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Abstract

This paper presents an approach to translating the data
associated with a problem-solving procedure into efficient
implementations. The approach involves reduction of problem-
domain data structures to implementations by way of intermediate
modelling structures. Formalisms are introduced for describing
modelling structures =-- abstract representations of data
characteristics and relationships, independent of any specific
implementation -- and implementation structures == machine-
processable representations. Based upcon these formalisms,
algorithms are presented for recognizing known modelling
structures, for synthesizing implementations for modelling
structures not recognized, and for combining several
implementations according to structure membership and variable

binding relationships. Design considerations influencing these

formalisms and algorithms are discussed.

Keywords: data structure, data structure formalisms, modelling
structure recognition, implementation structure choice, imple-

mentation structure synthesis, data abstraction.
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1. Introduction

There has been continued interest in computer science in different
methods for representing the data associated with and acted upon
by computer programs. This interest has ranged from consideration
of appropriate data structures for inclusion in higher-level
languages designed to detailed evaluation of specific implemen-
tations in storage of simple data structures. Most recently,

the emphasis in research on data structures has been concerned
with larger groupings (often called abstract data types) which
treat a data structure and certain operations upon it as a unit,
with formal treatment of the properties of such abstract units,
and with the selection among alternative implementations of

such data types [PR76].

In this paper we present an approach to automating the translation

of data representations in a program into efficient implementations.

While this approach shares many of the same problems and concerns
as current work in data structures, it differs in underlying
motivation and so in terms of the way many intermediate problems
are treated. We first present the view of the problem-solving/
programming process that motivates this approach, followed by
discussion of specific emphases (design decisions) which have
shaped the research. Next we summarize the formalisms developed
for stating modelling structures and implementations structures.
Following that we present three major algorithms for the generation
of alternative implementation structures which are central to

this approach.
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In the final two sections we discuss the relationship of this

work to other current research in data abstractions and summarize

and conclude this paper.

2. A View of Data Representation

Programming problems arise in a diverse collection of problem
domains, and in those problem domains the original problem data
is expressed in a form dictated by the needs of the problem
itself and of some general approach to a problem-solution pro-

cedure. We call this original data structure a problem structure.

Eventually, as the natural result of the programming process,
this problem-solution procedure and its associated data are
reduced to a machine-computable implementation. We call the

data reperesentation derived at this level an implementation

structure. Often in the problem-solving/programming process

the data representation and associated procedures are expressed
in terms of some intermediate structures. Typically, such
intermediate structures are abstract representations of the
characteristics and relationships represented in the problem
domain, suitable for analysis and expression of algorithms

by human problem-solvers (programmers), and largely independent

of the restrictions derived from specific implementations. After

D'Imperio, we call such structures modelling structures [DI69].

Thus, the programming process includes reduction of problem
structures to implementation structures utilizing one or more

layers of modelling structures.
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Modelling structures are useful because they provide a level

of formal representation common to many problem domains and

yet independent of the restrictions and commitments of specific
implementatioﬁs. Thus, they provide a locus for collecting

expert knowledge and techniques about data representation, an
opportunity for expressing problem-solving procedures with a
clarity often obscured by the need for efficient implementations,
and an opportunity to carry out substantial debugging and correct-
ness-proving at a level closer to the problem logic than to

concerns of machine efficiency.

Note that, as we use the term, implementation structures may be
expressed at any level of language, if that is the level at
which the final program is written. In some cases, implementation
structures are expressed in machine or assembly language; in
others, in a higher-level language. For example, the abstract
notion of aﬁ "array" as modelling structure may be implemented
as a FORTRAN array, an ALGOL array, a BASIC array, and so forth,
each of the latter being a different implementation structure
with different properties. Or, the modelling structure "tree"
may be implemented in FORTRAN, using FORTRAN arrays, in several
distinctly different ways, each a different implementation

structure for that modelling structure.

In practice, the neat separation between modelling structures
and implementation structures does not exist. Typically,
programs are written partly at the modelling level (program

control structure and some operations) and partly at the
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implementation level (data structures and related operations).
Because the representations available for expressing information
relationships and data in programming languages actually
represent specific implementation structures, the programmer

is forced to select implementation structures at the time the

problem-solution procedure is modelled.

Forcing the programmer to choose an implementation structure at
this stage of the programming process leads to lessened clarity
in the program, diminished opportunity to analyze and select
among different implementations, and considerable reprogramming
as efficiency considerations are gradually recognized. 1In

this research we are interested in providing a representation

of information relationships and data at the modelling structure

level during the programming process, then using the computer

itself to assist the programmer in producing an efficient
implementation. A system for generating and selecting among
alternative structures would thus be another tool in a programming
environment, one of a wide variety of facilities to aid the

problem-solver/programmer in his task.

3. Design Emphasis

Here we list seven design emphases which have shaped this research.

First, we consider only the problem of developing implementation
structures from already specified modelling structures, leaving
aside the less well-specified and certainly more difficult

area of dealing with problem structures.
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Second, the modelling structure formalism (discussed in Section 4)
is intended to be a consistant framework for expressing classes
or types of elements and their relationships. It should be
capable of expressing modelling structures currently in use
(e.g., graphs, trees, lists, and arrays) and also more general
statements of relationship. Those users who know which specific
modelling structure they want may specify it by name. Those
users who are not aware of the full catalog of specific modelling
structures, who do not know exactly which structure they want,

or who want a structure not provided iﬁ the catalog, may

define such a structure using a suitable forﬁalismo Thus, we
envision a system based on a well-defined, coherent foundation

for modelling structures.

Third, the modelling structure formalism should capture that
information needed for generating efficient implementations.
This is in contrast to other approaches to abstract data types
where the emphasis is on conciseness of description and

minimizing representational bias.

Fourth, the implementation structure formalism (discussed in
Section 5) is intended to be a consistant framework for expressing
storage implementations of modelling structures so as (among

other things) to be able to compare alternative implementations
and to combine implementations of several modelling structures.
For this initial report, we restrict our attention and the scope

of the formalism to implementations in first level storage
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Fifth, the system should allow representation and use of known
implementations of known modelling structures (i.e., expert

knowledge) where that exists.

Sixth, as a general principle the implementation synthesis

and generation system should allow user interaction at all

major decision points, permitting the programmer to override
system choices or temporarily change the ordering of alternatives.
This consideration has not entered strongly into the research

so far, since it is more related to how the various pieces of

the system fit together than with the pieces themselves, but

we have taken each step with that criterion in mind.

Finally, we concentrate initially on only certain parts of a

total system, leaving unspecified for present those areas on

which there is a great deal of other current research. For

example, we do develop an algorithm for synthesis of implementation
structures for "unrecognized" modelling structures; we do not

work now on the data flow techniques which supply necessary
information for efficient choice among implementation structures.

As a corollary of this decision, we do not develop a new programming
language with modelling structure capabilities, but rather

consider a more abstract capability that could be adapted to

many languages.

In particular, we concentrate on the problems of developing several
alternative implementations for a given modelling structure,

of combining implementations for the several modelling structures
used in a program, and on the selection of the most desirable

set of implementations with respect to some criterion. The
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following sections summarize the modelling structure and implemen-
tation structure formalism we have adopted and then present three

algorithms central to this overall task.

4. Summary of Modelling Structures Formalism

Modelling structures are abstract objects (and associated

operators) which provide an intermediate stage in the mapping

from problem to implementation. 2As suéhy they are of value only

if they facilitate that mapping. Modelling structures have

proven to be of value in the problem-solving/programming process

for two major reasons. First, they break a large, ill-structured |
problem into two smaller, relatively independent problems,
(mapping problem structures to modelling structures and the
resulting modelling structures to implementation structures)
thus typically reducing the effort in problem-solving. And
second, certain useful modelling structures have taken on an
existence of their own, carrying over from one programming
situation to another independent of the particular initial
problem or resulting implementation. Consequently, modelling
structures have become a focus for technical knowledge and

expertise in their own right.

