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This dissertation consists of four main chapters that study network social interaction

models and panel models with grouped heterogeneity. Chapter 1 and Chapter 2 are

representative work finished during my early exploration of economics. Chapter 3 and

Chapter 4 are completed during the last two years of my Ph.D. studies.

Chapter 1 studies a network social interaction model with heterogeneous links. I show

that the endogenous and exogenous social interaction effects as well as the strength of network

links are identified under some mild conditions. I adopt the nonlinear least squares method

to estimate the unknown parameters using data of a single network. I also investigate the

finite sample performance of the estimation method through Monte Carlo simulations and

apply the model to analyze an online social network.

Chapter 2 studies social interactions model with both in-group and out-group effects.

The in-group effect follows the standard setup in the literature, while the out-group effect

is introduced by assuming the economic outcome also depends on its out-group average

value. I present a network game with limited information of outside groups that rationalizes

the econometric model. I show that both effects are identified under a set of mild regularity

conditions. I propose to estimate the model using the two-stage least squares (2SLS) method
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and establish the asymptotic normality of the estimators. The finite sample performance of

the estimators are investigated through Monte Carlo simulations.

Chapter 3 studies a semiparametric panel quantile regression model with grouped

heterogeneity. The model can capture both time-variant and time-invariant effects of

explanatory variables when group-specific heterogeneity directly affects the coefficients. A

series-based estimation method is developed to estimate the parameters of interest and the

group memberships. I investigate the asymptotic properties of the estimators and propose

an information criterion to estimate the number of groups. The finite sample performance

of the estimation method and the information criterion are investigated through Monte

Carlo simulations. I apply the model to study the effect of foreign direct investment (FDI)

on economic growth. My empirical findings show that FDI has large and significant

heterogeneous effects on economic growth, especially for low-income countries, and such

effect diminishes as the GDP per capita increases. None of these findings have been

documented in previous literature.

In Chapter 4 (joint with Hualei Shang), we study a nonparametric additive panel

regression model with grouped heterogeneity. The model is a valuable extension to the

heterogeneous panel model studied in Su et al. (2016). We propose to estimate the

nonparametric components using a sieve-approximation-based Classifier-Lasso method. We

establish the asymptotic properties of the estimator and show that they enjoy the so-called

oracle property. Besides, we present the decision rule for group classification and establish

its consistency. A BIC-type information criterion is developed to determine the group

pattern of each nonparametric component. We investigate the finite sample performance of

the estimation method and the information criterion through Monte Carlo simulations.

Results show that both work very well. Finally, we apply the model to study the demand

for cigarettes in the United States using panel data of 46 states from 1963 to 1992.
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Chapter 1

A Network Social Interaction Model

with Heterogeneous Links
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1.1 Introduction

There is a growing literature on social interaction models. Researchers have paid considerable

attention to identification and estimation of social interaction models under different network

settings (e.g., Bramoullé et al. (2009); Liu and Lee (2010); Blume et al. (2015)). In these

studies, the strength of network links, which is represented by a so-called adjacency matrix,

is either assumed to be known or the same. But most current network datasets only contain

information on the link profile (coded as 1 and 0), making it difficult for researchers to

know the strength of links ex ante. If the heterogeneity in links is ignored, the estimated

social interaction effects may be biased and can generate misleading policy implications. For

example, previous studies (Carrell et al. (2009); Lin (2010)) have found that there exist

positive social interaction effects on student academic achievement. However, a strong social

interaction effect may only exist between students with similar past academic performance

(Carrell et al. (2013)), and simply organizing students with polarized academic performance

into one classroom may not help to improve the overall academic performance of the whole

class. As pointed out in Jackson et al. (2017), it is important to capture the heterogeneity

in links if one wants to have a better understanding of social interaction effects.

In this chapter, we study a network social interaction model which enables researchers to

use information about the link classification to account for the heterogeneity in links. To the

best of our knowledge, there is limited existing literature on estimating the heterogeneity

in links using cross-sectional data of a single network. The idea is to classify network links

into different groups and impose group-level fix effects to control the heterogeneity. We also

propose a simple data-driven classification criterion to determine the types of links, which

does not require any extra information except for the adjacency matrix. We show that the

endogenous and exogenous social interaction effects as well as the strength of network links

can be identified under some mild conditions. We adopt the nonlinear least squares (NLS)

method for estimation, which has been used in Wang and Lee (2013) and Liu et al. (2017).

Additionally, we investigate the finite sample performance of the model through Monte Carlo
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simulations and apply the method to analyze an online social network.

1.2 Model

1.2.1 Setup

Researchers are interested in studying social interaction effects in some network which

consists of N agents. The network may contain more than one component1 and can be

represented by a N × N adjacency matrix W , where Wij = 1 if i links to j, and Wij = 0

otherwise. Following the convention, we assume Wii = 0 and there are no isolated agents.

We focus on undirected networks2, i.e., Wij = Wji. Researchers also have information on

the link classification and all links are classified into K groups. The classification can also

be represented by a N × N matrix M , where Mij denotes the group identity of the link

(i, j). Let ck represent the strength of links in group k, where k ∈ {1, ..., K}. Without loss

of generality, we normalize the strength of links in the first group to be 1, i.e., c1 = 1. The

structural model is given by

y = λGy + xβ + Gxδ + ε, (1.1)

where y = (y1, ..., yN)′ ∈ RN is the vector of agents’ outcome variables,

x = (x′1, ..., x′N)′ ∈ RN×p is the matrix of agents’ exogenous characteristics. For the sake of

simplicity in notation, we assume p = 1 in the rest of the chapter. We define the N × N

matrix G to be the strength-adjusted adjacency matrix, which reflects the influence of link

strength on the scale of social interaction effects. G is constructed using the original
1Components are parts of the network that are disconnected from each other.
2The model can be generalized to cover the directed networks.
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adjacency matrix W and the classification matrix M as follows

Gij =
WijcMij

N∑
i=1

WijcMij

, (1.2)

where Mij is the group of the link (i, j) and cMij
represents the corresponding link

strength. In addition, λ is the endogenous social interaction effect and δ is the exogenous

social interaction effect. Therefore, the parameters of interest are θ = (λ, β, δ, c2, ..., cK)′, as

we assume that c1 is normalized to be 1. It is worth noting that we can easily generalize

the model by allowing for component-specific unobserved fixed effects and similar

techniques of local difference can be applied to avoid the incidental parameters problem as

in Bramoullé et al. (2009) and Lin (2010).

1.2.2 An Inherent Classification Criterion

In most cases, researchers can classify links according to the characteristics of the agents in

the network. For example, when studying the social interaction effects on student academic

achievement, links can be classified based on students’ previous academic performance.

Besides utilizing extra information, the adjacency matrix W can also provide useful

information for link classification. Sociology and computer science literature suggest that

codegree could be used as a measure of link strength (Marsden and Campbell (1984);

Gilbert and Karahalios (2009)). Motivated by such evidence, we propose to use codegree

kij =
N∑
l=1

WilWlj (1.3)

as a default link classification criterion, which is easy to implement as the codegree matrix

equals W 2. Besides, since most social networks are sparse, such a criterion also guarantees

the number of link groups K is bounded, which ensures an accurate estimation. Other

statistical properties of network data such as centrality may also be useful for link

4



classification.

1.2.3 A Simple Example

Here we present a simple example in which we use codegree as a classification criterion.

Consider the following network

W =



0 1 0 0 0 0 0
1 0 1 0 1 0 0
0 1 0 1 1 0 0
0 0 1 0 1 0 0
0 1 1 1 0 1 1
0 0 0 0 1 0 0
0 0 0 0 1 0 0


.

.

Step 1: Calculate the classification matrix M = W ◦W 2, where ◦ is the hadamard product,

M =



0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 1 2 0 0
0 0 1 0 1 0 0
0 1 2 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Step 2: Construct the strength-adjusted adjacency matrix G using the original adjacency

matrix W and the classification matrix M . Let c1, c2, c3 denote the strength for links (i, j)

such that Wij = 1 and Mij = 0, 1, 2, respectively. We normalize c1 to be 1. According to

5



the equation (1.2), the strength-adjusted adjacency matrix is given by

G =



0 1 0 0 0 0 0

1
1+2c2

0 c2
1+2c2

0 c2
1+2c2

0 0

0 c2
2c2+c3

0 c2
2c2+c3

c3
2c2+c3

0 0

0 0 1
2 0 1

2 0 0

0 c2
2+2c2+c3

c3
2+2c2+c3

c2
2+2c2+c3

0 1
2+2c2+c3

1
2+2c2+c3

0 0 0 0 1 0 0

0 0 0 0 1 0 0



.

1.3 Identification

In this section, we discuss the identification issue of the model.

Assumption 1: E[ε|x] = 0 and E[x′x] is non-singular.

Assumption 2: |λ| < 1.

Assumption 3: λβ + δ 6= 0.

Assumption 4: 0 < ck < M for all k = 1, ..., K, where M is a constant.

Assumption 5: There exist i, j ∈ V such that (G2)ii 6= (G2)jj.

Assumption 6: The network contains either (1) one component, or (2) L components such

that every non-empty proper subset P of {1, ..., L} satisfies c(GP ) ∩ c(GP c) 6= ∅, where GP

represents the subnetwork that is comprised of all components in P and c(GP ) denotes the

set of link identities of all links in this subnetwork.

Assumptions 1-5 are standard in the literature of social interaction models. It is worth noting

that Assumption 2 implies that (I−λG) is invertible, which enables us to rewrite (1.1) into

6



the reduced form

y = (I − λG)−1(βI + δG)x + (I − λG)−1ε, (1.4)

which will be used for the estimation of parameters. Assumption 3 rules out the cases

in which endogenous and exogenous social interactions are zero or balance each other out.

Assumption 4 basically ensures that link strength is positive and finite. Assumption 5 relates

to the asymmetry of network structure as pointed out in De Paula et al. (2018) and implies

the network independence condition in Bramoullé et al. (2009). Assumption 6 ensures that

all link identities in the network can be compared with the normalized group such that c1 = 1.

If there are multiple components, we must have some links acting as an information bridge

between different components to make each link comparable with links in the normalized

group.

Proposition 1: Under Assumptions 1-6, parameters θ = (λ, β, δ, c2, ..., cK)′ in the social

interaction model defined in Section 2 are identified if (1) the sign of (λβ + δ) is known, or

(2) λ > 0.

Proof: See the appendix.

1.4 Simulation and Empirical Application

Since the model is nonlinear in parameters, we use the nonlinear least squares (NLS) method

for estimation following Wang and Lee (2013) and Liu et al. (2017). The NLS estimator of

θ = (λ, β, δ, c2, ..., cK)′ is given by

θ̂NLS = arg min
θ∈Θ0

[y − h(x, θ)]′[y − h(x, θ)] (1.5)

where h(x, θ) = (I−λG(θ))−1(βI+δG(θ))x. Following a similar argument in Wang and Lee

(2013) and Liu et al. (2017), we can show the NLS estimator is consistent and asymptotically

normal. A sketch of the asymptotic analysis is included in the online appendix.
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1.4.1 Simulation

To investigate the finite sample performance of the proposed NLS estimator and

demonstrate the insight of the model, we conduct Monte Carlo experiments based on the

following specification

yi = λ
N∑
j=1

gijyj + xiβ + δ
N∑
j=1

gijxj + εi, (1.6)

where xi is drawn from independent N(0, 2) distributions, εi is drawn from independent

N(0, 1) distributions and yi is generated according to equation (1.4). We set λ = 0.5, β = 1,

δ = 0.8 and generate 3 networks using the Erdős-Rényi model with N = {100, 200, 400},

requiring the average degree to be 5 and that there be no isolated agents. Such network

settings aims mimic sparse social networks in reality. There are three link identities in our

experiments and the probability of a link belongs to each group equals 1
3 . We normalize the

strength of one group to be 1, i.e., c1 = 1. For parameters that control the strength of links,

we consider 3 cases which mimic different real-world scenarios: (1) (c1, c2, c3) = (1, 1, 1), (2)

(c1, c2, c3) = (1, 1.1, 1.2), (3) (c1, c2, c3) = (1, 2, 4). In this first case, there is no heterogeneity

in links, while the heterogeneity becomes more severe in the second and in the third case.

We conduct 1000 repetitions for each setting3 and report the mean and standard deviation

of the empirical distribution of the estimates in Table 1.1.

First, the simulation results show that the parameters of interest can be consistently

estimated using the nonlinear least squares method in each scenario. It is worth noting

that the estimation method works well for sparse social networks, as the density of the

network with 400 agents in our third setting is only 1.3%. Second, it can be seen from the

simulation results that both the bias and the standard deviation decrease when the size of

the network increases. Third, we find that the standard deviations of c2 and c3, which

measure the strength of links, increase when the heterogeneity in links becomes more

severe. This phenomenon may be attributed to the functional form of the elements in the
3The initial values for parameters are (λ, β, δ, c2, c3) = (0, 0.5, 0.5, 1, 1).
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strength-adjusted adjacency matrix G. For example, the corresponding variation in c2
1+c2+c3

is small with respect to the change in c3 when c3 is much larger than c2, which may

increase the difficulty of finding the global minimizer in equation (1.5).

1.4.2 Empirical Application

As an empirical illustration, we apply the model to analyze a social network of Internet

celebrities using data collected from Sina Weibo, which is a popular Twitter-type social

media in China. Our data set includes account information, individual characteristics and

the link profile of 426 social media influencers, which mainly consist of singers and actors.

Two agents are linked if they follow each other on Sina Weibo. Descriptive statistics are

included in the appendix. We are interested in evaluating the social interaction effects on

their willingness to interact with their followers, which is measured as the average number

of daily posts in 2018. We cluster the links into three groups following two designs. In the

first design, links are classified based on the disparity of social influence of two sides, which

is measured by the ratio of their numbers of followers. One third of the links with largest

ratios are classified into the first group and we normalize the strength of this group to be

1. The rest of links are classified evenly into two groups according to their ratios. Similarly,

in the second design, links are classified based on their codegrees and we normalize the link

strength of the group with the smallest codegrees. The estimation results are reported in

Table 1.2.

There are several interesting findings about the estimation results. We find a positively

significant endogenous social interaction effect on these social media influencers’ willingness

to interact with their followers. The results also show that male social media influencers tend

to interact with their followers more frequently and the number of followers has a significant

positive effect on their willingness to post new messages on the social media. In addition, we

find significant heterogeneity in links and the magnitudes of endogenous social interaction

effects are similar to each other in both designs. However, selecting the best link classification
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criterion is beyond the scope of this chapter and we leave it as future work.

1.5 Conclusion

In this chapter, we have studied a network social interaction model, which enables researchers

to detect the heterogeneity in links. We propose to estimate the model using the nonlinear

least squares method. We investigate the finite sample performance of the NLS estimator

through Monte Carlo simulations and apply the model to analyze the social interaction

effects in a real social network.
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Table 1.1: Monte Carlo Simulation Results (1000 draws)

N=100 N=200 N=400

Parameters Mean S.D. Mean S.D. Mean S.D.

No Heterogeneity

λ = 0.5 0.505 0.470 0.496 0.381 0.503 0.285

β = 1 1.000 0.103 1.001 0.077 0.999 0.054

δ = 0.8 0.794 0.635 0.801 0.489 0.798 0.366

c2 = 1 1.012 0.567 1.005 0.349 1.002 0.242

c3 = 1 1.015 0.525 1.001 0.351 1.004 0.248

Weak Heterogeneity

λ = 0.5 0.497 0.501 0.498 0.377 0.502 0.283

β = 1 1.001 0.115 1.001 0.078 0.999 0.053

δ = 0.8 0.799 0.643 0.799 0.489 0.794 0.364

c2 = 1.1 1.110 0.639 1.105 0.398 1.103 0.276

c3 = 1.2 1.213 0.634 1.209 0.442 1.205 0.298

Strong Heterogeneity

λ = 0.5 0.497 0.413 0.498 0.314 0.503 0.233

β = 1 0.999 0.098 1.001 0.073 0.999 0.049

δ = 0.8 0.802 0.578 0.797 0.419 0.799 0.304

c2 = 2 2.073 1.668 2.020 1.057 2.017 0.747

c3 = 4 4.128 3.173 4.061 2.061 4.036 1.402
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Table 1.2: Estimation Results of the Weibo Dataset

Design 1 Design 2

Coef. t-value Coef. t-value

Endogenous effect 0.148 2.086 0.162 2.239

Own characteristics

Age −0.021 −1.473 −0.025 −1.564

Male 0.182 1.981 0.167 2.101

Number of followers 0.127 2.416 0.119 2.355

Exogenous effects

Age −0.014 −0.339 −0.009 −0.198

Male 0.196 1.207 0.183 1.331

Number of followers 0.098 1.254 0.109 1.586

Link strength

c2 1.284 2.032 1.197 1.802

c3 2.193 2.741 1.635 2.327
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Chapter 2

Social Interaction Models with

Out-group Effects

2.1 Introduction

Ever since the seminal work of Manski (1993), social interaction models have attracted

considerable attention from both theoretical and empirical sides; see Jackson et al. (2017)

and Kline and Tamer (2020) for a comprehensive review. The key feature of such models is

that the economic outcome of interest is not only determined by one’s own characteristics

but also by his peers. For example, students’ academic achievement, measured by GPA, are

also affected by their friends’ performance (Lin (2010)).

Motivated by the fact that many real-world networks can further decomposed into sub-

groups, a large amount of literature has focused on social interaction models with group

structures; see Lee (2007), Liu and Lee (2010) and Bramoullé et al. (2009), among many

others. All these studies assume that individuals can only be affected by their within-group

friends. Such setting, however, can be restrictive in reality because potential group-level

interaction effects are completely ignored. We illustrate this point using the same example

of students’ academic achievement. Suppose that all students in some city form a network.
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This single network can be further decomposed by treating each school as a group. It is likely

that a student’s GPA may not only be affected by students in his school but also by the

average academic performance of students in other schools if all students need to compete

together, such as taking the city-level high school entrance examination.

In this paper, we regard the social interaction effect induced by individuals outside the

group as the out-group social interaction effect. To introduce such effect into the classic

social interaction models, we assume that one’s economic outcome depends not only on

his friends’ economic outcomes but also the average value of other groups. This setting is

motivated by the observation that one may not know the situation of other groups as well

as of his own group. For example, it is likely that students have more information of the

academic achievement of his peers in the same school than in other schools.

We show that both the in-group social interaction effect and the out-group social interaction

effect are identified under a set of assumptions that have been made in previous studies

(Bramoullé et al. (2009)). To estimate the parameters of interest, we adopt the two-stage

least squares estimation method developed in Kelejian and Prucha (1998) and establish the

asymptotic normality of the estimators. We investigate the finite sample performance of the

2SLS estimators through Monte Carlo simulations, which show they performs very well.

Our paper contributes to the literature of social interaction models by first introducing

the the out-group social interaction effect. It is noteworthy that ignoring the out-group

social interaction effect may lead to a significant bias of the in-group social interaction

effect because these two effects are often positively correlated in practice. We illustrate

this observation based on numerical experiments in Section 2.4. With the model and the

asymptotic results developed in this paper, one can conveniently test whether the in-group

social interaction effect alone is enough to capture all the interaction effects in real-world

network data sets, making our model an appealing choice for empirical studies.

The rest of the paper is organized as follows. Section 2.2 presents the econometric model

and a network game as its microfoundation. Section 2.3 studies the identification and the
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2SLS estimation of the model. Section 2.4 investigates the finite sample performance of the

proposed estimators through Monte Carlo simulations. Section 2.5 concludes. The online

appendix offers proofs.

Notations. For any real vector or matrix A, we use A> to denote the transpose of A and

A−1 to denote its inverse. We use Aij to denote the ijth element of a matrix A. For two

positive integers a and b, we let 0a×b denote the a × b matrix consists of zeros and 1a

denote the a-dimensional unit vector. For a sequence of random variables Xn, we let n→∞Xn

denote its probability limit, p−→ and d−→ denote convergence in probability and in distribution,

respectively.

2.2 Setup

2.2.1 The Model

Suppose we have data of a single network which consists of n individuals and K groups. We

let Gk denote the kth group. In the group Gk, k = 1, ..., K, there are nk individuals, so

n = n1 + · · ·+nk. The corresponding nk×nk adjacency matrices Wk are observed. Without

loss of generality, we let G1 = {1, ..., n1}, . . . , GK = {∑K−1
k=1 nk + 1, ...,∑K

k=1 nk} denote the

group structure and we use G(i) to represent the individual i’s group for i = 1, . . . , n.

Following the literature (e.g., Lee (2007) and Bramoullé et al. (2009)), we assume that links

only exist within groups. The social interaction model with both in-group and out-group

effects is given by:

yi = λ1
∑

j∈G(i)
WG(i),ijyj + λ2ȳ−G(i) + x>i β + εi, (2.1)

where λ1 measures the in-group social interaction effect, λ2 measures the out-group social

interaction effect, WG(i),ij is the ijth element of the adjacency matrix of the group G(i),

ȳ−G(i) is the average value of the economic outcome outside the group G(i), i.e., ȳ−G(i) =
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1/(n− nG(i))
∑
j /∈G(i) yj, xi is a p×1 vector of nonstochastic1 individual-specific characteristics

and εi is the error term.

To facilitate our discussion, we rewrite the model in its matrix form:

Y = λ1W1Y + λ2W2Y + Xβ + ε, (2.2)

where Y = (y1, . . . , yn)>, X = (x1, ..., xn)> and the two adjacency matrices are given by

W1 =



W1 0n1×n2 . . . 0n1×nK

0n2×n1 W2 . . . 0n2×nK

... ... . . . ...

0nK×n1 0nK×n2 . . . WK



∈ Rn×n,

and

W2 =



0n1×n1
1

n−n1
1n11>n2 . . . 1

n−n1
1n11>nK

1
n−n2

1n21>n1 0n2×n2 . . . 1
n−n2

1n21>nK

... ... . . . ...

1
n−nK

1nK1>n1
1

n−nK
1nK1>n2 . . . 0nK×nK



∈ Rn×n.

Remark 1: If λ2 = 0, then model (2.1) becomes a simplified version of the models studied

in Bramoullé et al. (2009) and Lee (2007). The main difference is that we do not include

group-specific fixed effects here for the sake of simplicity2.
1It is a convention in the literature of social interaction models to assume that the individual

characteristics X are nonstochastic; see Lee (2004) and Lee (2007), among many others.
2The identification results can be derived similarly for models with fixed effects but estimation procedure

would be much more complicated; see Lee (2007) for more details. We leave model (2.1) with group-specific
fixed effects as a future research direction.
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2.2.2 The Microfoundation

In this subsection, we present a network game with limited information of outside groups as a

microfoundation for model (2.1) following the literature (Bramoullé et al. (2007)). Consider

a network game in which each individual maximizes his utility by setting the optimal level

of yi. We assume that any individual i has full information of other individuals in his group

but only knows the average value of the economic outcome outside his group, i.e., Fi =

{πi,WG(i),YG(i),XG(i), ȳ−G(i)}, where πi is the individual-specific heterogeneity in marginal

return of yi, YG(i) is a nG(i)-dimensional vector of economic outcomes of the group G(i) and

XG(i) is defined in the similar fashion. Each individual i is supposed to have the following

utility function:

ui(yi;Fi) = (πi + λ1
∑

j∈G(i)
WG(i),ijyj + λ2ȳ−G(i))yi︸ ︷︷ ︸

benefit

− 1
2y

2
i︸︷︷︸

cost

, (2.3)

where the term (πi + λ1
∑

j∈G(i)
W

G(i)
ij yj + λ2ȳ−G(i)) measures the marginal return of yi. It is

noteworthy that individual’s marginal return now depends not only on his in-group friends

but also the average value of the economic variable outside his group. From the first order

condition, the individual i’s best response function is given by:

yi = πi + λ1
∑

j∈G(i)
WG(i),ijyj + λ2ȳ−G(i). (2.4)

If we let πi = x>i β+ εi, the best response function (5) becomes the econometric model (2.1).

We next characterize the unique interior Nash equilibrium of the network game defined

above.

Assumption 1. The adjacency matrix Wk is row-normalized with Wk,ij ≥ 0, Wk,ii = 0 for

k = 1, ..., K and 1 ≤ i ≤ j ≤ nk.

Assumption 2. |λ1|+ |λ2| < 1.
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Assumption 1 is standard in the literature of social interaction models (e.g., Lee (2004),

Bramoullé et al. (2009) and Liu and Lee (2010).). Assumption 1 requires that the group-

specific adjacency matrices to be row-normalized and individuals do not link to themselves.

Assumption 2 restricts the sum of the absolute values of the in-group and out-group social

interaction effects, which ensures the Nash equilibrium of the network game is unique.

Proposition 1. If Assumptions 1 and 2 hold, the matrix (I− λ1W1 − λ2W2) is invertible

and the network game with payoff function (2.3) has a unique interior Nash equilibrium in

pure strategies:

Y = (I− λ1W1 − λ2W2)−1Π,

where Π = (π1, ..., πn)>.

Proof : See the online appendix.

2.3 Identification and Estimation

2.3.1 Identification

In this subsection, we show that the parameters in model (2.1) are identified under a set of

mild assumptions. Let θ = (λ1, λ2, β
>)> denote the vector of true parameters.

Assumption 3. βi 6= 0 for all i = 1, ..., p.

Assumption 4. For i = 1, ..., n, vi is i.i.d distributed with E[vi] = 0 and Var(vi) = σ2
ε <∞.

Assumption 3 ensures that all individual characteristics can be used as valid instrumental

variables. Assumption 4 requires that the error terms are i.i.d. Both assumptions have been

made in most previous studies (Kline and Tamer (2020)). The next proposition establishes

the identifiability of the parameters.

Proposition 2. If Assumptions 1, 2, 3 and 4 hold, the parameters of interest

θ = (λ1, λ2, β
>)> are identified.
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Proof : See the online appendix.

2.3.2 Estimation

We next discuss the estimation of model (2.1). Given the fact that the OLS estimators

are inconsistent because of the famous reflection problem (Manski (1993)), we propose to

estimate the parameters using the 2SLS method developed in Kelejian and Prucha (1998).

Let Z = (W1Y,W2Y,X) denote the design matrix of model (2.2) and H denote the matrix

of instrumental variables, for example, H = (W1X,W2X,X). The 2SLS estimators are

then given by:

θ̂2SLS = (Z>PHZ)−1Z>PHY, (2.5)

where PH = H(H>H)−1H>. Next we establish the asymptotic properties of the proposed

2SLS estimators.

Assumption 5. There exists a generic positive constant c and sk such that lim
n→∞

nk
n

= sk > c

for all k = 1, ..., K.

Assumption 6. The column sums of the group-specific adjacency matrices Wk, k = 1, ..., K

are bounded uniformly.

Assumption 7. The nonstochastic matrix X have full column rank and its elements are

bounded in absolute values uniformly.

Assumption 8. The matrix of instrumental variables H has full column rank k ≥ p+ 2 for

all n large enough. In addition, H consists of a subset of the linearly independent columns

of (X,W1X,W2X,W1W1X,W2W2X . . . ), where the subset contains at least the linearly

independent columns of (X,W1X,W2X).

Assumption 9. QHH = limn→∞ n
−1H′H exists and is finite and nonsingular. Furthermore,

QHZ =n→∞ n−1H′Z exists and is finite and has full column rank.
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Assumption 5 requires that each group contains a substantial number of individuals, which

is reasonable for most empirical applications. Furthermore, this condition together with

Assumption 6 ensure that the matrices W1 and W2 have uniformly bounded row and column

sums. Assumptions 5-9 are standard in the literature of social interaction models, e.g.,

Kelejian and Prucha (1998) and Liu and Saraiva (2015). The asymptotic distribution of the

2SLS estimators are given in Proposition 3.

Proposition 3. If the data is generated by model (2.1) and Assumptions 1-9 hold, then

√
n(θ̂2SLS − θ) d−→ N(0, [Q>HZQ

−1
HHQHZ]−1).

Notice that QHZ and QHH can be calculated directly using observed data, so it is

straightforward to conduct statistical inference on λ1 and λ2 with the help of general t

tests.

2.4 Monte Carlo Simulations

To investigate the finite sample performance of the proposed estimators, we conduct Monte

Carlo simulations based on the following specification:

yi = λ1
∑

j∈G(i)
WG(i),ijyj + λ2ȳ−G(i) + xi1β1 + xi2β2 + εi. (2.6)

We consider two sets of parameters, which represent cases of weak out-group effect and

strong out-group effect, respectively: (1) λ1 = 0.60, λ2 = 0.20 and β1 = β2 = 1; (2)

λ1 = 0.20, λ2 = 0.60 and β1 = β2 = 1. The individual characteristics xi1 and xi2 are drawn

from independent N(0, 2) distributions and the error term εi is drawn from standard normal

distributions. When implementing the 2SLS method, we let H = (X,W1X,W2X). We fix

the group size to be 50 and consider three different settings: n = 100, 200, 400, which consist

of 2, 4, 8 groups, respectively. The group-specific adjacency matrices Wk are constructed
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following the specification in Liu and Lee (2010): for the ith row of Wk (i = 1, ..., 50), we

draw a integer mki randomly from the set of integers [0, 1, 2, 3, 4]. If i+mki < 50 we set the

(i+ 1)th, . . . , (i+mki)th elements of the ith row of Wk to be ones and the rest elements in

that row to be zeros. Otherwise, the entries of ones will be wrapped around such that the

first (mki − 50) entries of the ith row will be ones. In the case of mki = 0, the ith row of

Wk will have all zeros. We then normalize the matrix Wk by its row sums. The number of

repetitions in each experiment is 1000. The simulation results are reported in Table 2.1.

