the cooling system in a building located in Hong Kong and 

high prediction accuracy was achieved with the help of occupancy space electrical power 
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demand as one of the input parameters [25]. Learning window reinitialization was applied to AR 

and SVM forecast models of multiple buildings as a post-processing method by Borges et al. 

[26]. Neto et al. compared feed-forward ANN forecast models with different inputs including 

temperature, humidity, and solar radiation with an EnergyPlus building energy simulation model 

using a building on University of São Paulo campus as a cast study [27]. Two Long Short Term 

Memory (LSTM) based neural networks with standard and sequence to sequence architecture 

respectively were investigated by Marino et al. in terms of electric energy consumption 

forecasting of hourly and minutely resolution based on a data set from a residential building [28]. 

Ekici et al. examined the feasibility and applicability of Adaptive Network Based Inference 

System (ANFIS) model to forecast heating and cooling energy consumption of buildings located 

in a cold region located in Turkey [29]. Zhang et al. developed an electric energy consumption 

forecasting model of half-hourly resolution for an institutional building in a university campus in 

Singapore with weighted SVM and introduced differential evolution algorithm to determine the 

weights [30]. The effects of temporal and spatial monitoring granularity on forecasting accuracy 

of the forecasting model for a multi-family residential building in New York were investigated 

by Jain et al. using SVM [31]. In addition, there are many works in the field of renewable energy 

employing machine learning methods that can be incorporated into building energy prediction 

[32–34].  

This thesis aims to conduct a case study of a commercial building on the campus of 

University of California, Irvine (UCI), by using four time series forecasting models, including 

polynomial regression, ARIMA, TBATS and ANN. The main objective is to a suitable model for 

building electric load forecasting that complies the model calibration guidelines of ASHRAE. On 

top of satisfying the ASHRAE requirement, the performances of the forecasting models will be 
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optimized in terms of forecasting accuracy. The models are also expected to be computed within 

a reasonable time in order to be practically usable.   

 

1.1 BUILDING INTRODUCTION 

Biological Science III (BioSci3) building on UCI campus as shown in Figure 1 was selected 

for the case study. BioSci3 is a multi-purpose laboratory building with a large lecture hall and a 

classroom capable of accommodating 401 and 32 people, respectively. The building has a total 

area of roughly 44,000 square feet, with about 70% of the area available for Photovoltaics (PV) 

panels installation on rooftop. An estimated capacity of 50 kW PV panels has already been 

installed.  

BioSci3 is one of the most energy efficient laboratory buildings on campus as part of the 

campus Smart Labs Program [35]. In 2013, it received LEED Platinum certification [36]. 

Centralized demand-controlled ventilation is utilized in the building. Indoor air quality is 

monitored while supply and exhaust air delivery are adjusted based on indoor contaminants 

levels by the system. Such system automatically samples packets of air and analyze with a 

battery of sensors to determine required air change rates for each thermal zone. To ensure 

accurate measurements, the sensors are calibrated every six months. The system is monitored 

through a web base system. Occupancy serves as the guideline of determining indoor ventilation 

Figure 1. BioSci3 building on UCI campus 
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by the system. Sensors detect occupancy and allow air change rate reductions when labs are 

unoccupied. Air change rates normally remain at roughly 4 air changes per hour (ACH) when the 

lab is occupied and 2 ACH when unoccupied. Heating and cooling are provided through hot and 

chilled water loop connected to the UCI central plant. Interior lighting of BioSci3 is designed to 

maximize interior illumination through natural lighting. Photosensors are also employed to 

automatically control lighting intensity based on outdoor light availability. In addition, 

Figure 2. Hourly electric power in January 2019 

Figure 3. Hourly electric power in 2019 
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occupancy sensors automatically turn off overhead lighting when labs are vacant. The ventilation 

system is equipped with high efficiency particulate filters to improve indoor air quality and lower 

energy costs.  

The hourly electric consumption of the building is metered on site and monitored through a 

web-based system, as well as the meteorological data. A full year of data in 2019 is available. 

Figure 2 presents the hourly electric power of BioSci3 in January 2019. It can be seen from the 

figure that daily and weekly patterns exist. The electric load appears to rise in the morning, peak 

during the noon, and drop during afternoon until the morning of the next day. During the 

weekends, the electric consumption plummets as school activities subside while the loads are 

much higher in normal weekdays with school activities. A whole year of hourly electric power 

data of BioSci3 in 2019 is shown in Figure 3. As shown in the figure, the electric consumption 

seems relatively consistent throughout the year with little seasonal variation, although the 

consumption in the second half of the year appears slightly higher on average. The reason is 

potentially the moderate weather of Irvine, California throughout the year, combined with the 

fact that heating and cooling are provided through the water loop connected to the UCI central 

plant. Consequently, the January and February data were selected as the test sets before 

implementing the models throughout the year.  
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CHAPTER 2. PERFORMANCE EVALUATION  

Several evaluation measures of electric load prediction are utilized in this study to compare 

the forecasting performances between different methods. Root mean square error (RMSE), 

coefficient of variance (CV), mean absolute percentage error (MAPE) and R-squared (R2) are 

employed in this study. These measures are calculated using the following equations: 

Root Mean Square Error (RMSE) = ඨ∑ ൫𝑦ௗ௧, − 𝑦ௗ௧,൯
ଶ

ୀଵ

𝑛
, (1) 

Coefficient of Variation (CV)(%) =

ඨ∑ ൫𝑦ௗ௧, − 𝑦ௗ௧,൯
ଶ

ୀଵ

𝑛

𝑦തௗ௧
× 100, (2)

 

Mean Absolute Percentage Error (MAPE)(%) =
1

𝑛
 ቤ

𝑦ௗ௧, − 𝑦ௗ௧,

𝑦ௗ௧,
ቤ × 100



ୀଵ
, (3) 

R − Squared (R2) = 1 −
∑ ൫𝑦ௗ௧, − 𝑦ௗ௧,൯

ଶ
ୀଵ

∑ ൫𝑦ௗ௧, − 𝑦തௗ௧,൯
ଶ

ୀଵ

, (4) 

where  𝑦ௗ௧, is the predicted electric load at time point 𝑖, 𝑦ௗ௧, is the actual electric load at 

time point 𝑖, 𝑦തௗ௧ is the average actual electric load within the available dataset, and 𝑛 is the 

number of data points in the dataset.  

 These are the most commonly used evaluation measures of energy prediction models [14]. 

RMSE is dependent on the scale of the data. A smaller RMSE indicates better forecasting 

accuracy. CV is most commonly used for to prediction performance in the studies. It is one of 

the measures endorsed by the American Society of Heating Refrigerating and Air-conditioning 

Engineers (ASHRAE) guideline of whole-building prediction model performance [37]. CV is 

required to be below 30% for hourly power calibration. Unlike RMSE, the prediction error is 

normalized by the average electric load and therefore CV is not scale-dependent. MAPE is also 
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not scale-dependent like CV. In this case study where all data are positive and much greater than 

zero, MAPE provides a simple unitless measure that is convenient for comparison purposes. R2 is 

known as the coefficient of determination and serves as a statistical measure of how close the 

data are to the predicted curves. It ranges between 0 and 1 and the closer it is to 1 indicates better 

prediction accuracy.  

 Akaike’s Information Criterion (AIC) is widely used as a measure to compare goodness-of-

fit for statistical models such as ARIMA and TBATS. AIC is calculated as [38]: 

AIC = log ൬
𝑆𝑆𝐸

𝑇
൰ + 2(𝑘 + 2), (5) 

SSE =  𝑒௧
ଶ

்

௧ୀଵ

, (6) 

where 𝑇 is the number of estimated observations, 𝑘 is the number of predictors in the model. 

𝑆𝑆𝐸 stands for sum of squared errors with 𝑒௧ representing the errors. The model with the 

smallest AIC usually achieves the best forecasting performance. AIC penalizes the goodness-of-

fit with complexity of the model.  
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CHAPTER 3. STATISTICAL METHODS 

3.1 POLYNOMIAL REGRESSION  

Polynomial regression returns a polynomial of specified degrees that provides the best fit of 

the given data points. The method of least square estimation is used to determine the coefficients 

of the polynomial [39]. Suppose a straight line: 

𝑦 = 𝜃 + 𝜃ଵ𝑥, (7) 

 

needs to be determined to approximate observations 𝑦ଵ, …, 𝑦 of dependent variable 𝑦 taken at 

independent values 𝑥ଵ, …, 𝑥 of independent variable 𝑥. The least squares estimates 𝜃 and 𝜃ଵ 

interpret the values of 𝜃 and 𝜃ଵ that minimize the sum: 

𝑆(𝜃, 𝜃ଵ) = (𝑦 − 𝜃 − 𝜃ଵ𝑥)
ଶ.



ୀଵ

 (8) 

The sum represents the summation of squared deviations of the observed values 𝑦 from the 

approximated values 𝜃 − 𝜃ଵ𝑥. In Euclidean squared distance form, 𝑆 can be written as: 

𝑆(𝜃, 𝜃ଵ) = ‖𝒚 − 𝜃𝟏 − 𝜃ଵ𝒙‖ଶ, (9) 

where 𝒙 = (𝑥ଵ, … , 𝑥)், 𝟏 = (1, … , 1)், and 𝒚 = (𝑦ଵ, … , 𝑦)். By letting the partial 

derivatives of 𝑆 with respect to 𝜃 and 𝜃ଵ equal to zero respectively, the vector 𝜽 = (𝜃, 𝜃ଵ)் can 

be proven to satisfy the following “normal equations”: 

𝑋்𝑋𝜽 = 𝑋்𝒚, (10) 

where 𝑋 = [𝟏, 𝒙]. The normal equations have at least one solution because 𝑆(𝜽) ≥ 0 and 

𝑆(𝜽) → ∞ as 𝜽 → ∞. Let 𝜽(ଵ) and 𝜽(ଶ) be the solutions of the normal equations, then they 

satisfy the equation given as: 

൫𝜽(ଵ) − 𝜽(ଶ)൯
்

𝑋்𝑋൫𝜽(ଵ) − 𝜽(ଶ)൯ = 0, (11) 
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which is equivalent to 𝑋𝜽(ଵ) = 𝑋𝜽(ଶ). This argument can be universally applied to least squares 

estimation for the general linear model. A set of data points is given as: 

(𝑥ଵ, 𝑥ଶ, … , 𝑥, 𝑦),      𝑖 = 1, … , 𝑛 with 𝑚 ≤ 𝑛. 

