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Natural Variability in Projections of Climate Change
Impacts on Fine Particulate Matter Pollution
Bret D. Pienkosz1, Rebecca K. Saari2 , Erwan Monier3 , and Fernando Garcia‐Menendez1

1Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, USA,
2Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada, 3Department
of Land, Air and Water Resources, University of California, Davis, CA, USA

Abstract Variations in meteorology associated with climate change can impact fine particulate matter
(PM2.5) pollution by affecting natural emissions, atmospheric chemistry, and pollutant transport.
However, substantial discrepancies exist among model‐based projections of PM2.5 impacts driven by
anthropogenic climate change. Natural variability can significantly contribute to the uncertainty in these
estimates. Using a large ensemble of climate and atmospheric chemistry simulations, we evaluate the
influence of natural variability on projections of climate change impacts on PM2.5 pollution in the United
States. We find that natural variability in simulated PM2.5 can be comparable or larger than reported
estimates of anthropogenic‐induced climate impacts. Relative to mean concentrations, the variability in
projected PM2.5 climate impacts can also exceed that of ozone impacts. Based on our projections, we
recommend that analyses aiming to isolate the effect climate change on PM2.5 use 10 years or more of
modeling to capture the internal variability in air quality and increase confidence that the
anthropogenic‐forced effect is differentiated from the noise introduced by natural variability. Projections at a
regional scale or under greenhouse gas mitigation scenarios can require additional modeling to attribute
impacts to climate change. Adequately considering natural variability can be an important step toward
explaining the inconsistencies in estimates of climate‐induced impacts on PM2.5. Improved treatment of
natural variability through extendedmodeling lengths or initial condition ensembles can reduce uncertainty
in air quality projections and improve assessments of climate policy risks and benefits.

Plain Language Summary Climate change can worsen air pollution caused by small particles in
the atmosphere as it alters temperature, precipitation, and other weather variables. Models have been used
to project the effects climate change can have on airborne particle concentrations. However, natural
year‐to‐year and longer‐term variations in weather can make it difficult to estimate the impacts specifically
caused by human forces. In this study, we use a large set of climate and air quality simulations to assess
the effect of natural variability in model‐based projections of climate change impacts on air pollution over
the United States. Our results show that natural variations in predictions of climate change effects on fine
particle levels can be significant. We recommend that projections use longer simulation lengths than
typically applied, 10 years or more, in order to filter out this natural variability and better reflect the effect of
human‐caused climate change on particle pollution. Natural variability can also make it challenging to
confidently project human‐caused climate impacts in some regions or if efforts are taken to reduce
greenhouse gas emissions. By using larger modeling lengths or simulation sets, projections of climate change
impacts on air pollution and climate policy benefit analyses can be improved.

1. Introduction

Climate change can exert a large influence on air quality by altering meteorological conditions (Fiore et al.,
2015; Jacob & Winner, 2009). As atmospheric ventilation, precipitation rates, atmospheric chemistry, and
other key determinants of pollutant concentrations vary, climate change may deteriorate air quality over
large regions (Dawson et al., 2014). The impacts on fine particulate matter (PM2.5) concentrations are
particularly important; ambient PM2.5 is the largest risk factor by attributable burden of disease with
millions of premature deaths caused by PM2.5 pollution each year (Cohen et al., 2017). Multiple modeling
studies have projected the impacts of climate change on PM2.5 concentrations (Day & Pandis, 2015; Nolte
et al., 2018; Trail et al., 2014). However, the effects of variations in climate on PM2.5 remain highly uncertain,
with significant discrepancies among studies (Fiore et al., 2015). Inconsistencies are especially evident at
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regional scales, including differences in the projected direction of climate‐induced change (von
Schneidemesser et al., 2015).