Table 2.1: Finite Sample Performance of the 2SLS Estimators (1000 draws)

n = 100 n = 200 n = 400

Parameters Mean S.D. Mean S.D. Mean S.D.

Case 1

λ1 = 0.6 0.5959 0.0362 0.6002 0.0331 0.5991 0.0098

λ2 = 0.2 0.1876 0.0880 0.1956 0.1640 0.1892 0.1098

β1 = 1 0.9927 0.0625 0.9993 0.0535 0.9997 0.0289

β2 = 1 0.9958 0.0634 0.9991 0.0519 0.9994 0.0287

Case 2

λ1 = 0.2 0.2003 0.0236 0.2002 0.0162 0.2011 0.0117

λ2 = 0.6 0.6066 0.1309 0.6018 0.0898 0.6018 0.0865

β1 = 1 1.0002 0.0544 1.0007 0.0364 0.9988 0.0242

β2 = 1 0.9991 0.0538 0.9993 0.0368 1.0003 0.0250

The simulation results in Table 2.1 show that the 2SLS estimation method works well for

our model as both the bias and the standard error of the estimates are relatively small

compared with their true values. We next investigate the estimation bias of the in-group

social interaction effect if the out-group effect is ignored. In this case, we adopt the

standard 2SLS estimation method in Kelejian and Prucha (1998) for estimation and take

H = (X,W1X,W2
1X) as instrumental variables. The estimation results are shown in Table

2.2.
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Table 2.2: Simulation Results of the Mis-specified Model (1000 draws)

n = 100 n = 200 n = 400

Parameters Mean S.D. Mean S.D. Mean S.D.

Case 1: λ2 = 0.2

λ1 = 0.6 0.5793 0.0688 0.5799 0.0401 0.5904 0.0207

β1 = 1 0.9646 0.0941 0.9712 0.0596 0.9783 0.0375

β2 = 1 0.9671 0.0920 0.9671 0.0609 0.9781 0.0392

Case 2: λ2 = 0.6

λ1 = 0.2 0.3645 0.0979 0.3206 0.0908 0.2845 0.0735

β1 = 1 1.1067 0.1801 1.0765 0.1208 1.0574 0.0888

β2 = 1 1.1082 0.1731 1.0714 0.1194 1.0565 0.0901

The results in Table 2.2 indicate that ignoring the our-group social interaction effect will

lead to substantiate estimation bias of the in-group social interaction effect. This problem

is especially severe when the out-group effect is large (Case 2). In this sense, the model

proposed in this paper can become an appealing choice for empiricists to deal with potential

out-group social interaction effect in the data.

2.5 Conclusion

In this paper, we study a new class of social interaction models with both in-group and

out-group effects. We provide a network game with limited information of outside groups

which rationalizes the econometric model. We show that the parameters of interest are

identified under a set of mild conditions. We propose to estimate the model using the 2SLS

method developed in Kelejian and Prucha (1998) and establish the asymptotic properties of

the estimators. We investigate the finite sample properties of the 2SLS estimators through

Monte Carlo simulations which show the estimation method performs very well.
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Chapter 3

Semiparametric Quantile Panel

Regression with Grouped

Heterogeneity
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3.1 Introduction

In recent years, quantile panel regression models have attracted considerable interest in both

theoretical and applied econometrics as they can take advantage of panel data structure but

still reserve the merits of quantile regression. Even though substantial progress has been

made by previous studies, the current literature still cannot simultaneously handle several

important features of real-world data sets. First, almost all existing literature uses individual

fixed effects to control heterogeneity, which has been suggested by many empirical studies

as problematic if the heterogeneity can directly affect the data-generating process (Lee et al.

(1997), Durlauf et al. (2001), Cavalcanti et al. (2011) and Zhu et al. (2016)). Second, most

prior studies focused on linear models, which prevents them from capturing potentially time-

varying or nonlinear quantile effects.

Motivated by such facts, we propose a semiparametric quantile panel regression model with

grouped heterogeneity that can account for the above two issues. Our model is fairly general

as it includes several prior models as special cases, such as Wang et al. (2009), Cai et al.

(2018) and Zhang et al. (2019), etc. The key feature of our model is that the conditional

quantile function consists of both a parametric component and a nonparametric component:

the parametric component takes a linear structure, which captures effects of explanatory

variables that do not vary across different time periods; the nonparametric component takes

a varying coefficient structure, which captures effects that evolve with certain time-varying

variables. At the same time, we allow the unobserved grouped heterogeneity to affect both

parametric and functional coefficients by assuming individuals belonging to different latent

groups have heterogeneous coefficients.

The flexible setting of our model brings new challenges for estimation because not only the

parameters of interest but also individuals’ group memberships have to be estimated. To

meet these requirements, we develop a series-based estimation method that mimics the

k-means clustering method in the statistics literature. We establish the asymptotic

properties of the estimators of both parametric and functional coefficients as well as the
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group memberships. More specifically, we show the asymptotic normality for the

estimators of the parametric coefficients and the convergence rate of the functional

coefficients, which can achieve the optimal convergence rate in Stone (1982) under some

regularity conditions. We also propose an information criterion to estimate the true

number of groups using observed panel data. The finite sample performance of the

estimation method and the information criterion are investigated through Monte Carlo

simulations. The results show that both work very well.

We illustrate the usefulness of our model by applying it to study an important topic in

the empirical growth literature: the effect of foreign direct investment (FDI) on economic

growth. Many previous studies have looked into this question using various econometric

methods and data sources; see Carkovic and Levine (2005), Kottaridi and Stengos (2010)

and Cai et al. (2018), among many others. However, they all ignored the potential grouped

heterogeneity in such effect1, which is likely the main reason that their estimates are small

and insignificant. Based on the most recent data, we show that the effect of FDI on economic

growth is in fact heterogeneous, large and significant, especially for low-income countries. In

addition, we find that the scale of the effect decreases as GDP per capita increases, which is

also ignored by prior studies.

Our paper contributes to the literature in three aspects. First, our paper complements the

literature on quantile panel regression by considering a semiparametric model with grouped

heterogeneity, which is of much potential interest for empiricists. Second, our paper

contributes to the thriving literature on panel models with grouped heterogeneity by

generalizing the clustering estimation method to the semiparametric setting. Third, our

paper also contributes to the literature on economic growth by building a new data set and

disclosing some important new results which have been largely ignored in prior studies.

The literature that is most relevant to our paper includes Wei et al. (2006), Wang et al.

(2009) and Zhang et al. (2019) on quantile panel regression, Bonhomme and Manresa
1In this paper, we call the estimates in the literature "the pooling estimates."
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(2015), Su et al. (2016), Su et al. (2019) and Zhang et al. (2019) on panel models with

grouped heterogeneity, and Kottaridi and Stengos (2010), Durlauf et al. (2001) and Cai

et al. (2018) on economic growth.

The rest of the paper is organized as follows. In Section 4.2, we introduce the model and

compare it with related models in the literature. In Section 4.3, we describe the estimation

method in detail. Section 4.4 studies the asymptotic properties of the proposed estimators.

Section 4.5 reports the Monte Carlo simulation results. An empirical application is presented

in Section 4.6. Finally, Section 4.7 concludes. Proofs are included in the Appendix.

Notation: For any matrix A, we denote A−1 as its Moore-Penrose generalized inverse and

‖A‖ as its Frobenius norm. If A is also a squared matrix, we denote λmax(A) and λmin(A) as

its largest and smallest eigenvalues. The Lq-norm of a p−dimensional vector v is denoted by

‖v‖q, where ‖v‖q ≡ (∑p
i=1 |vi|q)1/q when 1 ≤ q < ∞ and ‖v‖q ≡ maxi=1,...,p |vi| when q = ∞.

For a vector-valued function h(·), we let ‖h‖2 be its L2-norm. For a set G, its cardinality

is denoted by |G|. We let (N, T ) → ∞ denote N and T diverging to infinity jointly, p−→

convergence in probability, d−→ convergence in probability. As a general rule for this paper,

we write c as positive generic constants.

3.2 Model

Suppose we observe panel data of N individuals. For any individual i, we observe their data

for T periods, i.e., {yit, xit, zit, uit}Tt=1. At a given quantile level τ ∈ (0, 1), we assume the

response variable yit is generated according to the following model:

yit = x′itαi,τ + z′itβi,τ (uit) + eit,τ , i = 1, ..., N and t = 1, ..., T, (3.1)

where yit denotes the outcome of individual i in period t, xit = (xit,1, ..., xit,p)′ ∈ Rp and

zit = (zit,1, ..., zit,q)′ ∈ Rq are two vectors of observable explanatory variables, uit ∈ R
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is an observable smoothing variable2 and we further assume uit ∈ [0, 1] without loss of

generality, eit,τ is the error term whose τ -th quantile conditional on (xit, zit, uit) equals zero,

αi,τ = (αiτ,1, ..., αiτ,p)′ is a p× 1 vector of individual-specific coefficients which does not vary

with time and βi,τ (u) = (βiτ,1(u), ..., βiτ,q(u)′ is a vector of functional coefficients of u. To

ensure identifiability, we assume that only xit contains the constant term. For each individual

1 ≤ i ≤ N , the parameters to be estimated are θi,τ = (α′i,τ , βi,τ (u)′)′ ∈ Rp+q, and we let θ0
i,τ ,

α0
i,τ and β0

i,τ denote their true values, respectively.

We assume that the model (3.1) is associated with a latent group structure with K0

groups, which means that there exists a disjoint partition of {1, 2, ..., N}, denoted as

G = {G1, ..., GK0}, that uniquely classifies N individuals into K0 groups. Throughout the

paper, we regard the true number of groups K0 as an unknown parameter to be estimated.

By assumption, we have Gi ∩Gj = ∅ for any i 6= j and ∪K0
k=1Gk = {1, ..., N}. Following the

literature, we assume each individual’s group membership is time-invariant and

independent of the explanatory variables. However, we allow both the number of groups

K0 and the group structure G to depend on the given quantile level τ , i.e., K0(τ) and G(τ),

but we suppress such dependence in notation on purpose for simplicity. We let Nk denote

the number of individuals in group k, i.e., Nk = |Gk|, for k = 1, ..., K0. We also assume

that for any individual 1 ≤ i ≤ N , the parameter θ0
i,τ is determined by the individual i’s

group membership:

θ0
i,τ =

K0∑
k=1

θ0
Gk,τ
· 1{i ∈ Gk}, (3.2)

where θ0
Gk,τ

is the parameter shared by all individuals in the group Gk, for all 1 ≤ k ≤ K0.

At the same time, we assume θ0
Gk,τ

6= θ0
Gl,τ

for any k 6= l, which means that individuals

belonging to different groups have heterogeneous parameters.

Here we briefly discuss the relationship between our model and some related models that

have been studied in the literature.
2Here uit could also be a random vector and the estimation method is similar to that used in the scalar

case. However, this may come at the cost of the curse of dimensionality, which requires more observations
to ensure estimation accuracy.
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(1) If βi,τ (u) = 0, the model (3.1) becomes the linear quantile panel regression model with

group heterogeneity without individual fixed effects, which is a simplified version of the

models studied in Zhang et al. (2019):

yit = x′itαi,τ + eit,τ

where αi,τ = ∑K0

k=1 αGk,τ · 1{i ∈ Gk}.

(2) If the grouped heterogeneity is only associated with the intercept term, the model (3.1)

becomes the one studied in Gu and Volgushev (2019):

yit = x′itατ + λi,τ + eit,τ ,

where λi,τ is the individual fixed effect and λi,τ = ∑K0

k=1 λGk,τ · 1{i ∈ Gk}.

(3) If there does not exist any grouped heterogeneity and zit = 1, the model (3.1) becomes

the partially linear quantile panel regression model studied in He et al. (2002):

yit = x′itατ + βτ (uit) + eit,τ .

(4) If there does not exist any grouped heterogeneity, the model (3.1) becomes the

semiparametric quantile panel regression model studied in Wang et al. (2009):

yit = x′itατ + z′itβτ (uit) + eit,τ .

3.2.1 Motivating Applications

In this subsection, we present two potential empirical applications for the model (3.1).

Application 1 (the Effect of FDI on Economic Growth)

Evaluating the effect of FDI on economic growth is an important research topic in the

macroeconomics literature; see Kottaridi and Stengos (2010) for a comprehensive review.
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However, all previous literature has ignored the potential unobserved heterogeneity which

can cause countries to have different economic growth patterns (Durlauf et al. (2001)). Such

heterogeneity can be attributed to culture, institution and other unobserved or immeasurable

factors. Following the literature, we propose to study the quantile effect of FDI on economic

growth using the following model:

yit = αiτ,1 + αiτ,2 log((I
d

Y
)it) + αiτ,3nit + αiτ,4hit + αiτ,5hit · (

If

Y
)it + βi,τ (uit) · (

If

Y
)it + eit,τ ,

where yit is the growth rate of GDP per capita of country i in period t, ( Id
Y

)it is the ratio of

the domestic investment to the GDP of country i in period t, ( If
Y

)it is the ratio of foreign

direct investment to the GDP of country i in period t, nit is the population growth rate,

hit is the human capital measured by the mean years of schooling, and uit is the GDP per

capita of country i in period (t− 1).

In this model, the main purpose of introducing the functional coefficient βi,τ (uit) is to address

the potentially nonlinear and time-varying effect of FDI on economic growth. This is because

the effect is likely to depend on the absolute level of economic development, which is measured

by GDP per capita in the last period. We introduce the grouped heterogeneity because prior

studies have shown its existence (Durlauf et al. (2001) and Kottaridi and Stengos (2010))

and ignoring such heterogeneity may result in inconsistent estimates (Su et al. (2016)). A

detailed analysis of this empirical application is conducted in Section 4.6.

Application 2 (the Effect of Investor Sentiment on Stock Returns)

Behavioral finance has attracted considerable attention in the last few decades. One

important finding in this field is that investor sentiment can significantly affect stock

returns; see Baker and Wurgler (2006) and Schmeling (2009), among many others. Based

on this observation, various econometric models have been adopted in prior studies to

quantify such effect. Ni et al. (2015) considered an interesting linear quantile panel
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regression model as follows:

rit+1 = βτSENTit + x′itατ + eit,τ ,

where rit+1 denotes the stock return of firm i in period t + 1, SENTit measures investor

sentiment, and xit is a vector of firm-specific explanatory variables. Even though Ni et al.

(2015) did not address the grouped heterogeneity in their econometric model, they found

strong evidence indicating that the effect of investor sentiment on stock returns is

heterogeneous across different pre-specific subgroups. For example, they found that

investor sentiment has a larger impact on firms with small market values. However,

regression analysis based on a pre-specified group structure is somewhat arbitrary since the

true group structure can be caused by unobserved factors, such as the public’s preference of

CEOs and the quality of corporate governance. Therefore, we can instead use the following

model:

rit+1 = βi,τ (uit) · SENTit + x′itαi,τ + eit,τ ,

where uit is some variable which affects the effect of investor sentiment on stock returns,

e.g., trading volume, and the stocks are classified by a data-driven estimation method rather

than arbitrary designation.

3.3 Estimation

3.3.1 Series Approximation

We propose estimating the model (3.1) using a series-based clustering method. Let

P (u) = (P1(u), ..., PJ(u))′ denote the vector of basis functions on [0, 1]. Some basis

functions that have been widely used in the literature include B-splines, Legendre

polynomials and power series. We choose B-spline polynomials for simulation and empirical

studies because they have stable numerical performance and are computationally easy; see
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Chen (2007) and Schumaker (2007) for more details on the series estimation method.

Given the vector of basis functions P (u), we approximate β0
il,τ (u) for all i = 1, ..., N and

l = 1, ..., q by β0
il,τ (u) ≈ ∑J

s=1 Ps(u)γ0
il,s,τ = P (u)′γ0

il,τ , where β0
il,τ (u) is the l-th element of

the q × 1 vector β0
i,τ (u), γ0

il,τ = (γ0
il,1,τ , ..., γ

0
il,J,τ )′ is a J × 1 vector such that P (u)′γ0

il,τ can

approximate β0
il,τ (u) sufficiently well (which will be defined formally in Section 4.4) for all

i = 1, ..., N and l = 1, ..., q. Therefore, the model (3.1) can be written as:

yit =
p∑
s=1

xit,sα
0
is,τ +

q∑
l=1

J∑
s=1

zit,lPs(uit)γ0
il,s,τ + εit,τ = x′itα

0
i,τ + w′itγ

0
i,τ + εit,τ , (3.3)

where wit = (zit,1P (uit)′, ..., zit,qP (uit)′)′ ∈ RqJ×1, γ0
i,τ = (γ0′

i1,τ , ..., γ
0′
iq,τ )′ ∈ RqJ×1 and εit,τ =

eit,τ + z′itβ
0
i,τ − w′itγ0

i,τ .

3.3.2 Implementation

Since we assume that the parameters of interest exhibit grouped heterogeneity, we need to

estimate the group-specific parameters θ0
Gk,τ

= (α0′
Gk,τ

, β0′
Gk,τ

)′ as well as the group

memberships g0
τ = {g0

1,τ , ..., g
0
N,τ} ∈ ΓNK0 , where ΓNK0 denotes the set of all partitions of N

individuals into K0 groups {G1, ..., GK0}. Without loss of generality, we denote

gi = Gk = k if individual i is in the group Gk. We then have θ0
i,τ = θ0

Gk,τ
if gi = k for all

i = 1, ..., N . Given the approximated linear model (3.3), we propose estimating the

individual-specific parameter θ0
i,τ and g0

i,τ for i = 1, ..., N using the following steps.

Step 1: Estimate the group-specific parameters δτ and the group memberships gτ by

minimizing the following objective function:

(δ̂τ , ĝτ ) = arg min
δτ∈R(p+qJ)·K0

, gτ∈ΓN
K0

1
NT

N∑
i=1

T∑
t=1

ρτ (yit − x′itαgi,τ − w′itγgi,τ ), (3.4)

where ρτ (u) = (τ − 1(u < 0))u is the check function, gτ = {g1,τ , ..., gN,τ} is a partition of N

individuals into K0 groups, δτ = (δ′G1,τ , ..., δ
′
GK ,τ

)′ consists of the group-specific parameters
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of K0 groups, where δGk,τ = (α′Gk,τ , γ
′
Gk,τ

)′ for all k = 1, ..., K0.

Step 2: Recover α̂Gk,τ and γ̂Gk,τ for all k = 1, ..., K0 from δ̂τ , directly. The individual-specific

parameters are determined by:

α̂i,τ = α̂Gk,τ ,
if ĝi = k for and l = 1, ..., q

β̂il,τ (u) = P (u)′γ̂Gkl,τ .
(3.5)

The vector of the functional coefficients is then given by β̂i,τ (u) = (β̂i1,τ (u), ..., β̂iq,τ (u))′ for

all i = 1, ..., N .

The main intuition behind the optimization problem (3.4) is to find K0 vectors of the group-

specific parameters and classify N individual-specific parameters by minimizing the quantile

loss function. However, solving the optimization problem (3.4) directly is infeasible when

N is large since the number of partitions in the set ΓNK0 is too large to search exhaustively.

To ease the computational burden, we adopt a two-step iterative algorithm which shares a

similar spirit with the k-means clustering method and has been previously used in Bonhomme

and Manresa (2015) and Zhang et al. (2019). The details of the algorithm are provided in

the Appendix.

3.4 Asymptotic Properties

In this section, we discuss the asymptotic properties of the proposed estimators. We first

introduce some notations. For all i = 1, ..., N and t = 1, ..., T , let f(eit,τ |xit, zit) be the density

function of eit,τ conditional on (xit, zit) and F (eit,τ |xit, zit) be the cumulative distribution

function of eit,τ conditional on (xit, zit). Recall that wit = (zit,1P (uit)′, ..., zit,qP (uit)′)′ ∈

RqJ×1 for J ≥ 1. We next introduce some assumptions that are sufficient to show the

consistency of the estimators.

Assumption 1. ( Data Generating Process )
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(i) (yit, xit, zit, uit) is independent across different individuals i and time periods t, and

identically distributed for all i ∈ Gk.

(ii) For all 1 ≤ i ≤ N and 1 ≤ t ≤ T , we have: (1) xit and zit are bounded almost surely;

(2) uit has a bounded support on [0, 1].

(iii) The eigenvalues of the matrix E[zitz
′
it|uit = u] are bounded and bounded away from

zero and infinity uniformly for all u ∈ [0, 1].

(iv) The conditional density of uit given xit is uniformly bounded and bounded away from

zero on the support of xit.

(v) The conditional density function f(e|x, z) is bounded and bounded away from zero and

have a bounded first derivative in the neighborhood of zero.

Assumption 1 specifies the restrictions on the data generating process. Assumptions 1(i)

specify the dependence structure of the data. In this paper, we consider the i.i.d. case for

the sake of technical simplicity. It is noteworthy that the estimation method and the

corresponding asymptotic results developed in this paper can be generalized to time series

data, say, the β-mixing processes, with the cost of notational heaviness. Some Monte Carlo

simulation results for time series are available upon request. The first part of Assumption

1(ii) imposes uniform moment restrictions on the explanatory variables xit and zit, which is

standard in the literature on quantile regression models; seeKoenker et al. (2017). The

second part of Assumption 1(ii) is a standard assumption and a common practice for

varying coefficient models and series estimation. This assumption can be easily satisfied by

transforming uit to some bounded random variables using a one-to-one mapping.

Assumption 1(iii), (iv) and (v) are standard technical assumptions for quantile regression

models and series estimation, which ensure the estimators are fully identified and thus

well-defined.

Assumption 2. ( Series Approximation )
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(i) The eigenvalues of E[P (uit)P (uit)′] and
∫ 1

0 P (u)P (u)′du are bounded and bounded away

from below and above by some generic constants. In addition, there exists a sequence

of positive constants ζ0(J) such that supu∈[0,1]
∥∥P (u)

∥∥ ≤ ζ0(J) and the L2 norm of P (u)

is bounded and bounded away from below and above.

(ii) For 1 ≤ i ≤ N and 1 ≤ l ≤ q, there exists some γ0
il ∈ RJ and κ > 0 such that

supu∈[0,1] |β0
il,τ (u)− P (u)′γ0

il| = Op(J−κ).

(iii) (N, T )→∞, J →∞, J3ζ2
0 (J)(log(T ))2/T → 0.

Assumption 2 relates to the series approximation theory. Assumption 2(i) is standard in

the literature on series approximation method; see Chen (2007). The first part of this

assumption ensures that the population design matrix of basis functions is well-defined,

while the second part specifies the upper bound of the Euclidean norm of the vector of

basis functions. Assumption 2(ii) assumes that β0
il,τ (u) can be approximated sufficiently well

by basis functions, which further implies that the group-specific parameters β0
Gk,l,τ

(u) can

also be well-approximated. This assumption is standard in the series-based semiparametric

estimation literature, for example, Newey (1997). Furthermore, it is worth noting that this

assumption holds if the function being approximated belongs to the so-called Hölder ball,

which is a subspace of smooth functions; see Chen (2007) for more details. Assumption

2(iii) imposes restrictions on the growth rate of N and T , which are useful for showing the

consistency of the estimators.

Assumption 3. ( Grouped Heterogeneity )

(i) For any group Gk ∈ G = {G1, ..., GK0}, there exists a generic constant c > 0 such that

lim
N→∞

N∑
i=1

1{g0
i,τ = Gk} = Nk

N
= πk > c.

(ii) There exists a generic constant c > 0 such that either

min
Gk,Gl∈G

∥∥∥α0
Gk,τ
− α0

Gl,τ

∥∥∥ > c
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or

min
Gk,Gl∈G

∥∥∥β0
Gk,τ
− β0

Gl,τ

∥∥∥
2
> c

or both hold, for any Gk, Gl ∈ G = {G1, ..., GK0} and k 6= l.

Assumption 3 is about the unobserved grouped heterogeneity in the data. Both Assumption

3(i) and Assumption 3(ii) are standard in the literature of panel regression models with

grouped heterogeneity (Su et al. (2016), Su et al. (2019), etc). Assumption 2(i) requires that

each latent group consists of a substantive amount of individuals, which guarantees that the

grouped heterogeneity in the data does not vanish asymptotically. Assumption 2(ii) assumes

that the group-specific parameters are well-separated across different groups. It is worth

mentioning that Assumption 2(ii) only requires that either parametric or nonparametric

coefficients are separated across different groups.

A direct outcome of Assumption 3(ii) and 2(ii) is that the oracle group-specific parameters,

δ0
Gk,τ

, are well-separated for any Gk, Gl ∈ G, which is formally stated in the following lemma.

Lemma 1. Suppose Assumptions 1, 2 and 3 hold, for any Gk, Gl ∈ G = {G1, ..., GK0} and

k 6= l, we have ∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥ > c > 0,

for some constant c, where δ0
Gk,τ

= (α0′
Gk,τ

, γ0′
Gk,τ

)′ ∈ R(p+qJ)×1 and

γ0
Gk,τ

= (γ0′
Gk1,τ , ..., γ

0′
Gkq,τ

)′ ∈ RqJ×1.

The above lemma implies that different groups have different values of δ0
Gk,τ

. Intuitively,

when (N, T ) is large, the estimates δ̂i,τ will converge to δ0
i,τ , so the consistency follows under

some regularity conditions. We are now ready to present the asymptotic properties of the

proposed estimators. The following theorem formally establishes the consistency of the

estimators of coefficients.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold and the correct number of groups K0 is

known, let Ĝ = {Ĝ1, ..., ĜK0} be the estimated group memberships, then for all k = 1, ..., K0,
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we have ∥∥∥∥α̂Ĝσ(k),τ
− α0

Gk,τ

∥∥∥∥ = op(1),

and ∥∥∥∥β̂Ĝσ(k)l,τ
− β0

Gkl,τ

∥∥∥∥
2

= op(1),

for all l = 1, ..., q, where (σ(1), σ(2), ..., σ(K)) is a suitable permutation of (1, ..., K0).

Theorem 2 gives the preliminary convergence rate of the estimators of both parametric

and functional coefficients. The estimators of the parametric coefficients α̂Ĝσ(k),τ
and the

estimators of the functional coefficients β̂Ĝσ(k),l,τ
are consistent when T → ∞ and J → ∞.

The estimation error is determined by both T and J , while J → ∞ alone ensures that the

approximation error is asymptotically negligible. It is noteworthy that we also find that

the rates are only determined by T rather than N , which is consistent with the findings

in Su et al. (2019). The reason we need to introduce the permutation σ here is that the

estimation procedure 3.3.2 only generates a partition Ĝ = {Ĝ1, ..., ĜK0} of N individuals

into K0 groups. The induced subgroups {Ĝ1, ..., ĜK0} are not labeled or ordered, so the

permutation σ here can be understood as a one-to-one mapping from the estimated groups

Ĝ to the latent group G. The second part of Theorem 2 implies that the estimated individual

group memberships {ĝ1, ..., ĝN} are consistent. Finally, it is worth pointing out that we need

to know the correct number of groups ex ante in order to achieve the consistency of the

estimators of both coefficients and group memberships. Otherwise the estimates will be

inconsistent and misleading. The estimation of K0 will be discussed in Section 3.5.2. The

next corollary establish the consistency of the estimators of group memberships.

Corollary 1. Suppose Assumptions 1, 2 and 3 hold and the correct number of groups K0 is

known, let ĝτ = {ĝ1,τ , ..., ĝN,τ} be the estimated group memberships, for all i = 1, ..., N , we

have

lim
T→∞

P (ĝi,τ = g0
i,τ ) = 1.
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We next study the asymptotic distribution of the estimators of the parametric coefficients

and the refined convergence rate of the functional coefficients. We first introduce some

other notations. For each group Gk ∈ G, we let fGk,τ (e|xit, zit, uit) be the probability

density function of eit,τ conditional on (xit, zit, uit) and FGk,τ (e|xit, zit, uit) be the

cumulative probability function of eit,τ conditional on (xit, zit, uit). For the sake of

notational simplicity, we let fGk,τ and FGk,τ denote fGk,τ (e|xit, zit, uit) and

FGk,τ (e|xit, zit, uit) throughout the rest of this paper, respectively. We define

φGk(z, u) = E[xit|zit = z, uit = u] to be a function from Rq ⊗ R to Rp for all i ∈ Gk. Next,

we let HGk be the subspace of varying-coefficient-form functions on Rq × [0, 1] to R, i.e.,

HGk = {h : h(z, u) = z1h1(u)+· · ·+zqhq(u), E[z2
it,jhj(uit)2] <∞, for i ∈ Gk and j = 1, ..., q}.

