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ABSTRACT OF THE DISSERTATION  
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Dr. Matthew J. Barth, Chairperson 

 

 

Transportation-related fossil fuel consumption and greenhouse gas emissions have received 

increasing public concern in recent years. To reduce energy consumption and mitigate the 

environmental impact of transportation activities, this dissertation research work aims at 

providing technical solutions by taking advantage of recent technology development in vehicle 

automation, vehicle connectivity and vehicle electrification.  

More specifically, a driver-vehicle-infrastructure(DVI) cooperative framework for energy 

efficient driving of plug-in electric vehicles (PEVs) is proposed in this dissertation.  Within this 

framework, this research improves energy efficiency of PEVs in the following ways: vehicle 

dynamics optimization and powertrain optimization, as well as co-optimization between them.  

For vehicle dynamics optimization, a connected ecodriving system has been designed for PEVs 

to optimize their speed profiles when travelling through signalized intersections, by receiving 

real-time signal phase and timing information obtained through wireless communications. The 

calculated optimal speed trajectory (in terms of energy efficiency) is provided to the driver 

through an in-vehicle display in real-time.  The performance of this connected ecodriving 

system is implemented and evaluated at different automation levels: human driving without 

considering the driver error, human driving considering the driver error, and partial automated 

(longitudinal) driving. Numerical analysis with real-world driving data shows that there is 12%, 
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14% and 21% potential energy savings that can be achieved by these proposed strategies 

respectively.  

For powertrain operation optimization, an evolutionary algorithm based power-split control 

system for plug-in hybrid electric vehicle has been designed and evaluated with real-world 

traffic data. The designed model is used to optimally control the power-split between two 

different power sources (i.e., battery and gas tank) by considering various traffic conditions to 

achieve the minimum fuel consumption when satisfying total power-demand. In addition, a 

reinforcement-learning based autonomous learning strategy is also proposed for learning the 

optimal power-split decision based on historical driving data. Approximately 14% and 12% 

energy savings are identified by these two different powertrain operation strategies 

respectively. 

For co-optimization of the vehicle dynamics and powertrain optimization, a bi-level 

optimization strategy has been designed and tested with real-world driving data to achieve 

augmented energy benefits from the compound effect of vehicle dynamics and powertrain 

operations optimization. An average of 29% improvement of fuel efficiency for the tested 

PHEV is identified by combining the vehicle dynamics and powertrain operation optimization.  

The main contribution of this dissertation research is the design and validation of a DVI 

framework for PEV energy efficient driving. To the best of our knowledge, this is one of the 

first efforts to systematically investigate the potential energy benefits of both vehicle dynamics 

and powertrain operation optimization as well as its compound effect with real-world driving 

data for PEVs.   The designed connected ecodriving system and power-split control model are 

quite promising in improving PEV energy efficiency. 
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1 Introduction 

This chapter provides an overview of the proposed dissertation research work, in terms of the 

motivation, objectives, contributions and organization of this dissertation.  

1.1 Motivation 

1.1.1 Transportation related energy consumption and GHG emission  

In recent years, a significant amount of transportation-related fossil fuel consumption and 

greenhouse gas emissions have created an increasing amount of public concern. Tailpipe 

emissions from vehicles are the single largest human-made source of carbon dioxide, nitrogen 

oxides, and methane in transportation related activities. Vehicles that are stationary, idling, and 

traveling in a stop-and-go pattern due to congestion in urban areas emit more pollutant 

emissions and greenhouse gases (GHGs) than those traveling in free-flow conditions. The 

resulted air quality degradation is very serious in some major cities of U.S. as well as other 

developing countries (e.g., China). For example, Los Angeles on the west coast of U.S. has a 

significant amount of transportation-based emissions, in part due to the large sea ports and 

freight movement (see Fig. 1-1a). Beijing, the capital of China, also suffers from severe air 

quality problems, in part due to its high population and very serious traffic congestion (see Fig. 

1-2b). 

 

a. Smoggy morning downtown Los Angeles (2010)           b.  Smoggy morning downtown Beijing (2015) 

Figure 1-1 Air pollution in major citeis in U.S. and China 
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In addition to improving air quality, reducing transportation-related energy consumption and 

greenhouse gas (GHG) emissions has been a common goal of public agencies and research 

institutes for many years. In 2014, the total energy consumed by the transportation sector in the 

United States was as high as 23.70 Quadrillion BTU which is 28% share of the total energy [1] 

(see Fig. 1-2). The U.S. Environmental Protection Agency (EPA) reported that nearly 26% of 

GHG emissions resulted from fossil fuel combustion for transportation activities in 2014 [2] 

(see Fig. 1-3 and 1-4).  

  

 

Figure 1-2 U.S. Energy Consumption by Economic Sector 2014  

(source: http://www.eia.gov/forecasts/aeo/) 

 

 

Figure 1-3,Total U.S. Greenhouse Gas Emissions by Economic Sectors in 2014 

(Source: US EPA: www.epa.gov) 

http://www.eia.gov/forecasts/aeo/
http://www.epa.gov/
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Figure 1-4,U.S. Greenhouse Gas Emissions by Economic Sector, 1990-2014  

(Source: US EPA: www.epa.gov) 

 

All together, the transportation-related impacts on air quality, climate change, and energy 

consumption have motivated researchers from different technical backgrounds to develop 

different ways to reduce vehicle emissions and energy consumption. In recent years, with the 

rapid development of vehicle related technologies, such as connected vehicle (CV) technology 

as well as automation technology, there is now a common vision for future vehicles that will 

be automated, connected, electrified and shared. As can be seen in Fig 1-5, for each of those 

features, multiple benefits can be identified (as listed in the figure) in terms of safety, mobility 

and environmental impact. However, reducing energy consumption and emissions are the only 

benefits can be achieved in all four of these features.  This is explained in more detail below: 

http://www.epa.gov/
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Figure 1-5 Key features of future vehicles. 

 

1) Automated: Vehicle automation including automated vehicle dynamics control (i.e., 

adaptive cruise control (ACC)) and automated powertrain operations (i.e., power-split 

control for PHEVs), can be used to improve vehicle energy efficiency and reduce 

emissions. For example, eco-friendly adaptive cruise control (Eco-ACC) is designed to 

automatically control the vehicle speed profile when following a preceding vehicle 

smoothly to reduce unnecessary accelerations so that energy efficiency can be improved. 

In addition, designing future powertrain systems will also allow for higher energy 

efficiency, which is especially important for plug-in hybrid electric vehicles (PHEVs). In 

comparison to conventional hybrid electric vehicles (HEVs), the energy management 

system (EMS) for PHEVs are more complex due to their extended electric-only propulsion 

and battery chargeability via external electric power sources. The power-split ratio between 

these two different energy sources can be optimized according to different traffic conditions 

so that the fuel consumption can be minimized. Numerous efforts have been made in 

developing a variety of EMS for PHEVs [3, 4].  

 

2) Connected: Connected vehicle (CV) technology has recently emerged with the 

development of wireless communications that has brought a new revolution for the modern 
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intelligent transportation system. In a CV environment, all the vehicles in the transportation 

network can be connected by wireless communications (vehicle-to-vehicle or V2V), as well 

as connectivity between the vehicle and road infrastructure (vehicle-to-infrastructure or 

V2I or I2V). These types of communications enables unlimited potential applications. For 

example, connected ecodriving technology is designed in a CV environment to encourage 

more energy efficient driving, such as reducing traffic congestion and unnecessary stop-

and-go maneuvers at signalized intersections. It is reported that nearly 7 billion hours of 

delay and more than 3 billion gallons of fuel were wasted in 2015 due to traffic congestion 

in U.S. [5], a significant portion of which resulted from getting stuck at traffic signals. 

Therefore, a specific type of connected ecodriving technology called Eco-approach and 

departure (EAD) system [6] was developed to help vehicles travel through the signalized 

intersection smoothly and to avoid unnecessary idling and acceleration/deceleration with 

the knowledge of signal phase and timing (SPaT) information.  

 

3) Electrified: In recent years, researchers have been trying to develop and use cleaner 

alternative energy sources for vehicles to replace fossil fuels, such as electricity from 

renewable resources (e.g., solar, wind) and hydrogen. With these alternative fuels, many 

new powertrain types can be developed, such as, plug-in electric vehicles (PEVs) and fuel 

cell vehicles. Transportation electrification is one of the more promising ways to reduce 

transportation related fossil fuel consumption and emissions; however, the massive 

adoption of PEVs is currently impeded by the limited charging infrastructure and the 

perceived limited driving range per charge (i.e., the so-called “range anxiety”) [7]. 

Groundbreaking advances have been witnessed in powertrain electrification in the past 

decade, such as the development of hybrid electric vehicles (HEVs) and battery electric 

vehicles (BEVs). HEVs are able to achieve higher fuel efficiency than internal combustion 
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engine (ICE)-powered vehicles by taking advantage of electric energy. BEVs eliminate the 

need for fossil fuels by using only electricity.  

4) Shared: Shared Vehicle Systems have emerged in the last two decades provide a variety of 

shared mobility options. Shared vehicle systems have had this tremendous growth due to 

advances in electronic and wireless technologies that made sharing assets easier and more 

efficient. Automobile manufacturers, rental car companies, venture-backed startups and 

city-sponsored programs have sprung up with new mobility solutions ranging from large 

physical networks to mobile applications designed to alter routes, fill empty seats and 

combine fare media and real-time arrival and departure information. The main benefits of 

shared vehicle systems is to reduce vehicle miles travelled (VMT), thereby reducing vehicle 

energy consumption and tailpipe emissions.   

In this dissertation, the main focus has been combining three of these four features: automation, 

connectivity, and electrification. Specifically, this dissertation focuses on a connected and 

automated ecodriving system is developed and evaluated for plug-in electric vehicles. The goal 

is to maximize the energy efficiency of PEVs by taking advantage of vehicle automaton and 

connectivity, as illustrated in Figure 1-6.  Therefore, this dissertation research work only 

involves the first 3 features:   

 

Figure 1-6 The three features involved in this dissertation research. 
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1.1.2 Increasing PEV Popularity and Penetration Rate 

As previously described, the adoption of electric-drive vehicles has the potential to play a 

significant role in addressing both energy and environmental impacts brought by on by today’s 

transportation systems. Using electricity as a transportation fuel has a number of benefits. 

Electricity has a strong potential for GHG reduction, as long as it is generated from renewable 

sources such as solar and wind. Electric vehicles themselves have zero direct emissions, 

although generating the electricity to power the vehicle often results in indirect emissions at the 

power plants. If electricity is generated from the current U.S. average generation mix, EVs can 

reduce GHG emissions by about 33%, compared to today’s ICE powered vehicles [8]. If we 

assume 56% light-duty vehicle (LDV) penetration by 2050, this could provide a total reduction 

in transportation emissions of 26–30% [8]. 

 

The huge potential benefits of EVs have already attracted significant interest and investment in 

EV technology. Since late 2010, more than 20 automakers have introduced BEVs or PHEVs. 

Within the United States, the government has allocated considerable stimulus funding to 

promote the use of alternative fuels [9]. The American Recovery and Reinvestment Act 

(ARRA) of 2009 provided over $2 billion for electric vehicle and battery technologies, geared 

toward achieving a goal of one million electric vehicles on U.S. roads by 2018 [10]. Many 

states also have committed themselves to promoting EVs. For example, California has taken a 

number of legislative and regulatory steps to promote electric vehicle deployment and adoption, 

such as the Zero Emission Vehicle and Low Carbon Fuel Standard regulatory programs and 

rebates for purchasing electric vehicles [11].  With this momentum, it is not difficult to see that 

in the near future EVs may gain significant market penetration, particularly in densely 

populated urban areas with systemic air quality problems.  
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1.1.3 Increasing Vehicle Automation and Vehicle Connectivity  

It is possible to improve efficiency of electric vehicles by introducing vehicle connectivity and 

automation. The majority of current EV research is focused on how to overcome technical 

barriers such as battery technology limitations [12] and charging infrastructure problems [13]. 

However, very little research has been focused on improving the efficiency of the EV driving 

through intelligent transportation and intelligent vehicle technologies.  

 

In recently years, interest in vehicle automation is at an all-time high, with many recent real-

world demonstrations from a variety of companies and research groups. The key fundamental 

building blocks for automating vehicles have been in development for many years, making 

vehicle automation a near-term reality. Also in recent years, there have been significant efforts 

to make vehicles more energy efficient and less polluting, through the development of advanced 

vehicle control system and powertrains operations. However, most of the relevant studies are 

focused on ICE vehicles recently. Only a few have realized that vehicle automation is highly 

amenable to electric-drive vehicles: greater synergies with automation are possible in terms of 

how automation can assist with providing electric energy to the vehicles [14]. Furthermore, the 

on-board energy management strategies of electric-drive vehicles (e.g., plug-in hybrid electric 

vehicles) can be specifically designed to take advantage of different automation regimes, 

including freeway driving, driving through automated arterial roadway infrastructure, and 

routing to known destinations [15]. It is envisioned that vehicle electrification and vehicle 

automation will go hand-in-hand in future developments. 

In addition, connected vehicle technology enables the vehicle-to-vehicle and vehicle-to-

infrastructure wireless communications, so that vehicle and infrastructure can be considered 

and modeled holistically in one system to achieve additional augmented efficiency 

improvement of EVs. Many recent research have proved that connected vehicle technologies 

are able to significantly improve the fuel efficiency of ICE vehicle by sharing the information 
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between vehicles and road infrastructure. It is also envisioned that vehicle connectivity will be 

capable of further improving EV efficiency through the combination of vehicle automation and 

connectivity, by considering and modeling the unique characteristics of EVs that different from 

ICE vehicles. 

1.1.4 Co-optimizations of Vehicle Dynamics and Powertrain Operations  

It is also important to note that the recently connected and automated vehicle applications are 

mostly focused on the vehicle dynamics optimization which aims at improving the vehicle 

efficiency by only controlling the vehicle as whole. However, for some PEVs, such as plug-in 

hybrid electric vehicles, it is also possible to improve the efficiency though the optimal 

powertrain operations. Therefore, it is quite promising to augment the efficiency improvement 

by developing an integrated vehicle/powertrain eco-operation system for plug-in hybrid electric 

vehicles through co-optimization of vehicle dynamic and powertrain (VD&PT) controls by 

taking advantage of vehicle connectivity and automation technologies as well as advanced 

machine learning techniques.  

 

Inspired and motivated by the above mentioned problems and possible technical solutions, in 

this proposed dissertation research, a holistic driver-vehicle-infrastructure cooperative system 

is designed and tested for PEVs to improve vehicle energy efficiency and reduce GHG 

emission. The proposed system has the following characteristics: 

a. Integrated: the designed system integrates and models all the major components in the 

transportation system that impact energy consumption, including the human driver, the 

vehicles, and the roadway infrastructure.  

b. Cooperative: by taking advantage of connected vehicle technology, human driver, 

vehicles and road infrastructure are connected with each other and also cooperate with 

each other to maximize the energy efficiency.  
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c. Optimal: the control of vehicle dynamics and powertrain operation are optimized 

individually and also co-optimized together. 

d. Intelligent: machine learning and deep learning techniques are used to learn the optimal 

control strategies from the historical driving behavior so that the designed system is 

able to adapt to continuously changing driving conditions.  

 

1.2 Objectives 

The goal of this dissertation study is to design, model, test, and evaluate a driver-vehicle-

infrastructure cooperative system for energy efficient driving of PEVs, which integrates a 

human driver, the vehicle, its powertrain, and the road infrastructure, consisting of different 

functional components to achieve the maximum energy efficiency when driving in real-world 

traffic conditions.  To achieve this goal, there are multiple sub-objectives that are defined 

according to different functional components; they also corresponding to different chapters in 

this dissertation.  

 

1.2.1 Objective 1: Design of Overall System Framework  

A system framework for connected ecodriving of PEVs that includes different function blocks 

has been designed. The proposed system framework defines the functional blocks (e.g., vehicle 

dynamics and powertrain operations optimization) and the relationships between different 

blocks as well as the information flow from and into each component. The designed system 

framework encompasses the human driver, vehicle, powertrain and road infrastructure to form 

a cooperative system that aims at improving PEV driving efficiency and reducing energy 

consumption. 
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1.2.2 Objective 2: Design of a Power-split Control System for PHEV 

This subcomponent is designed to optimize the powertrain operations of a PHEV. More 

specifically, the designed model is able to optimally control the power-split between two 

different power sources: an electric motor and an ICE engine for a parallel hybrid electric 

powertrain. The designed model is able to take into consideration of various traffic conditions 

to achieve the minimum fuel consumption when satisfying total power-demand. In this model, 

we assume that the electricity (possibly from renewable sources such as wind and solar) is much 

cleaner and cheaper than fossil fuel and therefore the it only aims at reducing the fuel 

consumption for a PHEV. 

 

1.2.3 Objective 3: Design of a Connected Ecodriving System for EVs 

This component is designed to optimize the vehicle dynamics, more specifically, the velocity 

when PEV travelling through the signalized intersections, by being given the real-time signal 

phase and timing information through wireless communications. The calculated optimal speed 

is advised to the driver through an in-vehicle display in real-time.  Two different versions of 

this driving assistance system have been designed, one that does not consider the driver error 

when following the advised speed, and the other one that does consider the driver error. The 

proposed system has been designed, prototyped and field-tested in real-world driving.  

 

1.2.4 Objective 4: Design of an EV Energy Consumption Estimation Model  

One of the core functional blocks for the ecorouting system that helps the driver choose the 

most energy efficient route to the destination, is the roadway link-level energy consumption 

estimation model. This subcomponent is designed to estimate the link-based energy 
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consumption for EVs by considering the unique characteristics of EV that are different ICE 

vehicles such as the regenerative braking power collection.  

 

1.2.5 Objective 5: Design of a Co-optimization Framework 

After the previous objectives 2 and 3 are achieved for powertrain optimization and vehicle 

dynamics optimization, a model for co-optimization of vehicle dynamics and powertrain 

operations has been designed and tested with real-world driving data. The augmented energy 

benefits from the compound effect of vehicle dynamics optimization and powertrain operations 

optimization has been analyzed numerically. 

 

1.2.6 Objective 6: Design of an Autonomous Learning System 

In objectives 2, 3 and 4, all the energy efficiency improvement for PEVs result from the fact 

the optimization utilizes predicted future driving conditions. In some situations, the predicted 

future driving conditions are not reliable or even not available. Hence, a machine learning based 

optimal power-split control system has been designed to learn the optimal control strategy 

autonomously with its own historical driving behavior record. The designed system does not 

rely on the expected driving conditions but only uses recorded historical driving behaviors.  

 

1.3 Contributions of the Dissertation Research 

This primary goal of this dissertation is to develop and evaluate an advanced connected 

ecodriving assistance system for PEVs that incorporates the human driver, vehicle, powertrain 

and road infrastructure in a holistic framework. During the 3 years and 3 months of the doctoral 

study and research period, the following procedures were carried out to achieve the goal of this 

dissertation research work. 
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Figure 1-7 The flowchart of research steps 

This dissertation research created several key contributions to the areas of intelligent 

transportation systems, connected and automated vehicle technologies, and advanced driving 

assistance systems in terms of methodology, performance evaluation and numerical analysis.  

These contributions correspond to the defined different objectives and are listed as follows: 

 A novel driver-vehicle-infrastructure cooperative framework for PEV energy efficient 

driving considering PEV characteristics is proposed and implemented. Most of the 

existing technologies only focuses on vehicle and infrastructure side, no similar 

framework has been proposed for PEV energy efficient driving.  

 Three different versions of evolutionary algorithms based real-time power-split control 

of PHEVs were designed and tested with real-world driving data. The designed systems 

have been proven to be able to achieve 14% of fuel savings comparing the baseline 

control strategies. 
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 A connected ecodriving assistance system for EVs is proposed and evaluated with real-

world driving data at different automation levels (level 0 and level 1 or in-vehicle 

advising and automatic longitudinal control respectively). The energy benefits are 

analyzed comprehensively. A 12% and 22% of average energy savings are achieved by 

the level 0 and level 1 automation level in real-world driving. 

 This connected ecodriving assistance system also considers the human driver error 

when displaying the driving advice. The performance is validated by comparing to the 

real-world advising driving without considering human error. An additional 6% energy 

savings has been achieved compared to the connected Ecodriving system without 

considering the driver error. 

 A new mathematical formulation of the co-optimization of vehicle dynamics and 

powertrain operations has been defined. A bi-level optimization model was designed 

to obtain the near optima solution of the defined co-optimization problem. The 

proposed model has been tested on the real-world driving data with different 

technology combinations (i.e., different vehicle automaton and powertrain control 

strategies). A maximum of 29.38% average fuel efficiency improvement for the tested 

PHEV was identified with the combination of automatic longitudinal speed optimal 

control and online energy management system (i.e., online optimal power-split 

control). To the best of my knowledge, this is the first-of-its-kind model that aims at 

co-optimizing vehicle dynamics and powertrain operations together.  

 A novel reinforcement learning based energy management system has been designed 

and tested with real-world driving data. The designed model is capable of learning the 

optimal control strategy from historical driving data, rather than relying on the 

predicted future driving conditions. About 12% of fuel savings is achieved after the 

model is well trained.  
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1.4 Organization of Dissertation   

The organization of this dissertation is provide in the following figure: 

 

Figure 1-8 Organization of this dissertation 
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2 Background & Literature Review 

This chapter includes all the relevant background knowledge and literature review. The major 

topics are environmental ITS, connected and automated vehicles (CAV) and connected 

ecodriving.  The relation between these concepts are depicted in the following Fig.2-1.  

 

Figure 2-1 Areas of literature review 

 

2.1 Environmental Intelligent Transportation Systems (Eco-ITS) 

As reported in [65], Intelligent Transportation Systems (ITS) has been significantly improved 

in recent years, with the application of modern control, communications, and information 

technology to vehicles, roadway infrastructure, and traffic information systems. In the past, the 

primary objectives of ITS have been focused primarily on improving safety and increasing 

mobility. However, recently, ITS technology is now a popular way to reduce transportation-

related environmental impacts, which includes pollutant emissions that lead to poor air quality, 

as well as energy consumption and greenhouse gas (GHG) emissions.  
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As described in the U.S. National Intelligent Transportation System Architecture [17]. In 

general, ITS can be categorized into three major target areas: Vehicle Systems, Traffic 

Management Systems, and Travel Information Systems. We briefly introduce these general 

areas below, describing how they potentially can reduce GHG emissions: 

 

2.1.1 Vehicle Onboard Systems 

The onboard vehicle system is now using modern control systems, faster on-board processors, 

and wireless communications to provide features that greatly improve their performance and 

safety. Examples of emerging vehicle systems include: Longitudinal Collision Avoidance 

Systems, which are designed to monitor headways between vehicles, and by providing feedback 

to the vehicle’s braking system, collisions can be reduced. Lateral Collision Avoidance 

Systems are being designed to avoid collisions that occur during lane changes, merges, or any 

kind of turning movement. Computer vision technology and other sensors coupled with 

wireless communications are being deployed to provide lane departure warnings and to warn 

drivers of pending lateral collisions. The majority of these ITS-related vehicle systems are 

primarily focused on safety, resulting in a reduction of the number of accidents that occur on 

our roadways. But actually this should result in a significant GHG emissions benefit due to the 

fact that the reduction of uncessary stop-and-go behavior can significantly reduce vehicle 

energy consumption [18].  

 

2.1.2 Traffic Management Systems 

In the past several decades, the total amount of driving (as measured in vehicle-kilometers-

traveled or VKT) has grown significantly, contributing to severe roadway congestion in many 

urban areas. Building additional infrastructure to handle the increase in travel demand is not 

always possible. However, there are a number of ITS-based Traffic Management System 

solutions that can help mitigate congestion, two examples are: Traffic Monitoring Systems are 

improving with better sensor technology, more reliable communication channels, and more 
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advanced information processing capability. it is designed to transportation managers with real-

time traffic information that can be used for better traffic system management and for individual 

drivers choosing alternative routes, resulting in a reduction of congestion. Integrated Corridor 

Management techniques are designed to keep traffic flowing as smoothly as possible through 

the corridor, greatly reducing the amount of idling by applying cooperatively to both freeway 

networks (e.g., innovative ramp metering) and to signalized arterial networks (e.g., advanced 

signal timing algorithms). The general goal of traffic management is to take full advantage of 

capacities of existing roadway infrastructure, thus keeping traffic flowing smoothly which will 

have a large impact in reducing energy consumption and GHG emissions.  

 

2.1.3 Travel Information Systems 

To make things more convenient to drivers, a wide variety of information systems for travelers 

have recently evolved. Examples of this technology include: Route Guidance Systems is 

designed to use geographic and real-time traffic information and can select optimal routes in a 

roadway network from specific origins to specific destinations. These systems attempt to 

minimize some criteria, such as travel time, travel distance, or even GHG emissions. Geo-

Location Systems are typically coupled with route guidance systems to allow users to find 

specific locations, cutting down on excessive driving (e.g., searching for a gasoline filling 

station, open parking space, etc.). All of these different systems are also have a significant 

benefit in reducing GHG emissions.  

 

All of these ITS areas have the potential for indirectly reducing GHG emissions through 

improvements in safety, mobility, and driver convenience. In addition, a number of ITS 

research programs have emerged that have been specifically designed to minimize 

transportation GHG emissions. The remainder of this chapter describes several of these recent 

ITS programs that are targeting the energy and environmental impacts of transportation. 
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2.1.4 Recent Major Environmental ITS Research Programs World-wide 

 

In the last decade, the U.S. Department of Transportation (USDOT) has initiated a variety of 

environmentally-focused ITS research programs. Many of these are part of the Federal 

Highway Administration Exploratory Advanced Research program [19]. As an example in the 

ITS vehicle systems area, researchers at the University of California (UC) Berkeley have 

investigated both ACC and CACC and their impacts on mobility and the environment [20]. 

Furthermore, as an example in the area of traffic management systems, there is an on-going 

EAR project on Advanced Traffic Signal Control Algorithms, where several algorithms have 

been developed specifically for reducing energy use and emissions [21]. 

 

In addition to the EAR program, the USDOT has a major University Transportation Centers 

program (UTC, see [22], where university faculty, staff and students across the U.S. work on a 

number of advanced transportation research projects. There are now a number of UTCs that 

have a focus on sustainability, and several of those are investigating the environmental impacts 

of ITS [23] and [24] . Some example projects from these centers include examining Ecodriving 

techniques and freight signal priority for heavy-duty vehicles [25], and how variable speed 

limits can be used to reduce transportation energy consumption and improve vehicle mobility 

[26].  

 

As another major effort, the U.S. DOT has a long-term research program in connected vehicles. 

One of the foundational elements of the connected vehicle research effort in the environment 

area is the Applications for the Environment: Real-Time Information Synthesis (AERIS) 

program [27]. The overall AERIS program vision is to create “Cleaner Air through Smarter 

Transportation”. To meet the vision, the AERIS program studies how generation, capture and 



20 

 

analysis of vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and infrastructure-to-

vehicle (I2V) data, along with implementing important environmental applications, will reduce 

the environmental impacts of surface transportation system users and operators. Making up the 

key elements of the AERIS program are operational concepts and applications that have the 

potential to significantly reduce environmental impacts of surface transportation systems.  

 

Besides, there were several initial exploratory research projects carried out by a variety of 

researchers in the U.S. These projects investigated a number of new concepts across the 

different areas of ITS, which is listed in table 2-1: 

Table 2-1    Environmental ITS projects in US 

Type Projects  Leading organization reference 

Onboard System Eco-Drive application Virginia Tech [28] 

Assessment, Fusion, and Modeling of 

Commercial Vehicle Engine Control 

Calmar Telematics 

UC Riverside 

[29] 

Traffic 

Management 

System 

Eco-Speed Control Virginia Tech [30] 

Eco-Friendly Intelligent Transportation 

Systems (ECO-ITS) 

UC Riverside [31] 

Travel information  

system 

Lowest Fuel Consumption Route Guidance University at Buffalo [32] 

Eco-Traffic Signal 

Operations 

 

Eco-Approach and Departure at Signalized 

Intersections 

UC Riverside [33] 

Eco-Traffic Signal Timing UC Riverside [34] 

Eco-Traffic Signal Priority UC Riverside [34] 

Eco-speed control eco-speed harmonization and  UC Riverside [35] 

eco-cooperative adaptive cruise control UC Riverside [35] 

 

There are also many projects that are carried out in the EU, these projects investigated a 

number of new concepts across the different areas of ITS, as listed in table 2-2: 
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              Table 2-2 Environmental ITS projects in EU. 

Projects  Leading organization reference 

iMobility Forum WG4CEM [36] 

eCoMove EU [37] 

ECOSTAND joint EU - Japan - US task force [38] 

Compass4D EU [39] 

COSMO EU [40] 

ConCERTO EU [41] 

CARBOTRAF EU [42] 

AMITRAN EU [43] 

EcoGem EU [44] 

 

2.2 Connected & Automated Vehicles (CAV) 

In recent years, various connected and automated vehicle concepts have been described very 

frequently in research papers, government reports and media coverages. Terminology such as 

connected vehicles, autonomous vehicles, automated vehicles, and connected and automated 

vehicles have been used in different context. It is important to provide the detailed definitions 

and explanations on the difference between these concepts. Therefore, this chapter attempts to 

provide the formal definitions and intentional meaning of each concept. This is helpful for the 

readers to better understand the methodologies proposed in the following sections. 

 

2.2.1 Connected Vehicles  

The concept of connected vehicles—previously known as IntelliDrive or Vehicle Infrastructure 

Integration—uses advanced wireless communications, global positioning systems (GPS), 

vehicle sensors, and smart infrastructure to allow vehicles and the infrastructure to 

communicate wirelessly. In a connected vehicle environment, a vehicle equipped with the 
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technology can share its location, speed, heading, and many other data in real time with nearby 

equipped vehicles and the surrounding infrastructure via wireless communications.  

Connected vehicle is an emerging technology with the development of wireless communicate 

that brings a new revolution for the modern intelligent transportation system. With vehicle 

connectivity including vehicle-to-vehicle(V2V) communication as shown in Fig.2-2 and 

vehicle-to-infrastructure (V2I) communication as shown in Fig.2-3, unlimited potential 

applications are enabled to improve vehicle energy efficiency.  

  

 

Figure 2-2 Connected vehicle technology (V2V) 

 (sourece: https://www.sogeti.com/explore/reports/cybersecurity-for-the-connected-vehicle/) 
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Figure 2-3 Connected vehicle technology(V2I/I2V) 

(source: http://www.montana.edu/news/16120/msu-researchers-to-collaborate-on-automated-

and-connected-vehicle-research-opportunities) 

 

A good description of the classifications of connected vehicle applications can be found in the 

website of Connected Vehicle Reference Implementation Architecture (CVRIA): 

https://www.iteris.com/cvria/html/applications/applications.html) 

 

2.2.2 Automated/Autonomous Vehicles  

Autonomous Vehicle 

An autonomous car (driverless car [45], self-driving car [46], robotic car [47]) is a vehicle that 

is capable of sensing its environment and navigating without human input [48]. 

Autonomous vehicles can detect their surroundings using a variety of techniques such 

as radar, lidar, GPS, odometry, and computer vision (see Fig.2-4). Advanced control systems 

interpret sensory information to identify appropriate navigation paths, as well as obstacles and 

https://www.iteris.com/cvria/html/applications/applications.html
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-1
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-2
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-thrun2010toward-3
https://en.wikipedia.org/wiki/Vehicular_automation
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-4
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/GPS
https://en.wikipedia.org/wiki/Odometry
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Sensory_information
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relevant signage[49,50] . Autonomous cars have control systems that are capable of analyzing 

sensory data to distinguish between different cars on the road, which is very useful in planning 

a path to the desired destination[51]. 

 

Figure 2-4 Functional blocks of autonomous vehicle(source: 

https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/archive/2015/11/12/automotive-

ethernet). 

 

Autonomous vs. Automated 

Literally, automated means have the power of achieving automatic control and the 

autonomous means having the power for self-governance [52]. Autonomous vehicle is higher 

level of automated vehicle, which relies more on artificial intelligent for perceptual and 

cognitive recognition of driving environment.  In most of the medial coverage, Articles 

generally use the term "autonomous," instead of the term "automated".  "autonomous" was 

chosen because it is the term that is currently in more widespread use (and thus is more familiar 

to the general public). From technology perspective, the term “Automated” connotes control or 

operation by a machine, while "autonomous" connotes acting alone or independently. Most of 

the vehicle concepts (that we are currently aware of) have a person in the driver’s seat, utilize 

https://en.wikipedia.org/wiki/Road_signs
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-6
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-7
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/archive/2015/11/12/automotive-ethernet
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/archive/2015/11/12/automotive-ethernet
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-antsaklis1991introduction-8
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a communication connection to the Cloud or other vehicles, and do not independently select 

either destinations or routes for reaching them. Thus, the term "automated" might be more 

accurately describe these vehicle concepts[53]. 

 

Level of Vehicle Automation 

A classification system for vehicle automaton levels was published in 2014 by Society of 

Automotive Engineers (SAE), an automotive standardization body.[54] This classification 

system is based on the amount of driver intervention and attentiveness required, rather than the 

vehicle capabilities, although these are very closely related. SAE automated vehicle 

classifications (see Table 2-3): 

 Level 0: Automated system has no vehicle control, but may issue warnings. 

 Level 1: Driver must be ready to take control at any time. Automated system may include 

features such as Adaptive Cruise Control (ACC), Parking Assistance with automated 

steering, and Lane Keeping Assistance (LKA) Type II in any combination. 

 Level 2: The driver is obliged to detect objects and events and respond if the automated 

system fails to respond properly. The automated system executes accelerating, braking, and 

steering. The automated system can deactivate immediately upon takeover by the driver. 

 Level 3: Within known, limited environments (such as freeways), the driver can safely turn 

their attention away from driving tasks. 

 Level 4: The automated system can control the vehicle in all but a few environments such 

as severe weather. The driver must enable the automated system only when it is safe to do 

so. When enabled, driver attention is not required. 

 Level 5: Other than setting the destination and starting the system, no human intervention 

is required. The automatic system can drive to any location where it is legal to drive. 

 

https://en.wikipedia.org/wiki/Autonomous_car#cite_note-Woodetal-9
https://en.wikipedia.org/wiki/SAE_International
https://en.wikipedia.org/wiki/SAE_International
https://en.wikipedia.org/wiki/Autonomous_car#cite_note-10
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      Table 2-3  Vehicle automaton level by SAE[54] 

 

2.2.3 Connected and Automated Vehicle Applications 

As introduced in the previous section, autonomous vehicles are usually operating in isolation 

from other vehicles using onboard sensors (e.g., lidar and radar). The traffic operations with 

autonomous vehicles will not likely change much because mobility and environmental impacts 

will remain the same or could be even worse. For example, single vehicle based partial 

automaton such as the automated cruise control (ACC) has been shown to have negative traffic 

mobility impacts.  However, when autonomous vehicle enabled with connectivity, connected 

and automated vehicles (CAVs) are built to leverages compound benefits from vehicle 

automaton and vehicle connectivity (see Fig.2-5).  Traffic operations with CAVs will have an 

improved safety, mobility and environmental impacts.   
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Figure 2-5 The relationship between autonomous vehicle, automated vehicle and connected& 

automated vehicles (source: http://slideplayer.com/slide/4589633/) 

 

2.3 Connected Ecodriving Technology 

Some CAV application are called connected Ecodriving applications, which provides 

customized real-time driving advice to drivers so that they can adjust their driving behavior to 

save fuel and reduce emissions. Ecodriving advice includes recommended driving speeds, 

optimal acceleration, and optimal deceleration profiles based on prevailing traffic conditions, 

interactions with nearby vehicles, and upcoming road grades. The application also provides 

feedback to drivers on their driving behavior to encourage drivers to drive in a more 

environmentally efficient manner. Finally, the application may include vehicle-assisted 

strategies where the vehicle automatically implements the Ecodriving strategy (e.g., changes 

gears, switches power sources, or reduces its speed in an eco-friendly manner).  
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2.4 Plug-in Electric Vehicle (PEV) 

A plug-in electric vehicle (PEV) is any motor vehicle with rechargeable battery packs that can 

be charged from the electric grid, and the electricity stored on board drives or contributes to 

drive the wheels for propulsion[56-57]. Plug-in electric vehicles are also sometimes referred to 

as grid-enabled vehicles (GEV) and also as electrically chargeable vehicles.[58] 

PEV is a subcategory of electric vehicles that includes battery electric vehicles (BEVs), plug-

in hybrid vehicles, (PHEVs), and electric vehicle conversions of hybrid electric vehicles and 

conventional internal combustion engine vehicles[56-57].  Even though conventional hybrid 

electric vehicles (HEVs) have a battery that is continually recharged with power from 

the internal combustion engine and regenerative braking, they cannot be recharged from an off-

vehicle electric energy source, and therefore, they do not belong to the category of plug-in 

electric vehicles.  