Natural variability, here defined as the modeled unforced internal variability in the simulated climate sys-
tem, is partially responsible for the uncertainty in PM2.5 projections. To account for natural variability, most
modeling studies have relied on simulations covering multiple years. The number of years used has ranged
from 1 to 150. A review of 45 prior studies, listed in Table S1, assessing the impact of climate change on
PM2.5, or particulate matter components, reveals that over half used five years or less of simulated air quality
to represent present or future climates and 85% relied on 10 years or less. Such simulation lengths may be
insufficient to adequately separate an anthropogenic‐forced signal from natural variability. Analyses bene-
fiting from large simulations focused on ozone (O3) pollution have shown that multidecadal simulations
are required to isolate the impact of climate change and may be unable to do so before midcentury
(Barnes et al., 2016; Garcia‐Menendez et al., 2017). However, the influence of natural variability on PM2.5,
the pollutant potentially responsible for the majority of health costs associated with the “climate penalty”
on air quality (Garcia‐Menendez et al., 2015; Silva et al., 2017), has not been specifically assessed. Some
recent efforts to project the impacts of twenty‐first‐century climate change on PM2.5 have moved toward lar-
ger numbers of modeled years through multidecadal and ensemble simulations (Lacressonnière et al., 2016;
Westervelt et al., 2016; Xu & Lamarque, 2018). These highlight the influence natural variability can have on
projections of climate change impacts. However, other recent studies, especially those applying regional cli-
mate and chemical transport models, have continued to rely on a small number of years to identify an
anthropogenic‐forced climate signal in PM2.5 concentrations, even at midcentury or earlier (Table S1).
Shorter simulations are a trade‐off that may be necessary to address other sources of uncertainty in projec-
tions, such as resolution, emissions, and atmospheric process representations.

Here we weigh the influence of natural variability on estimates of climate change impacts on PM2.5 pollution
by analyzing the projections of the U.S. Environmental Protection Agency's (EPA) Climate Change Impacts
and Risk Analysis project (U.S. EPA, 2015; Waldhoff et al., 2015). The ensemble simulations at the core of the
Climate Change Impacts and Risk Analysis projections represent a significant effort to model climate‐
induced air quality impacts, with over a thousand years of modeled atmospheric chemistry. Based on this
ensemble we compare the influence of natural variability on projections of climate change impacts on
PM2.5 to those for O3 and recommend a minimum simulation length to provide guidance to future analyses
attempting to model anthropogenic‐forced, climate‐related variations in PM2.5 pollution.

2. Methods

We simulate the impacts of climate change on PM2.5 pollution under three integrated climate, policy, and
economic activity scenarios developed with the MIT Integrated Global System Model linked to the
Community Atmosphere Model (MIT IGSM‐CAM; Monier et al., 2013). The scenarios project global eco-
nomic activity, greenhouse gas emissions, and climate under a reference case with no climate change miti-
gation policy in which total radiative forcing reaches 10 W/m2 at the end of the century (REF), a climate
policy that stabilizes total radiative forcing at 4.5 W/m2 by 2100 (P45), and a climate policy that stabilizes
total radiative forcing at 3.7 W/m2 by 2100 (P37). Details about the socioeconomic greenhouse gas emission
projections are presented in Paltsev et al. (2015). The scenarios have been used to assess climate change
impacts and mitigation benefits across a diverse range of sectors in the United States (U.S. EPA, 2015).
The ability of the MIT IGSM‐CAM model to represent historical atmospheric conditions and variability
has been evaluated against station‐ and model‐based observational data sets (Monier et al., 2013). Relative
to observational data from 1900 to 2010, the MIT IGSM‐CAM realistically simulates major climate variables,
including surface air temperature and precipitation, as well as year‐to‐year climate variability (Monier et al.,
2013). A detailed discussion of the MIT IGSM‐CAM's climate projections over the United States for the sce-
narios considered here is included in Monier et al. (2015).

We simulate air quality under each climate policy scenario using the Community Atmosphere Model with
Chemistry (CAM‐Chem, version 1.1.2; Lamarque et al., 2012). Meteorological fields generated by the MIT
IGSM‐CAM are used to drive CAM‐Chem simulations at 1.9° × 2.5° resolution. In all CAM‐Chem atmo-
spheric chemistry simulations, anthropogenic emissions are fixed at start‐of‐the‐century levels (2000) to iso-
late the effect of climate on air quality. The anthropogenic emissions used are described in Lamarque et al.
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(2012) and based on the Precursors of Ozone and their Effects in the Troposphere inventory. The response of
biogenic emissions of isoprene and monoterpenes to variations in temperature is modeled; however, the
effects of climate on other natural emissions sources, including wildfires and dust emissions, are not
included. In CAM‐Chem, secondary organic aerosol (SOA) production is represented by a two‐product
scheme that links SOA formation to oxidation of atmospheric nonmethane hydrocarbons (Lamarque
et al., 2012). Here we assess climate‐induced impacts on ground‐level concentrations of sulfate (SO4), ammo-
nium nitrate (NH4NO3), organic aerosol (OA), and black carbon (BC) particles, and estimate PM2.5 mass fol-
lowing Val Martin et al. (2014). CAM‐Chem has been previously used to model air quality and its ability to
replicate surface concentrations of different aerosol species is evaluated against surface observations in
Lamarque et al. (2012). Additional details and discussion about the CAM‐Chem simulations and
ensemble‐mean PM2.5 projections used here are included in Garcia‐Menendez et al. (2015). Over the
United States, the model captures the distribution of major PM2.5 components but shows a positive bias
for SO4 and underpredicts observed concentrations of EC and OA. On average, SO4 and OA are the largest
contributors to total modeled PM2.5, followed by NH4NO3 and a significantly smaller fraction of EC. The
simulated annual population‐weighted PM2.5 concentration at the start‐of‐the century, 12.6 μg/m3, is close
to EPA's reported national annual PM2.5 concentration averaged across over 400 monitoring sites (mostly
urban) in 2000, equal to 13.5 μg/m3 (U.S. EPA, 2017).