The goals of our modelling structures formalism are to provide

a means of expressing such structures independent of choice of
implementation, to capture the information necessary for
efficient choice of implementation, to provide a notation in
which the useful and commonly accepted modelling structures

can be expressed easily and directly, and to provide a convenient

notation for expressing abstractly the objects and their
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interrelations of problem structures not captured in the common

modelling structures.

Questions of the completeness and adequacy of a formalism for
the modelling structures domain are less easily answered than
for the other domains of interest here. For problem structures
and implementation structures, there are existing realities
against which to measure the formalism (in the former case,

that part of the "real world" in which the problem arises;

in the lafter, the programming language or machine storage

in which the implementation must be expressed). But modelling |
structures are abstract creations Qf the mind, with no
cofresponding concrete reality against which to measure their
scope. Thus, we can only judge such a formalism as satisfactory
or not in satisfying the above goals, which are by nature open-
ended, and at the same time as satisfactory or not in terms

of the elegance and closure we ask of any abstract system, in
some sense balancing between conflicting demands for open=

endedness and closure.

The abstract entities treated in the modelling structures formalism

are either primitive (not decomposible) or structured entities
(composed of elements which are themselves instances of modelling

structures). Primitive entities can be of whatever types are

appropriate to the problem at hand and for which appropriate

operators are available. They are not discussed further here.

Structured entities are characterized by six properties of their

component elements, relations, and the operations upon them.
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Replication. Elements in the structures may or may not

be repeated.

Ordering. Elements in the structure may be linearly
ordered according to a specified predicate, this
"built-in" ordering being preserved by operations on

the structure.

Distinguished Elements. One or more distinguished elements

may be defined by predicates, typically upon the relations
of a structure. Distinguished elements refer to that
single element in the structure, if any, which satisfies

the predicate.

Referencing Methods. Elements in the structure may be

referenced by some or all of the following access

methods, as specified.

a. Distinguished element, bound to an element based
on structural relationships (e.g., top of a
stack or root of a tree).

b. External access, bound (through the structure)

to a particular element.

c. Selection, by either element name or element
number. Element numbers may be treated as
ofdered or simply as a primitive set of element
names. Element name selection is similar to that

for "structures" in PL/1l or "records" in COBOL.

d. Quantification, either universal or existential.
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Relations. Elements in the structure may be related
by (possibly several) relations, each characterized

by the following information.
a. Degree (one-one, one-many, many=-one, many-many).

b. Scope of domain, may be total (all elements
included), unique (all but a single unique
element included), or partial (none or more

elements included).
c. Scope of range (same possible values as domain).

d. Connected or not connected (that is, transitive
closure via the relation and its assumed

algebraic inverse).
e. Reflexive.
f. Symmetric.

Operations. The structure may be operated upon by

one or more of the following operations: read an
element, replace an element with another, insert an
element, delete an element, assign a value to a
reference, relate two elements (may implyrinsertion),
unrelate two elements, find the element(s) related

to an element, read-attribute value of relation,

store-attribute value of a relation, and create-

an-access to an element. One or more of the parameters
of an operation may be bound to particular values

(for example, distinguished elements).
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The complete definitions of the primitive operations (see RO76)
must take into account the properties of the structure and
particularly of the declared relations. While there are some
288 possible combinations of the characteristics of relations
given above, oﬁly 45 of these are in fact consistant and so
realizible, and of these only 36 (16 connected and 20 not connected)
can be constructed using the primitive operations defined above.
Operations must unambiguously result in a legal structure, or
they are treated as an error. The details of these definitions
(particularly reléte and unrelate) are direct but complicated,
and depend on the local context of a sequence of primitive
operations to produce an unambiguous result. The resulting

(one relation) structures fall naturally into three groups,
list-1like, tree-like, and graph-like, depending on the degree

of the relation.

Examples of several commonly-used modelling structure definitions
using this formalism are given in Figure 4.1. These are to
some extent our own personal arbitrary definitions, in that
there are no agreed upon definitionsin computer science for
such structures as set, stack, tree, or array. Furthermore,
there are many waYs to capture the same abstract behavior in
this formalism. We do not propose these as definitions for
universal agreement, but as examples for which the reader can
substitute his own preference as desired. The "*" in operation
definitions means that any element or structure reference as
appropriate may be substituted. The use of a distinguished
element is illustréted, for example, in the definition of a

stack, where element referencing is restricted to the distinguished



Page 13

Stack
replication;
no ordering;
distinguished element: (element such that
NEXT (HEAD) 1is undefined);
referencing: distinguished element;
relations: NEXT (l1-1, unigue domain, unigue
range, connected, not
symmetric, not reflexive) :
operations: read(BEAD),
delete (HEAD,*) ;
relate(*, [<HEAD,NEXT,*>]);
Array:

S replication;
no ordering;
distingulished element: none;
referencing: element number selection

(n=dimensional) ;
relations: none;
operationss: read(*),

assign(*,*);

Binary Tree:
~ replication:
no ordering;
distinguished elements: (element such that
ANSC (ROOT) is
undefined) :
referencing: distinguished element,
external access;
relations: LEFT(1-1, partial domain, partial
range, not connected, not
symmetric, not reflexive),

RICHT (1-1, partial domain, partial
range, not connected, not
symmetric, not reflexive),

ANSC (many=1, unique domain, partial

range, connected, not symmetric,
not reflexive) ,
ANSC is inverse of LEFT union
inverse of RIGHT:
operations: read(*),
delete(*,*),
replace(*,*,*),
create—an—-access(*,
relate (¥, 1<%, % ,%> )

*)

14

Figure 4.1: Examples of Modelling Structure Definitions
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element HEAD, and operation parameters are bound to that distin-

guished element.

The modelling structures formalism outlined here can be used in

several ways to provide a test-bed for studying this approach

to the generation of data structure implementations. It could

be implemented directly as the data manipulation portion of

a new or existing programming language. It could be embodied, |
probably with minor modifications, in an extensible language |
with data definition features, or it could be embodied in an

existing programming language through addition of a set of

procedures and restrictions on the use of existing facilities.

As discussed in the earlier section on design emphases, we have

chosen to bypass for now a full-scale implementation in

favor of focussing on development of some of the algorithms

necessary for generation of implementations. Thus, we have

implemented only those features necessary for providing inputs

to such algorithms.

5. Summary of Implementation Structures Formalism

The implementation structures formalism presented here is a
notation for describing data structures at the "machine" level --
that is, at the level of main storage as addressed in machine
language, assembly language, and possibly by the storage allocation

mechanisms of the operating system.

An implementation structure is composed of a storage structure

and an interpretation of that storage structure. Storage

structures are composed of cells (holding primitive values) and/or
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groupings of cells and storage structures. Groupings may be

on the basis of contiguity (indexing and other forms of address

functions (association and hashing). The interpretation of an

implementation structure reflects a particular implementation

of the storage structure and of the modelling structure which

it implements and of procedures for using the storage structure.

A particular storage structure (grouping of cells in storage)
may have several possible interpretations. An interpretation
contains all of the data needed to use the storage structure--
that is, all of the data needed by a translator to translate
the modelling structure and the operations that manipulate

it. Note that this interpretation is expressed in a mixture

of both procedural and non-procedural data.

Storage structures are defined using the following syntactic

constructs.

1. Composition
+ Contiguous composition.
@ Linked composition. ,

? Composition by structure-defining function.

2. Repetition
n Fixed number of repetitions (n an integer) .

# Indeterminate number of repetitions.
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3. Syntactic grouping.
() Subgroups.
: Naming.
! Alternation.

Unspecified interconnection.

se

/ Distribution of operator.

4. Unary composition (space reservation)
@ Linkage pointer.

? Structure-defining function input.

5. Primitive elements
cell.

tag (Boolean value).