 

2.4.1 Plugin Hybrid Electric Vehicle (PHEV) 

PHEV is a hybrid vehicle which utilizes rechargeable batteries, or another energy storage 

device, that can be restored to full charge by connecting a plug to an external electric power 

source (usually a normal electric wall socket). A PHEV shares the characteristics of both a 

conventional hybrid electric vehicle, having an electric motor and an internal combustion 

engine (ICE). 

PHEVs have great potential in reducing energy consumption and pollutant emissions, due to 

the use of electric batteries as another energy source. The cost for electricity to power plug-in 

hybrid EVs for all-electric operation has been estimated at less than one quarter of the cost of 

gasoline in California.[57] Compared to conventional vehicles, PHEVs reduce air pollution 
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locally and dependence on petroleum. PHEVs may reduce greenhouse gas emissions that 

contribute to global warming, compared with conventional vehicles. 

 

2.4.2  Battery Electric Vehicle (BEV) 

A battery electric vehicle (BEV), battery-only electric vehicle (BOEV) or all-electric vehicle is 

a type of electric vehicle (EV) that uses chemical energy stored in rechargeable battery packs. 

BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) 

for propulsion. They derive all power from battery packs and thus have no internal combustion 

engine, fuel cell, or fuel tank. BEVs include bicycles, scooters, skateboards, rail cars, 

watercraft, forklifts, buses, trucks and cars. 

Gradually replacing conventional vehicles with electric vehicles (EVs) is a promising way to 

reduce fossil fuel consumption and pollutant emissions in transportation sector. There have 

been many efforts to improve the performance of EVs such as better component and battery 

sizing. However, the market share of EVs is still hindered by the limited all-electric range and 

charging facilities.  

 

EV adoption has a great potential to play a significant role in addressing both energy and 

environmental crises brought by the current transportation system. For instance, electricity has 

a strong potential for GHG reduction. Electric vehicles themselves have zero emissions, 

although generating the electricity to power the vehicle is likely to create air pollution. If 

electricity is generated from the current U.S. average generation mix, EVs can reduce GHG 

emissions by about 33%, compared to today’s ICE powered vehicles [8]. If we assume 56% 

light duty vehicle (LDV) penetration by 2050, this could provide a total reduction in 

transportation emissions of 26–30% [8]. 

 

http://en.wikipedia.org/wiki/Petroleum
http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Global_warming
https://en.wikipedia.org/wiki/Electric_vehicle
https://en.wikipedia.org/wiki/Chemical_energy
https://en.wikipedia.org/wiki/Rechargeable_battery
https://en.wikipedia.org/wiki/Battery_pack
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Motor_controller
https://en.wikipedia.org/wiki/Internal_combustion_engine
https://en.wikipedia.org/wiki/Fuel_cell
https://en.wikipedia.org/wiki/Fuel_tank


30 

 

The huge potential benefits of EVs have already attracted significant interest and investment in 

EV technology. Since late 2010, more than 20 automakers have introduced BEVs or PHEVs. 

Within the United States, the government has allocated considerable stimulus funding to 

promote the use of alternative fuels [9]. With this momentum, it is not difficult to see that in 

the near future EVs may gain significant market penetration, particularly in densely populated 

urban areas with systemic air quality problems. We will soon face one of the biggest challenges: 

How to improve efficiency for the whole EV transportation system? (Here the EV 

transportation system includes any EV related applications of technologies and policies to the 

planning, functional design, operation and management of facilities and infrastructure in order 

to provide for the safe, efficient, economical, and environmentally compatible movement of 

people and goods.) 
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3 Driver-vehicle-infrastructure Cooperative System Framework 

In this chapter, a system level driver-vehicle-infrastructure cooperative framework is designed 

and described.  This framework integrates three different parties that impact the energy 

consumption of PEVs: Human driver, vehicle and infrastructure.  It is designed for PEV energy 

efficient driving and can be used to maximize the energy efficiency of PEVs. To implement 

this proposed framework, an integrated co-optimization system is also designed for the 

connected Ecodriving of PEVs. 

3.1 Driver-vehicle-infrastructure cooperative system 

In the connected vehicle environment, a vehicle equipped with wireless communication devices 

can share its location, speed, heading, and many other data in real-time with nearby equipped 

vehicles and the surrounding infrastructure via wireless communications. Therefore, in the 

designed cooperative system, the vehicle and infrastructure are tightly integrated by taking 

advantage of advanced wireless communications, high accuracy positioning, and onboard 

sensing technology. In addition, the impact of driving behavior is also integrated into the 

framework by modeling and estimating the driver error in the in-vehicle advising driving. 

Human driver is involved in this framework; hence it is designed for assisted driving rather 

than fully autonomous driving.  
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Figure 3-1  Driver-Vehicle-Infrastructure cooperative system 

In the designed cooperative system, the interaction among the three objects or between every 

two objects (e.g., between infrastructure and vehicle) are all bidirectional (see Fig.3-1). For 

example, vehicles can adjust its speed according to the signal phase and timing. The traffic 

signal is also able to adjust its signal phase and timing according to the vehicle states at the 

intersection (e.g. traffic signal priority).  

Based on this proposed cooperative system framework, this dissertation work aims at designing 

a driver-in-the-loop adaptive connected Ecodriving assistance system that considering the 

driver error for PEVs. As a baseline for comparison, an open-loop Ecodriving assistance system 

without considering driver error is also designed and discussed. 

3.2 Integrated Co-optimization System for Connected Ecodriving  

To achieve the maximum energy efficiency, besides the consideration of the interaction 

between driver, vehicle and infrastructure, this dissertation further proposes an integrated co-

optimization system for connected Ecodriving of PEVs.  It aims at optimize the PEV driving 

from three different levels: route level, vehicle dynamics level and powertrain level to reduce 

energy consumption. As shown in Fig.3-2, the system architecture consists of 3 different levels. 
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The information flow is in top-down direction but the design follows bottom-up direction. 

Within each of the dashed square box in the figure is a functional component that is responsible 

for the optimization of one specific type of task: vehicle routing, vehicle speed or powertrain 

operations.   More details are provided as follows: 

 

Figure 3-2  System architecture of integrated co-optimization for connected Ecodriving 

 

3.2.1 Functional component 1: Eco-routing for PEVs 

 

Figure 3-3 Eco-routing system for PEVs 

This functional component aims at optimizing the route for PEVs that can minimize the energy 

consumption according to the different driving conditions. It is capable of choose the best route 

that consume the least energy for PEVs based on the real-time information such as the average 
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speed on each road link. This selected route is used as the input for the next functional 

components: connected Ecodriving. The prerequisite of an Eco-routing system is the accurate 

estimation of PEV energy consumptions based on the real-time traffic information. This 

functional block is shown in the Fig. 3-3 with a green box. Hence, in this dissertation study, a 

novel link-based energy consumption estimation model for EVs are designed and tested with 

real-world driving data.  

 

3.2.2 Functional component 2: Connected Ecodriving for PEVs 

 

Figure 3-4 Connected Ecodriving for PEVs 

The optimal route selected by the abovementioned Eco-routing component is input to this 

functional component: connected Ecodriving which aims at optimizing the vehicle speed 

profile when traveling through signalized intersections in urban driving.  As shown in Fig.3-4, 

the core part of this component is the velocity trajectory planning algorithm (VTPA) which is 

designed to calculate the optimal speed (second-by-second) according to the signal phase and 

timing information that is obtained from single controller via vehicle-to-infrastructure wireless 

communication in connected vehicle environment.  The details of VTPA will be given in the 

following sections.  The calculated optimal speed trajectory is used as the input for the last 

functional component: powertrain optimal control. 
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3.2.3 Functional component 3: Powertrain optimal control  

 

Figure 3-5  Powertrain optimal control 

 

This functional component is designed to optimize the power-split control for parallel PHEVs. 

With the input optimal second by second speed profile, this model is capable of obtaining the 

best power-split ratio at each time step to achieve the minimal fuel consumption and therefore 

reduce the GHG emissions.  In this dissertation study, several different power-split model are 

proposed, tested and compared. More details are provided in the following sections.  
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4 Vehicle Dynamics Optimization: Connected Ecodriving 

In this chapter, vehicle dynamics optimization is implemented in the form of connected 

ecodriving at signalized intersections. Three different connected ecodriving assistance sytem 

for PEVs are designed and compared by evaluating with real-world driving data. In the 

following sections of this chapter, EV energy consumption estimation model is developed with 

real-world driving data (section 4.3). Three different connected ecodriving strategies are 

proposed developed and evaluated with real-world driving data: (1) EAD assistance without 

considering driver error (section 4.4); (2) EAD assistance with considering driver error (section 

4.5); and (3) EAD assistance with partial automaton (longitudinal automatic control). The 

performance of these proposed models evaluated individually and also summarized in section 

4.6. This chapter provides a full set of numerical evidence for energy saving potentials of 

different connected Ecodriving strategies for PEVs. 

 

4.1 Connected Ecodriving at Signalized Intersections 

Vehicular Movements at Isolated Intersections 

Basically, there are 4 different “passing scenarios” for a vehicle to travel through an isolated 

signalized intersection. The velocity profiles of these 4 different scenarios are shown by the 

green, blue, red, and yellow lines in Figure 4-0. It is also noted that all these trajectories have 

the same initial and final velocities, and same traveled distance (e.g., within the dedicated short 

range communication range). More specifically, these scenarios can be described as follows: 

 Scenario 1 (cruise): the vehicle cruises through the intersection at a constant speed (green 

line); 

 Scenario 2 (speed-up): the vehicle speeds up to pass the intersection and then gets back to 

the initial speed after the intersection (blue line); 
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 Scenario 3 (coast-down with stop): the vehicle slows down and stops at the intersection 

(red line); 

 Scenario 4 (coast-down without stop or glide): the vehicle slows down and passes the 

intersection at a mid-range speed, and then speeds up to its initial speed (yellow line).  

 

Figure 4-0  Illustration of different vehicle trajectories traveling across an intersection. (from [ref]) 

For conventional gasoline vehicles, our previous research [65] has shown that, even though all 

these scenarios cover the same distance with the identical initial and final velocities, the 

associated fuel consumption and emissions may vary greatly. Vehicle 1 (or Scenario 1) uses 

the least fuel since it does not need to accelerate or make unnecessary deceleration. Vehicle 2 

(or Scenario 2) consumes more fuel than vehicle 1 since there is a slight acceleration and 

deceleration before and after the intersection. Vehicle 3 (or Scenario 3) might use the most 

amount of fuel since it has to decelerate to a full stop, idle for a certain period, and then 

accelerate from a stop to a desired final speed. Finally, Vehicle 4’s (or Scenario 4’s) fuel 

consumption may be comparable to Vehicle 2’s since both vehicles have a slight speed up and 

slow down during their trips, although the acceleration occurs at a relatively lower speed. 
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Therefore, when a gasoline vehicle is traveling through a signalized intersection, its velocity 

profile could be optimized to achieve minimum fuel consumption for each of the 4 scenarios. 

Similarly, the velocity profile of an EV can also be optimized to achieve minimum energy 

consumption by taking into consideration of its distinctive characteristics (e.g., regenerative 

braking). This is the basic idea behind the vehicle trajectory planning algorithm described in 

the following. 

 

Optimal Vehicle Trajectory Planning 

In this study, a vehicle trajectory planning algorithm (VTPA) is designed for generating an 

optimal velocity profile based on real-time SPaT information. Among all the possible velocity 

profiles with which a vehicle can safely travel through an intersection, the VTPA can choose 

the velocity profile that has minimum tractive power requirements, in order to minimize energy 

consumption. The required tractive power of a vehicle depends on the instantaneous velocity 

and acceleration under the point mass assumption, as given by: 

𝑃𝑡𝑟𝑎𝑐𝑡. = 𝐴𝑣 + 𝐵𝑣
2 + 𝐶𝑣3 +𝑀(0.447𝑎 + 𝑔𝑠𝑖𝑛𝜃)𝑣 ∗ 0.4471000 (1) 

where 𝑀 is vehicle mass with appropriate inertial correction for rotating and reciprocating parts 

(kg); 𝑣  is instantaneous speed (miles/hour or mph); 𝑎  is acceleration (mph/second) ;  𝑔  is 

gravitational acceleration (9.81 meters/second2 or m/s2); and 𝜃 is road grade angle in degree. 

Here, the coefficients 𝐴, 𝐵, and 𝐶  are associated with rolling resistance, speed-correction to 

rolling resistance, and aerodynamic drag, respectively, which can be determined empirically.  

As suggested in our previous work [65], there are numerous ways to accelerate or decelerate 

from one speed to another, such as constant acceleration and deceleration rates, linear 

acceleration and deceleration rates, and constant power rates. A family of piecewise 

trigonometric-linear functions is selected as the target velocity profiles (for both approach and 
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departure portions), due to its mathematical tractability and smoothness. For more details of the 

algorithm, please refer to [65].  

 

4.2 Real-world Driving Data Collection  

In this dissertation study, two different real-world driving data sets are collected:  one set is the 

real-world EV driving data that is used to build the energy consumption model of EVs; the 

other set is the real-world driving data of connected Ecodriving at signalized intersections with 

different technology stages, which is used for performance evaluation of the designed 

technologies in this dissertation work.  

 

4.2.1 Real-world EV Driving Data for Energy Consumption Estimation  

A 2013 NISSAN LEAF was used as the test EV for data collection in this study (see Fig.4-1). 

To obtain second-by-second vehicle states (e.g., speed), energy consumption, and road 

topology (e.g., road grade) data, the following two data acquisition systems were used 

simultaneously: 

A high-resolution professional diagnostic tool specifically designed for all NISSAN vehicle 

models (Including LEAF), called CONSULT III plus kit, was used to access data from the test 

vehicle’s CAN bus, including vehicle speed, battery pack current (positive for charging while 

negative for discharging) and voltage, air conditioner (A/C) power, and accessory power. 

Therefore, the net propulsion power, 𝑃𝑝𝑟𝑜𝑝, can be estimated as: 

𝑃𝑝𝑟𝑜𝑝

= − (𝐼𝑏𝑝 × 𝑉𝑏𝑝)

− (𝑃𝐴𝐶 + 𝑃𝑎𝑐𝑐)                                                                                                             (4 − 1)   
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where 𝐼𝑏𝑝  and 𝑉𝑏𝑝  represent the instantaneous current (in ampere) and voltage (in volt), 

respectively, from/to the battery pack. 𝑃𝐴𝐶 and 𝑃𝑎𝑐𝑐 are the power consumed by A/C and other 

accessories (e.g., radio), respectively. 

 

  

 

a. Test EV                                        b. CONSULT III plus Kit (OBD reader)                         c. GPS data logger 

Figure 4-1  Data collection equipment 

It is well known that road grade is one of the major factors affecting a vehicle’s energy 

consumption. We used a GPS data loggers to collect latitude and longitude data, which are then 

map matched with a 3D map to acquire the road grade of each data point. 

 

Using the data acquisition systems described above, two types of experiment were conducted 

to collect EV driving and energy consumption data in the field: Driving under real-world 

conditions and Driving under controlled environment: 

To cover a variety of traffic conditions, road types and road grades, we carefully chose three 

pairs of origin-destination (shown in Fig. 4-2) and routes in Riverside, CA  to conduct real-

world driving data collection for about four months. The vehicle was driven by different drivers 

at different traffic conditions during the field driving test. In total, more than 100 hours of 

driving under real-world conditions were conducted, yielding a substantial amount of data. 

Besides the real-world driving experiment, we also collected data under a controlled 

environment (i.e., no interaction with other traffic) to better understand the energy consumption 
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of the test EV at different cruise speeds. The cruise speeds vary from 5 mph to 50 mph with a 

5-mph increment. These data will be used to build the baseline scenarios case for comparison. 

 

(a) Loop between CE-CERT and Alessandro Blvd., Riverside, CA 
(b) Loop between Riverside Plaza and Towngate Circle, Moreno Valley, CA 

(c) Loop between CE-CERT and Magnolia Ave., Riverside, CA 

 

Figure 4-2 Routes for real-world driving data collection 

 

Before the field data from the CONSULT III Plus kit and the GPS data logger can be used for 

analysis, they have to be time synchronized first (see Fig.4-3). The synchronized data then have 

to be associated with road grade values of road segments through map matching. More 

specifically, there are two steps of data fusion. 

The raw data files from the GPS data logger are not aligned with the ones from the CONSULT 

III Plus kit in terms of updating rate. Hence, all raw data files were processed into 1 Hz, which 

is suitable for the data synchronization as well as the energy consumption estimation to be done 

later. 
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It is noted that the GPS data logger reports the Coordinated Universal Time (UTC) as a temporal 

reference. However, the CONSULT III Plus kit only reports the relative time stamp (i.e., each 

run always starts from time “0”) for each run. To fuse these two data sources, a common feature 

needs to be identified. In this study, we selected the vehicle speed and applied the cross-

correlation technique [82] to synchronize these two data sources. Fig. 4-4 presents an example 

of speed trajectories after synchronization. The following steps are taken: 

• Conduct map matching onto the fused dataset, where each data point is matched to the 

associated roadway link on the digital map that has the least orthogonal distance to the data 

point(see Fig. 4-5). 

• Break down the fused data stream into short driving snippets based on roadway link.  

• Group link-based snippets by roadway type, average speed and grade etc. 

• Calculate the average speed and energy consumption rate (per mile) for each real-world 

driving snippet 

 

 

Figure 4-3 Flowchart for fusing data from the CONSULT III Plus kit and the GPS data loggers 
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Figure 4-4 An example of synchronized speed trajectories  
 

 

Figure 4-5 Trajectory snippets and map matching 

 

4.2.2 Real-world Ecodriving Data for Performance Evaluation 

To fully investigate the performance of the proposed driver-in-the-loop connected ecodriving 

system by comparing with the exiting systems, real-world driving data with the designed open-

loop EAD assistance system was conducted and data are collected. The field test was conducted 

at the Turner-Fairbank Highway Research Center (TFHRC) in McLean, Virginia using the 

Saxton Lab Intelligent Intersection, which offered a sheltered traffic environment where the 

connected ecodriving prototype was able to be tested with minimal safety risk and without 
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disrupting live traffic operations. Figure 4-6 provides an overview of the field test site, 

specifying starting point where the vehicle will begin test runs from a stop and travel westbound 

towards the intersection and relevant roadside infrastructure (including an Econolite 2070 

controller, Windows PC to encode SPaT and MAP messages, and Arada Locomate DSRC 

Roadside Unit). The test zone covers a range from 190 meters to the east of the intersection to 

116 meters to the west, which allows a maximum traveling speed of up to 30 mph. The traffic 

signal controller was set up for fixed timed signal plan: 27-seconds green, 3-seconds yellow, 

followed by 30-seconds of red, which has removed excess all red clearance timings and all loop 

detector triggers from actuating the signal.  

 

Figure 4-6.  Field study site in Turner Fairbank Highway Research Center in McLean, VA. 
 

In order to comprehensively investigate the energy benefits of the proposed system for EVs, 

we collected real-world driving data with 3 different technological as elaborated in the 

following: 

 Uninformed driving. In this stage, the driver approached and traveled through the 

intersection in a normal fashion without guidance or automation, stopping as needed 

Begin (+190 m)

End (-116 m)
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without any guidance. The vehicle is fully controlled by the human driver.  This stage is 

used as lower bound performance technological stage. 

 Advising driving without consider driver error. In this stage, the driver was assisted by an 

open-loop EAD system as described in Fig. 4. An enhanced dashboard presenting a 

recommended range of driving speed is provided (see Figure 5). This information can assist 

the driver to approach and depart the intersection in an environmentally friendly manner 

while obeying the traffic signal. This driving assistance system does not consider human 

driver error. 

  “Partially automated” driving. At this stage, an automatic controller was responsible for 

longitudinal control of the vehicle, allowing it to speed up or slow down while the driver 

steered for lateral control. The vehicle automatically controlled the brake and throttle based 

on the calculated eco-friendly velocity profile according to signal state and distance to the 

stop-bar. 

To investigate different scenarios with respect to when a vehicle enters a signalized intersection 

and get an average performance of the proposed system at various traffic conditions, the field 

experiment was designed to have the test vehicle approach the intersection at different time 

instances throughout the entire signal cycle (i.e., every 5 seconds in the 60-second cycle). We 

call these different entering cases as “entry case” in the rest of this paper. Furthermore, the test 

vehicle approached the intersection at different operating speeds (i.e., 20 mph and 25 mph). 

Therefore, a test matrix was designed, consisting of the operating speed along the vertical axis, 

and the entry case across the horizontal access. In this matrix, there are a total of 12 entry cases 

× 2 speed levels = 24 test cells. For the Stage I and Stage II experiments, a total of four drivers 

were recruited to conduct test runs. Each driver completed each of the test cells in the test 

matrix. Therefore, a total of 24 test cells × 3 stages × 4 drivers = 288 test runs were conducted. 

For each test run, data such as speed and distance to the stop bar were logged at 10 Hz and post-

processed to determine energy consumption and other performance measures. It is noted that a 
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hybrid vehicle (2012 Ford Escape) was used for the field study. The energy consumption was 

estimated by the EV energy consumption model based on the collected driving speed 

trajectories for different cases.  

 

4.3 Macroscopic EV Energy Consumption Estimation Model 

As described in chapter 2, in the past decade, Ecodriving technology has attracted interest as a 

way to improve vehicle energy efficiency not only for conventional internal combustion engine 

(ICE) vehicles, but also for electric vehicles. Recent research shows that these Ecodriving 

technologies are capable of improving the energy (i.e., electricity) efficiency of EVs so that the 

all-electric range can be extended [83]. For example, in one of our previous work, an Eco-

approach and departure (EAD) system [65] was developed to help vehicles travel through the 

signalized intersection smoothly and avoid unnecessary idling and acceleration/deceleration 

with the knowledge of signal phase and timing (SPaT) information.  

 

However, accurate estimation of EV energy consumption using real-world driving condition 

data (e.g., provide by ITS traffic management systems) is an essential prerequisite for applying 

these Ecodriving technologies. For example, in an eco-routing system for EVs, the EV energy 

consumption on each road segment or link has to be estimated prior to select the most energy-

efficient route. Thus far, several researchers have investigated different factors that impact EV 

energy consumption and built different estimation models upon these impact factors (see Table 

1). These existing models can be classified by the following features: 

a. Granularity: For different application purposes, EV energy consumption estimation models 

can be developed at a different granularity. For instance, for some applications that involve 

second-by-second vehicle velocity profile planning, such as EAD applications, the 

estimated energy consumption must be instantaneous and capable of estimating the 
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second-by-second energy consumption [83, 84,87,90,93,94,95].  On the other hand, for 

applications like eco-routing systems, the estimation model is used to estimate the total 

energy consumption over the entire trip. And this model can be aggregated from the 

previously mentioned second-by-second mode [85, 88, and 92]. For some sophisticated 

applications, both two types model are required to form a hybrid estimation model that is 

capable of estimating energy consumption at different granularity simultaneously 

[86,89,91].  

b. Impact factors: Various factors have been proved to influence EV energy consumption 

(Figure 4-7). Those reported factors can be classified into the following categories: 1) the 

factors from traffic conditions that ultimately influence vehicle dynamic parameters such 

as speed, acceleration [83-97] etc; 2) infrastructure related factors such as road grade, road 

surface rolling resistance [86]; 3) ambient environment factors such as the ambient 

temperature and weed speed [86]; and 4) driving behaviors related factors, such as 

acceleration/deceleration profile [90] etc. Thus far, all the above mentioned factors are 

regarded as raw factors that can be obtained by measurement. In most cases, it is quite 

difficult to measure and obtain all these types of factors due to the limited resources. 

Therefore, there should be a new type of factors that can be constructed to aggrade the 

compound influences of several different types of raw factors.  As shown in Fig 1, this 

new type of impact factors: constructed compound factors is identified at the intersections 

of all types of raw impact factors, which will be defined and discussed in this study. 

c. Type of model: An EV energy consumption model explains the quantitative relationship 

between EV energy consumption rate and various impact factors. Both analytical and data-

driven models can be used to capture such relationship (Fig. 4-8).  
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Figure 4-7 Impact factors of EV energy consumption 

 

 

 

 
Figure 4-8 Categories of EV energy consumption estimation models 

 

 

Among all the above reviewed existing work, there are only a few focused on the link-level EV 

energy consumption estimation. Link-based EV energy consumption estimation model is built 

and compared for different road types in [96], the proposed model is based on vehicle specific 

power(VSP) which mainly consider the average speed and accelerations. A flexible link-level 

energy consumption estimation model is proposed in [97] with different degrees of accuracy 

and various requirements in respect of complexity, computing time and necessary input 
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features.  The energy consumption estimation is based on the crowd-sourced energy 

consumption data from other vehicles on the road network, which might be not accurate due to 

the different vehicle models and energy efficiency. More than 18 link-based features are 

extracted for estimating the energy consumption on each link, such as the average speed, mean 

and standard deviation of accelerations and etc. the major drawbacks of these existing works 

are the lack of analyzing the impact of regenerative braking power of EV when running in the 

real-world traffic congestion.  

 

In this work, the EV energy consumption on a road link in real-world traffic congestion is first 

decomposed based on fundamental physics. Then, with the real-world EV driving data, a data-

driven energy consumption decomposition analysis is conducted by analyzing two newly 

constructed compound factors: positive kinetic energy (PKE), and negative kinetic energy 

(NKE). The NKE is analyzed and related to the regenerative braking power collection 

characteristics. The energy consumption rate curve along the average speed is constructed and 

a “W” shape curve is discovered and explained with real-world driving data.  An accurate and 

simple EV energy consumption estimation model is built upon this decomposition and the 

feature selection analysis also prove the significant effectiveness of these two constructed 

factors. The comparison to the existing models are also conducted to validate the 

outperformance of the proposed model. It shows that a good energy consumption estimation 

model does not have to be very complicated as long as it is derived from the fundamental 

physics and verified by the real-world test driving data. 

  

There are the several major contributions of this proposed model: 

 NKE is used as a variable for capturing the regenerative braking effect in a link-level 

EV energy consumption estimation model; 
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 A systematic data-driven EV energy consumption decomposition analysis is 

conducted;  

 A novel link-level EV energy consumption estimation model is built upon the 

decomposition analysis; and 

 A “W”-shaped relationship between link-level EV energy consumption rate and link 

average speed is discovered and explained with the real-world EV driving data. 

 

 

4.3.1 EV Energy Consumption Analysis 

Analytical Model of EV Energy Consumption 

An understanding of vehicle energy consumption is important for building a vehicle energy 

consumption estimation model. Figure 8 shows an example of a vehicle moving from point A 

to point B on a road segment with length 𝐿𝑙𝑖𝑛𝑘 and road grade Ɵ. The vertical displacement is 

𝐻𝑙𝑖𝑛𝑘. According to physics fundamentals and the law of energy conservation, the total energy 

consumption (from a power source) of a vehicle with mass m traveling from point A to point B 

(see Figure 4-9) is calculated as: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐸𝐴/𝐶 + 𝐸𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦                           (4-2) 

𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 = Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + Δ𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸𝑟𝑜𝑙𝑙𝑖𝑛𝑔 + 𝐸𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐸𝑙𝑜𝑠𝑠        (4-3) 

and, 

Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐= 
1

2
𝑚𝑣𝑡

2 - 
1

2
𝑚𝑣0

2                                                                                           (4-4)         

Δ𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙= 𝑚𝑔𝐻𝑙𝑖𝑛𝑘 = 𝑚𝑔 𝐿𝑙𝑖𝑛𝑘 tan(Ɵ)                                                                    (4-5) 
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where 𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 is the energy consumed for traction; 𝐸𝐴/𝐶 and 𝐸𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦  represent the energy 

consumed by air conditioner and other accessories, respectively; Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐  and Δ𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

represent the changes in vehicle kinetic energy and potential energy between point A and point 

B, respectively; 𝐸𝑟𝑜𝑙𝑙𝑖𝑛𝑔 represents the energy consumed to overcome the friction on road 

surface; 𝐸𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 denotes the energy consumed to overcome the air friction;  and 𝐸𝑙𝑜𝑠𝑠 is 

the internal energy loss due to e.g., friction in the transmission system or heat loss from the 

motor and mechanical brake during the travel from point A to point B;   

 

Figure 4-9. Change of mechanical energy of vehicle movement. 

 

In this study, the tractive energy is of the major interest, while the energy consumption from air 

conditioner and other accessories are measured and excluded from the total energy consumption 

as shown in Equation (2). It is also noted that for a specific road segment (or link), Δ𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

and 𝐸𝑟𝑜𝑙𝑙𝑖𝑛𝑔 are independent of speed trajectories (under traffic conditions). For a passenger 

vehicle (i.e., NISSAN LEAF in this study), the energy consumed to overcome the air resistance, 

𝐸𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 is not so significant (around 5% [99]), especially when the vehicle is affected by 

the other traffic and the speed is not so high. It is very challenging to accurate model the internal 

energy loss, 𝐸𝑙𝑜𝑠𝑠 . For simplicity, we assume that it is proportional to the tractive energy. 

Furthermore, the sum of  𝐸𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 and 𝐸𝑙𝑜𝑠𝑠 is written as 

𝐸𝑎𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐸𝑙𝑜𝑠𝑠 ≈ 𝜇 ∙ 𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒                                        (4-6) 
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where 𝜇 is a constant, independent of the driving cycle.  

Along a specific road segment, therefore, the tractive energy can be approximated as 

𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 ≈ Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 + 𝛿 + 𝜇 ∙ 𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒                            (4-7) 

or, 

𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒(𝑣) ≈  𝛼 + 𝛽 ∙ Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐(𝑣)                            (4-8) 

where 𝛿 ≈ Δ𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 + 𝐸𝑟𝑜𝑙𝑙𝑖𝑛𝑔, 𝛼 = 𝛿 (1 − 𝜇)⁄ , and 𝛽 = 1 (1 − 𝜇)⁄ . 

From a statistical point of view, if we are trying to build a regression model to estimate the 

vehicle energy consumpiton, then the change in kinetic energy (due to the speed variation) 

should be the most powerful predictor. This is the fundamental hypothesis of the data-driven 

analysis presented in the following section. 

If the road segment is discretized by time step, then Eq. (4) can be expressed as: 

Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚 ∙ ∑ (𝑣𝑖+1

2 − 𝑣𝑖
2)𝑁−1

𝑖=1                 (4-9) 

where 𝑁 is  the total number of time steps driving on the road segment; and 𝑣𝑖 is instantaneous 

speed (mph). When we consider the positive portion and negative portion separately, then (9) 

is converted to  

Δ𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚 ∙ ∑ max(𝑣𝑖+1

2 − 𝑣𝑖
2, 0)𝑁−1

𝑖=1 +
1

2
𝑚 ∙ ∑ min(𝑣𝑖+1

2 − 𝑣𝑖
2, 0)𝑁−1

𝑖=1         (4-10)                                                                                 

Since we are estimating the energy consumption per unit distance, we divide Eq. (8) by the 

distance of the road segment, 

𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒

 𝐿𝑙𝑖𝑛𝑘
≈

𝛼

𝐿𝑙𝑖𝑛𝑘
+ 𝛽 ∙ [

1

2
𝑚∙∑ max(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

 𝐿𝑙𝑖𝑛𝑘
+

1

2
𝑚∙∑ min(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

 𝐿𝑙𝑖𝑛𝑘
]             
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           ≈   
𝛼

𝐿𝑙𝑖𝑛𝑘
+ 𝛽 ∙ [

1

2
𝑚∙∑ max(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

∑ (𝑑𝑖+1−𝑑𝑖)
𝑁−1
𝑖=1

+
1

2
𝑚∙∑ min(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

∑ (𝑑𝑖+1−𝑑𝑖)
𝑁−1
𝑖=1

]                              (4-11)                                                                                   

 

where 𝑑𝑖  is cumulative travel distance up to the i-th time step; and  
𝐸𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒

 𝐿𝑙𝑖𝑛𝑘
 is the energy 

consumption per unit distance on the road segment, which we call energy consumption rate 

(ECR). The term, 
∑ max(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

∑ (𝑑𝑖+1−𝑑𝑖)
𝑁−1
𝑖=1

, is the cumulative positive change in kinetic energy rate 

(PKE), which is first developed by Watson [20] and used as a measure of change in kinetic 

energy per unit distance due to acceleration. The term, 
∑ min(𝑣𝑖+1

2 −𝑣𝑖
2,0)𝑁−1

𝑖=1

∑ (𝑑𝑖+1−𝑑𝑖)
𝑁−1
𝑖=1

, is newly defined in 

this study as the cumulative negative change in kinetic energy rate (NKE), which may account 

for the regenerative braking effect of an EV. Therefore, Eq. (11) can be simplified as: 

ECR ≈
𝛼

𝐿𝑙𝑖𝑛𝑘
+
𝛽

2
∙ 𝑚 ∙ (PKE+NKE)                                                                                 (4-12) 

When  Ɵ is small, 𝛼 𝐿𝑙𝑖𝑛𝑘⁄  can be approximated as a constant. So, we can say that the energy 

consumption rate is (approximately) linearly correlated with PKE and NKE. In other words, 

PKE and NKE are strong predictors of the link-level EV energy consumpiton rate. 

Using the collected EV driving data, PKE and NKE values were calculated on a link-by-link 

basis. Figure 4-10 and Figure 4-11 illustrate the plots of link-level ECR as a function of PKE 

and NKE, respectively. It can be seen that there is a clear linear trend between ECR versus PKE 

or NKE. This implies that PKE and NKE are good indicators of EV energy consumption rate 

and could be used in EV energy consumption models. 
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Figure 4-10   ECR vs. NKE. 

 

Figure 4-11   ECR vs. PKE. 

4.3.2 Regenerative Braking and NKE 

As aforementioned, the change in kinetic energy of the vehicle on a road segment is 

decomposed into PKE and NKE. As shown in Fig. 4-12, NKE is used to measure the negative 

change in kinetic energy per unit distance due to deceleration, which can be correlated with the 
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electricity energy gain from EV regenerative braking (RB) on a flat road. This is because the 

vehicle kinetic energy is converted to electricity through the motor acting as a generator when 

the vehicle decelerates. Fig. 4-13 shows the electricity flow of EV regenerative braking system. 

 

Figure 4-12.  PKE and NKE along a trip. 

 

 

Figure 4-13 Regenerative braking (RB) in EV.( http://www.slideshare.net/) 
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The energy gains from RB and NKE over different average speeds are plotted in Fig.4-14 and 

Fig. 4-15, respectively, using the collected field data. As can be seen in these figures, both NKE 

and energy gain from RB are relatively constant when the average speed is over 30 mph but a 

surge is observed in both figures under the average speed of 30 mph. These observations 

indicate that NKE is a good indicator of energy gain from RB. 

 

 

Figure 4-14 Polynomial fit of NKE by average speed. 