The analyses described in this study focus on the meteorology‐related impacts of climate change on PM2.5

pollution. The impact of climate change on ambient PM2.5 (i.e., the PM2.5 “climate penalty”) over the con-
tiguous United States is assessed by estimating the difference between simulated ground‐level concentra-
tions under start‐of‐the‐century and future climates. To capture natural interannual variability, we
simulate U.S. air quality at the beginning, middle, and end of the twenty‐first century using 30‐year model-
ing periods (1981–2010, 2036–2065, and 2086–2115). To further account for multidecadal natural variability
within our projections, we model atmospheric chemistry during each period with five different representa-
tions of natural variability generated by perturbing initial atmospheric, land, and ocean conditions in the
MIT IGSM‐CAM climate change simulations (Monier et al., 2013). To evaluate the impact of anthropogenic
climate change at midcentury and the end of the century against natural variability within simulated peri-
ods, externally forced climate change is controlled by detrending annual‐average concentrations within each
30‐year interval and centering air quality impacts in 2050 and 2100. Detrending was conducted for each grid
cell by computing the least squares fit of a straight line to the data and subtracting the resulting function
from the annual‐average concentrations. PM2.5 pollution under each policy scenario considered and present
or future climates is therefore characterized by 150 years of simulated air quality. The ensemble‐mean pro-
jections of climate‐induced changes in PM2.5 were used to evaluate health and economic impacts in EPA's
Climate Change Impacts and Risk Analysis project (U.S. EPA, 2015). However, the underlying ensemble
simulations, which include 1,050 years of simulated air quality, allow for a close inspection of the influence
of natural variability in projections of climate change impacts on PM2.5. The role of natural variability on U.
S. O3 pollution was assessed in Garcia‐Menendez et al. (2017), finding that natural variability significantly
affects projections of climate change impacts and recommending a 15‐year simulation minimum to ade-
quately identify an anthropogenic‐forced signal at a national scale. Uncertainty related to natural variability
is compared to that associated with national‐scale health and economic impacts in Saari et al. (2019). Here
we extend the analysis to explore the role of natural variability in projections of the meteorology‐driven
impacts of climate change on PM2.5 pollution.

3. Results and Discussion

Our simulations of atmospheric chemistry under future climate show a significant penalty on U.S. PM2.5 pol-
lution (Figure 1). Ensemble‐mean projections estimate a climate‐induced increase in U.S. annual
population‐weighted PM2.5 of 0.5 ± 0.1 μg/m3 by midcentury and 1.5 ± 0.1 μg/m3 by the end of the century
under the REF scenario (statistical significance evaluated with a Student's t test for 95% confidence). The lar-
gest regional penalty is projected over the eastern United States, with lesser increases simulated in the West
and small climate‐induced decreases in PM2.5 anticipated over some areas of the Midwest. The simulated
changes reflect multiple pathways through which meteorology influences PM2.5 concentrations, including
increased SO2 oxidation and nitrate partitioning to the gas phase under warmer temperatures, higher
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stagnation, and variations in precipitation, consistent with previous studies analyzing the linkages between
climate and air quality (Fiore et al., 2012). The interactions within these ensemble simulations and impacts
on different PM2.5 components are further discussed in Garcia‐Menendez et al. (2015). Although model
biases influence predicted PM2.5 concentrations, these affect simulations under both start‐of‐the‐century
and future climates. Thus, penalties estimated as the difference between future and present air quality
account for the biases to the degree that they remain consistent across modeled periods.

