
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Performing Bayesian Inference with Exemplar Models

Permalink
https://escholarship.org/uc/item/4kt2j29t

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 30(30)

ISSN
1069-7977

Authors
Shi, Lei
Feldman, Naomi H.
Griffiths, Thomas L.

Publication Date
2008
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kt2j29t
https://escholarship.org
http://www.cdlib.org/


Performing Bayesian Inference with Exemplar Models

Lei Shi (lshi@berkeley.edu)
Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720 USA

Naomi H. Feldman (naomi feldman@brown.edu)
Department of Cognitive and Linguistic Sciences, Brown University, Providence, RI 02912 USA

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, University of California at Berkeley, Berkeley, CA 94720 USA

Abstract

Probabilistic models have recently received much attention as
accounts of human cognition. However, previous work has fo-
cused on formulating the abstract problems behind cognitive
tasks and their probabilistic solutions, rather than considering
mechanisms that could implement these solutions. Exemplar
models are a successful class of psychological process mod-
els that use an inventory of stored examples to solve prob-
lems such as identification, categorization and function learn-
ing. We show that exemplar models can be interpreted as a
sophisticated form of Monte Carlo approximation known as
importance sampling, and thus provide a way to perform ap-
proximate Bayesian inference. Simulations of Bayesian infer-
ence in speech perception and concept learning show that ex-
emplar models can account for human performance with only
a few exemplars, for both simple and relatively complex prior
distributions. Thus, we show that exemplar models provide a
possible mechanism for implementing Bayesian inference.

Keywords: Bayesian inference; exemplar models; speech per-
ception; concept learning

Much of cognition and perception involves inference un-
der uncertainty, using limited data from the world to evaluate
underdetermined hypotheses. Probabilistic models provide a
way to characterize the optimal solution to these problems,
with probability distributions encoding the beliefs of agents
and Bayesian inference updating those distributions as data
become available. As a consequence, probabilisticmodels are
becoming increasingly widespread in both cognitive science
and neuroscience, providing explanations of behavior in do-
mains as diverse as motor control (Körding&Wolpert, 2004),
reasoning (Oaksford & Chater, 1994), memory (Anderson
& Milson, 1989), and perception (Yuille & Kersten, 2006).
However, these explanations are typically presented at Marr’s
(1982) computational level, focusing on the abstract problem
being solved and the logic of that solution. Unlike many other
formal approaches to cognition, probabilistic models are usu-
ally not intended to provide an account of the mechanisms
underlying behavior – how people actually produce responses
consistent with optimal statistical inference.
Understanding the mechanisms that could support

Bayesian inference is particularly important since probabilis-
tic computations can be extremely challenging. Representing
and updating distributions over large numbers of hypotheses
is computationally expensive, a fact that is often viewed
as a limitation of “rational” models. The question of how
people could perform Bayesian inference can be answered
at at least two levels (as suggested by Marr, 1982). One

kind of answer focuses on the neural level, exploring ways
in which systems of neurons could perform probabilistic
computations. The language of such answers is that of
neurons, tuning curves, firing rates, and so forth (e.g., Ma,
Beck, Latham, & Pouget, 2006). A second kind of answer
is at the level of psychological processes – showing that the
Bayesian inference can be performed using mechanisms that
are used in psychological process models. The language of
such answers is representations, similarity, activation, and so
forth (e.g., Kruschke, 2006; Sanborn, Griffiths, & Navarro,
2006).
Our focus in this paper will be on a class of psychologi-

cal process models known as exemplar models. These mod-
els assume that people store many instances (“exemplars”)
of events in memory, and evaluate new events by activating
stored exemplars that are similar to those events (Medin &
Schaffer, 1978; Nosofsky, 1986). It is well known that exem-
plar models of categorization can be analyzed in terms of non-
parametric density estimation, and implement a Bayesian so-
lution to this problem (Ashby & Alfonso-Reese, 1995). Here
we show that exemplar models can be used to solve prob-
lems of Bayesian inference more generally, providing a way
to approximate expectations of functions over posterior distri-
butions. Our key result is that exemplar models can be inter-
preted as a sophisticated form of Monte Carlo approximation
known as importance sampling. This result illustrates how
Bayesian inference can be performed using a simple mecha-
nism that is a common part of psychological process models.