Several instances of this notation are given in Figure 5.1, together
with pictorial examples (for a binary tree with data values

A,B,C,D,E) of each. The symbol @ is used to indicate a null

pointer.
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b:#(g)
g:cell+@g+@g A I
B | cle]e
[p]o]e E[p][o
bet(g) /4 /////”—‘;;;><:::T\\
g:cell+tag+@g alal|s || l|D]p ﬂlc gle|yg
(b)
b4 () /4 VNN
g:celli@g all|s|l]|plofc|g|Ee]lp

Figure 5.1: Example Storage Structures for a Binary Tree
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The interpretation of a storage structure specifies both the
correspondences between components of the modelling structure
and of the storage structure and also other information
necessary for complimenting that storage structure. This
information is organized in several groupings. (Only an

example of the information included is given below.)

1. Relations. For each relation, its modelling
structure name, procedure for accessing the
related element (s) given an element, and several
boolean flags (e.g., indicating whether the relation
is explicitly stated or implied, whether the

structure is ordered on this relation, etc.)

2. Structure-defining functions. For each function,

procedure for finding the associated storage

structure.

3. Descriptor. A set of symbols indicating what

components of a run-time descriptor, if any, are
to be generated. If the set is empty, a descriptor

is not generated. Examples of descriptor symbols

are: type -- generate run-time type information,
insert flag -- a boolean variable indicating whether

an element has been inserted since the structure was
last ordered (for ordering on access), ext acc,

elem no, and dist elem -- symbols indicating that
run-time information for handling these forms of

referencing should be generated, explicit size ==
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explicit count of elements in structure should be

maintained, and struct size -- size of contiguous

block in which structure is stored (applicable only

if structure is stored sequentially).

4. Order. Whether ordered, and if so, on insert (order)

or on access (sort).

5. Size. For each indeterminate size operator, a bounding
value.
6. Elements. Indication of actual values stored (value)

or pointers to values (pointer); encodings for
selection methods (i.e., for structures referenced
by name selection, a value or pointer indicator

is maintained for each element).

7. Operations. Code generators for necessary operations,

both those specified in modelling structure and other
primitive actions associated with implementation

(e.g., space allocation).

As was noted above, much of this information is stored procedurally
(for example, as access procedures and code generators). However,
it is possible to illustrate the information so expressed in

a non-procedural manner. The correspondence information for
example (b) in Figure 5.1 is given in Figure 5.2. We have
introduced subscripts for the composition operators so that

they are uniquely associated with relations. Note that the
relation LEFT is bounded by +2ﬂ and RIGHT is bounded by a null

pointer convention.
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Storage structure:
D:#(g)/+q
g:e+,tag+ €g

Interpretation:

the binary tree corresponds to b

an element corresponds to e

LEFT corresponds €O +1A +2 1

RIGHT corresponds to +3@

X ANSC y corresponds to'gx((x+1yax+2 1)V

(x+,0y))
ROOT corresponds to 3xV&ﬁ((x+1yAx+2 1) v

(x+5@y))

Figure 5.2: Example of Correspondence Information
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6. Information Derived from a Program

This section describes the information derived from a program
and used in the algorithms for modelling structure recognition

and implementation synthesis presented in later sections.

The focus of the information gathering process is deducing
information about distinct modelling structures. During the

execution of a program many entities are created.

For example, in the program segment

while true do

begin
x <« "create entity";

gggl
each iteration of the loop creates an entity. The qguestion is
which of those entities should be treated separately for imple-
mentation selection purposes (i.e., which ones should be given
separate entity names)? One approach is to generate a unique
name for each entity created. This would then require simulating
the actual program execution to gather the necessary information,
an unacceptable alternative. Another approach, the one used

here, is to assume that all entities of the same type created

at the same lexical point in a program are implemented in the
same way. Thus, the set of entities about which information

is gathered is the set of points in a programat which entities

are created.
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Three kinds of information are deduced from a program:
1. execution time membership relations,
2. execution time variable binding relations, and

3. properties of the modelling structure entities

created during execution.

This information is collected by pseudo execution of the program.*
Assuming each distinct modelling structure used in a program is
given a name . for i=1,2, . . .,n, the execution time member-
ship information is represented by a relation Elgg,zwhere e,

is Elem-related to e. if ej may be a member of e, (ei must be

a structured entity) during execution. In a similar fashion,

the variable binding information is represented by a relation
Var, where X (some variable used in the program) is Var-related
to e. if e; may be bound to X during execution. Two additional
pieces of information concerning element membership and variable
binding are needed. First, can more than one instance be created
at a particular place in a program? This is represented by

a predicate Mcreatep on the set of entity names describing

for each e, whether multiple creations are possible. Second,

* Sintzoff was the first to describe this general method of analysis
[SI72]. Schwartz gives a clear description of the process involved
[SC75, see the paragraph beginning at the bottom of page 723]. While
the membership and variable binding analysis used here is not
significantly different from the analyses that Schwartz's system
performs, analyzing a program to deduce modelling structure pro-
perties for recognizing known structures is new.
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can an entity be inserted into a structure more than once or

can more than one creation of an entity be inserted? This is
represented by a predicate Minsertp on the relation Elem (treated
as a set of ordered pairs). Such information can be depicted
graphically, as shown in Figure 6.1. In the figure, entity e,
may be an element of ey (depicted by the solid line) variables
S1 and X may be bound to entities created by e, (depicted by the
dashed lines), multiple instances of e, and e3 are created
(depicted by the asterisks before the entity names), and either
more than one instance created at e, or a specific instance more
than once may be inserted into ey (depicted by the asterisk

before the solid line between e and e7).

A\
T~
(e
1
¥ e \\
*
e,
//7 \\\
// \\

// \\\/r’ \\\
s1 X 52
“<———— Elen relation
<-==- Var relation

# ol R 1 1
Mcreatep or Minscrtp predicate are true
Figure 6.1: Element Menbership and Variable Bound

Information
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The third kind of information gathered concerns properties

of the modelling structures. These properties correspond to

the ones defined in the modelling structures formalism (e.g.,
replication, ordering, referencing, and operations). For modelling
structures defined by name, these properties are retrieved

from a catalog of definitions and are used to check consistency

of structure use (particularly with respect to the operations

and referencing forms). For structures not defined by name,

the pseudo execution process collects information about the

static properties of the structure from the type definition

(i.e., replication, ordering distinguished elements, and relations)
and dynamic properties from the other part of the program (i.e.,

referencing mechanisms and operations) .

Two features of the pseudo execution embody important aspects

of the recognition process. First, for many structures, constraints
on arguments to the operations or limitations on which elements

in a structure can be referenced are essential identifying
characteristics. A stack illustrates this point very nicely.

Note in the stack description given in Figure 4.1 that arguments
to each of the operations are constrained. This requires that

the information gathering process retain the actual argument

in some cases while substituting an indicator that any argument
"is allowed (or used) in other cases. This is accomplished by
substituting the "any argument"” indicator in all cases except
where a distinguished element or a relation name is used, in which
case the identifier is substituted. For example, if the

operation is 'DELETE TOP FROM X, and TOP is not a distinguished
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element, the operation delete (*,*) would be included as an

operation performed on the entities bound to X. By contrast,
if TOP is a distinguished element for X, delete (TOP,*) would
be included. Here the definition of the modelling structures
formalism and the mechanical recognition process are closely

matched.

A second feature of interest in the pseudo execution process
concerns looping constructs and procedure invocations. The
execution of all looping constructs is simulated twice, once
fér the initial pass and once for the loop. In this way,
variable bindings and element membership relations can be
adjusted for both entries to the loop body. This is analogous
to Howden's notion of the boundary and interioxr conditions of

a loop [HO75]. Procedure calls are handled by simulating
execution of the procedure body at each call after the appropriate
argument bindings have been made. (In a language with lexical
scoping, such as Algol 60, the procedure body could be executed
once at the point of definition and the environment updated

at the procedure call rather than simulating execution of

the procedure at each call.)

Examples of the information gathering process are presented in

the next section. More details on the process are available

in RO76.

7. Mechanical Recognition Algorithm

This section describes the organization of a catalog of known

modelling structures and the algorithm for matching structure
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déscriptions derived from a programwith entries in the catalog.
Following this, two examples of mechanical recognition are

presented.

