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Abstract

Recent research has identified substantial individual
differences in how people solve value-based tasks. Here, we
examine such differences in the motivational Go/NoGo task,
which orthogonalizes action and valence, using open-source
data from 817 participants. Using computational modeling and
behavioral analysis, we identified four distinct clusters of
people. Three clusters corresponded to previous models of the
task, including people with different learning rates for cues that
signal rewarding and punishing states and with different
sensitives for rewards and punishments. The fourth cluster of
people acted like naïve reinforcement learners, with their
responses shaped by outcomes in a manner that was
independent of the state information provided by the cues. In
addition to providing evidence that state-independent learning
is a common disposition, we show that not considering such
learning can dramatically affect the results of computational
modeling. We discuss the implications for the modeling of data
from heterogeneous populations.

Keywords: motivational Go/NoGo task; value-based
decision-making; state-independent learning

Introduction
Human behavior reflects a complex mixture of psychological
forces.  In the context of learning, particular conflict can arise
between Pavlovian and instrumental responding. In the
Pavlovian responding, value is automatically tied to action--
so we are instinctively invigorated in favorable
circumstances, but cautious in threatening ones (Dayan et al.,
2006). In instrumental responding, by contrast, the choice of
what to do is contingent on the consequences of the actions.
(Dayan et al., 2006). Critically, not everyone is equally
susceptible to the Pavlovian lure of, for instance, a smart
outfit in a shopping center, especially when accompanied by
pleasant music. While the attraction of such an outfit can be
irresistible, for some, rational action selection might override
value-seeking, depending on factors such as context and
personality traits.
  The motivational Go/NoGo task (Fig. 1) tests this
relationship. It includes four distinct states wherein
motivation can either align, or interfere, with appropriate
action selection: press a button to win points (Go+), press a
button to avoid losing points (Go-), not press a button to win
points (NoGo+), and not press a button to avoid losing points
(NoGo-). By crossing valence and action, the task can
measure the extent to which Pavlovian biases can dominate

over instrumentality. Studies have shown that population-
level performance falls significantly short of its optimum,
particularly in the Pavlovian-incongruent scenarios where
one must act to avoid punishment (Go-) or refrain from acting
to win (NoGo+) (Guitart-Masip et al., 2012; Moutoussis et
al., 2018). However, individual performance on the
motivational Go/NoGo task is known to vary substantially.

While not fully explored in the context of the motivational
Go/NoGo task, studies suggest that a key source of such
individual variability lies in the way value is processed and
contributes to decision-making. For instance, studies have
widely reported asymmetric learning (Michely et al., 2022)
and differences in performance in rewarding versus
punishing states of affectively charged tasks (Cavanagh et al.,
2011; Kim et al., 2014). This variation correlates with
individual cognitive states, as suggested by the work of
Mkrtchian, Roiser & Robinson et al., (2017) and Proulx,
Hikosaka, & Malinow et al., (2014). Another potential source
of individual variation in value processing that has come to
light more recently involves credit assignment. Although
value should normally be assigned to the states and actions
responsible for generating it, value can sometimes be
attributed to irrelevant task features. For instance, in a 2-step
probabilistic binary-choice task (Shahar et al., 2019), credit
assignment to a right/left key was influenced by recent
rewarding experiences from actions involving that key, even
though the semantics of the keypress, as defined by state
information, were different on each trial. A follow-up study
showed that the extent of the influence of such state-
independent learning correlated with measures of
compulsivity (Shahar et al., 2021). This result is notable as
compulsive behaviors may be founded on the (false) belief
that engaging in a particular action can avert negative
outcomes, even when there is no causal relationship with the
events they aim to influence. In support of a hypothesis that
overcoming state-independent learning requires cognitive
control, another follow-up study found state-independent
learning to be negatively correlated with working memory
capacity (Ben-Artzi, Luria & Shahar, 2022). While these
studies indicate that state-independent learning is a robust
behavioral effect, and possibly even an individual trait, the
hypothesis remains to be tested in other affectively charged
tasks. In addition, an investigation of the impact of state-
independent learning on computational modeling has yet to
be conducted.
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In this study, we employed computational modeling to
explore how individual differences in both state-dependent
and state-independent learning are reflected in solutions to an
affectively charged task. We analyzed published data from
817 participants performing the motivational Go/NoGo task
(Guitart-Masip et al., 2012; Moutoussis et al., 2018) in which
cues (which we refer to as ‘states’) were presented randomly
with equal repetitions in general. Participants had to learn by
trial-and-error whether (Go) or not (NoGo) to press a button
to obtain a reward or avoid a punishment for a given cue. We
used model fitting and comparison to show how behavior
differs across this population. We identified four distinct
clusters of participants, each approaching the task differently,
as evidenced by the distinct behavioral profiles associated
with each cluster. Two groups learnt the task successfully,
with one group displaying the highest performance, while the
other group showed high decision variability in punishing
states leading to a lower performance in these states. The
other two groups of participants performed rather poorly on
the task, with 9% downplaying the reward contingencies of
actions, and 18% downplaying the reward contingencies of
cues, with the latter exhibiting a form of naïve state-
independent learning. Furthermore, we demonstrated that, if
state-independent learning is indeed a common behavioral
disposition, then failing to accommodate it can have a
dramatic impact on the results of computational modeling, by