We let mGk,l(z, u) be the projection of the l-th element of φGk(z, u) = E[xit|zit = z, uit = u]

onto the space HGk for all i ∈ Gk and l = 1, ..., p, which is defined by

mGk,l(z, u) = arg min
h∈HGk

E
[
fGk,τ (0)(φGk,l(zit, uit)− h(zit, uit))2

]
.

In addition, we let MGk(z, u) = (mGk,1(z, u), ...,mGk,p(z, u))′ . It is worth noting that for

any mGk,l(z, u), there exist corresponding {hGk,ls(u), s = 1, ..., q} such that mGk,l(z, u) =∑q
s=1 zshGk,ls(u), which is ensured by definition. Finally, for all i ∈ Gk, we let

ΓGk,τ = E
[
fGk,τ (0)(xit −M(zit, uit))(xit −M(zit, uit))

′
]
, (3.6)

and

ΩGk,τ = E
[
τ(1− τ)(xit −M(zit, uit))(xit −M(zit, uit))

′
]
. (3.7)

We next introduce assumptions that are sufficient to establish the asymptotic distribution

of α̂Gk,τ and the refined convergence rate of the functional coefficients β̂Gk,τ .
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Assumption 4. ( Asymptotic Normality )

(i) For all k = 1, ..., K0, s = 1, ..., q and l = 1, ...p, there exists some η0
g ∈ RJ and κ > 0

such that supu∈[0,1] |hGk,ls(u)− P (u)′η0
g | = Op(J−κ).

(ii) Let δ̂∗τ be the estimator to the optimization problem 3.4 such that g0
τ is known. The

following condition holds δ̂τ = δ̂∗τ + op(cNT ), where cNT is a sequence of real numbers.

(iii) J3ζ2
0 (J)(log(NT ))2/(NT )→ 0, J →∞ and

√
NT · J−κ → 0.

(iv) Both ΓGk,τ and ΩGk,τ are positive definite for all k = 1, ..., K0.

Assumption 4(i) is similar to Assumption 2(ii), which ensures that hGk,ls(u) can also be

approximated sufficiently well by basis functions. Assumption 4(ii) is a high-level

assumption which ensures the asymptotic equivalence between the general estimator to the

optimization problem 3.4 and the oracle estimator. This assumption can be implied by

other low-level assumptions with more technical complexity. Assumption 4(iii) imposes

restrictions on the joint convergence rates of both N and T . There are two implications of

this assumption. First, it implies the asymptotic equivalence between the proposed

estimators and the oracle estimators. Second, it ensures the approximation error is

asymptotic negligible. Assumption 4(iv) ensures the covariance matrix is well-defined. The

next theorem establishes the asymptotic distribution of the parametric coefficients and the

refined convergence rate of the functional coefficients.

Theorem 2. Suppose Assumptions 1, 2, 3 and 4 hold, let Ĝ = {Ĝ1, ..., ĜK0} be the

estimated group structure, for all k = 1, ..., K0, there exists a suitable permutation of

(1, ..., K0), denoted by σ = (σ(1), σ(2), ..., σ(K0)), such that

(i) √
Nσ(k)T (α̂Ĝσ(k),τ

− α0
Gk,τ

) d−→ N(0,Γ−1
Gk,τ

ΩGk,τΓ−1
Gk,τ

),

(ii) ∥∥∥∥β̂Ĝσ(k)l,τ
− β0

Gkl,τ

∥∥∥∥
2

= Op((NkT )−1/2J1/2 + J−κ),
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for all l = 1, ..., q, where ΓGk,τ and ΩGk,τ are defined in equations 3.6 and 3.7.

Theorem 2 establishes the asymptotic distribution of the parametric coefficients α̂Ĝσ(k),τ
as

well as the refined convergence rate of the nonparametric coefficients β̂Ĝσ(k),τ
. It is worth

noting that when J has the order of (NkT )1/(1+2κ), we have∥∥∥∥β̂Ĝσ(k)l,τ
− β0

Gkl,τ

∥∥∥∥
2

= Op((NkT )−κ/1+2κ), which achieves the optimal convergence rate for

nonparametric estimators in Stone (1982). For the inference of α̂Ĝσ(k),τ
, there are two main

approaches in the literature. The first approach is to estimate the asymptotic covariance

matrix directly, which requires one to construct the empirical counterparts of ΓGk,τ and

ΩGk,τ . However, it is well known that estimating the conditional density function fGk,τ (0)

is a non-trivial task and the existing estimation methods can have poor finite sample

performance because the estimates can be sensitive to the value of the bandwidth (Koenker

and Machado (1999)). A more popular approach is to use the bootstrap method to

construct the confidence interval based on resampled data, and we follow this approach.
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3.5 Monte Carlo Simulations

3.5.1 Data Generating Processes

We consider four data generating processes (DGPs). For each DGP, we consider six settings

of (N, T ), including (1) (N, T ) = (50, 40); (2) (N, T ) = (50, 80); (3) (N, T ) = (50, 120); (4)

(N, T ) = (100, 40); (5) (N, T ) = (100, 80) and (6) (N, T ) = (100, 120). We utilize these six

settings to study the influence of sample size and length of panels on estimation accuracy.

When estimating these models, we follow the estimation procedure proposed in subsection

3.3.2, which is based on a single quantile for estimation, and we consider τ = 0.25, 0.5 and

0.75, separately.

DGP 1: In this benchmark data generating process, we assume yit is generated according

to the following specification:

yit = xitαi + zitβi(uit) + εit (3.8)

for all i = 1, ..., N and t = 1, ..., T , where xit iid∼ Unif(−1, 1), zit iid∼ Unif(−1, 1), uit iid∼

Unif(0, 1) and εit iid∼ N(0, 1). Therefore, the conditional quantile function of yit is given by

Qτ (yit|xit, zit, uit) = xitαi + zitβi(uit) + Φ−1(τ),

where Φ−1(τ) is the inverse cumulative density function of the standard normal distribution.

Notice that when τ = 0.5, we have Φ−1(τ) = 0. When we estimate the model, we always

include the constant term along with x to accommodate the potentially nonzero intercept

term. We next introduce the grouped heterogeneity on the model. In this benchmark DGP,

we assume there exist two groups, i.e., G = {G1, G2} and each group contains exactly half

of the individuals, i.e., N1 = N2 = N
2 . Furthermore, we make the following assumptions on
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the group-specific parameters:

αi =


1 if i ∈ G1,

2 if i ∈ G2,

and

βi(u) =


−2u2 + 5u if i ∈ G1,

u2 + 2u if i ∈ G2.

DGP 2: We let the second DGP share the same specification as DGP 1, i.e.,

yit = xitαi + zitβi(uit) + εit (3.9)

for all i = 1, ..., N and t = 1, ..., T , where xit iid∼ Unif(−1, 1), zit iid∼ Unif(−1, 1), uit iid∼

Unif(0, 1) and εit
iid∼ N(0, 1). However, in this DGP, we increase the number of groups to

three, i.e., G = {G1, G2, G3} and the ratio of individuals within these three groups is fixed

to N1 : N2 : N3 = 3 : 3 : 4. In addition, we assume the group-specific parameters are given

by

αi =



1 if i ∈ G1,

2 if i ∈ G2,

3 if i ∈ G3,

and

βi(u) =



−2u2 + 5u if i ∈ G1,

u2 + 2u if i ∈ G2,

4u2 − u if i ∈ G3.

Notice that we keep DGP 2 similar to DGP 1 except for the number of groups. Therefore,

these two DGPs together can allow us to investigate the influence of the number of groups

K0 on the finite sample performance of the estimation method as well as the information

41



criterion.

DGP 3: In this data generating process, we consider the following specification with

heteroscedastic error

yit = xitαi + zitβi(uit) + xitεit, (3.10)

for all i = 1, ..., N and t = 1, ..., T , where xit iid∼ Unif(0, 1), zit iid∼ Unif(−1, 1), uit iid∼ Unif(0, 1)

and εit
iid∼ N(0, 1). Since the model contains a heteroscedastic error term, the parametric

coefficient αi is quantile-dependent. To be more clear, the conditional quantile function of

yit given (xit, zit, uit) is given by

Qτ (yit|xit, zit, uit) = xit(αi + Φ−1(τ)) + zitβi(uit).

The group-specific parameters and the ratio of individuals in each group are the same as

in DGP 2. By comparing the simulation results of DGP 2 and DGP 3, we can see how

heteroscedastic errors influence the finite sample performance.

DGP 4: In this data generating process, we consider the following specification:

yit = xitαi + zit,1βi,1(uit) + zit,2βi,2(uit) + εit, (3.11)

for all i = 1, ..., N and t = 1, ..., T , where xit iid∼ Unif(−1, 1), zit,1 iid∼ Unif(−1, 1), zit,2 iid∼

Unif(−1, 1), uit iid∼ Unif(0, 1) and εit iid∼ N(0, 1). The conditional quantile function of yit given

(xit, zit, uit) is

Qτ (yit|xit, zit, uit) = xitαi + zit,1βi,1(uit) + zit,2βi,2(uit) + Φ−1(τ).

We still assume there exist three groups of individuals, i.e., G = {G1, G2, G3} and the ratio of

individuals within these three groups is fixed to N1 : N2 : N3 = 3 : 3 : 4. The group-specific
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parameters are given by

αi =



1 if i ∈ G1,

2 if i ∈ G2,

3 if i ∈ G3,

and

βi,1(u) =



−u2 + 4u if i ∈ G1,

u2 + 2u if i ∈ G2,

3u2 if i ∈ G3,

and

βi,2(u) =



sin(πu) if i ∈ G1,

− sin(πu) if i ∈ G2,

cos(πu) if i ∈ G3.

The plots of the nonparametric coefficients in these four DGPs are shown in Figure 1.

3.5.2 The Determination of the Number of Groups

There are two main methods of determining the number of groups K0 in the literature. The

first method is to use a BIC-type information criterion (Bonhomme and Manresa (2015)

Su et al. (2016), Su et al. (2019), Wang et al. (2019) and Gu and Volgushev (2019), etc.).

The main idea of this method is that the information criterion, which trades off between

the model fitness and the model complexity, is able to select the correct number of groups

consistently under some regularity conditions. The second one is the cross validation with

averaging method, which has been used in Zhang et al. (2019). We follow the literature of

the first method by proposing a BIC-type information criterion to select K0.

Let Kmin and Kmax be the possible minimum and maximum number of groups, respectively.

In most cases, the minimum number of groups is set to be one, meaning there exists no
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grouped heterogeneity. However, currently there is no consensus on how to choose the

maximum number of groups Kmax besides that it must be larger than the correct number of

groups K0.3 We let K = {Kmin, Kmin + 1, ..., Kmax} denote the set of possible values for the

number of groups.

Step 1: For a given quantile τ and any K ∈ K, estimate the group structure

Ĝ = {Ĝ1, ..., ĜK} and the group-specific parameters δ̂(K)
τ using the two-step estimation

method in Section 4.3. Then calculate the following information criterion

IC(K, τ) = 1
NT

N∑
i=1

T∑
t=1

ρτ (yit − x′itα̂
(K)
ĝi,τ
− w′itγ̂

(K)
ĝi,τ

) + cNT · (p+ qJ)K, (3.12)

where cNT is a tuning parameter which depends on (N, T ).

Step 2: Choose K̂τ such that

K̂τ = arg min
K∈K

IC(K, τ).

We use this information criterion to determine the number of groups both in the Monte

Carlo simulations and in the empirical application.

3.5.3 Implementation Details

In this subsection, we describe the details of the implementation and evaluation procedures

used in the Monte Carlo simulations. For each data generating process, we conduct 1000

repetitions of the simulation. In each repetition, we pretend the true number of groups

is unknown and use the information criterion 3.12 to determine the number of groups K.

When estimating the model, we assume K0 is known and follow the procedure in Section 4.3

for estimation. It is worth mentioning that such arrangement is standard in the literature;
3This is because if Kmax is strictly smaller than K0, the coefficient estimators and the estimated group

memberships will be inconsistent. On the other hand, if the number of groups used for estimation is larger
than the correct number of groups, the coefficient estimators will still be consistent but individuals of a
common group might be classified into two or more groups (Liu et al. (2019)).
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see Su et al. (2016), Zhang et al. (2019) and Su et al. (2019), etc. When computing the

information criterion, we let the tuning parameter cNT = c · log (NT )/(NT ), where c is some

positive constants. Although there are no established results for determining c, we find that

the information criterion with c = 0.80 performs satisfactorily among multiple alternatives4.

In the estimation part, we use cubic B-splines to form basis functions and let J = b(NT )1/5c,

where bcc denotes the largest integer that is smaller than the constant c.

To evaluate the finite sample performance of the information criterion, we report the

empirical probability of selecting different numbers of groups: P̂ (K̂ = K) = NK/Nsim,

where NK is the number of repetitions in which K is selected by the information criterion

and Nsim is the total number of repetitions which equals 1000 in our case. To evaluate the

finite sample performance of the estimation method, we report the average rate of correct

classification (CC Rate) and the average root mean square error (RMSE) for all

individuals. As pointed out in Section 4.3, we use three strategies to generate thirteen

initial values and pick the one that gives the lowest loss in order to ease the problem of

local optimum. The average rate of correct classification (CC Rate) is given by

CC rate = 1
Nsim

Nsim∑
j=1

{ 1
N

N∑
i=1

I(ĝ(j)
i,τ = g

0,(j)
i,τ )

}
,

where j denotes the j-th repetition. It is worth noting that we need to find the proper

permutation σ of (1, ..., K0) which is defined in Section 4.3 when calculating the CC rate.

This is because the group indexes given by the estimation procedure may not coincide with

the true group indexes in the data-generating process, making it necessary to define a suitable

mapping from the estimated group indexes to the true group indexes. When the number of

true groups is K0, there will be a total number of K0! possible permutations and we pick

the one which gives the highest rate of correct classification. The RMSE for all individuals
4This value of c is chosen from the grid [0.1, 0.2, ..., 2.0] based on multiple Monte Carlo simulations.
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is given by

RMSE(α̂τ ) = 1
Nsim

Nsim∑
j=1

√√√√ 1
N

N∑
i=1

∥∥∥∥α̂(j)
i,τ − α

0,(j)
i,τ

∥∥∥∥2
,

and

RMSE(β̂τ ) = 1
Nsim

Nsim∑
j=1

√√√√ 1
N

N∑
i=1

{ 1
R

R∑
r=1

∥∥∥∥β̂(j)
i,τ ( r

R
)− β0,(j)

i,τ ( r
R

)
∥∥∥∥2 }

,

where R is the number of evaluation points and we let R = 10000 in the simulation.

3.5.4 Simulation Results

Table 1, Table 2 and Table 3 report the simulation results for four DGPs based on 1000

repetitions. Table 1 reports the empirical probability that a specific number of groups is

selected at τ = 0.50. The results show that the information criterion can effectively select

the true number of groups with high probability when (N, T ) is large. More specifically,

we can see that T has a large impact on the performance of the information criterion while

the impact of N is relatively moderate. The simulation results also show that the model

complexity affects the performance of the information criterion as the empirical probability

of selecting the true number of groups in DGP 4 is on average lower than that in DGP 1,

2 and 3. When we calculate the information criterion, we let c = 0.80 and τ = 0.50. It

is worth noting that we can also use other quantiles to determine the number of groups as

long as the group heterogeneity exists at this quantile. Furthermore, we also find that the

value of the tuning parameter c plays an important role in determining the finite sample

performance of the information criterion, especially when the length of panels T is relatively

small. If c is too small, the number of groups K̂ selected by the information criterion will

be larger than the true K0, and the reverse conclusion holds if c is too large. We have also

evaluated the finite sample performance of the information criterion using different values of

c, and these results are available upon request. In practice, we recommend researchers try

different values of c when determining the number of groups. As mentioned above, using K̂

that is larger than K0 usually does not harm consistency, so it can be a good idea to choose
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the number of groups such that the values of the estimated group parameters are no longer

sensitive to a larger K̂.

Table 2 reports the bias and the RMSEs for the estimates of the coefficients at τ = 0.25, 0.50

and 0.75. The simulation results show that the estimators perform well in finite samples as

both the bias and root mean square errors are small when (N, T ) is sufficiently large in all

four DGPs. In addition, it also shows that the RMSEs are on average smaller at τ = 0.50

than those at τ = 0.25 and 0.75. Table 3 shows the empirical rate of correct classification

which is defined in equation 3.5.3. It can be learned from the results that the empirical

rate of correct classification increases when either N or T increases. In DGP 1, which is the

simplest setting, the CC rate is above 99% when T equals 120 for both N = 50 and N = 100,

which means that on average less than one individual will be mis-classified. Similar patterns

can also be found in other data generating processes.

In conclusion, these simulation results together have demonstrated that the information

criterion and the proposed estimation method perform well in finite samples, so we follow

the same procedures to determine K0 and estimate the model in our empirical application.
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3.6 Empirical Application

3.6.1 Background

The evaluation of FDI flows on economic growth is an important research topic in

macroeconomic literature. There are two main approaches studying such effect, using

either country-level data or firm-level data. However, studies using firm-level data often

suffer the sample selection problem, resulting in their failing to capture the positive

spillover effects of FDI on the host country (Kottaridi and Stengos (2010)). In the seminal

paper De Gregorio (1992), the authors first utilized country-level data to study the effect of

FDI on economic growth. For the next two decades, this approach was adopted by multiple

studies which used various data sources and econometric models, including

Balasubramanyam et al. (1996), Zhang (2001), Durham (2004), and Carkovic and Levine

(2005), among many others. We refer readers to Kottaridi and Stengos (2010) for a

comprehensive review of the literature.

The econometric setting in our empirical application builds on the ones in Kottaridi and

Stengos (2010) and Cai et al. (2018). Kottaridi and Stengos (2010) adopted the following

specification as their benchmark model:

yit = α0 + α1Dj + α2 log((I
d

Y
)it) + α3nit + α4 log(xit) + α5(I

f

Y
)it + α6hit + εit, (3.13)

where yit is the growth rate of GDP per capita of country i in period t, Dj is a dummy

variable for different regions, which include Africa, America, Asia, EU, etc, ( Id
Y

)it is the ratio

of domestic investment to GDP, nit is the population growth rate, xit is GDP per capita at

the beginning of each period t, ( If
Y

)it is the ratio of domestic investment to GDP and hit is

the country-specific human capital.

Even though model 3.13 and its variants have been frequently used in the literature, there still

exist two big problems. First, this specification fails to capture the grouped heterogeneity,
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which is well-known to be important in the literature of economic growth. Ignoring the

grouped heterogeneity in the data will result in inconsistent estimates and thus misleading

policy implications. Second, this model assumes that the marginal effect of FDI is the same

for countries of different levels of development and across different time periods, which can

be restrictive in reality. It is likely that the effect of FDI on economic growth is more critical

for developing countries than developed countries. Motivated by the second point, Cai et al.

(2018) considered the following quantile panel regression model:

Qτ (yit|ui, Xit) = αi + α1 log((I
d

Y
)it) + α2nit + α3hit + α4(I

f

Y
)it · hit + β(ui) · (

If

Y
)it, (3.14)

where ui is the logarithm of GDP per capita of country i in the initial period. Compared

with model 3.13, model 3.14 allows the marginal effect of FDI to depend on the initial value

of GDP per capita. However, such setting can still be restrictive since the marginal effect

of FDI should vary with the absolute value of GDP per capita (uit) at the current period.

Furthermore, the problem of potential grouped heterogeneity is still left unsolved in model

3.14, which may harm the plausibility of the policy implications generated by the model.

The drawbacks in model 3.13 and 3.14 have motivated us to use the following model to

evaluate the effect of FDI on economic growth:

yit = αiτ,1+αiτ,2 log((I
d

Y
)it)+αiτ,3nit+αiτ,4hit+αiτ,5hit ·(

If

Y
)it+βi,τ (uit)·(

If

Y
)it+eit,τ . (3.15)

where uit is GDP per capita of country i in period (t−1), hit ·( I
f

Y
)it is the joint effect of human

capital and FDI, and eit,τ is an error term whose τ -th quantile conditional on (xit, zit, uit) is

zero. It is easy to see that our model 3.15 includes Kottaridi and Stengos (2010) and Cai

et al. (2018) as special cases. The major difference is that we allow the marginal quantile

effect of FDI on economic growth to depend on the level of economic development, measured

by GDP per capita in the last period, while in Kottaridi and Stengos (2010) and Cai et al.

(2018), they either ignored such dependence or restrict it only to the initial period; see Cai
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et al. (2018) for more details.

3.6.2 Data and Estimation

In this subsection, we describe the data sources and the estimation procedure. Our data

set includes balanced panel data of 90 countries from 1970 - 2010. The variables contained

in this data set include GDP per capita growth rate (yit), the ratio of domestic gross fixed

capital formation to GDP (( Id
Y

)it), human capital measured as mean years of schooling for

total population (hit), population growth rate (nit), GDP per capita measured by US dollars

in 2010 constant values (uit) and the ratio of FDI flow to GDP (( If
Y

)it). The data of GDP per

capita growth rate, GDP per capita, population growth rate and domestic investment are

downloaded from the World Development Indicators5, the data of mean years of schooling

is collected from the Barro-Lee Dataset6 and the World Development Indicators, and the

data of FDI flow is taken from the United Nations Conference on Trade and Development

(UNCTAD) website7, which is measured in 2010 constant dollars. Since time series data

is vulnerable to macroeconomic shocks such as wars, financial crisis and so on, we follow

the convention in the literature to take five-year moving averages8. In the end, we build a

balanced panel data set with N = 90 and T = 41. Some summary statistics are presented

in Table 4.

It is worthwhile to mention that we scale the variable of GDP per capita to have values

between zero and one since it is required by our estimation method in Section 4.3. We use

the following transformation:

ũit = Φ(uit − ū
σ̂u

), (3.16)

where Φ(·) is the c.d.f. of the standard normal distribution, ū is the sample mean and σ̂u

and the sample standard error of the variable uit.
5See: http://datatopics.worldbank.org/world-development-indicators/
6See: http://www.barrolee.com/
7See: https://unctad.org/en/Pages/DIAE/FDI%20Statistics/FDI-Statistics.aspx
8This is a common practice in the literature of economic growth; see Durham (2004), Kottaridi and

Stengos (2010) and Cai et al. (2018), etc.
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Table 4: Some Summary Statistics of the Data Set

Mean S.D. Min Median Max q0.25 q0.75

GDP per Capita Growth Rate (%) 1.68 2.94 -15.28 1.79 22.73 0.20 3.17

GDP per Capita (in 2010 Value) 11129 14203 224 3810 89772 1248 18415

FDI Flows (% of GDP) 1.88 2.75 -15.04 1.07 27.43 0.37 2.38

Domestic Investment (% of GDP) 22.84 7.71 3.03 22.32 74.79 18.30 26.35

Mean Years of Schooling 6.00 2.93 0.35 5.92 13.05 3.56 8.22

Population Growth Rate (%) 1.84 1.07 -4.44 1.92 6.27 1.01 2.65

We first apply the information criterion 3.12 to determine the number of groups in the data.

We take c = 0.80 in the calculation since it performs satisfactorily in the Monte Carlo

simulations. However, since the length of panels in our data set is relatively short, which

may lead to considerable estimation errors in finite samples, we also calculate the information

criterion using c = 1.2 and c = 1.6 and compare the results with the case of c = 0.80. The

values of the information criterion based on the 0.50 quantile are reported in Table 5.

Table 5: Values of the Information Criterion for Different K

Number of Groups

τ c K = 1 K = 2 K = 3 K = 4 K = 5

0.25 0.8 0.8102 0.7408 0.7148 0.7247 0.7273

1.2 0.8182 0.7454 0.7391 0.7438 0.7569

1.6 0.8262 0.7729 0.7690 0.7900 0.7989

0.50 0.8 0.9681 0.9011 0.8781 0.8807 0.8873

1.2 0.9761 0.9171 0.9076 0.9125 0.9276

1.6 0.9841 0.9376 0.9326 0.9404 0.9604

0.75 0.8 0.7830 0.7399 0.7147 0.7202 0.7273

1.2 0.7910 0.7561 0.7487 0.7611 0.7705

1.6 0.7990 0.7715 0.7686 0.7879 0.8001

Based on the results in Table 5, it is clear that the information criterion achieves the smallest
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value when K = 3, so we set the number of groups to be three in the estimation step. We

next implement the estimation method in Section 4.3 to estimate model 3.15. To ease the

issue of potential local optimum, we also generate thirteen initial values9 and estimate the

model one by one. The final coefficient estimates are set to be the ones generated by the

initial value which gives the smallest quantile loss. The corresponding covariance matrix and

the point-wise 95% confidence band are estimated using the bootstrap method. Besides the

0.50 quantile, we also estimate the model at the 0.25 and 0.75 quantiles.

3.6.3 Empirical Results

In this subsection, we report the estimation results of model 3.15 using panel data of 90

countries from 1970 − 2010. The estimates of the parametric coefficients in model 3.15 are

reported in Table 6. The third column in Table 6 corresponds to the pooling estimates, i.e.,

the case in which the grouped heterogeneity is ignored. The value and scale of the pooling

estimates are comparable to their counterparts in Kottaridi and Stengos (2010). Here we

find that the coefficient for domestic investment is significant at the 1% significance level

and its value increases with τ . The sign of the coefficient for population growth is correct.

However, it is only significant at the 10% significance level when τ = 0.25 and τ = 0.50.

The estimate of the coefficient for human capital is positive but insignificant for the whole

sample. Similar to Kottaridi and Stengos (2010), we also find that the joint effect of human

capital and FDI is small and negative, but is insignificant at all three quantiles.

The columns 4-6 in Table 6 correspond to the three sets of group-specific coefficient

estimates. Compared with the pooling estimates, there are several interesting findings.

First, we find that the coefficient estimate of domestic investment differs significantly

across three groups. Under the current labeling, the effect of domestic investment is

strongest for countries in Group 3 and weakest for countries in Group 1, and such effect is

significant at the 1% significance level for all groups and quantiles except for Group 1 at
9These eleven initial values are generated following the same rule in the Monte Carlo simulations in

Section 4.5: five from Strategy 1, three from Strategy 2 and five from Strategy 3.
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the 0.25 quantile. Second, we find that the coefficient estimate of population growth of

Group 2 is positive and significant at the 10% significance level when τ = 0.25 and

τ = 0.50. Third, though the effect of human capital on economic growth is insignificant in

the pooling case, we find it is significant for some groups and quantile levels. For example,

the coefficient estimate of human capital is significant at the 5% level for countries in

Group 2 at the 0.50 quantile. Similarly, it shows that the joint effect of human capital and

FDI is weakly significant for some groups and quantile levels, such as Group 1 and Group 3

at the 0.25 quantile.

The functional coefficient estimates are shown in Figure 2, 3, 4 with the plots of confidence

band shown in the subsequent figures. The group labeling here is the same as that for

parametric coefficients in Table 6. For the pooling estimate β̂τ (u), its value is relatively

small (less than 0.50 at the 0.25 and 0.50 quantile) and positive for most values in support

of [0, 1], meaning that the FDI only has a small positive effect on economic growth for all

countries. The scale of such effect is comparable to the estimate in Kottaridi and Stengos

(2010) using only initial values of GDP per capita. However, it is insignificant at the 95%

level as the point-wise 95% confidence band of the pool estimates includes the zero function

for a large proportion of [0, 1].

The pooling estimates β̂τ (u) may not provide a concrete picture of the fact, as there are many

unobserved factors that can affect the effect of FDI on economic growth, such as culture and

level of corruption. Such hypothesis is supported by the group-specific estimates βGk,τ (u)

for k = 1, 2, 3. There are two interesting findings. First, we find that the effect of FDI on

economic growth can be classified into three groups. For Group 1 and Group 3, such effect

is large and positive when GDP per capita is low and the effect for Group 1 is larger than

that for Group 3. For Group 2, the effect of FDI on economic growth is negative when GDP

per capita is low. To have a better sense of how the effect of FDI varies with the value of

GDP per capita, we can conduct some simple calculations based on the summary statistics in

Table 4 and the transformation 3.16. From these plots of β̂Gk,τ (u), we can see that the effect
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is relatively large when uit ≤ 0.3, which maps to GDP per capita of $3680. Notice that the

median value of GDP per capita is $3810, meaning that the effect of FDI is in fact quite large

for nearly half of the countries in our data set. From the point-wise 95% confidence band,

we can see that the effect is significant when GDP per capita is small. This finding further

substantiates our hypothesis in the beginning: FDI plays a more important role in low-

income countries in terms of economic growth than in high-income countries. In addition,

these plots also show that the effect of FDI is heterogeneous for low-income countries. It

is worth mentioning that the pooling estimates β̂τ (u) cannot reveal this important pattern

because the grouped heterogeneity is fully ignored and the underlying group-specific effects

average each other out. Second, we can see that the scale of the effect of FDI on economic

growth decreases with GDP per capita for all three groups, which can be easily learned from

the trends of the plots in the second panel.