7.1 Organization of a Catalog of Known Modelling Structures

Three organizations of the catalog were considered: an unrelated
collection of entries, a discrimination net of entries (descendant
entries related tc parent by a choice for some given modelling
structure property and only leaf entries being complete structure
descriptions), or an inclusion lattice (descendant entries

related to parent by a more restricted set of modelling structure
properties and all entries being complete structure descriptions).
The inclusion lattice organization was chosen and organized

so that the matching algorithm will match any structure des-
cription deduced from a program. (As a result, some inclusion

relationships between individual attributes may seem arbitrary.)

An entry in the catalog is composed of a structure name, a match
six-tuple, and structure-specific alternative implementation
knowledge. The six fields of the match name in order are:
replication, ordering, relations (mapping degree, domain scope,
range scope, connectivity, reflexivity, and symmetry), distin=

guished elements, referencing, and operations.
The root of the catalog has the most general match name,
<*l*i{*(*l*l*l*l*’*)}I{*(*)}i{%}l’{*}>5

"*" matches any property value. The containment relations for

the various properties are:
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no ordering c ordering
no replication < replication
no relations < any relations
l-many
C;,, N
many=-mansy 1-1
\Q\ 62/
many-1
partial domain € unique domain &
total domain
partial range &£ unique range &
total range
not connected & connected

not reflexive € reflexive

not symmetric & symmetric

Figure 7.1 shows a small part of the catalog with match names.
A bag (a structure similar to a set, except elements may be
replicated [WA73], called a multiset by Knuth [KN69]) is contained

in a sequence because a bag does not allow ordering and has a

more restricted set of references. ("elem no(n)" means element
number referencing with a n dimensional index.) A catalog
of modelling structures is shown in Figure 7.2. (A list of

some of these structures along with their match names is

given in Figure 7.4. A complete list is available in Appendix

IIT of reference RO76.)

The catalog shown in Figuré 7.2 is not the complete catalog
that would be used in an implementation structure synthesis
and selection system. The catalog would be augﬁented with
representations of other modelling structures and with other

representations of the structures shown. There could also
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be nodes reflecting other meaningful combinations of modelling
structure properties even though they may not correspond to

a meaningful structure.

SEQU%@CE
///// A
v
/// \\\\
: AN
e AN
ORDERED SET BAG
\\\\\\ e
/
af’

SET
where:
Sequence =
<rep,ord,®,¢,[elem n0<l>r§xz5§wg9@at univ_guant},
Treag(*) gggggg( *) de]ete(*,*),replace(*,*,*)}>

Ordered Set =
(1) ,exist quant,univ quant},

<norep,ord, ® &, {elem no(l) exist guant,ur

Tread (%) ,insert(¥,%) ,delete (¥, %), ceplace (¥ %, %) 1>
Bag = '

<rep,noord,®, ¢, {exist guant,univ_guant},

{read(*),insert(*,*) delete (¥, %), ceplace (* ,*,*) }>
Set =

<norep,noord,¢,, {€§£§E_EE§QE univ quant},

Tread(*),lnq@rt( *) ,delete(*,*) ,replace(*,*,*)}>

Figure 7.1: Part of Catalog
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7.2 Catalog Matching Algorithm

Given a catalog as described above and thé modelling
structure information deduced from a program, the matching
algeorithm is simple. For each deduced structure, starting
at the root of the lattice, compare the deduced description
with the match name for each descendant of the cufrent
entry. If a descendant matches, make it the current entry
and repeat; otherwise, the current entry is the structure
recognized. Comparing deduced descriptions with match names
uses the containment relations described above. For
example, the deduced description

<rep,noord, ¢, %, (name select]),{read(*) delete(*,*)}>

matches the name
<rep,ord,4$,¢,{name_select,exist quant,univ guant},

{read(*) ,insert(*,*) delete(*,*) replace(*,* *)}>

because no ordering is contained in ordering and the deduced
description reference set and operation set are subsets of

the respective sets in the match name.

when matching with descendent entries, more than one
descendent may match. In that case, continue the match
algorithm along all paths simultaneously. It is perfectly
acceptable that the algorithm may match more than one
catalog entry since  this weans more than one set of
predefined alternatives (assuming the mdtched nodes have
alternative implementations associated with them) are

available to implement the modelling structure.
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7.3 Examples of Mechanilcal Kecognition

Two examples of mechanical recognition are described in this
section. The first one is a contrived example to
demonstrate the recognition of a stack while the second 1is

an actual programming problem.

7.3.1 First Example. The program for the first example, in

which the structure X is to be recognized, is shown in

Figure 7.3. The modelling structure description deduced is
<rep,noord, {SUC(l-1,udom,ucan,conn,noref nosym },

{TOP (undef (SUC(TOR)))},{dist elem},

{read (TOP) ,delete(TOP,*) ,relate(*,[<TOP,SUC,*>])}>.

This description matches the root, graph, digraph, 2=way
list, 1l-way list, dequecue, and finally stack entries in the
catalog. The match names for these structures are shown in

Figure 7.4. Thus, the structure is recognized as a stack.

In the matching process, the names for the relations and
distinguished elements used in the catalog entries are formal

arguments to which the actual names in the derived descriptions

are bound during the matching process.
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BEGIN

DEFINE S.TYpPE: (ELEMENTS: INT,

RELATION: SUC (1=1,UNIQUE_DOMAIN,

UNIQUE RANGE),

DIST ELEM:TOP (NOT (DEFINED (SUC(TOP)))));
DECLARE X:S.TYPE,Y:INT,I:INT

BEGIN

FOK Iel TO 10 L0

RELATE [SUC(TOP)=Y] IN X;

IF TOP=4 THEW

END

END

Figure 7.3: First Example Program Segment
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Root = '
<*7*’{*(*I*I*I*'*’*)}l{*(*)}l{*}?{*}>

Graph =
<rep,noord, {*(* % %, * *,sym)},{*(*)},{dist elem,ext acc},
{read(*),insert (* *),dgfegg(*,*),ggglgqg(*,*,*),
createacce_§T77*),rgl%t@? L [<*, *,*>]),
unrelate (*,[<*,* *§Yy,félated( *) ,readattr (*,*%,*),
sggggqttr(* * *),a551gn(* PEARD T

Digraph =
<rep,noord, {* (% * * % * ;nosym) },{*(*)},{dist elem,
ext accl,{read(¥*), 1nsert(;:;),d§1ete(*p*77 N
replace(*,*, 7“)*,createacce s(*,%) ,relate(*,[<*,*,*>1]),
unrelate(*,[<*,*, *)]) ro1éEed(*,*T:E€55attr(* * kY
storeattr (*,*,*) ,assign(*,*)]> T

2-Way List =
<rep,noord, {"sSUC" (1-~1,udom,uran,conn,nocref,nosym) ,
"PRED" (inv ("SUC™) T,

{“HEAD"(undef((inv("‘UC"))("HFAD”)))

“TATL" (undef (“SOCT ("TAIL"))) ), {dist elem,ext accl,
tread(*) ,delete(*,*) rep£59€<* *,*),createaccess(*,*),
relate(*,[<F,%,%>]) related (*,%) }>

l-Way List =

<rep,noord,{"s0C" (1
T"HEAD"(undef(( v

( { udom,uran,conn,noref,nosym) },
n [

"TAIL"(undef(" uc ("
( ¥

SUC"")("HhAD”)))
TAIL"))) }, {dlSt elem,ext acc}l,

) replace(* *),createacceso(*,*),
'

(
(
~k
) irelated (*,*) }>

relate( [<*,T ]

Dequeue =
<rep,noord,{"SUC"{1-1,udom,uran, conn,noref nooym)}
("LNDl“(undeL("SUC"("ENDl")TY, o
"END2" (undef{ (inv ("SUC")) ("END2")))},{dist elem} ,
{read ("ENDI") ,read ("END2") ,delete("ENDIY, _),

dgiggg("ENDz",¢77Ee1ate(*,[<"END1" "SuCt ,*>1),

relate(*,[<*,"suCc™,"END2">]) }>

Stack =
<rep,noord, {"sUC" (1=1,udom,ucan,conn,noref, nosym)},

f“HhAD"(undef("SUL"("HEAD") )T, T"lst eleh},

relate( ,[<"HEADT TSuct x> 1) }>

Figure 7.4: Catalog Entries Matched
in the First Example
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7.3.2 Second Example. The second example is a program that

accepts a sequence of related objects (in this case strings) and
lists them in topological order. The program is shown in Figure
7.5. The derived description for the only modelling structure

(&) is

delete(*,*)>.