 

.           Figure 4-15  Polynomial fit of collected regenerative power by average speed 
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4.3.3 Data-driven Energy Consumption Decomposition Analysis 

EV energy consumption under real-world congestion 

Based on the fundamentals in vehicle dynamics, the instantaneous power of EV is determined 

by vehicle speed, acceleration and roadway grade. It has been derived in [87] that EV’s 

instantaneous power can be estimated by: 

𝑃 =
𝑟𝑅2

(𝑘𝑎𝐷𝑑)
2 (𝑚𝑎 + 𝑘𝑣

2 + 𝑓𝑟𝑙𝑚𝑔 +𝑚𝑔 𝑠𝑖𝑛Ɵ)
2 + 𝑣(𝑘𝑣2 + 𝑓𝑟𝑙𝑚𝑔 +𝑚𝑔 𝑠𝑖𝑛Ɵ) + 𝑚𝑎𝑣                               

(13) 

where r is the resistance of the motor conductor; R is the radius of the tire; 𝑘𝑎 is the armature 

constant of the motor; 𝐷𝑑 is the magnetic flux;  𝑓𝑟𝑙 is the rolling resistance constant; a and v are 

the instantaneous acceleration and velocity; Ɵ is the road grade;  m is the vehicle mass; g is the 

gravitational acceleration (9.81 m/𝑠2). From equation (13), we know that the EV instantaneous 

power is proportional to the 4th order of velocity. 

 

To understand the impact of traffic congestion on EV energy consumption, the relationship 

between EV energy consumption per unit distance and average vehicle speed on a road link is 

investigated since average vehicle speed is a good indicator of the level of real-world traffic 

congestion. We first created boxplots of distance-based ECR vs. average speed (every 5 mph) 

for different levels of road grade. Figure 4-16 presents the ECR at different speed levels. A 4th 

order polynomial fit is applied to the median values of ECR by different speed bins: 

𝑓𝑘 = ∑ 𝛼𝑖 ∙ 𝑣𝑘
𝑖4

𝑖=0                                                                                                                                            
(14) 

 

where 𝑖 is the order of polynomial; 𝑣𝑘  is (link-level) average vehicle speed (mph); 𝛼𝑖’s are 

regression coefficients; and 𝑓𝑘  is (link level) distance-based energy consumption rate (W-

hr/mi). The fitted curve is shown in Figure 4-17. Unlike the typical “U-shaped” ECR curve for 
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gasoline light-duty vehicles found in our previous work [101] as shown in the Fig 4-19, the 

ECR curve for the test EV displays a “W-shape”. The explanation for this difference is given 

in the following section. 

 

Figure 4-16 Boxplot of ECR for different average speed 

 

Figure 4-17   Polynomial fit of median ECR by average speed. 
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As described in the data collection section, to fully investigate the impact of traffic congestion 

on EV link based energy consumption, EV energy consumption data under different constant 

speeds were also collected in a controlled environment, where vehicles were running without 

interaction with other traffic and always kept in a constant or close constant speed. Based on 

these data, we further compared the EV energy consumption at different constant speeds with 

that at different average speeds (in traffic). Figure 4-18 shows the fitted ECR curves by speed. 

As can be seen in the figure, ECR in real traffic with stop-and-go driving is lower than that of 

constant speed driving when the average speed is less than about 10 mph (region A in Figure 

18). This suggests that the test EV is very energy efficient in low-speed driving on urban routes 

considering the real-world vehicle activity patterns. Region B in Figure 18 shows potential 

energy savings of the test EV from a smoother traffic flow that can be achieved by different 

ITS or intelligent vehicle strategies (e.g., speed harmonization). When the average is higher 

than 60 mph, there is little difference in the ECR due to the lack of traffic congestion in both 

driving scenarios at high average speeds on freeways. It is also noteworthy that there is an 

intersection between two curves for EV but no intersection for gasoline light-duty vehicles (See 

Figure 19). This is mainly due to the regenerative braking that collects power when EVs are 

decelerating, but the energy is dissipating in the form of heat for gasoline vehicles.  
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Figure 4-18  ECR by constant speed vs. average speed. 

 

 

 

 
Figure 4-19 ECR by constant speed vs. average speed [101]. 
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is positive and NKE is negative. As we can see from these three sub figures, the curve in Fig. 

4-20c is the sum of curve in Fig. 4-20a and Fig. 4-20b. Therefore, the trend in Fig. 4-20c can 

be explained by combining the trend in Fig. 4-20a and Fig. 4-20b And the trend in Fig. 4-20c 

is quite similar to that in Fig.17, which is also a “W” shape (Note: all these 3 figures are fitted 

separately from raw data, hence they are not likely to be exactly the same). This implies that 

PKE+NKE is a good indicator for EV energy consumption under real world congestion. In 

other words, ECR by average speed under real-world congestion can be decomposed by PKE 

and NKE. This is an evidence for the previously proposed hypothesis presented by Equation. 

(15) based on fundamental physics.  

 

More specifically, as shown in Figures 4-20b, there is drop in NKE when the average speed is 

lower than 10 mph, which coincide with the first drop in Figure 4-17 around the average speed 

of 10 mph. This drop in NKE actually means the increase of collected energy from RB, which 

is due to the high frequency of stop-and-go in this low speed region. We can also see that PKE 

deceases after 30 mph. This can be explained by lower speed fluctuation after 25 mph (see 

Fig.4-16). After 60mph, although the speed fluctuation is still at a low level, but the high speed 

cruise results in higher power demand and therefore the ECR is increased again as shown in 

Fig.4-18. In summary, the “W” shape in EV energy consumption comparing to that of gasoline 

vehicle is mainly due to the NKE drop at the low average speed which results from the 

regenerative braking.  
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a. PKE                                                                 b. NKE                                                                               

c. PKE+NKE 

Figure 4-20 Polynomial fit of PKE, NKE and PKE+NKE by average speed. 
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are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original 

variables, hence the original values for all variables have been normalized into the same scale.  

Suppose 𝑿𝑇 =(𝑋1, 𝑋2… ,𝑋𝑝) is an random vector that represents all the predicting variables. p 

is the number of predicting variables.  ∑  =Var(X) is the p×p variance-covariance matrix. (𝜆𝑖, 

𝑒𝑖) for i = 1, ... p are the eigenvalue and the associated eigenvector, and 𝜆1 ≥ ⋯ ≥ 𝜆𝑝  ≥ 0. 

For p variables, we can construct p PCs, 𝑌1… 𝑌𝑝 , each of which is a linear combination of the 

original set of variables:  

𝑌1 = 𝜶1
𝑇𝑿=𝑎11𝑋1+...+ 𝑎1𝑝𝑋𝑝 

𝑌2 = 𝜶2
𝑇𝑿=𝑎21𝑋1+...+ 𝑎2𝑝𝑋𝑝 

… 

𝑌𝑝 = 𝜶𝑝
𝑇𝑿=𝑎𝑝1𝑋1+...+ 𝑎𝑝𝑝𝑋𝑝 

then 

Var(𝑌𝑖) = 𝜶𝑖
𝑇 ∑𝜶𝒊 

Cov(𝑌𝑖 , 𝑌𝑘) = 𝜶𝑖
𝑇 ∑𝜶𝒌 

All these constructed PCs are orthogonal to each other such that ‖𝜶𝑖‖
2 = 𝜶𝑖

𝑇𝜶𝑖
  = 1.  And a 

larger weight indicates a greater importance of that variable in a PC.  Each PC is obtained by: 

𝑌𝑖 = 𝜶𝑖
𝑇𝑿= such that Var(𝑌𝑖)=  𝜶𝑖

𝑇𝜶𝑖
 =𝑚𝑎𝑥‖𝜶 ‖=1 𝜶 

𝑇 ∑𝜶 , with 𝜶𝑖
𝑇 ∑𝜶𝒋 = 0 for j=1, …, i-1 

Actually, 𝜶𝑖
  = 𝒆𝑖

 , for i=1, …, p    and   𝑌𝑖 = 𝒆𝑖
𝑇𝑿 and Var( 𝑌𝑖  ) = 𝜆𝑖.   

In this work, we take 7 predicting variables (shown in Table 4-1) as the original variables and 

conduct the principal components analysis. The following table gives coefficients of all the 

PCs. It can be observed that NKE and PKE are the first two PCs with the largest variance.  

https://en.wikipedia.org/wiki/Orthogonal_basis_set
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Table 4-1coefficients of principle components 

Variables PCA coefficients 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Road type -0.08936 0.180285 
0.120264 

0.376948 0.89605 0.007005 -0.00216 

Road grade -0.00903 0.001795 -0.07008 0.785232 -0.13896 7.30E-05 0.000419 

Avg. speed -0.13645 0.42776 0.99019 0.011401 -0.4206 0.00016 -0.00017 

PKE 0.11785 0.885204 0.007689 -0.44944 0.021687 -0.00024 -0.00076 

NKE 0.97950 -0.03045 0.00941 0.197959 0.019273 -0.00056 0.000278 

Acum Acc.[103] -0.00088 0.001518 0.000231 0.001664 0.004372 -0.42387 0.905709 

Acum.Dec.[103] 0.00094 -0.00054 -0.00088 -0.00227 -0.00478 0.905695 0.423894 

 

The trace of a symmetric matrix is the sum of its eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑝 .  Thus the total 

variance is  

tr(∑  ) = 𝜆1 +⋯ +𝜆𝑝 

Since covariance matrix ∑  is positive-semidefinite, the total variance is non-negative and the 

first k PCs make up  

(
 𝜆1  + ⋯ +𝜆𝑘
 𝜆1  + ⋯ +𝜆𝑝

∗ 100%) 

of the total variance (in particular, they make up 100% of the total variance when k=p).  As we 

can see in Fig 4-21, the first two PCs make up over 80% of total variance. This indicates that 

NKE and PKE are the most significant predicting variables for estimating link-based EV energy 

consumption.   
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Figure 4-21.  Percentage of variance explained by different impact factors. 

 

Decision Tree Analysis for Energy Consumption  

Decision tree builds regression or classification on models in the form of a tree structure [105, 

106]. It breaks down a dataset into smaller and smaller subsets while an associated decision tree 

is incrementally developed. The final result is a tree with leaf nodes and branches. In these tree 

structures, leaves represent class labels and branches represent conjunctions of features that 

lead to those class labels. The topmost decision node in a tree which corresponds to the best 

predictor called root node. Decision trees can handle both categorical and numerical data. 

Decision trees where the target variable can take continuous values (typically real numbers) are 

called regression trees. In this work, a regression tree model is used to analyze the energy 

consumption predicting variables.  

There are two important process in building a regression tree. One is the optimal partition of 

each variable in the continuous range, and the other one is to choose the best variable for 

splitting the data set at each leaf node. In this study, the entropy based information gain is 

adopted as the criteria for optimally splitting the dataset on different attributes (i.e., predicting 

variables). And the Gini index [107] is used for choosing the best variable at each leaf node to 

obtain the largest standard deviation reduction. 

https://en.wikipedia.org/wiki/Leaf_node
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Real_numbers


66 

 

In regression tree, the continuous variables are first discretized into multiple intervals, and then 

an optimal partition is selected based on information gain criteria. Given a set of samples S, if 

S is partitioned into two intervals S1 and S2 using boundary T,  

Entropy is calculated based on class distribution of the samples in the set. Given m classes, 

the entropy before the partition is   

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆 ) = -∑ 𝑝𝑖
𝑚
𝑖=1  𝑙𝑜𝑔2(𝑝𝑖) 

the entropy after partitioning is: 

I (S,T) = 
𝑆1

𝑆
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆1) + 

𝑆2

𝑆
 Entropy(𝑆2) 

where 𝑝𝑖 is the probability of class i in 𝑆 . Therefore, the informaton gain is obtained by: 

Gain(T)=Entropy(S) – I (S,T) 

To select the best attribute for each leaf node, the Gini index[25] is used in this study and 

calculated by 

Gini(D)=1-∑ 𝑝𝑗
2𝑛

𝑗=1  

where D is the data set which contains examples from n classes,  𝑝𝑗 is the relative frequecny 

of class j in D. If a data set D is split on A into two subsets 𝐷1 and 𝐷2 , the Gini index is 

defined as  

𝐺𝑖𝑛𝑖𝐴𝑓𝑡𝑒𝑟(D) =  
𝐷1

𝐷
𝐺𝑖𝑛𝑖(𝐷1) + 

𝐷2

𝐷
 Gini(𝐷2) 

The reduction in impurity is  

ΔGini(D)=Gini(D) - 𝐺𝑖𝑛𝑖𝐴𝑓𝑡𝑒𝑟(D) 

The variable providing the smallest reduction in impurity is chosen to split the node. Figure 4-

22 presents the first three layers of the constructed regression tree. The values on the branches 
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are the optimal split on the predecessor node. It is noted that the most important 2 variables are 

NKE, PKE. The 3-D plot of ECR on PKE/NKE (Fig. 4-23a) and partition (Fig. 4-23b) based 

on the decision tree analysis is provided in Fig.4-23. It can be seen that the ECR distribution is 

partitioned into four major regions. Region A (average 0.02) represents the driving situation 

where PKE and NKE are both not too high. This region corresponds to the low speed driving 

scenarios. Also, a larger variation is witnessed in this region, which can be explained by the 

frequent fluctuation in driving under low (average) speed traffic conditions. Region B (average 

0.71) where PKE is high but NKE is low represents the set of driving scenarios when 

acceleration maneuvers dominate. In contrast to Region B, Region C (average -0.31) is mainly 

characterized by deceleration maneuvers. Region D (average 0.24) is just in the middle between 

region B and C.  Please note that the boundary between D and C is because of the road grade 

(cut by -0.014 as shown in Fig 22). And also this boundary does not have to be exactly a straight 

line but it reflects the basic difference between region C and D. 

 

Figure 4-22 Decision tree built from the real-world driving data (top 3 layers) 
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a. 3-D plot of ECR by PKE/NKE                                                             b. ECR partition based on decision tree 

Figure 4-23 ECR partition based on decision tree analysis 

 

Model Fitting and Comparison 

Beyond the abovementioned factor analysis, three different types of link-level EV energy 

consumption models with different levels of information availability are proposed and 

compared (see Table 4-2). Specifically, Model type 1 takes the compound factors PKE and 

NKE as the only predicting variables; Model type 2 uses a 4th order polynomial of average 

speed. Lastly, Model type 3 uses all the possible raw factors as predictors, such as average 
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speed, PKE, NKE, road type, road grade, accumulated accelerations and accumulated 

decelerations. To better capture the different relationship (linear or nonlinear) between the 

predictors and energy consumption rate, for each type of model, both a regression fitted model 

and an artificial neural network fitted model are built. Please note that Model type 1 is proposed 

in this study and model type 2 & 3 are regarded as baseline models to represent the similar 

existing models that discussed in [16, 24]. 

Table 4-2 estimation models 

Model type Predictors 

1 PKE, NKE  

2 Avg. speed (up to 4th order) 

3 Avg. speed, Acc.Acc, Acc.Dcc, road grade, road type 

 

The performance of the four models was evaluated based on the estimation error that is defined 

in terms of symmetric mean absolute percentage error [101], or SMAPE:  

𝑆𝑀𝐴𝑃𝐸 =  
∑ |𝐸𝑡 − 𝐴𝑡|
𝑛
𝑡=1

∑ |𝐴𝑡 + 𝐸𝑡|
𝑛
𝑡=1

 

where 𝑛 is sample size, which is also the total number of road link that data were collected 

from; 𝐴𝑡  is the actual energy consumption on road link t;  and 𝐸𝑡  is the estimated energy 

consumption on road link t.  When building the model, 70% of the data set is used for training 

and 30% for model testing. For ANN models, 1 hidden layer and 5 hidden neuros are chosen 

after a parameter tuning process. The details will not be presented here due to space limit. Table 

3 summarizes the error statistics, where the best estimation is achieved by type 1a and 1b 

models with less than 5% of SMAPE, in spite of their simplicity. This result further verifies the 

findings in previous discussion that PKE and NKE are the most powerful compound indicators 

of link-level EV energy consumption when link-level typical vehicle speed trajectories are 

known (or just PKE and NKE is known). A hypothesis is that the EV test driving was conducted 
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at a relatively flat terrain. The polynomial regression in type 2 model achieves the second best 

performance (both fall into the error range of 10%) indicating that average speed is also a strong 

and effective indicator when only link-level average speed is available (e.g., based on 

measurements from the loop detectors). Type 3 models have the worst performance which is 

due to the fact that more prediction variables may introduce more noise. In addition, this model 

in real-world applications may require high-resolution data which are usually not available.  

Table 4-3 Estimaton performance 

Model type Regression Neural Network 

 R-square Error R-square Error 

1 0.8019 4.93% 0.8076 4.97% 

2 0.6162  6.94% 0.6099 9.81% 

3 0.5909 15.11% 0.5801 12.55% 

 

Model Application and Trip Level Validation 

The proposed link-level EV energy consumption estimation model 1 is applied to a crowd-

sourcing data based eco-routing system as shown in Fig 4-24. All the EVs equipped with the 

routing system are connected through the mobile network. For each vehicle, the 

abovementioned best model (the regression model of Type 1b) is trained with its own driving 

data collected on different road links using the same technology as described in Section 2. 

Please note that for each link, a model 1 can be built if the data is available. Once the model is 

built, the energy consumption on a selected route will be estimated using the estimation model 

with the crowd sourced PKE and NKE data from other vehicles on the road links at the time 

when selecting the route.  
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Figure 4-24  crowd-sourced EV link level energy consumption estimation 

 

Therefore, we are also interested in knowing the performance of the proposed models in 

estimating the total energy consumption of complete trip. The estimated total energy 

consumption of a trip is simply a sum of estimated energy consumption of all the road segments 

in that route. Figure 4-25 shows an example trip with the plotted actual energy consumption 

and estimated energy consumption with regression model of type 1b for each road link. For 

comparison purpose, results from models with better performance of each type (see Table 4-3) 

are plotted in Figure 26.  It is observed that type 1 is the closest curve to the actual energy 

consumption.  

 
 

Figure 4-25 comparison between actual energy consumption and estimated 
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Figure 4-26 Accumulated energy consumption on a trip 

 

 

4.3.6 Summary and Discussion 

In this work, the EV energy consumption on a road link in real-world traffic congestion is first 

decomposed based on fundamental physics. Then, with the real-world EV driving data, a data-

driven energy consumption decomposition analysis is conducted by analyzing two newly 

constructed compound factors: positive kinetic energy (PKE), and negative kinetic energy 

(NKE). The NKE is analyzed and related to the regenerative braking power collection 

characteristics. The energy consumption rate curve along the average speed is constructed and 

a “W” shape curve is discovered and explained with real-world driving data.  An accurate and 

simple EV energy consumption estimation model is built upon this decomposition and the 

feature selection analysis also prove the significant effectiveness of these two constructed 

factors. The comparison to the existing models shows that the proposed model outperforms the 

others in terms of both accuracy and simplicity. These models can be used to support the energy 

consumption estimation in eco-routing systems for electric vehicles as well as many other on-

board, low cost ecodriving applications. The future work would be focused on applying the 

proposed model into a ecorouting system and testing the system in real-world driving. 
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4.4 Microscopic EV Energy Consumption Estimation Model 

Besides the macroscopic EV energy consumption estimation model designed in previous 

section, a microscopic estimation of EV energy consumption using real-world driving condition 

data (e.g., vehicle speed trajectory) is also critical in evaluating the energy performance of 

different ecodriving technologies when calculating the second-by-second energy consumption. 

In this study, a microscopic EV energy consumption estimation model developed in [68] is 

adopted to calculate the EV energy consumption based on the vehicle speed profiles. This 

model is designed for 4 different EV driving conditions: accelerating, decelerating, cruising 

and idling. The final model is presented as follows: 

𝐸𝐶𝑅 =

{
 
 

 
 𝑒

(∑ ∑ (𝑙𝑖,𝑗×𝑣
𝑖×𝑎𝑗)3

𝑗=0
3
𝑖=0 )            𝑎 > 0

𝑒(∑ ∑ (𝑚𝑖,𝑗×𝑣
𝑖×𝑎𝑗)3

𝑗=0
3
𝑖=0 )           𝑎 < 0

𝑒(∑ (𝑛𝑖×𝑣
𝑖)3

𝑖=0 )              𝑎 = 0, 𝑣 ≠ 0
𝑐𝑜𝑛𝑠𝑡̅̅ ̅̅ ̅̅ ̅                          𝑎 = 0, 𝑣 = 0

                                           (4-13) 

where ECR is energy consumption rate (Watt); 𝑙𝑖,𝑗, 𝑚𝑖,𝑗,  and 𝑛𝑖 are coefficients for ECR at 

speed power index i (𝑖= 0, 1, 2, 3) and acceleration power index j (= 0, 1, 2, 3); v is instantaneous 

speed (km/h); a is instantaneous acceleration (m/𝑠2); 𝑐𝑜𝑛𝑠𝑡̅̅ ̅̅ ̅̅ ̅  is the average energy consumption 

rate for idling. The coefficients in this model were obtained through training with real-world 

driving data and can be found in [68].  

 

4.5 Connected Ecodriving Assistance without Considering Driver Error 

In this section, a connected EAD assistance system is designed for EV at signalized 

intersections to achieve the most energy efficient driving. As a baseline system, an open-loop 

system without considering the driver error is designed for the purpose of comparison. As can 

be seen in Fig.4-27, a vehicle trajectory planning algorithm (VTPA) is designed for generating 

an optimal velocity profile based on real-time SPaT information. The calculated real-time 



74 

 

optimal speed is advised to the human driver through an in-vehicle advising display. Then the 

human driver controls the actual vehicle speed by the gas pedal and brake.  

 

Figure 4-27 Control flowchart of  EAD system without considering driver error 

 

As explained in the Fig.4-35, there could be different scenarios for vehicles passing through a 

signalized intersection. Among all the possible velocity profiles with which a vehicle can safely 

travel through an intersection, the VTPA can choose the velocity profile that has minimum 

tractive power requirements, in order to minimize energy consumption. For a given passing 

scenario, the speed profile to approach and depart from the intersection is calculated by the 

distance to intersection d, desired time-to-arrival T, and current speed vc, based on the 

trigonometric model developed in our previous work [134]. For the acceleration, deceleration, 

or full-stop scenario (i.e. Vehicle 2, 3 or 4), the vehicle speed v at time t is decided by the 

following equation: 
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where 𝑣𝑐 is the current speed, 𝑣ℎ = 𝑑 𝑇⁄  is the uniform speed; n is the maximum value that 

satisfies 

{
 
 

 
 

|𝑛 ∙ (𝑣ℎ − 𝑣𝑐)| ≤ 𝑎𝑚𝑎𝑥
|𝑛 ∙ (𝑣ℎ − 𝑣𝑐)| ≤ 𝑑𝑚𝑎𝑥

|𝑛2 ∙ (𝑣ℎ − 𝑣𝑐)| ≤ 𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑛 ≥
𝜋

2
−1

𝑇

                                    (4-15) 

and 

 𝑚 =
−
𝜋

2
𝑛−√(

𝜋

2
𝑛)

2
−4𝑛2∙[(

𝜋

2
−1)−𝑇∙𝑛]

2[(
𝜋

2
−1)−𝑇∙𝑛]

                       (4-16) 

Here parameters m and n determine the shape of the speed profile. They are also the dominant 

variables to control the energy efficiency of the acceleration and deceleration process. In our 

previous work [26], results indicated that if m and n satisfy Eq. (2) and (3), then the tractive 

power (of a generic vehicle model) would be minimized without compromising the driving 

comfort and acceleration/ deceleration capability. This designed trigonometric model was 

tested with ICE vehicles in our previous work [26] which has achieved 10-15% fuel savings 

when crossing the intersections. In this study, it is expected that this model can also help EV 

improve its fuel efficiency by providing smooth and energy efficient speed trajectory at 

intersections.  

 

4.6 Connected Ecodriving Assistance with Considering Driver Error 

As mentioend in chapter 1, air pollution and climate change impacts associated with the fossil 

fuel use in transportation have continued to attract public attentions due to its close relation to 

peoples’ everyday life.  Current research has tried the following ways to address the issues from 

vehicle, infrastructure, and human driver perspectives: 
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1) Building more energy efficient vehicles, which involves creating alternative fuel powered 

powertrain system (e.g., electric vehicles (EVs)) and designing more efficient powertrain 

control systems to achieve higher fuel economy, such as the energy management system (EMS) 

for plug-in hybrid electric vehicles (PHEVs) [111-113]. This could also involve analyzing the 

unique characteristics of a specific type of powertrain that would greatly impact the energy 

efficiency of that type of vehicle, e.g., the regenerative braking (RB) for EVs. 

2) Taking advantage of transportation infrastructure. In recent years, applying advanced 

intelligent transportation system technologies to result in more energy efficient driving is one 

of the most popular research areas, for example, reducing traffic congestion or unnecessary 

stop-and-go behaviors at signalized intersections in arterials by using vehicle-to-infrastructure 

wireless communication. It is reported that nearly 7 billion hours of delay and more than 3 

billion gallons of fuel were wasted in 2015 due to traffic congestion in the U.S. [114], a 

significant portion of which is due to getting stuck at traffic signals. Various types of 

applications are designed to address such issue, for example, Eco-approach and departure 

system [108] is developed to help vehicles achieve a smooth travel and avoid unnecessary idling 

by calculating the most energy efficient speed profile to pass through the intersections by 

obtaining the signal phase and timing information (SPaT) from upcoming traffic signals.   

3) Analyzing the impact of human driving behavior on vehicle energy consumption. Driving 

behavior has been proved to influence the vehicle energy consumption [115]. For example, the 

unnecessarily aggressive acceleration and decelerations could result in additional energy 

consumption. Some efforts have been put in training the drivers to have good driving habit 

through the Ecodriving training programs [115].    

In recent years, transportation electrification has been a very active research area. Gradually 

replacing conventional vehicles with electric vehicles (EVs) is a promising way to reduce fossil 

fuel consumption and pollutant emissions in the transportation sector, since electricity can be 
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much cleaner than fossil fuels since it can be converted from the renewable and clean energy, 

such as solar and wind energy. However, the massive adoption of EVs is impeded by the limited 

charging infrastructure and limited cruise range per charge. This also usually causes the driver’s 

anxiety which is called “range anxiety” [116]. There have been many efforts to improve the 

performance of EVs by overcoming technical barriers such as battery technology limitations 

[117] and charging infrastructure problems [118]. However, very limited amount of effort so 

far has been focused on how to improve the energy efficiency of the EVs through vehicle 

connectivity and automaton. Furthermore, there has been no effort to investigate the dynamic 

interaction between vehicles, infrastructure and human drivers and its impact on the energy 

efficiency of EV driving.    

Toward this end, to fill the research gap and address the above-mentioned issues, in this study, 

a driver-vehicle-infrastructure cooperative system for EV energy efficient driving is proposed. 

As an example and demo, a driver-in-the-loop EAD assistance system considering human 

driver error is designed and tested for EVs which is also compared with an open-loop EAD 

system not considering human driver error. The designed system is capable of estimating the 

human driver error and adjusts to the error to mitigate the negative impact of human error and 

achieve the maximum energy efficiency benefits.  Real-world driving data were collected for 

performance evaluation, by comparing the resulted energy benefits. There are several major 

contributions of this study; 

 A driver-vehicle-infrastructure cooperative system framework for energy efficient driving 

is proposed. 

 A first-of-its-kind EAD assistance system considering driver error is designed for EVs and 

evaluated with real human driver data. 

 The energy benefits of the designed system are evaluated with the real-world driving data 

and compared with different baseline scenarios.  
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4.6.1 Overview 

Human Factor in Ecodriving Technology 

Thus far, most of the current connected ecodriving assistance technologies are based on the 

assumption that the vehicle is either in full control or that the driver follows the instruction 

precisely, which is actually hard to realize with human driver control. In our previous study, 

the energy benefit of an EAD system for ICE vehicles at actuated signal environment reaches 

10% [129] but only 2% can be achieved real-world test driving [130]. This decrease in energy 

benefit is at least partially due to the error when human driver following the instructions. 

However, to the best of our knowledge there have been very few efforts on building a driver 

behavior model on following a speed trajectory.  A proportional-integral-derivative (PID) 

function is proposed to simulate such kind of deriver’s behavior [131]. The simulation results 

show 4% of energy savings comparing to the model without considering the human driver error. 

One possible issue in applying such model is the difficulty in identifying the appropriate 

proportional, integral and derivative coefficients that reflect different driving habits. In 

addition, this PID model does not consider the expected human error in the multiple future steps 

and no optimization is conducted according to the human driver error. To address these issues, 

this work proposes a Markov chain based driving error estimation model which is able to be 

adaptive to the changing driving behavior and also estimate the future driver error in multiple 

time steps. More details are given in the following sections. 

 

Connected Ecodriving Technology for EVs 

Despite the abovementioned efforts on connected ecodriving systems for ICE vehicles, very 

few are focused on designing such driving assistances system for EVs when approaching a 

signalized intersection to save electricity consumption. [132] applied a dynamic programming 

(DP)-based model to develop ecodriving systems for EVs along signalized arterials. The 
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proposed model was tested in the simulation with very limited signal phase conditions. In a 

recent study [133], the authors developed an EAD system for EVs based on their own EV 

energy consumption estimation model, where the validation was also conducted in a simulation 

environment under 4 very simple scenarios with different signal phases.  To the best of our 

knowledge, there has been no research that investigates the ecodriving system for EV with real-

world driving data. There is no effort on modeling the human driver error in ecodriving 

technology for EVs either. The objective of this study is to fill these gaps. 

 

4.6.2 Methodology 

Vehicle-Driver-Infrastructure Cooperative System for Energy Efficient Driving 

There are various types of impact factors that influence the energy consumption of vehicles, 

which can be mainly classified into the following categories (see Fig. 4-35.): 

 Vehicle-related: many vehicle-related factors could influence the energy consumption, 

such as the powertrain type (i.e., ICE or EV), powertrain efficiency and vehicle mass etc. 

 Driver-related: the driving behavior (e.g., acceleration and deceleration profile) is the major 

human related impact factor for vehicle energy consumption. This is especially important 

for EVs due to the unique regenerative braking feature. 

 Infrastructure-related: Traffic signal is one of the major infrastructures that would influence 

vehicle energy consumption due to stop-and-go behavior at signalized intersections. 
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Figure 4-28 Three class of factors that impact EV energy consumption 

In order to maximize the energy efficiency of EVs by considering all the impact factors 

above, a vehicle-driver-infrastructure cooperative system is designed for energy efficient 

driving (see Fig. 4-36) in the connected vehicle environment. 

 

Figure 4-29   A Vehicle-Driver-Infrastructure Cooperative framework for energy efficient driving. 

 

In the connected vehicle environment, a vehicle equipped with wireless communication devices 

can share its location, speed, heading, and many other data in real time with nearby equipped 

vehicles and the surrounding infrastructure via wireless communications. Therefore, in the 

designed cooperative system, the vehicle and infrastructure are tightly integrated by taking 
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advantage of advanced wireless communications, high accuracy positioning, and onboard 

sensing technology. In addition, the impact of driving behavior is also integrated into the 

framework by modeling and estimating the driver error in the in-vehicle advising driving. 

Human driver is involved in this framework; hence it is designed for driving assistance rather 

than fully autonomous driving.  

In the designed cooperative system, the interaction between every two objects (e.g., between 

infrastructure and vehicle) are all bidirectional (see Fig.4-35). For example, vehicles can adjust 

its speed according to the signal phase and timing. The traffic single is also able to adjust its 

signal phase and timing according to the vehicle states at the intersection (e.g. traffic signal 

priority). Based on this proposed cooperative system, this study aims at designing a driver-in-

the-loop adaptive connected ecodriving assistance system that considering the driver error for 

electric vehicles. As a baseline for comparison, an open-loop ecodriving assistance system 

without considering driver error is also designed and discussed. 

Driver error modeling with Markov Chain Model 

A nonlinear vehicle longitudinal dynamics model [27] is adopted in this work: 

𝑥̇ = 𝑣,                                                               (4-17a) 

𝑣̇ = −
1

𝑀
𝐶𝐷𝜌𝑎𝐴𝑣𝑣

2 − 𝜇𝑔 − 𝑔𝜃 + 𝑢𝑓 ,                                                          (4-17b) 

𝑢𝑓=𝑢 +𝑤                                                                                                          (4-17c) 

where  𝑥  is position of the vehicle; 𝑣  is velocity; 𝑀  is mass; 𝜃  is road gradient (𝜃 =

0 in this work); 𝑔 is acceleration of gravity (i.e., 9.8 𝑚/𝑠2); 𝑢𝑓 is braking or traction force per 

unit mass (i.e., the acceleration/deceleration generated from vehicle propulsion) and is 

considered as the sum of actual vehicle control; u is the optimal tractive fore per unit mass 

suggested by the driving assistance system; w is the error (𝑚/𝑠2) injected by the human when 

trying to follow the advised u; 𝐶𝐷is drag coefficient; 𝜌𝑎 is air density; 𝐴𝑣 is frontal area of the 
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vehicle; and 𝜇 is rolling friction coefficient. The values of  𝐶𝐷, 𝜌𝑎 , 𝐴𝑣 ,  and 𝜇 can be found in 

[135].  

The driver error in this study is defined as the difference between the actual tractive force per 

unit mass and the optimal tractive force per unit distance calculated by the VTPA model. And 

it is generated by human drivers when trying to follow the advised vehicle dynamics displaying 

on the in-vehicle human-machine interface (HMI) as shown in Fig.4-38.  

 

Figure 4-30  HMI interface for in-vehicle advising. 

 

To investigate the human error in a formal way, the error is first discretized into a finite number 

of states 𝑁𝑒. When we look at the human error along the time step, it can be observed that the 

human error in the next time step is only depend on the current error and it is driver specific. 

Inspired by this Markovian property, a Markov chain model is adopted for modeling the human 

driver error and it can help represent the stochastic behavior of the human driver while tracking 

the advised command from driving assistance system.  

Now the driver error dynamics is model as a Markov chain with a transition probability matrix 

𝑇𝑒 where its elements 𝜏𝑖𝑗
  represent the probability of state transition from state i to j, i,j 
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 ≤ 𝑁𝑒(see Fig. 6).   

[
 
 
 
 
𝑝11
𝑝12
𝑝13
…
𝑝1𝑁𝑒

𝑝21
𝑝22
𝑝23
…
𝑝2𝑁𝑒

𝑝31
𝑝31
𝑝31
…
𝑝3𝑁𝑒

…
…
…
…
…

𝑝𝑁𝑒1
𝑝𝑁𝑒1
𝑝𝑁𝑒1
…

𝑝𝑁𝑒𝑁𝑒]
 
 
 
 

             (4-18) 

 

The transition matrix is driver specific and can be obtained from the real-world driving data 

collected from driving with the designed driving assistance system. Fig.4-39 provides an 

example on how to obtain the error from the real-world driving data. 

 

Figure 4-31   Driver error calculation 

 

Closed-driver-in-the-loop EAD considering driver error 

By taking into account the abovementioned driver error, a driver-in-the-loop based EAD system 

is proposed (see Fig.7). In this system, the designed VTPA is integrated with a stochastic model 

predictive control (SMPC) model developed to calculate the future optimal advising for EV 

drivers (see Figure 2) based on the estimated human driver error when following the advice, so 

that the resulted actual vehicle speed (with human inputs) is as close to the actual optimal 
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vehicle trajectory as possible.  For each optimization time horizon, the future human error 

during that time horizon is estimated based on the learned human error probability transition 

matrix. From a control system perspective, the human inputted error actually is regarded as a 

source of disturbances. The receding horizon property of SMPC allows the system to better 

handle predictable disturbances. The control system diagram is provided in Figure 4-40. 