Finally, we report the group classification and the group-specific summary statistics for these

90 countries based on the 0.50 quantile in Table 7 and Table 8. Turning to the group-specific

summary statistics in Table 8, we can see that the average GDP per capita is higher in

Group 1 than in Group 2 and 3. On the other hand, Group 3 has the highest GDP per

capita growth rate and Group 1 has the lowest GDP per capita growth rate. However,

identifying the latent factors that determine the grouped heterogeneity is beyond the scope

of this paper and we leave it as a subject for future research.

3.7 Conclusion

In this paper, we have studied a new semiparametric quantile panel regression model with

grouped heterogeneity. This model can simultaneously handle both the time-variant and

nonlinear effects of explanatory variables and the unobserved grouped heterogeneity in

coefficients. To estimate the model, we develop a series-based estimation method and a

two-step iterative algorithm for computation and establish the asymptotic properties of the
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proposed estimators. An information criterion is developed to determine the number of

groups. The finite sample performance of the estimation method and the information

criterion are investigated through Monte Carlo simulations, which show both perform very

well. The model has been applied to study the effect of FDI on economic growth. Some

new results have emerged. First, we find that there exist three patterns in the effect of FDI

on economic growth. Second, the effect of FDI is in fact large and significant for

low-income countries. Third, the scale of the effect diminishes as GDP per capita increases.

55



Figure 1: The Plots of Nonparametric Coefficients in Different DGPs (top panel: solid line
for βG1,τ (·) and dashed line for βG2,τ (·) in DGP 1. Middle panel: solid line for βG1,τ (·),
dashed line for βG2,τ (·) and dash-dotted line for βG3,τ (·) in DGP 2, DGP 3, and βG11,τ (·),
βG21,τ (·) ) and βG31,τ (·) in DGP 4. Bottom panel: solid line for βG12,τ (·), dashed line for
βG22,τ (·) and dash-dotted line for βG32,τ (·) in DGP 4.
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Table 1: Finite Sample Performance of the Information Criterion

N T K = 1 K = 2 K = 3 K = 4 K = 5

DGP 1 50 40 0.120 0.880 0.000 0.000 0.000

50 80 0.001 0.996 0.003 0.000 0.000

50 120 0.000 0.996 0.004 0.000 0.000

100 40 0.002 0.977 0.021 0.000 0.000

100 80 0.000 0.989 0.011 0.000 0.000

100 120 0.000 0.990 0.010 0.000 0.000

DGP 2 50 40 0.000 0.178 0.822 0.000 0.000

50 80 0.000 0.067 0.933 0.000 0.000

50 120 0.000 0.025 0.974 0.001 0.000

100 40 0.000 0.160 0.836 0.004 0.000

100 80 0.000 0.019 0.971 0.010 0.000

100 120 0.000 0.000 0.989 0.011 0.000

DGP 3 50 40 0.000 0.099 0.892 0.009 0.000

50 80 0.000 0.002 0.961 0.037 0.000

50 120 0.000 0.001 0.984 0.015 0.000

100 40 0.000 0.002 0.966 0.032 0.000

100 80 0.000 0.000 0.977 0.023 0.000

100 120 0.000 0.000 0.989 0.010 0.001

DGP 4 50 40 0.000 0.069 0.875 0.054 0.002

50 80 0.000 0.000 0.960 0.040 0.000

50 120 0.000 0.000 0.982 0.028 0.000

100 40 0.000 0.000 0.871 0.123 0.006

100 80 0.000 0.000 0.964 0.035 0.001

100 120 0.000 0.000 0.988 0.012 0.000
1 We set τ = 0.5 when calculating the information criterion.
2 The empirical probability in this table is calculated based on
1000 repetitions.
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Table 3: Empirical Rate of Correct Classification

CC Rate

N T τ = 0.25 τ = 0.50 τ = 0.75

DGP 1 50 40 0.9342
(0.0378)

0.9592
(0.0302)

0.9295
(0.0368)

50 80 0.9847
(0.0171)

0.9934
(0.0114)

0.9853
(0.0168)

50 120 0.9960
(0.0086)

0.9987
(0.0050)

0.9953
(0.0094)

100 40 0.9365
(0.0251)

0.9615
(0.0191)

0.9358
(0.0252)

100 80 0.9851
(0.0124)

0.9939
(0.0077)

0.9861
(0.0121)

100 120 0.9962
(0.0063)

0.9990
(0.0030)

0.9963
(0.0060)

DGP 2 50 40 0.8957
(0.0553)

0.9373
(0.0403)

0.8919
(0.0574)

50 80 0.9784
(0.0214)

0.9914
(0.0137)

0.9782
(0.0213)

50 120 0.9941
(0.0110)

0.9985
(0.0054)

0.9941
(0.0108)

100 40 0.9078
(0.0333)

0.9447
(0.0249)

0.9094
(0.0334)

100 80 0.9805
(0.0151)

0.9919
(0.0091)

0.9801
(0.0144)

100 120 0.9947
(0.0075)

0.9985
(0.0037)

0.9949
(0.0071)

1 The values in the parentheses are the corresponding
standard errors.
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Continued Table 3: Empirical Rate of Correct Classification

CC Rate

N T τ = 0.25 τ = 0.50 τ = 0.75

DGP 3 50 40 0.9950
(0.0097)

0.9985
(0.0052)

0.9946
(0.0104)

50 80 0.9998
(0.0016)

0.9999
(0.0006)

0.9999
(0.0012)

50 120 1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

100 40 0.9952
(0.0067)

0.9988
(0.0034)

0.9955
(0.0067)

100 80 0.9999
(0.0008)

1.0000
(0.0000)

0.9999
(0.0008)

100 120 1.0000
(0.0000)

1.0000
(0.0000)

0.9999
(0.0003)

DGP 4 50 40 0.9979
(0.0062)

0.9997
(0.0021)

0.9982
(0.0059)

50 80 1.0000
(0.0000)

1.0000
(0.0000)

0.9999
(0.0011)

50 120 1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

100 40 0.9986
(0.0036)

0.9998
(0.0015)

0.9985
(0.0039)

100 80 0.9999
(0.0003)

1.0000
(0.0000)

0.9999
(0.0003)

100 120 1.0000
(0.0000)

1.0000
(0.0000)

1.0000
(0.0000)

1 The values in the parentheses are the corresponding
standard errors.
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Table 6: Estimates of Parametric Coefficients in Model 3.15

K = 3

τ Coefficient K = 1 Group 1 Group 2 Group 3

0.25 log(( I
d

Y )it) 1.869∗∗∗ 0.749∗∗ 2.952∗∗∗ 3.946∗∗∗

(0.651) (0.346) (0.935) (0.828)

nit −0.453∗ −0.545∗ 0.622∗∗ −0.673∗

(0.270) (0.315) (0.298) (0.369)

hit 0.106 0.299 0.315∗ −0.137

(0.079) (0.194) (0.183) (0.104)

hit · ( I
f

Y )it −0.044 −0.138∗ 0.043 0.189∗

(0.050) (0.081) (0.053) (0.098)

0.50 log(( I
d

Y )it) 2.281∗∗∗ 0.802∗∗∗ 3.024∗∗∗ 4.196∗∗∗

(0.626) (0.331) (0.861) (0.898)

nit −0.304∗ −0.359∗ 0.583∗ −0.265

(0.181) (0.194) (0.315) (0.178)

hit 0.027 0.303∗ 0.265∗∗ −0.139

(0.042) (0.176) (0.127) (0.142)

hit · ( I
f

Y )it −0.028 −0.089 0.124 0.138∗

(0.039) (0.124) (0.082) (0.079)

0.75 log(( I
d

Y )it) 2.443∗∗∗ 1.466∗∗∗ 3.009∗∗∗ 4.987∗∗∗

(0.869) (0.519) (0.896) (0.971)

nit −0.058 −0.161∗ 0.090 −0.189∗

(0.037) (0.096) (0.158) (0.101)

hit −0.043 −0.170 0.064 −0.171∗

(0.036) (0.106) (0.124) (0.098)

hit · ( I
f

Y )it −0.006 −0.248∗ 0.056 0.011

(0.022) (0.134) (0.048) (0.037)
1 ∗, ∗∗, ∗∗∗ denote the estimated coefficient is significant at the
10%, 5% and 1% level, respectively. The standard errors are
calculated via bootstrapping.
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Figure 2: Estimated Functional Coefficients (τ = 0.25)
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Figure 2.1: Bootstrap 95% Confidence Band of the Functional Coefficient (Pooling Case,
τ = 0.25)

63



Figure 2.2: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 1, τ = 0.25)
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Figure 2.3: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 2, τ = 0.25)
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Figure 2.4: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 3, τ = 0.25)
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Figure 3: Estimated Functional Coefficients (τ = 0.50)
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Figure 3.1: Bootstrap 95% Confidence Band of the Functional Coefficient (Pooling Case,
τ = 0.50)
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Figure 3.2: Bootstrap 95% Confidence Band for the Functional Coefficient (Group 1, τ =
0.50)
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Figure 3.3: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 2, τ = 0.50)
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Figure 3.4: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 3, τ = 0.50)
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Figure 4: Estimated Functional Coefficients (τ = 0.75)
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Figure 4.1: Bootstrap 95% Confidence Band of the Functional Coefficient (Pooling Case,
τ = 0.75)
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Figure 4.2: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 1, τ = 0.75)
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Figure 4.3: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 2, τ = 0.75)
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Figure 4.4: Bootstrap 95% Confidence Band of the Functional Coefficient (Group 3, τ = 0.75)
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Table 7: Group Classification of 90 Countries in the Data Set

Group Membership Country

Argentina, Australia, Belgium, Bolivia, Canada, Guyana,

Central African Republic, Chad, Dem. Rep. of the Congo,

Group 1 Haiti, Israel, Jamaica, Madagascar, Mauritania, Netherlands,

(N = 27) New Zealand, Nicaragua, Niger, Nigeria, Papua New Guinea,

Spain, Suriname, Sweden, Trinidad and Tobago, Uruguay,

United States of America, United Kingdom

Algeria, Austria, Bahamas, Burundi, Cameroon, Congo,

Denmark, Ecuador, Costa Rica, France, Gabon, Gambia,

Group 2 Germany, Greece, Guatemala, Honduras, Iran, Italy, Japan,

(N = 33) Kenya, Malawi, Mali, Mexico, Morocco, Peru, Philippines,

Portugal, Saudi Arabia, Senegal, Eswatini, Togo, Tunisia,

Venezuela (Bolivarian Rep. of)

Brazil, Sri Lanka, Chile, Colombia, Benin, Ghana, India,

Dominican Republic, El Salvador, Fiji, Finland, Iceland,

Group 3 Iraq, Ireland, Republic of Korea, Malaysia, Oman, Norway,

(N = 30) Pakistan, Paraguay, Rwanda, Seychelles, Sierra Leone,

Singapore, Zimbabwe, Sudan, Thailand, Turkey, Egypt,

Burkina Faso
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Table 8: Group-Specific Summary Statistics

Group 1 Mean S.D. Min Median Max q0.25 q0.75

GDP Per Capita Growth Rate (%) 0.94 2.78 -11.88 1.38 12.81 -0.52 2.56

GDP Per Capita (in 2010 Value) 13358 14735 283 6131 52235 1195 26496

FDI Flows (% of DGP) 2.11 3.31 -15.04 1.29 27.43 0.49 2.75

Domestic Investment (% of GDP) 23.34 9.23 3.98 22.40 74.79 18.56 26.36

Mean Years of Schooling 6.78 3.41 0.47 7.05 13.05 3.52 9.84

Population Growth Rate (%) 1.57 1.01 -0.78 1.48 3.79 0.70 2.49

Group 2

GDP Per Capita Growth Rate (%) 1.45 2.91 -15.28 1.51 22.73 0.07 2.87

GDP Per Capita (in 2010 Value) 11135 13315 224 3783 59794 1484 18904

FDI Flows (% of DGP) 1.49 1.91 -4.59 0.97 12.78 0.32 1.96

Domestic Investment (% of GDP) 23.06 6.93 4.77 22.58 56.71 19.16 26.53

Mean Years of Schooling 5.52 2.53 0.35 5.50 12.08 3.53 7.43

Population Growth Rate (%) 1.98 1.12 -0.21 2.25 6.13 1.12 2.76

Group 3

GDP Per Capita Growth Rate (%) 2.61 2.87 -8.53 2.57 16.75 1.15 4.13

GDP Per Capita (in 2010 Value) 9118 14374 275 3403 89772 1046 9116

FDI Flows (% of DGP) 2.08 2.94 -3.93 1.05 19.87 0.38 2.60

Domestic Investment (% of GDP) 22.14 6.94 3.02 21.71 45.89 17.57 25.96

Mean Years of Schooling 5.83 2.71 0.82 5.83 11.83 3.62 7.72

Population Growth Rate (%) 1.92 1.02 -4.44 1.94 6.28 1.25 2.54
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Chapter 4

Nonparametric Additive Panel

Regression Models with Grouped

Heterogeneity
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4.1 Introduction

Panel regression models have attracted considerable attention in both theoretical and

applied econometrics. They provide researchers a convenient way to tackle unobserved

heterogeneity that plays an important role in panel data analysis. Over the past few

decades, substantial progress has been made in terms of the identification and estimation

of various panel regression models; see Arellano and Honoré (2001), Mátyás and Sevestre

(2013) and Baltagi (2015) for a comprehensive review. However, most of the literature uses

fixed effects to control for individual-specific heterogeneity. Even though such a modeling

scheme facilitates technical analysis, it ignores the potential nonlinear effects of

explanatory variables and non-additive heterogeneity, both of which have been emphasized

by multiple empirical studies. For example, using panel data of listed firms in the Chinese

stock market, Ni et al. (2015) found that investor sentiment has nonlinear effects on stock

returns, and such effects are heterogeneous across different subgroups of stocks.

To address the problem of non-additive heterogeneity in the data, recent econometrics

literature has studied panel regression models with grouped heterogeneity; see Su et al.

(2016), Vogt and Linton (2017), Miao et al. (2020), among many others. There are two

main features in the models: first, every individual is assumed to have a unique unobserved

group membership; second, the functional relationship between the dependent and

independent variables is homogeneous within the same group but heterogeneous across

different groups. By introducing the grouped heterogeneity, such models can reach a good

balance between flexibility and parsimony compared with panel regression models with

fixed effects and classical random coefficients panel models. To our best knowledge, the

current literature in this area mainly focuses on linear panel regression models, which has

motivated us to fill such a gap by considering a nonparametric counterpart.

In this chapter, we propose a nonparametric additive panel regression model with grouped

heterogeneity, which can simultaneously consider both nonlinear effects of explanatory

variables and non-additive heterogeneity. Additive regression models have a wide variety of
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applications in economics, statistics and many other disciplines; see Sperlich et al. (2002),

Profit and Sperlich (2004), Mammen et al. (2009) and Huang et al. (2010), etc. Therefore,

this chapter naturally contributes to the literature of additive regression models by

incorporating grouped heterogeneity into consideration. It is worth noting that Vogt and

Linton (2017) and Vogt and Linton (2020) also considered nonparametric panel regression

models with grouped heterogeneity. The clustering methods developed in these two

chapters suffer from the curse of dimensionality. Also, their approach can not be easily

generalized to additive regression models.

To estimate the proposed model, we adopt a sieve-approximation-based penalized estimation

method, which can identify the latent group structure and estimate parameters of interest in

a single step. Our estimation method evolves from the so-called Classifier-Lasso estimation

method for panel regression models that was first proposed in Su et al. (2016). Su et al.

(2019) applied a similar sieve-approximation-based estimation method to estimate time-

varying coefficients panel models. However, the time-varying coefficients considered in Su

et al. (2019) are nonrandom; thus, the asymptotic properties derived in their chapter do

not directly apply to the nonparametric additive regression models considered here. More

importantly, unlike previous literature on the Classifier-Lasso estimation method, which

defines the group structure based on all the coefficients, we take a different approach by

considering the subgroup structure of each additive component. This refinement allows us

to handle models with a relatively large number of groups since it is the product of group

numbers of each nonparametric component. In practice, these group numbers are usually

unknown ex ante and have to be estimated from the observed data, so we further develop

a BIC-type information criterion that can consistently determine group numbers for the

model. We establish the convergence rate of the nonparametric components’ estimators

and their linear functionals’ asymptotic normality under some regularity conditions. We

also demonstrate the finite sample performance of the estimation method and the BIC-type

information criterion through Monte Carlo simulations. The results show that both perform
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well in general.

We illustrate the usefulness of the proposed model and estimation method by applying them

to study the consumer demand for cigarettes in the United States using panel data of 46

states from 1963 to 1992. We find that group heterogeneity exists in the effect of the retail

price of a pack of cigarettes on cigarette sales. More specifically, all 46 states can be classified

into two groups according to their price elasticity of demand for cigarettes. There are 28

states in the first group and 18 states in the second group, and those in the first group are,

on average, more sensitive to price. However, we do not find evidence indicating that there

is grouped heterogeneity in the effect of real per capita disposable income on cigarette sales.

The rest of the chapter is organized as follows. We introduce the nonparametric additive

panel regression model with grouped heterogeneity in Section 4.2. In Section 4.3, we describe

the proposed sieve-approximation-based Classifier-Lasso estimation method. Section 4.4

establishes the asymptotic properties of the proposed estimator. Section 4.5 reports the

Monte Carlo simulation results. An empirical application is presented in Section 4.6. Finally,

Section 4.7 concludes.

Notation: For any matrix A, we denote‖A‖F = (tr(AA′))1/2 as its Frobenius norm, A′ as its

transpose and A−1 as its Moore-Penrose generalized inverse. If A is also a squared matrix, we

denote λmax(A) and λmin(A) as its largest and smallest eigenvalues, ‖A‖S = (λmax(AA′)) as

its spectral norm. The Lq-norm of a p-dimensional vector v is denoted by‖v‖q, where‖v‖q ≡

(∑p
i=1 |vi|q)1/q when 1 ≤ q <∞ and ‖v‖q ≡ maxi=1,...,p |vi| when q =∞. For a vector-valued

function f(·) defined on [0, 1], we let ‖f‖2 to be its L2−norm, i.e., ‖f‖2 = (
∫ 1
0
∥∥f(x)

∥∥ dx)1/2.

For a set G, its cardinality is denoted by |G|. For a set [N ], we define [N ] ≡ {1, 2, ..., N}.

For functions f(n) and g(n), we let f(n) & g(n) and g(n) . f(n) mean f(n) ≥ cg(n) for a

generic constant c > 0, f(n) � g(n) denote both f(n) & g(n) and f(n) & g(n) hold. We let

(N, T ) → ∞ denote N and T diverging to infinity joint, P−→ convergence in probability, D−→

convergence in probability. As a general rule for this chapter, we write c as positive generic

constants that are independent of n in different places.
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4.2 Model

In this section, we introduce the nonparametric additive panel regression model with

grouped heterogeneity. Suppose researchers observe panel data of N individuals for T

periods, i.e., {{yit, x′it}Ni=1}Tt=1. The primary interest here is to study the effect of the

explanatory variables x on the explained variable y. We assume yit is generated according

to the following econometric model:

yit = µi +
p∑
j=1

hi,j(xit,j) + uit, uit = σi(xit)εit, (4.1)

for i = 1, ..., N and t = 1, ..., T , where xit = (xit,1, ..., xit,p)′ is a p × 1 vector of explanatory

variables, µi denotes the unobserved individual fixed effect which can be correlated with xit,

εit is an error term which has mean zero and variance one and is uncorrelated with xit and

uit is an error term with mean zero and variance σ2
i (xit) conditional on xit. In addition,

hi,j(x) is a smooth function defined on a compact support Xj for j = 1, ..., p, and we assume

Xj = [0, 1] without loss of generality. Throughout this chapter, we let h0
i,j(x) denote the true

parameter of interest to be estimated.

To capture the non-additive unobserved heterogeneity that can affect the functional

relationship directly, we impose the following group structure on the nonparametric

components {h0
i,1, ..., h

0
i,p}Ni=1:

h0
i,j(x) =

K0
j∑

k=1
f 0
k,j(x)1{i ∈ G0

k,j} for any x ∈ [0, 1] and j = 1, ..., p, (4.2)

where f 0
k,j(x) is some smooth function defined on [0, 1], G0

k,j denote the k-th group of the

nonparametric function of the j-th explanatory variable xit,j,K0
j is the total number of groups

of h0
i,j(x). We assume {G0

k,j}
K0
j

k=1 are mutually exclusive, i.e., ∪K
0
j

k=1G
0
k,j = {1, 2, ..., N} for all

1 6 j 6 p, and G0
m,j ∩ G0

n,j = ∅ if m 6= n. Furthermore, we let Nk,j denote the cardinality

of the set G0
k,j, i.e., Nk,j = |G0

k,j|, and we have ∑K0
j

k=1Nk,j = N by definition. Finally, we
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let fj =
(
f1,j, ..., fK0

j ,j

)′
for j = 1, ..., p, which is the vector of the j-th infinite-dimensional

parameters to be estimated. Following the convention in the literature, we assume that the

group memberships do not vary across different time periods.

Based on the above setup, our goals include (1) estimating {hi,1(x), ..., hi,p(x)} for

i = 1, ..., N ; (2) estimating the group-level parameters {f1,j(x), ..., fKj ,j(x)} for j = 1, ..., p;

(3) identifying the group memberships {G0
1,j, ..., G

0
Kj ,j
} for j = 1, ..., p. It is worth noting

that the nonparametric additive panel regression model given by equations 4.1 and 4.2 is

fairly general since it takes account of both the additive heterogeneity represented by the

individual fixed effect as well as the non-additive heterogeneity that directly affect the

functional relationships. Such a model can be regarded as a natural extension of the linear

panel regression models with grouped heterogeneity. We can avoid the curse of

dimensionality and capture the nonlinearity in the marginal effects of explanatory variables

because of the additive structure. Therefore, our model can become an appealing choice for

empirical studies in economics, sociology, and many other fields.

4.3 Estimation

In this section, we propose the sieve-approximation-based Classifier-Lasso estimation

method. This section includes two subsections. In Subsection 4.3.1, we discuss the sieve

approximation for nonparametric functions hi,j(x) and fk,j(x) for all i = 1, ..., N ,

j = 1, ..., p and k = 1, ..., Kj. In Subsection 4.3.2, we introduce the optimization problem

and the related estimators.

4.3.1 Sieve Approximation

Since the infinite-dimensional parameters are unknown functions, we first approximate them

using the sieve approximation method; see Ai and Chen (2003) and Chen (2007) for more

details on sieve estimation. In this chapter, we use the B-spline polynomials of order κ (or
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degree κ − 1) to form basis functions on [0, 1] because it is well-known that the B-splines

have good properties and are computationally easy.

We first use the B-spline basis functions to approximate hi,j and fk,j, for k = 1, ..., K0
j ,

j = 1, ..., p and i = 1, ..., N . We assume that these functions are contained in the Hölder

space, which is defined as follows. We consider the Hölder space Λr([0, 1]) of order r > 0.

Let
¯
r denote the largest integer satisfying

¯
r < r. The Hölder space is a space of functions

f : [0, 1] → R such that the first
¯
r derivatives are bounded, and the

¯
r-th derivatives are

Hölder continuous with the exponent r −
¯
r ∈ (0, 1]. The Hölder space becomes a Banach

space when endowed with the Hölder norm:

‖f‖Λr = sup
x

∣∣f(x)
∣∣+ sup

x 6=x′

∣∣∇¯
rf(x)−∇¯

rf(x′)
∣∣(

‖x− x′‖F
)r−

¯
r <∞,

where for any nonnegative scalar a,

∇¯
rf(x) = ∂¯

r

∂x¯
r
f(x).

A Hölder ball with radius c is defined as Λr
c([0, 1]) ≡

{
f ∈ Λr([0, 1]) :‖f‖Λr 6 c <∞

}
. It

is known that functions in Λr
c([0, 1]) could be approximated sufficiently well by the B-spline

polynomials of order κ >
¯
r + 1. Let BJ(xit,j) denote J × 1 basis functions, then we could

approximate hi,j(xit,j) and fk,j(xit,j) by BJ(xit,j)′γi,j and BJ(xit,j)′πk,j, respectively, where

γi,j and πk,j are J × 1 vectors:

hi,j(xit,j) =BJ(xit,j)′γi,j + δhi,j(xit,j), i = 1, ..., N, j = 1, ..., p,

fk,j(xit,j) =BJ(xit,j)′πk,j + δfk,j(xit,j), k = 1, ..., K0
j , j = 1, ..., p,

where δhi,j(xit,j) and δfk,j(xit,j) are corresponding approximation errors.

Define zit,j ≡
√
JBJ(xit,j) and θi,j ≡ 1√

J
γi,j, i = 1, ..., N , then equation 4.1 could be expressed
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as

yit = µi +
p∑
j=1

z′it,jθi,j + eit (4.3)

where 1√
J
is the normalization term and eit = uit +∑p

j=1 δhi,j(xit,j).

At the same time, we let ηk,j = 1√
J
πk,j, then equation 4.2 implies

θ0
i,j =

K0
j∑

k=1
η0
k,j1{i ∈ G0

k,j}. (4.4)

Thus we have constructed the sieve approximations for hi,j(x) and fk,j(x), respectively.

4.3.2 Penalized Estimation of h(x) and f(x)

Since our main interest is to quantify the effect of different explanatory variables on the

explained variable, we use standard transformation to eliminate the individual fixed effect µi

and thus get rid of the potential incidental parameter problem caused by the individual fixed

effects. We take the deviation from the mean across individuals, which gives the following

equation

yit − ȳi =
P∑
j=1

(zit,j − z̄i,j)′θi,j + eit − ēi, (4.5)

where ȳi = 1
T

∑T
t=1 yit, with similar definitions for z̄i,j and ēi.

For the sake of notational simplicity, we further define ỹit = yit − ȳi and similarly for z̃it,j,

ẽit, then equation 4.5 could be written as

ỹit =
p∑
j=1

z̃′it,jθi,j + ẽit. (4.6)

At this moment, we assume that K0
j is known in the estimation procedure. Later we will

discuss how to use a BIC-type criterion to consistently estimate K0
j , for j = 1, ..., p. Recall

our goals are to estimate both hi,j(x), fk,j(x) and identify the latent group structure. To
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achieve these goals, we propose to minimize the following criterion function:

QNT,λ(θ, η) = QNT (θ) + λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θi,j − ηk,j∥∥∥
F
, (4.7)

where

QNT (θ) = 1
NT

N∑
i=1

T∑
t=1

ỹit − p∑
j=1

z̃′it,jθi,j

2

. (4.8)

In equations 4.7 and 4.8, we let θ = (θ1, ..., θN), in which θi = (θ′i,1, ..., θ′i,p)′, and η =

(η′1, ..., η′p)′, in which ηj = (η′1,j, ..., η′Kj ,j)
′. λ is some positive tuning parameter which depends

on N and T . The additional penalty is used to shrink the individual parameters θi,j, i =

1, ..., N to a particular unknown group-specific parameters ηk,j for some k ∈ {1, ..., K0
j } while

at the same time to classify individuals into a priori unknown groups.

Let θ̂ and η̂ be the solution to the minimization problem given by equation 4.7. Then

{ĥi,1(x), ..., ĥi,p(x)} for i = 1, ..., N , and {f̂1,j(x), ..., f̂Kj ,j(x)} for j = 1, ..., p are given by

ĥi,j(x) =
√
JBJ(x)′θ̂i,j for j = 1, ..., p,

f̂k,j(x) =
√
JBJ(x)′η̂k,j for k = 1, ..., K0

j , j = 1, ..., p.

The latent group structure is identified using the following rule: i ∈ Ĝk,j if ĥi,j = f̂k,j.

As pointed out in Su et al. (2016), all individuals will be classified into certain groups

asymptotically. However, in finite samples, it may be the case that some individuals are left as

unclassified if the tuning parameter is relatively small. When such situation appears, we can

use another decision rule to determine the latent group structure: i ∈ Ĝk,j if
∥∥∥ĥi,j − f̂k,j∥∥∥

F
6∥∥∥ĥi,j − f̂l,j∥∥∥

F
, for all l = 1, ..., Kj.
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4.4 Asymptotic Properties

In this section, we establish the asymptotic properties for the estimators proposed in Section

4.3. This section include five subsections. They are organized as follows: in Subsection

4.4.1, we characterize the preliminary convergence rates for individual coefficients θ̂i,j, for

i = 1, ..., N and j = 1, ..., p and the group-specific parameters η̂k,j, for j = 1, ..., p and

k = 1, ..., K0
j . Subsection 4.4.2 presents the results of classification consistency. After that,

Subsection 4.4.3 reports the asymptotic distribution of group-specific parameters fk,j, for

j = 1, ..., p and k = 1, ..., K0
j . Subsection 4.4.4 discusses how to determine the number of

groups.