The least squares estimate 𝜽 = (𝜃ଵ, … , 𝜃)் of 𝜽 = (𝜃ଵ, … , 𝜃)்minimizes the sum: 

𝑆(𝜽) = (𝑦 − 𝜃ଵ𝑥ଵ − ⋯ − 𝜃𝑥)ଶ = ฮ𝒚 − 𝜃ଵ𝒙(ଵ) − ⋯ − 𝜃𝒙()ฮ
ଶ

,



ୀଵ

 (12) 

 

where 𝒙() = (𝑥ଵ, … , 𝑥)், 𝒚 = (𝑦ଵ, … , 𝑦)், 𝑗 = 1, … , 𝑚. Vector 𝜽 satisfies the following 

equation as proven previously: 

𝑋்𝑋𝜽 = 𝑋்𝒚, (13) 

where 𝑋 is a 𝑛 × 𝑚 matrix 𝑋 = [𝒙(ଵ), … , 𝒙()]. Therefore, 𝜽 can be solved by: 

𝜽 = (𝑋்𝑋)ିଵ𝑋்𝒚. (14) 

Figure 4. Comparison between real and polynomial regression fitted hourly electric power in 
January 
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The polynomial coefficients vector 𝜽 will be unique if and only if 𝑋்𝑋 is nonsingular. 

Otherwise, there will be infinite solutions of 𝜽, although the vector of approximated values 𝑋𝜽 

will be the same for all solutions. The “polyfit” function of MATLAB was used to apply 

       
RMSE CV (%) MAPE (%) R-Squared 
11.793 4.638 2.993 0.957 
 

Table 1. Performance evaluation measures of daily polynomial regression fitting in January 

Figure 5. Comparison between real and polynomial regression fitted hourly electric power of one 
day in January 

Figure 6. Comparison between real and polynomial regression forecasted hourly electric power 
of one day in January 
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polynomial regression to the hourly electric power data in January 2019. Initially, fitting a full 

month of data, i.e. 744 data points in total, was attempted. Polynomial regression was unable to 

handle the dynamics of the data in such size. Each day, i.e. 24 data points, was fitted separately 

and 31 days of fitted values were then stitched together to compare with actual hourly power as a 

result. The order of the polynomial was determined to be 6 to ensure fitting accuracy. Figure 4 

and Table 1 show that polynomial regression fitting achieves relatively satisfying results, as the 

fitted and real power curves match properly, and the metrics indicate high accuracy. However, 

the problem with polynomial regression is that the values given by the polynomial will inflate 

rapidly as the independent variable for the polynomial, which is the total count of hour, 

continuously increases. Figure 5 presents one of the fitted polynomials in January. This 

particular polynomial was then used for the attempt to forecast the power of the next day as 

shown in Figure 6. The total hour count of the next day, as the independent variable, was 

plugged into the polynomial to calculate the power of the next day. It can be seen that even 

though the total hour count increases by just 24, the polynomial blows up out of portion. 

Figure 7. Comparison between real and polynomial regression fitted hourly electric power of one 
week in January 
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Polynomial regression was also examined with weekly period. A week in January was 

fitted as presented in Figure 7. The order of the polynomial was set to 20 in order to fit the real 

power curve properly. The fitting appears to be substantially less satisfactory, which is expected 

because the dynamics of weekly data are considerably more complicated than those of daily data. 

The performance metrics also indicate a worse accuracy in fitting as shown in Table 2. The total 

hour count of the next day was plugged in as the input, the same as the case of daily power 

polynomial regression before. As indicated by Figure 8, the polynomial blows up again. 

Therefore, polynomial regression with total hour count as the independent variable is proven not 

suitable for the case study. 

 

3.2 ARIMA  

ARIMA models provide an approach to time series forecasting. ARIMA models, along with 

exponential smoothing, are among the most widely used approaches to time series forecasting. 

       
RMSE CV (%) MAPE (%) R-Squared 
17.894 7.460 6.113 0.815 
 

Table 2. Performance evaluation measures of weekly polynomial regression fitting in January 

Figure 8. Comparison between real and polynomial regression forecasted hourly electric power 
of one week in January 
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The autocorrelations that measure the linear relationship between lagged values in the time series 

data can be interpreted through an ARIMA model [38].  

Predicting the variable of interest in an autoregressive model is achieved by using a linear 

combination of past values of the variable. The term autoregression illustrates that the variable 

does regression against itself. An autoregressive model of order 𝑝 can be written as 

𝑦௧ = 𝑐 + 𝜙ଵ𝑦௧ିଵ + 𝜙ଶ𝑦௧ିଶ + ⋯ + 𝜙𝑦௧ି + 𝜀௧, (15) 

where 𝑦௧ is the variable of interest for forecasting, 𝜀௧ is the white noise 𝑊𝑁(0, 𝜎ଶ), and 𝜙 is the 

𝑖th autoregressive coefficient. This is referred as an AR(𝑝) model. 

 Unlike the autoregressive model, a moving average model utilizes forecast errors in the past 

to make predictions in a regression-like model. A moving average model of order 𝑞 is given as:  

𝑦௧ = 𝑐 + 𝜀௧ + 𝜃ଵ𝜀௧ିଵ + 𝜃ଶ𝜀௧ିଶ … + 𝜃𝜀௧ି, (16) 

where 𝜃  represents the 𝑗th moving average coefficient. 𝑦௧ is regarded as a weighted moving 

average of several forecast errors in the past for this model. This is denoted as a MA(𝑞)model.  

 A non-seasonal ARIMA model can be obtained by combining differencing with an 

autoregressive model and a moving average model. Differencing is an approach to make non-

stationary time series stationary by computing the differences between consecutive data points in 

the series. A time series is stationary if its statistical properties are not dependent on the time at 

which the series is observed. Stationarity is essential for the ARIMA method to achieve 

satisfactory forecasting performances. The first order differencing, often referred as the random 

walk model, is given by the following equation: 

𝑦௧
ᇱ = 𝑦௧ − 𝑦௧ିଵ, (17) 

where 𝑦௧
ᇱ is the calculated variable in the differenced series and 𝑦௧ିଵ is the observation one time 

interval ahead. The differenced series describes change between consecutive observations in the 
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original series. The process of differencing is usually described using backshift operator 𝐵 for 

convenience. The first order differencing mentioned above is denoted as: 

𝑦௧
ᇱ = (1 − 𝐵)𝑦௧, (18) 

𝐵𝑦௧ = 𝑦௧ିଵ. (19) 

To generalize, 𝑑th order differencing is written as:  

𝑦௧
ᇱ = (1 − 𝐵)ௗ𝑦௧. (20) 

Therefore, a non-seasonal ARIMA model is denoted as ARIMA(𝑝, 𝑑, 𝑞) with the following 

expression: 

൫1 − 𝜙ଵ𝐵 − ⋯ − 𝜙𝐵൯(1 − 𝐵)ௗ𝑦௧ = 𝑐 + ൫1 + 𝜃ଵ𝐵 + ⋯ + 𝜃𝐵൯𝜀௧. (21) 

A time series data is considered to have seasonality when there is a seasonal pattern occurs. 

The pattern is caused by seasonal factors such as the time of the year of the day of the week. The 

frequency of seasonality is always fixe and known. A seasonal ARIMA model consists of 

additional seasonal terms to account for seasonal effects, denoted as 

SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄). 𝑃, 𝐷 and 𝑄 terms represent the seasonal orders of autoregression, 

differencing, and moving average. 𝑚 is the number of the seasonal period. A 

SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄) model can be expressed as:  

൫1 − 𝜙ଵ𝐵 − ⋯ − 𝜙𝐵൯(1 − Φଵ𝐵 − ⋯ − Φ𝐵)(1 − 𝐵)ௗ(1 − 𝐵)𝑦௧

= 𝑐 + ൫1 + 𝜃ଵ𝐵 + ⋯ + 𝜃𝐵൯൫1 + Θଵ𝐵 + ⋯ + Θொ𝐵ொ൯𝜀௧.  (22) 

 The SARIMA model used in this study was found by using a Python statistical library 

package called “pmarima.”  It is the equivalent to the “auto.arima()” function in R language that 

employs a variation of the Hyndman-Khandakar algorithm to obtain an ARIMA model, 

developed by Hyndman et al [40]. The Hyndman-Khandakar algorithm has the following general 

workflow: 
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1. The number of differencing 𝑑 is found using repeated KPSS (Kwiatkowski-Phillips-

Schmidt-Shin) tests. 

2. The value of 𝑝 and 𝑞 are determined by minimizing the AIC after differencing the 

original series with the order determined in the last step. The algorithm uses the stepwise 

search method to find optimal combination of 𝑝 and 𝑑. 

a. Four initial models are fitted 

i. ARIMA(0, 𝑑, 0) 

ii. ARIMA(2, 𝑑, 2) 

iii. ARIMA(1, 𝑑, 0) 

iv. ARIMA(0, 𝑑, 1) 

b. The model with the smallest AIC is chosen as the “current model”. 

c. The current model is be altered and investigated: 

i. change 𝑝 and/or 𝑞 from the current model by ±1; 

ii. include/exclude 𝑐 from the current model. 

A new current model with a smaller AIC is found in this way.  

d. Repeat Step 2(c) until no model with a smaller AIC can be found.  