This description matches the catalog entry "structures with
relations" shown in Figure 7.2, but does not match the graph
entry because of the existential quantification referencing.
Figure 6.1 shows the element membership and variable bound

information deduced from the program.
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TOPOLOGICAL SOR'Y ALGORTLIHM %
% DEFINE MODELLING STRUCYWURES AND VARIABLES %

DECLARE A: (ELEMENTS:STRING,NOREPLICATION,

RELAQIth'oUC(MANY -MANY, PARTIAL DOMAIN,

PAbg;fL RANGE , NOT CONNECTED |
NOT REFLEXIVE,NOT SYMMETRIC));
VARIABLE X:STRING,S1:STRING,S2:STRING; .

3 MAIN ROUTINE %

BEGIN % TOPOLOGICAL SORT %
% READ RELATED PAIRS AND CREATE STRUCTURE
RELATING THEM %

WHILE NOT (EOF ()) DO

~ BEGIN B
‘READ(81,S2); % S1 IS RELATED TO S2 %
IF Sl#s2 THEN
~ RELATE [SUC(S1)=S2] IN A

$ REMOVE MINIMAL ELEMENTS FROM A UNTIL A IS
EMPTY OR A CYCLE EXISTS 3%

WHILE SIZE(A)#8 DO
~ EXISTS X IN A SUCHTHAT SIZE(RELATED(X,SUC))=0;
IF DEFINED(X) o -
~ THEN BEGIN % FOUND MINIMAL, PROCESS IT, REMOVE IT,
T AND LOOP %
PROCESS (X):
DELETE X FROM A
. £ ROM
CLSE BEGIN % CYCLE EXISTS 1IN DATA %
T PRINT("LINEAKIZATION DOES NOT EXIST BECAUSE
CYCLE EXISTS IN DATA."):
STOP
ENL
END T

END % TOPOLOGICAL SORT %

Figure 7.5: Second Example Program
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7.4 Experience with Mechanical Recognition

Given the goal of mechanically recognizing known structures, we

identify four necessary characteristics of a data definition

facility:

1. collections of elements treated as structures

should be described explicitly,

2. references to elements in a given structure and
constrained references (e.g., top of a stack or

root of a tree) should be recognizable,

3. changes to a structure or its elements must be
restricted (i.e., implicit changes must be controlled),

and

4, relations between elements in a structure and properties

of these relations should be described explictly.

These requirements clearly influence several aspects of the
modelling structures formalism. While we have attempted to
retain the ability to describe a wide range of structures, the
need to define a formalism within which known structures can be
recognized forces some representational bias. One type of
representational bias introduced by the specification technique
used here, is that some relations among operations defined for
a modelling structure are encoded in the "structure" as opposed
to being explicitly stated as in an algebraic relation
specification. For example, the fact that the last element

inserted is the one retrieved in accessing a stack is represented
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partially by an explicitly defined relation between the elements
as opposed to being a property of the operations. Consequently,
using our formalism, the relation is represented explicitly in
any implementation for a stack. An implementation for a stack
described by algébraic relations need not represent the relation
explicitly (aithough in many cases it will). This loss of
generality must be balanced with the advantages derived from

automating the implementation selection process.

A serious deficiency of this recognition process is its in-
ability to recognize recursively defined structures. Recognizing
such structures is extremely difficult because in a recursive
formulation salient characteristics of the structures are
typically represented procedurally rather than in declared

static properties. Considerably more sophisitication than that
embodied in the process used here would be needed to recognize

these representations.

The program analysis methods used here can accommodate strong or
weak variable typing, lexical or dynamic scoping of variables,

and unconstrained forms of branching.

8. Generation of Alternative Implementation Structures

Using the information deduced from a program by the techniques
discussed in section 7 (modelling structure descriptions, matching
catalog entries, and execution time membership and variable
binding relations), the algorithms presented in this section

generate alternative implementations for each modelling structure.
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The generation process produces a set of alternative
implementations for each separable modelling structure. A separable

modelling structure is an equivalence class of the relation created

by extending the membership relation to an equivalence relation.
An example will make this clear. Figure 8.1 shows 8 distinct
modelling structures and a membership relation. There are 3

separable structures in this example (denoted by the boxes).

3 AN
(Uj}
T
=——v{ 0O

\\
S
! !

. ; /‘; f

;

S AN

Figure 8.1: An Example of Separable Modelling Structures

There are three phases to the generation process. In the first
phase alternative implementations are generated for eéch distinct
modelling structure. For those structures which match a known
modelling structure, alternative implementations are retrieved
from the catalog (i.e., expert knowledoge about alternative
implementations). For those structures which do not match a
known modelling structure, alternative implementations that can
represent the required abstract behaviors are synthesized. The
second phase of the process produces alternative implementations

for each separable modelling structure by combining together
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implementations for structures in a class according to the member-
ship and variable binding information. The third phase adds

coalescings of modelling structures to the set of alternatives.

The remainder of this section describes the synthesis and the
combine algorithms, presents an example, and discusses our
experiences with the algorithms. We have not worked directly

on the phase which adds coalescings. Nevertheless, coalescings
would likely be represented by procedural experts which recognize
whether a particular coalescing applies, and, if applicable,

synthesizes implementations incorporating the coalescing.

8.1 Synthesis Algorithm

Implementations are synthesized by focusing on the relations
defined for a modelling structure (for a structure without
relations, one is added). For each relation a set of alternative
implementations for a structure with just that relation is

retrieved from the implementation library. The implementation

library is a database including for each realizable relation
alternative implementations for a modelling structure with just
that relation. An implementation is synthesized by joining

*
together implementations for each relation. It may not be

* All implementation descriptions, whether in the modelling
structures catalog, the implementation library, or synthesized
by the generatlon process, are represented using the formalism
described in Section 6 above.
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' * %
possible to join together any arbitrary pair of implementations.

For example, an implementation for a structure with two relations
cannot use cell contiguity to represent both relations simulta=
neously. After a set of implementations are synthesized, other
modelling structure properties (e.g., ordering, replication, and
referencing) are used to change, add, and remove possible

implementations.

Before presenting the algorithm, the concept of enumeration must

be defined. An enumeration relation is one which traverses,

or enumerates, all elements in a structure. Many implementations
for modelling structures require that there be an enumeration
relation. For example, enumeration is often required in
implementations for modelling structures with universal quantifi-
cation referencing (to generate all elements) or when an ordering
predicate is specified (to represent the ordering between elements).
Some implementations do not require an enumeration relation. The
synthesis algorithm decides whether an enumeration relation is

necessary based on the modelling structure properties. This is

** Unless one relation is derivable from another. This
transformation is not attempted because we believe this to be a
change in modelling structure as opposed to implementation
structure. The philosophy follwed here is that if the programmer
explicitly represents the relation then it will be represented

in the implementation. This is an example of how representational
bias is included and acted upon in this approach.
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one reason why the general process cannot always generate the

most efficient implementation.

For those structures requiring enumeration there may be an
explicitly defined relation that can be used as the enumeration
relation. In other cases an additional relation (1=-1, unique
domain and range, connected, not reflexive, and not symmetric),

called an assumed relation, is added to the modelling structure

(e.g., when no relations are defined or the structure is ordered).