4.4.1 Preliminary Rates of Convergence

We first give the necessary assumptions for establishing the convergence rate of θ̂ and η̂.

Define xit ≡ (xit,1, ..., xit,p)′ and zit ≡ (z′it,1, ..., z′it,p)′.

Assumption 1. (i) For each i = 1, ..., N , {xit, εit : t ≥ 1} is stationary strong mixing

with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies α(j) 6 cα exp(−ρj) for

some 0 < cα <∞, 0 < ρ <∞. {xit, εit} are independent across i.

(ii) There exists positive c̄ such that maxi,t‖uit‖qF < c̄ <∞ for some q > 6.

(iii) For the nonparametric functions {f 0
1,j, ..., f

0
K0
j ,j
}pj=1, we have

(i) IE[f 0
k,j(xit,j)] = 0, for j = 1, ..., p and k = 1, ..., K0

j .

(ii) f 0
k,j ∈ F = Λr

c([0, 1]) with r > 0, for j = 1, ..., p and k = 1, ..., K0
j .

(iii) ∀i ∈ {1, ..., N}, let fit,j(x) denote the marginal density function of {xit,j}, we have

fit,j(x) = fi,j(x) for all 1 6 t 6 T and x ∈ [0, 1]. Furthermore, there exist positive

constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
min

16j6p
inf

x∈[0,1]
{fi,j(x)} 6 max

16i6N
max
16j6p

sup
x∈[0,1]

{fi,j(x)} < c̄ <∞.
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(iv) There exist
¯
c > 0 such that for any j = 1, ..., p,

min
16m6=n6K0

j

∥∥∥f 0
m,j − f 0

n,j

∥∥∥2

2
>

¯
c.

(v) There exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var(zit)

)
6 max

16i6N
µmax

(
Var(zit)

)
< c̄ <∞.

(vi) Nk,j
N
→ τk,j for j = 1, ..., p and k = 1, .., K0

j as N →∞. There exists positive constants

¯
c and c̄ such that

0 <
¯
c < min

16j6p
min

16k6K0
j

{τk,j} 6 max
06j6p

max
16k6K0

j

{τk,j} < c̄ < 1

Assumption 1(i) implies that the strong mixing coefficients α(l) decay exponentially fast to

0 as l→∞ uniformly. Similar conditions are made in Su et al. (2016), Su et al. (2019), Vogt

and Linton (2017), etc. For more discussions on this, we refer readers to Su et al. (2019).

Assumption 1(ii) imposes moment restrictions for uit.

Assumption 1(iii) imposes restrictions on the nonparametric functions. The first part is

a harmless normalization. The second one is the smooth condition which ensures we can

approximate any function f ∈ F sufficiently well using the tensor-product of univariate

B-splines. By results from the approximation theory, there exists πk,j ∈ RJ such that

sup
x∈[0,1]

∥∥∥fk,j(x)−BJ ′πk,j
∥∥∥
∞

= O(J−r)

Similarly, for each individual, there exists γi,j such that

sup
x∈[0,1]

∥∥∥hi,j(x)−BJ ′γi,j
∥∥∥
∞

= O(J−r).
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Then, after controlling for the approximation error, the difference between fk,j(x) and hi,j(x)

is reflected by the difference between πk,j and γi,j. The third part is also assumed in Vogt

and Linton (2017). First, this condition makes the functions hi,j(xit) comparable across

individuals. Second, it guarantees that hi,j(xit) could be estimated uniformly well.

Assumption 1(iv) specifies that the group-specific parameters are well separated from each

other. At the same time, it also implies that the group-specific vectors π and η are well

separated. For 1 6 m 6= n 6 Kj, let’s consider
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2
first. Notice that

∥∥∥f 0
m,j − f 0

n,j

∥∥∥
2

6
∥∥∥f 0

m,j −BJ ′πm,j
∥∥∥

2
+
∥∥∥f 0

n,j −BJ ′πn,j
∥∥∥

2
+

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πm,j − πn,j)
)∥∥∥∥∥∥

2

=O(J−r) +


(

1√
J

(πm,j − πn,j)
)′ ∫

[0,1]
JBJ(x)BJ(x)′dx

(
1√
J

(πm,j − πn,j)
)

1
2

�
∥∥∥∥∥ 1√

J
(πm,j − πn,j)

∥∥∥∥∥
F

,

where the last equation holds because the eigenvalues of
∫

[0,1]d JB
J(x)BJ(x)′dx are bounded

above and away from zero.

Similarly, we have

∥∥∥∥∥ 1√
J

(πm,j − πn,j)
∥∥∥∥∥
F

�

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πm,j − πn,j)
)∥∥∥∥∥∥

2

6
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

+
∥∥∥f 0

m,j −BJ ′πm,j
∥∥∥

2
+
∥∥∥f 0

n,j −BJ ′πn,j
∥∥∥

2

=
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

+O(J−r)

�
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

Therefore, we have
∥∥∥f 0

m,j − f 0
n,j

∥∥∥2

2
�
∥∥∥ 1√

J
(πm,j − πn,j)

∥∥∥2

F
=
∥∥∥η0

m,j − η0
n,j

∥∥∥2

F
. In a similar fashion,
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we can get ∥∥∥hi,j − fk,j∥∥∥2

2
�
∥∥∥θi,j − ηk,j∥∥∥2

F
.

if i /∈ G0
k,j. This result guarantees that the penalty item in the criterion function 4.7 could

shrink the individual coefficients to some group-specific parameters.

Assumption 1(v) is a standard identification condition for sieve estimation. As demonstrated

in Section 4.3.2, we take the demean approach to get rid of the individual fixed effects, which

consequently requires that IE[z̃itz̃′it] is positive definite to identify the coefficients. Then notice

that the corresponding population value is Var(zit). Assumption 1(vi) is commonly assumed

in the classification literature, which implies that each group would include an asymptotically

non-negligible number of individuals.

Assumption 2. As (N, T ) → ∞, we have λ → 0, J → ∞, J 3
2 (lnT )3T−1 → 0 and

N2T 1− q2 → 0.

Assumption 2 specifies several restrictions on J , N and T . Let’s first focus on the first part

of the condition, i.e., J 3
2 (lnT )3T−1 → 0. This condition is comparable to the Assumption

2 in Newey (1997) for independent observations. The last condition requires that T cannot

increase too slow compared with N . The intuition is clear: as T grows, more information of

each individual is revealed, making it easier to identify the latent group structures. The q

is the moment restriction we make in Assumption 1(ii), which is set to be larger than 6 to

allow that N and T increase at the same rate.

We are now ready to establish the preliminary convergence rates for θ̂ and η̂, which are given

in Theorem 1.

Theorem 1. Suppose Assumption 1, 2 hold, then

(i) ‖θ̂i − θ0
i ‖F = Op(J−r + J

1
2T−

1
2 + λ) and ‖θ̂i,j − θ0

i,j‖F = Op(J−r + J
1
2T−

1
2 + λ) for

i = 1, 2, ..., N, j = 1, ..., p.

(ii) 1
N

∑N
i=1‖θ̂i− θ0

i ‖2
F = Op(J−2r + JT−1) and 1

N

∑N
i=1‖θ̂i,j − θ0

i,j‖2
F = Op(J−2r + JT−1) for

j = 1, ..., p.
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(iii) ‖η̂(k),j − η0
k,j‖F = Op(J−r + J

1
2T−

1
2 ), for k = 1, ..., K0

j , j = 1, ..., p, where

(η̂(1),j, ..., η̂(K0
j ),j) is a suitable permutation of (η̂1,j, ..., η̂K0

j ,j
) for j = 1, ..., p.

Theorem 1(i) and (ii) give the pointwise and mean square convergence rates of θ̂i,j for j =

1, ..., p. In Theorem 1(i), the first term, J−r, comes from the approximation error. The

second term, J 1
2T−

1
2 , demonstrates the contribution of the interaction between B-splines

and the error term. Similar as other Lasso-like estimators, the penalty item is reflected by

λ. However, in Theorem 1(ii), the penalty term disappears. We direct interested readers to

the details in the proof. The convergence rate of η̂k,j, similarly, does not depend on λ.

By Assumption 2 and Theorem 1, it is clear that θ̂i,j and η̂(k),j converges in probability to

θ0
i,j and η0

k,j, respectively. For notational simplicity, we denote η̂(k),j as η̂k,j and further define

Ĝk,j =
{
i ∈ {1, ..., N} : θ̂i,j = η̂k,j

}
for k = 1, ..., K0

j ,

which denotes the set of individuals whose functions of the j-th explanatory variable are

classified into the k-th group, for 1 6 k 6 K0
j .

4.4.2 Classification Consistency

To ensure the group classification’s consistency, we need to impose more assumptions, which

are given in Assumption 3.

Assumption 3. As (N, T ) → ∞, λT
1
2J−

1
2 (lnT )−3−v → ∞ , λJr(lnT )−v → ∞ ,

T
1
2J−

1
2 (lnT )−3−v →∞ and λ(lnT )v → 0 for some v > 0.

Assumption 3 imposes restrictions on λ and some further ones on J . Intuitively, we require

that λ dominates all other errors of approximation or uit to make sure the penalty term can

effectively shrink the individual coefficients to corresponding group-specific parameters.
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Following Su et al. (2016) and Su et al. (2019), we define

Êik,j ≡
{
i /∈ Ĝk,j|i ∈ G0

k,j

}
F̂ik,j ≡

{
i /∈ G0

k,j|i ∈ Ĝk,j

}

where i = 1, ..., N , j = 1, ..., p and k = 1, ..., K0
j . We let Êk,j = ∪i∈G0

k,j
Êik,j, F̂k,j =

∪i∈Ĝk,j F̂ik,j. Here Êk,j denotes the event of classifying individuals that belong to G0
k,j into

groups other than Ĝk,j; and F̂k,j denotes the event of classifying individuals who don’t belong

to G0
k,j into Ĝk,j. These two events mimic the Type I and Type II errors in hypothesis testing

literature, respectively.

The following theorem establishes the consistency of the group membership estimator.

Theorem 2. Suppose Assumption 1, 2 and 3 hold, then

(i) P (∪pj=1 ∪
K0
j

k=1 Êk,j) 6
∑p
j=1

∑K0
j

k=1 P (Êk,j)→ 0 as (N, T )→∞.

(ii) P (∪pj=1 ∪
K0
j

k=1 F̂k,j) 6
∑p
j=1

∑K0
j

k=1 P (F̂k,j)→ 0 as (N, T )→∞.

Theorem 2 guarantees that with probability approaching 1, we can correctly classify

individuals in the same group, say G0
k,j, into one group Ĝk,j, and those classified into the

same group, Ĝk,j, belong to one correct group G0
k,j for j = 1, ..., p and k = 1, ..., K0

j .

4.4.3 The Oracle Property and Asymptotic Distributions

As mentioned previously, the Classifier-lasso estimation method can simultaneously

accomplish two tasks: to classify individuals into different groups and to estimate θi,j, for

i = 1, ..., N and j = 1, ..., p, and ηk,j, for k = 1, ..., K0
j and j = 1, ..., p. Given the estimated

coefficients, we might want to conduct statistical inference on the functionals of the

nonparametric components. For example, f̂k,j(x), which is constructed by

f̂k,j(x) =
√
JBJ(x)′η̂k,j.
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An alternative strategy would be to implement the post-Lasso approach. Given the estimated

groups Ĝk,j, for j = 1, ..., p and k = 1, ..., K0
j , we could conduct a constrained optimization

to estimate group-specific parameters. We denote the post-Lasso estimators as f̂Ĝk,j(x).

Our goal in this subsection is to show that both the C-lasso estimator and the post-Lasso

estimator enjoy the oracle property, i.e., they are asymptotically equivalent to the infeasible

estimators as if the group memberships are known ex ante. Before we move to the results,

more definitions and assumptions are required.

Let ui = (ui1, ui2, ..., uiT ), εi = (εi1, εi2, ..., εiT ) and Var(ui|xi) = Σ
1
2
i ViΣ

1
2
i , where

Σi =diag(σ2
i (xi1), ..., σ2

i (xiT ))

Vi =IE[εiε′i]

We then formally demonstrate how to construct the oracle estimators. Given the correct

group membership G0
k,j for 1 6 k 6 K0

j and 1 6 j 6 p, define z̃it,G0 ≡ (z̃′it,G0
1
, z̃′it,G0

2
, ..., z̃′it,G0

p
)′,

where

z̃it,G0
j
≡ (0′J×1, ...,

G0
k,jth︷︸︸︷
z̃′it,j , ..., 0′J×1︸ ︷︷ ︸

K0
j vectors

)′

for 1 6 j 6 p. z̃it,G0
j
is composed of K0

j column vectors of length J . All the vector are 0J×1

except for the G0
k,jth, which equals to z̃it,j. Then z̃it,G0 is a

(
J
∑p
j=1K

0
j

)
× 1 vector.

The regression equation is

ỹit = z̃′it,G0η + ẽit

where η is a
(
J
∑p
j=1K

0
j

)
× 1 vector. Let η ≡ (η′1, η′2, ..., η′p)′, and ηj ≡ (η′1,j, η′2,j, ..., ηK0

j ,j
)′

for 1 6 j 6 p.

Denote the estimated η as η̂G0 with all the components η̂G0
k,j
. Then construct the

corresponding f̂G0
k,j
≡ z′it,j η̂G0

k,j
for 1 6 k 6 K0

j and 1 6 j 6 p, which is the oracle estimator.

Define

VG0 ≡
(
IE[z̃it,G0 z̃′it,G0 ]

)−1
IE
[
z̃i·,G0Σ1/2

i ViΣ1/2
i z̃′i·,G0

] (
IE[z̃it,G0 z̃′it,G0 ]

)−1
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where z̃i·,G0 = (z̃i1,G0 , z̃i2,G0 , ..., z̃iT,G0). We could divide VG0 into different cells VG0
k,j

for

1 6 k 6 K0
j and 1 6 j 6 p according to the true group structure.

Assumption 4. (i) For j = 1, ..., p and k = 1, ..., K0
j , there exists two positive constants

¯
cv and c̄v such that

0 <
¯
cv 6 lim

N,T→∞
min
i∈G0

k,j

µmin(Vi) 6 lim
N,T→∞

max
i∈G0

k,j

µmax(Vi) 6 c̄vδNT

for some nondecreasing sequence δNT which satisfies δNTN−1 → 0 as N, T →∞.

(ii) Let Bit,σ ≡
√
JBJ

it(xit)σi(xit). There exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var(Bit,σ)

)
6 max

16i6N
µmax

(
Var(Bit,σ)

)
< c̄ <∞

Assumptions 4 is analogous to Assumption A.3 in Su et al. (2019). Assumption 4(i) imposes

restrictions on the covariance matrix of εi. Assumption 4(ii) assures that the eigenvalues

of the interactive items of zit and the error term are bounded above and away from zero

uniformly.

Assumption 5. As (N, T )→∞, NTJ−2r → 0.

Assumption 5 is used to establish the pointwise convergence rate of the group-specific

infinite-dimensional estimators f̂k,j(x) and f̂Ĝk,j(x). The following Theorem 3 establishes

the asymptotic distribution of the estimated functional of fk,j.

Theorem 3. Suppose Assumption 1, 2, 3, 4 and 5 hold. Then for any j ∈ {1, ..., p},

k ∈ {1, ..., K0
j },

(i) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂k,j(x)− f 0

k,j(x)
)

D→ N(0, 1)
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(ii) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂Ĝk,j(x)− f 0

k,j(x)
)

D→ N(0, 1)

where

Vk,j,B = BJ(x)′VG0
k,j
BJ(x)

and VG0
k,j

is the corresponding cell in VG0.

Theorems 3 indicates that the Classifier-lasso and post-Lasso estimators of fk,j(x) are

asymptotically equivalent to the infeasible estimators, which are denoted as fG0
k,j
. Thus

both C-Lasso and post-Lasso estimators exhibit oracle properties.

4.4.4 Determination of Number of Groups

In this section, we discuss how to use a BIC-type information criterion to determine the

number of groups K0
j , j = 1, ..., p. Define K0 = (K0

1 , ..., K
0
p). Following the literature, we

assume that K0
j is bounded above from a finite integer Kmax for all j = 1, ..., p. We make the

dependence of θ̂i,j and η̂k,j on K and λ explicit by denoting them as θ̂i,j(K,λ) and η̂k,j(K,λ).

Using the post-Lasso estimator η̂Ĝ(K,λ), we could calculate

σ̂2
Ĝ(K,λ) = 1

NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itη̂Ĝ(K,λ)

)2
.

Then we choose K = (K1, ..., Kp) to minimize the following information criterion

IC(K,λ) = ln
(
σ̂2
Ĝ(K,λ)

)
+ ρNT · pJ

p∑
j=1

Kj

where ρNT is the tuning parameter. Let K̂(λ) ≡ arg min16Kj6Kmax,j=1,...,p IC(K,λ). We

next show that the above information criterion can consistently select the number of groups

for each nonparametric component. Let G(K)
j ≡

{
GK,1,j, ..., GK,K,j

}
be any K-partition of

{1, ..., N} for variable j, and GK a collection of all such partitions for all 1 6 j 6 p. Further
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define

σ̂2
G(K) ≡

1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itη̂ĜK,k

)2
.

We first introduce some assumptions.

Assumption 6. As (N, T ) → ∞, min16Kj<K0
j ,16j6p infG(K)∈GK σ̂

2
G(K)

P→
¯
σ2 > σ2

0, where

σ2
0 = plim(N,T )→∞

1
NT

∑N
i=1

∑T
t=1 u

2
it.

Assumption 7. As (N, T )→∞, ρNTJ → 0 and ρNTNT →∞.

When to decide the correct number of groups, there are three different situations to consider:

Kj < K0
j , Kj = K0

j , and Kj > K0
j for each 1 6 j 6 p, corresponding to under-fitted, correct,

and over-fitted models, respectively. Assumption 6 is used to guarantee that in the under-

fitted models, the first term in the IC criterion is always larger than in the correct model.

It implies that we will not choose under-fitted models with probability approaching one as

long as the second term in the IC criterion is dominated, which is ensured by Assumption

7. Similarly, Assumption 7 is a condition to ensure that the over-fitted models will not be

picked out with probability approaching one. The following theorem formally summarizes

such intuition.

Theorem 4. Suppose Assumptions 1, 2, 3, 4, 5, 6 and 7 hold. Then P (K̂(λ) = K0) → 1

as (N, T )→∞.

Theorem 4 shows that the IC criterion can consistently determine the correct number of

groups for each nonparametric component. However, in finite samples, we suggest that

readers use it with caution. There is always some probability, even though quite small, that

a misspecified model is selected. Thus we recommend that readers try different numbers of

groups, compare the results, and discuss possible implications in empirical studies.
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4.5 Simulation

In this section, we investigate the finite sample performance of the sieve-approximation-based

Classifier-Lasso estimation method for nonparametric additive panel regression models.

4.5.1 Data Generating Process

We consider three different data generating processes (DGPs). In all three DGPs, we let xit,s

follow a standard normal distribution across both i and t for s = 1, ..., p, µi follows a standard

normal distribution for all individuals i, and uit ∼i.i.d. N(0, 1) across both i and t. For each

DGP, we consider four different combinations of (N, T ) to investigate their influence on the

estimates. These four combinations are: (1) (N, T ) = (100, 40); (2) (N, T ) = (100, 80); (3)

(N, T ) = (200, 80); (4) (N, T ) = (200, 160), which analogize various data structures in the

real-world data sets. The three DGPs are detailed as follows.

DGP 1 In this data generating process, we assume yit is given by the following specification

yit = µi + hi,1(xit,1) + hi,2(xit,2) + uit,

where

hi,1(x) =


x− 1

2 if i ∈ G0
1,1,

3x2 − 1 if i ∈ G0
2,1,

and

hi,2(x) =


sin(2πx) if i ∈ G0

1,2,

sin(4πx) if i ∈ G0
2,2.

Here G0
k,j denotes the set of individuals such that the individual-specific function hi,j is in

the k−th group of the function of xit,j. Furthermore, we assume G0
1,1 = {1, 2, ..., 1

2N} and

G0
1,2 = {1, 2, ..., 1

2N}.
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DGP 2 In this data generating process, we assume yit is given by the following specification

yit = µi + hi,1(xit,1) + hi,2(xit,2) + hi,3(xit,3) + uit,

where

hi,1(x) =


sin(2πx) if i ∈ G0

1,1,

sin(4πx) if i ∈ G0
2,1,

and

hi,2(x) =


cos(2πx) if i ∈ G0

1,2,

cos(4πx) if i ∈ G0
2,2,

and

hi,3(x) =


x− 1

2 if i ∈ G0
1,3,

3x2 − 1 if i ∈ G0
2,3.

Here we let G0
1,1 = {1, 2, ..., N4 }, G

0
1,2 = {1, 2, ..., N2 } and G

0
1,3 = {1, 2, ..., 3

4N}.

DGP 3 In this data generating process, we assume yit is given by the following specification

yit = µi + hi,1(xit,1) + hi,2(xit,2) + hi,3(xit,3) + uit,

where

hi,1(x) =


sin(2πx) if i ∈ G0

1,1,

sin(4πx) if i ∈ G0
2,1,

and

hi,2(x) =


cos(2πx) if i ∈ G0

1,2,

cos(4πx) if i ∈ G0
2,2,
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and

hi,3(x) =



x− 1
2 if i ∈ G0

1,3,

3x2 − 1 if i ∈ G0
2,3,

x3 − 3x2 + 3
4 if i ∈ G0

3,3.

Here we let G0
1,1 = {1, 2, ..., N4 }, G

0
1,2 = {1, 2, ..., N2 }, G

0
1,3 = {1, 2, ..., 1

4N} and G
0
2,3 = {1

4N +

1, ..., 3
4N}.

As the number of nonparametric functions and the number of groups for each nonparametric

component increases from DGP 1 to DGP 3, grouped heterogeneity in each nonparametric

component becomes stronger and stronger,

For a fixed DGP and a given combination of (N, T ), we estimate the model using the iterative

procedure introduced in Su et al. (2019) and simulate with 100 repetitions. We let the tuning

parameter λ = (NT )−1/8, which satisfies all the related assumptions on λ given in Section 4.4

to ensure the consistency of the estimators. We use the cubic B-splines (B-splines of order 4)

for sieve approximation, and we let the number of interior points J0 to be the integer closest

to (NT ) 1
5 .

To measure the accuracy of the estimation approach developed in this chapter, we report

the root mean sqaure errors (RMSE) of both individual-specific and group-specific unknown

functions as well as the rate of correct classification for each unknown function. More

specifically, for the j-th nonparametric function, the RMSE of the group-specific estimates

are given by

RMSE = 1
R

R∑
r=1

√√√√√K0
j∑

k=1

∥∥∥ĥk,j − h0
k,j

∥∥∥2

2
,

respectively, where R is the number of repetitions which equals 100 in our setting. The

correct classification rate for the j-th nonparametric component is given by

CCj = 1
R

R∑
r=1

{ 1
N

N∑
i=1

K0
j∑

k=1
1{i ∈ Ĝk,j, i ∈ G0

k,j}
}
.
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We report the RMSE for both C-Lasso and Post-Lasso estimates as well as the oracle

estimates. Here the oracle estimates is estimated assuming the group memberships are

known.

4.5.2 Simulation Results

Table 4.1, Table 4.2, and Table 4.3 report the simulation results for the group-specific

parameters in DGP 1, DGP 2, and DGP 3, respectively. There are several interesting

findings. First, we can see that the rate of correct classification (CC Rate) increases when

both N and T increase. When (N, T ) = (100, 80), the rate of correct classification is larger

than 98% in DGP 1 and DGP 2, and when (N, T ) = (200, 160), the misclassification error

is almost zero in all DGPs, showing that the estimation method has a satisfying

performance. Second, the correct classification rate is higher in DGP 1 than in DGP 2 and

DGP 3 when (N, T ) is fixed. This shows that the complexity of the group structure will

also affect the finite sample performance of the estimation method. Third, the RMSEs of

the C-Lasso estimators are usually larger than the RMSEs of the post-Lasso estimators. In

addition, the finite sample performance of the post-Lasso estimators is very close to that of

oracle estimators when (N, T ) is large, which is consistent with the theoretical justification

in Section 4.4 and the simulation findings in Su et al. (2016) and Su et al. (2019). Based on

these findings, we recommend using the post-Lasso estimators in empirical studies.
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Table 4.1: Simulation Results of the Group-specific Parameters in DGP 1

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 84.49% 0.1577 0.1557 0.0893

100 80 98.71% 0.0708 0.0693 0.0674

200 80 98.38% 0.0568 0.0530 0.0501

200 160 99.96% 0.0372 0.0364 0.0364

h0
2 100 40 94.65% 0.1356 0.1364 0.0965

100 80 99.81% 0.0724 0.0718 0.0708

200 80 99.72% 0.0535 0.0520 0.0512

200 160 100.00% 0.0374 0.0372 0.0372

Table 4.2: Simulation Results of the Group-specific Parameters in DGP 2

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 96.11% 0.1356 0.1305 0.1088

100 80 99.87% 0.0809 0.0764 0.0761

200 80 99.81% 0.0632 0.0588 0.0580

200 160 100.00% 0.0439 0.0425 0.0425

h0
2 100 40 90.92% 0.1776 0.1753 0.0948

100 80 99.76% 0.0750 0.0717 0.0707

200 80 99.64% 0.0548 0.0514 0.0500

200 160 100.00% 0.0383 0.0366 0.0366

h0
3 100 40 74.17% 0.3233 0.2926 0.1023

100 80 98.64% 0.0948 0.0801 0.0760

200 80 97.98% 0.0808 0.0629 0.0568

200 160 99.95% 0.0530 0.0415 0.0414
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Table 4.3: Simulation Results of the Group-specific Parameters in DGP 3

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 96.87% 0.1409 0.1367 0.1108

100 80 99.90% 0.0814 0.0800 0.0787

200 80 99.87% 0.0608 0.0591 0.0578

200 160 100.00% 0.0440 0.0434 0.0434

h0
2 100 40 92.29% 0.1645 0.1603 0.0951

100 80 99.83% 0.0733 0.0701 0.0687

200 80 99.67% 0.0546 0.0511 0.0496

200 160 99.99% 0.0374 0.0366 0.0366

h0
3 100 40 63.73% 1.8325 1.4873 0.1441

100 80 92.74% 0.1586 0.1479 0.1063

200 80 90.48% 0.1526 0.1372 0.0783

200 160 99.90% 0.0599 0.0589 0.0588

4.6 Empirical Illustration

In this section, we apply the model and the estimation method developed in this chapter

to analyze a textbook example: exploring the effects of different explanatory variables on

cigarettes sales in the United States. The data set is from Baltagi et al. (2000), which covers

46 American states over the period 1963 - 1992. The explanatory variables included in this

data set are the yearly per capita sales of cigarettes, the yearly average retail price of a pack

of cigarettes measured at the price level in 1992, the yearly real per capita disposable income

and the minimum real price of cigarettes in neighboring states. In Baltagi et al. (2000), they

modeled the cigarettes sales using a dynamic linear panel regression model which is specified

as

ln yit = α + β1 ln yi,t−1 + β2 ln xit,1 + β2 ln xit,2 + β3 ln xit,3 + uit, (4.9)

103



where i represents the i-th state (i = 1, ..., 46), t represents the t-th year (t = 1, ...29), yit

denotes the yearly per capita sales of cigarettes, xit,1 is the yearly average retail price of

a pack of cigarettes measured at the price level in 1983, xit,2 is the yearly real per capita

disposable income, xit,3 is the minimum real price of cigarettes in neighboring states and uit

denotes the unobserved demand shock.

Baltagi et al. (2000) estimated the model 4.9 using various estimation techniques such as

OLS, 2SLS, and Shrinkage OLS. However, the estimation results in 4.9 can give very

different policy implications since the signs of β’s are opposite when using different

estimation techniques. It might be caused by the parametric restriction of the linear panel

regression model because the marginal effects of explanatory variables are restricted to be

constant. It is well known that the consumer demand for many goods often exhibits

diminishing returns to scale, i.e., consumer demand may depend on the absolute scale of

certain explanatory variables. There fore, using linear panel regression models to estimate

the demand can also be problematic from consumer theory. To address this problem, we

propose to estimate the consumer demand for cigarettes using the nonparametric additive

panel regression model with grouped hetero geneity developed in this chapter. The

grouped heterogeneity of consumer demand may be induced by culture, customs, social

norms, and many other latent factors shared by different states. It is worth noting that

Mammen et al. (2009) used a similar additive panel regression model to analyze this data

set. Compared with their work, our analysis takes account of the state-level unobserved

heterogeneity in the consumer demand for cigarettes, which provides a more accurate

picture of the consumer demand on cigarettes. We consider the following model:

ln yit = β1 ln yi,t−1 + hi,1(xit,1) + hi,2(xit,2) + αi + uit, (4.10)

where x1,it is the yearly average retail price of a pack of cigarettes measured at the price

level in 1983, x2,it is the yearly real per capita disposable income. We don’t include the
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minimum real price of cigarettes in neighboring states in model 4.10 because the effect of

this variable on the cigarette sales is negligible compared with other explanatory variables.

