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Abstract 

This paper presents an to transla ng the data 

associated with a i 

implement ons. The "'les red.11ct of 

domain data structures to -Df 

modelling structures. Formalisrns are r de 

modelling structures ~~o abstract repre s f data 

characteris cs and relationships .of 

implementation -- and l u.:ce 

processable representat Based upon these formalisms, 

algorithms are presented for recognizing known modell 

structures, for synthesizing irnplementa for :mod.ell 

structures not recognized and for comb 

binding relat ships. Design considerations influenc these 

formalisms and a ithms are SC USS 

Keywords~ data structure, data struct e formali 1 

structure recognition ementation structure ce, 

mentation structure synthesis, data abstract 
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l. Introduction 

There has been cont interest ·ter s 

methods for repres ng the data as 

by computer programs. This interest has 

of appropriate data structures for i 

languages des to led ev2tl 

tations storage of s le data 

the emphasis research on data s 

with larger groupin often called abstr t t:a 

treat a data structure and certain upon it t 

with formal treatment of the properties it:s p 

and with the among altern.ati o:t 

such data types [PR7 ]. 

In this paper we present an approach to 

of data representations in a program in 

While this approach s s many of the arne 

as current work data structures, i 

motivation and so terms of the way 

are treated., We t present the 

programming process that motivates 

discussion of specific emphases (desi decisions ha 

shaped the research. Next we summarize the formalisms de'>.re 

for stating modell structures and ons structures 

Following that we present three major a for the 

of alternative implementa on structures a.re central to 

this approach. 
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In the final two sections we discuss the relati of th 

work to other current research in data abstr and s ze 

and conclude s paper,, 

2. ~View of Data Representation 

Programming problems se in a vers·e 

do ma , and those the 

is expressed a forrn dictated 

itself and of some general lut 

cedure. We call thi or inal data ern structure, 

Eventual as the natural result of the p processv 

this problem-solution procedure and its associated data are 

reduced to a mach e implementa c:a11 t,l~te 

data reperesentation ved at this 

structure. Often the problem~ process 

the data representation and associated ~ are expres 

in terms of some te ate structure l 

intermediate tructures are abstract representat of the 

characteristics and relationships represented lern 

domain, suitable for ana sis and expressi f thms 

by human problem-solvers(prograrnmers), and large i 

of the restri rived from specifi tat 

D1 Imperio, we call s structures modell_i:~9:. structures [DI6 ] , 

Thus, the g process include of lem 

structures to implemen structures utiliz one or more 

layers of modell structureso 
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Modelling structures are useful because they provide a level 

of formal representation common to many problem domains and 

yet independent of the restrictions and commitments of specific 

implementations. Thus, they provide a locus for collecting 

expert knowledge and techniques about data representation, an 

opportunity for expressing problem-solving procedures with a 

clarity often obscured by the need for efficient implementations, 

and an opportunity to carry out substantial debugging and correct­

ness-proving at a level closer to the problem logic than to 

concerns of machine efficiency. 

Note that, as we use the term, implementation structures may be 

expressed at any level of language, if that is the level at 

which the final program is written. In some cases, implementation 

structures are expressed in machine or assembly language; in 

others, in a higher-level language. For example, the abstract 

notion of an "array" as modelling structure may be implemented 

as a FORTRAN array, an ALGOL array, a BASIC array, and so forth, 

each of the latter being a different implementation structure 

with different properties. Or, the modelling structure "tree" 

may be implemented in FORTRAN, using FORTRAN arrays, in several 

distinctly different ways, each a different implementation 

structure for that modelling structure. 

In practice, the neat separation between modelling structures 

and implementation structures does not exist. Typically, 

programs are written partly at the modelling level (program 

control structure and some operations) and partly at the 
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implementation level (data structures and related 

Because the representations available for expressing informat 

relationships and data in programming languages actual 

represent specific lementation structuxes, 

is forced to select tat structures a the 

problem-solution procedure is lled. 

Fore the prograrnmer t choose an ure 

this 

among different implementations and cons 

as efficiency considerations are zed. In 

this research we are terested in a representat 

of informa relationships and data at mo dell structure 

level durinq the progra1mri:Lng process, then us the r 

itself to assist programmer in ing an f fi t 

implernen ()Il"' A system for generat ng 

alternative structure would thus be another 1 a 

problem~sol programmer his tas . 

3. Design Emphasis 

Here we list seven design emphases whi 11ave s rese 

First, we consider the problem of deve .)lca_rc 

structures from alre specified modell structures ng 

aside the less well~ f ied and certa dif f 

area of dealing with structuresc 
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Second, the modelling structure 

is intended to be a consistant 

ism scussed in Section 4 

for expressing classes 

or types of elements and their relati It be 

capable of expressing modelling structures current 

(e.g., graphs, trees lists, and arrays an ls 

statements of rela Those users 

mo dell structure want may speci 

users who are full l in':;:J 

structures, ll\Tho not know s 

or who want a structure not provided the 

define such a structure using a 

envision a system based on a well-def 

for modelling structures~ 

formalismo 'I'hus,, we 

coherent on 

Third, the modell structure formalism should that 

information needed for generating ef fi ent tat 

This is contrast to other approache data s 

where the emphasis is on seness f de and 

minimizing representa anal bias. 

Fourth, the implementat structure ism ( scussed in 

Section 5) is to be a consi t framework for express 

storage implementations of modelling structures s as 

other things) to be able to compare alte ve tat 

and to of sever modeliing tructures. 

For this initial report, we restr on and the scope 

of the formalism to ens in first level 

(primary storage) as describable in a cal as language. 
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Fifth the stem should allow representat and use of known 

implementations of known modell 

knowledge) where that exists. 

Sixth, as a general in le the 

all 

tern ces or 21 change 

This cons ation has 811 

so far, since it i more related to eces of 

the em t an ce themselves, but 

we have taken each step with that on in 

Finally, we concentrate tially on cert a rts of a 

total system leaving un fied for present those areas on 

which there is a great deal of other c;urrent research, For 

examplef we deve an algorithm for sis f 

structures for "unrecognized" modell structures 

work now on the data flow necessary 

information for ef choice among structures. 

As a corol f s , we do not deve a r1etr.; 

language with modell structure lit s rather 

consider a more abstract capability tha could be 

many languages. 

In particular, we concentrate on the lents several 

alternative implementations for a structure 

of combining implementat for the modell structures 

used in a program, and on the selection of the most sirable 

set of implementations respect to smne criterion 'I'he 
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following sections summarize the modelling structure and implemen­

tation structure formalism we have adopted and then present three 

algorithms central to this overall task. 

4. Summary of Modelling Structures Formalism 

Modelling structures are abstract objects (and associated 

operators) which provide an intermediate stage in the mapping 

from problem to implementation. As such, they are of value only 

if they facilitate that mapping. Modelling structures have 

proven to be of value in the problem-solving/programming process 

for two major reasons. First, they break a large, ill-structured 

problem into two smaller, relatively independent problems, 

(mapping problem structures to modelling structures and the 

resulting modelling structures to implementation structures) 

thus typically reducing the effort in problem-solving. And 

second, certain useful modelling structures have taken on an 

existence of their own, carrying over from one programming 

situation to another independent of the particular initial 

problem or resulting implementation. Consequently, modelling 

structures have become a focus for technical knowledge and 

expertise in their own right. 

The goals of our modelling structures formalism are to provide 

a means of expressing such structures independent of choice of 

implementation, to capture the information necessary for 

efficient choice of implementation, to provide a notation in 

which the useful and commonly accepted modelling structures 

can be expressed easily and directly, and to provide a convenient 

notation for expressing abstractly the objects and their 
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interrelations of problem structures not the con:unon 

modelling structureso 

Questions of the teness and for 

the modelling structures domain are les eas 

for the other of interest here. :F'or lem s 

and implementat structures, there are s 

against to measure the formali lll 

that part of the real world in 

in the latter the 

in which the ementat must be expre sed modelling 

structures are abstract creations of the mind th no 

corresponding concrete reali aga t 

scope. Thus we can on J such a formal sm as atisfac 

or not sat is above goals, open~ 

ended, and at the same t as satisf terms 

of the e and sure we ask of abst:r.-ac~c 

some sense balan between conflicting demands 

endedness and closure" 

The abstract en ti ties treated in 11 tructures formalism 

are either primitive (not le s 

(composed of elements which are themse s tances f modell 

structures). Primit entities can teve:c 

for whi iate 

J " (ll here. 

Structured entities are characterized s s f ir 

component elements, relat , and the opera s upon t:hem 11' 
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L Replication" Elements in the structures may or may not 

be repeated, 

2. Ordering. Elements in the structure be linear 

ordered to a specified s 

"built~ orde ng being preserved ra on 

the structure" 

Distinguished Elements, One 

may be f s, 

of a structure. st fer 

single element the structure, if any, whi sf s 

the predicate. 