The SARIMA model determined by the Python function “pmdarima” is denoted as 

SARIMA(3,0,0)(4,1,3)ଶସ. The seasonal period was set to be 24 to account for the daily 

seasonality. In Table 3, the coefficients of the model are presented: three AR coefficients, four 

seasonal AR coefficients, and three seasonal MA coefficients. A seasonal differencing is also 

necessary. The P-values of the coefficients are all smaller than 0.05, indicating that all the AR 
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and MA terms are statistically significant. The SARIMA model was then used to forecast the 

hourly electric power in February with January’s data. Figure 9 exhibits the comparison between 

real and SARIMA predicted power in February. The large discrepancies between real and 

forecasted values reveal the fundamental problem with the SARIMA model, which is the lack of 

capability to account for multiple seasonalities. The model can effectively capture the daily 

pattern of electric load, i.e. rise in the morning, peak at noon, and drop in the afternoon, as the 

SARIMA forecasted power curve demonstrates. During weekdays, the forecasted and real power 

curves conform with each other substantially. On the other hand, the large drops in load during 

weekends are not properly recognized by the model. The discrepancies between real and 

forecasted values are the largest during weekends because the model treats them as ordinary 

weekdays. Consequently, the forecasting accuracy of the SARIMA model is not satisfactory as 

Table 4 implies. 

          
             Coefficients     Standard error      z     P>|z|  
Intercept 0.1099 0.116 0.947 0.344 
AR.L1     0.6021 0.031 19.551 0 
AR.L2     0.182 0.035 5.148 0 
AR.L3     0.0792 0.034 2.328 0.02 
AR.S.L24  1.1082 0.077 14.373 0 
AR.S.L48  -1.1763 0.091 -12.934 0 
AR.S.L72  0.2924 0.058 5.021 0 
AR.S.L96  -0.2654 0.04 -6.645 0 
MA.S.L24  -1.858 0.079 -23.637 0 
MA.S.L48  1.6993 0.139 12.246 0 
MA.S.L72  -0.7224 0.078 -9.214 0 

 

        
RMSE CV (%) MAPE (%) R-Squared 

34.491 13.381 9.839 0.587 
 

Table 3. Coefficients of the SARIMA model 

Table 4. Performance evaluation measures of SARIMA forecast 
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3.3 TBATS  

TBATS was developed by De Livera et al. as an automated approach to tackle multiple and 

complex seasonality utilizing Fourier terms with an exponential smoothing state space model and 

a Box-Cox transformation [41]. TBATS is an acronym for key features of the model: 

Trigonometric seasonal formulation, Box-Cox transformation, ARMA errors, Trend, and 

Seasonal components. It was built upon the extension by Taylor to the Holt-Winters method as 

follows: 

𝑦௧ = 𝑙௧ିଵ + 𝑏௧ିଵ + 𝑠௧
(ଵ)

+ 𝑠௧
(ଶ)

+ 𝑑௧, (23) 

𝑙௧ = 𝑙௧ିଵ + 𝑏௧ିଵ + 𝛼𝑑௧, (24) 

𝑏௧ = 𝑏௧ିଵ + 𝛽𝑑௧, (25) 

𝑠௧
(ଵ)

= 𝑠௧ିభ

(ଵ)
+ 𝛾ଵ𝑑௧, (26) 

𝑠௧
(ଶ)

= 𝑠௧ିమ

(ଵ)
+ 𝛾ଶ𝑑௧, (27) 

Figure 9. Comparison between real and SARIMA predicted hourly electric power in February 
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where  𝑚ଵ and 𝑚ଶ represent the periods of seasonality; 𝑑௧ is the white-noise random variable 

representing the prediction error or disturbance; 𝑙௧ and 𝑏௧ are the level and trend component at 

time 𝑡, respectively; 𝑠௧
() represents the 𝑖th seasonal component at time 𝑡; Coefficient 𝛼, 𝛽, 𝛾ଵ 

and 𝛾ଶ are the smoothing parameters. The average value in the time series is referred as the level 

while the increasing or decreasing value is referred as the trend. De Livera et al. extended this 

model to include Box-Cox transformation, ARMA errors and 𝑇 seasonal periods as the 

following: 

𝑦௧
(ఠ)

= ൝
௬

(ഘ)
ିଵ

ఠ
, 𝜔 ≠ 0,

log𝑦௧, 𝜔 = 0,
          (28)                                                              

𝑦௧
(ఠ)

= 𝑙௧ିଵ + 𝜙𝑏௧ିଵ + 𝛼𝑑௧, (29) 

𝑙௧ = 𝑙௧ିଵ + 𝜙𝑏௧ିଵ + 𝛼𝑑௧, (30) 

𝑏௧ = (1 − 𝜙)𝑏 + 𝜙𝑏௧ିଵ + 𝛽𝑑௧ , (31) 

𝑠௧
()

= 𝑠௧ି

()
+ 𝛾𝑑௧, (32) 

𝑑௧ =  𝜑𝑑௧ି +  𝜃𝜀௧ି



ୀଵ

+ 𝜀௧,



ୀଵ

 (33) 

where 𝑚 is the seasonal period with 𝑖 = 1, … , 𝑇; 𝑙௧ and 𝑏௧ are the local level and trend in period 

𝑡; 𝑏 is the long-run trend in period 𝑡; 𝑑௧ in this model represents an ARMA(𝑝, 𝑞) process with 𝜑 

and 𝜃 as the autoregressive and moving average coefficients; 𝜙 is the damping parameter for the 

Gardner and McKenzie damped trend; 𝜀௧ is the Gaussian white-noise process with zero mean 

and constant variance, designated as 𝑊𝑁(0, 𝜎ଶ); 𝛼, 𝛽 and 𝛾 are the coefficients of smoothing 

parameters. 𝑦௧
(ఠ) denotes the Box-Cox transformed observations at time 𝑡 with the 

transformation parameter 𝜔. With the extension, the model becomes the BATS model, which 

can accommodate multiple seasonality as generalization of the traditional seasonal innovations 
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models. However, the model cannot handle non-integer seasonality. In addition, it has a large 

amount of states that results in an enormous number of values for seasonality with large periods. 

To address these issues in a parsimonious manner, the trigonometric representation of seasonal 

components was introduced: 

𝑠௧
()

=  𝑠,௧
()

,



ୀଵ

 (34) 

𝑠,௧
()

= 𝑠,௧ିଵ
()

cos 𝜆
()

+ 𝑠,௧ିଵ
()

sin 𝜆
()

+ 𝛾ଵ
()

𝑑௧, (35) 

𝑠,௧
∗()

= −𝑠,௧ିଵ sin 𝜆
()

+ 𝑠,௧ିଵ
∗()

cos 𝜆
()

+ 𝛾ଶ
()

𝑑௧, (36) 

𝜆
()

=
2𝜋𝑗

𝑚
, (37) 

where 𝛾ଵ
() and 𝛾ଶ

() are the smoothing parameters; 𝑘 denotes the required seasonal harmonics for 

the 𝑖th seasonal component. The stochastic level of the 𝑖th seasonal component is designated as 

𝑠,௧
() while the 𝑠,௧

∗() describes the growth of 𝑠,௧
(). With the addition of trigonometric formulation, a 

TBATS model is formed and designated as TBATS(𝜔, 𝜙, 𝑝, 𝑞, {𝑚ଵ, 𝑘ଵ}, {𝑚ଶ, 𝑘ଶ}, … , {𝑚் , 𝑘்}). 

The TBATS model utilized in this study was automatically determined by the ‘tbats’ Python 

function package, which is an equivalent to the same function in R language based on the study 

by De Livera et al [41]. The function follows the general workflow as below: 

1. Estimate unknown parameters: 𝜔, 𝜙, 𝛾ଵ
()

, 𝛾ଶ
() based on maximum likelihood estimates 

2. Select the number of seasonal harmonics 𝑘 

a. De-trend the data with an appropriate de-trending method 

b. Approximate the de-trended data with linear regression method 

c. Start with a single harmonic 

d. Gradually increase the number of harmonics while testing significance 
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e. Fit the required model to the data and computer AIC 

f. Repeatedly fit the model to the estimation sample while gradually increasing one 

harmonic, keeping others constant, until lowest AIC is achieved 

3. Select the ARMA orders by using the automatic ARIMA algorithm by Hyndman et al. 

introduced before [40]. 

Using “tbats” function in Python, TBATS(0, 𝑁𝐴, 2,4, {24,8}, {168,6}) was decided as the 

best model for predicting loads in February with January’s data. The Box-Cox transformation 

parameter 𝜔 is 0. No damping is required. The smoothing parameters are exhibited in Table 5. 

The ARMA parameters are 2 and 4, meaning there are two AR terms and four MA terms. Table 

6 presents the ARMA coefficients. Seasonal periods are 24 and 168, representing daily and 

weekly patterns correspondingly in the number of data points. Forecasting hour electric load was 

attempted with this TBATS model. As Figure 10 implies, utilizing TBATS method addresses the 

problem of ARIMA method, which is the lack of capability to handle multiple seasonalities. 

Compared with the predicted power curve of SARIMA model, the TBATS predicted power 

curve captures the dips in electric load during weekends. The forecasting accuracy improves 

considerably, as the performance evaluation measures in Table 7 indicate. It is worth mentioning 

that the TBATS model performs worse during weekends in terms of forecast accuracy. The 

prediction is off by a wide margin during the weekends of the last two weeks in February. The 

              
  α β γ1 γ2 γ3 γ4 
TBATS 0.0295 NA -3.877E-05 -2.938E-05 -6.530E-05 1.154E-05 

                

   AR1 AR2 MA1 MA2 MA3 MA4  
 TBATS -6.530E-05 1.154E-05 0.528 0.408 0.361 0.245  

Table 5. Smoothing parameters of the TBATS model 

Table 6. ARMA coefficients of the TBATS model 
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electric power dynamics of weekends are different from those of weekdays. More spikes in 

electric load occur during weekends, which render forecasting more challenging. 