 

Figure 4-32 Driver-in-the-loop EAD flowchart 

 

The above vehicle dynamics model described in eq. (4) need to be discretized as follows when 

implementing SMPC: 

𝑥(𝑡0 + (𝑘 + 1)Δ𝑡) = 𝑥(𝑡0 + 𝑘Δ𝑡) + 𝑣(𝑡0 + 𝑘Δ𝑡)Δ𝑡,   (4 − 19𝑎) 

𝑣(𝑡0 + (𝑘 + 1)Δ𝑡) = 𝑣(𝑡0 + 𝑘Δ𝑡) 

                                       +(−
1

𝑀
𝐶𝐷𝜌𝑎𝐴𝑣𝑣(𝑡0 + 𝑘Δ𝑡)

2      (4 − 19𝑏) 

                                       −𝜇𝑔 − 𝑔𝜃 + 𝑢𝑓(𝑡0 + 𝑘Δ𝑡))Δ𝑡, 

where 𝑡0 is starting time, Δ𝑡 is sampling period, and 𝑘 is time step. For brevity, we denote 

𝑥(𝑡0 + 𝑘Δ𝑡) as 𝑥(𝑘), 𝑣(𝑡0 + 𝑘Δ𝑡) as 𝑣(𝑘), and 𝑢𝑓(𝑡0 + 𝑘Δ𝑡) as 𝑢𝑓(𝑘) in the remaining parts 

of this work. 

For each finite time horizon, different trajectory states are possible depending on different 

human error w at each time step. Therefore, SMPC is used to solve this optimization problem 
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with the uncertainty of human error during each finite time horizon.  A scenario tree is 

developed consisting of different paths from the root node to the leaf nodes. The root node is 

the current state of the error w and the leaf nodes are the states reached from the current state 

at the end of the time horizon T. A scenario is defined by a path from the root node to leaf 

nodes with different w values for each time step within that time horizon. For each possible 

scenarios,  𝑝𝑠  is the defined as the probability of its occurrence which is evaluated by the 

product of the probability of all edges in the path. Figure 4-41 provides an example of a scenario 

tree when 𝑁𝑒 is 3 and only 4 time steps in the horizon: 

 

Figure 4-33   Example scenario tree 

As seen in Fig.4-41, the probability of occurrence of example scenario path (with red solid 

arrow) is p=0.11×0.75×0.33×0.08=0.0022. This means this scenario path is not much likely to 

happen. When the probability of each possible path is obtained, the cost function of the 

optimization during that finite time horizon is defined as the expectation of total difference 

between the optimal speed and actual speed along that time horizon: 

∑𝑝𝑠∑ 

𝑡+𝑙

𝐾=𝑡

[𝑣(𝑘) − 𝑣𝑟(𝑘)]
2 

𝑁𝑒

𝑠=1

                              (4 − 20) 

Therefore, the objective function is defined as the sum of squared differences between the 

modeled and reference velocities. We also consider box constraints for the velocities, 
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acceleration/deceleration, and jerk values. In summary, the optimal control problem based on 

SMPC can be formulated as:  

   argmin𝑢𝑓  ∑𝑝𝑠∑ 

𝑡+𝑙

𝐾=𝑡

[𝑣(𝑘) − 𝑣𝑟(𝑘)]
2 

𝑁𝑒

𝑠=1

 

subject to      the discritized dynamics (4 − 19) 

       𝑣𝑚 ≤ 𝑣(𝑘) ≤ 𝑣𝑀, 

|𝑢𝑓(𝑘)| ≤ 𝑢𝑀, 

                              |𝑢𝑓(𝑘 + 1) − 𝑢𝑓(𝑘)| ≤ 𝑑𝑢𝑀 ,  

where 𝑡 is current time; 𝑙 is optimization horizon; 𝑣(∙) is velocity computed by the SMPC; 

𝑣𝑟(∙) is reference velocity; 𝑣𝑚 is minimum allowable speed, which is set to 0 in this work; 𝑣𝑀 

is maximum allowable speed (usually the speed limit); 𝑢𝑀  is  maximum acceleration 

/deceleration constrained by the vehicle propulsion power; and  𝑑𝑢𝑀  is the user-defined 

maximum jerk (mainly for driving comfort). We use 1 second as the time step and the control 

horizon of the SMPC is tunable and will be discussed later. Note that as the dynamics in Eq. 

(4) are nonlinear, the optimization problem at every time step of the SMPC is non-convex. 
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The total number of scenario paths is 𝑁𝑒
𝑙 , for example, if there are 10 level human error 

(𝑁𝑒=10) and length of horizon is 10(l=10), the total number of scenario path would be 1010, 

hence the increase of 𝑁𝑒 and l would significantly increase the computation time, to make the 

solving of this optimization problem more computationally tractable, the Monte Carlo method 

is adopted to generate a number of realizations of scenario paths, which is shown as in 

Algorithm 1. 

 

To solve the optimization problem in the SMPC, interior point method [28] is adopted: 

For simplicity’s sake on notations, we use 𝑓(𝑢𝑓)  for the objective function∑ [𝑣(𝑘) −𝑡+𝑙
𝑘=𝑡

𝑣𝑟(𝑘)]
2, ℎ(𝑢𝑓) for the equality constraints, i.e., the discretized dynamics (3), and 𝑔(𝑢𝑓) for the 

inequality constraints, i.e.,𝑣𝑚 ≤ 𝑣(𝑘) ≤ 𝑣𝑀 , |𝑢𝑓(𝑘)| ≤ 𝑢𝑀 and |𝑢𝑓(𝑘 + 1) − 𝑢𝑓(𝑘)| ≤ 𝑑𝑢𝑀. 

So the MPC is converted to  

           argmin𝑢𝑓       𝑓(𝑢𝑓), 

           subject to      ℎ(𝑢𝑓) = 0, 

                                  𝑔(𝑢𝑓) ≤ 0, 

Algorithm 1: Monte Carlo method 

Set the current step as 0, the last time as −1, the future time as 1,2,⋯ 𝑙 − 1, 𝑙, total number of sampling paths as 𝑁𝑚𝑐   

1. Initialization: human error at last time: 𝑒𝑟𝑟𝑜𝑟(−1), number of scenario paths 𝑁𝑚𝑐  

2. for 𝑁𝑠 = 1:𝑁𝑚𝑐  

a. for 𝑡 = 1: 𝑙 − 1 

1) generate a random number 𝑟(𝑡)~𝑈[0,1] 

2) set 𝑒𝑟𝑟𝑜𝑟(𝑡) as the 𝑗th entry in the error       vector if ∑ 𝑇𝑒(𝑒𝑟𝑟𝑜𝑟(𝑡 − 1), 𝑘)
𝑗−1
𝑘=1 <

𝑟(𝑡) ≤ ∑ 𝑇𝑒(𝑒𝑟𝑟𝑜𝑟(𝑡), 𝑘)
𝑗
𝑘=1  

b. end 

3. end  
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Then we use slack variables 𝑠 = (𝑠1,⋯ , 𝑠𝑑) to change the inequality constraints into equality 

constraints, where 𝑑  is the number of inequality constraints, and use barrier function to 

approximate the problem as below, 

               argmin𝑢𝑓,𝑠       𝑓(𝑢𝑓) − 𝜌∑ log 𝑠𝑖𝑖 , 

              subject to      ℎ(𝑢𝑓) = 0, 

                                        𝑔(𝑢𝑓) + 𝑠 = 0, 𝑠 ≥ 0. 

As the problem is non-convex due to the nonlinear dynamics of (3), we use a conjugate gradient 

step with a trust region in [28] to optimize the problem. The basic idea is to minimize a quadratic 

approximation of the objective function subject to linearized constraints in a trust region.  

The Lagrangian of the approximated problem is  

𝐿 = 𝑓(𝑢𝑓) +∑𝜆𝑖𝑔𝑖(𝑢𝑓)

𝑖

+∑𝜇𝑗ℎ𝑗(𝑢𝑓)

𝑗

, 

and one of its KKT conditions (see [27] for details) is  

∇𝑢𝑓𝐿 = ∇𝑢𝑓𝑓(𝑢𝑓) + ∑ 𝜆𝑖∇𝑔𝑖(𝑢𝑓)𝑖 + ∑ 𝜇𝑗∇ℎ𝑗(𝑢𝑓)𝑗 = 0. 

Let the step (Δuf, Δ𝑠) be taken as the one solve the KKT condition in the least-squares sense, 

i.e., (Δuf, Δ𝑠) is the solution of 

 

 

 

 

min
Δ𝑢𝑓,Δ𝑠

∇𝑓𝑇Δuf +
1

2
Δ𝑥𝑇∇𝑢𝑓𝑢𝑓

2 𝐿Δuf + 𝜌𝑒
𝑇𝑆−1Δ𝑠

+
1

2
Δ𝑠𝑇∇𝑥𝑥

2 𝐿ΛΔ𝑠 
subject to  𝑔(𝑢𝑓) + ∇𝑔(𝑢𝑓)Δuf

+ Δ𝑠 = 0 

 

ℎ(𝑢𝑓) + ∇ℎ(𝑢𝑓)Δ𝑢𝑓 = 0, 
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in a trust region ||Δ𝑢𝑓||
2 + ||𝑆−1Δ𝑠||2 ≤ 𝑅2,  where ∇𝑢𝑓𝑢𝑓

2 𝐿  is the second order partial 

derivative of the Lagrangian 𝐿 with respect to uf, 𝑒 = (1,1,⋯ ,1) whose dimension is the same 

as 𝑠,  𝑆 is a diagonal matrix whose diagonal entries are those in the vector 𝑠, and Λ is a diagonal 

matrix whose diagonal entries are 𝜆𝑖. 

 

4.6.3 Simulation and Numerical Analysis  

With the collected field driving data described in section 4.2.2, additional simulation and 

numerical analysis are conducted to validate the performance of the proposed system.  

Driver error estimation with real-world driving data 

As described in the previous section, the dynamics of human error is modeled as Markov chain. 

Now with the collected driving data, the probability transition matrix for each of these drivers 

can be built. In this study, the human error is discretized into the different levels by [-0.4,-0.3,-

0.2,-0.1,0,0.1,0.2,0.3,0.4]. 

There are 9 levels in total. Please note the actual error value would not be those exact 9 values, 

but we use them to best approximate the actual value. For example, when the error is between 

-0.1 and 0.1 we use 0 as the estimated error value.  

In this work, the human driver error is extracted from the real-world with the method described 

in Fig.4-39 using the Stage II driving data.  The probability transition matrices for each of the 

4 drivers are built. For example, the transition matrix for driver 1 is given as follows and the 3-

D plot is given in Fig. 4-43. 
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Figure 4-34   3-D plot of probability transition matrix (driver 1) 

As can be seen in the transition matrix, the diagonal entries of the matrix are the biggest value 

for each column, which implies the latency of human driving manipulation. The human error 

at the immediate next step is most likely to be within the same range of the current error level.  

It is also noticed that different drivers have different driving behavior or habit, which results in 

different transition matrix patterns that can be identified by comparing Fig.4-43 and Fig.4-44.  
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Figure 4-35 3-D plot of probability transition matrix (driver 2) 

Simulation of EAD Assistance System Considering Driver Error 

In this study, the Driver-in-the-loop EAD assistance system is not implemented in filed driving 

but simulated with the real-world driving data collected from open-loop EAD assistance 

system.  In the simulation framework as shown in the Fig.4-45, the built human error probability 

transition matrix is used in two places in the simulation for different purpose. One is used to 

estimate the human driver error that is input for the SMPC model. Another is used to replace 

the real human driver who adds in error when trying to follow the advised speed. These two 

matrix should be from the same driver and we assume the driving habit (represented by the 

error probability transition matrix) is not significantly changed during the simulation time.  

 

Figure 4-36 Simulation framework 
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To extensively evaluate the performance of EAD with driver-in-the-loop, the simulation is 

conducted using the field test driving data for every entry case described in the previous section 

(288 in total), so that the average performance can cover different driving conditions and 

different drivers.  The vehicle speed trajectories obtained from the simulation are compared 

with that of real-world test driving. For example, the Fig.4-46 provides the vehicle speed 

trajectory and its reference speed trajectory in entry case 11. As we can see in the figure, the 

reference speed is adjusted or recalculated for 3 times (marked by A, B, and C in the figure) 

due to the increasing human driving following error. Although with the reference speed 

adjustment, the final driving speed trajectory is still away from the advised optimal speed due 

to the unavoidable human error. However, in Fig.4-47, we can see that the speed trajectory by 

EAD with driver-in-the-loop is overlapped with the calculated optimal speed trajectory for most 

of the simulation time (using the same initial speed, initial position and entry time). It is also 

observed that the speed trajectory resulting from EAD with drive-in-the-loop systems is much 

smoother than that of EAD without (shown in Fig. 48), which is a possible reason of energy 

saving that will be discussed in the following sections.  

 

Figure 4-37  Speed trajectory of EAD without driver-in-the-loop (real-world driving by driver 1 in 

entry case 11) 
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Figure 4-38 Speed trajectory of EAD with driver-in-the-loop (simulation driving) 

 

 

Figure 4-39 Speed trajectory of EAD with/without driver-in-the-loop 

 

Real- time Performance and Parameter Tuning 

In the implementation of the proposed SMPC system, to ensure the real-time performance, the 

optimization of each time horizon should be finished within one-time step (e.g., 1s). In our 
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study, the running time is recorded on the computing platform used for simulation (with Intel 

Core i7 3.4GHz, RAM 4G, and 64bit-Matlab 2012). Fig. 16 provides the time consumed for 

time horizon by different horizon length (For driver 1 and entry case 7, and the total number of 

sampling paths is 100). As we can see that, more than 1 second time is consumed when horizon 

length is longer than 10 s, which means the real-time performance is ensured when horizon 

length is shorter than 10s. It is also noticed that the minimal energy consumption (marked in 

the Fig.4-49 with a circle) is identified around the horizon length 9 and 10. Therefore, the length 

of the receding horizon ( 𝑙) in his study is set as 10.  

In addition, another important parameter that can be tuned to maximize the performance of the 

SMPC based EAD with driver-in-the-loop, is the total number of sampling paths ( 𝑁𝑚𝑐 ). In Fig. 

4-50 gives the energy consumption by different total numbers of scenario path sampling size 

and it is observed that the increase of sampling size is not able to improve the performance (i.e., 

reduce energy consumption). A possible reason is that, the scenario path with very small 

probability is not likely to be sampled no matter how large the sample size is. Hence we set the 

sampling size (𝑁𝑚𝑐) is 100, which is marked by a circle in the figure. 

 

Figure 4-40 Time and energy consumption by different horizon length 
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Figure 4-41 Energy consumption by different number of scenario sampling size (𝑙 = 10) 

 

 

 

Energy Savings Analysis 

As described in Fig.4-34, there are 4 different passing scenarios for a vehicle passing through 

an intersection. Fig. 4-51 gives the passing scenarios (in different colors) resulting from 

different stages of technology (for driver 1 with 25mph initial speed). It is observed in Fig.18 

that for some entry cases, the passing scenario is changed due to the consideration of human 

drive error in the EAD system. For example, for entry case 1, the driving by EAD with driver-

in-the-loop is 4 rather than 3 in EAD without driver-in-the-loop. It shows that a full stop at the 

intersection is avoided due to the technology improvement, which will potentially reduce the 

energy consumption.  
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Figure 4-42  Passing scenario at different entry case 

 

As can be seen in Fig.4-52, the energy savings of Stage III comparing to Stage II is significantly 

different for different entry case. The largest energy saving is at entry case 4 (40.5%) and the 

speed trajectory is shown in Fig.4-53. The energy saving is due to the passing scenario change 

from 3 to 2. The complete avoidance of stop-and-go is the main reason of the energy benefit.  

 

Figure 4-43 Energy savings by different stages and entry case (driver 1) 

 



97 

 

 

Figure 4-44   Speed trajectory of EAD with/without driver-in-the-loop (case 4) 

 

 

Figure 4-45 Speed trajectory of EAD with/without driver-in-the-loop (entry case 9) 
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Figure 4-46  Speed trajectory of EAD with/without driver-in-the-loop ( entry case 12) 

For the entry case 9(Fig. 4-54), all the three stages result in passing scenario 1 , therefore, there 

would no significant energy savings and it could even a smaller increase of energy consumption 

(-7.8 %) due to the stochastic property of the SMPC. For entry case 12, the energy saving 

(2.3%) is due to the reduce of acceleration and comparing a full stop for Stage I and II. But this 

energy saving is smaller comparing to entry case 4 (see Fig.4-55) where the unnecessary 

deceleration and acceleration is completely avoided. In addition, the energy savings of Stage II 

comparing to Stage I is also given in Fig.4-52 

To obtain a statistical performance evaluation, the collected data of all the test driving (288 in 

total) are used to calculated the energy savings resulted by different stages of technologies. 

Table 4-6 gives the statistics of energy savings for different passing scenario changes. The 

change from 3 to 2 or 4 could result in the most part of the energy savings due to the reduced 

unnecessary acceleration from low speed.  

Table 4-4 Scenario-change analysis 

Stage  Scenario 

Change 
Energy savings 

min mean max 

II vs III 3-›2 19.1% 25.7% 40.5% 

II vs III 3-›4 9.9% 18.9% 26.7% 

II vs III 1-›1 -6.7% 1.3% 10.3% 

II vs III 4-›4 -15.5% 1.9% 13.2% 
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The overall average savings of Stage II vs. Stage I and Stage III vs Stage II are listed in Table 

4-7 .  The EAD assistance without drive-in-the-loop achieves 12.1% energy savings comparing 

to the human driving without any EAD assistance. And the EAD assistance with driver-in-the-

loop can achieve another 11.7% energy savings comparing to EAD without driver-in-the-loop. 

It shows that considering human driving errors in driving assistances systems has potential in 

improving the energy performance of electric vehicles.  

Table 4-5 Average Energy and Mobility Improvement 

Stage Energy benefit 

(Energy savings) 

 min mean max 

III vs II -8.9% 11.7% 40.5% 

II vs I -14.3% 12.1% 27% 

 

4.6.4 Summary and Discussion 

In this study, a driver-vehicle-infrastructure cooperative framework for EV energy efficient 

driving is proposed. To validate this framework, a EAD assistance system considering human 

driver error is designed and tested for EVs which is also compared with an open-loop EAD 

system without driver-in-the-loop. Real-world driving data were collected for performance 

evaluation, by comparing the resulted energy benefits. The simulation and numerical analysis 

show that an average of 11.7% energy savings achieved by EAD assistance system considering 

human driver error. The future work will mainly focus on the real-world implementation of the 

EAD system with considering the driver error.  

 

4.7 Connected Ecodriving Assistance with Partial Automation 

In this dissertation study, to obtain an upper bound of the energy benefit of the EAD assistance 

system, A EAD assistance with partial automation is designed and evaluated with real-world 

driving data. In the system, the designed VTPA is integrated with a model predictive control 

(MPC) scheme to develop a partially automated EAD system for EVs (see Figure 4-28). For 
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each optimization time horizon of the proposed system, the control objective is to follow the 

pre-calculated optimal vehicle trajectory as close as possible. In addition, the receding horizon 

property of MPC allows the system to better handle unpredicted disturbances. The system 

diagram is provided in Figure 2. 

 

Figure 4-47  The system diagram of MPC-based EAD for EVs. 

 

A nonlinear vehicle dynamics model (longitudinal dynamics) [109] and also its discretized 

version is adopted in this study (see eq.(4-17) and eq.(4-19)). MPC is designed to follow the 

optimal vehicle trajectory. Therefore, the objective function is defined as the sum of squared 

differences between the modeled and reference velocities. We also consider box constraints for 

the velocities, acceleration/deceleration and jerk values. In summary, the optimal control 

problem based on MPC can be formulated as:  

   argmin𝑢𝑓                  ∑ [𝑣(𝑘) − 𝑣𝑟(𝑘)]
2 𝑡+𝑙

𝑘=𝑡 , 

subject to      the discritized dynamics (3), 

       𝑣𝑚 ≤ 𝑣(𝑘) ≤ 𝑣𝑀, 

|𝑢𝑓(𝑘)| ≤ 𝑢𝑀, 

                              |𝑢𝑓(𝑘 + 1) − 𝑢𝑓(𝑘)| ≤ 𝑑𝑢𝑀 ,      
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where 𝑡 is current time; 𝑙 is optimization horizon; 𝑣(∙) is velocity computed by the MPC; 𝑣𝑟(∙) 

is reference velocity; 𝑣𝑚 is minimum allowable speed, which is set to 0 in this work; 𝑣𝑀 is 

maximum allowable speed (usually the speed limit); 𝑢𝑀  is  maximum acceleration 

/deceleration constrained by the vehicle propulsion power; and  𝑑𝑢𝑀  is the user-defined 

maximum jerk (mainly for driving comfort). We use 0.1 second as the time step and the control 

horizon of the MPC is set to 1 second, which means that there are 10 time steps to optimize for 

each control horizon. Note that as the dynamics in Eq. (3) are nonlinear, the optimization 

problem at every time step of the MPC is non-convex. 

 

For the optimization problem in the MPC, we apply the interior point method with conjugate 

gradient step in the trust region used in the MATLAB command fmincon. In this  

part we use u(k) for uf(k) for the simplicity’s sake of notations, and u for the vector composed 

of u(k). The basic idea of the method is first to change the optimization problem to one with 

equality constraints with slack variables and barrier functions, then to find a solution to its KKT 

conditions approximately with linear approximations. 

For the optimization problem in the MPC in this paper, after using the slack variables, the 

objective function becomes 

J = [v(1) − vr(1)]
2 + [v(2) − vr(2)]

2 + [v(3) − vr(3)]
2 − ρ∑ sl,ii ,  

where sl,i is the slack variables. In the following parts, when we refer to the slack variables for 

different constraints, we will use o(k), p(k), q(k), r(k) ,  s(k), j(k)  for different constraints, 

while when we want to emphasize the slack variables as a whole, we use sl. Then we change 

the constraints to affine equality: 

v(k) − vM + o(k) = 0, 

vm − v(k) + p(k) = 0, 
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u(k) − uM + q(k) = 0, 

−u(k) − uM + r(k) = 0, 

u(k + 1) − u(k) − duM + s(k) = 0, 

u(k) − u(k + 1) − duM + j(k) = 0. 

Note that the constraints of the dynamics of the car do not appear in these constraints because 

we will substitute it into the objective function. In this way, we can make the objective function 

directly dependent on the optimization variables u(k). 

To get the KKT conditions of the optimization problem with slack variables, we need first get 

its Lagrangian, which is as follows:  

L = J + ∑ λk[v(k) − vM + o(k)] + ∑ μk[vm − v(k) + p(k)] +       ∑ αk[u(k) −
3
k=1

3
k=1

3
k=1

uM + q(k)] + ∑ βk[−u(k) − uM + r(k)] + ∑ γk[u(k + 1) − u(k) − duM + s(k)] +
1
k=0

3
k=1

∑ δk[u(k) − u(k + 1) − duM + j(k)],
1
k=0    

where λk, μk, αk, βk, γk, δk are the Lagrangian multipliers. For the KKT conditions, we first 

have that  

∂L

∂u(k)
= 0. 

As L is not quadratic with respect to u(k), 
∂L

∂u(k)
 is not linear. So we need to do a first-order 

approximation to it. Then in each step in the optimization problem, we solve indeed the 
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following quadratic programming problem with conjugate gradient method: 

Type equation here. 

in a trust region ||Δuf||
2 + ||S−1Δs||2 ≤ R2. Here, Δu and Δsl are the steps in the optimization 

algorithms, e = (1,1,⋯ ,1),  Sl  is a diagonal matrix whose diagonal entries are the slack 

variables sl,i,  i.e., o(k), p(k), q(k), r(k) ,  s(k), j(k) , Λ  is a diagonal matrix whose diagonal 

entries are the Lagrangian multipliers λk, μk, αk, βk, γk, δk. And ∇J is the gradient of J, ∇uu
2 L is 

the Hessian of L with respect to u. As the mathematical expressions of ∇J and ∇uu
2 L are very 

complicate, we put them at the end of the paper for readability. 

As the problem is not convex due to the nonlinear dynamics of the car, we are not guaranteed 

to find a global optimal solution. But by setting the initial iteration point such that J = 0, we 

may find a good solution because the initial guess is a global solution to the unconstrained 

problem.  

 

Energy and Mobility Benefits Analysis  

Using the data collected in the field test, the designed EAD system for EVs were evaluated in 

terms of energy and motility benefits.  Besides the Stage I and Stage II technologies described 

in the section 4.2.2, a new Stage III is defined as following: 

Stage III: “MPC-based (partially) automated” driving (MPC). No real-world testing has been 

conducted in this stage due to the limited resources. Instead, we evaluated the performance of 

min
Δ𝑢𝑓,Δ𝑠𝑙

  ∇𝐽𝑇Δu +
1

2
Δu𝑇∇𝑢𝑢

2 𝐿Δu + 𝜌𝑒𝑇𝑆𝑙
−1Δ𝑠𝑙

Subject to   𝑣(𝑘) − 𝑣𝑀 + 𝑜(𝑘) = 0, 

−𝑣(𝑘) − 𝑣𝑚 + 𝑝(𝑘) = 0, 

𝑢(𝑘) − 𝑢𝑀 + 𝑞(𝑘) = 0, 

−𝑢(𝑘) − 𝑢𝑀 + 𝑟(𝑘) = 0, 

𝑢(𝑘 + 1) − 𝑢(𝑘) − 𝑑𝑢𝑀 + 𝑠(𝑘) = 0, 

𝑢(𝑘) − 𝑢(𝑘 + 1) − 𝑑𝑢𝑀 + 𝑗(𝑘) = 0, 
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the designed MPC-based longitudinal control system in a simulation environment developed in 

Matlab using data collected from the field testing. The optimal speed profile calculated by the 

VTPA was used as the reference input to the MPC model. The results from this simulation 

likely represent the upper bound of system performance. 

The EV energy consumption model described above was applied to calculate the energy 

consumption associated with the collected vehicle trajectory data. Figure 4-29 indicates the 

change in passing scenarios due to the application of the EAD system for one of the drivers 

(Driver 1). For example, in entry case 4, Driver 1 passed the intersection with passing scenario 

3 (which is the most energy intensive passing scenario) in both stages I and II, but he would 

have done so with passing scenario 2 in stage III if the proposed MPC-based longitudinal 

controller has been applied.  It is observed that among the 12 entry cases of Driver 1, there are 

more scenario 3 in stage I than that in stage II or stage III due to the lack of recommended 

driving speed provided to the driver. In stage III, there would have been no passing scenario 3 

with the aid of the MPC-based longitudinal controller. 

Figure 4-30 and Figure 4-31 show the energy savings and time savings of stage II (“HMI vs. 

MUD”) and stage III (“MPC vs. MUD”), as compared to stage I, for Driver 1 . Figure 6 shows 

clearly that most of the energy savings happen when the passing scenarios changes from 

scenario 3 to scenario 2 or scenario 4 (i.e., entry cases 3, 4, 5, 6, and 7 shown in Figure 5). The 

biggest energy saving (45.3%) occurs in entry case 4 where the passing scenario changes from 

scenario 3 to scenario 2. The speed profiles for this entry case are given in Figure 8. As shown 

in the figure, when given the advisory speed profile through HMI, Driver 1 failed to follow it 

closely at the beginning, resulting in a switch from passing scenario 2 to 3, and therefore, trivial 

energy savings. For those entry cases where the three different stages are in the same passing 

scenarios, the energy savings are not as much and, for some entry cases of stage 2, turn negative 

because of variations in real-world driving.  
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Figure 4-48  Changes in passing scenario in different stages (driver 1). 

      

 

Figure 4-49 Energy savings for different cases (Driver 1). 

 

 

 
Figure 4-50 Time savings for different scenarios (Driver 1) 
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Figure 4-51 Speed versus distance for entry case 4 (Driver 1) 

 

 

 
Figure 4-52 Speed versus distance for entry case 9 (Driver 1) 

 

From the mobility perspective, it is observed in Figure 4-31 that most of the entry cases in stage 

II and stage III result in minimal time savings or even small time penalties except entry case 3 

and entry case 4 of stage III where the passing scenario is 2. This can be well explained by 

Figure 4-33 where the speed profile in stage I shows a more aggressive trend (i.e., exceeding 

the speed limit of 20 mph almost throughout) than either of the other two stages. Although 

stages II and III have longer travel times in this case, it is because of the uncharacteristic driving 

in stage 1 rather than the shortcoming of the EAD system. 

To further analyze the energy benefits of the designed EAD system, a scenario change analysis 

was conducted using the driving data of all 4 drivers. The analysis covers all the scenario 

changes that happened in the field experiment. As shown in Table 4-4, most of the energy 

savings happen when the passing scenario changes from scenario 3 to scenario 2 or scenario 4 
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with the assistance of the EAD system. However, when the EAD system cannot change the 

passing scenario, there is not as much energy saving (on average) or even a negative saving (for 

scenario 3 between stage I and stage II) due to variations in real-world driving. This may 

suggest that the information disseminated by the HMI is not effective enough in assisting the 

manual driving and more comprehensive system design should be conducted to take into 

consideration the human factors aspect. One possible way to improve the existing system is to 

disable the display of advisory speed when the system predicts that there will be no change in 

the passing scenario.  

Table 4-6 Scenario-change analysis 

Stage  Scenario 

Change 
Energy savings 

min mean max 

I vs III 3-›2 13.9% 25.7% 45.3% 

I vs III 3-›4 10.3% 19.1% 27.0% 

I vs III 1-›1 -16.0% 7.3% 11.3% 

I vs III 2-›2 -15.5% 5.9% 10.9% 

     

I vs II 3-›2 2.2% 9.5% 18.3% 

I vs II 3-›4 1.2% 3.8% 13.9% 

I vs II 1-›1 -6.7% 1.1% 6.3% 

I vs II 2-›2 -15.1% 0.9% 5.1% 

I vs II 3-›3 -10.3% -3.1% 7.3% 

 

Finally, the average energy and time savings across all entry cases and all drivers were 

calculated and thus are provided in Table 4-5. It shows that the MPC based EAD system can 

achieve an average of 21.9% electricity savings along with an average of 10.7% time savings 

(mostly contributed by entry case 3 and entry case 4), while the driving assistance system with 

HMI achieves 12.1% energy savings on average but with compromise of travel time (increase 

of 3.2%).  

Table 4-7. Average Energy and Mobility Improvement 

Stage Energy benefit 

(Energy savings) 

Mobility benefit 

(Time savings) 

 min mean max min mean max 

II -14.3% 12.1% 27% -13% -3.2% 17.6% 

III 3.7% 21.9% 45.3% -28.1% 10.7% 55.1% 
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4.8 Summary of Energy Benefits for Different Technology Stages  

In this chapter, 3 different stages of EAD assistance technologies are designed and evaluated 

for PEVs.  They are all compared with the baseline (i.e., Stage I). The definitions for each stage 

are listed as follows one more time just for clarification: 

 

 Stage I: Uninformed driving. In this stage, the driver approached and traveled through the 

intersection in a normal fashion without guidance or automation, stopping as needed 

without any guidance. The vehicle is fully controlled by the human driver.  This stage is 

used as lower bound performance technological stage. 

 Stage II: In-vehicle advising driving without considering driver error. In this stage, the 

driver was assisted by an open-loop EAD system as described in Fig. 4-37. An enhanced 

dashboard presenting a recommended range of driving speed is provided (see Figure 4-38). 

This information can assist the driver to approach and depart the intersection in an 

environmentally friendly manner while obeying the traffic signal. This driving assistance 

system does not consider human driver error. 

 Stage III: “In-vehicle advising driving with considering driver error”. At this stage, no real-

world testing has been conducted due to the limited resources. Instead, we evaluated the 

performance of the designed EAD with the driver-in-the-loop system in a simulation 

environment developed in Matlab using data collected from the field testing of Stage II. 

The same VTPA model is used to calculate the optimal speed profile as part of the SMPC 

control model. More details about the simulation are given in the following sections. 

 Stage IV: “Partially automated” driving. At this stage, an automatic controller was 

responsible for longitudinal control of the vehicle, allowing it to speed up or slow down 

while the driver steered for lateral control. The vehicle automatically controlled the brake 

and throttle based on the calculated eco-friendly velocity profile according to signal state 
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and distance to the stop-bar. 

 

Figure 4-53  Energy benefits for different stages of EAD technologies for entry case 9 

As discussed in previous sections, the energy benefits are highly dependent on the different 

entry cases. As shown in Fig. 4-53, the energy benefits for different stages of technologies 

along different entry cases have similar patterns. Most of the energy benefits are identified 

when the passing scenario changes from 3 to 1 or 2. And for the situations where passing 

scenarios are not changed, there is no significant energy benefits are identified.  Therefore, the 

main reason of energy consumption reduction is due to the reduction of unnecessary 

accelerations and decelerations.  

Fig 4-54 also provides the average energy benefits of Stage II, II and IV of EAD technologies.  It is 

observed that the consideration of human driver error does improve the EAD driving performance and 

fully automated driving can reach the upper bound of the EAD system.  
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Figure 4-54   Average energy savings for different EAD technologies comparing to driving without 

EAD 
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5 Powertrain Operation Optimization: Optimal Power-split Control 

5.1 Overview 

Air pollution and climate change impacts associated with the use of fossil fuels have motivated 

the electrification of transportation systems. In the realm of powertrain electrification, 

groundbreaking changes have been witnessed in the past decade in terms of research and 

development of hybrid electric vehicles (HEVs) and electric vehicles (EVs) [136]. As a 

combination of HEVs and EVs, plug-in hybrid electric vehicles (PHEVs) can be plugged into 

the electrical grid to charge their batteries, thus increasing the use of electricity and achieving 

even higher overall fuel efficiency, while retaining the internal combustion engine that can be 

called upon when needed [137]. 

 
In comparison to conventional HEVs, the energy management systems (EMS) in PHEVs are 

significantly more complex due to their extended electric-only propulsion (or extended all-

electric range capability) and battery chargeability via external electric power sources. 

Numerous efforts have been made in developing a variety of EMS for PHEVs [138, 139]. From 

the control perspective, existing EMS can be roughly classified as rule-based [140] and 

optimization-based [141]. This is discussed in more detail in Section II. 

 

In spite of all these efforts, most of the existing PHEVs’ EMS have one or more of the following 

limitations:  

 Lack of adaptability to real-time information, such as traffic and road grade. This 

applies to rule-based EMS (either deterministic or using fuzzy logic) whose parameters 

or criteria have been pre-tuned to favor certain conditions (e.g., specific driving cycles 

and route elevation profiles) [138]. In addition, most EMS that are based on global 

optimization off-line assume that the future driving condition is known [137]. Thus far, 

only a few studies have focused on the development of on-line EMS for PHEVs [142]. 
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 Dependence on accurate (or predicted) trip information that is usually unknown a 

priori. Many of the existing EMS require at a minimum the trip duration as known or 

predicted information prior to the trip [143]. Furthermore, it is reported that the 

performance of EMS is largely dependent on the time span of the trip [143]. There are 

very few studies analyzing the impacts of trip duration on the performance of EMS for 

PHEVs.  

 Emphasis on a single trip level optimization without considering opportunistic charging 

between trips. The most critical feature that differentiates PHEVs from conventional 

HEVs is that PHEVs’ batteries can be charged by plugging into an electrical outlet. 

Most of the existing EMS are designed to work on a trip-by-trip basis. However, taking 

into account inter-trip charging information can significantly improve the fuel economy 

of PHEVs [137]. 

 

5.1.1 PHEV Modeling  

Typically, there are three major types of PHEV powertrain architectures: a) series, b) parallel, 

and c) power-split (series-parallel). This study is focused on the power-split architecture where 

the internal combustion engine (ICE) and electric motors can, either alone or together, power 

the vehicle while the battery pack may be charged simultaneously through the ICE. Different 

approaches with various levels of complexity have been proposed for modeling PHEV 

powertrains [144]. However, a complex PHEV model with a large number of states may not be 

suitable for the optimization of PHEV energy control. A simplified but sufficiently detailed 

power-split powertrain model has been developed in MATLAB and used in this study. For 

more details, please refer to [137]. 
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5.1.2 Operation Mode and SOC Profile 

During the operation of a PHEV, the SOC may vary with time, depending on how the energy 

sources work together to provide the propulsion power at each instant. The SOC profile can 

serve as an indicator of the PHEV’ operating modes, i.e., charge sustaining (CS), pure electric 

vehicle (EV), and charge depleting (CD) modes [138], as shown in Fig. 5-1.  