4. Referencing Methods. Elements n the structure may be 

referenced some or all of the fol access 

methods, as specified. 

a. Dist i elernentv an elernent based 

on structural rel e of a 

stack or root of a tree)0 

External access, the s nre 

to a cular element. 

c, Selection, either element name or element 

number. Element numbers may be treated as 

ordered or simply as a pr ve set of element 

names0 Element name select i imila_r to that 

for "structures" l or "records"" COBOL. 

d. fi either rs 1 or-. aL 
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5. Relations. Elements in the structure may be related 

by (poss y several) relat s each characterized 

by the following in 

a. 

Scope of doma may be 1 all elements 

eluded) , all but a le 

element included) or l 

elements 1 ) . 

Scope of range (same po s a~lue domain) @ 

d. Connected or not connected tha l trans1. 

closure a the rel 

c 

e. Re fl 

tri 

Operations. The structure may be upon 

one or more of following aper read an 

element., replace an element sert an 

element deli:2te an element., as 
-~~=·-

a value to a 

reference, relate two elements ) ff 

unrelate two elements, find the element s) related 

to an element read-attr lue of relation 

store-attribute value of a re r arid c;rea te=-~ 

an-access to an element. One r more of parameters 

of an ion may be bound to cular values 

(for example dist elements 
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The complete definitions of the pr (see 

must take into account the properties f the structure and 

particularly of the dee rel ons~ le there are some 

288 possible 

given above on 

ations of the characteristics of rel 

45 of these are I sis t and so 

realizible, and of these on 36 (16 2 

6) 

can be con using- the \le above" 

Operations must un result i a 

they are treated as an error. The de ls of these defin 

(particularly relate and unrelate) are l 

and depend on the local context of a sequence f ve 

operations to e an unambiguous result, "I'he resul 

(one rel structures fall natura nto three 

list-like, tree-1 

of the relation, 

, and graph-like, the degree 

Examples of several comino ed mode tructure de l. 

using this formalism are given in Figure 

some extent our own rsonal arbitrar de 

there are no agreed upon f t 

such structures as set, stack, tree, or array. 

there are to the same 

this formalism. We do not propose these as de 

universal agreement, but as examples for 

substitute his own preference as desired. 

definitions means t any element or s ture 

'I'h•2se are 

, in that 

for 

Furthermore, 

be ha 

for 

the reader can 

as 

appropriate may be tuted. The use a dis shed 

of a element is illustrated for example, the d.e:t 

stack, where element referenc is restricted to the dist 



Stack: 
replication 
no orderin9; 
distinguished 
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e1ement (element such that 
NEXT(HEAD) is undefined) 

distinguished element; referencing 
relations 

o per at i o n cc; : 

NEXT (l-1, unigu domain, unique 
range, connected, not 
symmetric, not reflex e) 

read(BEAD), 
2leiete(HE:AD, ) , 
~~f~E~(*,[<HEAD,NEXT, >] 

replication, 
no ordering 
distinquished 
referencing: 

-- ------ ----

element: nont:' 
el em en t number 
( n-cHrnensional) 