TBATS was applied to the rest of the data throughout the year of 2019 in the same way, i.e. 

predicting a month of hourly electric loads with previous month’s data. The results are shown in 

Table 8. The prediction accuracy of March, November and December is substantially worse than 

that of the other months. While the cause of reduction in accuracy remains unclear for March, 

holidays and outliers in the data lead to the unsatisfactory performance for November and 

December. Figure 11 shows the TBATS predicted load in December. It can be observed that 

after December 23rd, the prediction error becomes significantly larger than before. The Christmas 

holiday is unexpected for the TBATS method as it solely relies on past values for prediction, 

without any indicator to acknowledge the existence of holidays. In addition, there is an outlier in 

the first week. Prediction of April and November loads faces similar issues of outliers or 

        
RMSE CV (%) MAPE (%) R-Squared 

20.608 7.996 5.951 0.853 
 

Figure 10. Comparison between real and TBATS predicted hourly electric power in February 

Table 7. Performance evaluation measures of TBATS forecast 
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holidays where the loads are lower than those of the normal weekdays. The outliers and holidays 

were eliminated, and the performance statistics were recalculated with the results shown in Table 

9, which show substantial improvement in accuracy. A different prediction strategy was also 

examined. Instead of fitting with one month of data and predicting the data of succeeding month, 

multiple months of data are used for prediction. July, August, September, and October were 

chosen as the example months for examination. Up to nine preceding months of data were used 

          
Trained/Predicted Month RMSE CV (%) MAPE (%) R-Squared 
Jan/Feb 20.608 7.996 5.951 0.853 
Feb/Mar 33.100 12.774 9.830 0.597 
Mar/Apr 22.615 8.668 7.146 0.824 
Apr/May 23.779 9.133 6.853 0.803 
May/Jun 24.712 9.731 6.946 0.776 
Jun/Jul 27.979 10.083 8.068 0.784 
Jul/Aug 25.674 9.065 7.073 0.796 
Aug/Sep 24.319 8.760 7.033 0.816 
Sep/Oct 23.500 8.337 7.152 0.854 
Oct/Nov 35.054 12.693 10.497 0.631 
Nov/Dec 31.181 11.591 8.397 0.600 
Mean 26.593 9.894 7.722 0.758 

Table 8. Performance evaluation measures of TBATS forecast of consecutive months 

Figure 11. Comparison between real and TBATS predicted hourly electric power in December 
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to predict the loads of these months as shown in Table 10. The results indicate that the prediction 

accuracy substantially increases when using more than one month of data for the model. On 

average, 5~20% of improvement in accuracy is achieved depending on different evaluation 

metrics and the amount of used data. Due to limited accessibility of load data in 2018, an 

          
Trained/Predicted Month RMSE CV (%) MAPE (%) R-Squared 
Jan/Feb 20.608 7.996 5.951 0.853 
Feb/Mar 33.100 12.774 9.830 0.597 
Mar/Apr 21.782 8.342 6.967 0.836 
Apr/May 23.779 9.133 6.853 0.803 
May/Jun 24.712 9.731 6.946 0.776 
Jun/Jul 27.979 10.083 8.068 0.784 
Jul/Aug 25.674 9.065 7.073 0.796 
Aug/Sep 24.319 8.760 7.033 0.816 
Sep/Oct 23.500 8.337 7.152 0.854 
Oct/Nov 30.967 11.062 9.393 0.729 
Nov/Dec 21.822 7.940 6.321 0.837 
Mean 25.295 9.384 7.417 0.789 

Table 9. Performance evaluation measures of TBATS forecast of consecutive months (without 
outliers and holidays) 

Table 10. Performance evaluation measures of TBATS forecast of multiple months  
          

Trained/Predicted Month RMSE CV (%) MAPE (%) R-Squared 
Feb~Jun/Jul 28.283 10.193 7.084 0.779 
Apr~Jun/Jul 26.271 9.468 6.666 0.809 
Jun/Jul 27.979 10.083 8.068 0.784 
Jan~Jul/Aug 23.690 8.365 6.306 0.826 
Mar~Jul/Aug 22.311 7.878 5.949 0.846 
May~Jul/Aug 22.185 7.833 5.951 0.847 
Jul/Aug 25.674 9.065 7.073 0.796 
Feb~Aug/Sep 22.297 8.032 5.828 0.845 
Apr~Aug/Sep 22.284 8.027 5.814 0.845 
Jun~Aug/Sep 23.098 8.321 6.077 0.834 
Aug/Sep 24.319 8.760 7.033 0.816 
Jan~Sep/Oct 22.365 7.934 6.010 0.868 
Mar~Sep/Oct 21.042 7.465 5.651 0.883 
May~Sep/Oct 20.684 7.338 5.664 0.887 
Jul~Sep/Oct 21.976 7.796 5.856 0.872 
Sep/Oct 23.500 8.337 7.152 0.854 
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extensive examination, where every month of 2019 is predicted using multiple preceding 

months’ data, cannot be achieved. Nonetheless, making prediction with multiple months of data 

is proven better in terms of accuracy.  
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CHAPTER 4. MACHINE LEARNING METHOD 

4.1 BACKPROPAGATION ANN 

A neural network can be considered as a network of “neurons” that are organized in layers 

[42]. Figure 12 depicts how an individual neuron works. A neuron takes inputs, 𝑥ଵ, 𝑥ଶ, …, and to 

compute the output, weights, 𝑤ଵ, 𝑤ଶ, …, are introduced. Weights are real numbers that denote 

the importance of the respective input to each output. The output of neuron is determined by 

whether the linear combination of the sum of the products of weights and inputs exceed an 

arbitrary threshold value in an inequality equation. The threshold value can be moved to the 

other side of the inequality and becomes the bias of the neuron, described as 𝑏 ≡ −threshold. 

Therefore, the weighted input of a neuron is defined as: 

𝑧 = 𝑤 ∙ 𝑥 + 𝑏. (38) 

The output is calculated by applying a so-called activation function 𝑓(𝑧) to the weighted input of 

a neuron. Generally, the activation function is utilized to ensure that changes in weights and 

biases will result changes in the output from the neuron according to the degree of the changes. 

Learning of the neural network is therefore achievable by repeatedly changing the weights and 

biases to produce better outputs and thus optimal weights and biases can be found.  

 The learning process starts with using a training data set. The training input is denoted as 𝑥 

and the desired corresponding output is described as 𝑦 = 𝑦(𝑥). An algorithm, known as the 

Figure 12. Structure of a neuron 
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optimizer, is required to let the network find weights and biases so the output of the network 

approaches 𝑦(𝑥) for all training inputs 𝑥. Before introducing the algorithm, the cost function is 

defined to quantify how well the outputs from the network agree with 𝑦(𝑥). A commonly used 

cost function, known as the quadratic cost function, is given below: 

𝐶(𝑤, 𝑏) =
1

2𝑛
‖𝑦(𝑥) − 𝑎‖ଶ

௫

, (39) 

where 𝑤 represents the collection of all weights in the network; 𝑏 is all the biases; 𝑛 is the 

number of total training inputs; 𝑎 is the vector of outputs from the network, depending on 𝑥, 𝑤, 

and 𝑏; the sum is over all training inputs. The cost is always positive and when it becomes small, 

it indicates that 𝑦(𝑥) is relatively close to 𝑎. So, the goal of the algorithm is to find a particular 

set of weights and biases that minimizes the cost function.  

 Such algorithm is known as gradient descent. Suppose there is some function 𝐶(𝑣) of two 

real valued variables, 𝑣 = 𝑣ଵ, 𝑣ଶ. These are general variables that do not necessarily need to be 

set within the neural network context. Minimizing 𝐶(𝑣) means to find where it reaches its global 

minimum. Changing 𝑣ଵ and 𝑣ଶ by a small amount of ∆𝑣ଵ and ∆𝑣ଶ leads to the change of the cost 

as follows: 

∆𝐶 ≈ ∇𝐶 ∙ ∆𝑣, (40) 

where ∇𝐶 is the gradient vector consisted of 𝜕𝐶/𝜕𝑣ଵ and 𝜕𝐶/𝜕𝑣ଶ in this case, and ∆𝑣 is the 

vector formed by ∆𝑣ଵ and ∆𝑣ଶ. To reduce the cost, ∆𝑣ଵ and ∆𝑣ଶ need to be chosen in a certain 

way to make ∆𝐶 negative. This can be pictured as nudging a ball in 𝑣ଵ and 𝑣ଶ directions down a 

valley. Let ∆𝑣 be chosen as: 

∆𝑣 = −𝜂∇𝐶, (41) 
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where 𝜂 is a small, positive parameter that represents the learning rate. By defining ∆𝑣 in such 

way, ∆𝐶 ≈ ∇𝐶 ∙ ∆𝑣 = −𝜂∇𝐶 ∙ ∇𝐶 = −𝜂‖∇𝐶‖ଶ. Since ‖∇𝐶‖ଶ ≥ 0, it is guaranteed that ∆𝐶 ≤ 0. 

In other words, ∆𝐶 always decreases as desired because the goal is to reduce the overall cost. 

The value of 𝑣 can then be updated repeatedly through computing ∆𝑣: 

𝑣 → 𝑣ᇱ = 𝑣 − 𝜂∇𝐶. (42) 

The cost can be continuously decreased by this update rule and eventually reach a global 

minimum, which is the essence of the gradient descent algorithm. The gradient descent update 

rule in the context of neural network has the following form: 

𝑤 → 𝑤
ᇱ = 𝑤 − 𝜂

𝜕𝐶

𝜕𝑤
, (43) 

𝑏 → 𝑏
ᇱ = 𝑏 − 𝜂

𝜕𝐶

𝜕𝑏
. (44) 

In this way, the network learns from training inputs and gradually decreases the overall cost. 