distorting the estimation of fitted parameters. This distortion
would make them less reliable indicators of individual
behavioral dispositions (e.g., Huys, Maia & Frank, 2016).

Fig. 1. Schematic of the motivational Go/NoGo task. The task
features four distinct states: Go+ to win points, Go- to avoid
losing points, NoGo+ to win points, and NoGo- to avoid
losing points. Participants are required to learn to press a
button (Go) or refrain from pressing a button (NoGo) in each
state through trial and error. In potentially rewarding states,
participants receive either a positive point, indicated by a
green arrow, or neutral feedback, shown as a yellow
rectangle. Conversely, in potentially punishing states, the
feedback is either a negative point, represented by a red
arrow, or neutral. Feedback is probabilistic such that even
after a correct response, the better outcome for each state is
delivered only 80% of the time. In two task states (Go+ and
NoGo-), the correct response aligns with reflexes (Pavlovian-
congruent), while in the other two task states (Go- and
NoGo+), the correct response conflicts with reflexes
(Pavlovian-incongruent).

Results
We analyzed open-source data from 817 healthy

participants, aged between 14 to 24 years (Moutoussis et al.,
2018) who performed the motivational Go/NoGo task
(Moutoussis et al., 2018). For parameter estimation and
model comparison, we utilized the Computational Behavioral
Modeling (CBM) package, which is based on a Hierarchical
Bayesian Inference algorithm (Piray et al., 2019). CBM has
two objectives: 1) comparing the evidence supporting
competing models and 2) estimating the free parameters
within each of these models at both the individual and group
levels. CBM incorporates a random-effect assumption in the
space of models, which facilitates the analysis of individual
differences. Specifically, it calculates a responsibility ratio
(rkn) which describes the probability of participant n’s data
being generated by model k; rkn ranges between 0 and 1 for
each participant n and model k pair, with a higher rkn value
indicating a greater likelihood that the data of participant n is
generated by model k and the sum across all models k
equaling 1 for each participant n. The rkn value, which scales
each participant's contribution to the group-level parameter
estimation for a given model, makes model comparison
straightforward: model comparison can be achieved by
enumerating the responsibility ratios across the group in
favor of each model and thereby computing normalized
model frequencies across the population as well (Fig. 2A). In
addition, by inspecting the maximum rkn for each participant,
CBM can be used to group participants within the model
space and the corresponding group-level parameters for a
given model can be used to understand the behavioral profile
of each of these groups.
Our use of CBM enabled participant categorization, and
identification of state-independent learners for model-
agnostic analysis. In the process of refining our model space,
we initially incorporated a range of models, either proposed
by previous studies or based on our state-independent
learning hypothesis (Guitart-Masip et al., 2012; Moutoussis
et al., 2018): M, M2LR, M2invT and Msind. In addition, we
included versions of the first three models which
incorporated a state-independent learning component,
M2invTsind, and M2LRsind. Through model fitting and
comparison, we refined the model space to meet specific
criteria: convergence within CBM (convergence defined by
the change in normalized parameter values between two
consecutive iterations being less than 0.01) and including
only models applicable to a significant number of participants
at this stage (N>20; according to reported CBM performance
as a function of number of participants (Piray et al., 2019)).
We then examined the convergence of CBM in the absence
of any excluded models. Ultimately, given the evidence that:
1) model frequency of each model across population was
significantly more than defined criteria; and 2) the behavioral
structure of four identified groups are significantly different
from each other, we defined a model space that includes four
distinct models: a basic model M; model M2LR, which was
the winning model in the original analysis of the data
(Moutoussis et al., (2018); and a popular variation of model
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Fig. 2A. Model
frequencies across 817
participants. B. Group-
level median IQ
(WASI) ± SEM for
each cluster. C. Group-
level mean parameters
± SEM for each cluster
(where the parameters
are present in the
models concerned). D-
G. Group-level mean
data ± SEM for (D) the
empirical probability of
making a Go response,