relations: none; 
operation:::; : re ad ( "') , 

~~~I<I~ ( * *) 

selection 

_§ ~~~£;[ Tr e e 
---replication 

no orderingt 
di sting ui shed el em en ts: (element s h hat 

f:\\\lSC(HOCY[') is 
undefined) 

distinguished element, 
external access; 

r e £ e r enc i nq : 

relations 

operations: 

LEFT(l-1, partial domain, partial 
range, not connected, not 
symmetric not ref ) 

RIGHT(l-1 partial domain, partial 
range, not con ected, not 
f;ymrnetr ic, not refle ive) 

ANSC(many-1, unique domain, partial 
range, connected, not symmetric, 
not reflexive), 

ANSC is inverse of LEFT un on 
inverse of RIGHT; 
re ad ( *) , 
aeTe te ( * , *) 

!~e~~~2:(* ,* ,") r 

create~an-access ( , ) , 
~er~I~r~-T~~;~. J) 
~~I~~~~ ( * , , ) ; 

Figure 4.1: Examples of Modelling Structure Definitions 
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element HEAD, and operation parameters are to that dis 

guished element. 

The modelling structures formalism outl in 

several s to 

to the of data structure ions. It could 

be implemented re ct as of 

a new or existing p l edf 

probably with fications, i 

with data de i features? or it in an 

existing program.ming language through of a set of 

procedures and res ctions on the use of st lities. 

As discussed in the earlier section on we have 

chosen to bypass for now a full-scale 

favor of focussing on development of some of the a i 

implemented only those features necessary for s 

to such algorithms. 

5. Summary of StructLu:es Forma ism 

The irnplementat structures formalism ted here is a 

notation for describ data structures t the " level 

that is, at the level of main storage as addressed machine 

language, assembly language and possi the s al 

mechanisms of the operating system. 

An implementation structure is composed of a. structure 

and an interpretation of that storage structure. s 

structures are composed of cells (hold ve values) 
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groupings of cells and storage structures. ngs be 

on the basis of contiguity (indexing and other forms of address 

arithmetic) 9 explicit linkage 

functions (associat and hashing). The 

implementation structure reflects a icular 

strategy, and is made up of corresponden~~:':~ between 

of the storage structure of the modell tructur'e ch 

it implements and of procedures for us the s structure. 

A particular s structure ( 11 s 

may have several possible interpretations. .l'.n in 

contains all of the data needed to use the s structure--

that is, all of the data needed a translator to translate 

the modelling structure the that 

it. Note that s interpretation is expressed 

of both procedural and non-procedural data. 

a mixture 

Storage structures are defined using the fol 

constructs. 

1 . Com po s i t i o n 

+ Contiguous composition. 

@ Linked composition. 

n9 

? Compo si ti on structure-defining fun tion. 

2. Repetition 

n Fixed number of repetitions ( n an integer) . 

# Indeterminate number of repetitions. 

ic 



3. Syntactic groupinq. 

() Subgroups. 

Naming. 

Alternation. 

Unspecified interconnection. 

I Distribution of operator. 

4. Unary composition (space reservation) 

@ Linkage pointer. 

? Structure-defining function input. 

5. Primitive elements 

cell. 

-~~SI (Boolean value). 
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Several instances of this notation are given in Figure 5.1, together 

with pictorial examples (for a binary tree with data values 

A,B,C,D,E) of each. The symbol 91 is used to indicate a null 

pointer. 



b:#(g) 

g:cell+@g+@g 

b:#(g)/+ 

g:cell+tag+@g 

b:#(g)/+ 
g:cell+@g 
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A 

E ¢ ¢ 

I A I 1 I Gl I ~EI it I 0 l 
(b) 

IAl~El11i 
( c) 

Figure 5.1: Example Storage Structures for a Binary Tree 
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The interpretat of a storage structure fies both the 

correspondences between components of the modell structure 

and of the storage structure and also other 

necessary for complimenting that storage structure. This 

information is organized in several an 

example of the informat inc is given bel 

L 

3. 

Relations. For each relat its modell 

structure name, procedure for accessing the 

related element(s) given an element, and several 

boolean flags eog., whether the rel 

is explicitly stated or irnpl , whether 

structure is ordered on this rel t 

Structure~def ining funct For each function, 

procedure for finding the associated storage 

structure. 

Descriptor. JA set of ls 

components of a run~time descr 

to be generated. 

is not generated, 

If the set is 

Examples of des 

are~ type ~~ generate run~t 

insert flag ~~ a boolean variable 

ing what 

if any are 

, a scr 

symbols 

r 

an element has been inser since the structure was 

last ordered (for ordering on access) 

elem no, and dist elem -- ls 

ext acer 

cat g that 

run-time information for handl these forms of 

referencing should be generated, explicit size --
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explicit count of elements structure should be 

maintained, and struct size ~~ size f 

if structure is stored sequential ) . 

4 • Order. r ordered, and if so, on order) 

or on access (sort . 

5. For each indeterminate ize ·' a 

value. 

6. Elements. Indication of actual values stored (value) 
~-~-

or pointers to values (pointer)~ for 

selection methods (i.e., for structures re 

by name selection 1 a value or ca tor 

is mainta for each element). 

7. Operations. Code generators for necessary 

both those spe fied in modell structure and other 

t act associated th 

(e.go, space allocation). 

As was noted above, much of this infonnation is stored 

(for exampleu as access procedures and code Howeveru 

it is possible to illustrate the informat so expressed 

a non-procedural manner. The corre for 

example (b) Figure 5.1 is given We have 

introduced subscripts for the composi tors so that 

they are uniquely asso ated with rel Note that the 

relation LEFT is bounded by +2 ~ and RIGHT is bounded a null 

pointer convention. 



Storage structure: 

b:#(g)/+l 

g: e+2~~~+3@ g 

Interpretation: 

the binary tree corresponds to b 

an element 

LEFT 

RIGHT 

x ANSC y 

ROOT 

corrt::sponds to e 

corresponds to +1 

corresponds to +3 @ 

+n 1 
L 

co r res-pond s to ::1 v v =1 (- { x+ •. J,. -' 1 
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Figure 5.2: Example of Correspondence Information 
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6. Information Derived from a Program 

This section describes the information from a program 

and used in the algorithms for modell structure 

and implementation thesis presented in later sect 

The focus of in gather ess is deducing 

information about modell structures" Dur the 

execution of a program many es are created" 

For example, in the program segment 

while true do 

begin 

x -<- '°create entity"; 

end 

each iteration of creates an enti The question is 

which of those entities should be tre separate imp le~ 

mentatioTI selection purposes (i.e. which ones be given 

separate entity names)? One approach i to generate a unique 

name for each entity created. This would then re simulat 

the actual program execution to gather the necessary information, 

an unacceptable alternative. Another , the one used 

here, is to assume that all entities of the same created 

at the same lexical a program are in the 

same way. Thus, the set of entities about ch information 

is gathered is the set of points in a at entities 

are created" 



Page 22 

Three kinds of information are deduced from a program: 

L execution time membership rel ons, 

execution time variable bi ns and 

3. properties of the modell structure entities 

created during execution. 

This information is collected by pseudo execution of 

Assuming each dist modelling structure used 

given a name e., for i=l 2 
l 

a program is 

time member·-

ship information is represented by a relation Elernff where e. 
---· l 

is Elem-related toe. if e. may be a member of e. (e. must be 
J J l l 

a structured entity) during execution. In a similar fashion, 

the variable binding information is represented a relation 

Var, where X (some able used in the program) is Var~related 

to e. if e. may be bound to X during Two additional 
l l 

pieces of information concerning element member and variable 

binding are needed. First, can more than one stance be created 

at a particular place in a program? This is represented by 

a predicate Mcreatep on the set of enti names de:scri.b 

for each e. whether multiple creations are pas 
l 

le. Second, 

* Sintzoff was the first to describe method of is 
[SI72]. Schwartz gives a clear descript of the process involved 
[SC75, see the paragraph beginning at bottom of page 723] ~ While 
the membership and variable binding analysis used here is not 
significantly different from the analyses that S z 1 s system 
performs, analyzing a program to deduce modelling structure pro~ 
perties for recognizing known structures is new. 
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can an entity be inserted into a structure more than once or 

can more than one creation of an entity be inserted? This is 

represented by a predicate Minsertp on the relation Elem (treated 

as a set of ordered pairs). Such can be depicted 

graphically, as shown Figure 6, L In f 

may be an element of e 1 (depicted the sol 1 

Sl and X may be bound to entities created e 2 

dashed lines), e tances 

(depicted by the aste sks before the 

and e~ are 
J 

names) 

ent 

ables 

and either 

more than one ance ere at e 2 r a spe fie instance more 

than once may be inserted into e 1 (depicted 

before the solid line between e 1 and e ). 

A,_ 

* 

/ 

Sl "'· x 

~----· El em re 1 at ion 

Var relation 

the asterisk 

' S2 

Mcrc«cit(;p <Jr Min.scrtp predicate are true 

Ele1nent Membership and Variable Bound 

Infor:nation 



Page 24 

The third kind of information gathered concerns properties 

of the modelling structures. These properties correspond to 

the ones defined in the modelling structures formalism (eogo r 

replication, ordering, referencing and operat ). For modell 

structures defined by name these s are retr 

from a catalog of definitions and are used to check consi 

of structure use (particularly with re to the 

and referencing forms . For structures not def 

the pseudo execution process collects 