 In practice, the gradient descent algorithm is often replaced with stochastic gradient descent 

in order to speed up the learning process. The overall cost is calculated by averaging the cost 

over all individual training examples. Similarly, computing the gradient ∇𝐶 requires the network 

to compute the gradients ∇𝐶௫ and average them over all training examples. The computation 

becomes challenging and the learning rate decreases as the number of training inputs becomes 

large. To address this issue, the stochastic gradient descent algorithm randomly selects a small 

number 𝑚 of training inputs chosen randomly. The randomly chosen inputs are referred as 

𝑋ଵ, 𝑋ଶ, …, 𝑋, which form a mini-batch. If the sample size 𝑚 is large enough, the average value 

of ∇𝐶௫ can be approximated by calculating the average ∇𝐶ೕ
 as the following: 

∑ ∇𝐶ೕ


ୀଵ

𝑚
≈

∑ ∇𝐶௫௫

𝑛
= ∇𝐶. (45) 
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Therefore, the overall gradient can be approximated by computing the gradients of randomly 

selected mini-batch. The update rule of stochastic gradient descent algorithm is given as: 

𝑤 → 𝑤
ᇱ = 𝑤 −

𝜂

𝑚


𝜕𝐶ೕ

𝜕𝑤


, (46) 

𝑏 → 𝑏
ᇱ = 𝑏 −

𝜂

𝑚

𝜕𝐶ೕ

𝜕𝑏
, (47) 

where all training examples 𝑋 in the current mini-batch are summed. Once the network finishes 

training with one mini-batch, another mini-batch will be randomly selected for a new round of 

training. The process will be repeated until all training examples have been trained with.  

A simple backpropagation neural network has a structure presented in Figure 13. From the 

figure, there are three layers consisted of circles that denote the neurons. The leftmost in the 

network is called the input layer, which consists of input neurons. The output layer is the 

rightmost layer, containing the output neurons in this case. The intermediate layer is called the 

hidden layer and the neurons in the layer are neither input nor output neuron. In the diagram, 𝑤
  

refers to the weight from the 𝑘-th neuron in the (𝑙 − 1)-th layer to the 𝑗-th neuron in the 𝑙-th 

Figure 13. Structure of a backpropagation neural network 
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layer and 𝑏
 represents the bias of the 𝑗-th neuron in the 𝑙-th layer. The activation 𝑎

 of the 𝑗-th 

neuron in the 𝑙-th layer is calculated by: 

 𝑎
 = 𝑓 ൭ 𝑤





𝑎
ିଵ + 𝑏

൱ , (48) 

𝑎 = 𝑓(𝑤𝑎ିଵ + 𝑏), in vectorized form. (49) 

This expression reveals how activations between adjacent layers relate to each other: the 

activations in the previous layer is applied with the weight matrix, added with the bias vector, 

and finally applied with the activation function. 

Two assumptions are required to apply backpropagation algorithm in a neural network. The 

first assumption is given by the following equation: 

𝐶 =
1

𝑛
 𝐶௫

௫

, (50) 

where 𝐶௫ is the cost function for individual training example 𝑥. This assumption denotes that the 

cost function can be written as an average over the cost function of individual training examples. 

The assumption is needed because what the backpropagation actually does is computing the 

partial derivatives 𝜕𝐶௫/𝜕𝑤 and 𝜕𝐶௫/𝜕𝑏 of individual training examples. 𝜕𝐶/𝜕𝑤 and 𝜕𝐶/𝜕𝑏 are 

then calculated by averaging over the partial derivatives of examples. The second assumption is 

that the cost can be expressed as a function of the outputs from the neural network as follows: 

cost 𝐶 = 𝐶(𝑎). (51) 

Take the common quadratic cost function as an example. It can be written as: 

𝐶 =
1

2
‖𝑦 − 𝑎‖ଶ =

1

2
൫𝑦 − 𝑎

൯
ଶ

,



 (52) 

and hence it agrees with the assumption as a function of the output activations.  
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 There are four fundamental equations behind the backpropagation algorithm. Before 

introducing these equations, it is necessary to first define an intermediate quantity 𝛿
, which 

serves as the error in 𝑗th neuron in the 𝑙th layer. The essence of backpropagation is to understand 

how the variations in weights and bias affect the cost function. This would lead to computing 

partial derivatives 𝜕𝐶/𝜕𝑤
  and 𝜕𝐶/𝜕𝑏

. The error 𝛿
 is used to relate 𝜕𝐶/𝜕𝑤

  and 𝜕𝐶/𝜕𝑏
. 

Suppose there is a small perturbation ∆𝑧
 added to the weighted input of a neuron. The output of 

neuron changes from 𝜎(𝑧
) to 𝜎(𝑧

 + ∆𝑧
) and the change propagates through the network. The 

overall cost is eventually influenced and changed by an amount 
డ

డ௭ೕ
 ∆𝑧

. If 
డ

డ௭ೕ
 has a large value, 

then the perturbation ∆𝑧
 can be chosen to have the opposite sign of 

డ

డ௭ೕ
 to reduce the overall 

cost. On the contrary, if 
డ

డ௭ೕ
 is close to zero, then adjusting the perturbation ∆𝑧

 does not cause 

significant changes in cost. Therefore, the error is defined as 

𝛿
 =

𝜕𝐶

𝜕𝑧
 . (53) 

 The four fundamental equations together provide an approach of computing the error and the 

gradient of the cost function. The first equation is for the error in the output layer given as 

𝛿
 =

𝜕𝐶

𝜕𝑎
 𝜎ᇱ൫𝑧

൯, (54) 

𝛿 = ∇𝐶 ⊙ 𝜎ᇱ(𝑧), in matrix − based form. (55) 

The 
డ

డೕ
ಽ term measures the rate of change of the cost as a function of the 𝑗th output activation 

while the 𝜎ᇱ൫𝑧
൯ term measures the rate of change of the activation function at 𝑧

. These terms 

can be easily obtained. The computational burden of 
డ

డೕ
ಽ depends on the particular form of the 
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cost function, but it should remain small as the function is already known. The weighted inputs 

𝑧
 are already computed in the natural workflow of the neural network and only an extra step of 

differentiating is needed for 𝜎ᇱ൫𝑧
൯.   

 The second equation is for the error as a function of the error in the next layer: 

𝛿 = ((𝑤ାଵ)்𝛿ାଵ) ⊙ 𝜎ᇱ(𝑧), (56) 

where (𝑤ାଵ)் is the transposed matrix composed of weights in the (𝑙 + 1)-th layer. The 

transpose weight matrix is applied to move the error backward through the network and provide 

a measure of the error at the output in layer 𝑙. This equation effectively propagates the error 

backward by the activation function in the 𝑙-th layer to obtain the error 𝛿 in the weighted input 

𝑧.  

 The error 𝛿 of any layer in the network can be computed by combining the first and second 

fundamental equations. The error in the output layer 𝛿 is first calculated using the first 

fundamental equation; then, apply the second fundamental equation to obtain 𝛿ିଵ; the second 

equation is repeatedly applied and eventually errors of all layers are computed.   

 The third fundamental equation measures the rate of change of the cost with respect to any 

bias in the network as follows: 

𝜕𝐶

𝜕𝑏
 = 𝛿

 . (57) 

The rate of change 
డ

డೕ
 is equal to the error 𝛿

, which is convenient since the previous two 

fundamental equations have already showed how to compute the errors.  

 The fourth fundamental equation describes the rate of change of the cost with respect to any 

weight in the network in such way:  
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𝜕𝐶

𝜕𝑤
 = 𝑎

ିଵ𝛿
. (58) 

This equation illustrates how to compute the partial derivative 𝜕𝐶/𝜕𝑤
  with terms 𝑎

ିଵ and 𝛿
. 

Both the activation term 𝑎
ିଵ and error term 𝛿

 can be computed easily with methods shown 

before. The equation indicates that when the activation is small, the gradient term also tends to 

be small. This leads to slow learning rate of weights during the gradient descent process.  

 

4.2 ANN CONFIGURATION SELECTION 

It is necessary to investigate appropriate inputs variables for the ANN. The following inputs 

variables are considered in this case study: 

 temperature 

 humidity 

 windspeed 

 total hour 

 hour 

 weekday/weekend 

 day of week 

 previous week same hour power (PW) 

 previous day same hour power (PD) 

 previous 24-hour average power (P24) 

Temperature, humidity and windspeed are metered hourly by the UCI central plant. These 

weather condition parameters can potentially have significant impact on building energy [15] 

[43]. Cooling and heating energy consumption might be related to outdoor temperature and 
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humidity. Strong wind enhances the effects of cold weather. In addition, air infiltration increases 

with high wind speed, which causes a temperature drop inside the building. Building wall surface 

heat loss is also dependent on windspeed as higher windspeed generates more surface heat loss. 

However, the effects on building energy consumption due to weather condition parameters are 

heavily building-dependent. Types of insulation materials, location of the building, and types of 

existing energy system can all lead to drastically different reactions to changing weather 

conditions in terms of building energy consumption.  

Total hour is a count for the hourly electric power data depending on the size of dataset. A 

full year of hourly electric power data set consists of 8,760 data points and total hour ranges from 

1 to 8,760 in this case. Hour is a recurring variable that marks the number of the hour every day 

for each hourly power data point. It ranges from 1 to 24 and repeats itself over the data set. 

Weekday/weekend is a Boolean value input for distinguishing data points of weekdays from 

those of weekends. Weekday data points are represented with 1 and 0 represents weekend data 

points. Day of week is a recurring input like hour, ranging from 1 to 7. Each number corresponds 

Figure 14. Comparison between real and ANN predicted hourly electric power in January with 
input: total hour 
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to a day in the week starting from Monday. Total hour is considered the fundamental input 

because it keeps tracks of time series data. Weekday/weekend is crucial for the ANN to capture 

the conspicuous dip in electric load during the weekends. Hour and day of week are examined to 

observe possible effects of patterns recognition. Electric power load of BioSci3 follows a similar 

trend each day; rises in the morning; peaks at noon; and drops in the afternoon. A similar trend 

may also be present for each day of the week. Hence, it is worth investigating these two inputs.  