(E) the model-inferred probability of making a Go response, (F) response accuracy and (G) reaction times for Go responses
shown separately for the four clusters (columns). The M2LR and M2invT clusters represent more natural learning trajectories
with (D-E) solid lines (P(Go) in Go+ and Go- states) increasing and dashed lines (P(Go) in NoGo+ and NoGo- states)
decreasing gradually across trials and (G) participants making faster Go response in Go states than NoGo states. The M cluster
relied heavily on state valence, (D-E) largely making Go and NoGo responses in rewarding and punishing states, respectively.
The Msind cluster exhibited non-instrumental behavior, characterized by frequent switching of responses, as illustrated by (D-
E) the nearly flat and close-to-chance learning trajectories.

M, M2invT. We included model Msind with a state-
independent learning component to examine our hypothesis
about the presence and extent of a win-stay-lose-shift strategy
in this task (Table 1).

Model M is based on the use of the Rescorla-Wagner rule
to learn state-values (V) and state-action values (Q) (eq. 1-4).
This involves two parameters: a learning rate (𝛼) and
outcome sensitivity (𝜌; equivalent to inverse temperature).
The model also includes two further parameters that
influence action propensities: a fixed Go bias (b; eq. 5),
which captures any inclination to act rather than remaining
passive and defines the starting point of the state-specific
learning curves; and a Pavlovian bias (π; eq. 5), which, if
positive, boosts Go over NoGo responses in states with
positive values and NoGo responses over Go responses in
states with negative values. Finally, actions are selected
according to a SoftMax probabilistic policy (eq. 6), including
a lapse parameter ξ.

Table1 models and parameters

Models parameters
M Learning rate (𝛼), Sensitivity (𝜌), Go bias

(b), Pavlovian bias (𝜋)
M2LR M + two distinct learning rates for reward

and punishment (𝛼R, 𝛼P)
M2invT M + two distinct sensitivities (equivalent

to inverse temperature) for reward and
punishment (𝜌R,𝜌P)

Msind M+state-independent learning rate (𝛼sind),
state-independent sensitivity (𝜌sind), state-
independent weight (wsind)

𝑄𝑡(𝑎𝑡,𝑠𝑡) = 𝑄𝑡−1(𝑎𝑡,𝑠𝑡) + 𝛼 × 𝛿1(𝑡) eq. 1

𝛿1(𝑡) = 𝜌 × 𝑜𝑢𝑡𝑐𝑜𝑚𝑒(𝑡)−𝑄𝑡−1(𝑎𝑡,𝑠𝑡) eq. 2
𝑉𝑡(𝑠𝑡)  = 𝑉𝑡−1(𝑠𝑡) + 𝛼 × 𝛿2(𝑡) eq. 3

𝛿2(𝑡) = 𝜌 × 𝑜𝑢𝑡𝑐𝑜𝑚𝑒(𝑡)−𝑉𝑡−1(𝑠𝑡)    eq. 4

𝑊(𝑡,𝑎)

= ൜𝑄𝑡
(𝑎𝑡,𝑠𝑡) + 𝑏 + 𝜋 × 𝑉(𝑠𝑡)             𝑖𝑓 𝑎𝑡 = 𝐺𝑜

𝑄𝑡(𝑎𝑡,𝑠𝑡)                                        𝑖𝑓 𝑎𝑡 = 𝑁𝑜𝐺𝑜

   eq. 5

𝑃(𝑎𝑡|𝑠𝑡) =
exp൫𝑊(𝑡,𝑎𝑡)൯

exp (∑ W(t, a))𝑎
× (1− ξ) +

ξ
2  eq. 6

Model M2LR is a variation of model M (eq. 1-6), except
using 𝛼𝑅 and 𝛼𝑃 instead of 𝛼 for rewards and punishments
respectively in eq. 1 and 3. Model M2invT is a variation of
model M except with 𝜌𝑅 and 𝜌𝑃  for rewards and punishments
respectively in eq. 2 and 4.