static properties of the structure from 

name, 

about the 

de ion 

(i.e., replication, ordering distingui elements, and re 

s 

and dynamic properties from the other part of the program (i.e., 

referencing mechanisms and operations)® 

Two features of the pseudo execution important aspects 

of the recognition process. First, for many structures, constraints 

on arguments to the operations or limitat on which elements 

in a structure can be referenced are essen al identifying 

characteristics. A stack illustrates this point very nicely. 

Note in the stack description given in Figure 4.1 that arguments 

to each of the operations are constrained s requires that 

the information gathering process retain the actual argument 

in some cases while substituting an indicator that any argument 

is allowed (or used) in other cases. This is accomplished by 

substituting the "any argument" indicator in all cases except 

where a distinguished element or a relation name is used, 

case the identifier is substituted. For examplef if the 

operation is 'DELETE TOP FROM X, and TOP is not a stinguished 
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element, the operation delete (* f '") would be included as an 

operation performed on the entities bound to X. contrast, 

if TOP is a distinguished element for X delete (TOP, ) would 

be included. Here the definition of the modell structures 

formalism and the mechanical recogni process are close 

matched. 

A second feature of interest in the s 

concerns looping constructs and 

execution of all constructs is simulated ce, once 

for the initial pass and once for the In s way, 

variable bindings and element membership relat can be 

adjusted for both entries to the loop s is ana 

to Howden 1 s notion of the boundary and tions of 

a loop [H075]. Procedure calls are handled s a ting 

execution of the body at each call after the appropriate 

argument bindings have been made. (In a language th lexical 

scoping, such as l 60, the procedure could be executed 

once at the point of definition and the environment updated 

at the procedure call rather than s of 

the procedure at each call0) 

Examples of the information gathering process are presented in 

the next section. More details on the process are lab le 

in R076. 

7. Mechanical Recognition Algorithm 

This section describes the organization of a cata of known 

modelling structures and the algorithm for structure 
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descriptions derived from a program th in the catalog, 

Following this, two examples of mechanical recogni are 

presented. 

7. 1 Organizat n of a Catalo2 of Known JVIodelling Structures 

Three organizat of the catalog were cons an unrel 

collection of entries, a discriminat net of entries (descendant 

entries related to parent by a choice for some 

structure prope and on leaf entr s be 

lling 

ete structure 

descriptions) or an inclusion lattice descendant entries 

related to parent by a more restricted set of modelling structure 

properties and all entries being complete structure descriptions). 

The inclusion lattice organization was chosen and organized 

so that the matching algorithm will match any structure des-

cription deduced from a program. (As a result, some inclus 

relationships between individual attributes may seem arbitrary.) 

An entry in the cata is composed of a structure name a 

six-tupleg and structure~specific alternat 

knowledge. The six fields of the match name 

replication, , relations 

range scope 1 connec , reflexivi 

guished elements, referencing, and operat s. 

order are~ 

scope 

) r distin~ 

The root of the catalog has the most general match name, 

< * '~' r {'' ( * 1 * ''~ '* 1 * 1 *)} 1 { * ( *)} { *}, { *} > • 

"*" matches any property value. The con re s for 

the various properties are: 



no ordering = ordering 

no replication ~ replication 

no relations c any relations 

1-many 
r;.,.,, 

many-many 
'\t:< 

many-1 

..... ~ 

1-1 
~, 

partial domain ~ unique domain S 

total domain 

partial range€ unique range e 

total range 

not connected S connected 

not reflexive ~ reflexive 

not symmetric C... symmetric 

Pac:ie 27 

Figure 7.1 shows a small part of the catalog with match names. 

A bag (a structure similar to a set, except elements may be 

replicated [WA73], called a multiset by Knuth [KN69]) is contained 

in a sequence because a bag does not allow ordering and has a 

more restricted set of references. ("elem no(n)" means element 

number referencing with an dimensional index.) A catalog 

of modelling structures is shown in Figure 7.2. (A list of 

some of these structures along with their match names is 

given in Figure 7.4. A complete list is available in Appendix 

III of reference R076.) 

The catalog shown in Figure 7.2 is not the complete catalog 

that would be used in an implementation structure synthesis 

and selection system. The catalog would be augmented with 

representations of other modelling structures and with other 

representations of the structures shown. There could also 
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be nodes reflecting other meaningful of :modell 

structure properties even though they may not correspond to 

a meaningful structure. 

-... ,_, 
''-

OlWERED SET BAG 

T 

where: 

Sequence = 
<rep,ord,l\l"<b,{elem no(l) ,exist guant,univ guant} 
rx~~~P') ,:!:12~~£rr 9-~~~~~T*~*f~-~~eI~~~1*~*;*) }> 

0 rd er ed Set = 
<n~£~12·<:'..£9_r ~.<!;,{~!_em no(l) ,exist quan fun quant}, 
T £~aa ( 1' l , L~~~£!. ( .,, ~*f;~~~-~!~r*-;*f;£~2I~~~T*~1'~*fT> 

Bag = 
<rep,noord,¢,.,{exist quant,univ quant} 
Ti~~~T*f-; i~-8-~£~ T*;;q--~~I~I~. T*~*f-;£~fi[~s:~ ( 

Set = 

< n~£ ~2 , no ~E. ~ , ~ , 4> , { ~~i.8-! __ gl!_~~!. , 1:1._ 12_!. 1~ _S!'.::'.".:1:'2.~:) ' 
r !:~~~ ( *) , ~i:.i~r::£~ ( *) ·~~~-~~~ ( * f *) r £ r:::el~~~ ( ofo;' 

Fiqure 7.1: Part of Catalo9 

* * \ } ' I / 
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7,2 Catalog Matching Algorithm 

Given a cataloq as described above and the modelling 

structure information deduced from a program, the matching 

algorithm is simple. For each J<e,ducecJ structure, starting 

at the root of the lattice, compare the deduced description 

with the match nam0 for each descendant of the cur ent 

If a descendant matches, make it the current entry 

and repeat; otherwise, the current entry is the structure 

r ecog ni zed. Comparing deduced descriptions with match names 

uses the containment relations described above. For 

example, the deduced description 

,delete(*,*)}> 
---- ·- ~--

matches the name 

because no ordering is contained in ordering and the deduced 

description reference set and operation set are subsets of 

the respective ~:>ets in the match na:ne. 

when matching with Jec.:;condent entries, mo e than one 

descendent may matclL In that case, continue the match 

olqorithrn a1on<J ull path:c; ~:;imultu.neously~ I L l s pe r f e c tl y 

acceptable that the algorithm may match more than one 

catalog entry since this means more than one set of 

predefined alternatives (assuming the matched es have 

alternative implementations associated tb them) are 

available to implement the modelling structure, 
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Two examples of mechanical reco,Jnition arc describ.ed in this 

section. The first one is a contrived example to 

demonstrate the reco9nition of a stack while the second is 

an actual programming problem, 

7.3.l ~~£_~!:_ §_~~r~E!":, The program for the first example, in 

which the structure Xis to be recogni erl, is shown in 

Figure 7.3. The modelling structure description deduced is 

< E ~12' Q_~?._l:_Q, { s UC ( !.-::!" ~Q<:Jl~ I~~~!!:' ~?.1_1_1_1_ '~?.£~f '1_1_?.§X'.1~) } ' 

{TOP(~~~~~£ (SUC ('I'OP)))}, {~~E:;_~_~_l~~}, 

{_£~~~(TOP) ,~~!~!~(TOP,*) £~!~~~(*,[<TOP,SUC,*>] )}>. 

This description matches the root, graph, digraph, 2~way 

list, 1-way list, dequeue, and finally stack entries in the 

catalog o The n~atch names for these structures are shown in 

Thus, the structure is reco<Jnized us a stack. 

In the matching process the names for the rel and 

distinguished elements used in the catalog entries are formal 

arguments to which the actual names in the derived descriptions 

are bound during the matching process. 
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BEGIN 

UNIQUE HANGE) .. ------ ---- -- ----- - -

DIST ELEM:TOP(NOT(DEFINED(SUC(TOP )))); --------- -------

DECLARE X:S.TYPE,Y:INT,I:INT 

BEGIN 

FOR 1"1-l TO H1 DO 

HELA'l'E [SUC ('I'OP)=Y] IN X; 

DELETE TOP FROM X 

IF '110P=4 THEN 

END 

END 

Figure 7.3: First Example Program Segment 
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.Root = 
<* '* ' { * ( *, *, * '* '* '*)}, { * ( *)} ' { *}, { *} > 

Graph = 
<rep,noord, l* (* ,* ,* ,* ,i• ,sym)}, {*(*)},{dist elem ,ext ace}, 
TreaCIT*f~insert(* ,*),delete(*,*) ,replaceT*-;*--*l ~--------
createaccess(*;*) ,relate(*;[<"',"' ;r>Tf~--
unrefafe(*;T<* ,* ,*>Tf-;relatea ( * ,*l ,reaciattr ck,* ,*l, 
~!~~~-~!Ii;. ( 1', * , * l , ~~~ ~ci~T*-;*fT> ---- - -- ---

Digraph= 
<rep, no or d , { * ( * , k , * , * , * , nos ym) } , { * ( *) } , {di st e 1 em ext accr~-{read(*) ,insert(*;*) delete( ,*)_; _______ _ 
re~face(*.~~~f.createa~~ess(*,~f~i~fate(*,[<*,*, 
G~feiafe(*,[<*,*;*iff~~~r5Eed(*,*f;~~aaattr(* * 
~!~£~~-~!~_(~' ,* ,1c) ,2~~~l1~~(*~*fT> -----------

2~VJay List = 
< r e p , no o rd , { '' S (JC '' ( 1 ~ 1 , u c1 om , u r 0 n , conn , no r e f , no s ym ) , 
--- ----- "PHED"T1nvP'suc·'fTf.----- ------ --------
{ " HE Ao " ( u nu e f ( ( i n v T "s u c " ) ) ( " BE AD " ) ) ) , 
"TAIL"(undef("SUC"("TAIL")))},{dist elem,ext ace} 

) J ) r 

) 

{ r ea a ( *) -;a eT e t e ( * , * ) , r e p 1 a c e ( * , * ; *) ; ere at ea cc es s ( * , * l , 
refaf e ( *, T<*;*~* > J) , r e1afe2fC*, *) } > -- -----------
- ----- -------

1-\/Jay List = 
<rep,noord,{"SUC" (l-1,udorn,uran,conn,noref Q_<:'._§~)}, 
T":HEl\o"Tunde£ ( ( invr"stJc")l C"HEA5"f-fl -, ---
"TAIL" ( unaeI(" suc"( "TAIL")))}, {dist elem,ext ace}, 
{ r e ad ( * f -; a ere t e ( * , * ) , r e pl a c e ( * , * >~T; ere ate access ( * , * l , 
£~'.1-~~~(*, T<*~*;*>l) ,£~I~~~~T* ,*) J> --------------

Dequeue -= 
<rep, noo rd , { "S UC" ( 1-1 , ud om , ur an, conn, nor e f, no sym) } , 

f"LNDi''-Tundef("SUC'-'("ENDl")-fr-; ----- ------- ----
" END 2 " ( u n a c £( ( i n v ( " s u c " ) ) ( II END 2 " ) ) ) } I { d i st el em } ' 