 PW, PD and P24 are input variables referring to the actual electric hourly power data. 

Specifically, PW and PD are the actual hourly electric powers 168 hours and 24 hours ago 

respectively. P24 is the mean value of previous 24 data points of actual power. Electric powers at 

the same hour adjacent weeks may be similar or somehow related. The same idea can also apply 

for powers between two adjacent days. In addition, patterns of electric power with a period of 24 

hours may exist. PW, PD and P24 can potentially aid in addressing the multiple seasonality 

present in the hourly power. 

Figure 15. Comparison between real and ANN predicted hourly electric power in January with 
input: total hour, weekday/weekend 
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A temporary configuration of ANN was used to find the best configuration: ReLU/sigmoid 

activation function, Adam optimizer, and three hidden layers with 25 neurons in each layer. The 

ANN was built with Keras, an open-source neural network library written in Python. 

In order to select appropriate inputs from the aforementioned candidates, the ANN was 

trained with hourly electric power data in January 2019 of BioSci3 building and prediction of the 

hourly electric power for a whole month was made using the inputs of the same month. The 

selection process is guided by the forecasting performances of the ANN forecasts that utilize 

different inputs. The performances are evaluated with the comparison of power curves between 

ANN forecasted and actual power, as well as the previously introduced evaluation measures 

including RMSE, CV, MAPE and R2.  

The total hour and weekday/weekend inputs are regarded as fundamental for the ANN. Their 

forecasting performances were initially observed. In Figure 14, the ANN does not appear to be 

working properly while the ANN seems to recognize the significant power drop during 

weekends in Figure 15 with the help of weekday/weekend input. However, only total hour and 

Figure 16. Comparison between real and ANN predicted hourly electric power in January with 
input: total hour, day of week, weekday/weekend 
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weekday/weekend inputs are not sufficient for the ANN as two curves in Figure 15 barely match 

each other. The ANN with total hour and weekday/weekend inputs was chosen as the base model 

for further optimization.  

The hour and day of week inputs were then introduced to the base model respectively for 

improvement in forecasting performances. The day of week input added to the base model does 

not provide conspicuous improvement in terms of reducing the error between forecasted and 

          
Run/Statistics RMSE CV (%) MAPE (%) R-Squared 

1 14.177 5.576 3.718 0.938 
2 15.045 5.917 3.740 0.930 
3 13.092 5.149 3.283 0.947 
4 12.406 4.879 3.173 0.952 
5 12.353 4.858 3.245 0.953 
6 15.167 5.965 3.795 0.929 
7 17.762 6.986 4.130 0.902 
8 16.590 6.525 4.376 0.915 
9 14.479 5.695 3.467 0.935 

10 14.919 5.868 3.636 0.931 
Mean 14.599 5.742 3.656 0.933 

 

Figure 17. Comparison between real and ANN predicted hourly electric power in January with 
input: total hour, hour, weekday/weekend 

Table 11. Performance evaluation measures of ANN model with input: total hour, day of week, 
hour, weekday/weekend 
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actual power as shown in Figure 16. The forecasted power curve seems to become more dynamic 

than the base model but whether such characteristic is beneficial in terms of forecasting is 

uncertain since the overall error between two curves is too large in this case.  

On the contrary, the hour input significantly improves the forecasting performances as 

indicated in Figure 17. This can be attributed to the fact that electric power load is similar during 

certain hour of each day or there may exist a particular pattern of electric power load during 

certain hour in a day. Hence, a new base model is determined with three inputs: total hour, hour, 

and weekday/weekend.  

The effect of the day of week input remained unclear. Therefore, it was later added to the 

base model to further investigate.  

Outputs of ANN vary within a certain range when the model is run each time. To avoid 

fluctuations in performances that potentially lead to incorrect results of input selection, each 

model is run ten times and the final evaluation is based on the average evaluation measures of 

ten runs. Table 11 and Table 12 present the performance evaluation measures of the base model 

          
Run/Statistics RMSE CV (%) MAPE (%) R-Squared 

1 11.702 4.602 3.101 0.958 
2 13.992 5.503 3.516 0.939 
3 11.872 4.669 3.123 0.956 
4 11.613 4.567 3.055 0.958 
5 12.186 4.793 3.118 0.954 
6 11.556 4.545 3.038 0.959 
7 12.766 5.021 3.276 0.950 
8 12.362 4.862 3.370 0.953 
9 12.937 5.088 3.297 0.948 

10 13.820 5.435 3.486 0.941 
Mean 12.480 4.909 3.238 0.952 

 

Table 12. Performance evaluation measures of ANN model with input: total hour, hour, 
weekday/weekend 
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and adjusted base model with added day of week input. All performance evaluation measures of 

the adjusted base model are better compared to those of the base model. RMSE, CV and MAPE 

are smaller while R2 is close to one as shown in the tables. Although day of week did not appear 

to be a valuable input in the first place, it was proven to be significant in the further 

investigation. As a result, the updated base model employs four inputs: total hour, hour, day of 

week, and weekday/weekend.  

Figure 18. Hourly weather condition parameters versus corresponding electric power in 2019: (a) 
dry-bulb temperature versus power, (b) wind speed versus power, (c) relative humidity versus 
power 
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Before adopting weather condition parameters including hourly dry-bulb temperature, 

windspeed and relative humidity as ANN inputs, it is necessary to examine their relationship 

with electric power in the case of the BioSci3 building. As explained before, the dependence of 

energy consumption on weather condition parameters can differ drastically between buildings. 

Figure 18 presents the scatter plots of hourly temperature, wind speed and humidity with their 

corresponding electric power in 2019. It can be seen from Figure 18 (a) that most of the data 

points approximately fall within 10~30 ℃ temperature range. In the temperature range of 5~10 

℃, the data points are scarce except for the power range of 200~200 kW. The data points are 

scarce in the temperature range of 5~10 ℃ as the result of the moderate weather in Irvine, 

California. No conspicuous relationship between temperature and electric power can be observed 

in the 10~30 ℃ temperature range, as the data points are almost evenly distributed, forming a 

rectangle. For wind speed, most data point s fall within 0~12.5 mph range while data points 

become sparse in 12.5~22.5 mph range as presented in Figure 18 (b). Similar to the case of 

temperature, the relationship between wind speed and electric power does not appear significant. 

Data points of humidity are distributed more sparsely comparing with those of temperature and 

wind speed, as indicated in Figure 18 (c). The points are more concentrated across the span of 

10~90% relative humidity, within the power range of 200~200 kW. In addition, more points are 

spotted within the power range of 250~400 kW and humidity range of roughly 45~80% relative 

         
Configurations/Statistics RMSE CV (%) MAPE (%) R-Squared 
a 12.480 4.909 3.238 0.952 
b 12.629 4.967 3.165 0.951 
c 12.035 4.733 3.070 0.955 
d 12.372 4.866 3.144 0.953 

 

Table 13. Comparison of different ANN model input configurations: (a) base, (b) base with 
temperature input, (c) base with wind speed input, (d) base with humidity input 
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humidity. The reason that leads to the concentration of data points in such way is unclear, as well 

as the relationship between humidity and electric power. Overall, employing weather condition 

parameters as inputs for the ANN model is precarious judging from the scatter plots. 

Nonetheless, weather condition parameters were utilized as inputs in the ANN to verify what 

was leant from the scatter plots. Temperature, wind speed and humidity were introduced to the 

base model as additional inputs. Table 13 presents the evaluation measures of different ANN 

configurations as each configuration was run ten times. Configuration (a), (b), (c) and (d) 

represent the base model and base model with temperature, wind speed and humidity as inputs, 

respectively. Compared to the base model, configuration (b) and (c) are relatively close in terms 

of performance statistics. The differences in RMSE, CV, MAPE and R2 are roughly within 2%.   

This is possibly caused by the inherent fluctuations in performances of ANN since the 

differences are minor. Configurations of the network with temperature and humidity as inputs do 

not exhibit significant advantages in performances over the base configuration, as the scatter 

plots indicate that there is no clear relationship between these weather condition parameters and 

electric power. In contrast, configuration (c) is approximately 3~5% better than the base model 

in terms of forecasting performances according to the statistics. However, the scatter plot of wind 

speed in Figure 18 does not indicate that relationship between wind speed and electric power 

exists. It is unclear why configuration (c) outperforms the other two configurations with weather 

parameter inputs. Inconsistency with ANN outputs can potentially be one of the causes. Wind 

 
 

        
Configurations/Statistics RMSE CV (%) MAPE (%) R-Squared 
A 12.218 4.805 3.094 0.954 
B 12.189 4.794 3.126 0.954 
C 11.987 4.715 3.066 0.955 
D 11.922 4.689 3.012 0.956 

Table 14. Comparison of different ANN model input configurations: (a) base with PW input, (b) 
base with PD input, (c) base with P24 input, (d) base PW, PD and P24 inputs 
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speed is later further tested as an input when performing out-of-sample forecasting, i.e., 

predicting electric power given with inputs outside of the training data.  

PW, PD and P24 serve as extra inputs for the base model in the ANN to validate their 

effectiveness. Table 14 present the statistics of ANN configurations utilizing PW, PD and P24 to 

compare their performances. Configuration (A), (B), (C) and (D) describe the base model with 

inputs: PW, PD, P24 and all three combined. As usual, each configuration was run ten times. All 

configurations indicate considerable enhancement in performances compared to the base 

configuration evaluating from the statistics. Configuration (A) and (B) exhibit similar level of 

forecasting accuracy, whereas configuration (C) and (D) perform almost equally well. It is 

desirable to select configuration (D) as the determined set of ANN inputs based on its 

exceptional forecasting accuracy demonstrated by the evaluation measures. However, it should 

be noted that more inputs for the ANN result in more computational power and longer 

computational time required. If, for example, the difference in out-of-sample forecasting 

accuracy of configuration (A) and configuration (D) is negligibly small, then a model with less 

input is preferred considering the parsimony of input. Hence all configurations were chosen to 

perform out-of-sample forecasting.  