Since our model is nonparametric, it requires a larger amount of observations to ensure the

accuracy of estimation, and thus we omit less relevant variables.

We impose latent group structures on both hi,1(xit,1) and hi,2(xit,2) for all i = 1, ..., N . The

values of explanatory variables are normalized to [0, 1] . Using the information criterion and

the estimation method proposed above, we find that there exist two groups of hi,1(xit,1).

However, we do not find evidence indicating there is grouped heterogeneity in hi,2(xit,2). We

use post-Lasso estimator to recover the estimated functions of h1(x) and h2(x), respectively.

The estimated functions of h1(x) are shown in Figure 4.1.

Figure 4.1: Plot of ĥ1(x)

For h1(x), there are 28 states in Group 1 and 18 states in Group 2. Group 1 includes

Arizona, Arkansas, California, Connecticut, Florida, Georgia, Indiana, Iowa, Kansas,

Kentucky, Maine, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Hampshire,
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New Jersey, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, Texas, Utah,

Vermont, Virginia, and Washington. On the other hand, Group 2 includes Alabama,

Delaware, DC, Idaho, Illinois, Louisiana, Maryland, Massachusetts, Minnesota, Montana,

New Mexico, New York, North Dakota, Rhode Island, Tennessee, West Virginia,

Wisconsin, and Wyoming. From Figure 4.1, we can see that consumers living in the states

of Group 1 are, on average, more sensitive to the price of cigarettes, meaning that their

price elasticity of demand is more considerable.

For h2(x), the estimation method indicates that only one group exists, and the estimated

function is shown in Figure 4.2.

Figure 4.2: Plot of ĥ2(x)

Figure 4.2 implies that states with a higher real per capita disposable income have larger

amounts of cigarette sales. This is consistent with the findings in Baltagi and Levin (1992)

and Mammen et al. (2009). It is worth noting that the estimated function of h2(x) indicates

that the real per capita disposable income will have a negative impact on cigarette sales if
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it exceeds some threshold. We conjecture that such reduction of cigarette sales is because

people with higher income are usually more aware of the harms of smoking on health.

4.7 Conclusion

In this chapter, we study a nonparametric additive panel regression model with grouped

heterogeneity. This model contributes to the literature on both nonparametric panel

regression models and panel models with grouped heterogeneity. The proposed model can

handle both the nonlinear effects of explanatory variables and the non-additive

heterogeneity at the same time, making it an appealing choice for empirical studies.

To estimate the model, we develop a sieve-approximation-based Classifier-Lasso estimation

method, which can simultaneously estimate the parameters of interest and identify the

latent group structure. We successfully establish the asymptotic properties of the proposed

estimator and the consistency of the group classification. Besides, we show that the

proposed estimation method enjoys the so-call oracle property, which means that

parameters are estimated as if the latent group structure is known in advance. Such finding

is consistent with Su et al. (2016) and Su et al. (2019).

Since group numbers are usually unknown in general and have to be estimated from the

observed data, we further develop a BIC-type information criterion to determine them. We

show that this criterion can consistently estimate the number of groups for each

nonparametric component under some regularity conditions. We investigate the finite

sample performance of the proposed estimators and the information criterion through

Monte Carlo simulations. Both work well. Finally, we apply the model and estimation

method developed in this chapter to estimate the demand for cigarettes in the United

States using panel data of 46 American states from 1963 to 1992.
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Chapter 5

Appendix

Proofs of the Main Results in Chapter 1

Proof of Proposition 1: We prove the proposition following a similar identification

strategy in De Paula et al. (2018). We first show the parameters of interest

θ = (λ, β, δ, c2, ..., cK)′ are locally identified by checking conditions of the Theorem 6 in

Rothenberg (1971). Without loss of generality, we assume c1 is normalized to be 1. So,

θ ∈ RK+2. Let

H(θ) = (I − λG(θ))−1(βI + δG(θ)). (5.1)

Notice that H(θ) is continuously differential in θ. Following the definition of identification

in Hurwicz (1950) and Bramoullé et al. (2009), the reduced form parameter H = (I −

λG)−1(βI + δG) is globally identified by Assumption 1. Also notice that the parameters

space Θ is open by assumption. So, to show the local identification of θ, we just need to

prove the derivative matrix of H(θ) has full rank. We next calculate the derivative matrix

of H(θ), denoted as ∇H . First, notice
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∂H

∂λ
= (I − λG)−1G(I − λG)−1(βI + δG),

∂H

∂δ
= (I − λG)−1G,

∂H

∂β
= (I − λG)−1,

∂H

∂ck
= λ(I − λG)−1∆ck(I − λG)−1(βI + δG) + δ(I − λG)−1∆ck ,

where ∆ck is a N ×N matrix in which the (i, j)th element equals ∂Gij(θ)
∂ck

. We then can write

out the derivative matrix ∇H by vectorizing those derivatives and combining them into a

N2 × (K + 2) matrix.

∇H = [vec(∂H
∂λ

), vec(∂H
∂δ

), vec(∂H
∂β

), vec(∂H
∂c2

), ..., vec( ∂H
∂cK

)]

By the Theorem 6 in Rothenberg (1971), θ is locally identified if rank(∇H) = (K + 2).

Suppose not, then there exist some (K + 2)-dimensional vector a = (aλ, aδ, aβ, a2, ..., aK)

such that a 6= 0 and

aλ · vec(
∂H

∂λ
) + aδ · vec(

∂H

∂δ
) + aβ · vec(

∂H

∂β
) + a2 · vec(

∂H

∂a2
) + ...+ aK · vec(

∂H

∂cK
) = 0,

which is equivalent to

aλ ·
∂H

∂λ
+ aδ ·

∂H

∂δ
+ aβ ·

∂H

∂β
+ a2 ·

∂H

∂c2
+ ...+ aK ·

∂H

∂cK
= 0. (5.2)
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Plugging in the expressions of derivatives, we have

{ K∑
i=2

ai[λ(I−λG)−1∆ci(I−λG)−1(βI+δG)+δ(I−λG)−1∆ci ]
}

+aλ(I−λG)−1G(I−λG)−1(βI+δG)

+ aδ(I − λG)−1G+ aβ(I − λG)−1 = 0. (5.3)

Multiplying both sides of equation (5.3) by (I − λG) on the left, we get

{ K∑
i=2

ai[λ∆ci(I − λG)−1(βI + δG) + δ∆ci ]
}

+ aλG(I − λG)−1(βI + δG) + aδG+ aβI = 0.

Let C =
K∑
i=2

ai∆ci . Because |λ| < 1 by Assumption 2 and G is row-normalized, we can

commute (βI + δG) and (I − λG)−1. Thus we have

λC(βI + δG)(I − λG)−1 + δC + aλG(βI + δG)(I − λG)−1 + aδG+ aβI = 0. (5.4)

Multiplying both sides of equation (5.4) by (I − λG) on the right, we get

λC(βI + δG) + δC(I − λG) + aλG(βI + δG) + aδG(I − λG) + aβ(I − λG) = 0.

After some algebra, we have

(δ + λβ)C + aβI + (βaλ − λaβ + aδ)G+ (aλδ − λaδ)G2 = 0. (5.5)

Since the model assumes Wii = 0, we have Gii = 0 and thus Cii = 0 for i = 1, ..., N . So,

equation (5.5) implies

aβ + (aλδ − λaδ)(G2
ii) = 0,

for all i = 1, ..., N . By Assumption 5, there exist i, j ∈ V such that G2
ii 6= G2

jj and notice

G2
ii > 0 since there is no isolated agents, we have aβ = 0 and aλδ − λaδ = 0. So, we can
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further simplify equation (5.5) and get

(δ + λβ)C + (βaλ + aδ)G =
( K∑
i=2

ai(δ + λβ)∆ci

)
+ (βaλ + aδ)G = 0. (5.6)

We only need to show the matrices {∆c2 , ...,∆cK , G} are linear independent. We abuse

notations a little bit here by using ck to represent both the group identity k and the strength

of links in group k. We call a link group k is directly comparable to the normalized group

c1 if there exists some row i in G such that the denominator of Gij 6= 0 (j ∈ V ) takes the

form (b · c1 + ∑
j∈P (i)

ejcj) and k ∈ P (i), where P (i) is set of identities of all links connect to

i except for the normalized group, b equals the number of links connect to i that are in the

normalized group c1 and ej equals the number of links connect to i that are in the group

j except for the normalized group. Suppose {∆c2 , ...,∆cK , G} are linearly dependent, then

there exist d = (d2, ..., dK , dG) 6= 0 such that

d2∆c2 + ...+ dK∆cK + dGG = 0. (5.7)

By the definition of the strength-adjusted adjacency matrix G, there must exist some agent

i such that i’s links can be classified into the normalized group and other groups (otherwise

G will be a matrix which only contains constants). Without loss of generality, we assume

that i’s links can be classified into the first p groups, where p ≤ K. Then there exists a finite
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sequence {j1, ..., jp}, jl ∈ {1, ..., N}, l = 1, ..., p such that

Gij1 = 1

b+
p∑
j=1

gjcj

,

Gij2 = c2

b+
p∑
j=1

gjcj

,

...

Gijp = cp

b+
p∑
j=1

gjcj

,

where b is the number of i’s links that are classified into the normalized group, gj is the

number of i’s links that are classified into the group j. Notice that

∂Gij1

∂cj
= −gj

(b+
p∑
j=1

gjcj)2
,

∂Gijl

∂cl
=
b+

p∑
j=1,j 6=l

gjcj

(b+
p∑
j=1

gjcj)2
,

∂Gijl

∂ck
= −gkcl

(b+
p∑
j=1

gjcj)2
.

Then equation (5.7) implies the following system of linear equations:



d1(−g1) + d2(−g2) + ...+ dp(−gp) + dG(b+
p∑
j=1

gjcj) = 0, (5.8)

d1(b+
p∑

j=1,j 6=1
gjcj) + d2(−g2c1) + ...+ dp(−gpc1) + dG(b+

p∑
j=1

gjcj)c1 = 0, (5.9)

d1(−g1c2) + d2(b+
p∑

j=1,j 6=2
gjcj) + ...+ dp(−gpc2) + dG(b+

p∑
j=1

gjcj)c2 = 0, (5.10)

· · ·

d1(−g1cp) + d2(−g2cp) + ...+ dp(b+
p∑

j=1,j 6=p
gjcj) + dG(b+

p∑
j=1

gjcj)cp = 0. (5.11)
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Calculate (5.14)− (5.8)× c1, we get

d1(b+
p∑
j=1

gjcj) = 0.

We have gj > 0 and b > 0 by construction and cj > 0 by Assumption 4, so d1 = 0. Similarly,

we have d2 = d3 = ... = dp = 0 and dG = 0. Therefore, we have shown that if group cj

is directly comparable to the normalized group c1, then dj = 0. Let D1 denote the set of

link groups that are directly comparable to the normalized group c1. The next step is to

consider the link groups that are directly comparable to the link groups in the set D1 but

not directly comparable to the normalized link. Let D2 denote the set of such link groups.

By definition, there exists an agent i′ and his links can be classified into the link groups in

D1 and link groups in D2. Without loss generality, we assume all links of the agents i′ can

be classified into p1 + p2 groups, i.e., P (i′) = {1, ..., p1, p + 1, p + 2, ..., p + p2}, where p is

defined above and p1 6= p. So, link groups p+ 1, ..., p+ p2 are not directly comparable to the

normalized group c1, while link groups 1, ..., p1 are directly comparable to the normalized

group c1. Using similar idea, there exist elements in G such that

Gi′mk = ck
p1∑
j=1

gjcj +
p+p2∑
j=p+1

gjcj

where mk ∈ V , k = 1, ..., p1, p+ 1, p+ 2, ..., p+ p2. Then equation (5.7) implies the following

system of linear equations:
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d1(
p1∑
j=2

gjcj +
p+p2∑
j=p+1

gjcj) + d2(−g2c1) + ...+ dp2(−gp2c1) + dG(
p1∑
j=1

gjcj +
p+p2∑
j=p+1

gjcj)c1 = 0

d1(−g1c2) + d2(
p1∑

j=1,j 6=2
gjcj +

p+p2∑
j=p+1

gjcj) + ...+ dp2(−gp2c1) + dG(
p1∑
j=1

gjcj +
p+p2∑
j=p+1

gjcj)c2 = 0

...

d1(−g1cp2) + d2(−g2cp2) + ...+ dp2(
p1∑
j=1

gjcj +
p+p2−1∑
j=p+1

gjcj) + dG(
p1∑
j=1

gjcj +
p+p2∑
j=p+1

gjcj)cp2 = 0

Notice that we have already shown d1 = d2 = ... = dp1 = dG = 0. Using a similar strategy

as above, it can be shown that dp+1 = dp+2 = ... = dp+p2 = 0. Therefore, we have shown

that if any link group k is directly comparable to some link group which is either directly

or indirectly comparable to the normalized group c1, then dk = 0. Under Assumption 6, if

there is only one component in the network and there is no isolated agent (the network is

connected), then every link group is either directly comparable or indirectly comparable to

c1, so d1 = ... = dK = dG = 0, which implies {∆c2 , ...,∆cK , G} is linearly independent. If

there are multiple components, by Assumption 6, all links are also either directly or indirectly

comparable to the normalized group. If this is not true, we can always find a non-empty

proper subset P of {1, ..., L} such that c(Gp)∩c(Gpc) = ∅, which contradicts the Assumption

6. In summary, under Assumptions 1-6, {∆c2 , ...,∆cK , G} are linearly independent.

Therefore, combining the above results with equation (5.6), we have

ai(δ + λβ) = 0, for i = 2, ...K,

and

βaλ + aδ = 0 (5.12)
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By Assumption 3, λβ + δ 6= 0, so a2 = ... = aK = 0. Also notice that we have shown

aλδ − λaδ = 0 (5.13)

Combining equation (5.12) and equation (5.13) together, we have (λβ + δ)aλ = 0. By

Assumption 3, which states λβ + δ 6= 0, we have aλ = 0, which implies aδ = 0. Finally, we

have shown

aλ = aδ = aβ = a2 = ... = aK = 0,

which implies the derivative matrix ∇H has full rank. By the Theorem 6 in Rothenberg

(1971), θ is locally identified. The global identification result then follows from the Corollary

2 and Corollary 3 in De Paula et al. (2018). Therefore, under Assumptions 1-6, θ is identified

if (1) the sign of (λβ + δ) is known, or (2) λ > 0.

Asymptotic Analysis of the NLS estimator: Here we provide a brief asymptotic analysis

of the NLS estimator following a similar strategy in Wang and Lee (2013). To simplify

the analysis, in this part, we also assume that x is non-stochastic and elements of ε are

i.i.d. with zero mean and variance σ0 following Wang and Lee (2013). Let h(xn, θ) =

(I − λGn(θ))−1(βI + δGn(θ))xn, Qn(θ) = I − λGn(θ), Gn0 = Gn(θ0), Qn0 = Qn(θ0) and

Ln(θ) = [y − h(xn, θ)]′[y − h(xn, θ)], where θ0 is the true value of θ.

Notice that

1
n
E[Ln(θ)] = 1

n
[(β0 − β)I + (Gn0δ0 −Gδ)x + (λ0Gn0 − λG)Q′−1

n0 (β0I + Gn0δ0)]′Qn(θ)′−1

·Qn(θ)−1[(β0 − β)I + (Gn0δ0 −Gδ)x + (λ0Gn0 − λG)Q′−1
n0 (β0I + Gn0δ0)]

+ σ2
0

1
n
tr(Q′−1

n0 Q
−1
n0 ).

Since the model is uniquely identified at θ0, 1
n
E[Ln(θ)] is uniquely minimized at θ0 (Instead

of assuming E[x′x] is non-singular, we need to assume lim
n→∞

x′
nx has full rank. ). To show

the consistency of θ̂NLS, we need to check 1
n
Ln(θ) converges in probability to 1

n
E[Ln(θ)]
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uniformly in θ ∈ Θ, where Θ is a compact convex set which contains θ0 in its interior and
1
n
E[Ln(θ)] is uniformly equicontinuous on Θ. Under a set of similar conditions in Wang and

Lee (2013), these two conditions are satisfied, which implies that θ̂NLS is consistent. The

proof is similar in spirit to the proof of Proposition 2.1 in Wang and Lee (2013), which is

omitted here. Since θ̂NLS minimizes Ln(θ), we have ∂Ln(θ̂NLS)
∂θ

= 0 and by Taylor expansion

at θ0, we have
√
n(θ̂NLS − θ0) = −[ 1

n
∂2Ln(θ̃)
∂θ∂θ′

]−1 1√
n
∂Ln(θ0)
∂θ

. Notice that

1√
n

∂Ln(θ0)
∂θ

= 2√
n

∂h
′
n(xn, θ0)
∂θ

[Yn − hn(xn, θ0)]

= − 2√
n

∂h
′
n(xn, θ0)
∂θ

Q−1
n0 εn

Denote

An,λ0 = ∂hn(xn, θ)
∂λ

= (In − λ0Gn0)−1Gn0(I − λ0Gn0)−1(β0In + δGn0)xn,

An,β0 = ∂hn(xn, θ0)
∂β

= (In − λGn0)−1xn,

An,δ0 = ∂hn(xn, θ0)
∂δ

= (In − λGn0)−1Gn0xn,

An,ck = ∂hn(xn, θ0)
∂ck

= [λ0(In − λ0Gn0)−1∆ck(In − λ0Gn0)−1(β0In + δ0Gn0) + δ0(In − λ0Gn0)−1∆ck ]xn,

for k = 2, ..., K. Let An = [An,λ0 , An,β0 , An,δ0 , An,c2 , ..., An,cK ]′, we then have

1√
n

∂Ln(θ0)
∂θ

d→ N(0, lim
n→∞

4
n
σ2

0AnQ
−1
n0Q

′−1
n0 A

′
n). (5.14)

On the other hand, since θ̂NLS converges in probability to θ0, we have θ̃ p→ θ. By a similar

uniform law of large numbers in Wang and Lee (2013), we have 1
n
∂2Ln(θ̃)
∂θ∂θ′

p→ 1
n
∂2Ln(θ0)
∂θ∂θ′

. Notice

that
1
n

∂2Ln(θ̃0)
∂θ∂θ′

= 2
n

∂h
′
n(xn, θ0)
∂θ

∂hn(xn, θ0)
∂θ

+ op(1) = 2
n
AnA

′
n + op(1), (5.15)
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Combining the above results, we finally have

√
n(θ̂NLS − θ0) d−→ N(0, lim

n→∞
n(AnA′n)−1AnQ

−1
n0Q

′−1
n0 A

′
n(AnA′n)−1)

The asymptotic properties of the case in which the dimension of β is large than 1 can be

derived in a similar fashion, so we omit the derivation here.

Descriptive Statistics of the Weibo Data Set:

Here we provide the descriptive statistics for the Sina Weibo data set which is used in

empirical application of the paper.

Table 5.1: Descriptive Statistics of the Weibo Data Set

Mean S.D. Min. Max.

Average number of daily posts 1.258 0.405 0.022 2.419

Age 35.815 9.043 18 64

Male 0.561 0.497 0 1

Number of followers (millions) 8.342 12.196 0.863 123.722
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Proofs of the Main Results in Chapter 2

Notations. For any real vector or matrix A, we use A> to denote the transpose of A, λmax(A)

to denote its largest eigenvalue and ||A||1 to denote its maximum absolute column sum norm.

We use Aij to denote the ijth element of a matrix A. For two positive integers a and b,

we let 0a×b denote the a × b matrix consists of zeros and 1a denote the a-dimensional unit

vector. For a sequence of random variables Xn, we let plimn→∞Xn denote its probability

limit, p−→ and d−→ denote convergence in probability and in distribution, respectively.

Proof of Proposition 1

We first show that the matrix (I−λ1W1−λ2W2) is invertible. Define W = λ1W1 +λ2W2,

which is a n × n matrix. By definition, we just need to show (I −W) is invertible. Notice

that a sufficient condition to ensure the invertibility of (I −W) is |λmax(W)| < 1; see, for

example, Seber (2008). Let’s first consider the structure of W, which is shown as follows:

W =



λ1W1
λ2

n−n1
1n11>n2 . . . λ2

n−n1
1n11>nK

λ2
n−n2

1n21>n1 λ1W2 . . . λ2
n−n2

1n21>nK

... ... . . . ...

λ2
n−nK

1nK1>n1
λ2

n−nK
1nK1>n2 . . . λ1WK



∈ Rn×n.

By Assumption 1, it is easy to see that the row sums of W all equal (λ1 +λ2), which implies

the matrix 1
λ1+λ2

W is row-normalized. Next, notice that for any row-normalized matrix A,

we have |λmax(A)| = 1 (Banerjee et al. (2014)), which implies |λmax(W)| = |λ1 + λ2|. Then

by Assumption 2, we have |λmax(W)| = |λ1 + λ2| < |λ1|+ |λ2| < 1. So, we have (I−W) is

invertible.

We next show there exists a unique interior Nash equilibrium in the network game defined

in the main text. For individual i, i = 1, ..., n, the first order condition of his utility
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maximization problem implies:

yi = πi + λ1
∑

j∈G(i)
WG(i),ijyj + λ2ȳ−G(i).

By the definition of Nash equilibrium in pure strategies, we have the following system of

equations:

Y = λ1W1Y + λ2W2Y + Π.

Since (I− λ1W1 − λ2W2) is invertible under Assumptions 1 and 2, we have

Y = (I− λ1W1 − λ2W2)−1Π.

Proof of Proposition 2

We show the identification of the parameters of interest following the method in Bramoullé

et al. (2009). We first illustrate the idea by considering a special case p = 1, i.e., xi is a

scalar. By the reduced form of the model and Assumption 4, we have:

E[Y|X] = (I− λ1W1 − λ2W2)−1βX.

By the definition of identification in Bramoullé et al. (2009), we need to show the

structural parameters (λ1, λ2, β)> is unique. Suppose there exists a set of different

parameters (λ̃1, λ̃2, β̃)> such that

(I− λ1W1 − λ2W2)−1β = (I− λ̃1W1 − λ̃2W2)−1β̃. (5.16)

By the above equation, we have (β − β̃)I + (λ1β̃ − λ̃1β)W1 + (λ2β̃ − λ̃2β)W2 = 0n×n. Then

notice that I, W1 and W2 are linearly independent because of Assumption 1 and the model

setup, so we have β = β̃, λ1β̃ = λ̃1β and λ2β̃ = λ̃2β. Then by Assumption 3, β 6= 0, we have

β = β̃, λ1 = λ̃1 and λ2 = λ̃2, which implies all the parameters are identified.
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We next consider the general case p > 1. The reduced form of the model is given by:

E[Y|X] = (I− λ1W1 − λ2W2)−1Xβ.

If the parameters are not identified, then there must exist another set of parameters

(λ̃1, λ̃2, β̃
>)> such that

(I− λ1W1 − λ2W2)−1Xβ = (I− λ̃1W1 − λ̃2W2)−1Xβ̃, (5.17)

for any value of X. By Assumption 3 and linear algebra, the equation (2) implies β = β̃ and

(I−λ1W1−λ2W2)−1 = (I− λ̃1W1− λ̃2W2)−1. Then we have (λ1− λ̃1)W1 +(λ2− λ̃2)W2 =

0n×n. Then by the structure of W1 and W2, we have λ1 = λ̃1 and λ2 = λ̃2. So, all the

parameters are identified.

Proof of Proposition 3

Recall Z = (W1Y,W2Y,X), PH = H(H>H)−1H> and define Ẑ = PHZ. Then we have

θ̂2SLS = (Z>PHZ)−1Z>PHY

= (Ẑ>Ẑ)−1Ẑ>Y

= (Ẑ>Ẑ)−1Ẑ>(Zθ + ε)

= θ + [Z>H(H>H)−1H>Z]−1[Z>H(H>H)−1H>ε],

where the last equality holds because H contains X. The above equation directly implies

√
n(θ̂2SLS − θ) = [( 1

n
Z>H)( 1

n
H>H)−1( 1

n
H>Z)]−1[( 1

n
Z>H)( 1

n
H>H)−1 1√

n
H>ε].

By Assumption 9, we have limn→∞
1
n
H>Z = QHZ and limn→∞

1
n
H>H = QHH. We next show

that the elements of H are bounded in absolute value. By Assumption 7 and Assumption

8, the elements of H will be bounded in absolute value if W1 and W2 have uniformly
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bounded row and columns sums. We consider W1 first. The row sums of W1 is uniformly

bounded by Assumption 1. The column sums of W1 is uniformly bounded by Assumption

6 and the structure of W1. We next consider W2. The row sums of W2 are uniformly

bounded because of the structure of W2. The column sums of W2 is uniformly bounded

because of Assumption 5 and its structure. To see this, simply notice that limn→∞ ||W2||1 ≤
n

n−(maxk sk)n ≤
1

1−maxk sk
≤ 1

(K−1)c , where c is the positive constant defined in Assumption

5. So, we have shown the row and column sums of W1 and W2 are uniformly bounded.

Combining this with Assumption 7 and Assumption 8, the elements of H is bounded in

absolute values. By Assumption 9, limn→∞ n
−1H′H exists and is finite and nonsingular. We

then apply the Theorem A.1 in Kelejian and Prucha (1998) and the Slutsky’s Theorem to

conclude
√
n(θ̂2SLS − θ) d−→ N(0, [Q>HZQ−1

HHQHZ]−1).
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An Iterative Algorithm for the Optimization Problem (3.4) in Chapter 3:

(i) Choose some initial value of δ̂τ , which is denoted by δ̂(0)
τ and set s = 0.

(ii) Given the group-specific parameters δ̂(s)
τ , estimate the group memberships ĝ(s+1)

τ by

ĝ
(s+1)
i,τ = arg min

gi,τ∈{1,...,K0}

1
T

T∑
t=1

ρτ (yit − x′itα(s)
gi,τ
− w′itγ(s)

gi,τ
),

for all i = 1, ..., N .

(iii) Given the group memberships ĝ(s+1)
τ , estimate the group-specific parameters δ̂(s+1)

τ by

solving the following optimization problem

δ̂
(s+1)
Gk,τ

= arg min
δτ∈Rp+qJ

1
NT

∑
ĝ

(s+1)
i =k

T∑
t=1

ρτ (yit − x′itαĝ(s+1)
i ,τ

− w′itγĝ(s+1)
i ,τ

),

for all k = 1, ..., K0.

(iv) Repeat Step 3 and Step 4 until the group memberships ĝτ or the group-specific

parameters δ̂τ converge.

The iterative algorithm here consists of two main parts: (1) estimating group memberships

gτ according to given values of group-specific parameters (Step 2); (2) updating the group-

specific parameters δτ based on group memberships gτ (Step 3). As pointed out in Bonhomme

and Manresa (2015) and Liu et al. (2019), the solution produced by the iterative algorithm

can be sensitive to the choice of initial values of δ(0)
τ because it is not guaranteed to be

a global optimum. To address this issue, Bonhomme and Manresa (2015) recommended

trying different initial values and picking the one with the minimum loss, and we follow their

practice in our paper. Here, we propose three strategies for generating initial values.

Strategy 1 Randomly assign N individuals into K0 groups (each group consists of N/K0

individuals). Then estimate δGk,τ using individuals assigned to the group Gk, for all k =

1, ..., K0.
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Strategy 2 First, estimate δi,τ using {yit, xit, zit}Tt=1 for all i = 1, ..., N . Second,

implement the standard multivariate k-means algorithm with K0 groups using the

estimates {δ1,τ , ..., δN,τ} as input. We consider three different cases (1) only use the

parametric coefficients αi; (2) only use the functional coefficients γi; (3) both αi and γi are

used. This practice gives us three sets of initial values.

Strategy 3 First, treat all individuals as a single group and estimate δ∗τ using all the

data. Second, generate δ(0)
Gk,τ

= δ∗τ + a · Uk 1, where Uk is a (p + qJ)−dimensional normal

random vector with mean zero and the diagonal variance matrix whose elements are

{|δ∗1,τ |2, ..., |δ∗p+qJ,τ |2} for all k = 1, ..., K0. Here δ∗s denotes the s-th element of the

(p+ qJ)−dimensional δ∗τ .

Remark 1 In Monte Carlo simulations, we estimate the model using thirteen initial values:

five from Strategy 1, five from Strategy 3, and three generated using Strategy 2. For each

initial value, we estimate the parameters of interest using the proposed iterative algorithm

and record the corresponding loss in 3.4, then we pick the one that gives the minimum

loss. We find that the iterative algorithm with this procedure performs very well in terms of

estimation bias and standard deviation and runs quite fast2. So we keep the same procedure

in the empirical application section.