{read ( "E11i51") 'read ( "END2 ") ,delete (II ENDl;,-~1,-r;----

d efef e ( "END2" , *T ~-relate ( * ' [ <"£f~5I" ' .. sue" v * >] ) ' 
I~I~~~ ( *, l <*,"sue or~0 ENi52 "> J ) } > 

Stack == 
< r e p , no o rd , { " S O C " ( l ~ 1 f u d om , u r an , conn , no r e f , no s ym ) } 
T"fiEAB"Tundef ( "suc"("HEAD")-fff, rarst--eiein} ~---­
{read ("HEAD") ,delete ("HEAD"',*) , -----------
~~I~!~ ( *, [<"HEAD-rr~irsuc" ,*>]) }> 

Figure 7.4 Catalog Entries Matched 
in the First Example 
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7.3.2 Second Example. The second example is a program that 

accepts a sequence of related objects this case strings) and 

lists them in topological order. The program is shown Figure 

7.5. The derived description for the only modelling structure 

(A) is 

< _1:1~!:_~!2, ~~~~~, { S UC ( f!!~~¥:1~~r-~y, l?_~~r~, 2~~~, ~~':::<::'.~£1, ~~!.~~, ~~ §Y~) } 

4, {_::?_(__~~! __ g~~~~~!:}, { ~~~':'.:~~ ( "', [ <* 1suc, ">]) , £~!~!:~~ (*,sue,*) , 

0 ~ l_ ~ !:~ ( * 'k ) > 0 

This description matches the catalog "structures with 

relations" shown Figure 7.2, but does not match the graph 

entry because of the existential quantification referencing. 

Figure 6.1 shows the element membership and variable bound 

information deduced from the program, 



Page 35 

'l'Ul 1UL(JCICAL ~JUH'l' ALC(Jl/JTl!M '.t, 

'-6 DEFIL'JE tvlCJDELLING STRUC't'UEt:;s /\NO VARIABLES 't 

DECLARE A: (ELEMENTS:STRING,NOREPLICATION, 
------- ~~~~~~Q~~:SUC(~~~~~~~~~~~~~TI~~-DOMAIN, 

PARTIAL R~~GE,NOT CONNECTED 
t\1c)·i1 -REt;;I,Ex1vT:, ·~(;!'£=SYMMETRIC)) 

VARIABLE X:STRING,Sl:STRI~~~§2:STRI~G; 

% MAIN ROUT It~ C % 

BEGIN % TOPOLOGICAL SORT % 

% READ RELAT8D ~AIRS AND CREATE STRUCTURE 
1<.ELA'I1IJ.0(; 'THEI'!l % 

WHILE NOT(EOF()) DO 
-------

8 EGIN 
--~EKD(Sl S2); % Sl IS R~LATED TO S2 ~ 

IF SlfS 2 TBEJ·J 
--RELATE r~0E(Sl)=S2] IN A 

--·----
~.~Q; 

% REMOVE MINIMAL ELEMENTS FROM A UNTIL A IS 
EMPTY OR A CYCLE EXISTS % 

WHILE SIZE(A)/0 DO 
--BEGIN 

EXISTS X IN A SUCHTHAT SIZE(RELATED(X,SUC))=U~ IF-DEFHJED(.X) ------------ -·---- ---

E t~D 

THEN BEGIN % POUND MINIMAL, PROC~SS IT REMOVE IT, 
AN11 LOOP % 

r rwc ES s ( x) 1 

IH:LETE X FROM A 

ELSE BEGIN ·;s CYCLE EXIST~.; rn Dl\'U\ '(, 
--.PrHHT ( "LllJEAEIZATION DUES NOT EXIST BECAUSE 

CYCLL: EXISTS IN DAT!\,"); 
STOP 

ENL 

END % TOPOLOGICAL SORT % 

FigurE 7o5: Second Exa•11ple frogram 



Page 36 

7.4 Experience with Mechanical Recognition 

Given the goal of mechanically recognizing known structures, we 

identify four necessary characteristics of a data definition 

facility~ 

1. collections of elements treated as structures 

should be described explicitly 

2. references to elements in a given structure and 

constrained references (e.g~, of a stack or 

root of a tree) should be recognizable 

3. changes to a structure or its elements must be 

restricted (i.e., implicit changes must be controlled), 

and 

4. relations between elements in a structure and properties 

of these relations should be described explictly. 

These requirements clearly influence several aspects of the 

modelling structures formalism. While we have attempted to 

retain the ability to describe a wide range of structures, the 

need to define a formalism within which known structures can be 

recognized forces some representational bias" One type of 

representational bias introduced by the specification technique 

used here, is that some relations among operations defined for 

a modelling structure are encoded in the "structure" as opposed 

to being explicitly stated as in an algebraic relation 

specification. For exampleg the fact that the last element 

inserted is the one retrieved in accessing a stack is represented 
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partially by an explicitly defined relation between the elements 

as opposed to being a property of the operations. Consequently, 

using our formalism, the relation is represented explicitly in 

any implementation for a stack. An lementation for a stack 

described by algebraic relations need not represent the relation 

explicitly (although in many cases it 11). This loss of 

generality must be balanced with the s derived from 

automating the implementation selection ss. 

A serious deficiency of this recognit process is its in-

ability to recognize recursively defined structures. Recognizing 

such structures is extremely difficult because in a recursive 

formulation salient characteristics of the structures are 

typically represented procedurally rather than in declared 

static properties. Considerably more sophisitication than that 

embodied in the process used here would be needed to recognize 

these representations. 

The program analysis methods used here can accommodate strong or 

weak variable typing, lexical or dynamic ng of variablesr 

and unconstrained forms of branching. 

8. Generation of Alternative Implementation Structures 

Using the information deduced from a program by the techniques 

discussed in section 7 (modelling structure descriptionsu matching 

catalog entries, and execution time membership and variable 

binding relations), the algorithms presented in this section 

generate alternative implementations for each modelling structure. 
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The generation process produces a set of alternative 

implementations for each separable modelling structure; Ji, separable 

modelling structure is an equivalence class of the rela on created 

by extending the membership relation to an equivalence rel 

An example will make this clear. F 8.1 shows 8 distinct 

modelling structures and a membership relation. There are 3 

separable structures in this example (denoted 

r 
I 

I 

the boxes). 

I 

I 
-- l 

Figure 8.1: An Example of Separable Modelling Structures 

There are three phases to the generation process. In the first 

phase alternative implementations are generated for each distinct 

modelling structure. For those structures which match a known 

modelling structure, alternative implementations are retrieved 

from the catalog (Le., expert knowledqe about alternative 

implementations). For those structures which do not match a 

known modelling structure, alternative implementations that can 

represent the required abstract behaviors are synthesized. The 

second phase of the process produces alternative implementations 

for each separable modelling structure by combining together 
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implementations for structures in a class according to the member-

ship and variable binding information. The third phase adds 

coalescings of modelling structures to the set of alternatives. 

The remainder of this section describes the synthesis and the 

combine algorithms, presents an example, and discusses our 

experiences with the algorithms. We have not worked directly 

on the phase which adds coalescings. Nevertheless, coalescings 

would likely be represented by procedural experts which recognize 

whether a particular coalescing applies, and, if applicable, 

synthesizes implementations incorporating the coalescing. 

8.1 Synthesis Algorithm 

Implementations are synthesized by focusing on the relations 

defined for a modelling structure (for a structure without 

relations, one is added). For each relation a set of alternative 

implementations for a structure with just that relation is 

retrieved from the implementation library. The implementation 

library is a database including for each realizable relation 

alternative implementations for a modelling structure with just 

that relation. An implementation is synthesized by joining 

* together implementations for each relation. It may not be 

* All implementation descriptions, whether in the modelling 
structures catalog, the implementation library, or synthesized 
by the generation process, are represented using the formalism 
described in Section 6 above. 
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'~ * 
possible to join together any arbitrary pair of implementations. 

For exampleF an implementation for a structure with two relations 

cannot use cell contiguity to represent both relations simulta-

neously. After a set of implementat are synthesizedF other 

modelling structure properties (e.g. , repl , and 

referencing) are used to change, add and remove poss 

implementations. 

Before presenting the algorithmr the of enumeration must 

be defined. An enumeration relation is one ch traverses, 

or enumerates all elements in a structure. Many implementations 

for modelling structures require that there be an enumeration 

relation, For example, enumeration is often required in 

implementations for modelling structures th universal quantifi~ 

cation referencing (to generate all elements) or when an ordering 

predicate is specified (to represent the ordering between elements). 

Some implementations do not require an enumeration relation. The 

synthesis algorithm decides whether an enumeration relation is 

necessary based on the modelling structure properties. This is 

** Unless one relation is derivable from another. This 
transformation is not attempted because we believe this to be a 
change in :modelling structure as opposed to implementation 
structure. The philosophy follwed here is th2t if the prograrr~er 
explicitly represents the relation then it will be represented 
in the implementation. This is an example of how representational 
bias is included and acted upon in this approach. 
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one reason why the general process cannot always generate the 

most efficient implementation. 

For those structures requiring enumerat there may be an 

explicitly defined relation that can be used as the enurne 

relation. In other cases an additional relation (1-lf unique 

domain and range connectedr not reflexive, and not symmetr ), 

called an assumed relation, is added to the modelling structure 

(e.g., when no relations are defined or structure is ordered} o 

Alternative implementations are synthesized for each structure 

by invoking the algorithm shown in Figure 8.2. The essential 

step in the algorithm is the call on the SYNTHESIS procedure 

which retrieves single relation implementations from the 

implementation library and joins them together. The retrieval 

operation is straightforward. For each relation in the structure 

a set of alternative implementations is retrieved based on the 