 

The CS mode occurs when the SOC is maintained at a certain level (usually the lower bound 

of SOC) by jointly using power from both the battery pack and the ICE. The pure EV mode is 

when the vehicle is powered by electricity only. The CD mode represents the state when the 

vehicle is operated using power primarily from the battery pack with supplemental power from 

the ICE as necessary. In the CD mode, the ICE is turned on if the electric motor is not able to 

provide enough propulsion power or the battery pack is being charged (even when the SOC is 

much higher than the lower bound) in order to achieve better fuel economy.  

 

 
Figure 5-1 Basic operation modes for PHEV. 
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5.1.3 EMS for PHEVs 

The goal of the EMS in a PHEV is to satisfy the propulsion power requirements while 

maintaining the vehicle’s performance in an optimal way. A variety of strategies have been 

proposed and evaluated in many previous studies [139]. A detailed literature review on EMS 

for PHEVs is provided in this section. Broadly speaking, the existing EMS for PHEVs can be 

divided into two major categories:  

 Rule-based EMS are fundamental control schemes operating on a set of predefined 

rules without prior knowledge of the trip. The control decisions are made according to 

the current vehicle states and power demand only. Such strategies are easily 

implemented but the resultant operations may be far from being optimal due to not 

considering future traffic conditions.   

 Optimization-based EMS aim at optimizing a predefined cost function according to the 

driving conditions and behaviors. The cost function may include a variety of vehicle 

performance metrics, such as fuel consumption and tailpipe emissions.  

For Rule-based EMS, deterministic and fuzzy control strategies (e.g., binary control) have been 

well investigated.   For Optimization-based EMS, the strategies can be further divided into three 

subgroups based on how the optimizations are implemented: 1) off-line strategy which requires 

a full knowledge of the entire trip beforehand to achieve the global optimal solution; 2) 

prediction-based strategy or so called real-time control strategy which takes into account 

predicted future driving conditions (in a rolling horizon manner) and achieves local optimal 

solutions segment-by-segment. This group of strategies are quite promising due to the rapid 

advancement and massive deployment of sensing and communication technologies (e.g., GPS) 

in transportation systems that facilitate the traffic state prediction; and 3) learning-based 

strategy which is recently emerging owing to the research progress in machine learning 

techniques. In such a data-driven strategy, a dynamic model is no longer required. Based on 

massive historical and real-time information, trip characteristics can be learned and the 
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corresponding optimal control decisions can be made through advanced data mining schemes. 

This strategy fits very well for commute trips. Figure 5-2 presents a classification tree of EMS 

for PHEVs and the typical strategies in each category, based on most existing studies. 

In addition to the classification above, Table I highlights several important features which help 

differentiate the aforementioned strategies. Example references are also included in Table 5-1. 

 
Table 5-1 Classification of current literature 

 Rule- 

based 

Off-line 

optimization 

Prediction based  Learning 

based 

Optimality local global local local 

Real time Yes No Yes Yes 

SOC control No Yes Yes No 

Need trip 

duration 

No Yes Yes Yes 

Example 

references 

[142], [145], 

[146], [147] 

[137], [148], [149], 

[150] 

[155], [156], [158] 

[151], [152], 

[154], [159], 

[161], [162], [163] 

[14], [15], 

[153], [157], 

[160], [164] 

 

 
Figure 5-2 Basic classification of EMS for PHEV. 
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5.1.4 PHEVs’ SOC Control 

For a power-split PHEV, the optimal energy control is, in principle, equivalent to the optimal 

SOC control. Most of the existing EMS for PHEVs implicitly integrate SOC into the dynamic 

model and regard it as a key control variable [157], while only a few studies have explicitly 

described their SOC control strategies. A SOC reference control strategy is proposed in [154] 

where a supervisory SOC planning method is designed to pre-calculate an optimal SOC 

reference curve. The proposed EMS then tries to follow this curve during the trip to achieve the 

best fuel economy. Another SOC control strategy is proposed in [159] where a probabilistic 

distribution of trip duration is considered. More recently, machine learning-based SOC control 

strategies (e.g., [160]) have emerged, where the optimal SOC curves are pre-calculated using 

historical data and stored in the form of look-up tables for real-time implementation. A common 

drawback for all these strategies is that accurate trip duration information is required in an either 

deterministic or probabilistic way. In reality, however, such information is hard to be known 

ahead of time or may vary significantly due to the uncertainties in traffic conditions. To ensure 

the practicality of our proposed EMS for PHEVs, we employ a self-adaptive SOC control 

strategy in this study which does not require any information about the trip duration (or length).  

 

5.2 PHEV Architecture 

This chapter describe the PHEV model used in this study. Several approaches with different 

levels of complexity have been proposed for modeling PHEV vehicle and powertrain. A 

complex PHEV model with a large number of states may not be suitable for the optimization 

of PHEV energy control. Therefore, a simplified but sufficiently detailed vehicle and 

powertrain model was developed in this dissertation study [165]. In general, there are three 

major PHEV powertrain architectures: a) series, b) parallel, and c) power-split (series-parallel). 

This study is focused on the power-split one. Figure 5-3 depicts the configuration of a power-
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split PHEV, in which three major sub-systems: a) internal combustion engine (ICE), b) 

planetary gear set (PGS), and c) motor/battery are modeled as described below. 

 

Planetary 

Gear Set

Fuel Tank

Internal 

Combustion 

Engine

Motor/Generator 

(MG1)
Inverter Battery Pack

Motor/Generator 

(MG2)

Electrical Path

Mechanical Path

Fuel Flow
Fixed Gear

Wheel

 

Figure 5-3  Power-split plug-in hybrid electric vehicle configuration. 

 

 

 

 

 

 

 

 

 



118 

 

5.2.1 PHEV Model Parameters 

All major parameters and the associated values of the PHEV model used in this study are 

listed in Table 5-2. 

Table 5-2  List of PHEV Model Parameters 

Parameters Value Unit 

Vehicle curb weight 1718 kg 

Final drive ratio 3.93 / 

Vehicle equivalent mass 1853 kg 

Tire radius 0.317 m 

No. of teeth on sun gear 30 / 

No. of teeth on ring gear 78 / 

Gravitational acceleration 9.81 m/s2 

Rolling resistance coefficient (constant term) 0.008  

Rolling resistance coefficient (linear term) 0.00012 s/rad 

Air density 1.2041 kg/m3 

Projected frontal area 2.2508 m2 

Aerodynamic drag coefficient 0.26  

Maximum engine power 60 kWatt 

Moment of inertia for engine 0.1598 kg*m2 

Maximum motor power 50 kWatt 

Moment of inertia for motor 0.0302 kg*m2 

Maximum generator power 30 kWatt 

Moment of inertia for generator 0.0287 kg*m2 

Maximum brake torque 2000 N*m 

No. of battery cells per module 12 / 

No. of battery module 6 / 

Nominal open-circuit voltage 3.6 volt 

Battery capacity 17 Ah 

Minimum state of charge (SOC) 0.2 / 

 

 

5.3 Problem Formulation, Optimality and Complexity 

5.3.1 Proposed On-line EMS Framework for PHEVs 

In this dissertation study, we propose an on-line EMS framework for PHEVs, using the receding 

horizon control structure (see Fig. 5-7). The proposed EMS framework consists of information 

acquisition (from external sources), prediction, optimization, and power split control. With the 

receding horizon control, the entire trip is divided into segments or time horizons. As shown in 

Fig. 5-8, the prediction horizon (N sampling time steps) needs to be longer than the control 
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horizon (M sampling time steps). Both horizons keep moving forward (in a rolling horizon 

style) while the system is operating. More specifically, the prediction model is used to predict 

the power demand at each sampling step (i.e., each second) in the prediction horizon. Then, the 

optimal ICE power supply for each second during the prediction horizon is calculated with this 

predicted information. 

In each control horizon, the pre-calculated optimal control decisions are inputted into the 

powertrain control system (e.g., electronic control unit (ECU)) at the required sampling 

frequency.  In this study, we focus on the on-line energy optimization, assuming that the short-

term prediction model is available (which is one of our future research topics).  

 

Figure 5-4 Flow chart of the proposed on-line EMS. 
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Figure 5-5 Time horizons of prediction and control. 

 

5.3.2 Optimal Power-Split Control Formulation 

Mathematically, the optimal (in terms of fuel economy) energy management for PHEVs can be 

formulated as a nonlinear constrained optimization problem. The objective is to minimize the 

total fuel consumption by ICE along the entire trip. 

{
 
 
 
 

 
 
 
 min {∫ h(ωe, qe, t)dt

T

0
}

subject to:

SOĊ = f(SOC,ωMG1, qMG1, 𝜔𝑀𝐺2, 𝑞𝑀𝐺2)

(𝜔𝑒, 𝑞𝑒) = 𝑔(𝜔𝑀𝐺1, 𝑞𝑀𝐺1, 𝜔𝑀𝐺2, 𝑞𝑀𝐺2)

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
𝜔𝑚𝑖𝑛 ≤ 𝜔𝑒 ≤ 𝜔𝑚𝑎𝑥
𝑞𝑚𝑖𝑛 ≤ 𝑞𝑒 ≤ 𝑞𝑚𝑎𝑥

 

                          (5-1) 

where 𝑇  is the trip duration; 𝜔𝑒 , 𝑞𝑒  are the engine’s angular velocity and engine’s torque, 

respectively; ℎ(𝜔𝑒 , 𝑇𝑞𝑒)  is ICE fuel consumption model; 𝜔𝑀𝐺1, 𝑞𝑀𝐺1  are the first 

motor/generator’s angular velocity and torque, respectively; 𝜔𝑀𝐺2, 𝑞𝑀𝐺2  are the second 

motor/generator’s angular velocity and torque, respectively; 

𝑓(𝑆𝑂𝐶,𝜔𝑀𝐺1, 𝑞𝑀𝐺1, 𝜔𝑀𝐺2, 𝑞𝑀𝐺2)is the battery power consumption model; For more details 

about the model derivations and equations, please refer to [138]. 
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Such formulation is quite suitable for traditional mathematical optimization methods [148] with 

high computational complexity. In order to facilitate on-line optimization, we herein discretize 

the engine power and reformulate the optimization problem represented by (1) as follows: 

𝑚𝑖𝑛∑ ∑ 𝑥(𝑘, 𝑖) 𝑃𝑖
𝑒𝑛𝑔

𝜂𝑖
𝑒𝑛𝑔

⁄𝑁
𝑖=1

𝑇
𝑘=1                     (5-2) 

subject to: 

∑ 𝑓(𝑃𝑘 − ∑ 𝑥(𝑘, 𝑖)𝑃𝑖
𝑒𝑛𝑔𝑁

𝑖=1 )
𝑗
𝑘=1 ≤ 𝐶     ∀𝑗 = 1,… , 𝑇                 (5-3) 

∑ 𝑥(𝑘, 𝑖)𝑁
𝑖=1 = 1           ∀𝑘                                         (5-4) 

          𝑥(𝑘, 𝑖) = {0, 1}             ∀𝑘, 𝑖            (5-5) 

where 𝑁 is the number of discretized power level for the engine; k is the time step index; i is 

the engine power level index; 𝐶 is the gap of the battery pack’s SOC between the initial and the 

minimum; 𝑃𝑖
𝑒𝑛𝑔

 is the i-th discretized level for the engine power and 𝜂𝑖
𝑒𝑛𝑔

 is the associated 

engine efficiency; and 𝑃𝑘 is the driving power demand at time step 𝑘. 

  

Furthermore, if the change in SOC ( 𝛥𝑆𝑂𝐶 ) for each possible engine power level at each time 

step is pre-calculated given the (predicted) power demand, then constraint (3) can be replaced 

by 

𝑆𝑂𝐶𝑖𝑛𝑖 − 𝑆𝑂𝐶𝑚𝑎𝑥 ≤∑ 𝑥(𝑘, 𝑖)∆𝑆𝑂𝐶(𝑘, 𝑖)
𝑗

𝑘=1
≤ 𝑆𝑂𝐶𝑖𝑛𝑖 − 𝑆𝑂𝐶𝑚𝑖𝑛     

                                       ∀𝑗 = 1,… , 𝑇                                   (5-6) 

where 𝑆𝑂𝐶𝑖𝑛𝑖 is the initial SOC; and 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the minimum and maximum 

SOC, respectively. Therefore, the problem is turned into a combinatory optimization problem 

whose objective is to select the optimal ICE power level for each time step given the predicted 

information in order to achieve the highest fuel efficiency for the entire trip. Fig.5-9 gives three 
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example ICE power output solutions. The solution represented by the blue line has a lower total 

ICE power consumption (i.e., 40 units) than the red line (i.e., 90 units), while the green line 

represents an infeasible solution due to the SOC constraint. 

  

 
Figure 5-6  Example solutions of power-split control. 

 

5.3.3 Optimality and Complexity 

Evolutionary algorithms are stochastic search algorithms which do not guarantee to find the 

global optima. Hence, in the proposed on-line EMS, the optimal power control for each trip 

segment is not guaranteed to be found. Moreover, EAs are also population-based iterative 

algorithms which are usually criticized due to their heavy computational loads [169], especially 

for real-time applications. Theoretically, time complexity of EAs is worse than 𝛳(𝑚2 ∗

𝑙𝑜𝑔 (𝑚)) where 𝑚 is the size of the problem [170]. However, we apply the receding horizon 

control technique in this study, where the entire trip is divided into small segments. Therefore, 

the computational load can be significantly reduced since the EA-based optimization is applied 

only for each small segment rather than the entire trip. In this sense, the proposed framework 

can be implemented in “real-time”, as long as the optimization for the next prediction horizon 

can be completed in the current control horizon (see Fig. 4). As previously discussed, the rule-
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based EMS can run in real-time but the results may be far from being optimal while most of the 

optimization-based EMS have to operate off-line. Therefore, the proposed on-line EMS would 

be a well-balanced solution between the real-time performance and optimality. 

 

5.4 SOC Self-Adaptive Control Strategies 

5.4.1 SOC Control Strategies 

An appropriate SOC control strategy is critical in achieving the optimal fuel economy for 

PHEVs [171]. In the previously presented problem formulation, the major constraint for SOC 

is defined by Eq.(6), which means that at any time step the SOC should be within the predefined 

range (e.g., between 0.2 and 0.8) to avoid damage to the battery pack. However, this constraint 

only may not be enough to accelerate the search for the optimal solution. Hence, additional 

constraint(s) on battery use (e.g., reference bound of SOC) should be introduced to improve the 

on-line EMS. To investigate the effectiveness of different SOC control strategies within the 

proposed framework, two types of SOC control strategies, i.e., reference control and self-

adaptive control, are designed and evaluated in this study. 

 

SOC Reference Control (Known Trip Duration) 

When the trip duration is known, a SOC curve can be pre-calculated and used as a reference to 

control the use of battery power along the trip to achieve optimal fuel consumption. We propose 

three heuristic SOC references (i.e., lower bounds) in this study (see Fig. 5-10 for example): 1) 

concave downward; 2) straight line; and 3) concave upward. These SOC minimum bounds are 

generated based on the given trip duration information by the following equations, respectively: 

 Concave downward control: (lower bound 1) 

𝑆𝑂𝐶𝑖
𝑚𝑖𝑛 =

(𝑆𝑂𝐶𝑖𝑛𝑖𝑡−𝑆𝑂𝐶
𝑚𝑖𝑛)

𝑇−(𝑖∗𝑀)
∗ 𝑁 + 𝑆𝑂𝐶𝑖𝑛𝑖𝑡   (5-7) 
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 Straight line control :( lower bound 2) 

 𝑆𝑂𝐶𝑖
𝑚𝑖𝑛 =

−(𝑆𝑂𝐶𝑖
𝑚𝑖𝑛−𝑆𝑂𝐶𝑚𝑖𝑛)

𝑇
∙ ((𝑖 − 1) ∙ 𝑀 + 𝑁) + 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  (5-8)     

 Concave upward control :( lower bound 3)  

𝑆𝑂𝐶𝑖
𝑚𝑖𝑛 =

−(𝑆𝑂𝐶𝑖−1
𝑒𝑛𝑑−𝑆𝑂𝐶𝑚𝑖𝑛)

𝑇−(𝑖∗𝑀)
∗ 𝑁 + 𝑆𝑂𝐶𝑖−1

𝑒𝑛𝑑    (5-9) 

where i is the segment index; 𝑆𝑂𝐶𝑖
𝑚𝑖𝑛is the minimum SOC at the end of i-th segment; and 

𝑆𝑂𝐶𝑖−1
𝑒𝑛𝑑  is the SOC at the end of last control horizon. It is self-evident that the concave 

downward bound (i.e., lower bound 1) is much more restrictive than a concave upward bound 

(i.e., lower bound 3) in terms of battery energy use at the beginning of the trip.  

A major drawback for these reference control strategies is that they assume that the trip duration 

(i.e., T) is given, or at least can be well estimated beforehand. As mentioned earlier, this 

assumption may not hold true for many real-world applications. Therefore, a new SOC control 

strategy without relying on the knowledge of trip duration would be more attractive. 

 

Figure 5-7 SOC reference control bound examples. 

 

SOC Self-Adaptive Control (Unknown Trip Duration) 

In this study, we also propose a novel self-adaptive SOC control strategy for real-time optimal 

charge-depleting control, where trip duration information is not required. Unlike those SOC 
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reference control strategies which control the use of battery by explicit reference curves, the 

self-adaptive control strategy controls the battery power utilization implicitly by adopting a new 

fitness function in place of the one in Eq. (7): 

      f(s) = 𝑅𝑓𝑢𝑒𝑙  + 𝑅𝑠𝑜𝑐 +  𝑃′                                     (5-10) 

where 𝑅𝑓𝑢𝑒𝑙 and  𝑅𝑠𝑜𝑐 are the ranks (in an ascending order) of  ICE fuel consumption and SOC 

decrease, respectively, of  an individual candidate solution s in the current population; and  𝑃′is 

the added penalty when the individual s violates the constraints given in Eq.(6). The penalty 

value is selected to be greater than the population size in order to guarantee that an infeasible 

solution always has a lower rank (i.e., larger fitness value) than a feasible solution in the 

ascending order by fitness value. Compared to the fitness function adopted for SOC reference 

control (see Eq. (7)), this new fitness function tries to achieve a good balance between two 

conflicting objectives: least fuel consumption and least SOC decrease. For a better 

understanding of the differences between these two fitness functions, Table 5-3 provides an 

example of fitness evaluation of the same population. In this case, the population size is 100. 

As we can see in the table, Individual 2 which has a better balance between fuel consumption 

and SOC decrease is more favorable than Individual 3 in the ranking by Eq. (11) than that by 

Eq.(7) 

Table 5-3 Example fitness evaluation by different fitness functions 

Indiv. 

Index 

Fuel 

Con. 

SOC  

decrease 

𝑅𝑓𝑢𝑒𝑙 𝑅𝑠𝑜𝑐 Rank by 

Eq.(7)  

Rank by 

Eq.(11)  

   1 0.001 0.005(P)   5      35            98     140 

   2 0.010 0.002   25      14      33     39 

   3 0.007 0.003   19      23       24     42 

   4 0.002 0.004(P)   7      32      99     139 

   …. …… …….. …….   …… …….. ……. 

 

 



126 

 

5.5 Evolutionary Algorithm based Online EMS 

5.5.1 EDA-Based On-line EMS Algorithm with SOC Control 

Details of the proposed EDA-based on-line EMS algorithm with SOC control are summarized 

in the Algorithm 1 below. This algorithm is implemented on each prediction horizon (N time 

steps) within the framework presented in Fig. 5-11 (see the box with red dashed line). 

Algorithm 1   EDA-based on-line EMS with SOC control 

1: Initialize a random output solution  𝐼𝑏𝑒𝑠𝑡(N time steps) 

2: 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡  <= Generate initial  population randomly 

3: While iteration_number ≤  Max_iterations, do 

4:      For each individual s in 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡  
5:            Calculate fuel consume 𝐶𝑓𝑢𝑒𝑙  using eq. (1). 

6:            Calculate SOC decrease using eq. (5) 

7:            Obtain the rank index of s: 𝑅𝑓𝑢𝑒𝑙 

8:            Obtain the rank index of s: 𝑅𝑠𝑜𝑐 
9:               If  SOC reference control is adopted 

10                      Calculate the lower bound using eqs.(8)(9)(10) 

11:                       If  individual s violates eq.(6)  

12:                          P=𝑃0;//largest fuel consumption in N steps                                               

13:                   Else  

14:                         P=0;  

15:                   End If 

16:                     Calculate the fitness value for s using eq.(7) 

17:              Else If  SOC self-adaptive control is adopted 

18:                          If  individual s violates eq.(6)  

19:                           𝑃′=S                                    

20:                     Else  

21:                         𝑃′=0;                                    

22:                     End If 

23:                        Calculate the fitness value for s using eq.(11) 

24:               End If 

25:     End For 

26:     Rank 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in ascending order based on fitness 

27:     𝑃𝑡𝑜𝑝  <= Select  top α% individuals from 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

28:     E     <= Estimate a new distribution from 𝑃𝑡𝑜𝑝  

29:     𝑃𝑛𝑒𝑤  <= Sample N individuals from built model E 

30:     Evaluate each individual in 𝑃𝑛𝑒𝑤  using line 5 to 14 

31:     Mix 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑃𝑛𝑒𝑤  to form 2N individuals 

32:     Rank 2N individuals in ascending order by fitness 

33:     𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡<= Select top N individuals 

34:     Update 𝐼𝑏𝑒𝑠𝑡 if a better one is identified. 

35:     Iteration_number ++ 

36: End While 

37: Output  𝐼𝑏𝑒𝑠𝑡 
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Figure 5-8 EDA-based on-line energy management system. 

 

In the following section, we compare the performance of the proposed self-adaptive SOC 

control with other SOC control strategies. For convenience, we list the abbreviations of all the 

involved strategies in Table 5-4. 

Table 5-4 Abbreviations of different SOC control strategies compared in this study 

SOC control strategies Abbreviations 

Binary control B-I 

Basic SOC control B-A 

Concave downward C-D 

Straight line S-L 

Concave upward C-U 

Self-adaptive SOC control S-A 
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5.6 Case Study with Real-world Traffic Data 

5.6.1 Synthesized Trip Information 

To validate the proposed EMS for PHEVs, we use real-world data collected on January 17th, 

2012, along I-210 between I-605 and Day Creek Blvd in San Bernardino, California, as a case 

study (see Fig. 5-12). Please refer to [138] for more detailed description of data collection and 

specifications of the power-split PHEV model if interested.  

 

Based on the collected traffic data along with road grade information, second-by-second vehicle 

velocity trajectory and power demand have been synthesized as described in [138]. As pointed 

out earlier, it is impractical to have a priori knowledge of the exact vehicle velocity trajectory. 

In this study, we focus on the development of the optimal power-split control, assuming perfect 

prediction of vehicle velocity trajectory. Research on improving the prediction of vehicle 

velocity trajectory in real time is part of our future work. 

 

 

Figure 5-9   Example trip along I-210 in Southern California used for evaluation. 
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5.6.2 Off-line Optimization for Validation 

To justify the selection of EDA as the kernel of the proposed framework, we first test EDA on 

the full-trip off-line optimization. The results are compared with those obtained from two other 

popular evolutionary algorithms: genetic algorithm (GA) and particle swarm optimization 

(PSO). The fitness (i.e., total ICE energy consumption) of EDA-based off-line optimization 

obtains better fuel economy (0.346 gallons) than the other two (0.364 gallons for GA and 0.377 

for PSO, respectively), at the same computational expense (i.e., same population size and same 

number of iterations) [172]. In addition, the result from EDA is much closer to the global 

optimum (0.345 gallons in this case) with the difference being less than 1%. 

 

5.6.3 Real-time Performance Analysis and Parameter Tuning 

As aforementioned, a necessary condition for on-line implementation of the proposed EMS is 

that the optimization for the next prediction horizon has to be finished within the current control 

horizon (see Fig.5-8). In our study, for example, the optimization for a prediction horizon of 50 

seconds can be completed within 1.1 seconds (with Intel Core i7 3.4GHz, RAM 4G, and 64bit-

Matlab 2012). In addition, one of our previous work [172] has shown that the lengths of 

prediction horizon and control horizon may significantly affect the algorithm performance. The 

best combination of these two parameters is found to be N=250 and M=10 in this case.  

 

Unlike the conventional MPC whose optimization has to be implemented along each prediction 

horizon, our proposed EA based online EMS (see Fig.5-11) can take advantage of the optimal 

results from previous prediction horizons, which avoids a new optimization starting from 

scratch and therefore saves a lot of computational overhead. As can be seen in Fig. 5-13, part 

of the optimal decisions from previous prediction optimization horizon is adopted as the seed 

for initial population of current prediction horizon optimization. For example, when the control 
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horizon is 3s and prediction/optimization horizon is N, only 3 control decisions need to be 

randomly initialized and optimized in the second prediction/optimization horizon. This allows 

the optimization or search to be much more efficient, compared to the same process over entire 

prediction horizon. To further validate this computational performance, we designed an EA 

based MPC (EAMPC) which activates a complete new optimization for each 

prediction/optimization horizon and compared it with our proposed model. The computation 

time track in Fig.5-14 shows that for a 50-seconds prediction horizon, the conventional MPC 

takes around 1.1 seconds for each optimization horizon but our proposed model can take only 

less than 0.1s to finish the optimization from the second prediction horizon.  

 

 

Figure 5-10  Population initialization from the second prediction horizon (i.e., t≥ 2). 

 

 

Figure 5-11  Comparison on computation time. 
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5.6.4 On-line Optimization Performance Comparison 

To fully evaluate the performance of the proposed on-line EMS strategies, we compare them to 

the conventional binary control (implementable in real-time) strategy as well as the off-line 

global optimal control strategy (with the use of dynamic programming [145]). The comparisons 

are carried out on both the single trip scenario and multiple trips scenario. 

 

When tested on a single (westbound) trip, the fuel consumption and SOC profiles by different 

strategies are illustrated in Fig. 5-15. It is shown that the proposed S-A algorithm achieves the 

lowest fuel consumption (0.3515 gallons) which is only 1.56% worse than that of global optima 

obtained by the off-line optimization (0.3460 gallons). These results can be explained by the 

shape of the resultant SOC profiles. For instance, SOC decreases very quickly in the B-I 

strategy, and reaches the lower bound (i.e., 0.2) at around 1,200 seconds because the use of 

battery power is always prioritized whenever available. Therefore, ICE has to supply most of 

the demanded power after 1,200 seconds. This is very similar to the cases of the B-A and C-U 

strategies where the battery power is also consumed aggressively at the beginning of the trip 

with very loose constraints. On the other hand, the S-L and C-D strategies perform better since 

their battery power is used more cautiously along the trip. These findings are consistent with 

the conclusions of many other studies [159, 171] in that a smoother distribution of battery power 

usage along the trip would result in higher fuel efficiency. 
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Figure 5-12 SOC trajectories resulted from different control strategies. 

 

In order to know the statistical significance of the different EMS strategies, we test them on 30 

randomly selected trip profile data extracted from the same road segment on 12 different days. 

The results are also compared to the binary control and dynamic programming (D-P) strategies. 

For the purpose of comparison, we set the fuel consumption obtained by the binary control 

strategy as the baseline and calculate the percentage of fuel savings achieved by the other EMS 

strategies. As we can see in Fig. 5-16, the D-P strategy achieves the best fuel savings with an 

average of 19.4% and the least variance simply because it is an off-line optimization strategy. 

The proposed S-A strategy achieves an average of 10.7% fuel savings which is higher than all 

other on-line strategies and consistent with the result of the single trip test. An interesting 

observation is that the S-L strategy has better average fuel savings (i.e., 9.3%) than the C-D and 

C-U strategies which is not consistent with the test result of the single trip test. A possible 

reason is that the C-D strategy performs better on some trips in which the power demand is 

higher in later stages of the trip but the C-U strategy performs better on the trips in which the 

power demand is higher in earlier stages. On the other hand, the S-L strategy balances the SOC 

control between these two types of trip pattern, and therefore has better average performance. 

 

For further validation, the proposed S-A strategy with the best performance is compared with 
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other existing PHEV EMS strategies that employ short-term prediction. Although these 

strategies were proposed to handle powertrain models with different fidelity as well as different 

data set for validation, they all used the binary control strategy as a benchmark (the same as in 

this work). This provides us a chance to compare all models in a relatively fair manner. The 

comparison results are listed in table 5-5, which proves that our model achieves the largest 

improvement of fuel efficiency (with regard to the binary control strategy) but requires less trip 

information. 

 

Figure 5-13 Box-plot of fuel savings on 30 trips. 

 

Table 5-5  Comparisons with existing models 

EMS model Year ST𝑃1 Trip distance  FE 𝐼2 Consider  

Charging? 

This work 

EAMPC 

2016 

2016 

Yes 

Yes 

Unknown 

Unknown 

10.7% 

7.9% 

Yes 

Yes 

MPC[173 ] 2014 Yes Known 8.5% No 

MPC[154] 2015 Yes Known 6.7% No 

A-ECMS[173] 

A-ECMS[151]                      

DP[174] 

SD𝑃3 [175]                

2014 

2015 

2015 

2011 

Yes 

Yes 

Yes  

Yes 

Known Known 

Known 

Known 

10.2% 

7.6% 

5.8% 

7.7% 

No 

No 

No 

No 
1Short-term prediction;    2Fuel economy improvement comparing to binary control;    3 Stochastic Dynamic 

Programming. 
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Analysis of Trip Duration 

In this section, we analyze and compare the effectiveness of the proposed on-line EMS for 

longer trips. These longer trips are constructed by concatenating multiple trip profiles and the 

results are shown in Fig. 5-17. As can be observed, the B-I strategy has the best fuel economy 

when the trip duration is shorter than 1,500 seconds. For these short trips, the PHEV can mostly 

rely on battery energy. However, as the trip duration becomes longer, especially when longer 

than 2,500 seconds, the S-A strategy outperforms all the others. 

  

To further explain this finding, the resultant fuel consumption and the corresponding SOC 

profiles for the longest trip (5,000 seconds) are provided in Fig. 5-18. According to the figure, 

the S-A strategy has the lowest fuel consumption and its SOC profile is a combination of the 

CD mode (defined in Fig. 5-1) before 2,000 seconds and the CS mode after 2,000 seconds. This 

contradicts with most of the existing studies, which report that an optimal fuel economy for the 

trip can be achieved by operating solely in the CD mode [159]. Here, we present evidence that 

it is not always the case, and that the CD+CS operation can result in optimal fuel efficiency for 

long trips. Furthermore, this finding also implies the potential for the proposed S-A strategy to 

adapt to different trip durations.  
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Figure 5-14 Fuel savings for trips with different duration, compared to B-I. 

 

 

Figure 5-15  Resultant SOC curve when trip duration is 5,000 seconds. 

  

Performance with Charging Opportunity 

Considering the plug-in capability of PHEVs, we evaluate the performance of the proposed 

strategies at the tour level. More specifically, we consider the commute trips of the case study 

as a tour and assume that there is a charging opportunity (to a full charge) between the end of 

the westbound trip and the beginning of the eastbound trip. We then compare the different SOC 

control strategies under the following two scenarios:  

1) Scenario I: The proposed EMS with a priori knowledge of the charging opportunity; 

2) Scenario II: The proposed EMS without a priori knowledge of the charging opportunity. In 

this case, a conservative strategy is applied by assuming that there is no charging station 

available in between the trips. 

The results are illustrated in Fig.5-19. They show that the knowledge of the charging 

opportunity information has great influence on the resultant SOC profiles for the deterministic 

SOC reference control strategies but no influence on the SOC self-adaptive control strategy. 
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Table 5-6 presents the increased fuel consumption due to the lack of knowledge of the charging 

opportunity prior to the tour. As shown in the table, the C-D, S-L, and C-U strategies all have 

13% or more increase in fuel consumption if the charging opportunity information is unknown, 

while the B-I and S-A strategies are not affected because the trip duration is not considered in 

their decision-making process. These findings further emphasize the advantage of the proposed 

SOC self-adaptive control strategy in terms of robustness to the level of knowledge about 

charging availability. 
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c. C-U 

 

d. S-L 

Figure 5-16 SOC track with known or unknown charging opportunity. 

 

Table 5-6 Increased fuel consumption 

Control 

strategy 

Known 

 (gal) 

Unknown 

 (gal) 

Increased fuel 

consumption 

B-I 0.9748 0.9748 00.0% 

B-A 0.7109 0.7543 06.1% 

C-D 0.6729 0.8439 25.1% 

S-L 0.6809 0.7853 15.0% 

C-U 0.7066 0.8034 13.0% 

S-A 0.6681 0.6681 00.0% 
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5.7 Summary and Discussion 

For the EA based EMS, the proposed framework applies the self-adaptive strategy to the control 

of the vehicle’s state-of-charge (SOC) in a rolling horizon manner for the purpose of real-time 

implementation. The control of the vehicle’s SOC is formulated as a combinatory optimization 

problem that can be efficiently solved by the estimation distribution algorithm (EDA). The 

proposed energy management system is comprehensively evaluated using a number of trip 

profiles extracted from real-world traffic data. The results show that the self-adaptive control 

strategy used in the proposed system statistically outperforms the conventional binary control 

strategy with an average of 10.7% fuel savings. The sensitivity analysis reveals that the optimal 

prediction horizon window of the proposed energy management system is 250 seconds, which 

requires 5.8 seconds of computation time in our study case. This amount of time is much less 

than the optimal control horizon window of 10 seconds, which confirms the feasibility of real-

time implementation. Another important advantage of the proposed energy management system 

is that, unlike other existing systems, it does not require a priori knowledge about the trip 

duration. This allows the proposed system to be robust against real-world uncertainties, such as 

unexpected traffic congestion that increases the trip duration significantly, and changes in inter-

trip charging availability. 
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6 Co-optimization of Vehicle Dynamics and Powertrain Operations 

6.1 Overview 

The existing research work reviewed in previous sections shows that vehicle fuel efficiency can 

be improved at least from two different perspectives: vehicle dynamics and powertrain control 

The majority of exiting studies are only focused on one of them. Very few researchers have 

conducted research on the combined optimization of vehicle dynamics and powertrain 

operation.  In one of our previous work [207], a power-based longitudinal control algorithm 

with co-optimization of vehicle dynamics and powertrain operations for internal combustion 

engine (ICE) vehicles was proposed and tested. The system took into account the vehicle’s 

brake specific fuel consumption (BSFC) map, roadway grade, downstream traffic conditions, 

and traffic signal status of the upcoming intersection in the calculation of an optimal speed 

profile in terms of energy savings and emissions reduction. Hu et al. [208] recently developed 

an ecodriving assistance system for hybrid electric vehicles (HEV) on rolling terrains. The 

system was capable of optimizing the powertrain operations of HEVs by taking advantage of 

the information obtained via connected vehicle technology, but neither traffic signal 

information nor different vehicle automaton levels are considered.  Thus far, to the best of 

authors’ knowledge, no existing work has been focused on designing an integrated and 

connected ecodriving system for PHEVs with co-optimization of vehicle dynamics and 

powertrain operations.  