Alternative implementations are synthesized for each structure

by invoking the algorithm shown in Figure 8.2. The essential
step in the algorithm is the call on the SYNTHESIS procedure
which retrieves single relation implementations from the
implementation library and joins them together. The retrieval
operation is straightforward. For each relation in the structure,
a set of alternative implementations is retrieved based on the
relation properties (i.e., mapping degree, domain and range

scope, connectivity, reflexivity, and symmetry.) Each alternative
is also checked for consistency with other requirements of the
modelling structure (e.g., operations performed on the modelling
structure must be defined for the implementation). These single
relation implementations are then joined together by repeated
application of the operator JOIN(X,Y), where X and Y are
implementations, to produce an implementation for the desired
modelling structure. The remainder of this subsection describes

‘how JOIN combines two implementation structure descriptions.
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size Alternatives Algyorithm. Thig algorithm

sizes implementations for a modellinj structure (MS).
tions(MS), references(ils), and operations(ks) are the

ft relations, references, and operations, respectively,
efined for or perforined on the modelling structure. For an
1mplgmentutlon x, order(x) and descriptor(x) are the order
tield and descriptor set oi the inplenentation description.
AL IdMpP STRUX 1s the set of alternaive iwmplementations
synthesized.

OBV
DN
=

A‘UE'Z
[
sl

- {2

1.y [Initialize.] Let ALY IMP GUTRUL « & and
ABSUNMED RhL& <", 1-1,udon,uran, Lonn,qoret ,NOsYyIn> .

Z.0 [&dd assuwnel relation.] If an  enuneration relation is

recguired and either 15 is ordered or an enumeration
relation does not  exist, insert Po5UMED REL into

relations(ss) .

3.u [Look up and join alternatives iron tn“ imelomentation
Library.) ALY 1P STRUK € 3YNTHIEGIS (H5) .

s if no replication or
L i not ordered and either
al referencing, for each

4.9 [Add ordered impleaentation
existential referencing.] 1T
no replication or existenti
X € ALT Itk STKUX do

4.1 Let vy be a copy ol x.
4.2 Let order(y)e order and OLDiik FLAG for the assumed
relation in y be true. - '
$.3 Insert y into ALT IuP STkUX.
5.6 [If the structure is ordered, add two cases for each

inmplementation -- <sorted and implicit.] IL 5 ordered,

Lor each x¢ ALT IilbP STRUX do

5.1 Let oxrder(x) « sort and ORDER FLAG for the
assumed relation 1in x De true.

5.2 Let y be a copy of X.
5.3 Let order(y)e sort and OKDDR FLAG for the assumed
relation in y be ftrue. B
5.4 Insert insert flag into descriptor(y) .
5.5 Insert y Into VHQIfLHL) STRUX.
5.0 [dark descriptor for dJdistinjuished eleaent, external
access, or  eleowment nunber ref@rencinq } If 11ul elem,
oxt q(c or clen no & refercences(iib), sert 1t into

descriptor(x) [or cach inALT»”MP_U?RUxa

7.0 [Add exelicit size.] 1t size ¢ opcrations{(khs), then for
each x € ALY il 2TRUX do

7.1 Lzt y ve a copy of x.
7.2 Inscrt nxnlicit size into descrivctor(y) .
/.3 Insert y into ALT INP S5TRUX.

8.0 [Lone.] Algorithan terminatces.

Fijure 8.2: SYyntnesize Alternative Iinplementations Algorithm
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First, JOIN combines the storage structures for the
implementatioﬁs, All storage structure decriptions for im-
plementations in the library must be of the form "s:#ﬂ(x)/op,”
where "#_," is the number of elements in the structure, x may be

g

"e" (symbolizing the element) or the name of another construct
(e.g., "f," where "f:. . ." also appears), and "op" is from

the set {+, 2, @, PB}. Thus, the top level of the two storage
structures to be joined are "s:#g(x)/0p1" and "s:#ﬂ(x)/opze"
The arguments to JOIN are switched, if necessary, so that opy
precedes op, according to the ordering [+, ?, @, B]. There are
only 7 cases of opl and op, that can be combined: +@, +}, 2@,
?B, @@, @P, and PB. In all other cases the two implementations

cannot be joined. The rule for combining the two descriptions

is:

Let s:#ﬂ(z)/opl and Z:X+y+0op,2 (do not add +op,2z if
op2=b). Substitute the strings for x and y removing
duplicate occurrences of e and replacing any occurrence
of x or v with z. Copy all other constructs from the
two storage structures replacing occurrences of x or y

with z.

An example will make this clearer. Figure 8.3 shows the joining
of two storage structures. Notice the removal of duplicate e's
and the replacement of f by @22 in £f. The same symbol, either
identifier or subscripted operator, may occur in both storage

structures. To resolve the naming conflict, unique identifiers
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and subscripts are substituted throughout the implementation

structure descriptions before joining.

S:d, (e) /+ . N /e
¢ (&) /%) Sty (1) /9,
\\\ E:e+@qf
\\\\\‘ /// ‘

N ;
Vs
“
\.
L\\
N,
s ’%w(z)/*‘l
}Z:e+f+@lz == e+@22+@lz

Figure 8.3: Example of Joining Storage Structures

After combining storage structure descriptions, other parts of
the implementation descriptions are joined by taking the union
of the relations, structure-defining functions, descriptor, and
size sets. The order field of the two implementations must be

no. The elements field is set to value or the name selection

sequence is constructed with each name indicator set to value.

Thus far, the join operator is characterized by:
1. Storage Structure: apply combine rule
2. Relations: wunion
3. Structure-defining Functions: union
4. Descriptor: union
5. Order: no
6. Sizes: union

7. Elements: value or [<namel,value >, 0]
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The operations set presents a problem. For some operations, such

as related, read, and read-attribute, a general code generation

procedure can be defined which produces the correct operation
based on other parts of the implementation description (par-
ticularly the storage structure and relation set). For other
operations, such as insert and delete, a general procedure can-
not be defined because implementation specific knowledge must be
encoded. The problem is that knowledge represented procedurally
is difficult to combine (except, for example, if the two sets

can be combined one before the other, which is not true in

this case). 1If, on the other hand, this knowledge could be
represented as data, the possibilities for defining a suitable
joining rule are improved. Our work with examples to date
suggests that an acceptable joining rule can be devised. However,
until more examples, particularly in the context of an operational
system, have been studied it would be premature to state that the

problem can be solved.

8.2 Hierarchically Combine Algorithm

There are three situations to be considered when hierarchically

combining implementations:

1. does a structure contain more than one type of element,

2. does an entity appear in more than one structure
simultaneously, more than once in the same structure,
Oor require an existence outside a structure (called

separate existence), and
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3. are the elements of a sequentially implemented structure

of fixed size-.

The first situation requires that the elements of a structure

have a run-time descriptor with a type field. The second

situation is handled by using an indirect reference (a pointer)

to the elements of a structure. In the third situation, for those
alternatives with sequential implementations, the size of

element implementations is examined and, if not all the same, the
elements are changed to pointers. The algorithm shown in Figure

8.4 hierarchically combines implementations for the entities 5
in a separable modelling structure class. Steps 1, 2, and 3 in

the algorithm correspond to the three situations just discussed.
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nlepdrchlgully Combine Algoritha. This algorithm combines
the entities in a separable modelling structure class
ccording to the wvariable blndinq and  elewent relations

deduced fromr the program. Sil 18 the set of entities in the

class to be combined. For each X 34, I(x)y={alternative
lmplenentations for x}, member{x)={y}<x, v>L tElem, i.e.,
entities which may he elements of x},

parent( ~{y4<y,h>e tlen, i.e¢., structured entities of which
¥ wmay e an element), and wvariable(x)={vyl<y,x>¢e var, 1i.e.,
variables which wmay be bound to x}. For an implementation
z, descriptor(z) &end element(z) are the descriptor set and
element field, respectively.

which recquire

es
iere is more than

1.0 [#Hodify implemetations for those
type information.] For each x & S0
one entity in member (x), do

&

1.1 for each y& member(x) insert tvoe into descriptor(z)
for all z¢ I(y).

entitct
if tf

[
C.