relation properties (i,e., mapping degree domain and range 

scope, connectivity, reflexivity, and symrnetry. Each alternative 

is also checked for consistency with other requirements of the 

modelling structure (e.g.f operations performed on the modelling 

structure must be defined for the implementation). These single 

relation implementations are then joined together by repeated 

application of the operator JOIN(X~Y) where X and Y are 

implementationsc to produce an implementation for the desired 

modelling structure. The remainder of this subsect describes 

how JOIN combines two implementation structure descriptions. 
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.:-lynthesize i\lterncitives '\l·.:iorith1n. This. algorith'n 
s y rl f i) (~ s [ i e s i m p 1 e In e n t a t f 0 n s - f c) i -a '.1\ 0 d e 1 1 i n j s tr u c t u r e ( Ms ) • 
l<elations(MS), references(ilS), :rnc1 operations(hS) are the 
sets of relations, references, and operations, respectively, 
defined for or ;:ierfonnt'.x3 on the: modellinq structure. For an 
i:11pleillento.tion x, order(x) and descriptor(x) are the order 
field and descriptor set of tho i~ple~entation description. 
!\Ui' Hl.i:' S'l'EUX is the s 12t oi alternaive irnplernentations 
syn thcsfzed. 

l.0 [lnilializc::.] Let /'.1.I/l' Tl·I ~)'f!<U ~4, and 
f\ SS U I 1 L [: EL L z!-· < '· " , l ~ 1 , u' J o, n , u r a n • c o n n , n 6 r e t , no s > • 

2.r:J [fvJd assu.,;c-J relatiorio] lf an oncni:crzttion 
r e c1 u i r c d a n d e i L h e r : : ::; i s o d e r e J o r ,J 

relation cic)(:::s not exist, in~;ert SU 
r el at ions ( ;•JS ) . 

3.u [Look up ,Jnd =ic111 a1terndtivc·s iro11 the' 
1 ibrary.) /\L'I_' I p ~)'I'JilJ): :1ll·J'J'l1L1::;1:) ( S) 

elation is 
e ;1 u:-n e r a t i ') n 

D FEL in t::i 

[Add ordered irn c,,1ent2dons 
c ;, i s t c n t i a l nc f e r c n c i n 'J . J T r 
no reolication or cxist0ntial 
x E: AL'i 1111:' .::)TFUX do 

.i [ no r1=p1icc:tion or 
not orderE·J ~md ei. thcr 
cf 2 r n c i n•J , for eac n 

4.1 Lcf y Ge a copy of x. 
4.2 Let ordcr(y)<.~-order and OLDL£~ PLl\l_o for 

relation rn '1' !)e--Eiuec 
4.3 Insert y into ALT-i~0 SI~LJX. 

[If the, structure is ordc,rcd, a:Jd 
i11 pl em e n ta t i o n so r t e j and i ~' 
for each xE ALT IMP STRUX do 

tv10 case.·::; 

i c i t . I I i l·I "' 

5.1 Let order(x) ~ sort and ORDER FLAG 
assumed relation-rn:-x be true. 

5.2 Let y be a copy of x. 
5. 3 Let order (y)<£:- sort and Oi<DLH 1:·L/\G for 

relation in y t5e-Erue, ·· 
5.4 Insert insert fla,1-Into descriptor(y) 
s.s 1ns2rt y·rnt:0·.r~1~'1'·g·1p S'l'ldJX. 

for 

the 

for each 
ordered r 

the 

assumeJ 

'·'·) [tlark descriptor for rJjr;t:inJui:;hed nlcnont, egternal 
r:cccss, or clc·:r:ent nu;11i)er reictc'ncirv;.J If dist ele::-1, 
ext ace, 0r clc1n no E re!1~r(:nce (1·i:i) in;:;crt···rt- Into 
cJ C''.~:c r i r'ito r ( x) .. (,:) r ·,.~ciC h '{ ( 1\L'i' lt"ii, ;~;'/l)Ur: .. 

).kl (/.,:ld cxr:-.licit :~iz1e:..] lt ~;izefoncl'al:.io :,~( .. '3) 
each :< f. 1\LT lr ~ 1) ·~T UX cio 
7.1 Let y ~ea copy of x. 
7.2 Insert explicit size into descri~tor(y). 
-i • 3 l n s e r t y -i n t>; -/;Cr . f I Jt' s T J:W ;{ ' 

. -

iL iJ [uone. J ldgor i th:u terrnina tes. 

then for 

Fi]ure 8.2: ~;ynthe::>ize Alternative 1'rip1ernentations !J,lgorith,n 
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Firstf JOIN combines the storage structures for the 

implementations. All storage structure decriptions for im~ 

plementations in the library must be of the form "s:#JZ)(x)/op," 

where "#fll" is the number of elements the structure, x may be 

"e" (symbolizing the element) or the name of another construct 

( e o g. , "f, " where "f: • o" also appears) and "op" is from 

the set {+; ?, @, ~}. Thusf the top level of the two storage 

structures to be joined are "s:#/J(x) and "s 

The arguments to JOIN are switchedv if necessary so that op1 

precedes op 2 according to the ordering[+, ?, @, ~]. There are 

only 7 cases of op1 and op2 that can be combined: +@, , ?@, 

?~, @@, @~, and ~~. In all other cases the two implementations 

cannot be joined. The rule for combining the two descriptions 

is~ 

Let s:#~(z)/op 1 and z:x+y+op 2z (do not add 2 z if 

op2=~) . Substitute the strings for x and y removing 

duplicate occurrences of e and replacing any occurrence 

of x or y with z. Copy all other constructs from the 

two storage structures replacing occurrences of x or y 

with z. 

An example will make this clearer. Figure 8.3 shows the joining 

of two storage structures. Notice the removal of duplicate eis 

and the replacement of f by @2 z in f. The same symbol, either 

identifier or subscripted operatorf may occur in both storage 

structureso To resolve the naming conflict, unique identifiers 
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and subscripts are substituted throughout the implementation 

structure descriptions before joining. 

l 

f:e+(].,f 
<(., 

z : e+ f+ (<l 1 z = e-1 'J ~ , '" - - •'. 2 ,'. :-i:: l z 

Figure 8.3: Example of Joining Storage Structures 

After combining storage structure descriptions, other parts of 

the implementation descriptions are joined by taking the union 

of the relations, structure-defining functions, descriptor, and 

size sets. The order field of the two implementations must be 

no. The elements field is set to value or the name selection 

sequence is constructed with each name icator set to value. 

Thus far, the join operator is characterized by: 

1. Storage Structure: apply combine rule 

2. Relations: union 

3. Structure-defining Functions: union 

4. Descriptor: union 

5. Order: no 

6. Sizes: union 

7. Elements: value or [<name 1 ,~lue > ••• ] 
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The operations set presents a problem. For some operations, such 

as related, read, and read-attribute, a general code generation 

procedure can be defined which produces the correct operation 

based on other parts of the implementation description (par­

ticularly the storage structure and relation set). For other 

operations, such as insert and delete, a general procedure can­

not be defined because implementation specific knowledge must be 

encoded. The problem is that knowledge represented procedurally 

is difficult to combine (except, for example, if the two sets 

can be combined one before the other, which is not true in 

this case). If, on the other hand, this knowledge could be 

represented as data, the possibilities for defining a suitable 

joining rule are improved. Our work with examples to date 

suggests that an acceptable joining rule can be devised. However, 

until more examples, particularly in the context of an operational 

system, have been studied it would be premature to state that the 

problem can be solved. 

8.2 Hierarchically Combine Algorithm 

There are three situations to be considered when hierarchically 

combining implementations: 

1. does a structure contain more than one type of element, 

2. does an entity appear in more than one structure 

simultaneously, more than once in the same structure, 

or require an existence outside a structure (called 

separate existence), and 
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3. are the elements of a sequentially implemented structure 

of fixed size. 

The first situation requires that the elements of a structure 

have a run-time descriptor with a type field. The second 

situation is handled by using an indirect reference (a pointer) 

to the elements of a structure. In the third situation, for those 

alternatives with sequential implementations, the size of 

element implementations is examined and, if not all the same, the 

elements are changed to pointers. The algorithm shown in Figure 

8.4 hierarchically combines implementations for the entities 

in a separable modelling structure class. Steps 1, 2, and 3 in 

the algorithm correspond to the three situations just discussed. 
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r1ierarchico.lly Co,nbine ,\lqorith.n. This cilcJcrith:n combines 
tr!e--ei1tifie~:- fn --a--:;cocit:cliiie- moJelliw; structure class 
accordin<J to the variable bindinq an] c:le11cnt relation.s 
cL?'-'iuced fro'Ti tt1e r;t:O<Jri'l:T'. Si'l is tlle sc'c ,>f' entities in the 
class to be combineJ. For c:ach x c-).:, l(x)={alternative 
L11;::.olcmentations for x}, :ne:r1lJcr(x)={yl<x,y>EElern, i.e., 
en ti ties which Tray be el em en ts of x} , 
parent(x)={yi<y 1 :,;>f. Ele.11, Le., ~;tructured entities of which 
x 1aay be an elernerit), and variable(x)=fyl<y,K>t:Var, L.e., 
variables which :n21y be 1Jound to x) For ar1 implementation 
z, descriptor(z) 2nd e1ement(z) iHe the '.-Jescriptor set and 
element field, re~pectively. 

l . l) [ i1 o d i f y i m p 1 em e t a t i o n s f o r tho s C' t:.• n t l t i e s \,1 h i c h r e q u i r e 
type infor,nation.] For each :{ ~ ~-;1; it: there is :nore than 
one entity in ,nember(x)' rJo 
1.1 for each yr:!. 1nember (}:) in~;ert t into <lescriptor( z) 

f ;1 r al 1 z ( I ( 

2 . U [Mo cl i f y i T1 r:: l e: n en ta t i o :1 s f o r tho s .:-: c n t i t i e s w h i c h r e Cl u i rr: 
pointers to cle11ents.] c';Jr each ;{ ( :-;:•1 d'.:.l 

2.1 If par0nt(xl has more than one element or 
vari<.J'::ilc(x):j¢ (i.e.,. ;'. ncre>]?. o. separate 
existence), for E:aci1 yE:~\ar·ent(x), let 
c: 1 e. n en t ?: ( z) <L:;_· nc~ ~ 1~ ~ \~ r_ fo r a 11 z (:: I ( y) • 

2. 2 For each y i~ ·nemL>cr (~{) 2LF::h that Ilcreatep(y) =~rl]e_, 
let elenents(z)<-= pointer for all z I(x). 

2.3 If Hcrc:atep(x)=true~--U:t elemenU;(z)"'~' pointer for 
all zf i(x) CJnd--for all z t:: I(yl v>'here yE-parer1t(x) o 

3.0 tCneck co,~1bin.:itions for variable sized elenents >.:)[ 

sequential in1plernentations.] For ez.1ch z in an 
i:nple:nentation set for thi::> entities in Si'1 for which the 
top level operator in the storage structure is + do 
3.1 If the ~-oizes of the irnple:nentations foe the entities 

i n me m be r ( z ) ( the r e rn a y he no r e th a n one e J e ,n en t 
entity) are not the same, let elenents(z)~ r;ointec 
Otherwise, if the sizes are not the ::::ame, -bl.1f-are 
fixed, insert struct size into the descriotor of the 
i m r; l c " e n t a t i o ;1 s -f c) i -t r16 ··· '~~ n l i t i c s i n •r1 e :n b e r ( z ) , 

4.~} [lJOfl('.] !\lqurithn terminates. 

Fi o Li r c 8. 4 : iJ i 1:> r or c t1ica11 y Co :rib in(:: 1\ 1 q or i t h:11 
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8.3 Example of Implementation Structure Synthesis 