In the state-independent learning model MSind, values are
also allocated to actions according to the outcome of the
preceding trial (eq. 7 and 8) irrespective of what cue was
shown, with separate learning rate (αsind) and outcome
sensitivity (ρsind) parameters. Action propensities are then a
weighted (via wsind) combination of state-dependent
(𝑊(𝑡, 𝑎), from eq. 5) and state-independent action values (eq.
9):

𝑄𝑡(𝑎𝑡) = 𝑄𝑡−1(𝑎𝑡) + 𝛼𝑠𝑖𝑛𝑑 × 𝛿1(𝑡) eq. 7
𝛿1(𝑡) = 𝜌𝑠𝑖𝑛𝑑 × 𝑜𝑢𝑡𝑐𝑜𝑚𝑒(𝑡)−𝑄𝑡−1(𝑎𝑡) eq. 8

𝑓𝑜𝑟 𝑎 = 𝐺𝑜,𝑁𝑜𝐺𝑜:
𝑊𝑀𝑠𝑖𝑛𝑑 = (1−𝑤𝑠𝑖𝑛𝑑) ×𝑊(𝑡,𝑎) +𝑤𝑠𝑖𝑛𝑑 × 𝑄𝑡(𝑎)      eq. 9

Using hierarchical fitting and model comparison as
implemented by CBM, we estimated group-level parameters
for each cluster, as shown in Fig. 2C: 70 participants (8.5%)
were assigned to model M; 149 (18.2%) to model Msind; 407
(49.8%) to model M2LR; and 191 (23.3%) to model M2invT.
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Turning to the trial-by-trial data, Fig. 2D shows the empirical
learning trajectory for each state for each of the four clusters.
The probability of making a Go response should ideally
increase over trials in Go+ and Go- states (solid lines should
move upward) and decrease over trials in NoGo+ and NoGo-
states (dashed lines should move downward). However, these
curves evolve in qualitatively different manners across
groups. In the Model M cluster (n = 70), participants seem
only to have learnt the valence of each state, acting according
to Pavlovian tendencies, with a strong predisposition to Go in
rewarding states and NoGo in punishing states. This effect is
also apparent in the high mean value of the inferred
population-level for parameter 𝜋 (Fig. 2C). Their learning
trajectories (Fig. 2D, M) increase in both rewarding states
(more Go in Go+ and NoGo+) and decreases in punishing
states (more NoGo in Go- and NoGo) regardless of required
action leading to lower performance in Go- and NoGo+ states
(Fig. 2F, M). They respond more quickly with Go responses
in both rewarding states compared to punishing states,
providing further evidence of their high sensitivity to state
valence (Fig. 2G, M). In the model M2LR cluster (n = 407),
which was the largest cluster, participants learned the task in
a more instrumental manner. They gradually learned to Go in
Go states and NoGo in NoGo states (Fig. 2D, M2LR) and
made faster Go responses in Go states and slower Go
responses in NoGo states (Fig. 2G, M2LR). However, they
learned unequally from rewards and punishments, with the
fitted learning rate for punishing states being higher than for
rewarding states (𝛼P > 𝛼R; Fig. 2C). This asymmetry is
reflected in a large sharp speedy decrease in P(Go) in the
early trials within the NoGo- state compared to the NoGo+
state, which indicates that the value of making a Go response
decreased more after a punishment compared to the omission
of a reward (Fig. 2D, M2LR). In the model M2invT cluster
(n = 191 participants), participants differed in terms of the
variability of their choices for rewarding versus punishing
states, with the fitted variability being higher for punishing
than rewarding states (𝜌P < 𝜌R; Fig. 2C). As a result, the
learning trajectories for this cluster of participants flattens
early for Go- and NoGo- states (Fig. 2D, M2invT) which
stem from making less deterministic Go and NoGo responses
in Go- and NoGo- states respectively (Fig. 2D, M2invT).
This results in lower-than-anticipated performance in NoGo-
across this population, which is typically considered easy to
learn due to the alignment of motivation and action.