Background
Exemplar models
Human knowledge is formed from examples. When we
learned the concept “dog,” we were not taught to remember
the physiological and anatomical characteristics of dogs, but
instead, saw examples of various dogs. Based on the large
inventory of examples of dogs we have seen, we are able to
reason about the properties of dogs, and make decisions about
whether new objects we encounter are likely to be dogs. Ex-
emplar models provide a simple explanation for how we do
this, suggesting that we do not form abstract generalizations
from experience, but rather store examples in memory and
use those stored examples as the basis for future judgments
(Medin & Schaffer, 1978; Nosofsky, 1986).
An exemplar model consists of stored exemplars X∗ =
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{x∗1,x∗2, · · · ,x∗n}, and a similarity function s(x,x∗), measuring
how closely a new observation x is related to x∗. On observ-
ing x, all exemplars are activated in proportion to s(x,x∗). The
use of the exemplars depends on the task (Nosofsky, 1986).
In an identification task, where the goal is to identify the x∗
of which x is an instance, the probability of selecting x∗i is

pr(x∗i |x) =
s(x,x∗i )

∑n
j=1 s(x,x

∗
j )

, (1)

where pr(·) denotes the response distribution resulting from
the exemplar model, and we assume that participants use the
Luce choice rule (Luce, 1959) in selecting a response, with no
biases towards particular exemplars. In a categorization task,
where each exemplar x∗i is associated with a category ci, the
probability that the new object x will be assigned to category
c is given by

pr(c|x) =
∑ j|c j=c s(x,x

∗
j )

∑n
j=1 s(x,x

∗
j )

, (2)

where again we assume a Luce choice rule without biases
towards particular categories.
While exemplar models have been most prominent in the

literature on categorization, the same basic principles have
been used to define models of function learning (DeLosh,
Busemeyer, & McDaniel, 1997), probabilistic reasoning
(Juslin & Persson, 2002), and social judgment (Smith &
Zarate, 1992). These models pursue a similar approach to
models of categorization, but associate each exemplar with a
quantity other than a category label. For example, in func-
tion learning each exemplar is associated with the value of
a continuous variable rather than a discrete category index.
The procedure for generating responses remains the same as
that used in Equations 1 and 2: the associated information is
averaged over exemplars, weighted by their similarity to the
stimulus. Thus, the predicted value of some associated infor-
mation f for a new stimulus x is

f̂ =
∑n
j=1 f js(x,x

∗
j )

∑n
j=1 s(x,x

∗
j )

, (3)

where f j denotes the information associated with the jth ex-
emplar. The identification and categorization models can be
viewed as special cases, corresponding to different ways of
specifying f j. Taking f j = 1 for j = i and 0 otherwise yields
Equation 1, while taking f j = 1 if c j = c and 0 otherwise
yields Equation 2. Equation 3 thus provides the general for-
mulation of an exemplar model that we will analyze.

Bayesian inference

Many cognitive problems can be formulated as evaluating a
set of hypotheses about processes that could have produced
observed data. Bayesian inference provides a solution to
problems of this kind. Letting h denote a hypothesis and d
the data, assume a learner encodes his or her degrees of belief

regarding the hypotheses before seeing d using a probabil-
ity distribution, p(h), known as the prior distribution. Then,
the degrees of belief after seeing d are given by the posterior
distribution, p(h|d), obtained from Bayes’ rule

p(h|d) =
p(d|h)p(h)∫

H p(d|h)p(h)dh (4)

where H is the set of hypotheses under consideration, and
p(d|h) is a distribution indicating the probability of seeing d
if h were true, known as the likelihood.
While our analysis applies to Bayesian inference in the

general case, we will focus on a specific example. Assume
we observe a stimulus x, which we believe to be corrupted by
noise and potentially missing some accompanying informa-
tion, such as a category label. Let x∗ denote the uncorrupted
stimulus, and z denote the missing data. If there is no missing
data (i.e. z is empty), then our goal is simply to reconstruct x,
finding the x∗ to which it corresponds. Otherwise, we seek to
infer both x∗ and the value of z which corresponds to x. We
can perform both tasks using Bayesian inference.
The application of Bayes’ rule is easier to illustrate in the

case where there is no missing data z, and we simply wish
to infer x∗. We will use the probability distribution p(x|x∗)
to characterize the noise process, indicating the probability
with which the stimulus x∗ is corrupted to x, and the proba-
bility distribution p(x∗) to encode our a priori beliefs about
the probability of seeing a given stimulus. We can then use
Bayes’ rule to compute the posterior distribution over the
value of the uncorrupted stimulus, x∗, which might have gen-
erated the observation x, obtaining