[lodify implementations for those cntities which reauire

polnters to clements.] #or each x & 34 do

2.1 If wparent(x) has more than one elenent or
variashle () # ¢ (L.e., b4 neels a separate
existence), for each véroarent (), let

e¢lenents(z)e nointer for all ze I(y).
2.2 For each vy eé member () cuch that licreatep(y)=true,
let elenents(z)e- pointer for all z € I(x).

2.3 If kcreatep(x)=true, let elements(z)e- pointer for

all z¢ i(x) and for all z € I(y) where y¢€ parent(x).

3.8 [Check combinations for variahle sized elements of
csequential implementations.] For each z in an
implementation set for the entities in 5M for which the
top level operator in the storage structure is + do
3.1 If the sizes of the implementations for the entities

in member (z) (there may bhe nore than one element
entity) are not the same, let elenents(z)¢ pointer.
Otherwise, if the sizes are not the came, but are
fixed, insert struct size into the descriptor of the
1m]1F18htat10ﬂ"fOT ‘the entities in meamber(z) .

4.9 |bone.] Algorithn terminates.

Figure 8.4: hierarchically Combine Algorith:
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8.3 Example of Implementation Structure Synthesis

The example presented below was processed by the synthesis
algorithm implemented in UCI Lisp [BO73]. The example uses the
modelling structure derived from the topological sort program in

figure 7.5. The structure description input to the program was

¢norep,noord, {SUC(many-many,odom,pran,conn,noref nosym) },
¢, {exist quantl, {insert(* *) delete(*,*),

gglate(*,[<*,suc,*>1),Eq{QQQQ(*fsuc,*)}>.

Because of the existential quantification referencing, an
enumeration relation was added to the structure. Thus, the

structure had two relations when the SYNTHESIS procedure was

called.

The implementation library included two representations for a 1-1
relation (sequential or linked implementation) and five repre-
sentations for a many-many relation (three are shown in Figures
8.5-8.7; the other two are like those shown in Figures 8.5-8.6

except that the f's are stored sequentially).
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SYNTHESIS returned 7 implementations for the modelling structure
(the other 3 could not be joined). Figure 8.8 shows one of

the implementations returned. This implementation represents
the enumeration relation by sequentially storing the z's.
Associated with each z is a pointer to a linked list of
pointers to elements related to this one‘by the relation

SUC. Storage structures for the other implementations returned
by SYNTHESIS are shown in Figure 8.9. The implementation
depicted at the top of the figure also represents the
enumeration relation in sequential storage. The SUC relation
is represented by #ﬂ pointer fields stored with each element.
The other implementations are variations of these based on
whether the elements are stored contiguously or linked and

how the connection relation SUC is stored. The last
implementation shown uses an adjacency (or connection) matrix
to represent SUC with structure-defining functions to get from

the set of elements to the matrix and back.

(case 1) S:#Q(Z)/+l
z:e+2@g
g:#(@z)/a

Figure 8.8: Example Implementation Returned by SYNTHESIS
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(Case 1) s:#g(Z)/+l
z:e+2@g

g:#(@z) /@

(Case 2) S’#g(Z)/+l
z:e+,g
g:#g(@z)/+3

(Case 3) S:#g(z)/@
z:e+,g
g:#g(@z)/+2

(Case 4) S’#g(z)/+l

z:e+zg+3@z

g:#g(@z)/+4
(Case 5) s:#g(z)/@
z:e+l@g

g:#(@z)/@

(Case 6) S:#ﬂ(z)/+l
z:e+2@g+3@z

g:#(@z)/@

(Case 7) S:#ﬂ(z)/+l
z:e+2?3g+4@z

g:#ﬂ(Egg+5?6z)/+7

Figure 8.9: Storage Structures for Implementations

Returned by SYNTHESIS
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Step 4.0 of the algorithm adds 7 ordered implementations to
improve existential referencing (this assumes there exists

an ordering predicate for the elements of the structure,
otherwise the ordered implementations are not added), In
this example the ordered implementations will not necessarily
be more efficient because the searching involved in the
existential referencing is not related to an ordering among
the elements in the structure (i.e., the strings). The

algorithm terminates returning 14 possible implementations.

Figure 6.1 denotes the membership and variable binding
information deduced from the program. Suppose that
implementations for e, and ey were retrieved from the catalog.
The hierarchically combine algorithm is invoked to combine
implementations for the strings and e;- Step 2.1 sets the
elements field of each implementation for ey to pointer
because e, and e3 have separate existences (variables bound)
and e is a parent of e, and eg. Pointers are used so that if
€ or ey is bound to a variable (sayX ) and deleted, the
entity can continue to exist in its present location

without being copied. (This preference for non-copying is a
heuristic which should be studied in more depth.) Finally,
there are no problems combining the various implementations
with top level sequential operators because the elements of
e; are pointers which are presumed to be fixed size (this
would not be true if there were different sized pointer

representations, e.g., relative and absolute pointers).
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Thus, 14 implementations would be generated for this

modelling structure class.

8.4 Remarks on the Generation Process

The generation process described in this section imposes the

following constraints on resulting implementations:

1. there must be one, and only one, entity for each
symbol specified in the top level of the storage

structure as occurring #ﬂ times, and

2. all elements of a structure (except those with name
selection referencing) must use one of the forms:
values of the same type, values with descriptors
giving type information, pointers to values of the

same type, or pointers to descriptors.

Some such constraints are to be expected when one is
developing a general procedure to replace hand-coded
implementations. The question is how well does the general
procedure perform? Our limited experience to date suggests
that it does reasonably well in generating a set of
alternatives with. a wide range of space-time tradeoffs, but

a more systematic evaluation should be undertaken.

There are several questions concerning the handling of the
enumeration relation. First, in what cases do modelling
structures not require an enumeration relation either because

an alternative traversal scheme is available (perhaps as
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specific implementation knowledge, e.g., binary tree
traversals) or because the elements of the structures do not
have to be enumerated? Which relation should be designated
the enumeration relation if several candidates are available?
Finally, the synthesis algorithm can be improved by
recognizing those cases in which an implementation for a
relation expicitly defined in the modelling structure contains
a sequential or linked representation of elements which could
be used to implement the enumeration relation. The current
algorithm does not discover this, resulting in the synthesis

of less space-efficient implementations.

A final remark concerns additional information that would
improve the generation process described here. There are
three specific kinds of information. First, does an entity
have an existence outside of a structure? For example,
suppose X 1is an element of S, and the variable binding
relation indicates that some variable is bound to x. The
methods used herekcannot determine if this is binding only
while x is a member of S (in which case the existence of

X outside S need not be provided for). The second kind of
information relateé to elements occurring simultaneously

in several structures. Consider the case where an entity

X is a member of S and S' during execution. Now, if Tg is
the set of time epoches during which x is a member of S, which

of the following cases hold?
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Cases 1 and 3 require x to have a separate existence {(i.c.,

an existence outside of the structure). Case 2,on the other hand,
does not require that x have a separate existence. ‘the last kind
of information concerns the membership relation. Consider the
example in Figure 6.1. Do the multiple creations of e, and
multiple insertions of e, into e, mean that multiple occurrences
of a single e, are inserted into ey, Or that several creations

of e, are inserted? Because of the possibility of the former,

an inefficient implementation for the latter (which is the more
likely situation) must be used. It is not possible to deduce
these three kinds of information using the methods described
here. We feel that such information is used by programmers in
selecting good implementations. Thus, in the context of the
system being investigated, either meaningful interaction with

the user or monitoring program execution is required if the most

efficient implementations are to be generated.

9. Relationship to Other Research

In this section we relate the work reported here to other research
in the specification of data abstractions and in implementation

selection.
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9.1 Specification

Liskov and Zilles [LI75] survey five classes of specification

techniques using:
1. a fixed domain of formal objects.

2. an appropriate, but otherwise arbitrary formal

domain,
3. a state machine model, |
4. an implicit definition in terms of axioms, or
5. an implicit definition in terms of algebraic relations.