Finally, we found that over 18% of participants belonged
to the model Msind cluster, adopting a strategy influenced by
state-independent action learning, potentially alongside some
state-dependent learning (Fig. 2A). The learning trajectories
of the state-independent learners (Fig. 2D, Msind) were
substantially different from those of the state-dependent
learners (Fig. 2D, M/M2LR/M2invT). The probabilities of
Go responses (P(Go)) in the four states displayed relatively
flat curves that did not converge towards higher or lower
asymptotes for Go probabilities in Go and NoGo states,
respectively. Instead, they remained closely clustered
together and near chance level, indicative of high response

switching. In contrast to M2LR and M2invT whose longest
reaction times were for incorrect Go responses in NoGo
states, reaction times in the four states were consistently high
and closely similar, even in Go states, suggesting the
potential adoption of an equal strategy across all four states
(Fig. 2G, Msind). Any minor differences observed may stem
from concurrent state-dependent learning processes. In
general, the reaction times of state-independent learners
(were high and closely similar, even in Go states, suggesting
the potential adoption of an equal strategy across all four
states (Fig. 2G, Msind).  Overall, the performance was lower
than the two clusters who appeared to have fully learnt the 2
x 2 nature of the task (M2LR and M2invT), and even lower
than cluster M, who at least were driven by the valence of the
states.

Building on the findings of Ben-Artzi et al., (2022), who
reported a negative correlation between state-independent
learning and working memory capacity, we examined IQ
scores within each cluster as a proxy for working memory
capacity (Verguts & De Boeck, 2002). Calculating the
median IQ scores for each cluster of participants obtained
from the Wechsler Abbreviated Scale of Intelligence (WASI)
revealed a difference between these groups, with participants
assigned to group M and Msind exhibiting lower IQ scores
(Fig. 2B). This finding aligns with their suboptimal strategy
and decreased performance. Conversely, M2LR participants,
who were found have the highest performance, had
significantly higher IQ scores than any of the clusters
(M2LR: M (p<0.01); M2invT (p<0.04); Msind (p<0.01)).
Statistical testing was performed using non-parametric
ANOVA Kruskal-Wallis test (p<0.01) and corrected for
multiple comparisons using the Bonferroni method.

To gain greater purchase on the choices of those
individuals apparently showing state-independent learning
(Fig. 2D, Msind, fitted with rkn≥ 0.7 by Msind), compared to
those with state-dependent learning (Fig. 2D, M2LR and
M2invT, fitted with rkn≥ 0.7 by M2LR and M2invT), we also
conducted model-agnostic analyses to identify single-trial
fingerprints. On a given trial, the probability of making a
Go/NoGo response should be influenced by the outcome
received the last time the current cue was presented and not
by previous outcomes regardless of which cue had been
shown. However, for state-independent learners, responses
are not solely guided by state-specific experiences; recently
received outcomes biases their responses regardless of which
cues were and are being shown. To examine this effect more
closely, we used the fitted parameters for model Msind to
compute action values based on recent past trials independent
of the state, denoted as Qt(a) for each participant (eq. 7). In
this way, we could identify the subset of trials where state-
independent learning had a greater influence, indicated by
Qt(a) being in its lower or upper tercile. To fully isolate the
impact of state-independent learning, we also excluded two
types of trials: 1) we omitted trials when the current and the
previous state were there same; and 2) we excluded trials
where the action-outcome experience on the previous trial,
which now always involved a different state, was the same as
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the action-outcome experience the last time the current state
was visited. The upper heatmaps in Fig. 3A, B show the
average probability of repeating a Go/NoGo response
following a reward, neutral outcome, or punishment on the
previous trial, which in this analysis always involved a
different state than the current trial. By contrast, the lower
heatmaps in Fig. 3C, D show the average probability of
repeating a Go/NoGo response following a reward, neutral
outcome, or punishment the last time the state was visited,
which in this analysis is never the previous trial. The
illustration shows that state-dependent learners (M2LR and
M2inv) tended to repeat a rewarded action and avoid a
punished action in the next visit to a specific state, and were
not specifically influenced by the previous trial (compare Fig.
3B to Fig. 3D). By contrast, the state-independent learners
(MSind) tended to follow the outcome associated with the last
trial as opposed to the last time the current state was visited
(compare Fig. 3A to Fig. 3C). The decreasing trend in
probability of repeating a Go/NoGo along the x-axis in Fig.
3A shows that they learned to rely on previous trial action-
outcome experience to repeat or avoid a response. This
relates to their lower performance and higher decision
variability. Fig 3C shows that they had nevertheless learned,
to some extent, that actions and states are interconnected (Fig.
2F), suggesting parallel state-dependent (Fig. 3A) and state-
independent (Fig. 3C) learning across the Msind population.