The example presented below was processed by the synthesis 

algorithm implemented in UCI Lisp [B073]. The example uses the 

modelling structure derived from the topological sort program in 

figure 7. 5. The structure description input to the program was 

( ~ () ~~ ~ e , ~ <?_ ~ !_ c! , { S lJ C ( IT~ i:J_ fl ~z.:'. ~ ~ ~ f'~ 't , 1?_ C~ ~ 11_1 1 2 (_ ~ r~ , C_ (_) r!_ ~ , I~(_) £ i:: ~ , n_ ~ § ~~) } , 

4> ' { '.: :~ ~ ~ t: -C]l}_ 0. f! ~} f { ~fl ~ '=- ': ~ ( * f * ) ''! t: ~ ~ j~ (~ ( * ' * ) l 

£ ~1-~t:~ ( *, [<*,sue,*> J) , i:_e~ ~~~cl (*,sue,*) } >, 

Because of the existential quantification referencing, an 

enumeration relation was added to the structure. Thus, the 

structure had two relations when the SYNTHESIS procedure was 

called. 

The implementation library included two representations for a 1-1 

relation (sequential or linked implementation) and five repre­

sentations for a many-many relation (three are shown in Figures 

8.5-8.7; the other two are like those shown in Figures 8.5~8.6 

except that the f 1 s are stored sequentially). 



Lr."°·+ ,, 
0 ~ l '-' 

~ r;·)lnter fir:·lds 
.J 

f 

i·'i]urc 8.'): Fo1r1tcr=: tc LC':latic''i Llc'.Ttcntc~ .'~t11re:'l 
~,;ccu-::nt:10l ly \,i th Lach Llcncnt 
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SYNTHESIS returned 7 implementations for the modelling structure 

(the other 3 could not be joined). Figure 8.8 shows one of 

the implementations returned. This implementation represents 

the enumeration relation by sequentially storing the z's. 

Associated with each z is a pointer to a linked list of 

pointers to elements related to this one by the relation 

sue. Storage structures for the other implementations returned 

by SYNTHESIS are shown in Figure 8.9. The implementation 

depicted at the top of the figure also represents the 

enumeration relation in sequential storagec The sue relation 

is represented by #0 pointer fields stored with each element. 

The other implementations are variations of these based on 

whether the elements are stored contiguously or linked and 

how the connection relation sue is stored. The last 

implementation shown uses an adjacency (or connection) matrix 

to represent sue with structure~defining functions to get from 

the set of elements to the matrix and back. 

z z z 

/ 

J ·J 

·1 ·~·L> 
~--! ' 

(case 1) 

g:#(@z)/@ 

Figure 8.8: Example Implementation Returned by SYNTHESIS 
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(Case 1) s:#_g(z)/+1 

z:e+ 2 @g 

g:#(@z)/@ 

(Case 2) s:#,0(z)/+1 

z:e+ 2g 

g:#51(@z)/+3 

(Case 3) s:#fJ(z)/@ 

z:e+1g 

g:#fJ(@z)/+':2 

(Case 4) s:#.0(z)/+1 

z:e+ 2g+ 3 @z 

g:#,0(@z)/+4 

(Case 5) s:#~(z)/@ 

z:e+1 @g 

g:#(@z)/@ 

(Case 6) s:#.0(z)/+1 

z:e+ 2 @g+ 3 @z 

g:#(@z)/@ 

(Case 7) s:#,0(z)/+1 

z:e+2?3g+4@z 

g~#,0(tag+5?6z)/+7 

Figure 8.9: Storage Structures for Implementations 

Returned by SYNTHESIS 
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Step 4.0 of the algorithm adds 7 ordered implementations to 

improve existential referencing (this assumes there exists 

an ordering predicate for the elements of the structurep 

otherwise the ordered implementations are not added) . In 

this example the ordered implementations will not necessarily 

be more efficient because the searching involved in the 

existential referencing is not related to an ordering among 

the elements in the structure (i.e.p the strings). The 

algorithm terminates returning 14 possible implementations. 

Figure 6.1 denotes the membership and variable binding 

information deduced from the program. Suppose that 

implementations for e 2 and e 3 were retrieved from the catalog. 

The hierarchically combine algorithm is invoked to combine 

implementations for the strings and e 1 . Step 2.1 sets the 

elements field of each implementation for e 1 to pointer 

because e 2 and e 3 have separate existences (variables bound) 

and e 1 is a parent of e 2 and e 3 . Pointers are used so that if 

e 2 or e 3 is bound to a variable (say X) and deleted; the 

entity can continue to exist in its present location 

without being copied. (This preference for non-copying is a 

heuristic which should be studied in more depth.) Finally! 

there are no problems combining the various implementations 

with top level sequential operators because the elements of 

e 1 are pointers which are presumed to be fixed size (this 

would not be true if there were different sized pointer 

representations, e.g.v relative and absolute pointers). 



Thus, 14 implementations would be generated for this 

modelling structure class. 

8.4 Remarks on the Generation Process 
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The generation process described in this section imposes the 

following constraints on resulting implementations: 

1. there must be one, and only one, entity for each 

symbol specified in the top level of the storage 

structure as occurring #~ times, and 

2. all elements of a structure (except those with name 

selection referencing) must use one of the forms: 

values of the same type, values with descriptors 

giving type information, pointers to values of the 

same type, or pointers to descriptors. 

Some such constraints are to be expected when one is 

developing a general procedure to replace hand-coded 

implementations. The question is how well does the general 

procedure perform? Our limited experience to date suggests 

that it does reasonably well in generating a set of 

alternatives with a wide range of space-time tradeoffs, but 

a more systematic evaluation should be undertaken~ 

There are several questions concerning the handling of the 

enumeration relation. First, in what cases do modelling 

structures not require an enumeration relation either because 

an alternative traversal scheme is available (perhaps as 
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specific implementation knowledge, e.ge, binary tree 

traversals) or because the elements of the structures do not 

have to be enumerated? Which relation should be designated 

the enumeration relation if several candidates are available? 

Finally, the synthesis algorithm can be improved by 

recognizing those cases in which an implementation for a 

relation expicitly defined in the modelling structure contains 

a sequential or linked representation of elements which could 

be used to implement the enumeration relation, The current 

algorithm does not discover this, resulting in the synthesis 

of less space-efficient implementations. 

A final remark concerns additional information that would 

improve the generation process described here. There are 

three specific kinds of information. First, does an entity 

have an existence outside of a structure? For example, 

suppose x is an element of S, and the variable binding 

relation indicates that some variable is bound to x. The 

methods used here cannot determine if this is binding only 

while x is a member of S (in which case the existence of 

x outside S need not be provided for) . The second kind of 

information relates to elements occurring simultaneously 

in several structures, Consider the case where an entity 

x is a member of S and S 1 during execution. Now, if Ts is 

the set of time epoches during which x is a member of S, which 

of the following cases hold? 
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l . ·r n 'l' C.' ,= ¢ s ' ,, 

L . It(' c rj1 r' , () t• 1' c •II n r l , 
I 

'I 0 ,.) 

) 

Tc n 'll>3 ··I q; .) . 
y.,,) ' 

Cases 1 and 3 require x to have a separate existence {i.e., 

an existence outside of the structure). Case 2,on the other hand, 

does not require that x have a separate stence. '.;.'he L:ist kind 

of information concerns the membership relation" Consider the 

example in Figure 6ol. Do the multiple creations of e 2 and 

multiple insertions of e 2 into e 1 mean that multiple occurrences 

of a single e 2 are inserted into e 1 , or that several creations 

of e 2 are inserted? Because of the possibility of the former, 

an inefficient implementation for the latter (which is the more 

likely situation) must be used. It is not possible to deduce 

these three kinds of information using the methods described 

here. We feel that such information is used by programmers in 

selecting good implementations. Thusff in the context of the 

system being investigated, either meaningful interaction with 

the user or monitoring program execution is required if the most 

efficient implementations are to be generated. 

9. Relationship to Other Research 

In this section we relate the work reported here to other research 

in the specification of data abstractions and in implementation 

selection. 



Page 58 

9.1 Specification 

Liskov and Zilles [LI75] survey five classes of specification 

techniques using: 

1. a fixed domain of formal objects. 

2. an appropriate, but otherwise arbitrary formal 

domain, 

3. a state machine model, 

4. an implicit definition in terms of axioms, or 

5. an implicit definition in terms of algebraic relations. 

These classes are listed in order of increasing abstractness, 

e.g., a specification based on a fixed domain of formal objects 

generally includes more representational detail (information and 

constraints) than one based on algebraic relations. More detail 

may imply limitations on the range of possible implementations 

that can be generated. As a result of this observation and 

considerations of whether relationships between operations on 

a data type appear explicitly or implicitly in the specification 

[GU76], some researchers argue that data specifications should 

be represented using the more abstract techniques. 

However, we chose to use a specification technique based on a 

fixed domain of formal objects because of the amount and kind 

of detailed information needed to make intelligent choices 
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among alternative implementation structures. Some examples of 

this kind of information are: 

l . whether an operator modifies one of its arguments or 

makes a copy of the argument and rnodif ies ' ,_ 
J_ L. f 

2. whether an operator modifies the membership relation 

between its arguments (Le. f does an operator insert 

or delete an entity from a structure), 

3. whether an access to a structure is restricted (e.g., 

root of a tree or top of a stack), and 

4. whether an entity can be a member of more than one 

structure at a time. 