To address this gap, an innovative ecodriving system with co-optimization of VD&PT for 

PHEVs is developed in this study. The proposed system combines the functionality of Eco-

approach and departure system at signalized intersections and online EMS system for PHEVs, 

which can significantly boost the fuel efficiency of PHEVs for urban driving. The designed 

system is implemented in two different stages: in-vehicle advising stage and automatic 
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longitudinal control stage. The results are compared to the baseline scenario which is manual 

driving without any assistance system. The major contributions of this chapter are: 

a. A first-of-its-kind integrated ecodriving system for PHEVs is designed to improve fuel efficiency. 

b. The performance of the designed system is extensively validated and tested with real-world driving 

data at different levels of vehicle automation. 

 

6.2  Integrated Co-optimization Framework  

In this work, the next generation connected Ecodriving system is proposed to assist the energy-

efficient driving of PHEVs in an urban environment (e.g., along signalized corridors) through 

the co-optimization of vehicle dynamics and powertrain operation. Theoretically, the objective 

of the co-optimization is the to minimize the total fuel consumption of PHEV along a trip 

considering all the factors that influence the vehicle energy consumption. As shown in Fig.6-2, 

the inputs into the co-optimization model are the real-time traffic condition and downstream 

traffic signal information that obtained through cellular network or vehicle-and-infrastructure 

(V2I/I2V) wireless communications. The output of the system. The outputs are the optimal 

powertrain operations strategy and finally the resulted vehicle speed trajectory. 

 

Figure 6-1  Flowchart of co-optimization system 
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Mathematically, the co-optimization of vehicle dynamics and powertrain operations for PHEVs 

is formulated as a nonlinear constrained optimization problem. The ICE power supply at each 

time step is optimized to minimize the total fuel consumption by ICE of a PHEV along the 

entire trip by taking advantage of the real-time data that obtained or predicted within the 

connected vehicle environment. The formulation of this co-optimization is given as: 

Assumption: 

 Hybrid PHEVs 

 Consider longitudinal velocity (𝑣𝑡) only 

 Focus on fuel consumption only 

 No grade information is in consideration 

 Without loss of generality, 𝑡 starts from 0 

 The vehicle will not back up 

min
𝜔,𝜏
∫

𝑃𝑒𝑛𝑔(𝜔𝑒𝑛𝑔(𝑡),𝜏𝑒𝑛𝑔(𝑡))

𝜂𝑒𝑛𝑔(𝜔𝑒𝑛𝑔(𝑡),𝜏𝑒𝑛𝑔(𝑡))
𝑡

                                                (6-1) 

subject to 

(Power Related): 

𝑃𝑒𝑛𝑔 (𝜔𝑒𝑛𝑔(𝑡), 𝜏𝑒𝑛𝑔(𝑡)) = 𝑃𝑡𝑟(𝑣(𝑡); 𝑨) − 𝑃𝑏𝑎𝑡𝑡(𝜔𝑀𝐺1(𝑡), 𝜏𝑀𝐺1(𝑡), 𝜔𝑀𝐺2(𝑡), 𝜏𝑀𝐺2(𝑡))  ∀𝑡 

(Travel Distance Related): 

∫ 𝑣(𝑡)
𝑡

= ∫ Υ(𝜔𝑒𝑛𝑔(𝑡), 𝜔𝑀𝐺1(𝑡), 𝜔𝑀𝐺2(𝑡); 𝑩)
𝑡

= 𝐿0 

(Boundary Related): 
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{
  
 

  
 

𝜔(∙)
𝑚𝑖𝑛 ≤ 𝜔(∙)(𝑡) ≤ 𝜔(∙)

𝑚𝑎𝑥

𝜏(∙)
𝑚𝑖𝑛 ≤ 𝜏(∙)(𝑡) ≤ 𝜏(∙)

𝑚𝑎𝑥

𝑃𝑒𝑛𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑒𝑛𝑔(𝑡) ≤ 𝑃𝑒𝑛𝑔

𝑚𝑎𝑥

𝑃𝑏𝑎𝑡𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡𝑡(𝑡) ≤ 𝑃𝑏𝑎𝑡𝑡

𝑚𝑎𝑥

0 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

    ∀𝑡 

(Initial Conditions Related) 

𝑣0, 𝐿0, and 𝑆𝑂𝐶0 are given. 

where 𝑨 and 𝑩 are vectors of parameters associated with tractive power (e.g., vehicle mass, frontal area) 

and mechanical transmission (e.g., gear ratio, final drive ratio). 

 

6.3 Bi-level Approximation of Co-optimization 

In this work. a bi-level optimization is designed to solve and obtain the optimal or near optimal 

solution of above formulated optimization problem.  As shown in Fig.6-3, the optimal speed 

trajectory is calculated by the onboard system based on the obtained information and then 

advised to the driver through the in-vehicle display for PHEVs with level 0 of automation. If 

there is level 1 or above vehicle automation level, the optimal longitudinal speed trajectory can 

be fed into the vehicle control system without human intervention. The real-time traffic data 

and signal information can be obtained through cellular network or vehicle-and-infrastructure 

(V2I/I2V) wireless communications. With this information, the future vehicle speed trajectory 

can be obtained in two different ways: 1) based on the downstream traffic condition when there 

is no near intersection; and 2) based on the signal phase and timing information when 

approaching a signalized intersection. 

Besides the vehicle dynamics optimization through vehicle trajectory planning, the powertrain 

optimization is also included in the designed system.  
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Figure 6-2 Framework of the proposed Connected Ecodriving assistance system. 

 

As shown in Fig 6-4, the whole system is implemented in a receding horizon framework. For 

each N (seconds) step horizon, the future vehicle trajectory is calculated by the vehicle 

trajectory planning subsystem, and then the optimal powertrain operation is calculated with the 

given optimal speed trajectory. Finally, only a portion of the calculated optimal powertrain 

operations (M seconds) are implemented and another calculation for the next N seconds starts 

immediately. In such time horizon receding framework, the OEMS are implemented in real 

time. 
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Figure 6-3  Flowchart of connected Ecodriving system with co-optimization. 

 

6.4 Vehicle Dynamics Optimization: Connected Ecodriving 

In connected vehicle environment, vehicle dynamics (e.g., velocity profile) can be optimized 

to achieve energy-efficient driving styles using the information through connectivity. In this 

chapter, the similar connected ecodriving systems described in chapter 4 are adopted to achieve 

the vehicle dynamics optimization.   Three different technology stages are used to represent 

different level of vehicle dynamics optimization, which includes Uninformed human driving, 

human driving with EAD assistance not considering driver error and EAD assistance with 

automatic longitudinal control. For more details, please refer to chapter 4.  

 

6.5 Powertrain Operation Optimization: Online Energy Management System 

Beside the vehicle dynamics optimization in connected vehicle environment, the operations of 

powertrain can also be optimized, especially for PHEVs. The optimal (in terms of fuel economy) 
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energy management for PHEVs can be formulated as a nonlinear constrained optimization 

problem. The objective is to minimize the total fuel consumption by ICE along the entire trip 

given the required power. 

𝑚𝑖𝑛 ∫ 𝑓𝑢𝑒𝑙(𝜔𝑒 , 𝜏𝑒)𝑑𝑡
𝑇

0
        (6-2) 

subject to 

{
 
 

 
 
𝑆𝑂𝐶̇ = 𝑓(𝑃𝑡𝑟 , 𝑆𝑂𝐶, 𝜔𝑀𝐺1, 𝜏𝑀𝐺1, 𝜔𝑀𝐺2, 𝜏𝑀𝐺2)

𝑔(𝜔𝑒 , 𝜏𝑒 , 𝜔𝑀𝐺1, 𝜏𝑀𝐺1, 𝜔𝑀𝐺2, 𝜏𝑀𝐺2) = 0

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝜔(∙)
𝑚𝑖𝑛 ≤ 𝜔(∙) ≤ 𝜔(∙)

𝑚𝑎𝑥

𝜏(∙)
𝑚𝑖𝑛 ≤ 𝜏(∙) ≤ 𝜏(∙)

𝑚𝑎𝑥

                                  (6-3) 

where 𝑇 is the trip duration; 𝜔𝑒 , 𝜏𝑒 are the engine’s angular velocity and engine’s torque, respectively; 

𝑓𝑢𝑒𝑙(𝜔𝑒 , 𝜏𝑒) is ICE fuel consumption model which is a function of 𝜔𝑒 and 𝜏𝑒; 𝜔𝑀𝐺1, 𝜏𝑀𝐺1 are the first 

motor/generator’s angular velocity and torque, respectively; 𝜔𝑀𝐺2, 𝜏𝑀𝐺2  are the second 

motor/generator’s angular velocity and torque, respectively(see Fig.1b); 

𝑓(𝑃𝑡𝑟 , 𝑆𝑂𝐶, 𝜔𝑀𝐺1, 𝜏𝑀𝐺1, 𝜔𝑀𝐺2, 𝜏𝑀𝐺2)  models the battery power consumption which is related to the 

tractive power 𝑃𝑡𝑟 , state-of-charge (SOC), and key parameters (i.e., speeds and torques) of ICE and 

motors; 𝑔(𝜔𝑒 , 𝜏𝑒 , 𝜔𝑀𝐺1, 𝜏𝑀𝐺1, 𝜔𝑀𝐺2, 𝜏𝑀𝐺2) = 0  represents the coupling relationship among ICE and 

motors. For more details about the model derivations and equations, please refer to our previous work in 

[189]. 

Such formulation is suitable for traditional mathematical optimization methods with high computational 

complexity, which is difficultly to be implemented in real-time.  In order to facilitate on-line 

optimization, we herein discretize the engine power and reformulate the optimization problem 

represented by (4) as follows: 

min∑ ∑ 𝑥(𝑘, 𝑖) 𝑃𝑒(𝑖) 𝜂𝑒(𝑖)⁄𝑁
𝑖=1

𝑇
𝑘=1     (6-4) 

subject to: 

∑ 𝑓(𝑃𝑡𝑟(𝑘) − ∑ 𝑥(𝑘, 𝑖)𝑃𝑒(𝑖)
𝑁
𝑖=1 )

𝑗
𝑘=1 ≤ 𝐶     ∀𝑗 = 1,… , 𝑇 (6-5) 

∑ 𝑥(𝑘, 𝑖)𝑁
𝑖=1 = 1           ∀𝑘         (6-6) 

          𝑥(𝑘, 𝑖) = {0, 1}             ∀𝑘, 𝑖     (6-7) 
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where 𝑁 is the number of discretized power level for the engine; k is the time step index; i is the engine 

power level index; 𝐶 is the gap of the battery pack’s SOC between the initial and the minimum; 𝑃𝑒(𝑖) is 

the i-th discretized level for the engine power and 𝜂𝑒(𝑖) is the associated engine efficiency; and 𝑃𝑡𝑟(𝑘) 

is the tractive power demand at time step. 𝑥(𝑘, 𝑖) is a binary function which gives either 1 or 0. 

Furthermore, if the change in SOC (Δ𝑆𝑂𝐶) for each possible engine power level at each time step is pre-

calculated given the (predicted) power demand, then constraint (7) can be replaced by 

𝑆𝑂𝐶𝑖𝑛𝑖 − 𝑆𝑂𝐶𝑚𝑎𝑥 ≤∑ 𝑥(𝑘, 𝑖)∆𝑆𝑂𝐶(𝑘, 𝑖)
𝑗

𝑘=1
≤ 𝑆𝑂𝐶𝑖𝑛𝑖 − 𝑆𝑂𝐶𝑚𝑖𝑛     

                                       ∀𝑗 = 1,… , 𝑇 (6-8) 

where 𝑆𝑂𝐶𝑖𝑛𝑖  is the initial SOC; and 𝑆𝑂𝐶𝑚𝑖𝑛  and 𝑆𝑂𝐶𝑚𝑎𝑥  are the minimum and maximum SOC, 

respectively. Therefore, the problem is turned into a combinatory optimization problem whose objective 

is to select the optimal ICE power level for each time step given the predicted information in order to 

achieve the highest fuel efficiency for the entire trip. Ideally, the optimization can be performed for the 

entire trip by assuming the entire trip information is known as a priori. In practice, however, it is too 

challenging to accurately know the entire trip information before the trip due to the expected uncertainty. 

Therefore, an online energy management systems (OEMS) is usually more practical. 

In our pervious study [187,190], different versions of online energy management system 

(OEMS) for PHEVs have been proposed and tested. In this work, we designed a similar 

estimation distribution algorithm based OEMS for PHEVs, using the receding horizon control 

structure (see Fig. 6-6). With the receding horizon control, the entire trip is divided into 

segments or time horizons. As shown in Fig. 6-6, the prediction horizon (N sampling time steps) 

needs to be longer than the control horizon (M sampling time steps). Both horizons keep 

moving forward (in a rolling horizon style) while the system is operating. More specifically, 

the prediction model is used to predict the power demand at each sampling step (e.g., each 

second) in the prediction horizon. Then, the optimal ICE power supply for each second during 

the prediction horizon is calculated with this predicted information. 
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In each control horizon, the pre-calculated optimal control decisions are fed into the powertrain 

control system (e.g., electronic control unit or ECU) at the required sampling frequency.  In this 

study, when the vehicle is connected to the signal controller by V2I communication, the future 

driving trajectory is obtained by the above mentioned VTP model. Otherwise, we assume that 

the short-term prediction model is available (which is out of the scope this study) and the focus 

of this subsystem is on-line power-split optimization. 

 

Figure 6-4  Time horizons of prediction and control. 

In this study, for performance comparison, the basic and most common Binary control strategy is used 

as the baseline EMS model. In Binary control strategy, engine power can be used only when the battery 

power is not able to satisfy the power demand or the SOC lower bound is reached.  

 

6.6 Trip Data Synthesis 

To comprehensively evaluate the energy saving performance of the proposed system, the real-

world driving data collected in the GlidePath project [209] under different automation level (or 

different stages of EAD) of driving assistance system at the Turner-Fairbank Highway Research 

Center (TFHRC) in McLean, Virginia, were used in this study. For more information about the 

data set ,please refer to section 4.2.2. 
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6.7 Urban Route Synthesis 

It is noted that the spatial span of each run for the aforementioned EAD testing is only about 

306 meters, which is too short to obtain tangible drop in State-of-charge (SOC) of a PHEV (less 

than 0.01). To address this issue, we propose a methodology to synthesize trips along a 

signalized corridor with multiple intersections (e.g., 24 intersections in this study), using the 

field test data from each run (as described in the previous subsection) as well as certain driving 

cycle which should satisfy at least the following conditions: 

1) It is a (truncated) standard driving cycle widely accepted by public, e.g., a driving schedule 

(https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules) accepted 

in emissions test by U.S. Environmental Protection Agency.  

2) The speed limit and average speed are consistent with the field test data (e.g., the speed limit is 25 

mph for the field test). 

3) The (truncated) standard driving cycle covers a speed range wide enough to accommodate the 

variations in the entry speeds (at 190 m before the stop-bar) and exit speeds (at 116 m after the stop-

bar) of all trips. 

In this study, the truncated Urban Dynamometer Driving Schedule or UDDS (shown in Fig. 6-

9 (a)) was selected to concatenate the test data from each run. It should be pointed out the 

truncated UDDS starts and ends at 0 mph, resulting in additional stop(s) in the synthesized 

trajectories between intersections. To avoid the occurrence of these stop(s), we only used the 

portion above the dash-line in Fig. 6-9 (a) for trajectory synthesis. In addition, we shuffled the 

sequence of each run (at intersections) randomly to generate multiple trajectories for evaluation 

and comparison in a statistical manner. Fig. 6-9 (b) presents an example of synthesized 

trajectory along a segment of the hypothetical corridor in this study. 

https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules
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(a) The selected UDDS driving schedule and the truncated portion (zoomed in on the right)  

 

 

(b) An example of synthesized along the hypothetical corridor  

Figure 6-5 Urban driving trajectory synthesis. 

 

6.8 Performance Evaluation and Analysis 

6.8.1 Technology Scenarios Matrix 

To fully investigate the environment benefits from different options on two major fuel 

efficiency improvement directions: 1) vehicle dynamics optimization; and 2) powertrain control 

optimization, the proposed integrated connected ecodriving system in Figure 4 is implemented 

Synthesized trajectory (between 

intersections) from truncated UDDS

Synthesized trajectory (between 

intersections) from truncated UDDS

Field data (within intersection region) from TFHRC
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by different combination of EAD stages (i.e., MUD, HMI and AUTO) and EMS control modes 

(i.e., Binary control mode and OEMS mode). We call each of these technique combinations a 

“technology scenario”. The details for each of these technology scenarios are provided in the 

following scenario matrix (see Fig., 6-10) 

 

Figure 6-6  . Technology scenario matrix for comparison. 

 

 

6.8.2 Evaluation of Short-trip at Signalized Intersections 

The proposed system is first evaluated at the intersections only. Vehicle trajectories when 

passing through the intersections are selected from the real-world driving data, to calculate the 

energy consumptions in different scenarios as described in Fig. 6-10. Due to the testing driving 

facility limitation (190 m upstream and 116 m downstream), the trajectory within this road 

segment is very short (30 seconds on average). The energy consumption is not quite demanding 

if looking at these short trips alone. Hence when the initial SOC is high enough, the PHEV 

would only use electricity without consuming fuels. As can be seen in Fig. 6-11 (a) and 6-11(b), 

there is no fuel consumption difference between OEMS and Binary control mode when the 
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initial SOC is higher than 0.205 (in the case of the minimum SOC being 0.2), because the 

battery stored energy is enough to satisfy all the power demand when travelling through the 

intersection. Therefore, in this study, in order to investigate the difference in energy 

consumption resulting from different EMS models within the intersection region, the initial 

SOC has to be selected at a very low level such as 0.205.  

 

(a) Resulted SOC track for different initial SOC 

 

(b) Fuel savings comparing to Binary control mode 

Figure 6-7    Initial SOC analysis for drive 1 on stage II and entry case 9. 
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The field driving data described in previous section are used for quantifying the fuel savings 

due to different technology scenarios. Table 6-1 indicates that higher fuel savings can be 

achieved from the optimization of powertrain operation than the optimization of vehicle 

dynamics. Compared to the baseline technology scenario (i.e., uninformed manual driving with 

binary EMS control), the technology scenario with OEMS and Stage III EAD (i.e., AUTO) 

achieves the highest fuel savings (89.73%). In other words, almost 90% of the fuels can be 

saved due to the co-optimization of vehicle dynamics and powertrain operation when traveling 

through the intersections.  

Table 6-1  Fuel consumptions for different technology scenarios and its saving percentage 

 Binary control OEMS 

Stage III 0.001053(-37.51%) 0.000173(-89.73%) 

Stage II 0.001190(-29.38%) 0.000231(-86.29%) 

Stage I 0.001685(baseline) 0.000288(-82.91%) 

 

In order to get better understanding of how the aforementioned energy savings are achieved, 

more detailed information of an example trip by Driver 1 with OEMS is provided in Fig. 6-12. 

As can be seen in the figure, the speed profiles of case 6 by different EAD stages show that the 

passing scenario changes from 3 to 2 (defined in Fig. 2) with the assistance of automatic 

longitudinal control (i.e., stage III), resulting in significant fuel savings by avoiding the stop-

and-go behaviors in Stage I and II. However, for entry case 9, there is no passing scenario 

change between different EAD stages, so no significant fuel savings can be achieved.   
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Figure 6-8  Speed versus distance for entry case 6 and case 9 (Driver 1). 

 

6.8.3 Evaluation of Synthesized Long-trips on Urban Route 

The synthesized trip data as described in Section 4.2 are adopted to further investigate the fuel 

savings for a relatively long urban trip which includes driving cycles within the intersection 

regions (as collected in the field) and between intersections (generated from the truncated 

UDDS as shown in Fig.6-9). The effective range of different technology combinations are given 

in the Fig. 6-13.  EAD only works at interaction area but OEMS is always on along the entire 

trip. The resultant SOC profiles for different technology scenarios of an example synthesized 
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trip are presented in Fig.6-14 (a). It is observed that all the technology scenarios with OEMS 

result in more conservative consumption of battery power at the beginning of the trips and are 

able to achieve more fuel savings. In this study, we synthesized totally 6 synthesized trips for 

evaluation of fuel savings. As shown in Fig. 6-14(b), the EAD system (even with automatic 

longitudinal control) is not able to achieve very significant energy savings because the driving 

cycles within the intersection regions only account for a small portion of the entire trip (around 

10%). The Co-optimization of vehicle dynamics and powertrain operation can save 23.59% of 

fuel on average for the synthesized urban driving trips.  

 

Figure 6-9   Effective range of different technologies 

 

 

(a) SOC tracks of an example synthesized trip by different technology scenarios. 
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b. Average fuel savings for 6 synthesized trips by different technology scenarios 

Figure 6-10  Fuel savings on hypothetical corridor. 

 

6.9 Summary and Discussion 

In this study, an integrated connected ecodriving assistance system with co-optimization of 

vehicle dynamics and powertrain operation for PHEVs was designed and evaluated extensively. 

The real-world driving data with different ecodriving stages were collected and used for 

comprehensive performance evaluations. The numerical analysis shows that the combination 

of automatic longitudinal control and online EMS for PHEVs can achieve almost 90% fuel 

savings for driving within the intersection region, compared to the baseline (i.e., uninformed 

manual driving with binary mode EMS). In addition, around 24% of fuel savings can be 

achieved on synthesized urban trips where the portion (in travel distance) within the 

intersections account for 10% of the entire trip. The future work will be focused on the further 

testing and evaluation of the proposed co-optimization system. 
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7 Data-driven Autonomous Learning for Energy Efficiency 

Improvement 

In previous chapters, the improvement of PEV energy efficiency is achieved by optimizing both 

vehicle dynamics and powertrain operations. All the optimizations (either vehicle dynamics or 

powertrain operations) are based on the predicted future traffic condition. In this chapter, 

another possible way of improving PEV energy efficiency is proposed and discussed. It is 

machine learning based strategy which is capable of learning the optimal control strategy or 

optimal operations from historical driving data. It does not rely on any predicted future driving 

conditions but only learning from the driving recorded from the past. In addition, the previous 

optimization based method requires a rigid mathematical model that can be used to formulate 

the optimization problem. For example, the online EMS proposed in chapter 5 is built based on 

a very precise PHEV model.  However, learning based model is data-driven and model-free. It 

does not need any predefined model anymore and built solely on data. 

 

 

Figure 7-1  Comparison of optimization based model and learning based model 
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7.1 From Optimization to Learning  

As mentioned in chapter 5, the energy management system (EMS) is at the heart of PHEV fuel 

economy, whose functionality is to control the power streams from both the internal combustion 

engine (ICE) and the battery pack, based on vehicle and engine operating conditions. In the past 

decade, a large variety of EMS implementations have been developed for PHEVs, whose 

control strategies may be well categorized into two major classes as shown in Figure 7-2:  

a) rule-based strategies which rely on a set of simple rules without a priori knowledge of driving 

conditions. Such strategies make control decisions based on instant conditions only and are 

easily implemented, but their solutions are often far from being optimal due to the lack of 

consideration of variations in trip characteristics and prevailing traffic conditions; and  

b) optimization-based strategies which are aimed at optimizing some predefined cost function 

according to the driving conditions and vehicle’s dynamics.  The selected cost function is 

usually related to the fuel consumption or tailpipe emissions. Based on how the optimization is 

implemented, such strategies can be further divided into two groups: 1) off-line optimization 

which requires a full knowledge of the entire trip to achieve the global optimal solution; and 2) 

short-term prediction-based optimization which takes into account the predicted driving 

conditions in the near future and achieves local optimal solutions segment by segment within 

an entire trip. However, major drawbacks of these strategies include: 1) heavy dependence on 

the a priori knowledge of future driving conditions; and 2) high computational costs that are 

difficult to implement in real-time. 
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Figure 7-2 Taxonomy of current EMS. 

 
As discussed above, there is a trade-off between the real-time performance and optimality in 

the energy management for PHEVs. More specifically, rule-based methods can be easily 

implemented in real time but are far from being optimal while optimization-based methods are 

able to achieve optimal solutions but are difficult to implement in real time. To achieve a good 

balance in between, reinforcement learning (RL) has recently attracted researchers’ attention. 

Liu et al. proposed the first and only existing RL-based EMS for PHEVs which outperforms 

the rule-based controller with respect to the defined reward function but is worse in terms of 

fuel consumption without considering charging opportunity in the model. 

 

In this chapter, a novel model-free RL-based real-time EMS of PHEVs is proposed and 

evaluated, which is capable of simultaneously controlling and learning the optimal power split 

operations in real-time. The proposed model is theoretically derived from dynamic 

programming (DP) formulations and compared to DP in the computational complexity 

perspective. There are three major features which distinguish it from existing methods: 

 the proposed model can be implemented in real-time without any prediction efforts, since 

the control decisions are made only upon the current system state. The control decisions 

also considered for the entire trip information by learning the optimal or near-optimal 
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control decisions from historical driving behavior. Therefore, it achieves a good balance 

between real-time performance and energy saving optimality;  

 the proposed model is a data-driven model which does not need any PHEV model 

information once it is well trained since all the decision variables can be observed and are 

not calculated using any vehicle powertrain models (these details are described in the 

following sections);  

 compared to existing RL-based EMS implementations, the proposed strategy considers 

charging opportunities along the way (a key distinguishing feature of PHEVs as compared 

with HEVs). This proposed method represents a new class of models that could be a good 

supplement to the current methodology taxonomy as shown in Figure 7-2.   

 

7.2 Problem Formulation  

In chapter 5.3, the PHEV energy management (i.e., power-split) is formulated as a mixed 

integer optimization problem. In this chapter, the optimization problem is reformulated as 

dynamic programming problem as follows:  

The above optimization problem can be solved by dynamic programming (DP), since it satisfies 

the Bellman's Principle of Optimality. Let s ϵ S be the state vector of the system, and a ϵ A the 

decision variable. The optimization problem can be converted into the following single 

equation given the initial state 𝑠0 and the decisions 𝑎𝑡 for each time step t.  

𝑚𝑖𝑛
𝑎𝑡𝜖𝐴

𝐸 {∑𝛽𝑡𝑔(𝑠𝑡, 𝑠𝑡+1)|𝑠0 = 𝑠

𝑇−1

𝑡=0

}                                                           (7 − 1) 

where β is a discount factor and β ϵ (0,1). And it can be solved by recursively calculating: 
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𝐽(𝑠𝑡) = 𝑚𝑖𝑛
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡, 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1)|𝑠𝑡 = 𝑠

𝑇−1

𝑡=0

} , 𝑓𝑜𝑟 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,0.     (7 − 2) 

Where T is the time duration; g(.) is a one-step cost function; J(s) is the true value function 

associated with state s .  Eq. (7-2) is also often noted as the Bellman’s equation. In the case of 

PHEV energy management, 𝑠𝑡 can be defined as a combination of vehicle states, such as the 

current SOC level and the remaining time to the destination, which is discussed in the following 

sections. 𝑎t can be defined as the ICE power supply at each time step.  

 

It is well known that the high computational cost of Eq. (7-2) is always the barrier that impedes 

its real-world application, although it is a very simple and descriptive definition. It could be 

computationally intractable even for a small-scale problem (in terms of state space and time 

span). The major reason is that the algorithm has to loop over the entire state space to evaluate 

the optimal decision for every single step. Another obvious drawback in the real-world 

application of DP is that it requires the availability of the full information of the optimization 

problem. In our case, it means the power demand along the entire trip should be known prior 

to the trip, which is always impossible in practice. 

 

7.3 Reinforcement Learning 

To address the above issues, approximate dynamic programming (ADP) has been proposed 

(23). The major contribution of ADP is that it significantly reduces the state space by 

introducing an approximate value function 𝐽(𝑠𝑡, 𝑝𝑡)  where 𝑝𝑡  is a parameter vector. By 

replacing this approximate value function, Eq. (7-2) can be reformulated as: 

𝐽(𝑠𝑡) = 𝑚𝑖𝑛
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡 , 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1, 𝑝𝑡  )

𝑇−1

𝑡=0

} , 𝑓𝑜𝑟 𝑡 = 0,1,… , 𝑇 − 1     (7 − 3) 
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Now the optimal decision can be calculated at each time step t by  

𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎𝑡𝜖𝐴

𝐸 {∑𝑔(𝑠𝑡 , 𝑠𝑡+1) + 𝛽𝐽(𝑠𝑡+1, 𝑝𝑡  )

𝑇−1

𝑡=0

},                                              (7 − 4) 

The calculation of Eq. (7-4) now only relies on the current system state 𝑠𝑡, which substantially 

reduces the computational requirement of Eq. (7-2) to polynomial time in terms of the number 

of the state variables, rather than being exponential to the size of state space. In addition, the 

value iteration that solves the DP problem becomes forward into time, rather than being 

backward in Eq. (7-2). In the case of PHEV energy management, this is actually a bonus since 

the predicted state (e.g. power demand) at the end of the time horizon is much less reliable 

compared to that at the beginning of the time horizon.  

 

In principle, the value approximate function can be learned by tuning and updating the 

parameter vector 𝑝𝑡  upon the addition of each observation on state transitions. The 

Reinforcement Learning (RL) is an effective tool for this purpose. The specific learning 

technique employed in this study is temporal-difference learning (TD-Learning), which is 

originally proposed by Sutton to approximate the long-term future cost as a function of current 

states. The details about the implementation of the algorithm are presented in the following 

sections. 

 

7.4 Reinforcement Learning based EMS 

In this study, a TD-learning strategy is adopted for the reinforcement learning problem. An 

action-value function: Q(s, a) is defined as the expected total reward for the future receipt 

starting from that state. This function is to estimate “how good” it is to perform a given action 

in a given state in terms of the expected return. More specifically, we define 𝑄𝜋(𝑠, 𝑎)  as the 
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value of taking action a in state s under a control policy π (i.e. a map that maps the optimal 

action to a system state), which is also the expected return starting from s, taking the action a, 

and thereafter following policy π: 

𝑄𝜋(𝑠, 𝑎)=𝐸𝜋{∑ 𝛾𝑘 ∗ 𝑟(𝑠𝑡+𝑘, 𝑎𝑡+𝑘)
∞
𝑘=1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}                                      (7-5) 

where 𝑠𝑡 is the state at time step t; γ is a discount factor in (0, 1) to guarantee the convergence;  

𝑟(𝑠𝑡+𝑘 , 𝑎𝑡+𝑘) is the immediate reward based on the state s and action a at a given time step 

(t+k). The ultimate goal of reinforcement learning is to identify the optimal control policy that 

maximizes the above action-value function for all the state-action pairs. 

Comparing to the formulations defined by Eq (7-2) and (7-3), the policy π is the ultimate 

decision for each time step along the entire time horizon. The reward function 𝑟(𝑠𝑡+𝑘 , 𝑎𝑡+𝑘)  

here is g(.) in eq (7-2). The action-value function (i.e., Q(s,a)) is actually an instantiation of  the 

approximate value function 𝐽(𝑠𝑡). So, it is not difficult to understand that the DP formulas are 

the basis for a reinforcement learning problem.  

Conceptually, a RL system consists of two basic components: a learning agent and an 

environment. The learning agent interacts continuously with the environment in the following 

manner: at each time step, the learning agent receives an observation on the environment state. 

The learning agent then chooses an action which is subsequently input to the environment. The 

environment then moves to a new state due to the action, and the reward associated with the 

transition is calculated and fed back to the learning agent. Along with each state transition, the 

agent receives an immediate reward and these rewards are used to form a control policy that 

maps the current state to the best control action upon that state. At each time step, the agent 

makes the decision based on its control policy. Ultimately, the optimal policy can guide the 

learning agent to take the best series of actions in order to maximize the cumulated reward over 

time that can be learned after sufficient training. A graphical illustration of the learning system 

is given in Figure 7-3. The definition of the environmental states, actions and reward are 
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provided as following: 

 

Figure 7-3 Graphical illustration of reinforcement learning system. 

 

7.4.1 Action & Environmental States 

In this study, we define the discretized ICE power supply level (i.e. 𝑃𝑖
𝑒𝑛𝑔

) as the only action 

the learning agent can take. The environment states include any other system parameters that 

could influence the decision of engine power supply. Herein we define a 5-dimensional state 

space for the environment, including the vehicle velocity (𝑣𝑣𝑒ℎ), road grade (𝑔𝑟𝑜𝑎𝑑), percentage 

of remaining time to destination (𝑡𝑡𝑜𝑔𝑜), the battery pack’s state-of-charge (𝑏𝑠𝑜𝑐), the available 

charging gain (𝑐𝑔) of the selected charging station: 

S={𝑠 = [𝑣𝑣𝑒ℎ , 𝑔𝑟𝑜𝑎𝑑 , 𝑡𝑡𝑜𝑔𝑜, 𝑏𝑠𝑜𝑐  , 𝑐𝑔 ]
𝑇
|𝑣𝑣𝑒ℎ𝜖𝑉𝑣𝑒ℎ,

𝑔𝑟o𝑎𝑑𝜖𝐺𝑟𝑜𝑎𝑑 , 𝑡𝑡𝑜𝑔𝑜𝜖𝑇𝑡𝑜𝑔𝑜, 𝑏𝑠𝑜𝑐𝜖 𝐵𝑠𝑜𝑐 , 𝑐𝑐𝜖𝐶𝑔 } 

where 𝑉𝑣𝑒ℎ is the set of discretized vehicle speed level; 𝐺𝑟𝑜𝑎𝑑  is the set of discretized road 

grade levels; 𝑃𝑏𝑟𝑘 is the discretized level of power collected from regenerative braking (note: 

this power is negative compared to power demand). The minimum and maximum value of 
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vehicle velocity, road grade, and regenerative braking power can be estimated from the 

historical data of commuting trips which will be elaborated in the following section. 𝐵𝑠𝑜𝑐 is the 

set of battery state-of-charge (SOC) levels between the lower bound (e.g., 20%) and upper 

bound (e.g., 80%); 𝑇𝑡𝑜𝑔𝑜 is the percentage (10% ~ 90%) of remaining time out of the entire trip 

duration, which is calculated based on the remaining distance to destination. 𝐶𝑔 is the set of 

discretized charging gain (e.g., 30%, 60%) of the selected charger. This charging gain 

represents the availability of the charger which may be a function of the charging time and 

charging rate and is assumed to be known beforehand. It is noteworthy that all the states can be 

measured and updated in real-time as the vehicle is running. Figure 7-4 shows all the real-time 

environmental states. 

 

Figure 7-4  Illustration of environment states along a trip. 

 

7.4.2 Reward Initialization 

The definition of reward is dependent upon the control objective which is to minimize the fuel 

cost while satisfying the power demand requirement. Hence, we define the reciprocal of the 

resultant ICE power consumption at each time step as the immediate reward. A penalty term is 

also included to penalize the situation where the SOC is beyond the predefined SOC boundaries. 

Immediate reward is calculated by the following equations: 
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𝑟𝑠𝑠,
𝑎 =

{
  
 

  
 

1

𝑃𝐼𝐶𝐸
                    𝑖𝑓 𝑃𝐼𝐶𝐸 ≠ 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8

1

𝑃𝐼𝐶𝐸+𝑃
      𝑖𝑓 𝑃𝐼𝐶𝐸 ≠ 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆O𝐶 ≥ 0.8)

2

𝑀𝑖𝑛𝑃𝐼𝐶𝐸
                 𝑖𝑓 𝑃𝐼𝐶𝐸 = 0 𝑎𝑛𝑑 0.2 ≤ 𝑆𝑂𝐶 ≤ 0.8

1

2∗𝑃
                                   𝑖𝑓 𝑃𝐼𝐶𝐸 = 0 𝑎𝑛𝑑(𝑆𝑂𝐶 ≤ 0.2 𝑜𝑟 𝑆𝑂𝐶 ≥ 0.8)

      (7-6) 

where 𝑟𝑠𝑠,
𝑎  is the immediate reward when state changes from s to 𝑠 , by taking action a;  𝑃𝐼𝐶𝐸 is 

the ICE power supply; 𝑃 is the penalty value and is set as the maximum power supply from 

ICE in this study; 𝑀𝑖𝑛_𝑃𝐼𝐶𝐸  is the minimum nonzero value of ICE power supply. This 

definition guarantees that the minimum ICE power supply (action) which satisfies the power 

demand as well as SOC constraints can have the largest numerical reward. A good initialization 

of reward is also critical for the quick convergence of the proposed algorithm. In this case, the 

optimal or near optimal results of typical trips obtained from simulation are used as the initial 

seeds. These optimal or near optimal results are deemed as the control decisions made by “good 

drivers” from historical driving. In order to obtain a large number of such good results for 

algorithm training, an evolutionary algorithm (EA) is adopted for the off-line full-trip 

optimization since EA can provide multiple solutions for one single run. These solutions are of 

different quality which may well represent different level of driving proficiency in the real 

world situation.  