p(x∗|x) =
p(x|x∗)p(x∗)∫
p(x|x∗)p(x∗)dx∗ , (5)

where p(x|x∗) is the likelihood and p(x∗) is the prior.
This analysis is straightforward to generalize to the case

where z contains important missing data, such as the category
from which x was generated. In this case, we need to define
our prior as a distribution over both x∗ and z, p(x∗,z). We
can then use Bayes’ rule to compute the posterior distribution
over the uncorrupted stimulus, x∗, and missing data, z, which
might have generated the observation x, obtaining

p(x∗,z|x) =
p(x|x∗)p(x∗,z)∫ ∫
p(x|x∗)p(x∗,z)dx∗ dz (6)

where we also assume that the probability of observing x is
independent of z given x∗, so p(x|x∗,z) = p(x|x∗).

Evaluating expectations by Monte Carlo
Posterior distributions on hypotheses given data can be used
to answer a variety of questions. To return to the example
above, a posterior distribution on x∗ and z can be used to
evaluate the properties of x∗ and z given x. For any function
f (x∗,z), the expectation of that function given x is

E [ f (x∗,z)|x] =
∫ ∫

f (x∗,z)p(x∗,z|x)dx∗ dz (7)
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being the average of f (x∗,z) over the posterior distribution.
Since f (x∗,z) can pick out any property of x∗ and z that might
be of interest, many problems of reasoning under uncertainty
can be expressed in terms of expectations. However, evalu-
ating expectations over the posterior distribution can be chal-
lenging: it requires computing a posterior distribution, which
is a hard problem in itself, and the integrals in Equation 7 can
range over many values for x∗ and z. Consequently, Monte
Carlo methods are often used to approximate expectations.
The Monte Carlo method approximates the expectation of

a function with respect to a probability distribution with the
average of that function at points drawn from the distribution.
Assume we want to evaluate the expectation of a function
g(y) over the distribution p(y), Ep [g(y)]. Let μ denote the
value of this expectation. The law of large numbers justifies

μ= Ep [g(y)] =
∫
g(y)p(y)dy≈ 1

m

m

∑
j=1

g(y j) = μ̂MC (8)

where the y j are all drawn from the distribution p(y).
Using the Monte Carlo method requires that we are able to

generate samples from the distribution p(y). However, this is
often not the case: it is quite common to encounter problems
where p(y) is known at all points y but hard to sample from.
If another distribution q(y) is close to p(y) but easy to sam-
ple from, a form of Monte Carlo called importance sampling
can be applied (see Neal, 1993, for a detailed introduction).
Manipulating the expression for the expectation of g gives

∫
g(y)p(y)dy =

∫
g(y)p(y) dy∫
p(y)dy

=

∫
g(y) p(y)q(y) q(y)dy∫ p(y)

q(y) q(y)dy
(9)

The numerator and denominator of this expression are each
expectations with respect to q(y). Applying simple Monte
Carlo (with the same set of samples from q(y)) to both,

μ= Ep [g(y)] ≈
∑mj=1 g(y j)

p(y j)
q(y j)

∑mj=1
p(y j)
q(y j)

= μ̂IS (10)

where each y j is drawn from q(y). The ratios p(y j)
q(y j)

can be

viewed as “weights” on the samples y j, correcting for hav-
ing sampled from q(y) rather than p(y). Samples with higher
probability under p(y) than q(y) occur less often than if we
were sampling from p(y), but receive greater weight.
Both simple Monte Carlo and importance sampling can

be applied to the problem of evaluating the expectation of
a function f (x∗,z) over a posterior distribution on x∗ and
z with which we began this section. Simple Monte Carlo
would draw values of x∗ and z from the posterior distribu-
tion p(x∗,z|x) directly. Importance sampling would generate
from another distribution, q(x∗,z), and then reweight those
samples. One simple choice of q(x∗,z) is the prior, p(x∗,z).
If we sample from the prior, the weight assigned to each sam-
ple is the ratio of the posterior to the prior

p(x∗,z|x)
p(x∗,z)

=
p(x|x∗)∫ ∫

p(x|x∗)p(x∗,z)dx∗ dz (11)

where we use the assumption that p(x|x∗,z) = p(x|x∗). Sub-
stituting these weights into Equation 10 , we obtain

E [ f (x∗,z)|x] ≈ ∑m
j=1 f (x

∗
j ,z j)p(x|x∗j)

∑m
j=1 p(x|x∗j)

(12)

where we assume that x∗j and z j are drawn from p(x∗,z).