This kind of information is difficult to infer mechanically from 

a program level description using either a more abstract 

specification technique (unless additional conventions on the 

interpretation of the specifications are made or supplimentary 

* information is included with the specification) or a less 

abstract specification technique (e.g., a PL/l; ECLr or PPL 

program level description). 

* This relates to the more general que of whether a form 
specification technique is used for the entire program development 
cycle in which later stages merely add more detail or whether 
different specification techniques are used in the different 
stages. 
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9.2 Selection 

Early research on implementation structure selection systems 

proposed programming languages and translation environments 

in which implementation is decoupled from data specification 

and a user can separately specify or select an implementation 

[BA67, NA74]. Recently, work has concentrated on how data 

specification techniques are embedded in programming languages 

to enhance reliability [LI74, WU74], how to verify concrete 

realizations for abstract representations [H072, SP75]f and 

how to automate the selection of efficient implementations 

[G074, L076f SC75]. Because we have been concerned with the 

latter area, this section surveys only work on automatic 

implementation selectiono 

Low has developed most parts of a system which accepts programs 

written in SAIL, an Algol-based associative language [FE69], 

and produces executable code for a particular machine, In his 

system a fixed set of modelling structures and associated 

operators are provided (sets, listsp and a single ternary 

relation), Tompa: on the other handf is not constrained to a 

fixed set of modelling structures, using instead a "substructure 

model" which is roughly equivalent to Coddvs relational data­

base model [C070]" However, this system is intended as a design 

aid and thus does not accept complete program specifications nor 

does it produce executable program representations. The goal 

of our work is a systemu not restricted to a fixed number of 

modelling structuresv which accepts programs and produces 

executable code. 
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The information which Law's system uses to evaluate alternative 

implementations includes the relative frequency the primitive 

operators are performed and the expected number of elements in 

each structure derived either by interrogating the user or by 

monitoring sample executions. Tornpa depends solely on user 

supplied data but the information used is very different (eGg., 

expected relative position of the element being accessed with 

respect to the average and maximum number of elements, expected 

number of times the element being searched for is the next one 

or is not a member of a structuref and expected number of 

comparisons during a binary search). Performance prediction 

is a serious limitation of these systems and our proposed 

system has the same difficultieso This problem is discussed 

further in the concluding section. 

Another aspect of the implementation selection problem, not 

explicitly addressed by the others, is storage management. 

Often when two implementations for distinct modelling structures 

are chosen simultaneously by the selection algorithm, their 

execution costs may be less than the sum of their separate 

costs (e.g., in certain circumstances two stacks implemented 

sequentially can be organized in a region of memory to share 

available free space by placing them at opposite ends of the 

region and having them expand towards each other). We call this 

a coalescing. Reformulating the selection problem allows a 

branch and bound search algorithm to be used. This problem and 

solution are discussed in more detail in another paper [T076]. 
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Low used a hill~climb, or incremental searchv selection algorithm 

whichv depending on the particular problem, may not find the 

optimal solution. Tampa proposed a branch and bound algorithm 

similar to that used here but without coalescing [T075]. 

Schwartz discusses the analysis and optimization of SETL programs 

with emphasis on the information needed for automatic selection 

of data structures [SC75]. The techniques discussed included 

most traditional optimization techniques (e.g., redundant 

expression detection, constant propagationr and peephole 

optimization) and some newer techniques (e.g.f interoccurrence 

linking, value flow tracing, and determining inclusion and 

membership relationships). Mechanical recognition of known 

modelling structures; discussed in Section 7, uses a form of 

value flow tracing to deduce what operations are performed on 

the entities of a program. Also, a method for deducing 

membership relationships similar to that discussed by Schwartz 

is used here. The work reported here does not directly address 

the other analysis and optimization techniques. Nevertheless, 

a translator designed to produce efficiently executable 

implementations might include some or all of these techniques. 

l~. Surrunary and Conclusions 

In this paper we have presented an approach to improving the 

process of selecting efficient implementation structures. In 

particular, we described formalisms for modelling and implementa~ 

tion structures and three algorithms concerned with the generation 

of alternative implementationso The contributions of 
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this work were the demonstration of the possibility of mechanical 

recognition of known modelling structures and the development 

of a general algorithm for synthesizing implementations for 

those structures not recognized. 

Two key features of the modelling formalism that make mechanical 

recognition possible are: (1) distinguishing between references 

to elements in a structure based on structural relationships 

and references directed at a specific element, and (2) using 

binary relations to model "structure." Making explicit the 

distinction between these types of references has not been done 

in other models of data structures. The full formalism, as 

defined here, may be too complicated to use in a real-world 

programming environment. Nevertheless, we believe that a formalism 

like the one developed will be necessary if mechanical recognition 

is desired. 

The implementation structure formalism may be useful in other 

applications. It has proven to be a convenient, concise, and 

(within its limits) complete formalism for expressing and 

manipulating implementation structures. 

Although a complete system based on the approach presented has 

not been developed, certain conclusions about the formalisms 

and algorithms can be drawn. 

The performance of the mechanical recognition algorithm cannot 

be accurately assessed because it depends on examining its 
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application to a large number of example programs generated by 

different programmers. This is one direction for future research" 

The synthesis algorithm has proven quite successful at generating 

reasonable alternativesr assuming a carefully defined library 

of single relation implementations and provided that the problem 

of joining operation code generators can be satisfactorily resolved, 

Unlike the other two algorithmsf the hierarchically combine 

algorithm was not particularly successful in that it tends to 

produce inefficient implementationso This poor performance is 

because the detailed input required to produce efficient 

implementations is not easily collected; and so the existing 

algorithm is overly simplified. The types of information 

required concern the necessity of separate existences for entities, 

the relationship between the times during which an entity is an 

element of various structures, and the existence of multiple 

occurrences of an entity in a single structure~ Assmning that 

one is not willing to constrain the language for describing 

programs, there are three possible solutions: 

1. a more complicated program understanding system could 

be constructed to deduce the information, 

2. the user could be asked for the informationc or 

3. the actual running of the program could be monitored 

to gather the information. 
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Each of these alternatives has some disadvantages. The first 

solution, given current performance of knowledge based systems, 

may not yield sufficient information to justify the additional 

processing. While the second solution is certainly possible, 

the volume and detail of information that is required would be 

both time consuming to gather and tedious to provide. And 

lastly, the third solution, while again certainly possible, 

would not be acceptable if the program for which implementations 

are being generated were to be executed only a few times and/or 

it was exceptionally costly to execute. 

As a result of these observations the need for specific types 

of user interaction becomes more apparent. We see two distinct 

classes of users who would use such a system in different ways. 

Those users with programs which are prohibitively expensive 

to execute will likely want to interact with the system to 

provide the information needed to generate efficient implementations. 

On the other hand, those users with programs which are not 

prohibitively expensive to execute with inefficient implementations, 

but which will be run many times will likely want to monitor 

actual executions to gather the necessary information. Notice 

that whichever approach is taken, user interaction is not just 

desirable but necessary. 

Finally, any progress on the problem of automating the selection 

of efficient implementations depends on the ability to predict 

a program's execution performance. Progress to date in this 

area has been limited. As a result, one should not expect to 
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see practical use of such systems in the near future. We 

believe, however, that economically viable systems allowing 

user interaction to choose alternatives from an implementation 

library are feasible and can be developed for practical use. 
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