1In Monte Carlo simulations, we find that the Strategy 3 with a = 1.0 performs satisfactorily, so we also
let a = 1.0 in the empirical application.

2Our estimation method can be carried out easily with popular statistical software, including R, matlab
or State with minor modification on the built-in function, such as the ‘quanreg’ command in R or the ‘qreg’
command in Stata. It takes a computer equipped with Intel i7-7700K CPU and 16G 2400MHZ RAM about
20 minutes to run 1000 repetitions of each DGP in Section 4.5.
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Proofs of the Main Results in Chapter 3

Proof of Lemma 1:

By definition we have δ0
Gk,τ

= (α0′
Gk,τ

, γ0′
Gk,τ

)′ ∈ Rp+qJ and θ0
Gk,τ

= (α0′
Gk,τ

, β0′
Gk,τ

)′ ∈ Rp+q for

all k = 1, ..., K0. For two different groups Gk, Gl ∈ G = {G1, ..., GK0}, since

∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥2
=
∥∥∥α0

Gk,τ
− α0

Gl,τ

∥∥∥2
+
∥∥∥γ0

Gk,τ
− γ0

Gl,τ

∥∥∥2
,

To show
∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥2
> 0, it is sufficient to consider two different cases:

(1) ∥∥∥α0
Gk,τ
− α0

Gl,τ

∥∥∥ > c,

(2) ∥∥∥α0
Gk,τ
− α0

Gl,τ

∥∥∥ = 0,

but ∥∥∥β0
Gk,τ
− β0

Gk,τ

∥∥∥
2
> c.

In the first case, notice that by Assumption 2(ii), there exists a positive constant c such that

c <
∥∥∥α0

Gk,τ
− α0

Gl,τ

∥∥∥
≤
∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥ . (5.18)

In the second case, by Assumption 2(ii), there exists a positive constant c and some 1 ≤
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m ≤ q such that

c <
∥∥∥β0

Gkm,τ
− β0

Gkm,τ

∥∥∥
2

≤
∥∥∥β0

Gkm,τ
− P (u)′γ0

Gkm,τ

∥∥∥
2

+
∥∥∥P (u)′γ0

Gkm,τ
− P (u)′γ0

Glm,τ

∥∥∥
2

+
∥∥∥β0

Glm,τ
− P (u)′γ0

Glm,τ

∥∥∥
2

=o(1) +
{

(γ0
Gkm,τ

− γ0
Glm,τ

)′(
∫
P (u)P (u)′du)(γ0

Gkm,τ
− γ0

Glm,τ
)
} 1

2

≤o(1) +
√
λmax(

∫
P (u)P (u)′du)

∥∥∥γ0
Gkm,τ

− γ0
Glm,τ

∥∥∥ , (5.19)

where the second inequality is by triangular inequality, the third inequality is by Assumption

2(ii) and J →∞ and the definition of L2 norm, the fourth inequality is by Assumption 2(i)

and the inequality c′Ac ≤ λmax(A)‖c‖2, where A is some p × p matrix and c is a p × 1

constant vector. Then equation 5.19 implies that
∥∥∥γ0

Gkm,τ
− γ0

Glm,τ

∥∥∥ > c for some constant

c > 0 when J → ∞. Finally, we have
∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥ ≥ ∥∥∥γ0
Gkm,τ

− γ0
Glm,τ

∥∥∥ > c > 0 when

J →∞. Combining the results of the above two cases together, Lemma 1 is proved.

Proof of Theorem 1: For all 1 ≤ i ≤ N , we let Wi = (wi1, ..., wiT )′ ∈ RT×qJ , Yi =

(y11, ..., y1T )′ ∈ RT×1, Xi = (x11, ..., x1T )′ ∈ RT×p, Ri = (R11, ..., R1T )′ ∈ RT×1 and ei =

(e11, ..., e1T )′ ∈ RT×1, where Rit = w′itγ
0
i − z′itβ(uit) denotes the approximation error, where

γ0
i = (γ0

i1, ..., γ
0
i,q), which is defined in Assumption 3(ii). Furthermore, we let

fi =



fi1(0) 0 ... 0

0 fi2(0) ... 0

... ... . . . ...

0 0 ... fiT (0)



∈ RT×T ,

where fit(0) is the conditional density function of eit evaluated at zero, and we let ψ(u) =
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τ − 1{u ≤ 0}. For simplicity, we suppress the subscript τ . For individual i, we have

Yi = Wiγ
0
i + Xiα

0
i −Ri + ei. (5.20)

Define W̃i = Wi(W′
ifiWi)−1W′

ifi. Then equation 5.20 can be rewritten as

Yi =Wi(W′
ifiWi)−1/2{(W′

ifiWi)1/2γ0
i + (W′

ifiWi)−1/2W′
ifiXiα

0
i }

+ T−1/2(Xi − W̃iXi)(T 1/2α0
i )−Ri + ei. (5.21)

Furthermore, for individual i, we let v1,it be the t-th row of Wi(W′
ifiWi)−1/2 and v2,it be

the t-th row of T−1/2(Xi − W̃iXi), and vit = (v1,it, v2,it). And we let

θ0
i1 =(W′

ifiWi)1/2γ0
i + (W′

ifiWi)−1/2W′
ifiXiα

0
i ∈ RqJ .

θ0
i2 =T 1/2α0

i ∈ Rp.

Let θ0
i = (θ0′

i1, θ
0′
i2)′, we have

yit = vitθ
0
i −Rit + eit = v1,itθ

0
i1 + v2,itθ

0
i2 −Rit + eit.

Let ∆ denote a set which contains K0 different elements in Rp+qJ . Consider the following

objective function:

LNT (∆) = 1
N

N∑
i=1

min
δi∈∆

[ 1
T

T∑
t=1

ρτ (yit − x′itαi − w′itγi)
]
, (5.22)

where δi = (α′i, γ′i)′ ∈ Rp+qJ and wit is defined in the main text. Comparing the above

objective function with the one in the optimization problem 3.4, the only difference is that

the group memberships are concentrated out here. It is straightforward to see that the

solution minimizes the objective function 5.22 also solves the optimization problem in the
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main text (3.4), i.e.,

∆̂ = inf
∆∈R(p+qJ)·K0

1
N

N∑
i=1

min
δi∈∆

[ 1
T

T∑
t=1

ρτ (yit − x′itαi − w′itγi)
]
. (5.23)

In fact, since the optimization problem 5.23 is equivalent to 3.4 with concentrated g, we have

δ̂ = ∆̂, where δ̂ is defined the the main text, which implies that we only need to focus on

the solution that solves 5.23.

Notice that we have yit = v1,itθ
0
i,1 + v2,itθ

0
i,2 − Rit + eit by definition, which further gives us

yit − x
′
itαi − w

′
itγi = eit − v1,it(θ0

i,1 − θi,1) − v2,it(θ0
i,2 − θi,2) − Rit = eit − vitθi − Rit, where

θi = (θ0′
i,1− θ

′
i,1, θ

0′
i,2− θ

′
i,2)′ and vit = (v1,it, v2,it). By Lemma 7, we have the following results.

(1) For any individual 1 ≤ i ≤ N , for any constant ε > 0, there exists a constant c such that

lim
T→∞

Pr
(

inf
‖θi‖>c·J

1
2

T∑
t=1

ρτ (eit − vitθi −Rit) >
T∑
t=1

ρτ (eit −Rit)
)
> 1− ε.

(2) Let Θ = {θ : ‖θi‖ ≤ c ·J 1
2} for some finite constant c. For θ∗i and θ̃i such that θ∗i , θ̃i ∈ Θ,

we have

lim
T→∞

Pr
( T∑
t=1

ρτ (eit − vitθ∗i −Rit) =
T∑
t=1

ρτ (eit − vitθ̃i −Rit)
)
> 1− ε.

for any constant ε > 0.

We next show that claims (1) and (2) imply the consistency of the estimators. First, by

Lemma 1, we have
∥∥∥θ0
Gk
− θ0

Gj

∥∥∥ > c > 0, for some c > 0 as J → ∞ for all 1 ≤ k 6= j ≤ K0,

which implies that different groups will have different "true" parameters, i.e., the elements

contained in ∆ are different from each other. This further implies the corresponding θ0
i are

different for individuals in different groups.

Second, we show that
∥∥∥∆̂−∆0

∥∥∥ = op(1) by showing
∥∥∥(α̂′i, γ̂′i)′ − (α0

i , γ
0′
i )′

∥∥∥ = op(1). We claim

that for any group 1 ≤ k ≤ K0, there exists δ̂σ(k) ∈ ∆̂ such that the corresponding θ̂σ(k) ∈ Θ

with probability approaching 1. Suppose not, then there are a non-negligible proportion of
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individuals such that their θ̂i > cJ1/2. Without loss of generality, we assume there exists a

such group indexed by k. Then we have

∑
i∈Gk

T∑
t=1

ρτ (eit − vitθ̂i −Rit) >
∑
i∈Gk

T∑
t=1

ρτ (eit −Rit) (5.24)

with probability approaching 1 by (1). Combining 5.24 and (2), we then have

N∑
i=1

T∑
t=1

ρτ (eit − vitθ̂i −Rit) >
N∑
i=1

T∑
t=1

ρτ (eit −Rit) +Op(1). (5.25)

Since ∆̂ solves the optimization problem 3.4, we then have θ̂σ(k) ∈ Θ for all 1 ≤ k ≤ K0 with

probability approaching 1, which gives us
∥∥∥θ̂i,1 − θ0

i,1

∥∥∥ = Op(J
1
2 ) and

∥∥∥θ̂i,2 − θ0
i,2

∥∥∥ = Op(J
1
2 )

for all 1 ≤ i ≤ N . By the definition of θ̂i,2, we have

∥∥∥α̂i − α0
i

∥∥∥ = O(T−1/2J1/2).

For θ̂i,1, notice that

θ̂i,1 − θ0
i,1 = (W′

ifiWi)
1
2 (γ̂i − γ0

i ) + (W′
ifiWi)−

1
2 W′

ifiXi(α̂i − α0
i ),

which implies that

∥∥∥∥(W′
ifiWi)

1
2 (γ̂i − γ0

i )
∥∥∥∥ ≤∥∥∥θ̂i,1 − θ0

i,1

∥∥∥+
∥∥∥∥(W′

ifiWi)−
1
2 W′

ifiXi(α̂i − α0
i )
∥∥∥∥ .

By Lemma 3, the eigenvalues of W′
ifiWi and Wi(W′

ifiWi)−1W′
i are bounded and bounded

away from zero and above, which implies that
∥∥∥γ̂i − γ0

i

∥∥∥ = Op(T−1/2J1/2). So for all 1 ≤ i ≤
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N and 1 ≤ l ≤ q, we have

∥∥∥β̂il − β0
il

∥∥∥
2

=
∥∥∥β̂il − P (u)′γ0

il + P (u)′γ0
il − β0

il

∥∥∥
2

≤
∥∥∥β̂il − P (u)′γ0

il

∥∥∥
2

+
∥∥∥P (u)′γ0

il − β0
il

∥∥∥
2

=Op(T−1/2J1/2 + J−κ).

Finally, notice that δ̂i, i = 1, ..., N , takes K0 different values because of the setup of the

optimization problem, we have
∥∥∥∥α̂Ĝσ(k)

− α0
Gk

∥∥∥∥ = O(T−1/2J1/2). and∥∥∥∥β̂Ĝσ(k)l
− β0

Gkl

∥∥∥∥
2

= Op(T−1/2J1/2 + J−κ), for all k = 1, ..., K0.

Then when T → ∞ and J → ∞, which is ensured by Assumption 2 (iii), we have∥∥∥∥α̂Ĝσ(k)
− α0

Gk

∥∥∥∥ = op(1), and
∥∥∥∥β̂Ĝσ(k)l

− β0
Gkl

∥∥∥∥
2

= op(1), for all k = 1, ..., K0 and 1 ≤ l ≤ q.

Proof for Corollary 1: By Lemma 1, we have

∥∥∥δ0
Gk,τ
− δ0

Gl,τ

∥∥∥ > c > 0,

for some constant c > 0, and any Gk, Gl ∈ G = {G1, ..., GK0} and k 6= l. This implies

∥∥∥θ0
i1 − θ0

−i1

∥∥∥ =
∥∥∥(W′

ifiWi)1/2(γ0
i − γ0

−i1) + (W′
ifiWi)−1/2W′

ifiXi(α0
i − α0

−i1)
∥∥∥

≥ c · T 1/2, (5.26)

for some constant c > 0, where γ0
−i1 and α0

−i1 is the pseudo true group-specific parameters

of the group other than i’s. The above result further implies that
∥∥∥θ0
i − θ0

−i

∥∥∥ ≥ c · T 1/2, for

some constant c > 0 and i = 1, ..., N . By Theorem 1, we have

∥∥∥θ̂i − θ0
i

∥∥∥ = op(1). (5.27)

Then, by 5.26 and 5.27 together, we have
∥∥∥θ̂i − θ̂−i∥∥∥ > c ·T 1/2 for some constant c > 0 under
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Assumptions 1, 2 and 3. By the Claim (1) and Claim (2) in the proof of Theorem 1, we then

have

lim
T→∞

Pr
( T∑
t=1

ρτ (eit − vitθ̂−i −Rit) >
T∑
t=1

ρτ (eit − vitθ̂i −Rit)
)
> 1− ε.

Since θ̂i minimizes the loss for individual i and by the nature of the optimization problem,

the above result then gives us lim
T→∞

P (ĝi = g0
i ) = 1.

Proof for Theorem 2:

To prove Theorem 2, we introduce more notations for the sake of simplicity. Recall that

wit = (zit,1P (uit)′, ..., zit,qP (uit)′)
′ ∈ RqJ . Suppose all individuals are perfectly classified into

K0 groups. Without loss of generality, we can only consider the asymptotic distribution of

the k-th group Gk which consists of Nk individuals. For all i ∈ Gk, we let

WGk =(wi1, ..., wiT , ..., wNk1, ..., wNkT )′ ∈ RNkT×qJ ,

YGk =(y11, ..., y1T , ..., yNk1, ..., yNkT )′ ∈ RNkT×1,

XGk =(x11, ..., x1T , ..., xNk1, ..., xNkT )′ ∈ RNkT×p,

RGk =(R11, ..., R1T , ..., RNk1, ..., RNkT )′ ∈ RNkT×1,

eGk =(e11, ..., e1T , ..., eNk1, ..., eNkT )′ ∈ RNkT×1,

where Rit = w′itγ
0
Gk
−z′itβ(uit) denotes the approximation error, γ0

Gk
= (γ0

Gk1, ..., γ
0
Gk,q

), which
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is defined in Assumption 2(ii). Furthermore, we let

fGk =



f11(0) 0 ... ... 0

0 f12(0) ... ... 0

... ... . . . ...
...

... ... ...
. . . ...

0 0 ... ... fNkT (0)



∈ RNkT×NkT ,

where fit(0) is the conditional density function of eit evaluated at zero for all i ∈ Gk, and

we let ψ(u) = τ − 1{u ≤ 0}. For simplicity, we suppress the subscripts Gk and τ . At this

moment, the semiparametric quantile panel regression model can be rewritten as

Y = Wγ0 + Xα0 −R + e. (5.28)

We further define W̃ = W(W′fW)−1W′f . Then equation 5.28 can be rewritten as

Y =W(W′fW)−1/2{(W′fW)1/2γ0 + (W′fW)−1/2W′fXα0}

+ (NkT )−1/2(X− W̃X)((NkT )1/2α0)−R + e. (5.29)

Furthermore, we let v1,it be the ((i − 1) × T + t)-th row of W(W′fW)−1/2 and v2,it be the

((i − 1) × T + t)-th row of (NkT )−1/2(X − W̃X), and vit = (v1,it, v2,it), for i = 1, ..., NkT .

And we let

θ0
1 =(W′fW)1/2γ0 + (W′fW)−1/2W′fXα0 ∈ RqJ .

θ0
2 =(NkT )1/2α0 ∈ Rp.
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Let θ0 = (θ0′
1 , θ

0′
2 )′, we then have

yit = vitθ
0 −Rit + eit = v1,itθ

0
1 + v2,itθ

0
2 −Rit + eit.

Define the so-called oracle estimator and establish its asymptotic properties. The oracle

estimator is given by

δ̂∗Gk,τ = arg min
δ∈Rp+qJ

1
NT

∑
i∈Gk

T∑
t=1

ρτ (yit − x′itα− w′itγ),

where δ = (α′, γ′)′.The oracle estimator assumes that the correct group memberships are

known ex ante, so there is no estimation error from the estimation of group memberships.

We first establish the asymptotic properties of the oracle estimators following the similar idea

in Wei et al. (2006). The main difference is that Wei et al. (2006) uses spline polynomials as

basis functions while we do not assign specific basis. First recall the model can be rewritten

as yit = v1,itθ
0
1 + v2,itθ

0
2 − Rit + eit, where v1,it, v2,it, θ

0
1, θ

0
2, Rit are defined in the discussion

before Theorem 2. We can rewrite the optimization problem 3.4 as an optimization problem

on θ1 and θ2, i.e.,

(θ̂1, θ̂2) = arg min
θ1,θ2

∑
i∈Gk

T∑
t=1

ρτ (eit − v1,it(θ1 − θ0
1)− v2,it(θ2 − θ0

2)−Rit). (5.30)

We can further transform the optimization problem as follows. let θ̃ = (θ̃′1, θ̃
′
2)′ = (θ̂′1 −

θ0′
1 , θ̂

′
2 − θ0′

2 )′ , which solves

θ̃ = arg min
θ1,θ2

∑
i∈Gk

T∑
t=1

ρτ (eit − v1,itθ1 − v2,itθ2 −Rit). (5.31)

Then by Lemma 6(i) and (iii), for any constant ε > 0, there exists a constant c such that

Pr
(

inf
‖θ‖>c·J

1
2

∑
i∈Gk

T∑
t=1

ρτ (eit − vitθ −Rit) >
∑
i∈Gk

T∑
t=1

ρτ (eit −Rit)
)
> 1− ε.
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Then by the fact that θ̃ = (θ̃′1, θ̃
′
2) minimizes the optimization problem 5.30, the above result

implies that
∥∥∥θ̃∥∥∥ =

∥∥∥θ̂ − θ0
∥∥∥ = Op(J

1
2 ), which further implies

∥∥∥θ̃1

∥∥∥ =
∥∥∥θ̂1 − θ0

1

∥∥∥ = Op(J
1
2 ) and∥∥∥θ̃2

∥∥∥ =
∥∥∥θ̂2 − θ0

2

∥∥∥ = Op(J
1
2 ). By the definition of θ1, we have

θ̂1 − θ0
1 = (W′fW) 1

2 (γ̂ − γ0) + (W′fW)− 1
2 W′fX(α̂− α0),

which implies that

∥∥∥∥(W′fW) 1
2 (γ̂ − γ0)

∥∥∥∥ ≤∥∥∥θ̂1 − θ0
1

∥∥∥+
∥∥∥∥(W′fW)− 1

2 W′fX(α̂− α0)
∥∥∥∥ .

Notice that by Assumption 1(v) and Lemma 1, the eigenvalues of W′fW and

W(W′fW)−1W′ are also bounded and bounded away from zero and above, which implies

that

∥∥∥∥√NkT (γ̂ − γ0)
∥∥∥∥ =Op(J

1
2 ),

so we have
∥∥∥γ̂ − γ0

∥∥∥ = Op((NkT )−1/2J1/2). We next consider the asymptotic distribution of
√
NkT (α̂ − α0). Let θ∗2 = ( 1

NkT
ΓNkT )−1∑

i∈Gk
∑T
t=1 v2,itψ(eit). By Lemma 4 and Lemma 5,

we have

θ∗2
d−→ N(0,Γ−1

Gk,τ
ΩGk,τΓ−1

Gk,τ
).

To derive the asymptotic distribution of α̂, notice that by definition, we have θ̃2 = θ̂2 −

θ0
2 =
√
NkT (α̂ − α0). So we only need to show

∥∥∥θ̃2 − θ∗2
∥∥∥ = op(1). By definition, we have

Pr(‖θ∗2‖ < M)→ 1 for any M > 0 as (N, T )→∞. In addition, by the previous results, we

have
∥∥∥θ̃1

∥∥∥ = Op(J1/2). Then we define

D̃it(θ2, θ
∗
2) = ρτ (eit − v1,itθ̃1 − v2,itθ2 −Rit)− ρτ (eit − v1,itθ̃1 − v2,itθ

∗
2 −Rit).
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Then by Lemma 6(ii), for any ε > 0, we have

sup
‖θ2−θ∗2‖≤ε

∣∣∣∣ ∑
i∈Gk

T∑
t=1
{D̃it(θ2, θ

∗
2)− E[D̃it(θ2, θ

∗
2)]− v2,it(θ2 − θ∗2)ψ(eit)}

∣∣∣∣ = op(1).

On the other hand, we have

sup
θ2−θ∗2≤ε

∣∣∣∣ ∑
i∈Gk

T∑
t=1

D̃it(θ2, θ
∗
2) + (

∑
i∈Gk

T∑
t=1

ψ(eit)v2,it)(θ2 − θ∗2)

− 1
2NkT

θ′2ΓNkT θ2 + 1
2NkT

θ∗
′

2 ΓNkT θ∗2
∣∣∣∣

= sup
θ2−θ∗2≤ε

∣∣∣∣ ∑
i∈Gk

T∑
t=1

D̃it(θ2, θ
∗
2) + 1

NkT
(θ2 − θ∗2)′ΓNkT θ∗2

− 1
2NkT

θ′2ΓNkT θ2 + 1
2NkT

θ∗
′

2 ΓNkT θ∗2
∣∣∣∣

= sup
θ2−θ∗2≤ε

∣∣∣∣ ∑
i∈Gk

T∑
t=1

D̃it(θ2, θ
∗
2) + 1

2NkT
(θ2 − θ∗2)′ΓNkT (θ2 − θ∗2)

∣∣∣∣
=op(1),

where the first equality is by the definition of θ∗2, the second equality is by simple algebra and

the last equality is by Lemma 6(iv) and the triangular inequality. Notice that as (N, T )→∞,
1

2NkT
(θ2 − θ∗2)′ΓNkT (θ2 − θ∗2) > 0 when ‖θ2 − θ∗2‖ > ε, by Lemma 4 and Assumption 4, we

have

Pr( inf
‖θ2−θ∗2‖>ε

∑
i∈Gk

T∑
t=1

ρτ (eit − v1,itθ̃1 − v2,itθ2 −Rit)

>
∑
i∈Gk

T∑
t=1

ρτ (eit − v1,itθ̃1 − v2,itθ
∗
2 −Rit))→ 1,

when (N, T )→∞. Then by the fact that θ̃ = (θ̃1, θ̃2) solves the optimization problem 5.31,

the above result implies θ̃2 = θ∗2 + op(1), and we have

θ̃2 = θ̂2 − θ0
2 =

√
NkT (α̂− α0) d−→ N(0,Γ−1

Gk,τ
ΩGk,τΓ−1

Gk,τ
).
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By Assumption 4, we have δ̂σ(k),τ = δ̂∗Gk,τ +op(cNT ), for all k = 1, ..., K0. This further implies

that
∥∥∥γ̂σ(k),τ − γ̂∗Gk,τ

∥∥∥ = op(cNT ) and
∥∥∥α̂σ(k),τ − α̂∗Gk,τ

∥∥∥ = op(cNT ). Then for all l = 1, ..., q and

k = 1, ..., K0, we have

∥∥∥∥β̂Ĝσ(k)l,τ
− β0

Gkl,τ

∥∥∥∥
2

=
∥∥∥∥β̂Ĝσ(k)l,τ

− P (u)′γ̂∗Gkl,τ + P (u)′γ̂∗Gkl,τ − β
0
Gkl,τ

∥∥∥∥
2

≤
∥∥∥∥β̂Ĝσ(k)l,τ

− P (u)′γ̂∗Gkl,τ
∥∥∥∥

2
+
∥∥∥P (u)′γ̂∗Gkl,τ − β

0
Gkl,τ

∥∥∥
2

≤op(cNT ) +
∥∥∥P (u)′γ̂∗Gkl,τ − P (u)′γ0

Gkl,τ

∥∥∥
2

+
∥∥∥β0

Gkl,τ
− P (u)′γ0

Gkl,τ

∥∥∥
2

=Op((NkT )−1/2J1/2 + J−κ),

where the second and third inequalities are by triangular inequality, the last equality is by

Assumptions 2(ii) and 4. On the other hand, for k = 1, ..., K0,

√
Nσ(k)T (α̂Ĝσ(k),τ

− α∗Gk,τ ) = op(
√
Nσ(k)TcNT )

= op(
√
NTcNT )

= op(1),

where the first equality is by the previous result, the second equality is by Assumption 3(i)

and the last equality is by Assumption 4. Therefore, we have

√
Nσ(k)T (α̂Ĝσ(k),τ

− α0
Gk,τ

) =
√
Nσ(k)T (α̂Ĝσ(k),τ

− α∗Gk,τ ) +
√
Nσ(k)T (α̂Ĝ∗

σ(k),τ
− α0

Gk,τ
)

=op(1) +
√
Nσ(k)T (α̂Ĝ∗

σ(k),τ
− α0

Gk,τ
)

d−→N(0,Γ−1
Gk,τ

ΩGk,τΓ−1
Gk,τ

).

The proof of Theorem 2 is thus finished.
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Some Useful Lemmas:

Lemma 2. Under Assumptions 1, 2, 3 and 4, the eigenvalues of

1
NkT

∑
i∈Gk

T∑
t=1

witw
′
it = 1

NkT
W′

Gk
WGk

and
1
T

T∑
t=1

witw
′
it = 1

T
W′

iWi

are bounded and bounded away from zero by some generic constants in probability.

Proof of Lemma 2: We first show that the eigenvalues of E[1{i ∈ Gk}witw′it], i.e., the

expectation of witw′it for individuals in the group k, are bounded and bounded away from

zero by some generic constants. Let b = (b′1, ..., b′q)′ ∈ RqJ be an arbitrary vector of nonzero

constants, where bi = (bi1, ..., biJ)′ ∈ RJ . Notice that for all i ∈ Gk,

b′E[witw′it]b =E[(b′1P (uit), ..., b′qP (uit))′(zitz′it)(b′1P (uit), ..., b′qP (uit))]

=E[(b′1P (uit), ..., b′qP (uit))′E[zitz′it|uit](b′1P (uit), ..., b′qP (uit))]

≤E[λmax(E[zitz′it|uit])
∥∥∥(b′1P (uit), ..., b′qP (uit))

∥∥∥2
]

≤c1 ·
q∑
j=1

b′jE[P (uit)P (uit)′]bj

≤c2 · λmax(E[P (uit)P (uit)′])‖b‖2

≤c3‖b‖2 ,

where the first equality is by definition, the second equality is by law of iterative expectation,

the third inequality is by the basic inequality c′Ac ≤ λmax(A)‖c‖2, where A is some K ×K

matrix and c is a K × 1 constant vector and K ≥ 1, the fourth inequality is by Assumption

1(iii) and the sixth inequality is by Assumption 2(i). The above calculation implies that

the eigenvalues of E[witw′it] are bounded from above by some generic constant and we can

similarly show that its eigenvalues are also bounded away from zero.
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Next, we show for i ∈ Gk, we have

1
NkT

∑
i∈Gk

T∑
t=1

witw
′
it

p−→ E[1{i ∈ Gk}witw′it]. (5.32)

Define SJ1,J2,l1,l2
it = PJ1(uit)PJ2(uit)zit,l1zit,l2 , for 1 ≤ J1, J2 ≤ J and 1 ≤ l1, l2 ≤ q. Notice

that SJ1,J2,l1,l2
it are just entries of the qJ × qJ matrix witw′it. Therefore, to show equation

5.32, we only need to show 1
NkT

∑
i∈Gk

T∑
t=1

SJ1,J2,l1,l2
it

p−→ E[SJ1,J2,l1,l2
it ]. For the sake of notational

simplicity, we now suppress the subscripts J1, J2, l1, l2 when writing Sit. First notice that

Var(Sit) =E[S2
it]− (E[Sit])2

≤E[S2
it]

=E[P 2
J1(uit)P 2

J2(uit)z2
it,l1z

2
it,l2 ]

≤c · (sup
u

∥∥P (uit)
∥∥)2E[PJ1(uit)PJ2(uit)]

≤c · ζ2
0 (J).