Fig. 3. Model agnostic analysis of (A and C) state-
independent learners (86 participants of 149 state-
independent learners with a conservative threshold of rkn ≥
0.7) and (B and D) state-dependent learners (354 participants
from M2LR andM2invT clusters with a conservative
threshold rkn≥ 0.7). In the upper rows (A-B), each cell shows
the probability of repeating the same action after receiving a
reward, neutral or punishment for that action in the previous
trial. In the lower rows (C and D), each cell shows the
probability of repeating the same action based on the
performed action and received outcome in the last visit to the
current state. The subset of trials used for this analysis are
reported in the adjacent table as the average number of trials
in each cell across participants.

To formally test these differences, we conducted a
permutation test. We obtained the subset of trials for this
analysis as outlined earlier and extracted for each trial, its
preceding trial and last state-specific action-outcome
experiences. This facilitates computing probability of
repeating a Go/NoGo under the influence of outcome type in
previous trial or last visit of each state. Then, we generated
100 permutations of previous trial experiences (performed

actions and received outcomes in the previous trial),
maintaining the integrity of within-state experiences
(performed actions and received outcomes in the last visit of
each state). We calculated the probability of repeating an
action followed by different outcomes and compared two
observed trends between the original and permuted data: 1)
P(Action|Action-Rewt-1) > P(Action|Action-Pun t-1); and 2)
the dominance of state-independent learning over state-
dependent learning in NoGo rows meaning a tendency to
repeat a NoGo action by relying more on previous trial
experience than previous within-state experience. Both
trends were greater in original data than in the permuted data,
implying p<0.01, rejecting the null hypothesis that the
differences in Fig. 3 were due to chance.

Finally, looking specifically at the Msind cluster, we
examined how the inclusion or exclusion of the state-
independent learning strategy affects the fitted parameters
that are supposed to represent the behavior of this population.
Although the state-independence only explains part of the
behavior even for the state-independent learners, when the
state-independent learning strategy is not considered (fitting
Msind participants by model M), the inferences made about
the parameters associated with residual state-dependent
learning change substantially; such as α, π and ρ (Fig. 4),
aligning more closely with the observed behavior across this
population. For example, the empirical P(Go) for state-
independent learners (Msind cluster) appears flat, suggesting
that the estimated state-dependent learning rate (α) in model
M for this group is close to zero. However, considering their
average performance (Fig. 2F) and the model-agnostic
analysis (Fig. 3A, C), we know that they have learned the task
in a state-dependent manner to some extent, indicating that α
should not be that close to zero. The inclusion of state-
independent learning corrects the estimated α to better
represent their partially state-dependent learning as well.

Fig. 4 Parameter estimates
and responsibility ratio, as a
measure of goodness of the
fit in CBM, in 149 state-
independent learners
without (M) and with
(Msind) the incorporation of
state-independent learning
in the model. The change in
estimated learning rate (α),

outcome sensitivity (ρ) and
Pavlovian bias (π) is significant (marked by asterisks).

Incorporating state-independent learning to create the Msind
algorithm helped to solve this issue. The consequence is that
the state-dependent learning rate LR is estimated to be higher
(making the synthetic behavior more faithful), but then the
state-action values are scaled by a trade-off parameter
(1 − 𝑤𝑠𝑖𝑛𝑑) which are estimated based on each participant’s
reliance on state-dependent versus state-dependent learning.
The comparison of estimated parameters between M and
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Msind indicates that there is a higher degree of decision
variability in state-dependent learning (as evidenced by
reduced sensitivity in Msind compared to M) and that choices
are more deterministic based on state-independent learning
information (ρsind > ρ in model Msind). These changes better
capture the greater degree of switching, and, at the same time,
performance, especially in Pavlovian-incongruent conditions
(Go-, NoGo+), as evidenced by Fig. 2F.

Discussion
The exploration of individual differences is of importance

for understanding natural variation in learning and choices
and the different ways in which these processes may go awry
in neuropsychiatric disorders. By applying computational
modeling and behavioral analysis to a large dataset of
participants performing the motivational Go/NoGo task, we
identified clusters of participants characterized by distinct
model-based and model-agnostic signatures.