Exemplar models as importance samplers
Inspection of Equations 3 and 12 yields our main result: that
exemplar models can be viewed as implementing a form of
importance sampling. More formally, assume X∗ is a set of
m exemplars x∗ and associated information z drawn from the
probability distribution p(x∗,z), and f j = f (x∗j ,z j) for some
function f (x∗,z). Then the output of Equation 3 for an exem-
plar model with exemplars X∗ and similarity function s(x,x∗)
is an importance sampling approximation to the expectation
of f (x∗,z) over the posterior distribution on x∗ and z, as given
in Equation 6, for the Bayesian model with prior p(x∗,z) and
likelihood p(x|x∗) ∝ s(x,x∗).
This connection between exemplar models and importance

sampling provides an alternative rational justification for ex-
emplar models of categorization, as well as a more general
motivation for these models. The justification for exemplar
models in terms of nonparametric density estimation (Ashby
& Alfonso-Reese, 1995) provides a clear account of their rel-
evance to categorization, but does not explain why they are
appropriate in other contexts, such as identification (Equation
1) or the general response rule given in Equation 3. In con-
trast, we can use importance sampling to provide a single ex-
planation for identification, categorization, and other uses of
exemplar models, viewing each as the result of approximat-
ing an expectation of a particular function f (x∗,z) over the
posterior distribution p(x∗,z|x). For identification, z is empty
and f (x∗,z) = 1 for all x∗ within a small range ε of a specific
value x∗i and 0 otherwise. For categorization, z contains the
category label, and f (x∗,z) = 1 for all z= c and 0 otherwise.
For function learning, z contains the value of the continuous
variable associated with x∗, and f (x∗,z) = z. Similar analy-
ses apply in other cases, with exemplar models providing a
rational method for answering questions expressed as an ex-
pectation of a function of x∗ and z.

Simulations
The success of importance sampling as a scheme for approxi-
mating expectations justifies using exemplar models as an ap-
proximation to Bayesian inference. In this section, we evalu-
ate exemplar models as a scheme for approximating Bayesian
inference in two tasks, examining the effect of number of
exemplars on performance in order to evaluate the conse-
quences of biological and psychological constraints.

The perceptual magnet effect
The perceptual magnet effect is a categorical effect in speech
perception in which discriminability of speech sounds is re-
duced near phonetic category prototypes and enhanced near
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category boundaries, presumably due to a perceptual bias to-
ward phonetic category centers (Kuhl, Williams, Lacerda,
Stevens, & Lindblom, 1992). Feldman and Griffiths (2007)
argued that this effect can be characterized as Bayesian infer-
ence if one assumes that listeners are using their knowledge
of phonetic categories to optimally recover the phonetic de-
tail of a speaker’s target production through a noisy speech
signal. Here we demonstrate than an exemplar model derived
through importance sampling can provide a psychologically
plausible implementation of this Bayesian model, mirroring
human performance with a reasonable number of exemplars.
The Bayesian model assumes that a speaker’s target pro-

duction T is sampled from a Gaussian phonetic category c
with category mean μc and category variance σ2c and that lis-
teners hear a speech sound S, perturbed by articulatory and
acoustic noise, that is normally distributed around the target
production T with noise variance σ2S. The prior on target pro-
ductions is therefore a mixture of Gaussians representing a
language’s phonetic categories,

p(T ) =∑
c
N(μc,σ2c)p(c) (13)

and the likelihood function is a Gaussian whose variance is
determined by the speech signal noise,

p(S|T ) = N(T,σ2S) (14)

Listeners hear the speech sound S and use Bayes’ rule to com-
pute the expectation E[T |S] and optimally recover the pho-
netic detail of a speaker’s target production.
To perform this computation using importance sampling,

listeners need only store exemplars of previously encountered
speech sounds, giving them a sample from p(T ), the prior
on target productions (Equation 13)1 . Upon hearing a new
speech sound, they weight each stored exemplar by its likeli-
hood p(S|T ) (Equation 14) and take the weighted average of
these exemplars to approximate the posterior mean

E[T |S] ≈ ∑m
j=1Tj p(S|Tj)
∑m
j=1 p(S|Tj)