Projected PM2.5 increases associated with climate change are largely driven by SO4, particularly in the east-
ern United States, and to a smaller extent OA. Climate impacts on OA, including SOA, are largest over the
regions in Southeast, Northeast, and western United States. While these changes reflect a climate‐driven
increase in SOA biogenic precursors, SOA summertime production is likely underestimated by the represen-
tation of SOA formation in CAM‐Chem (Lamarque et al., 2012). These increments are countered by climate
driven reductions in NH4NO3, which is responsible for the projected drop in PM2.5 over areas of the
Midwest. The climate penalty on PM2.5 is greatly reduced by climate change mitigation policies. Over 80%
of the REF‐scenario penalty on annual population‐weighted PM2.5 at the end of the century is avoided under
the P37 scenario.

Depending on the region, our projections agree or contrast to varying degrees with recent studies simulating
climate change impacts on PM2.5. For example, our simulations are consistent with the projections of Nolte
et al. (2018) over the southeastern United States, suggesting a climate‐induced increase in OA, but differ in
the magnitude of the nitrate‐driven decrease in concentrations over the Midwest. In contrast, Westervelt
et al. (2016) project an end‐of‐century climate penalty on PM2.5 over most of the United States under a
high‐emission scenario, which, as in our projections, is strongest over the Northeast and Midwest. Similar
to our projections, the simulations of Xu and Lamarque (2018) suggest that climate‐induced PM2.5 changes
may be driven by SO4, with significant impacts over the Northeast. The level of agreement with these studies,
and over 40 others listed in Table S1, is expected given the inconsistencies reported in model‐based projec-
tions of the climate penalty on PM2.5 pollution. Large uncertainties associated with climate model response
to greenhouse gas and aerosol concentrations can propagate to projections of climate change impacts,
including air pollution. Additionally, differences in greenhouse gas scenarios, air pollutant emissions, spatial
resolution, time periods, PM2.5 components considered, processes simulated, and others can make direct
comparisons across projections difficult.

The ensemble‐mean projections reflect estimates based on 150 years of underlying simulations representing
climate and atmospheric chemistry at the start, middle, and end of the twenty‐first century. However, each
ensemble‐mean representation of present or future air quality encompasses ensemble members exhibiting
substantial natural variability. This variability is illustrated in Figure 2, which contrasts climate penalties

Figure 1. Climate penalty on U.S. PM2.5 pollution. Ensemble‐mean climate‐induced change in annual‐average PM2.5 from the beginning of the century to 2050
and 2100 under REF, P45, and P37 scenarios.
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on PM2.5 in 2100 under the REF scenario estimated from pairwise combinations of individual present and
future annual simulations. Depending on the individual years used to assess the influence of climate on
PM2.5 concentrations, impacts higher than +5 μg/m3 or lower than −4 μg/m3 may be projected to occur
at the same location. The variability in simulated PM2.5 climate impacts is largely driven by variability in
the SO4 particulate matter component. Estimating the climate penalty from years with meteorology that
is particularly conducive or unfavorable to PM2.5 pollution leads to projections that range from a
significant increase in concentrations across the entire United States to others predicting a climate‐induced
reduction over most of the country. Natural variability is especially evident in the eastern United States and
Midwest, which, driven by SO4, have the largest mean climate impacts (+1.9 and +1.1 μg/m3, respectively),
as well as the greatest interannual variations (standard deviations of 1.2 and 1.0 μg/m3, respectively). The
anthropogenic‐forced signal in air quality can be differentiated from natural variability using multiyear
simulations or initial condition ensembles. Figure 2 also shows average climate penalty projections under
each of the five model initializations included in our ensemble simulations. When 30 years of atmospheric
chemistry are used to represent present and future air quality, projections under all initializations resemble
the ensemble‐mean climate penalty projection.

We find that confidently identifying an anthropogenic‐forced climate change signal in U.S. air quality may
be challenging at midcentury or under climate stabilization policies. Relying on a limited characterization of
natural variability in present and future air quality can lead to climate penalty estimates that disagree with
the ensemble‐mean projection. Close to all penalties (>90%) calculated by pairing single present and future
annual simulations suggest a climate‐induced increase in U.S. pollution by 2100 under the REF scenario.
However, only about 70% of the REF‐scenario single‐year estimates project a PM2.5 penalty at midcentury.
Although the ensemble‐mean projections under the P45 and P37 scenarios suggest an overall increase in
PM2.5 concentrations driven by climate change, 30% to 40% of the estimates derived from individual years

Figure 2. Natural variability in projected PM2.5 climate change impacts. The ensemble‐mean 2100 climate change impact on annual‐average PM2.5 estimated
under REF scenario is shown in the top left panel. Impacts estimated under each specific climate model initialization and 30‐year present and future simula-
tions are shown in the five midsized panels. Samples of projections estimated from one‐year present/future simulation pairs are shown in the 45 smaller panels.
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under these scenarios reflect a climate “benefit” on population‐weighted concentrations, which does not
reflect the true policy impact.