Previously, the ANN was trained with January 2019 data and it predicted the hourly power of 

the same month with the same inputs from the training samples. To do out-of-sample forecasting, 

           
Configurations/Statistics RMSE CV (%) MAPE (%) R-Squared 
1 22.556 8.751 5.582 0.823 
2 20.748 8.050 5.463 0.850 
3 23.002 8.924 5.705 0.816 
4 21.950 8.516 5.569 0.832 
5 22.078 8.566 5.830 0.830 
6 24.138 9.365 5.926 0.798 

Table 15. Comparison of different ANN model input configurations: (1) base, (2) base with PW 
input, (3) base with PD input, (4) base with P24 input, (5) base with PW, PD and P24 inputs, (6) 
base with wind speed input 
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the ANN was trained with January 2019 data and predicted February hourly power using inputs 

from February. Configurations that had been proven to be promising in terms of forecasting 

accuracy were examined. Table 15 shows the tested configurations with inputs: (1) base inputs, 

(2) base inputs with PW, (3) base inputs with PD, (4) base inputs with P24, (5) base inputs with 

PW, PD and P24, (6) base inputs with wind speed. The forecasting performances noticeably 

deteriorate for all configurations comparing with in-sample forecasting, which is expected to a 

certain degree as the network handles unseen inputs in this case. In terms of the statistics on 

average of out-of-sample forecasting, RMSE, CV and MAPE are approximately twice as much; 

R2 decreases about 15%, i.e., 15% less accurate. It can be seen from Table 15 that configuration 

(2) demonstrate best forecasting performances by comparing each performance evaluation 

measure. Notice configuration (6) performs worst among all configurations, even worse than the 

base model. This contradicts with the results from in-sample forecasting, where the adjusted base 

model with wind speed input, i.e., configuration (c), exhibits better prediction accuracy than the 

base model. As mentioned earlier, the scatter plot of wind speed does not indicate a relationship 

between wind speed and electric power in Figure 18. Therefore, the forecasting performance of 

configuration (6) agrees with the verdict from the scatter plot, although the exact cause of the 

contradiction remains uncertain. It is also worth mentioning that during in-sample prediction, the 

adjusted base model with PW, PD and P24 inputs combined, i.e. configuration (D), shows best 

forecasting accuracy. On the contrary, the adjusted base model with PW input, which is 

configuration (2), makes the most accurate prediction of out-of-sample forecasting. The reason 

can potentially be the difference between the daily electric power patterns in January and 

February. What is learnt from inputs and outputs in January does not translate smoothly into 

February, to the point where it even impairs forecasting accuracy, although this is merely a 



 

46 
 

speculation. The black-box nature of an ANN prediction model renders detailed understanding of 

how different inputs affect forecasting accuracy challenging. Configuration (2) was chosen as the 

input configuration for the backpropagation neural network and used for further testing. 

Activation function, optimizer, and number of hidden layers and neurons were left 

undetermined for the ANN after inputs were defined. Different activation functions can be used 

between the different layers of ANN. Some preliminary tests were done to winnow activation 

functions and the candidates of activation functions were given as the following: 

1. Sigmoid function: 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
ଵ

ଵାషೣ 

2. Rectified Linear Unit (ReLU) function: 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

3. Hyperbolic tangent function: tanh(𝑥) 

4. Scaled Exponential Linear Unit function (SELU): 

a. If 𝑥 > 0: return 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑥 

b. If  𝑥 < 0: return 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑎𝑙𝑝ℎ𝑎 ∗ (𝑒௫ − 1) 

c. 𝑠𝑐𝑎𝑙𝑒 = 1.05070098, 𝑎𝑙𝑝ℎ𝑎 = 1.67326324. 

ReLU was found to be most promising in terms of forecasting accuracy as the activation 

function between the input layer and hidden layers. The aforementioned candidates were further 

tested through February hourly power forecasting as the activation function between the hidden 

layer and output layer. Each activation configuration was tested ten times to reduce the 

fluctuation in performance.  

          
Configuration/Statistics RMSE CV (%) MAPE (%) R-Squared 
ReLU/sigmoid 20.748 8.050 5.463 0.850 
ReLU/ReLU 22.563 8.754 5.835 0.820 
ReLU/tanh 21.762 8.443 5.556 0.833 
ReLU/SELU 21.971 8.524 5.674 0.831 

     

Table 16. Comparison of different ANN activation function configurations 



 

47 
 

The results in Table 16 reveal that ReLU/sigmoid configuration has the best prediction 

performance and hence it is selected as the definitive activation function combination for the 

ANN. Among the spectrum of available optimizers, Adam was chosen due to its capability of 

fast convergence [44]. The numbers of hidden layers and neurons in each layer were examined 

extensively as indicated in Table 17. It can be observed that in the structure of three hidden 

layers, changing the number of neurons does not drastically affect the performance of 

forecasting. Instead, the number of neurons decreases from 25 to 10 while the performance 

remains roughly on the same level, which might be caused by the fluctuations rather than actual 

differences in performances. Similar argument can be made for changing the number of hidden 

layers while keeping the number of neurons constant. The number of hidden layers changes from 

three to one but the forecasting accuracy does not change accordingly. On the other hand, 

prediction accuracy drastically decreases as the number of neurons drops below a certain 

threshold. The performance of one hidden layer with 5 neurons configuration is significantly 

worse than the configuration with one hidden layer consisting 10 neurons. ANN with less hidden 

layers and neurons are preferred because of less computational burden.  

To further investigate the optimal configurations of the ANN, the electric power loads of the  

rest of the months throughout the year was predicted, with results shown in Table 18. The 

statistics are the average values of 10 runs, which were conducted to avoid fluctuation in the 

          
Configuration/Statistics RMSE CV (%) MAPE (%) R-Squared 
3 layers, 25 neurons 20.748 8.050 5.463 0.850 
3 layers, 20 neurons 20.881 8.101 5.461 0.848 
3 layers, 15 neurons 20.586 7.987 5.413 0.852 
3 layers, 10 neurons 21.144 8.203 5.621 0.844 
2 layers, 10 neurons 21.018 8.155 5.508 0.846 
1 layer, 10 neurons 20.582 7.986 5.672 0.853 
1 layer, 5 neurons 25.357 9.838 7.007 0.775 

     

Table 17. Comparison of different ANN hidden layers and neurons configurations 
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performance. After conducting preliminary tests, the configuration of the ANN is chosen as: 

three layers, 10 neurons, ReLU/sigmoid activation functions, and Adam optimizer. Such 

configuration ensures more stable results for prediction with satisfactory accuracy and relatively 

less computational burden. Configurations with less layers and numbers demonstrate better 

performance statistics, as presented in Table 17, but enormous drops in prediction accuracy 

occur occasionally. After removing outliers and holidays, which is done similarly for the TBATS 

method above, the results were recalculated as shown in Table 19. Prediction accuracy 

Table 18. Performance evaluation measures of ANN forecast of consecutive months 
          
Trained/Predicted Month RMSE CV (%) MAPE (%) R-Squared 
Jan/Feb 21.144 8.203 5.621 0.844 
Feb/Mar 23.248 8.972 6.181 0.801 
Mar/Apr 21.797 8.355 6.161 0.836 
Apr/May 23.198 8.910 6.358 0.812 
May/Jun 22.869 9.005 6.976 0.808 
Jun/Jul 30.505 10.993 7.857 0.742 
Jul/Aug 24.552 8.669 6.198 0.812 
Aug/Sep 23.033 8.297 5.688 0.835 
Sep/Oct 19.481 6.911 4.580 0.899 
Oct/Nov 29.056 10.521 6.564 0.746 
Nov/Dec 30.678 11.404 7.471 0.613 
Mean 24.506 9.113 6.332 0.795 

          
Trained/Predicted Month RMSE CV (%) MAPE (%) R-Squared 
Jan/Feb 21.144 8.203 5.621 0.844 
Feb/Mar 23.248 8.972 6.181 0.801 
Mar/Apr 21.106 8.084 6.000 0.845 
Apr/May 23.198 8.910 6.358 0.812 
May/Jun 22.869 9.005 6.976 0.808 
Jun/Jul 30.505 10.993 7.857 0.742 
Jul/Aug 24.552 8.669 6.198 0.812 
Aug/Sep 23.033 8.297 5.688 0.835 
Sep/Oct 19.481 6.911 4.580 0.899 
Oct/Nov 23.636 8.443 5.508 0.842 
Nov/Dec 23.953 8.715 6.148 0.803 
Mean 23.339 8.655 6.101 0.822 

Table 19. Performance evaluation measures of ANN forecast of consecutive months (without 
outliers and holidays) 
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significantly increases for April, November, and December. Comparing with results from the 

TBATS method using the same strategy, that is, trained with one month and predict the 

following month, the ANN model achieves better accuracy in most of the months throughout the 

year. ANN is approximately 5~20% more accurate than TBATS evaluating from RMSE, CV, 

MAPE, and R2 in terms of the average of all the months throughout the year.  