(15)

where Tj denotes the phonetic detail (e.g. formant value) of a
stored target production.
Figure 1 compares the performance of this exemplar model

to multidimensional scaling data from Iverson and Kuhl
(1995), who used an AX discrimination task to generate a per-
ceptual map of thirteen equally spaced stimuli in the /i/ and
/e/ categories. Model parameters are the same as those used
by Feldman and Griffiths (2007). The figure shows the non-
linear mapping between psychoacoustic and perceptual space
that is characteristic of the perceptual magnet effect: stim-
uli near the /i/ and /e/ category means are clustered together

1Exemplars in a continuous space that are acquired by sensory
experience may be corrupted by noise and thus are not perfect sam-
ples from the prior. However, often exemplars still closely follow
the prior distribution since such noise can be significantly reduced
by averaging over repetitive identical observations and/or weighting
over cues from multiple sensory modalities.
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Figure 1: Locations of stimuli in perceptual space from Iver-
son and Kuhl’s (1995) multidimensional scaling data and
from a single hypothetical subject (open circles) and the mid-
dle 50% of hypothetical subjects (solid lines) using an exem-
plar model in which perception is based on (a) ten and (b)
fifty exemplars. The labels μ/i/ and μ/e/ show the locations
of category means in the model.

in perceptual space in both data and model. The simulations
suggest that a relatively small number of exemplars suffices
to capture human performance in this perceptual task. Model
performance using ten exemplars already demonstrates the
desired effect, and with fifty exemplars, the model gives a
precise approximation that closely mirrors the combined per-
formance of the 18 subjects in Iverson and Kuhl’s multidi-
mensional scaling experiment.
The exemplar model provides several advantages over the

original Bayesian formulation. It allows listeners to compute
speakers’ target productions without explicit knowledge of
phonetic categories, thereby giving a more plausible account
of how six-month-olds might acquire enough information to
show the perceptual magnet effect (Kuhl et al., 1992). Listen-
ers can still compute category membership based on labeled
exemplars using Equation 2, but labeled exemplars are not
required in order to show perceptual warping. Furthermore,
parametric knowledge of category structure is not required for
either computation: Equation 15 generalizes easily to the case
of non-Gaussian categories, allowing listeners to perform op-
timally for a range of category structures. Finally, similar
exemplar-based mechanisms have previously been proposed
by Guenther and Gjaja (1996) and Pierrehumbert (2001) to
create a bias toward category centers, and importance sam-
pling provides a way of integrating the Bayesian model with
these exemplar-based approaches.

The number game

While the perceptual magnet effect is an example where the
exemplar model is applied in a space of continuous variables
(frequency in acoustic space), exemplars can also be hypothe-
ses over a discrete space. The “number game” of Tenenbaum
(1999; Tenenbaum&Griffiths, 2001) is a good example. This
game is formulated as follows: given natural numbers from
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1 to 100, if number x belongs to an unknown set C (e.g.,
{59,60,61,62}), what is the probability that y also belongs
to the same set?Here, the exemplars of interest are not num-
bers themselves, but sets of numbers following rules, such as
squares ({1,4,9,16, ...}) or natural numbers between 89 and
91 ({89,90,91}).
This problem can be addressed by Bayesian inference. Our

data are the knowledge that x belongs to the set C, and our
hypotheses concern the nature of C. Since C is unknown, we
should sum over all possible hypotheses h ∈ H when evalu-
ating whether y belongs toC,

p(y ∈C|x) = ∑
h∈H

p(y ∈C|h)p(h|x) = ∑
h∈H

1(y ∈ h)p(h|x) (16)

where 1(y ∈ h) is the indicator function of the statement
y∈ h, taking value 1 if this is true and 0 otherwise. In the anal-
ysis presented by Tenenbaum (1999; Tenenbaum& Griffiths,
2001), the likelihood p(x|h) is proportional to the inverse of
the size of h (the “size principle”) being 1/|h| if x ∈ h and 0
otherwise. A broad range of hypotheses were used, including
intervals of numbers spanning a certain range, even numbers,
odd numbers, primes, and cubes.
The number game is challenging because any given num-