These classes are listed in order of increasing abstractness,
e.g., a specification based on a fixed domain of formal objects
generally includes more representational detail (information and
constraints) than one based on algebraic relations. More detail
may imply limitations on the range of possible implementations
that can be generated. As a result of this observation and
considerations of whether relationships between operations on

a data type appear explicitly or implicitly in the specification
[GU76], some researchers argue that data specifications should

be represented using the more abstract techniques.

However, we chose to use a specification technique based on a
fixed domain of formal objects because of the amount and kind

of detailed information needed to make intelligent choices
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among alternative implementation structures. Some examples of

this kind of information are:

1. whether an operator modifies one of its arguments or

makes a copy of the argument and modifies it,

2. whether an operator modifies the membership relation
between its arguments (i.e., does an operator insert

or delete an entity from a structure),

3. whether an access to a structure is restricted (e.g.,

root of a tree or top of a stack), and

4., whether an entity can be a member of more than one

structure at a time.

This kind of information is difficult to infer mechanically from
a program level description using either a more abstract
specification technique (unless additional conventions on the
interpretation of the specifications are made or supplimentary
information is included with the specification)* or a less
abstract specification technique (e.g., a PL/1, ECL, or PPL

program level description).

* This relates to the more general question of whether a uniform
specification technique is used for the entire program development
cycle in which later stages merely add more detail or whether
different specification techniques are used in the different
stages.
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9.2 Selection

Early research on implementation structure selection systems
proposed programming languages and translation environments
in which implementation is decoupled from data specification
and a user can separately specify or select an implementation
[BA67, NA74]. Recently, work has concentrated on how data
specification techniques are embedded in programming languages
to enhance reliability [LI74, WU74], how to verify concrete
realizations'for abstract representations [HO72, SP75], and
how to automate the selection of efficient implementations
[GO74, 1076, SC75]. Because we have been concerned with the
latter area, this section surveys only work on automatic

implementation selection.

Low has developed most parts of a system which accepts programs
written in SAIL, an Algol-based associative language [FE69],

and produces executable code for a particular machine. In his
system a fixed set of modelling structures and associated
operators are provided (sets, lists, and a single ternary
relation). Tompa, on the other hand, is not constrained to a
fixed set of modelling structures, using instead a "substructure
model" which is roughly equivalent to Codd's relational data-
base model [C070]. However, this system is intended as a design
aid and thus does not accept complete program specifications nor
does it produce executable program representations. The goal

of our work is a system, not restricted to a fixed number of
modelling structures, which accepts programs and produces

executable code.
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The information which Low's system uses to evaluate alternative
implementations includes the relative frequency the primitive
operators are performed and the expected number of elements in
each structure derived either by interrogating the user or by
monitoring sample executions. Tompa depends solely on user
supplied data but the information used is very different (e.g.,
expected relative position of the element being accessed with
respect to the average and maximum number of elements, expected
number of times the element being searched for is the next one
or is not a member of a structure, and expected number of
comparisons during a binary search). Performance'prediction

is a serious limitation of these systems and our proposed
system has the same difficulties. This problem is discussed

further in the concluding section.

Another aspect of the implementation selection problem, not
explicitly addreésed by the others, is storage management.

Often when two implementations for distinct modelling structures
are chosen simultaneously by the selection algorithm, their
execution costs may be less than the sum of their separate

costs (e.g., in certain circumstances two stacks implemented
sequentially can be organized in a region of memory to share
available free space by placing them at opposite ends of the
region and having them expand towards each other). We call this

a coalescing. Reformulating the selection problem allows a

branch and bound search algorithm to be used. This problem and

solution are discussed in more detail in another paper [TO76].
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Low used a hill-climb, or incremental search, selection algorithm
which, depending on the particular problem, may not find the
optimal solution. Tompa proposed a branch and bound algorithm

similar to that used here but without coalescing [TO75].

Schwartz discusses the analysis and optimization of SETL programs
with emphasis on the information needed for automatic selection
of data structures [SC75]. The techniques discussed included
most traditional optimization techniques (e.g., redundant
expression detection, constant propagation, and peephole
optimization) and some newer techniques (e.g., interoccurrence
linking, value flow tracing, and determining inclusion and
membership relationships). Mechanical recognition of known
modelling structures,‘discussed in Section 7, uses a form of
value flow tracing to deduce what operations are performed on
the entities of a program. Also, a method for deducing
membership relationships similar to that discussed by Schwartz
is used here. The work reported here does not directly address
the other analysis and optimization techniques. Nevertheless,
a translator designed to produce efficiently executable |

implementations might include some or all of these techniques.

1¢. Summary and Conclusions

In this paper we have presented an approach to improving the
process of selecting efficient implementation structures. In
particular, we described formalisms for modelling and implementa-
tion structures and three algorithms concerned with the generation

of alternative implementations. The principal contributions of
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this work were the demonstration of the possibility of mechanical
recognition of known modelling structures and the development
of a general algorithm for synthesizing implementations for

those structures not recognized.

Two key features of the modelling formalism that make mechanical
recognition possible are: (1) distinguishing between references

to elements in a structure based on structural relationships

and references directed at a specific element, and (2) using

binary relations to model "structure." Making explicit the
distinction between these types of references has not been done

in other models of data structures. The full formalism, as

defined here, may be too complicated to use in a real-world
programming environment. Nevertheless, we believe that a formalism
like the one developed will be necessary if mechanical recognition

is desired.

The implementation structure formalism may be useful in other
applications. It has proven to be a convenient, concise, and
(within its limits) complete formalism for expressing and

manipulating implementation structures.

Although a complete system based on the approach presented has
not been developed, certain conclusions about the formalisms

and algorithms can be drawn.

The performance of the mechanical recognition algorithm cannot

be accurately assessed because it depends on examining its
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application to a large number of example programs generated by

different programmers. This is one direction for future research.

The synthesis algorithm has proven quite successful at generating
reasonable alternatives, assuming a carefully defined library
of single relation implementations and provided that the problem

of joining operation code generators can be satisfactorily resolved.

Unlike the other two algorithms, the hierarchically combine

algorithm was not particularly successful in that it tends to

produce inefficient implementations. This poor performance is (
because the detailed input required to produce efficient
implementations is not easily collected, and so the existing

algorithm is overly simplified. The types of information

required concern the necessity of separate existences for entities,

the relationship between the times during which an entity is an

element of various structures, and the existence of multiple
occurrences of an entity in a single structure. Assuming that

one is not willing to constrain the language for describing

programs, there are three possible solutions:

1. a more complicated program understanding system could

be constructed to deduce the information,
2. the user could be asked for the information, or

3. the actual running of the program could be monitored

to gather the information.
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Each of these alternatives has some disadvantages. The first
.solution, given current performance of knowledge based systems,
may not yield sufficient information to justify the additional
processing. While the second solution is certainly possible,
the volume and detail of information that is required would be
both time consﬁming to gather and tedious to provide. And
lastly, the third solution, while again certainly possible,
would not be acceptable if the program for which implementations
are being generated were to be executed only a few times and/or

it was exceptionally costly to execute.

As a result of these observations the need for specific types

of user interaction becomes more apparent. We see two distinct
classes of users who would use such a system in different ways.
Those users with programs which are prohibitively expensive

to execute will likely want to interact with the system to

provide the information needed to generate efficient implementations.
On the other hand, those users with programs which are not
prohibitively expensive to execute with inefficient implementations,
but which will be run many times will likely want to monitor

actual executions to gather the necessary information. Notice

that whichever approach is taken, user interaction is not just

desirable but necessary.

Finally, any progress on the problem of automating the selection
of efficient implementations depends on the ability to predict
a program's execution performance. Progress to date in this

area has been limited. As a result, one should not expect to
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see practicalAuse of such systems in the near future. We
believe, however, that economically viable systems allowing
user interaction to choose alternatives from an implementation

library are feasible and can be developed for praétical use.
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