In addition, training with multiple months of data was conducted in a similar way performed 

above for the TBATS method. October was selected as the sample month for examination. Up to 

nine preceding months of data was used while the number of neurons ranged from 10 to 25. In 

contrast to the TBATS method, prediction accuracy decreases as more historical data is 

introduced to the model, as Table 20 presents. Evaluating with the performance metrics, the 

            

Trained/Predicted 
Month 

Configuration 
(layer-neuron) RMSE CV (%) MAPE (%) R-Squared 

Jan~Sep/Oct 3-10 29.845 10.588 8.179 0.764 
Jan~Sep/Oct 3-15 28.900 10.252 7.607 0.779 
Jan~Sep/Oct 3-20 28.611 10.150 7.436 0.783 
Jan~Sep/Oct 3-25 28.858 10.237 7.513 0.779 
Mar~Sep/Oct 3-10 27.433 9.732 7.127 0.801 
Mar~Sep/Oct 3-15 25.988 9.219 6.478 0.821 
Mar~Sep/Oct 3-20 26.590 9.433 6.652 0.813 
Mar~Sep/Oct 3-25 27.722 9.834 6.851 0.797 
May~Sep/Oct 3-10 24.364 8.643 6.085 0.842 
May~Sep/Oct 3-15 24.037 8.527 5.927 0.847 
May~Sep/Oct 3-20 25.331 8.986 6.167 0.830 
May~Sep/Oct 3-25 25.345 8.991 6.218 0.830 
Jul~Sep/Oct 3-10 20.100 7.130 4.800 0.893 
Jul~Sep/Oct 3-15 20.100 7.130 4.800 0.893 
Jul~Sep/Oct 3-20 21.560 7.648 5.133 0.877 
Jul~Sep/Oct 3-25 21.841 7.748 5.258 0.874 
Sep/Oct 3-10 19.868 7.048 4.660 0.895 
Sep/Oct 3-15 20.007 7.097 4.738 0.894 
Sep/Oct 3-20 20.341 7.216 4.715 0.890 
Sep/Oct 3-25 20.692 7.341 4.915 0.887 

Table 20. Performance evaluation measures of ANN forecast of multiple months  
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accuracy difference between the best and worst performing configuration ranges from roughly 

15% to 40%. Training with just one preceding month of data leads to best prediction 

performance, using the configuration of three layer and ten neurons.  
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CHAPTER 5. METHODS COMPARISON 

To investigate whether the model has properly captured the information in the data, the 

residuals of all three forecasting methods are checked. Residuals are the difference between the 

observations and the corresponding predicted values. The residuals yielded by a good forecasting 

method will have the following properties [38]:  

1. The residuals are uncorrelated. If there are correlations between residuals, some 

information in the residuals is left unused for the forecasting model. 

2. The residuals have zero mean. If the mean is nonzero, the forecast is biased.  

It is also beneficial for the residuals to have additional properties given as follows: 

1. The residuals have constant variance 

2. The residuals have normal distribution 

Figure 19. (a) Residuals from ARIMA forecasting, (b) histogram of residuals from ARIMA 
forecasting, (c) ACF plot of residuals from ARIMA forecasting 
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The residual diagnostics of all three forecasting methods for February are presented in Figure 

19, Figure 20 and Figure 21. As the figure indicates, the residuals from ARIMA forecasting does 

not have zero mean. The mean is -15.892, which is relatively far from zero. In addition, the 

variance of the residuals has several drastic changes, which are caused by the incapability of 

ARIMA to capture hourly power pattern during weekends. In contrast, residuals from TBATS 

and ANN forecasting appear to have zero mean and constant variance according to the figures 

except a few outliers around February 18th, where a sudden drop in power occurs. The means of 

the residuals are 3.169 and 0.908 for TBATS and ANN method respectively, which are virtually 

zero. From histograms of the residuals, it can be seen that residuals from ARIMA forecasting are 

not normally distributed while the distribution of residuals from the other two methods are close 

to normal distribution. The Autocorrelation Function (ACF) plots are used to inspect whether the 

residuals are correlated. It can be seen that correlation between residuals exist for all three 

Figure 20. (a) Residuals from TBATS forecasting, (b) histogram of residuals from TBATS 
forecasting, (c) ACF plot of residuals from TBATS forecasting 
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forecasting methods since a large portion of the autocorrelation coefficients fall outside of the 

confidence band. In other words, the prediction models have not perfectly captured the 

information in the data. Weather condition parameters could serve to assist load forecasting due 

to their correlations with energy consumption, but they had been excluded in previous analysis. 

Operation and activity schedules of BioSci3 building may be helpful and their effectiveness can 

be examined in future study. 

The hourly electric power prediction of each methods for February is taken as an example for 

analysis as shown in Figure 22. ARIMA fails to capture the load pattern in weekends while 

TBATS and ANN successfully recognize the pattern, although forecasting errors are still 

relatively large during weekends. It is worth mentioning that spikes in power during noon are 

rarely captured by the prediction models. Comparing the average evaluation metrics of TBATS 

Figure 21. (a) Residuals from ANN forecasting, (b) histogram of residuals from ANN 
forecasting, (c) ACF plot of residuals from ANN forecasting 
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and ANN shown in Table 9 and Table 19, the ANN model is approximately 5~20% more 

accurate than TBATS model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Comparison between real and predicted hourly electric power in February 2019 
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CHAPTER 6. CONCLUSION 

A case study was developed for an actual LEED-certified building, BioSci3, on UCI campus 

to investigate its real-time energy consumption and prediction using various data-driven 

methods. BioSci3 is a multi-purpose laboratory with lecture halls and the average power 

consumption is roughly 300 kW throughout the year of 2019. Various energy saving measures, 

including occupancy-sensor lighting and demand-controlled ventilation, have been applied to 

BioSci3, for which it has earned a LEED Platinum certification. Hourly electric power demand 

data of the building in 2019 was obtained through a web-based monitoring system using existing 

meters for forecasting in this study. A total of 8,760 data points was used, representing hourly 

electric power loads in 2019. To compare various methods, RMSE, CV, MAPE and R2 were 

calculated for performance evaluation. AIC was introduced as a guideline to determine the 

optimal model for certain forecasting methods. 

For polynomial regression, least squares estimation was utilized to determine the coefficients 

of the fitted polynomial function based on MATLAB. Data of January was selected for the 

method and data of each day was fitted separately because polynomial regression cannot handle 

a full month of data. In total, 31 days of data was fitted and stitched together for a whole month 

of fitted values. The polynomial obtained through the data fitting of each day was then tested for 

forecasting the power of the next day. Because of the large order of the polynomial, the values 

exponentially increase and hence forecasting was not feasible. Using similar approach, data of a 

week was fitted, and forecasting was attempted. The attempt failed due to the same reason of 

daily data fitting that the order of the polynomial caused the forecasted values with increased 

inputs blow up. 
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ARIMA is a widely used approach for time series prediction. It makes predictions based 

solely on past values. An automatic algorithm of Python was utilized to decide the optimal model 

for the data. The determined model for forecasting is denoted as SARIMA(3,0,0)(4,1,3)ଶସ, 

meaning that the model has three autoregressive terms, four seasonal autoregressive terms, one 

seasonal differencing, and three seasonal moving average terms with a seasonality period of 24. 

January’s data was fed to the model to forecast power in February. The forecasting accuracy 

yielded by the SARIMA model is unsatisfactory because ARIMA method cannot handle multiple 

seasonalities in the hourly power data.  

To address the problem of ARIMA, TBATS is introduced. Similar to ARIMA, TBATS does 

not require exogenous parameters to forecast. The TBATS model was obtained through a Python 

library package that realizes the algorithm for the model determination process described in the 

particular paper. The definitive model for predicting power in February with January’s data is 

TBATS(0, 𝑁𝐴, 2,4, {24,8}, {168,6}). The forecasting accuracy of the TBATS model is relatively 

satisfactory as it addressed the problem of ARIMA by properly capturing the load patterns of 

weekends. The data of the rest of the months were then predicted using the preceding month’s 

data. After eliminating outliers and holidays, the average RMSE, CV, MAPE, and R2 were found 

to be 25.295, 9.384%, 7.417%, and 0.789, respectively. Up to nine preceding months of data was 

used to predict the power of three different months to investigate the performance. It was found 

that prediction accuracy was substantially improved by 5~20% depending on evaluation metrics 

when multiple months of data were used. However, extensive examination cannot be conducted 

due to limited access to data.  

In comparison, backpropagation ANN was employed to forecast electric loads. A spectrum 

of candidates was introduced as the inputs of the ANN. To identify effective inputs, each input 
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candidate was examined by fitting January power data and comparing performance metrics. A 

temporary ANN configuration was used for testing purpose. In the end, five inputs were 

considered essential for the network: total hour, hour, day of week, weekday/weekend, and 

previous week same hour power. In a similar way, the activation functions of the network were 

found to be ReLU/sigmoid combination, as well as the number of hidden layers and neurons, 

which are three and 10, respectively. Adam was chosen as the optimizer due to its capability of 

fast convergence. The hourly electric load in each month in 2019 starting from February was 

forecasted by this ANN with one preceding month’s data, showing satisfactory prediction. The 

average RMSE, CV, MAPE and R2 are 23.339, 8.655, 6.101, and 0.822, respectively with 

outliers and holidays removed. In addition, training with multiple months’ data was introduced 

and tested using October data as the sample. In contrast to the TBATS method, prediction with 

multiple months’ data worsened the accuracy and best performance was achieved by only 

training with data of only one preceding month. ANN can also address holidays in the data by 

introducing a holiday indicator input, which cannot be achieved by TBATS.  

Residuals were inspected for all the forecasting methods through the diagnostics figures 

using prediction for February power as the sample. The residuals have a nonzero mean and 

changing variance for ARIMA method while the other two have approximately zero mean and 

constant variance. The residuals in the ARIMA forecast are not normally distributed while those 

from TBATS and ANN forecast are nearly normal distribution. The residuals in all three 

methods appear to have correlations as implied by the ACF plots, which suggests that the models 

have not comprehensively captured the information in the data. 

Overall, the ANN’s forecasting accuracy is found to be about 5~20% better than TBATS’ 

when only using one month’s data for training. They both satisfy and tremendously exceed the 
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requirement by ASHRAE, i.e. lower than 30% CV for hourly granularity. For future study, 

operation and activity schedules can be introduced as ANN inputs to further improve its 

forecasting accuracy.  
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