ber (say x = 8) is consistent with many hypotheses (not only
intervals containing 8, but also hypotheses such as even num-
bers, cube numbers, number with ending digit 8, etc.). In-
terestingly, the responses of human participants can be cap-
tured quite accurately with this Bayesian model (Figure 2
(a)). However, this involves instantiating all 6,412 hypothe-
ses, calculating the likelihood for each rule and integrating
over the product of the prior and likelihood. Human subjects
are not likely to perform such computations given limitations
on memory capacity and computational power, so a mecha-
nism that approximates the exact solution is desirable.
Performing the computations involved in the number game

requires extending our analysis of exemplar models to the
general case of Bayesian inference. We can do this by re-
placing the role of exemplars in the preceding analysis with
hypotheses sampled from the prior p(h). These hypotheses
are activated in response to how well they explain the data,
with activation proportional to p(x|h). Averaging any func-
tion of h over the distribution defined by normalizing the ac-
tivations will be an importance sampler for the expectation of
that function over the posterior, p(h|c). Thus, storing a few
hypotheses in memory and activating those hypotheses in re-
sponse to data provides a psychologically plausible mecha-
nism for performing Bayesian inference.
We can now apply this framework to the number game.

Equation 16 is an expectation of an indicator function over
the posterior distribution p(h|x). This expectation can be ap-
proximated using a set of m hypotheses h1, . . . ,hm sampled
from the prior and activated in proportion to the likelihood,

p(y ∈C|x) ≈ ∑ j 1(y ∈ h j)p(x|h j)
∑ j p(x|h j)

(17)

meaning that p(y ∈C|x) is just the ratio of the summed like-
lihoods of the hypotheses stored in memory that generate y
to the summed likelihoods of all hypotheses stored in mem-
ory. Considering limitations in memory capacity and com-
putational power, we conducted two sets of simulations. In
the computation-limited case, the bottleneck is the number of
exemplars that can be processed simultaneously, but not the
supply of qualified hypotheses, being those hypotheses such
that x ∈ h. In contrast, the memory-limited case assumes that
only a limited number of hypotheses are stored in memory
and those exemplars are not necessarily qualified. When the
right hypothesis is missing (say cubes for {1,8,27,64}), the
exemplar model gives incorrect results, as when a person fails
to recognize the underlying rule. Our simulations use the
same parameters as those in Tenenbaum (1999) except that
the likelihood function assigns a small non-zero probability
to all natural numbers from 1 to 100 for every hypothesis to
ensure numerical stability.
Figure 2 (b) and (c) show a single hypothetical subject’s

responses to the number game. The results suggest a small
number of exemplars (20 and 50) is sufficient to account for
human performance. The memory limited case needs more
exemplars because not all exemplars are qualified hypoth-
esis. Therefore, the effective number of exemplars, which
determines the computational load, is small. The consis-
tency of these results with the human judgments indicates that
this kind of generalized exemplar model provides a plausible
mechanism for performing Bayesian inference that relies on
reasonable memory and computational resources and can be
used with highly structured hypothesis spaces.

Conclusion

Our theoretical results indicate that exemplar models can be
interpreted as a form of importance sampling, and thus pro-
vide a simple psychological mechanism for producing be-
havior consistent with Bayesian inference. Our simulations
demonstrate that this approach produces predictions that cor-
respond reasonably well with human behavior and that rela-
tively few exemplars are needed to provide a good approx-
imation to the true Bayesian solution to a simple problem.
These simulations also highlight the flexibility of this ap-
proach, since exactly the same model can be used to make
predictions regardless of the form of the prior.
The approach that we have taken in this paper represents

one way of addressing questions about the mechanisms that
could support probabilistic inference. Our results suggest
that exemplar models are not simply process models, but a
kind of “rational process model” – an effective and psycho-
logically plausible scheme for approximating statistical infer-
ence. This approach pushes the principle of optimality that
underlies probabilistic models down to the level of mech-
anism, and suggests a general strategy for explaining how
people perform Bayesian inference: look for connections be-
tween psychological process models and approximate infer-
ence algorithms developed in computer science and statistics.
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Figure 2: Simulations (dashed line) and behavioral data from Tenenbaum (1999) (gray bars) for the number game. The full
Bayesian model uses 6412 hypotheses. Results of computation-limited and memory-limited exemplar models are based on
a single hypothetical subject with a single set of hypotheses (exemplars) sampled from the prior. Models are tested un-
der conditions suggesting single point generalization x = 60, a consecutive interval x = {60,52,57,55}, multiples of 10
x= {60,80,10,30} and squares x= {81,25,4,36}.
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