Separating the climate change signal from natural variability in estimates of the climate penalty on air qual-
ity requires an adequate simulation length. The degree to which natural variability must be attenuated will
depend on each study's objectives and design. Previously reported estimates of the impact of climate change
on PM2.5 in the United States are as large as few microgram per cubic meter, frequently close to or smaller
than ±1 μg/m3 (Fiore et al., 2015). In our ensemble simulations, estimating the REF‐scenario end‐of‐century
climate penalty on U.S. population‐weighted PM2.5 at national scale with a ±0.5‐μg/m3 margin of error at
95% confidence requires eight present and future years of simulated atmospheric chemistry. At a regional
level, a larger number of simulation years can be necessary to attain the same level of confidence in projected
regional air quality penalties, with over 20 paired years required for the Northeast. Table 1 lists the number
of simulation years required to project climate penalties with a specifiedmargin of error over the U.S. regions
most heavily influenced by natural variability, the Northeast, Midwest, and Southeast.

Additionally, a margin of error of ±0.5 μg/m3 may be inadequate for projections at midcentury, under cli-
mate stabilization scenarios, or regions with smaller effects, where estimated climate change impacts on
PM2.5 are close to or lower than 0.5 μg/m3. Decreasing the margin of error in projections to ±0.25 μg/m3

entails a significantly larger number of simulations. For the REF scenario end‐of‐century penalty on U.S.
population‐weighted PM2.5 pollution, this would require increasing the paired years simulated to nearly
30. Reducing overconfidence in a simulated estimate of a climate penalty can be achieved by increasing
the extent of both temporal and spatial averaging to strengthen signal detection under the noise of natural
variability (Brown‐Steiner et al., 2018).

Based on our results, we recommend using a minimum of 10 years of simulated climate and atmospheric
chemistry to constrain natural variability in modeled present and future air quality for analyses attempting
to quantify the climate penalty on PM2.5 pollution at a national or larger scale. For regional or local projec-
tions, our results suggest carefully weighing the degree of natural variability at the relevant scale to ensure
the robustness of reported climate penalty estimates. Furthermore, these estimates are derived from a che-
mical composition of PM2.5 that may vary under changing anthropogenic emissions. In our projections, SO4

and NH4NO3 display the strongest responses to climate change. As the fraction of OA in PM2.5 increases, the
magnitude of the climate penalty may decrease. However, similar coefficients of variation (~35%) for the
simulated penalties on population‐weighted SO4, NH4NO3, and OA concentrations suggest that an extended
simulation length will still be necessary to separate an anthropogenic‐forced signal, albeit a smaller one,
from natural variability. While this study simulates the impact of climate change on emitted pollutants, it
does not project its effect on wildfire and dust emissions, which are sensitive to variations in meteorology
and highly susceptible to natural variability (Achakulwisut et al., 2018; Mills et al., 2015; Yue et al., 2013).
Considering these natural emission sources would likely increase the amount of modeling required to cap-
ture the anthropogenic‐forced climate impact on PM2.5.

In several efforts to model the climate penalty on air quality, simulations have been used to simultaneously
project impacts on both PM2.5 and O3. As previously described, in our ensemble simulations a set of five
model initializations across which climate forcings are equal but the simulations' initial state, represented
in the ocean, land and atmosphere, is different is used to capture natural variability beyond multidecadal

Table 1
Margin of Error in Projections of Climate Change Impacts on PM2.5

Ensemble‐mean climate penalty Margin of error Simulation years required

U.S. population‐weighted 1.5 μg/m3 ±0.5 μg/m3 8
±0.25 μg/m3 29

Northeast 1.9 μg/m3 ±0.5 μg/m3 23
Midwest 1.1 μg/m3 ±0.5 μg/m3 16
Southeast 1.0 μg/m3 ±0.5 μg/m3 9