It is possible that the four distinct clusters identified here
may map onto particular clinical conditions, personal traits or
neurobiological substrates. For example, participants in
cluster M appear to approach the task in a Pavlovian-driven
style, as also reflected in their reaction times (Fig. 2G), with
faster Go responses in rewarding versus punishing states. It
has been reported that disorders like impulsivity, especially
in medicated Parkinson’s disease (Eisinger et al., 2020) and
traumatic stress (Ousdal et al., 2018), are associated with
higher Pavlovian biases in motivated decision-making. The
majority of participants was assigned to model M2LR, in line
with the model that had previously been reported to win
across the same population (Moutoussis et al., 2018). The
higher learning rate for punishment was found to be
correlated with higher levels of serotonin across healthy
participants (Michely et al., 2022) a neurotransmitter
associated with enhanced attention (Hensler, 2010) and
negative outcome avoidance reported as a protective
phenotype in healthy participants (Fox, Ridgewell & Ashwin,
2009). This population duly performed particularly well in
the negative valence states (Go- and NoGo-), but also very
well over all. A great number of participants was assigned to
model M2invT, with two different outcome sensitivities.
Prior research has indicated the presence of separate neural
substrates for processing rewards and punishments, with
clinical conditions and individual differences capable of
modulating the activity within these networks (Kim et al.,
2014; Tomer et al., 2014; Must et al., 2006).  For instance,
distinct reward-punishment sensitivity is reported to be
correlated with ADHD, depression, eating disorders
(Harrison et al., 2012; Portengen et al., 2021).

Although action perseveration and non-reinforcement-
based effects can both lead to state-independent behavior, we
found that these are distinct from the sort of learning
parameterized by Msind which considers the recent action
consequence independent of the context. This is evident in
the decreasing trend in probability of repeating an action
across outcome valences (reward, neutral and punishment) in
Fig. 3A.  Model-dependent and model agnostic analyses

showed that learning could accrue to actions by themselves,
even if it is state-action pairs that determine the actual
outcomes. We hypothesize that this phenomenon becomes
more prevalent under conditions of time pressure, low
success rates, and imperfect task understanding, prompting
participants toward statistically- and computationally-less
demanding strategies. Shahar et al., (2021) has shown this
approach is more common among patients suffering from
OCD and Ben-Artzi et al., (2022) showed that it is negatively
corelated with working memory capacity, a quantity that is
itself related to IQ (Jensen, 1989; Verguts & De Boeck,
(2002). The median IQ scores confirmed differentiation
across the four clusters, with the highest scores observed for
M2LR learners (who performed best overall) and lower
scores for groups exhibiting suboptimal strategies and
performance (M and Msind).

Shahar et al., (2019) reported in a 2-step task with two
fractal images as offered options at each stage, that rewarding
a fractal pattern increased the probability of its selection by
an average of 21.4% when the fractals subsequently switched
sides on the screen, compared to 37.3% when the fractal
response mapping remained unchanged. They argued that the
reward effect can be transferred between states as assigned
value to the response key. Reward increased selection of the
rewarded response key in the next trial by 4.13%. In our
model agnostic analysis, we found that participants assigned
to model Msind tend to repeat a rewarded Go/NoGo by
82%/71% on average and avoid it when it was punished by
47%/25% respectively. The neutral outcome can be
interpreted in two ways: either as safety, indicating the
absence of punishment, or as a lack of gain. In our study, the
received neutral outcome in previous trial was observed to
reduce the probability of repeating the previous trial action
compared to reward while remained more favorable than
punishment such that the probability of repeating the action
that elicited nothing was higher than when punishment was
received (repeating Go/NoGo if the previous trial outcome
was neutral: 64%/45%). The described trend, wherein the
outcome of previous trial is intricately tied to the performed
action, provides evidence indicating a disregard for state
information.

We confirmed the finding of state-independent learners in
various ways, including: 1) conducting permutation tests on
model-agnostic outcomes to demonstrate that the observed
trend in action selection within the Msind cluster is not due
to chance; and 2) simulating data using a model that does not
have the state-independent learning component (e.g. M),
finding that these synthetic participants were not captured by
model Msind in model comparison and showed no sign of
state-independent learning in model agnostic analysis as well.
We showed that ignoring this underlying mechanism could
lead to parameter estimates that significantly deviated from
the characteristics observed in real data. As this extensive
dataset is a component of a larger study encompassing
multiple tasks within a battery, it will be intriguing to track
the decision characteristics of the individuals within Msind
and other clusters across other tasks.
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