 

7.4.3 Q-value Update and Action Selection 

In the algorithm, a Q value, denoted by Q(s, a), is associated with each possible state-action 

pair (s, a). Hence there is a Q table which is kept updating during the learning process and can 

be interpreted as the optimal control policy that the learning agent is trying to learn. At each 

time step, the action is selected upon this table after it is updated. The details of the algorithmic 

process are given in the following pseudo code: 
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Algorithm   RL based PHEV EMS algorithm  

Inputs: Initialization 6-D Q(s, a) table; Discount factor γ=0.5; Learning 

rate α=0.5; Exploration probability ε ϵ(0,1); Vehicle power demand 

profile 𝑃𝑑 (N time steps) 

Outputs: Q(s, a) array; Control decisions 𝑃𝑑 (T time steps) 

1: Initialize Q(s, a) arbitrarily  

2: for each time step t=1:T 

3:      Observe current st (vveh, groad, ttogo, bsoc , Cg) 

4:      Choose action at for the current state st: 
5:                temp=random(0,1); 

6:                 if  temp <= ε 

7:                      at= arg max
aϵA

{ Q(st, a)} 

8:                 else 

9:                       at= randomly choose an action; 

10:               end  

11:     Take action at, observe next state st+1 (Pt+1, SOCt+1) 

12:     if SOCt+1<0.2 

13:            Switch into Charging-Sustaining  mode; 

14:            Give big penalty to  rt according to Eq. (10) 

15:      else 

16:            Calculate reward rt according to Eq. (10) 

17:      end 

18:      Update Q(st, at) with  following value: 

19:      Q(st, at)+α{rt + γ ∗ max
at+1

{ Q(st+1, at+1)} − Q(st, at)}            

20: end  

 

7.5 Validation with Real-world Driving Cycles 

The proposed model is then evaluated with real-world data in two different scenarios: one 

without charging opportunities and the other with charging opportunities. The data set is 

described in section 6.6.1  

 

7.5.1 Model without Charging Opportunity (trip level) 

To validate the proposed strategy, the model without considering charging opportunity is first 

trained and tested with trips where there is no charging opportunity within the trip. Data for 

multiple westbound trips described in (21) are used for training. Although it has been proven 

that Q-learning is guaranteed to converge mathematically, an experimental analysis of 

convergence is conducted in this study. In the experiment, the trip data for the first six days are 

concatenated one by one to form a single training cycle. The proposed model is trained with 
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repeated training cycles. At the end of each training cycle, the trained model is tested with the 

7th day trip and the fuel consumption is recorded in the following Figure 7-5. In addition, the 

training with or without good initialization using simulated optimal or near optimal solution are 

also compared.  As we can see in the figure, there is a clear convergence in fuel consumption 

for both cases. However, the initialization with simulated optimal or near optimal solutions help 

achieve a faster convergence. 

 

Figure 7-5  Convergence Analysis (ε =0.7; γ=0.5; α=0.5). 

 

As previously described, the selected state space is 5-dimensional and the action space has 1 

dimension. Therefore the Q(s, a) table is 6-dimensional. Figure 7-6 shows the 4-D slice diagram 

of the learned Q(s, a) table in which different color grids represent different numerical reward 

values (e.g., blue color means lower values) and 3 slices on the (ICE power supply, power 

demand) space are given at three different SOC levels: 1, 6 and 12 (i.e., 20%, 50%, and 80%). 

Please note that the road grade and vehicle speed are implicitly aggregated into power demand. 

The dimension of remaining time is not indicated in the figure. As can be observed in each 

slice, when the power demand is not so high (e.g., below level 5), action level 1 or 2 is usually 

the most appropriate because the least ICE power is consumed. When the power demand 

becomes higher, the range of the feasible action levels gets wider also. In such cases, lower 
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levels of ICE power supply may not be enough to satisfy the power demand and the resultant 

SOC level could be lower than 0.2, resulting in a penalty defined in Eq. (17). It is also noted 

that when SOC level is high, it is less likely the higher ICE power supply level would be chosen 

to satisfy the same power demand. This is because when the vehicle battery SOC is high, the 

ICE power is not likely to be used aggressively.   

 

Figure 7-6 4-D slice diagram of the learned Q table. 

 
As discussed in the previous sections, an exploration-exploitation strategy is adopted for the 

action selection process to avoid premature convergence. The action with the biggest Q value 

has a probability of 1-ε to be selected. Hence the value of ε may significantly affect the 

performance of the proposed method. To evaluate such impacts, a sensitively analysis of ε is 

carried out and illustrated in Figure 8. It can be observed that both the fuel consumption and 

the resultant SOC curves are very close to those of the binary mode control if the value of ε is 

small. A possible explanation is that a small ε value indicates a large probability to select the 

most aggressive action with the biggest Q value (or the lowest levels of ICE power supply). 

Therefore, the battery power is consumed drastically as it is with the binary mode control.  

However, if the value of ε is too large (e.g., >0.8), the battery power is utilized too 

conservatively where the final SOC is far away from the lower bound, resulting in much greater 

fuel consumption. It is found that the best value of ε in this study is around 0.7, which ensures 

the SOC curve is quite close to the global optimal solution obtained by the off-line DP strategy. 

With this best ε value, the fuel consumption is 0.3559 gallon, which is 11.9% less than that of 
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the binary mode control and only 2.86% more than that of DP strategy as shown in Figure 7-7. 

This also implies that an adaptive strategy for determining exploration rate along the trip could 

be a useful.  Figure 7-8(a) shows a linearly decreasing control of ε along the trip.  A smaller ε 

is preferred at the later stage of the trip because SOC is low and the battery power should be 

consumed more conservatively. With this adaptive strategy for ε( see Fig. 7-8(a) ), the proposed 

mode could also achieve a good solution with 0.3570 gallon of fuel consumption, which is 

11.7% less than binary control shown in Figure 7-7.  

 

Figure 7-7  Fig. 22. Fuel consumption in gallon (bracketed values) and SOC curves by different 

exploration probabilities. 

 

Figure 7-8   Fig. 23. (a) Linear adaptive control of ε; (b) Linear adaptive control of ε with charging 

opportunity. 
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7.5.2 Model with Charging Opportunity (tour level) 

The most distinctive characteristics of PHEVs from HEVs is that PHEV can be externally 

charged whenever a charging opportunity is available. To further evaluate the impacts due to 

charging availability, we include this information in the proposed model as a decision variable. 

For simplicity, the charging opportunity is quantified by the gain in the battery’s SOC, which 

may be a function of available charging time and charging rate. Data for a typical tour is 

constructed by combining a round trip between the origin and destination.  We assume there is 

a charger in the working place (west-most point in the map) and the available charging gain has 

only two levels: 30% and 60%.  In this case, a corresponding adaptive strategy of ε is also used 

as shown in Figure 7-8(b). The rationale behind this adaptive strategy is that battery power 

should be used less conservatively (i.e., higher ε value) after charging, and/or when Cg  is 

higher. 

 

Figure 7-9  Optimal results when available charging gain is 0.3 (Cg=0.3) 



171 

 

 

Figure 7-10  Optimal results when available charging gain is 0.6 (Cg=0.6) 

 

The obtained optimal results are shown in Figure 7-9 and Figure 7-10. As we can see in both 

figures, the resultant SOC curves are much closer to the global optimal solutions obtained by 

DP than binary control. To obtain a statistical significance of the performance, the proposed 

model is tested with 30 different trips by randomly combining two trips and assume a charging 

station in between with a random Cg (randomly choose from 30% and 60%). By taking binary 

control as baseline, the reduced fuel consumption is given in the following Figure 7-11. As we 

can see in the figure, RL model achieves an average of 7.9% fuel savings. It seems that having 

more information results in lower fuel savings which is counterintuitive. The reason is that the 

inclusion of additional information or state variable to the model exponentially increases the 

search space of the problem, which thereby increases the difficulty of learning the optimal 

solution. And also more uncertainty is introduced to the learning process due to the errors within 

the added information, which degrades the quality of the best solution the model can achieve.  
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Figure 7-11  Fuel consumption reduction compared to binary control. 
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8 Conclusions and Future Work 

8.1 Conclusions 

This dissertation research work provides solutions for improving PEV energy efficiency in real-

world driving by taking the synergies from the following functional components or aspect: 

vehicle dynamics optimization, powertrain operations, co-optimizations and the autonomous 

learning strategy.  Hence the conclusions drawn for each aspect are listed as follows: 

 Vehicle dynamics Optimization 

In chapter 4, three different connected ecodriving assistance system are designed and tested 

with real-world driving data: EAD system without driver-in-the-loop, EAD system with 

driver-in-the-loop and partially automated EAD system (i.e., automatic longitudinal 

control). The numerical analysis with real-world driving data collected from U.S. DOT 

Turner-Fairbank Highway Research Center (TFHRC) shows that the EAD system without 

driver-in-the-loop can achieve 12.1% energy efficiency improvement on average 

comparing to human driving without any EAD assistance; EAD system with driver-in-the-

loop is able to achieve additional 11.7% energy savings comparing to that without driver-

in-the-loop; and partially automated EAD assistance system can achieve 21.9% energy 

savings on average comparing to human driving without any EAD assistance.  

These results prove that the optimization of vehicle dynamics is able to improve the energy 

efficiency of PEVs. Furthermore, the consideration of human driver can also help improve 

PEV driving efficiency.  

 

 Powertrain operation optimization:  

In chapter 5, a framework of on-line energy management system for plug-in hybrid electric 

vehicles is developed. The framework applies the self-adaptive strategy to control the 
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vehicle’s state-of-charge (SOC) in a rolling horizon manner for the purpose of real-time 

implementation. The control of the vehicle’s SOC is formulated as a combinatory 

optimization problem that can be efficiently solved by the estimation distribution algorithm 

(EDA). The proposed energy management system is comprehensively evaluated using a 

number of trip profiles extracted from real-world traffic data. The results show that the self-

adaptive control strategy used in the proposed system statistically outperforms the 

conventional binary control strategy with an average of 10.7% fuel savings. In addition, the 

real-time performance analysis shows that the proposed mode is very computationally 

efficient and can be implemented in real-time by taking the advantage of evolutionary 

optimization. Another important advantage of the proposed energy management system is 

that, unlike other existing optimization based EMS systems, it does not require a priori 

knowledge about the trip duration. This allows the proposed system to be robust against 

real-world uncertainties, such as unexpected traffic congestion that increases the trip 

duration significantly, and changes in inter-trip charging availability. 

 

 Co-optimization 

In chapter 6, an integrated connected Ecodriving assistance system with co-optimization of 

vehicle dynamics and powertrain operation for PHEVs was designed and evaluated 

extensively. The real-world driving data with different Ecodriving stages were collected 

and used for comprehensive performance evaluations. The numerical analysis shows that 

the combination of automatic longitudinal control and online EMS for PHEVs can achieve 

almost 90% fuel savings for driving within the intersection region, compared to the baseline 

(i.e., uninformed manual driving with binary mode EMS). In addition, around 24% of fuel 

savings can be achieved on synthesized urban trips where the portion (in travel distance) 

within the intersections account for 10% of the entire trip. These results indicate that 
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augmented energy benefits can be achieved by the joint consideration of vehicle dynamics 

and powertrain operations.  

 

 Autonomous learning for improving energy efficiency 

In chapter 7, a data-driven reinforcement learning based real-time energy management 

system for PHEVs is proposed, which is capable of simultaneously controlling and learning 

the optimal power split operation. The proposed EMS model is tested with trip data (i.e., 

multiple speed profiles) synthesized from real-world traffic measurements. Numerical 

analyses show that a near-optimal solution can be obtained in real time when the 

autonomous learning model is well trained with historical driving cycles. For the study 

cases, the proposed autonomous learning model can achieve better fuel economy than the 

binary mode strategy by about 12% and 8% at the trip level and tour level (with charging 

opportunity), respectively. It is indicated that when the prediction of future driving 

conditions is not reliable or even available, autonomous learning based model can be used 

to learn the optimal (or near optimal) control strategies from historical driving data to 

improve PEV energy efficiency.  

 

8.2 Selected Publications, Patent and Media Coverage 

There are total 16 manuscripts are finished during this dissertation study period, including 10 

published, 4 submitted and 2 accepted (as of 12/8/2016).  There will be another two manuscripts 

under preparation but not finished by the time of this dissertation is filed.  All the details on 

these manuscripts are listed in Table 8-1: 
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Table 8-1 Publications status  (By 12/08/2016) 

Authorship Type                          Publisher  Total 

Number 

 

 

 

 

 

First 

Author 

 

Journal 

published 

    (3) 

IEEE transaction of Intelligent Transportation 

System 

      1 

ASCE Journal of Transpiration Engineering       1 

Journal of Transportation Research Board (TRR)       1 

Conference 

published 

     (5) 

IEEE Conference of Intelligent Transportation 

System (ITSC) 

      2 

IEEE Conference of Intelligent Vehicles (IV)       1 

Automated Vehicle Symposium (AVS) (poster)       1 

ACM  Genetic and Evolutionary Computation 

Conference 

      1 

 

Finished/ 

Submitted 

    (4) 

IEEE Transactions of Intelligent Vehicles       1 

Transportation Research Part D       1 

Applied Energy       1 

IEEE Transactions of Intelligent Transportation 

System 

      1 

 

 

Co-author 

 

Conference 

published 

     (4) 

IEEE International conference on Connected 

Vehicles(ICCVE) 

      2 

Annual Meeting of Transportation Research Board       2 

  

Manuscripts in 

preparation 

Deep Reinforcement Learning based Fuel 

efficiency learning 

1 

Swarm Intelligence based Multi-vehicle Learning  1 
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1) Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., "A Novel Blended Real-Time 

Energy Management Strategy for Plug-in Hybrid Electric Vehicle Commute Trips," 

in Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference 

on , vol., no., pp.1002-1007, 15-18 Sept. 2015 

 

2) Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J.; Jeffery Gonder, “Data-Driven 

Reinforcement Learning-Based Real-Time Energy Management System for Plug-in Hybrid 

Electric Vehicles” Transportation Research Record (Journal of Transportation Research 

Board),vol,2572,pp. 1-8,2016. DOI: 10.3141/2572-01 

 

3) Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., "Evolutionary algorithm 

based on-line PHEV energy management system with self-adaptive SOC control," 

in Intelligent Vehicles Symposium (IV), 2015 IEEE , vol., no., pp.425-430, June 28 2015-

July 1 2015doi: 10.1109/IVS.2015.7225722 

 

4) Xuewei Qi, Guoyuan, Wu, Matthew, Barth. "An on-line intelligent energy management 

strategy for Plug-in Hybrid Electric Vehicles" Proceedings of IEEE conference of 

Intelligent Transportation System, 2014, Qindao. 

 

5) Xuewei Qi, Guoyuan, Wu, Matthew, Barth.” Development and Evaluation of an 

Evolutionary Algorithm-Based On-Line Energy Management System for Plug-In Hybrid 

Electric Vehicles” accepted and in press by IEEE transections of Intelligent Transportation 
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Proceedings of Transportation Research Board Annual Meeting 2015, Washington D.C.. 
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evaluating an eco-speed harmonization strategy for connected vehicles," 2015 International 

Conference on Connected Vehicles and Expo (ICCVE), Shenzhen, China, 2015, pp. 373-

378.doi: 10.1109/ICCVE.2015.16Y.  

 

9) Chen, S. Young, Xuewei Qi and J. Gonder, "Estimate of fuel consumption and GHG 

emission impact from an automated mobility district," 2015 International Conference on 

Connected Vehicles and Expo (ICCVE), Shenzhen, China, 2015, pp. 271-278. 

doi: 10.1109/ICCVE.2015.32 

 

10) Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., “Data-driven Decomposition 

and Estimation of Link-level Energy consumption of Electric Vehicles Considering Real-

world Traffic Conditions," submitted to Transportation Research Part D. 
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11) Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., “Estimating Energy and 

Mobility Benefits from Eco-approach/Departure System for Electric Vehicles" submitted 

to Applied Energy 

 

12) Xuewei Qi Guoyuan Wu and Matthew Barth, “Next Generation Connected Ecodriving 

System for PHEVs: Co-optimization of Vehicle Dynamics and Powertrain Operations” 

submitted to IEEE Transections of Intelligent Vehicles 

 

13) Xuewei Qi Guoyuan Wu and Matthew Barth,” Driver-vehicle-infrastructure Cooperative 

System: Adaptive Connected Ecodriving Considering Human Driver Error” submitted to 

IEEE transections of Intelligent Vehicles. 

 

14) Xuewei Qi, Matthew Barth, Guoyuan Wu, and Kanok Boriboonsomsin. 2016. Intelligent 

On-Line Energy Management System for Plug-in Hybrid Electric Vehicles based on 

Evolutionary Algorithm. In Proceedings of the 2016 on Genetic and Evolutionary 
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ACM, New York, NY, USA, 167-168.  

 

15) Fei Ye,  Peng Hao, Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., 
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accepted Transportation Research Board Annual Meeting 2017, Washington D.C.. 

 

16) Chao Wang, Peng Hao, Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., 
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accepted Transportation Research Board Annual Meeting 2017, Washington D.C.. 

 

 

 

8.3 Patent & Media Coverage 

The designed Data-driven EMS for PHEV described in Chapter 7 has been filed in a 

patent application before its publication by the commercialization office of UC 

Riverside. Several major auto manufactures (e.g., Honda) have contacted the authors 

and inquiry about the possibility of commercialization of this invention. 

Since its publication early this year, more than 10 major science and technology 

websites and journals have made a coverage for this invention, some of them are listed 

below and also in Fig. 8-1: 

IEEE  

http://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/hybrid-car-system-learns-fuel-efficiency 

http://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/hybrid-car-system-learns-fuel-efficiency
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Science Daily 

https://www.sciencedaily.com/releases/2016/02/160209132051.htm 

UCR Today 

http://ucrtoday.ucr.edu/34819 

Automotive Industries 

http://www.ai-online.com/Adv/Previous/show_issue.php?id=6895&search=true#sthash.TJy9naah.Uf1ubVng.dpbs 

https://www.sciencedaily.com/releases/2016/02/160209132051.htm
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http://www.ai-online.com/Adv/Previous/show_issue.php?id=6895&search=true#sthash.TJy9naah.Uf1ubVng.dpbs
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Figure 8-1   Media coverage of this dissertation research work 

 

8.4 Future Research Directions  

This dissertation work provides a very complete technological framework for improving PEV 

energy efficiency in real-world driving from the following perspectives: vehicle dynamics 

optimization, powertrain operations, co-optimizations and the autonomous learning strategy.  

There is still much valuable future work can be done for each of these functional components 

that proposed in this dissertation. All the future work is inspired by the results and findings that 

achieved by this dissertation work. The potential future research directions are listed as follows: 

 

 Vehicle dynamics optimization:   

The future work on this part will be focused on the field testing driving of partially 

automated EAD driving for EVs (MPC based) and EAD with driver-in-the-loop (SMPC 

based) for EVs; In addition, the VTPA will be further improved by considering more EV 
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exclusive characteristics.  The EAD system will also be extended to Eco-ACC that will also 

work and provide optimal speed trajectory to achieve maxim energy efficiency outside the 

intersections range.  

 

 Powertrain operation optimization:   

The proposed several different energy management systems in this dissertation are all for 

one single vehicle optimization., The future work on this part will be focused on the 

extension of the single vehicle optimization model to multi-vehicle optimization model in 

connected vehicle environment. For example, the current single PHEV EMS mode can be 

extended into multi-PHEV EMS  in a fleet level. The objective of such system would be a 

cooperative optimization of all the PHEVs within a fleet. The energy efficiency is expected 

to be further improved with the help of this multi-vehicle exchange and cooperation.  

 

 Co-optimization:  

In this part, the current dissertation study uses a bi-level optimization to best approximate 

the co-optimization of the vehicle dynamics and powertrain operations for PHEVs, this can 

be further improved by proposing another formulation of the problem to provide more 

optimal solution, although the current results are quite promising.  

 

 Autonomous learning for improving energy efficiency 

The future work derived from this dissertation study will be mainly involved in this part. 

The proposed model in this dissertation is reinforcement learning based autonomous 

learning system for single vehicle. There are two major directions for further improving the 
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performance of the autonomous learning system: One is from extending the current single 

vehicle based autonomous learning to a multi-vehicle cooperative learning framework that 

accommodate the collaborative learning behavior among all the connected vehicles.  There 

is one manuscript is in preparation on this topic.The other one is proposing deep learning 

based mode to replace the current reinforcement learning based model so that the learning 

ability is significantly improved. There is one manuscript is in preparation on this topic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



184 

 

Bibliography 

 

[1] U.S. energy information administration, Monthly Energy Review (March 2015), Table 2.1  

Available at: http://www.eia.gov/Energyexplained/?page=us_energy_transportation 

[2] U.S. Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas 

Emissions and Sinks: 1990 – 2014. Final report, April, 2016. 

[3] S. G. Wirasingha and A. Emadi. “Classification and Review of Control Strategies for Plug-

In Hybrid Electric Vehicles”. IEEE Transactions on Vehicular Technology, Vol.60, No.1, 

January 2011, pp. 111 – 122 

[4] A. Panday and H. O. Bansal. “A Review of Optimal Energy Management Strategies for 

Hybrid Electric Vehicle”. International Journal of Vehicular Technology, 2014, p. 19. 

[5] D. Schrank, B. Eisele, T. Lomax and J. Bak.2015 Urban Mobility scorecard. 

http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015.pdf 

[6] M. Barth, S. Mandava, K. Boriboonsomsin and H. Xia, "Dynamic Ecodriving for arterial 

corridors," Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum 

on, Vienna, 2011, pp. 182-188.  

[7] R. Zhang and E. Yao, "Ecodriving at signalised intersections for electric vehicles," in IET 

Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[8] US DOT, 2010. Transportation’s Role in Reducing U.S. Greenhouse Gas Emissions 

Volume 1: Synthesis Report, Report to Congress, U.S. Department of Transportation. 

[9] Skerlos, S.J., Winebrake, J.J., 2010. Targeting plug-in hybrid electric vehicle policies to 

increase social benefits. Energy Policy 38 (2), 705–708. 

[10] Canis, B. (2011). Battery manufacturing for hybrid and electric vehicles: policy issues. 

Congressional research service. 

<http://nepinstitute.org/get/CRS_Reports/CRS_Energy/Energy_Efficiency_and_Conserva

tion/Batteries_for_Hybrid_and_Elec_Vehicles.pdf> (Accessed April 10, 2013). 

[11] Elkind, E.N., 2012. Electric drive by ’25: how California can catalyze mass adoption 

of electric vehicles by 2025, workshop by UCLA Law/Berkeley 

Law,<http://www.law.berkeley.edu/files/ccelp/Electric_Drive_by_25-2.pdf> (Accessed 

April 22, 2013). 

[12] Axsen, J., Kurani, K.S., Burke, A., 2010. Are batteries ready for plug-in hybrid buyers? 

Transport Policy 17, 173–182. 

[13] Morrowa, K., Karnerb, D., Francfortc, J., 2008. U.S. Department of Energy Vehicle 

Technologies Program – Advanced Vehicle Testing Activity Plug-in Hybrid Electric 

Vehicle: Charging Infrastructure Review, Final Report: INL/EXT-08-15058, Battelle 

Energy Alliance, Contract No. 58517. 



185 

 

[14] Steven Lavrenz & Konstantina Gkritza (2013) Environmental and Energy Impacts of 

Automated Electric Highway Systems, Journal of Intelligent Transportation Systems: 

Technology, Planning, and Operations, 17:3, pp 221-232.  

[15] G. Wu, K. Boriboonsomsin, M. Barth (2014) “Development and Evaluation of an 

Intelligent Energy Management Strategy for Plug-in Hybrid Electric Vehicles”, in press,  

IEEE Transactions on Intelligent Transportation Systems. 

[16] U.S. Environmental Protection Agency, U.S. Greenhouse Gas Inventory Report: 1990-

2013, see http://www.epa.gov/climatechange/ghgemissions/usinventoryreport.html, 2015. 

[17] U.S. Department of Transportation, Intelligent Transportation Systems Joint Program 

Office, National ITS Architecture, see http://www.iteris.com/itsarch/, accessed May 2015. 

[18] M. Barth, K. Boriboonsomsin, “Real-World Carbon Dioxide Impacts of Traffic 

Congestion”, Transportation Research Record: Journal of the Transportation Research 

Board, V. 2058, pp. 163-171. 

[19] U.S. Department of Transportation, Federal Highway Administration Exploratory 

Advanced Research Program, see http://www.fhwa.dot.gov/advancedresearch, 2015. 

[20] V. Milanes, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, M. Nakamura, 

“Cooperative Adaptive Cruise Control in Real Traffic Situations”, IEEE Transactions on 

Intelligent Transportation Systems, Vol. 15, No. 1, pp. 296-305. 

[21] P. Hao, G. Wu, K. Boriboonsomsin, M. Barth, “Developing a Framework of Eco-

Approach and Departure Application for Actuated Signal Control”, IEEE Intelligent 

Vehicles Symposium, 2015 (accepted). 

[22] U.S. Department of Transportation, University Transportation Centers Program, see 

http://www.rita.dot.gov/utc/home, 2015. 

[23] National Center for Sustainable Transportation, see http://ncst.ucdavis.edu/, 2015. 

[24] Mid-Atlantic Transportation Sustainability Center, see http://www.matsutc.org/, 2015. 

[25] D. Kari, G. Wu, and M. Barth, “Eco-Friendly Freight Signal Priority Using Connected 

Vehicle Technology: A Multi-Agent Systems Approach”, Proceedings of the 2014 IEEE 

Symposium on Intelligent Vehicles, Dearborn, Michigan, June, 2014. 

[26] K. Ahn, H. Rakha, “Ecolane Applications”, Transportation Research Record: Journal 

of the Transportation Research Board, V. 2427, No. 1, pp.41-53. 

[27] U.S. Department of Transportation, Applications for the Environment: Real-Time 

Information Synthesis (AERIS) Research Program, see http://www.its.dot.gov/aeris/, 2015. 

[28] Virginia Tech Transportation Institute, see 

http://www.its.dot.gov/aeris/pdf/EcoDriving.pdf, 2011. 

[29] Calmar Telematics, see 

http://ntl.bts.gov/lib/46000/46100/46187/FINAL_PKG_FHWA-JPO-12-051.pdf, 2012. 



186 

 

[30] Virginia Tech Transportation Institute, see 

http://www.its.dot.gov/aeris/pdf/EcoDriving.pdf, 2011. 

[31] University of California, Riverside, see 

http://ntl.bts.gov/lib/45000/45600/45636/FINAL_PKG_FHWA-JPO-12-042_V3.pdf, 

2011. 

[32] University of Buffalo, see http://www.civil.buffalo.edu/research/research-

areas/area:transportation-systems-engineering/section:projects/project:an-evaluation-of-

likely-environmental-benefits-of-lowest-fuel-consumption-route-guidance-in-the-buffalo-

niagara-metropolitan-area/, 2014. 

[33] H. Xia, K. Boriboonsomsin, M. Barth, “Dynamic Ecodriving for Signalized Arterial 

Corridors and Its Indirect Network-Wide Energy/Emissions Benefits”, Journal of 

Intelligent Transportation System: Technology, Planning, and Operations, Vol 17, Issue 1. 

[34] U.S. Department of Transportation, AERIS-Applications for the Environment: Real-

Time Information Synthesis: Eco-Signal Operations Modeling Report, publication number 

FHWA-JPO-14-185, see http://ntl.bts.gov/lib/54000/54900/54930/Eco-

Signal_Operations_Modeling_Report_-_Final_508_-_012615.pdf, 2014. 

[35] U.S. Department of Transportation, AERIS-Applications for the Environment: Real-

Time Information Synthesis: Eco-Lanes Operational Scenario Modeling Report, 

publication number FHWA-JPO-14-186, see 

http://ntl.bts.gov/lib/54000/54900/54929/Eco-Lanes_Modeling_Report_-_Final_508_-

_012615.pdf, 2014. 

[36] EU Working Group for Clean and Efficient Mobility, see 

http://www.imobilitysupport.eu/library/imobility-forum/working-groups/active/ict-for-

clean-and-efficient-mobility/reports-4/2332-wg4cem-final-report-131308 

[37] Cooperative mobility systems and services for energy efficiency, see 

http://www.ecomove-project.eu/, 2015. 

[38] ECOSTAND: Joint EU - Japan - US task force on the development of a standard 

methodology for determining the impacts of ITS on energy efficiency and CO2 emissions, 

see http://www.ecostand-project.eu/, 2015. 

[39] EU Compass4D research project, see http://www.compass4d.eu/, 2015. 

[40] Co-operative Systems for Sustainable Mobility and Energy Efficiency, see 

http://www.cosmo-project.eu/, 2015. 

[41] Co-operative Networked Concept for Emission Responsive Traffic Operations, see 

http://www.traffictechnologytoday.com/news.php?NewsID=27116, 2014. 

[42] A Decision Support System for Reducing CO2 and Black Carbon Emissions by 

Adaptive Traffic Management, see http://carbotraf.eu/, 2014. 

[43] Assessment Methodologies for ICT in multimodal transport from User Behaviour to 

CO2 reduction, see http://www.amitran.eu/, 2015. 

http://www.imobilitysupport.eu/library/imobility-forum/working-groups/active/ict-for-clean-and-efficient-mobility/reports-4/2332-wg4cem-final-report-131308
http://www.imobilitysupport.eu/library/imobility-forum/working-groups/active/ict-for-clean-and-efficient-mobility/reports-4/2332-wg4cem-final-report-131308


187 

 

[44] Cooperative Advanced Driver Assistance System for Green Cars, see 

http://www.transport-research.info/web/projects/project_details.cfm?id=44395, 2015. 

[45]  Liden, Daniel. "What Is a Driverless Car?". WiseGeek. Retrieved 11 October 2013. 

[46] Kelly, Heather (30 October 2012). "Self-driving cars now legal in California". CNN. 

Retrieved 11 October 2013. 

[47] Thrun, Sebastian (2010). "Toward Robotic Cars". Communications of the 

ACM. 53 (4): 99–106. doi:10.1145/1721654.1721679. 

[48] Gehrig, Stefan K.; Stein, Fridtjof J. (1999). Dead reckoning and cartography using 

stereo vision for an autonomous car. IEEE/RSJ International Conference on Intelligent 

Robots and Systems. Kyongju. pp. 1507–1512. doi:10.1109/IROS.1999.811692. ISBN 0-

7803-5184-3. 

[49] Lassa, Todd (January 2013). "The Beginning of the End of Driving". Motor Trend. 

Retrieved 1 September 2014. 

[50] European Roadmap Smart Systems for Automated Driving, European Technology 

Platform on Smart Systems Integration (EPoSS), 2015. 

[51]  Zhu, Wentao; Miao, Jun; Hu, Jiangbi; Qing, Laiyun (2014-03-27). "Vehicle detection 

in driving simulation using extreme learning machine". Neurocomputing. 128: 160–

165. doi:10.1016/j.neucom.2013.05.052. 

[52]  Antsaklis, Panos J.; Passino, Kevin M.; Wang, S.J. (1991). "An Introduction to 

Autonomous Control Systems" (PDF). IEEE Control Systems. 11 (4): 5–

13. doi:10.1109/37.88585. 

[53]  Wood, S. P.; Chang, J.; Healy, T.; Wood, J. "The potential regulatory challenges of 

increasingly autonomous motor vehicles.". 52nd Santa Clara Law Review. 4 (9): 1423–

1502. 

[54]  "AdaptIVe system classification and glossary on Automated driving" (PDF). 

[55] NHTSA, 2013, http://www.nhtsa.gov/About-NHTSA/Press-Releases/U.S.-

Department-of-Transportation-Releases-Policy-on-Automated-Vehicle-Development 

[56]  David B. Sandalow, ed. (2009). Plug-In Electric Vehicles: What Role for 

Washington? (1st. ed.). The Brookings Institution. pp. 2–5. ISBN 978-0-8157-0305-1. See 

definition on pp. 2. 

[57]  "Plug-in Electric Vehicles (PEVs)". Center for Sustainable Energy, California. 

Retrieved 2010-03-31. 

[58] "Electric Vehicles: Turning Buzz into Reality". European Automobile Manufacturers 

Association. 2010-02-09. Retrieved 2010-04-23. 

[59] Xu, G., Li, W., Xu, K., Song, Z., 2011. An intelligent regenerative braking strategy for 

electric vehicles. Energies 4, 1461–1477. 

[60] Knowles, M., Scott, H., Baglee, D., 2012. The effect of driving style on electric 

vehicle performance, economy and perception. Int. J. Electric Hybrid Veh. 4 (3),228–247. 

http://www.wisegeek.com/what-is-a-driverless-car.htm
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
http://dl.acm.org/citation.cfm?id=1721679
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F1721654.1721679
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%2FIROS.1999.811692
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7803-5184-3
https://en.wikipedia.org/wiki/Special:BookSources/0-7803-5184-3
http://www.motortrend.com/features/auto_news/2012/1301_the_beginning_of_the_end_of_driving/
https://en.wikipedia.org/wiki/Motor_Trend
http://www.smart-systems-integration.org/public/documents/publications/EPoSS%20Roadmap_Smart%20Systems%20for%20Automated%20Driving_2015_V1.pdf
http://www.sciencedirect.com/science/article/pii/S0925231213010126
http://www.sciencedirect.com/science/article/pii/S0925231213010126
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%2Fj.neucom.2013.05.052
http://neuron-ai.tuke.sk/hudecm/PDF_PAPERS/Intro-Aut-Control.pdf
http://neuron-ai.tuke.sk/hudecm/PDF_PAPERS/Intro-Aut-Control.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%2F37.88585
http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=2734&context=lawreview
http://digitalcommons.law.scu.edu/cgi/viewcontent.cgi?article=2734&context=lawreview
https://www.adaptive-ip.eu/index.php/deliverables_papers.html?file=files/adaptive/content/downloads/Deliverables%20%26%20papers/AdaptIVe-SP2-v12-DL-D2.1%20System%20Classification.pdf
http://www.nhtsa.gov/About-NHTSA/Press-Releases/U.S.-Department-of-Transportation-Releases-Policy-on-Automated-Vehicle-Development
http://www.nhtsa.gov/About-NHTSA/Press-Releases/U.S.-Department-of-Transportation-Releases-Policy-on-Automated-Vehicle-Development
https://en.wikipedia.org/wiki/David_B._Sandalow
http://www.brookings.edu/press/Books/2009/pluginelectricvehicles.aspx
http://www.brookings.edu/press/Books/2009/pluginelectricvehicles.aspx
https://en.wikipedia.org/wiki/The_Brookings_Institution
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-8157-0305-1
http://energycenter.org/index.php/technical-assistance/transportation/electric-vehicles
http://www.acea.be/index.php/news/news_detail/electric_vehicles_turning_buzz_into_reality/
https://en.wikipedia.org/wiki/European_Automobile_Manufacturers_Association
https://en.wikipedia.org/wiki/European_Automobile_Manufacturers_Association


188 

 

[61] Gao, Y.M., Chen, L.P., Ehsani, M., 1999. Investigation of the effectiveness of 

regenerative braking for EV and HEV. SAE Trans. 108, 3184–3190. 