Note. Simulation years required to achieve a ±0.5‐ or ±0.25‐μg/m3 margin of error at 95% confidence in 2100 REF‐sce-
nario climate change impacts estimated from this ensemble. Ensemble‐mean PM2.5 impacts are also listed. Regions
included correspond to those defined in the 2018 U.S. National Climate Assessment (Reidmiller et al., 2018).
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simulations (Monier et al., 2013). For each initialization, Figure 3 shows how climate penalty estimates vary
as the simulation length used to characterize present and future air quality is increased from 1 to 30 years.
While the climate penalties on PM2.5 pollution projected under each initialization can differ substantially for
short model runs, as the simulation length approaches 10 years, mean projections for each initialization
converge to a similar anthropogenic‐forced impact. Compared to our previous study focused on O3

pollution (Garcia‐Menendez et al., 2017), we find that the variability of PM2.5 impacts relative to mean
concentrations is larger. Although our recommended minimum simulation length for PM2.5 climate
impact assessments is lower than our previous 15‐year recommendation for impacts on O3 pollution, the
margins of error on which these are based (0.5 μg/m3 for PM2.5 and 1.5 ppb for O3) usually represent a
larger fraction of the ensemble‐mean penalties projected for PM2.5 compared to those for O3.

4. Conclusion and Implications

Even after over a decade of research progress there is still little consistency among projections of the climate
penalty on PM2.5 (Reidmiller et al., 2018). To identify the causes of the discrepancies and reduce the uncer-
tainty in these estimates, it is critical that simulations adequately consider natural variability in attributing
changes in PM2.5 concentrations to anthropogenic climate change. While executing large‐ensemble simula-
tions with computationally expensive or high‐resolution models may be challenging, strategically combin-
ing temporal and spatial averaging can add robustness to projections (Brown‐Steiner et al., 2018). Our
results show that, as with O3, natural variability has a significant influence on estimates of climate‐induced
changes in PM2.5. Based on our ensemble simulations, we recommend using 10 years or more in efforts to
model climate impacts on U.S. PM2.5 at a national scale with a ±0.5‐μg/m3 margin of error. Further model-
ing was required tomeet the same threshold for smaller‐scale projections. It is also important to note that the
level of variability in climate projections is model‐dependent and additional analyses may be necessary to
weigh the influence of natural variability for different modeling frameworks. While our 10‐year recommen-
dation is drawn from a single model and a specific set of socioeconomic and climate scenarios, we believe
that it can add confidence to reported projections and encourage closer inspection of natural variability in
future efforts to simulate the climate penalty on air quality.

Additional sources of uncertainty beyond natural variability affect projections of PM2.5 under climate
change. Our analysis focuses on the effect of climate on PM2.5. Future air quality will be determined by
the combined effect of climate change and changes in anthropogenic emissions, which are likely to have a
larger effect than the penalty associated with variations in meteorology. Emission changes can also impact
the chemical composition and spatial distribution of PM2.5 pollution, influencing its response to climate and
the level of natural variability inherent to the climate penalty on air quality. However, our results support
concerns that climate change has the potential to degrade air quality gains from pollutant emission reduc-
tions, with significant consequences for human health.

Figure 3. Variability in climate change impact on PM2.5 and O3 pollution. The 2100 REF‐scenario climate impact on U.S.‐
average, U.S. population‐weighted, and Northeast‐average annual ground‐level PM2.5 and daily maximum 8‐hr O3,
expressed as relative change with respect to start‐of‐century mean concentrations. Climate impacts are estimated using
five climate model initializations (denoted by solid lines) and simulation lengths increasing from 1 to 30 years. Shaded
regions indicate the margin of error for each estimate at a 95% confidence level based on the 30‐year sample standard
deviation.
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Model uncertainty in climate and atmospheric chemistry simulations is another important contributor to
overall uncertainty in PM2.5 projections, as evidenced by the significant differences across members of multi-
model ensembles (Allen et al., 2016; Lacressonnière et al., 2016; Silva et al., 2017). Unlike model or emission
uncertainty, the noise from natural variability can be filtered out with extended modeling, allowing simula-
tions to successfully detect the impact of emission policies. Reducing uncertainty associated with natural
variability would also complement modeling efforts targeting other sources of uncertainty in projections
of air quality under climate change, such as spatial resolution or atmospheric process representations.
Furthermore, the uncertainty in estimates of climate‐induced air quality impacts can propagate to projec-
tions of health damages and economic costs included in climate policy assessments, where the uncertainties
associated with modeling health impacts and their economic valuation may be larger still (Heo et al., 2016;
Matus et al., 2012; Saari et al., 2019). The use of decadal or ensemble simulations to better capture natural
viability can reduce overall uncertainty in integrated climate change mitigation analyses, allowing them
to inform climate policy discussions more effectively.
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