[62] Wardrop, J.G., 1952. Some theoretical aspects of road traffic research. Proc. Inst. Civil 

Eng. II (1), 325–378. 

[63] Sheffi, Y., 1984. Urban Transportation Networks: Equilibrium Analysis with 

Mathematical Programming Methods. Prentice-Hall Inc, Englewood Cliffs, NJ. 

[64] Ericsson, E., Larsson, H., Brundell-Freij, K., 2006. Optimizing route choice for 

lowest fuel consumption – potential effects of a new driver support tool. Transport. Res. 

C Emer. Technol. 14 (6), 369–383. 

[65] M. Barth, S. Mandava, K. Boriboonsomsin and H. Xia, "Dynamic Ecodriving for 

arterial corridors," Integrated and Sustainable Transportation System (FISTS), 2011 IEEE 

Forum on, Vienna, 2011, pp. 182-188. 

[66] H. Xia et al., "Field operational testing of ECO-approach technology at a fixed-time 

signalized intersection," 2012 15th International IEEE Conference on Intelligent 

Transportation Systems, Anchorage, AK, 2012, pp. 188-193. 

[67] R. Zhang and E. Yao, "Ecodriving at signalised intersections for electric vehicles," 

in IET Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[68] Xinkai Wu, David Freese, Alfredo Cabrera, William A. Kitch, Electric vehicles’ energy 

consumption measurement and estimation, Transportation Research Part D: Transport and 

Environment, Volume 34, January 2015, Pages 52-67, 

[69] A. Diaz Alvarez, F. Serradilla Garcia, J. E. Naranjo, J. J. Anaya and F. Jimenez, 

"Modeling the Driving Behavior of Electric Vehicles Using Smartphones and Neural 

Networks," in IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 3, pp. 44-53, 

Fall 2014. 

[70] Estimating energy consumption based on microscopic driving parameters for electric 

vehicle. Transportation Research Record Journal of the Transportation Research Board 

2454(-1):84-91 · November 2014 

[71] Microscopic Driving Parameters-Based Energy-Saving Effect Analysis under 

Different Electric Vehicle Penetration, Advances in Mechanical Engineering 2013:1-

8 · December 2012 

[72] R. Abousleiman and O. Rawashdeh, "A Bellman-Ford approach to energy efficient 

routing of electric vehicles," Transportation Electrification Conference and Expo (ITEC), 

2015 IEEE, Dearborn, MI, 2015, pp. 1-4. 

[73] Zonggen Yi, Peter H. Bauer. "Sensitivity Analysis of Environmental Factors for 

Electric Vehicles Energy Consumption." Vehicle Power and Propulsion Conference 

(VPPC). IEEE, 2015. 

[74] J. Felipe, J. C. Amarillo, J. E. Naranjo, F. Serradilla and A. Díaz, "Energy Consumption 

Estimation in Electric Vehicles Considering Driving Style," 2015 IEEE 18th International 

Conference on Intelligent Transportation Systems, Las Palmas, 2015, pp. 101-106. 

[75] Energy Consumption Prediction for Electric Vehicles Based on Real-World Data. 

Energies 8(8):8573-8593 · August 2015 



189 

 

[76] Rui Zhang, Enjian Yao, Electric vehicles’ energy consumption estimation with real 

driving condition data, Transportation Research Part D: Transport and Environment, 

Volume 41, December 2015, Pages 177-187. 

[77] F. Flehmig, A. Sardari, U. Fischer and A. Wagner, "Energy optimal Adaptive Cruise 

Control during following of other vehicles," 2015 IEEE Intelligent Vehicles Symposium 

(IV), Seoul, 2015, pp. 724-729 

[78] R. Frank, G. Castignani, R. Schmitz and T. Engel, "A novel Ecodriving application to 

reduce energy consumption of electric vehicles," 2013 International Conference on 

Connected Vehicles and Expo (ICCVE), Las Vegas, NV, 2013, pp. 283-288. 

[79] S. Koehler, A. Viehl, O. Bringmann and W. Rosenstiel, "Improved energy efficiency 

and vehicle dynamics for battery electric vehicles through torque vectoring control," 2015 

IEEE Intelligent Vehicles Symposium (IV), Seoul, 2015, pp. 749-754. 

[80] M. Miyatake, M. Kuriyama and Y. Takeda, "Theoretical study on Ecodriving technique 

for an Electric Vehicle considering traffic signals," Power Electronics and Drive Systems 

(PEDS), 2011 IEEE Ninth International Conference on, Singapore, 2011, pp. 733-738. 

[81] R. Zhang and E. Yao, "Ecodriving at signalised intersections for electric vehicles," 

in IET Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[82] M. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Model predictive control of 

vehicles on urban roads for improved fuel economy,” IEEE Transactions on Control 

Systems Technology, vol. 21, no. 3, pp. 831–841, 2013. 

[83] R. Zhang and E. Yao, "Ecodriving at signalized intersections for electric vehicles," 

in IET Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[84] Rui Zhang, Enjian Yao, Electric vehicles’ energy consumption estimation with real 

driving condition data, Transportation Research Part D: Transport and Environment, 

Volume 41, December 2015, Pages 177-187, ISSN 1361-9209, 

[85] R. Abousleiman and O. Rawashdeh, "A Bellman-Ford approach to energy efficient 

routing of electric vehicles," Transportation Electrification Conference and Expo (ITEC), 

2015 IEEE, Dearborn, MI, 2015, pp. 1-4. 

[86] Zonggen Yi, Peter H. Bauer. "Sensitivity Analysis of Environmental Factors for 

Electric Vehicles Energy Consumption." Vehicle Power and Propulsion Conference 

(VPPC). IEEE, 2015. 

[87] Xinkai Wu, David Freese, Alfredo Cabrera, William A. Kitch, Electric vehicles’ energy 

consumption measurement and estimation, Transportation Research Part D: Transport and 

Environment, Volume 34, January 2015, Pages 52-67, 

[88] J. Felipe, J. C. Amarillo, J. E. Naranjo, F. Serradilla and A. Díaz, "Energy Consumption 

Estimation in Electric Vehicles Considering Driving Style," 2015 IEEE 18th International 

Conference on Intelligent Transportation Systems, Las Palmas, 2015, pp. 101-106. 

[89] Energy Consumption Prediction for Electric Vehicles Based on Real-World Data. 

Energies 8(8):8573-8593 · August 2015 

[90] A. Diaz Alvarez, F. Serradilla Garcia, J. E. Naranjo, J. J. Anaya and F. Jimenez, 

"Modeling the Driving Behavior of Electric Vehicles Using Smartphones and Neural 

Networks," in IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 3, pp. 44-53, 

Fall 2014. 



190 

 

[91] N. Chang, and J. Hong, "Power consumption characterization, modeling and estimation 

of electric vehicles," 2014 IEEE/ACM International Conference on Computer-Aided 

Design (ICCAD), San Jose, CA, 2014, pp. 175-182. 

[92] X. Zhou, J. Huang, W. Lv and D. Li, "Fuel Consumption Estimates Based on Driving 

Pattern Recognition," Green Computing and Communications (GreenCom), 2013 IEEE 

and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE 

Cyber, Physical and Social Computing, Beijing, 2013, pp. 496-503. 

[93] Fouad Baouche, Rochdi Trigui, Nour Eddin El Faouzi, Romain Billot. “Energy 

Consumption Assessment For Electric Vehicles”. International symposium on recent 

advances in transport modeling, Apr 2013, Australie. 5 p., 2013. 

[94] Enjian Yao, Meijing Yang, “Estimating energy consumption based on microscopic 

driving parameters for electric vehicle.” Transportation Research Record Journal of the 

Transportation Research Board 2454(-1):84-91 · November 2014 

[95] Enjian Yao, Zhifeng Lang, “Microscopic Driving Parameters-Based Energy-Saving 

Effect Analysis under Different Electric Vehicle Penetration,” Advances in Mechanical 

Engineering 2013:1-8 · December 2012 

[96] Yao, E.; Yang, Z.; Song, Y.; Zuo, T. Comparison of electric vehicle’s energy 

consumption factors for different road types. Discret. Dyn. Nat. Soc. 2013, 2013, 

328757:1–328757:7.   

[97] R. Shankar and J. Marco, "Method for estimating the energy consumption of electric 

vehicles and plug-in hybrid electric vehicles under real-world driving conditions," in IET 

Intelligent Transport Systems, vol. 7, no. 1, pp. 138-150, March 2013  

[98] Billings, S.A. (2013) "Nonlinear System Identification: NARMAX Methods in the 

Time, Frequency, and Spatio-Temporal Domains". Wiley 

[99] K. Holmberg, P. Andersson and L. Erdemir (2012) “Global energy consumption due 

to friction in passenger cars”, Tribology International 47, pp. 221 – 234 

[100] Watson, H. C. et al. (1982). “Development of the Melbourne Peak Cycle.” Paper 

#82148, SAE of Australia 

[101] Barth, M. and K. Boriboonsomsin (2008). “Real-World CO2 Impacts of Traffic 

Congestion”, Transportation Research Record No. 2058, pp 163-171, Transportation 

Research Board, National Academy of Science. 

[102] Armstrong, J. S. (1985). “Long-range Forecasting: From Crystal Ball to Computer.” 

2nd. ed. Wiley. 

[103] Hemmerle, Peter, Hermanns, Gerhard, “Macroscopic Consumption Matrix for On-line 

Energy-efficient Route Guidance , Proceedings of Transportation Research Record 2014. 

Washington D.C. 

[104] S. Grubwinkler, T. Brunner and M. Lienkamp, "Range Prediction for EVs via Crowd-

Sourcing," 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 2014, 

pp. 1-6. 

[105] Quinlan, J. (1992). Learning with continuous classes. Proceedings of the 5th Australian 

Joint Conference On Artificial Intelligence, 343–348. 

[106] Quinlan, J. (1993). Combining instance-based and model-based learning. Proceedings 

of the Tenth International Conference on Machine Learning, 236–243. 

[107] (CART)Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. 

(1984). Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole 

Advanced Books & Software. ISBN 978-0-412-04841-8.  

[108] M. Barth, S. Mandava, K. Boriboonsomsin and H. Xia, "Dynamic Ecodriving for 

arterial corridors," Integrated and Sustainable Transportation System (FISTS), 2011 IEEE 

Forum on, Vienna, 2011, pp. 182-188. 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-412-04841-8


191 

 

[109] M. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Model predictive control of 

vehicles on urban roads for improved fuel economy,” IEEE Transactions on Control 

Systems Technology, vol. 21, no. 3, pp. 831–841, 2013. 

[110] R. Zhang and E. Yao, "Ecodriving at signalised intersections for electric vehicles," 

in IET Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[111] X. Qi; G. Wu; K, Boriboonsomsin; M.J. Barth, "An on-line energy management 

strategy for plug-in hybrid electric vehicles using an Estimation Distribution Algorithm," 

Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on , 

vol., no., pp.2480,2485, 8-11 Oct. 2014. 

[112] X. Qi, Guoyuan Wu, Kanok Boriboonsomsin, Matthew J. Barth, Jeffrey Gonder. Data-

Driven Reinforcement Learning–Based Real-Time Energy Management System for Plug-

In Hybrid Electric Vehicles. Transportation Research Record: Journal of the Transportation 

Research Board, 2016; 2572: 1 DOI: 10.3141/2572-01 

[113] X. Qi, G. Wu, K. Boriboonsomsin and M. J. Barth, "A Novel Blended Real-Time 

Energy Management Strategy for Plug-in Hybrid Electric Vehicle Commute Trips," 2015 

IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, 

2015, pp. 1002-1007. 

[114] D. Schrank, B. Eisele, T. Lomax and J. Bak.2015 Urban Mobility 

scorecard.http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-

2015.pdf 

[115] Qiu Jin, K. Boriboonsomsin and M. J. Barth, “Energy and Emissions Benefits of a 

Real-Time Driving Speed Advisory System for Heavy-Duty Trucks”, Proceedings of 

Annual Meeting of Transportation Research Board, 2016, Washington D.C. 

[116] M. Faraj and O. Basir, "Range anxiety reduction in battery-powered vehicles," 2016 

IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, 2016, pp. 

1-6 

[117] Axsen, J., Kurani, K.S., Burke, A., 2010. Are batteries ready for plug-in hybrid buyers? 

Transport Policy 17, 173–182. 

[118] Morrowa, K., Karnerb, D., Francfortc, J., 2008. U.S. Department of Energy Vehicle 

Technologies Program – Advanced Vehicle Testing Activity Plug-in Hybrid Electric 

Vehicle: Charging Infrastructure Review, Final Report: INL/EXT-08-15058, Battelle 

Energy Alliance, Contract No. 58517 

[119] European Commission (EC), “eCoMove – Cooperative Mobility Systems and Services 

for Energy Efficiency,” http://www.ecomove-project.eu/. 

[120] European Union (EU), “Compass4D – One Step Closer to C-ITS Deployment in 

Cities,” http://www.compass4d.eu/. 

[121] U.S. Department of Transportation (USDOT), “Applications for the Environment: 

Real-Time Information Synthesis (AERIS),” http://www.its.dot.gov/aeris/. 

http://dx.doi.org/10.3141/2572-01
http://www.ecomove-project.eu/
http://www.compass4d.eu/
http://www.its.dot.gov/aeris/


192 

 

[122] U.S. Department of Transportation (USDOT), “AERIS Concept of Operations and 

Modeling Workshop,” Washington D. C., March 26 – 27, 2013 

[123] B. Asadi, and A. Vahidi. “Predictive Cruise Control: Utilizing Upcoming Traffic 

Signal Information for Improving Fuel Economy and Reducing Trip Time”, IEEE 

Transactions on Control Systems Technology, 19(3):707–714, 2011 

[124] G. De Nunzio, C. Canudas De Wit, P. Moulin, and D. Di Domenico, “Ecodriving in 

Urban Traffic Networks using Traffic Signal Information,” The 52nd IEEE Conference on 

Decision and Control, Florence, Italy, Dec. 2013. 

[125] M. Seredynski, B. Dorronsoro, and D. Khadraoui, “Comparison of Green Light 

Optimal Speed Advisory (GLOSA) Approaches,” The 16th IEEE Conference on Intelligent 

Transportation Systems (ITSC), 2013, pp. 2187–2192 

[126] R. Kamalanathsharma, and H. Rakha, “Agent-Based Simulation of Eco-Speed 

Controlled Vehicles at Signalized Intersections,” Transportation Research Record, No. 

2427, 2014, pp. 1 – 12 

[127] Z. Chen, Y. Zhang, J. Lv, and Y. Zou, “Model for Optimization of Ecodriving at 

Signalized Intersections,” Transportation Research Record, No. 2427, 2014, pp. 54 – 62 

[128] Hao, P., Wu, G., Boriboonsomsin, K., & Barth, M. (2015). Developing a framework of 

eco-approach and departure application for actuated signal control. Proceedings of 2015 

IEEE Intelligent Vehicles Symposium (IV), 796-801. 

[129] Hao, P., Wu, G., Boriboonsomsin, K., & Barth, M. (2016). Eco-Approach and 

Departure application for actuated signals in real-world traffic. Accepted by the 96th 

Annual Meeting of Transportation Research Board, Washington, DC. 

[130] X. Xiang, K. Zhou, W. B. Zhang, W. Qin and Q. Mao, "A Closed-Loop Speed Advisory 

Model With Driver's Behavior Adaptability for Ecodriving," in IEEE Transactions on 

Intelligent Transportation Systems, vol. 16, no. 6, pp. 3313-3324, Dec. 2015. 

[131] M. Miyatake, M. Kuriyama and Y. Takeda, "Theoretical study on Ecodriving technique 

for an Electric Vehicle considering traffic signals," Power Electronics and Drive Systems 

(PEDS), 2011 IEEE Ninth International Conference on, Singapore, 2011, pp. 733-738. 

[132] R. Zhang and E. Yao, "Ecodriving at signalised intersections for electric vehicles," 

in IET Intelligent Transport Systems, vol. 9, no. 5, pp. 488-497, 6 2015. 

[133] H. Xia, K. Boriboonsomsin, M. Barth, “Dynamic Ecodriving for Signalized Arterial 

Corridors and Its Indirect Network-Wide Energy/Emissions Benefits”, Journal of 

Intelligent Transportation Systems: Technology, Planning, and Operations, 17(1), 2013, 

pp. 31 – 41 

[134] M. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Model predictive control of 

vehicles on urban roads for improved fuel economy,” IEEE Transactions on Control 

Systems Technology, vol. 21, no. 3, pp. 831–841, 2013. 

[135] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal, “An Interior Point Algorithm for 

Large-Scale Nonlinear Programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 

877-900, 1999.  

http://epubs.siam.org/doi/abs/10.1137/S1052623497325107
http://epubs.siam.org/doi/abs/10.1137/S1052623497325107


193 

 

[136] U. S. Department of Transportation. Accessed on January 5th, 2015. 

http://www.its.dot.gov/research/vehicle_electrification_smartgrid.htm 

[137] G. Wu, K. Boriboonsomsin, M. Barth. “Development and Evaluation of an Intelligent 

Energy-Management Strategy for Plug-in Hybrid Electric Vehicles”. IEEE Transactions on 

Intelligent Transportation Systems, Vol.15, No.3, June 2014, pp. 1091 – 1100 

[138] S. G. Wirasingha and A. Emadi. “Classification and Review of Control Strategies for 

Plug-In Hybrid Electric Vehicles”. IEEE Transactions on Vehicular Technology, Vol.60, 

No.1, January 2011, pp. 111 – 122 

[139] A. Panday and H. O. Bansal. “A Review of Optimal Energy Management Strategies 

for Hybrid Electric Vehicle”. International Journal of Vehicular Technology, 2014, p. 19 

[140] H. Banvait, S. Sohel and Y. Chen. “A Rule-Based Energy Management Strategy for 

Plug-In Hybrid Electric Vehicle (PHEV)”. Proceedings of American Control Conference, 

St. Louis, MO, June 2009, pp. 3938 – 3943,2009. 

[141] Q. Gong and Y. Li. “Trip Based Optimal Power Management of Plug-In Hybrid 

Electric Vehicles Using Gas-Kinetic Traffic Flow Model”. Proceedings of American 

Control Conference, Seattle, WA, June 2008, pp. 3225 – 3230,2008. 

[142] L. Tribiloli, M Barbielri, R. Capata, E.Sciubba,E.Jannelli and G.Bella. “A real time 

energy management strategy for plug-in hybrid electric vehicles based on optimal control 

theory”, Energy Procedia 45(2014) 949-958. 

[143] Cong Hou, Liangfei Xu, Hewu Wang, Minggao Ouyang, Huei Peng, Energy 

management of plug-in hybrid electric vehicles with unknown trip length, Journal of the 

Franklin Institute, Volume 352, Issue 2, February 2015, Pages 500-518, 

[144] Mahyar Vajedi; Maryyeh Chehrehsaz; Nasser L. Azad, Intelligent power management 

of plug-in hybrid electric vehicles, part I: real-time optimum SOC trajectory builder Int. J. 

of Electric and Hybrid Vehicles, 2014 Vol.6, No.1, pp.46 – 67. 

[145] Denis, N.; Dubois, M.R.; Desrochers, A., "Fuzzy-based blended control for the energy 

management of a parallel plug-in hybrid electric vehicle," Intelligent Transport Systems, 

IET , vol.9, no.1, pp.30,37, 2 2015. 

[146] Wang X., He, H. Sun, F., Sun, X., Tang,H., “Comparative Study on Different Energy 

Management Strategies for Plug-In Hybrid Electric Vehicles” Energies, 6, 5656-

5675,2013. 

[147] Wu Jian, "Fuzzy energy management strategy for plug-in hev based on driving cycle 

modeling," Control Conference (CCC), 2014 33rd Chinese , vol., no., pp.4472,4476, 28-30 

July 2014 

[148] Tribioli, L.; Onori, S., "Analysis of energy management strategies in plug-in hybrid 

electric vehicles: Application to the GM Chevrolet Volt," American Control Conference 

(ACC), 2013 , vol., no., pp.5966,5971, 17-19 June 2013 

http://www.its.dot.gov/research/vehicle_electrification_smartgrid.htm


194 

 

[149] Hai Yu; Ming Kuang; McGee, R., "Trip-Oriented Energy Management Control 

Strategy for Plug-In Hybrid Electric Vehicles," Control Systems Technology, IEEE 

Transactions on , vol.22, no.4, pp.1323,1336, July 2014 

[150] Qiuming Gong; Yaoyu Li; Zhong-Ren Peng, "Trip based optimal power management 

of plug-in hybrid electric vehicles using gas-kinetic traffic flow model," American Control 

Conference, 2008 , vol., no., pp.3225,3230, 11-13 June 2008 

[151] Feng, T.; Yang, L.; Gu, Q.; Hu, Y.; Yan, T.; Yan, B., "A supervisory control strategy 

for plug-in hybrid electric vehicles based on energy demand prediction and route preview," 

Vehicular Technology, IEEE Transactions on , vol.PP, no.99, pp.1,1, Januay, 2015 

[152] Larsson, V.; Johannesson Mårdh, L.; Egardt, B.; Karlsson, S., "Commuter Route 

Optimized Energy Management of Hybrid Electric Vehicles," Intelligent Transportation 

Systems, IEEE Transactions on , vol.15, no.3, pp.1145,1154, June 2014 

[153] Liu, Chang; Murphey, Yi Lu, "Power management for Plug-in Hybrid Electric Vehicles 

using Reinforcement Learning with trip information," Transportation Electrification 

Conference and Expo (ITEC), 2014 IEEE , vol., no., pp.1,6, 15-18 June 2014 

[154] C. Sun, S. J. Moura, X. Hu, J. K. Hedrick and F. Sun, "Dynamic Traffic Feedback Data 

Enabled Energy Management in Plug-in Hybrid Electric Vehicles," in IEEE Transactions 

on Control Systems Technology, vol. 23, no. 3, pp. 1075-1086, May 2015.  

[155] M. P. O’Keefe and T. Markel, “Dynamic programming applied to investigate energy 

management strategies for a plug-in HEV,” National Renewable Energy Laboratory, 

Golden, CO, Report No. NREL/CP-540-40376, 2006.  

[156] Zheng Chen, Chris Chunting Mi, Rui Xiong, Jun Xu, Chenwen You, Energy 

management of a power-split plug-in hybrid electric vehicle based on genetic algorithm 

and quadratic programming, Journal of Power Sources, Volume 248, 15 February 2014, 

Pages 416-426. 

[157] Xiao Lin; Banvait, H.; Anwar, S.; Yaobin Chen, "Optimal energy management for a 

plug-in hybrid electric vehicle: Real-time controller," American Control Conference 

(ACC), 2010 , vol., no., pp.5037,5042, June 30 2010-July 2 2010 

[158] Qiuming Gong; Yaoyu Li; Zhong-Ren Peng, "Trip based optimal power management 

of plug-in hybrid electric vehicles using gas-kinetic traffic flow model," American Control 

Conference, 2008 , vol., no., pp.3225,3230, 11-13 June 2008 

[159] Cong Hou, Liangfei Xu, Hewu Wang, Minggao Ouyang, Huei Peng, Energy 

management of plug-in hybrid electric vehicles with unknown trip length, Journal of the 

Franklin Institute, Volume 352, Issue 2, February 2015, Pages 500-518, 

[160] Mahyar Vajedi; Maryyeh Chehrehsaz; Nasser L. Azad, Intelligent power management 

of plug-in hybrid electric vehicles, part I: real-time optimum SOC trajectory builder Int. J. 

of Electric and Hybrid Vehicles, 2014 Vol.6, No.1, pp.46 – 67. 

[161] M. Vajedi, A. Taghavipour, N. L. Azad and J. McPhee, "A comparative analysis of 

route-based power management strategies for real-time application in plug-in hybrid 



195 

 

electric vehicles," American Control Conference (ACC), 2014, Portland, OR, 2014, pp. 

2612-2617. 

[162] Zeyu Chen, Weiguo Liu, Ying Yang, and Weiqiang Chen, “Online Energy 

Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range 

Based on Dynamic Programming,” Mathematical Problems in Engineering, vol. 2015, 

Article ID 368769, 11 pages, 2015. 

[163] S. J. Moura, H. K. Fathy, D. S. Callaway and J. L. Stein, "A Stochastic Optimal Control 

Approach for Power Management in Plug-In Hybrid Electric Vehicles," in IEEE 

Transactions on Control Systems Technology, vol. 19, no. 3, pp. 545-555, May 2011. 

[164] Xuewei Qi, Guoyuan Wu, Kanok Boriboonsomsin, Matthew J. Barth, Jeffrey 

Gonder. Data-Driven Reinforcement Learning–Based Real-Time Energy Management 

System for Plug-In Hybrid Electric Vehicles. Transportation Research Record: Journal of 

the Transportation Research Board, 2016; 2572: 1 DOI: 10.3141/2572-01 

[165] Guoyuan Wu, UCTC working paper  http://www.uctc.net/research/papers/UCTC-FR-

2012-09.pdf  2015 

[166] Kolmanovsky, I., M. Nieuwstadt, and J. Sun. Optimization of Complex Powertrain 

Systems for Fuel Economy and Emissions. Proceedings of IEEE International Conference 

on Control Applications, Hawaii, 1999 

[167] Argonne National Laboratory. AUTONOMIE, http://www.autonomie.net/. Accessed 

on February 16th, 2012. 

[168] MathWorks. MATLAB R2010b, 2011. 

[169] A.E. Eiben, Introduction to Evolutionary Computing, Springer, 2007. 

[170] Pietro S. Oliveto04, Jun He, Xin Yao, Time Complexity of Evolutionary Algorithms 

for Combinatorial Optimization: A Decade of Results (3), International Journey of 

Automation and Computation,  281-293, July 2007 

[171] D. Kum “Modeling and Optimal Control of Parallel HEVs and Plug-in HEVs for 

Multiple Objectives”. Ph.D. dissertation. University of Michigan, 2010. 

[172] X. Qi; G. Wu; K, Boriboonsomsin; M.J. Barth, "An on-line energy management 

strategy for plug-in hybrid electric vehicles using an Estimation Distribution Algorithm," 

Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on , 

vol., no., pp.2480,2485, 8-11 Oct. 2014. 

[173] M. Vajedi, A. Taghavipour, N. L. Azad and J. McPhee, "A comparative analysis of 

route-based power management strategies for real-time application in plug-in hybrid 

electric vehicles," American Control Conference (ACC), 2014, Portland, OR, 2014, pp. 

2612-2617. 

[174] Zeyu Chen, Weiguo Liu, Ying Yang, and Weiqiang Chen, “Online Energy 

Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range 

Based on Dynamic Programming,” Mathematical Problems in Engineering, vol. 2015, 

Article ID 368769, 11 pages, 2015. 

http://dx.doi.org/10.3141/2572-01
http://www.uctc.net/research/papers/UCTC-FR-2012-09.pdf
http://www.uctc.net/research/papers/UCTC-FR-2012-09.pdf
http://www.autonomie.net/


196 

 

[175] S. J. Moura, H. K. Fathy, D. S. Callaway and J. L. Stein, "A Stochastic Optimal Control 

Approach for Power Management in Plug-In Hybrid Electric Vehicles," in IEEE 

Transactions on Control Systems Technology, vol. 19, no. 3, pp. 545-555, May 2011. 

[176] Henry A. Bonges III, Anne C. Lusk, Addressing electric vehicle (EV) sales and range 

anxiety through parking layout, policy and regulation, Transportation Research Part A: 

Policy and Practice, Volume 83, January 2016, Pages 63-73, ISSN 0965-8564, 

http://dx.doi.org/10.1016/j.tra.2015.09.011. 

[177] X. Qi, G. Wu, K. Boriboonsomsin and M. J. Barth, "A Novel Blended Real-Time 

Energy Management Strategy for Plug-in Hybrid Electric Vehicle Commute Trips," 2015 

IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, 

2015, pp. 1002-1007. 

[178] Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J.; Jeffery Gonder, “Data-

Driven Reinforcement Learning-Based Real-Time Energy Management System for Plug-

in Hybrid Electric Vehicles” Transportation Research Record (Journal of Transportation 

Research Board),vol,2572,pp. 1-8,2016. DOI: 10.3141/2572-01 

[179] S. G. Wirasingha and A. Emadi. “Classification and Review of Control Strategies for 

Plug-In Hybrid Electric Vehicles”. IEEE Transactions on Vehicular Technology, Vol.60, 

No.1, January 2011, pp. 111 – 122 

[180] A. Panday and H. O. Bansal. “A Review of Optimal Energy Management Strategies 

for Hybrid Electric Vehicle”. International Journal of Vehicular Technology, 2014, p. 19. 

[181] D. Schrank, B. Eisele, T. Lomax and J. Bak.2015 Urban Mobility scorecard. 

http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-2015.pdf 

[182] M. Barth, S. Mandava, K. Boriboonsomsin and H. Xia, "Dynamic Ecodriving for 

arterial corridors," Integrated and Sustainable Transportation System (FISTS), 2011 IEEE 

Forum on, Vienna, 2011, pp. 182-188.  

[183] L. Tribiloli, M Barbielri, R. Capata, E.Sciubba,E.Jannelli and G.Bella. A real time 

energy management strategy for plug-in hybrid electric vehicles based on optimal control 

theory,Energy Procedia 45(2014) 949-958. 

[184] Denis, N.; Dubois, M.R.; Desrochers, A., Fuzzy-based blended control for the energy 

management of a parallel plug-in hybrid electric vehicle, Intelligent Transport Systems, 

IET , vol.9, no.1, pp.30,37, 2 2015  

[185] Wang X., He, H. Sun, F., Sun, X., Tang,H., Comparative Study on Different Energy 

Management Strategies for Plug-In Hybrid Electric Vehicles,  Energies 2013, 6, 5656-5675 

[186] Wu J., Fuzzy energy management strategy for plug-in hev based on driving cycle 

modeling, Control Conference (CCC), 2014 33rd Chinese , vol., no., pp.4472,4476, 28-30 

July 2014 

[187] X. Qi, G. Wu, K. Boriboonsomsin and M. J. Barth, "Evolutionary algorithm based on-

line PHEV energy management system with self-adaptive SOC control," 2015 IEEE 

Intelligent Vehicles Symposium (IV), Seoul, 2015, pp. 425-430. 

doi: 10.1109/IVS.2015.7225722 



197 

 

[188] Feng, T.; Yang, L.; Gu, Q.; Hu, Y.; Yan, T.; Yan, B., A supervisory control strategy 

for PHEVs based on energy demand prediction and route preview, Vehicular Technology, 

IEEE Transactions on , vol.PP, no.99, pp.1,1 

[189] Wu, K. Boriboonsomsin and M. J. Barth, "Development and Evaluation of an 

Intelligent Energy-Management Strategy for Plug-in Hybrid Electric Vehicles," in IEEE 

Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1091-1100, June 

2014. 

[190] Xuewei Qi; Guoyuan Wu; Boriboonsomsin, K.; Barth, M.J., An on-line energy 

management strategy for plug-in hybrid electric vehicles using an Estimation Distribution 

Algorithm, Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International 

Conference on , vol., no., pp.2480,2485, 8-11 Oct. 2014 

[191] M. P. O’Keefe and T. Markel, Dynamic programming applied to investigate energy 

management strategies for a plug-in HEV, National Renewable Energy Laboratory, 

Golden, CO, Report No. NREL/CP-540-40376, 2006.  

[192] Cong Hou, Liangfei Xu, Hewu Wang, Minggao Ouyang, Huei Peng, Energy 

management of plug-in hybrid electric vehicles with unknown trip length, Journal of the 

Franklin Institute, Volume 352, Issue 2, February 2015, Pages 500-518, 

[193] U.S. Department of Transportation, “Applications for the Environment: Real-Time 

Information Synthesis (AERIS)”, http://www.its.dot.gov/aeris/. June 2016. 

[194] The Compass4D project. http://www.compass4d.eu/. June 2016. 

[195] European Commission (EC), “eCoMove – Cooperative Mobility Systems and Services 

for Energy Efficiency”, http://www.ecomove-project.eu/. June 2016. 

[196] M. Li, K. Boriboonsomsin, G. Wu, W. Zhang, and M. J. Barth, “Traffic Energy and 

Emission Reductions at Signalized Intersections: A Study of the Benefits of Advanced 

Driver Information”, International Journal of ITS Research, June 2009. 

[197] B. Asadi, and A. Vahidi, “Predictive Use of Traffic Signal State for Fuel Saving”. 12th 

IFAC Symposium on Transportation Systems Redondo Beach, CA, USA, September, 

2009. 

[198] B. Asadi, and A. Vahidi, “Predictive Cruise Control: Utilizing Upcoming Traffic Signal 

Information for Improving Fuel Economy and Reducing Trip Time”. IEEE Transactions 

on Control System Technology, 2010. 

[199] H. Rakha, R. K. Kamalanathsharma, “Ecodriving at Signalized Intersections Using V2I 

Communication”. The 14th IEEE Conference on Intelligent Transportation Systems 

(ITSC), Washington, D.C., USA. October 5 – 7, 2011 

[200] G. De Nunzio, C. C. de Wit, P. Moulin, D. Di Domenico, “Ecodriving in Urban Traffic 

Networks using Traffic Signal Information”. The 52nd IEEE Conference on Decision  

[201] H. Xia, K. Boriboonsomsin, M. Barth, “Dynamic Ecodriving for Signalized Arterial 

Corridors and Its Indirect Network-Wide Energy/Emissions Benefits”, Journal of 



198 

 

Intelligent Transportation Systems: Technology, Planning, and Operations, 17(1), 2013, 

pp. 31 – 41 

[202] H. Xia, K. Boriboonsomsin, F. Schweizer, A. Winckler, K. Zhou, WB. Zhang, M. 

Barth, “Field Operational Testing of ECO-Approach Technology at a Fixed-Time 

Signalized Intersection”, Proceedings of the IEEE 2012 Intelligent Transportation Systems 

Conference, Anchorage, AK, September 2012, 6 pp.  

[203] P. Hao, G. Wu, K. Boriboonsomsin, M. Barth. “Developing a Framework of Eco-

Approach and Departure Application for Actuated Signal Control”. IEEE on Intelligent 

Vehicles Symposium, Seoul, Korea. June, 2015 

[204] P. Hao, G. Wu, K. Boriboonsomsin, M. Barth. “Preliminary Evaluation of Field Testing 

on Eco-Approach and Departure (EAD) Application for Actuated Signals”, ICCVE 2015, 

Shenzhen, China. Oct. 2015. 

[205] X. He, H. Liu, X. Liu, “Optimal vehicle speed trajectory on a signalized arterial with 

consideration of queue”, Transp. Res. C, Emerging Technol., vol. 61, pp. 106-120, Dec. 

2015. 

[206] H. Xia, G. Wu, K. Boriboonsomsin, M. Barth, “Development and Evaluation of an 

Enhanced Eco-Approach Traffic Signal Application for Connected Vehicles”, The 16th 

IEEE Conference on Intelligent Transportation Systems (ITSC), The Hague, Netherlands, 

October 6 – 9, 2013 

[207] Q. Jin; G. Wu; K. Boriboonsomsin; M. J. Barth, "Power-Based Optimal Longitudinal 

Control for a Connected Ecodriving System," in IEEE Transactions on Intelligent 

Transportation Systems , vol.PP, no.99, pp.1-11. doi: 10.1109/TITS.2016.2535439 

[208] J. Hu, Y. Shao, Z. Sun, M. Wang, Joe Bared, Peter Huang, Integrated optimal 

Ecodriving on rolling terrain for hybrid electric vehicle with vehicle-infrastructure 

communication, Transportation Research Part C: Emerging Technologies, Volume 68, July 

2016, Pages 228-244,  

[209] Wu, G., Barth, M., Boriboonsomsin, K., and Altan, O. (2015). “GlidePath: Eco-

Friendly Automated Approach and Departure at Signalized Intersections.” Automated 

Vehicle Symposium 2015 