The fourth inequality is by Assumption 2(i) and the last inequality is by the fact that

E[PJ1(uit)PJ2(uit)] = e′J1E[P (uit)P (uit)′]eJ2 ≤ λmax(E[P (uit)P (uit)′]), where eJi is a J × 1

vector in which the Ji-th entry is 1 and the rest entries are zero. Then by Chebyshev’s

inequality, for any ε > 0, we have

P(| 1
NkT

Nk∑
i=1

T∑
t=1

Sit − E[Sit]| > ε) ≤ O( ζ
2
0 (J)

NkTε2
) = o(1),

by Assumption 4. Combining the above results together, we thus have proved the first part

of Lemma 2. For 1
T

∑
i∈Gk

T∑
t=1

witw
′
it, the proof is exactly the same as before, so we omit the

details to save space.
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Lemma 3. Let

M = (M(z11, u11), ...,M(z1T , u1T ), ...,M(zNk1, uNk1), ...,M(zNkT , uNkT ))′ ∈ RNkT×p,

where M(zit, uit) is defined in the main text, and recall W̃ = W(W′fW)−1W′f . Under

Assumptions 1, 2, 3 and 4, we have

(i) ‖W‖ = Op(
√
NkTJ)

(ii)
∥∥∥W̃X− W̃M

∥∥∥ = Op(J)

Proof of Lemma 3. We first show ‖W‖ = Op(
√
NkTJ). Let’s consider the norm of each

row in W. Notice that

Var(‖wit‖) =E[‖wit‖2]− (E[‖wit‖])2

≤E[‖wit‖2]

=E[w′itwit]

=E[tr(witw′it)]

=tr(E[witw′it])

=Op(J),

where the first to the fifth inequalities are by definition and simple algebra, and the last

equality is by Lemma 2. Therefore, there exists a constant c such that E[‖wit‖] ≤ c ·J . Then

by Markov’s inequality, for any ε > 0, there exists c0 =
√

c
ε
J such that

P(‖wit‖ > c0) ≤ E[‖wit‖2]
c2

0
= ε,

which implies that ‖wit‖ = Op(
√
J). Finally, by Assumption 1(i), we have

‖W‖ = Op(
√
NkTJ).

138



Next, we show
∥∥∥W̃X− W̃M

∥∥∥ = Op(J). First, notice that

∥∥∥W̃X− W̃M
∥∥∥ =

∥∥∥W(W′fW)−1W′f(X−M)
∥∥∥ .

We thus consider the convergence rates of ‖W‖,
∥∥∥(W′fW)−1

∥∥∥, and
∥∥W′f(X−M)

∥∥. The

convergence rate of ‖W‖ has been derived above, which is Op(J). In addition, by Lemma

1, we have
∥∥∥(W′fW)−1

∥∥∥ = Op( 1
NkT

). Then for
∥∥W′f(X−M)

∥∥, consider one arbitrary row in

W′f(X−M), which is fit(0)wit(xit −m(zit, uit)′. Notice that

Var(
∥∥∥fit(0)wit(xit −mzit,uit)′

∥∥∥) ≤E[
∥∥∥fit(0)wit(xit −m(zit, uit)′

∥∥∥2
]

≤c · E[‖wit‖2]

=Op(J),

where the second inequality is by Assumption 1(ii) and Assumption 1(iv), and the last

inequality is by the rate of convergence of E[‖wit‖2] which is derived above. Similarly as

before, by Markov inequality and Assumption 1(i), we have
∥∥W′f(X−M)

∥∥ = Op(
√
NkTJ).

Finally, we have

∥∥∥W̃X− W̃M
∥∥∥ ≤‖W‖∥∥∥(W′fW)−1

∥∥∥∥∥∥W′f(X−M)
∥∥∥

=Op(
1

NkT

√
NkTJ

√
NkTJ)

=Op(J).

Lemma 4. Define

ΓNkT = (X− W̃X)′f(X− W̃X),

and assume Assumptions 1,2, 3 and 4 hold, we have

1
NkT

ΓNkT
p−→ Γ,
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where Γ = E
[
fit(0)(xit −M(zit, uit))(xit −M(zit, uit))

′
]
for all i ∈ Gk.

Proof of Lemma 4: Define Γ̃ = (X −M)′f(X −M). To show 1
NkT

ΓNkT converges in

probability to Γ, we first show that
∥∥∥ 1
NkT

ΓNkT − 1
NkT

Γ̃
∥∥∥ = op(1) and later show 1

NkT
Γ̃ p−→ Γ.

By some simple algebra, we have

ΓNkT − Γ̃ =(X− W̃X)′f(X− W̃X)− (X−M)′f(X−M)

=(X−M + M− W̃X)′f(X−M + M− W̃X)− (X−M)′f(X−M)

=(X−M)′f(M− W̃X) + (M− W̃X)′f(X−M) + (M− W̃X)′f(M− W̃X)

=(X−M)′f(M− W̃M) + (X−M)′f(W̃M− W̃X) + (M− W̃M)′f(X−M)

+ (W̃M− W̃X)′f(X−M) + (M− W̃M)′f(M− W̃M)

+ (M− W̃M)′f(W̃M− W̃X) + (W̃M− W̃X)′f(M− W̃M)

+ (W̃M− W̃X)′f(W̃M− W̃X).

First, ‖X−M‖ = Op((NkT ) 1
2 ) by Assumption 1. Second, we have∥∥∥M− W̃M

∥∥∥ = Op((NkT ) 1
2J−κ) because of Assumption 4. Third, by Lemma 3, we have∥∥∥W̃M− W̃X

∥∥∥ = Op(J). Then, by Assumption 4(iii), we have

1
NkT

ΓNkT −
1

NkT
Γ̃ =Op(J−κ) +Op((NkT )− 1

2J) +Op(J−κ)

+Op(J−κ) +Op(J−2κ) +Op((NkT )− 1
2J1−κ)

+Op((NkT )− 1
2J1−κ) +Op(J2)

=op(1)

So, this implies that 1
NkT

ΓNkT = 1
NkT

Γ̃ + op(1). Furthermore, notice that 1
NkT

Γ̃ p−→ Γ by the

common law of large numbers. So, we have 1
NkT

ΓNkT
p−→ Γ.

Lemma 5. Recall that ψ(u) = τ − 1{u ≤ 0}. Under Assumptions 1, 2, 3 and 4, let
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θ̃2 = ∑
i∈Gk

T∑
t=1

v2,itψ(eit), we have

θ̃2
d−→ N(0,ΩGk,τ ).

Proof of Lemma 5: Define ψ(e) = (ψ(e11), ..., ψ(e1T ), ..., ψ(eNk1), ..., ψ(eNkT )). By

definition, we have

θ̃2 =
∑
i∈Gk

T∑
t=1

v2,itψ(eit)

= 1√
NkT

(X− W̃X)′ψ(e)

= 1√
NkT

(X−M + M− W̃M + W̃M− W̃X)′ψ(e)

= 1√
NkT

(X−M)′ψ(e) + 1√
NkT

(M− W̃M)′ψ(e) + 1√
NkT

(W̃M− W̃X)′ψ(e)

First, notice that the first term 1√
NkT

(X −M)′ψ(e) d−→ N(0,ΩGk,τ ) by the usual central

limit theorem under Assumptions 1, 2, 3 and 4. The second term is op(1) because
1√
NkT

∥∥∥M− W̃M
∥∥∥ = Op((NkT ) 1

2J−κ) and Assumption 4. Third, the third term is also op(1)

because
∥∥∥W̃M− W̃X

∥∥∥ = Op(J) by Lemma 3. Therefore,

θ̃2 = 1√
NkT

(X−M)′ψ(e) + op(1),

which implies θ̃2
d−→ N(0,ΩGk,τ ) by the Slutsky’s theorem.

Lemma 6. Let Cit = ρτ (eit − vitθ − Rit) − ρτ (eit − Rit) + vitθψ(eit) and Dit(θ1, θ2) =

ρτ (eit − v1,itθ1 − v2,itθ2 − Rit) − ρτ (eit − v1,itθ1 − Rit) + v2,itθ2ψ(eit). Under Assumptions 1,

2, 3, 4 and (N, T )→∞, we have

(i)

sup
‖θ‖≤c·J

1
2

J−1
∣∣∣∣ ∑
i∈Gk

T∑
t=1
{Cit − E[Cit]}

∣∣∣∣ = op(1).
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(ii)

sup
‖θ‖1≤c1·J

1
2 ,‖θ‖2≤c2

∣∣∣∣ ∑
i∈Gk

T∑
t=1
{Dit(θ1, θ2)− E[Dit(θ1, θ2)]}

∣∣∣∣ = op(1),

(iii)

Pr( inf
‖θ‖=c·J

1
2

∣∣∣∣J−1 ∑
i∈Gk

T∑
t=1

{
E[Cit(θ)]− vitθψ(eit)

}∣∣∣∣ > 1)→ 1,

(iv)

sup
‖θ‖1≤c1·J

1
2 ,‖θ‖2≤c2

∣∣∣∣ ∑
i∈Gk

T∑
t=1

E[Dit(θ1, θ2)]− 1
2NkT

θ′2ΓNkT θ2

∣∣∣∣ = op(1).

where c, c1, c2 are any positive constants.

Lemma 7. Let Cit = ρτ (eit − vitθ − Rit) − ρτ (eit − Rit) + vitθψ(eit) and Dit(θ1, θ2) =

ρτ (eit− v1,itθ1− v2,itθ2−Rit)− ρτ (eit− v1,itθ1−Rit) + v2,itθ2ψ(eit). Under Assumptions 1, 2

and 3 and T →∞, for all 1 ≤ i ≤ N ,

(i)

sup
‖θ‖≤c·J

1
2

J−1
∣∣∣∣ T∑
t=1
{Cit − E[Cit]}

∣∣∣∣ = op(1).

(ii)

sup
‖θ‖1≤c1·J

1
2 ,‖θ‖2≤c2

∣∣∣∣ T∑
t=1
{Dit(θ1, θ2)− E[Dit(θ1, θ2)]}

∣∣∣∣ = op(1),

(iii)

Pr( inf
‖θ‖=c·J

1
2

∣∣∣∣J−1
T∑
t=1

{
E[Cit(θ)]− vitθψ(eit)

}∣∣∣∣ > 1)→ 1,

where c, c1, c2 are any positive constants.

Proof of Lemma 6 and 7: Lemma 6 and 7 can be proved following the same argument in

Wei et al. (2006), so we omit the details here.
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Proofs of the Main Results in Chapter 4

We use ‖·‖ to denote Frobenius norm in the Appendix for simplicity.

Theorem 1. Suppose Assumption 1, 2 hold, then

(i) ‖θ̂i − θ0
i ‖F = Op(J−r + J

1
2T−

1
2 + λ) and ‖θ̂i,j − θ0

i,j‖F = Op(J−r + J
1
2T−

1
2 + λ) for

i = 1, 2, ..., N, j = 1, ..., p.

(ii) 1
N

∑N
i=1‖θ̂i− θ0

i ‖2
F = Op(J−2r + JT−1) and 1

N

∑N
i=1‖θ̂i,j − θ0

i,j‖2
F = Op(J−2r + JT−1) for

j = 1, ..., p.

(iii) ‖η̂(k),j − η0
k,j‖F = Op(J−r + J

1
2T−

1
2 ), for k = 1, ..., K0

j , j = 1, ..., p, where

(η̂(1),j, ..., η̂(K0
j ),j) is a suitable permutation of (η̂1,j, ..., η̂K0

j ,j
) for j = 1, ..., p.

Proof. (i) For each individual, I define

Qi(θi) ≡
1
T

T∑
t=1

ỹit − p∑
j=1

z̃′it,jθi,j

2

= 1
T

T∑
t=1

(
ỹit − z̃′itθi

)2

and

Qi(θi, η) ≡ Qi(θi) + λ
p∑
j=1

K0
j∏

k=1
‖θi,j − ηk,j‖

Since θ̂i minimizes Qi(θi, η̂), I have Qi(θ̂i, η̂) 6 Qi(θ0
i , η̂), which is equivalent to

(
Qi(θ̂i)−Qi(θ0

i )
)

+ λ
p∑
j=1

K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥
 6 0
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Consider the first part:

Qi(θ̂i)−Qi(θ0
i )

= 1
T

T∑
t=1

(ỹit − z̃′itθ̂i)2 − 1
T

T∑
t=1

(ỹit − z̃′itθ0
i )2

=(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )− 2(θ̂i − θ0
i )′Q̂i,z̃ẽ

where Q̂i,z̃z̃ = 1
T

∑T
t=1 z̃itz̃

′
it, Q̂i,z̃ẽ = 1

T

∑T
t=1 z̃itẽit, ẽit = ∑p

j=1 δ̃hi,j(xit,j) + ũit.

Consider the second part, I have

∣∣∣∣∣∣∣
K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥
∣∣∣∣∣∣∣

6

∣∣∣∣∣∣∣
K0
j−1∏
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥
(∥∥∥∥θ̂i,j − η̂K0

j ,j

∥∥∥∥−∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥
)∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
K0
j−2∏
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥
(∥∥∥∥θ̂i,j − η̂K0

j−1,j

∥∥∥∥−∥∥∥∥θ0
i,j − η̂K0

j−1,j

∥∥∥∥
)∣∣∣∣∣∣∣

+ · · ·

+

∣∣∣∣∣∣∣
K0
j∏

k=2

∥∥∥θ0
i,j − η̂k,j

∥∥∥ (∥∥∥θ̂i,j − η̂1,j

∥∥∥−∥∥∥θ0
i,j − η̂1,j

∥∥∥)
∣∣∣∣∣∣∣

6c1ji,NT (θ̂, θ0, η̂)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥
where c1ji,NT (θ̂, θ0, η̂) ≡ ∏K0

j−1
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥+∏K0
j−2

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥+ · · ·+∏K0
j

k=2

∥∥∥θ0
i,j − η̂k,j

∥∥∥.
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Thus
∣∣∣∣∣∣∣
p∑
j=1

K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥

∣∣∣∣∣∣∣

6
p∑
j=1

c1ji,NT (θ̂, θ0, η̂)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥
6pc1i,NT (θ̂, θ0, η̂)

∥∥∥θ̂i − θ0
i

∥∥∥
where c1i,NT (θ̂, θ0, η̂) = max16j6p c1ji,NT (θ̂, θ0, η̂).

Together I have

(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )

6
∣∣∣2(θ̂i − θ0

i )′Q̂i,z̃ẽ

∣∣∣+ λpc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
62
∥∥∥θ̂i − θ0

i

∥∥∥∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
By Lemma 4, µmin(Q̂i,z̃z̃) > ¯

c > 0 w.p.a. 1, then I have w.p.a. 1,

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
)

By Lemma 4,
∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−r + J
1
2T−

1
2 ), thus

∥∥∥θ̂i − θ0
i

∥∥∥ = Op(J−r + J
1
2T−

1
2 + λ)

Consequently we could get

‖θ̂i,j − θ0
i,j‖ = Op(J−r + J

1
2T−

1
2 + λ)

for i = 1, 2, ..., N and j = 1, ..., p.

Remark. The argument depends on the condition that c1i,NT (θ̂, θ0, η̂) = Op(1).
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We show this by considering a constrained optimization problem.

Define

Rb ≡
{
γ :
∣∣∣γi,jm∣∣∣ 6 c <∞, i = 1, ..., N, j = 1, ..., p,m = 1, ..., J

}
Πb ≡

{
π :
∣∣∣πk,jm∣∣∣ 6 c <∞, k = 1, ..., K0

j , j = 1, ..., p,m = 1, ..., J
}

where c is a generic constant, γ = (γ1, ..., γN), γi = (γ′i,1, ..., γ′i,p)′ for i = 1, ..., N ,

π = (π′1, ..., π′p)′, πj = (π′1,j, ..., π′Kj ,j)
′ for j = 1, ..., p.

Further define Θb ≡ {θ : γ ∈ Rb}, Hb ≡ {η : π ∈ Πb}. Remember that θ = (θ1, ..., θN),

where θi ≡ 1√
J
γi, i = 1, ..., N , and η =

(
η′1, ..., η

′
p

)′
, where ηj ≡ 1√

J
πj, j = 1, ..., p.

If c is large enough,by Assumption 1(iii), we could get that γ0 and π0 lie in the interior

of Rb and Πb respectively, thus θ0 ∈ Θb and η0 ∈ Hb.

Then we search over Θb and Hb to minimize the objective function 4.7, namely

(
θ̂, η̂

)
= arg min

θ∈Θb,η∈Hb

1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itθi

)2
+ λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θi,j − ηk,j∥∥∥
F

The restrictions guarantee that c1i,NT (θ̂, θ0, η̂) = O(1).

Practically, we set c large enough and conduct the constrained optimization, which

works well in my simulations.

(ii) Let mJT = J−r + J
1
2T−

1
2 and v denotes a (pJ) × N matrix. In order to show that

1
N

∑N
i=1‖θ̂i − θ0

i ‖2 = Op(J−2r + JT−1), I just need to prove that for any ε, there exists

a constant M = M(ε) such that, for sufficiently large N and T ,

P

 inf
1
N

∑N

i=1‖vi‖
2=M

QNT (θ0 +mJTv, η̂) > QNT (θ0, η0)

 > 1− ε

This implies that w.p.a.1 there exists a local minimum {θ̂, η̂} such that 1
N

∑N
i=1‖θ̂i −
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θ0
i ‖2 = Op(J−2r + JT−1) holds.

m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
= 1
N

N∑
i=1

v′iQ̂i,z̃z̃vi −
2
N
m−1
JT

N∑
i=1

v′iQ̂i,z̃ẽ + λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θ0
i,j +mJTvi,j − η̂k,j

∥∥∥
>

¯
c

1
N

N∑
i=1
‖vi‖2 − 2

 1
N

N∑
i=1
‖vi‖2


1
2
m

−2
JT

N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


1
2

where the last inequality holds w.p.a 1 by Lemma 4.

By Lemma 4, 1
N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2r+JT−1), then m−2

JT

N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(1), thus

for sufficiently large M , I have m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
> 0 w.p.a.1.

Since 1
N

∑N
i=1‖θ̂i,j − θ0

i,j‖2 6 1
N

∑N
i=1‖θ̂i − θ0

i ‖2, we also have 1
N

∑N
i=1‖θ̂i,j − θ0

i,j‖2 =

Op(J−2r + JT−1).

(iii) Further consider c1ji,NT (θ̂, θ0, η), where θ̂ and η lie in the interior of Θb and Hb
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respectively.

c1ji,NT (θ̂, θ0, η)

=
K0
j−1∏
k=1

∥∥∥θ̂i,j − ηk,j∥∥∥+
K0
j−2∏
k=1

∥∥∥θ̂i,j − ηk,j∥∥∥∥∥∥∥θ0
i,j − ηK0

j ,j

∥∥∥∥+ · · ·+
K0
j∏

k=2

∥∥∥θ0
i,j − ηk,j

∥∥∥
6

K0
j−1∏
k=1

(∥∥∥θ̂i,j − θ0
i,j

∥∥∥+
∥∥∥θ0
i,j − ηk,j

∥∥∥)+
K0
j−2∏
k=1

(∥∥∥θ̂i,j − θ0
i,j

∥∥∥+
∥∥∥θ0
i,j − ηk,j

∥∥∥)∥∥∥∥θ0
i,j − ηK0

j ,j

∥∥∥∥
+ · · ·+

K0
j∏

k=2

∥∥∥θ0
i,j − ηk,j

∥∥∥
6

K0
j−1∑
s=0

c1jsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s +
K0
j−2∑
s=0

c2jsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s
+ · · ·+

0∑
s=0

cK0
j psi,NT

(θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s

6
K0
j−1∑
s=0

cjsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s

6c2ji,NT (θ0, η)
K0
j−1∑
s=0

∥∥∥θ̂i,j − θ0
i,j

∥∥∥s
6c2ji,NT (θ0, η)

(
1 + 2

∥∥∥θ̂i,j − θ0
i,j

∥∥∥)

where c2ji,NT (θ0, η) = max16s6K0
j
cjsi,NT (θ0, η) and cjsi,NT (θ0, η) = ∑K0

j

k=1 ckjsi,NT (θ0, η).

The last inequality holds w.p.a 1.
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Define pNT (θ, η) ≡ 1
N

∑N
i=1

∑p
j=1

∏K0
j

k=1

∥∥∥θi,j − ηk,j∥∥∥, then
∣∣∣pNT (θ̂, η)− pNT (θ0, η)

∣∣∣
6

1
N

N∑
i=1

p∑
j=1

c1ji,NT (θ̂, θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥
6

1
N

N∑
i=1

p∑
j=1

c2ji,NT (θ0, η)
(∥∥∥θ̂i − θ0

i

∥∥∥+ 2
∥∥∥θ̂i − θ0

i

∥∥∥2
)

6pc2i,NT (θ0, η)
 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2
 1

2

+ pc2i,NT (θ0, η) 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2

=Op(J−r + J
1
2T−

1
2 )

where c2i,NT (θ0, η) = max16j6p c2ji,NT (θ0, η) and we use c2ji,NT (θ0, η) = O(1), which is

implied by a similar argument as that in the proof of Theorem 1(i).

Since pNT (θ̂, η̂) 6 pNT (θ̂, η0), note that pNT (θ0, η0) = 0,

0 >pNT (θ̂, η̂)− pNT (θ̂, η0)

=
(
pNT (θ̂, η̂)− pNT (θ0, η̂)

)
+
(
pNT (θ0, η̂)− pNT (θ0, η0)

)
−
(
pNT (θ̂, η0)− pNT (θ0, η0)

)
=Op(J−r + J

1
2T−

1
2 ) + pNT (θ0, η̂)

=Op(J−r + J
1
2T−

1
2 ) +

p∑
j=1

K0
j∑

m=1

Nm,j

N

K0
j∏

k=1

∥∥∥η0
m,j − η̂k,j

∥∥∥

Then there exists a permutation of {1, ..., K0
j } for j = 1, ..., p such that

∥∥∥η̂k,j − η0
k,j

∥∥∥ =

Op(J−r + J
1
2T−

1
2 ).

Theorem 2. Suppose Assumption 1, 2 and 3 hold, then

(i) P (∪pj=1 ∪
K0
j

k=1 Êk,j) 6
∑p
j=1

∑K0
j

k=1 P (Êk,j)→ 0 as (N, T )→∞

(ii) P (∪pj=1 ∪
K0
j

k=1 F̂k,j) 6
∑p
j=1

∑K0
j

k=1 P (F̂k,j)→ 0 as (N, T )→∞
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Proof. (i) For any i ∈ G0
k,j and l 6= k, by Theorem 1,

∥∥∥θ̂i,j − η̂l,j∥∥∥ p→
∥∥∥η0

k,j − η0
l,j

∥∥∥ 6= 0.

Suppose that
∥∥∥θ̂i,j − η̂k,j∥∥∥ 6= 0 for some i ∈ G0

k,j, which means that i /∈ Ĝk,j, then the

first order condition with respect to θi,j is

0J =− 2Q̂i,z̃ũ,j +

2Q̂i,z̃z̃,j + λ∥∥∥θ̂i,j − η̂k,j∥∥∥
K0
j∏

l=1,l 6=k

∥∥∥θ̂i,j − η̂l,j∥∥∥
(θ̂i,j − η̂k,j)

− 2Q̂i,z̃δ̃,j + 2Q̂i,z̃z̃,j

(
η̂k,j − θ0

i,j

)
+ λ

K0
j∑

m=1,m 6=k
êim,j

K0
j∏

l=1,l 6=m

∥∥∥θ̂i,j − η̂l,j∥∥∥
+ 2

p∑
m=1,m 6=j

Q̂i,z̃z̃,jm

(
θ̂i,m − θ0

i,m

)

≡Âi1,j + Âi2,j + Âi3,j + Âi4,j + Âi5,j + Âi6,j

where êim,j = θ̂i,j−η̂m,j
‖θ̂i,j−η̂m,j‖ if

∥∥∥θ̂i,j − η̂m,j∥∥∥ 6= 0 and êim,j 6 1 otherwise.

From the proof of Theorem 1, I have that

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
)

Let µ1,JT =
(
J−r + J

1
2T−

1
2 (lnT )3 + λ

)
(lnT )v and

µ2,JT =
(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v for some v > 0. By Lemma 4, I could show

that

P

(
max

16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ > cµ1,JT

)
=o(N−1)

P
(∥∥∥η̂k − η0

k

∥∥∥ > cµ2,JT

)
=o(N−1)

for any c > 0.
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Let ĉik,j = ∏K0
j

l=1,l 6=k

∥∥∥θ̂i,j − η̂l,j∥∥∥, then

ĉik,j =
K0
j∏

l=1,l 6=k

∥∥∥θ̂i,j − η̂l,j∥∥∥
=

K0
j∏

l=1,l 6=k

∥∥∥∥(θ̂i,j − η0
k,j

)
−
(
η̂l,j − η0

l,j

)
+
(
η0
k,j − η0

l,j

)∥∥∥∥
=

K0
j∏

l=1,l 6=k

∥∥∥η0
k,j − η0

l,j + op(1)
∥∥∥

=Op(1)

Similarly let c0
ik,j = ∏K0

j

l=1,l 6=k

∥∥∥θ0
i,j − η0

l,j

∥∥∥. Define c̄0
k,j = maxi∈G0

k,j
c0
ik,j and

¯
c0
k,j = mini∈G0

k,j
c0
ik,j.

P

¯
c0
k,j

2 6 ĉik,j 6 2c̄0
k,j

 = 1− o(N−1)

Thus P
(

maxi∈G0
k,j

∥∥∥Âi5,j∥∥∥ > Cλµ1,JT

)
= o(N−1) for large enough C > 0.

Define

ΞkNT,j ≡

¯
c0
k,j

2 6 ĉik,j 6 2c̄0
k,j

 ∩
{∥∥∥η̂k,j − η0

k,j

∥∥∥ 6 cµ2,JT

}

∩
{

0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞

}

∩
{

max
16i6N

∥∥∥Q̂i,z̃δ̃,j

∥∥∥ 6 CθNT

}
∩
{

max
16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ 6 cµ1,JT

}

for some C > 0 and c > 0. θNT ≡ max06j6p max16k6K0
j

supx∈[0,1]

∥∥∥f 0
k,j(x)−BJ ′π0

k,j

∥∥∥ =

O(J−r).

Then P
(
ΞkNT,j

)
= 1− o(N−1).

Let φik,j = θ̂i,j−η̂k,j
‖θ̂i,j−η̂k,j‖ . Conditional on ΞkNT,j, we have that uniformly in i ∈ G0

k,j, with
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probability 1− o(N−1),

∣∣∣φ′ik,jÂi2,j∣∣∣ > 2
¯
c
∥∥∥θ̂i,j − η̂k,j∥∥∥+ λĉik,j > λ¯

c0
k,j

2∣∣∣φ′ik,jÂi3,j∣∣∣ 6 2
∥∥∥Q̂i,z̃δ̃,j

∥∥∥ 6 2CθNT∣∣∣φ′ik,jÂi4,j∣∣∣ 6 2c̄
∥∥∥η̂k,j − η0

k,j

∥∥∥ 6 2c̄c
(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v∣∣∣φ′ik,jÂi5,j∣∣∣ 6 max

i∈G0
k,j

∥∥∥Âi5,j∥∥∥ 6 Cλµ1,JT

∣∣∣φ′ik,jÂi6,j∣∣∣ 6 Cµ1,JT

Then

∣∣∣∣φ′ik,j (Âi2,j + Âi3,j + Âi4,j + Âi5,j + Âi6,j
)∣∣∣∣

>φ′ik,jÂi2,j −
∣∣∣∣φ′ik,j (Âi3,j + Âi4,j + Âi5,j + Âi6,j

)∣∣∣∣
>λ¯

c0
k,j

2 −
[
2CθNT + 2c̄c

(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v + Cλµ1,JT + Cµ1,JT

]

>λ¯
c0
k,j

4

where we use Assumption 2 and 3.

Thus

P
(
ÎEik,j

)
=P

(
i /∈ Ĝk,j|i ∈ G0

k,j

)
=P

(
−Âi1,j = Âi2,j + Âi3,j + Âi4,j + Âi5,j + Âi6,j

)
6P

(∣∣∣φ′ik,jÂi1,j∣∣∣ > ∣∣∣∣φ′ik,j (Âi2,j + Âi3,j + Âi4,j + Âi5,j + Âi6,j
)∣∣∣∣
)

6P

∣∣∣Âi1,j∣∣∣ > λ¯
c0
k,j

4 ,ΞkNT,j

+ P
(
Ξc
kNT,j

)

=o(N−1)
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Thus, with probability 1−o(N−1) such that
∥∥∥θi,j − ηk,j∥∥∥ is not differentiable with respect

to θi,j for some i ∈ G0
k,j, which means that P (

∥∥∥θi,j − ηk,j∥∥∥ = 0|i ∈ G0
k,j) = 1− o(N−1).

Then

P (∪pj=1 ∪
K0
j

k=1 ÎEk,j)

6
p∑
j=1

k0
j∑

k=1
P
(
ÎEk,j

)

6
p∑
j=1

k0
j∑

k=1

∑
i∈G0

k,j

P
(
ÎEik,j

)

6
p∑
j=1

k0
j∑

k=1

∑
i∈G0

k,j

P
∣∣∣Âi1,j∣∣∣ > λ¯

c0
k,j

4 ,ΞkNT,j

+ P
(
Ξc
kNT,j

)
6Np max

16j6p
max

16i6N
P

∥∥∥Q̂i,z̃ũ,j

∥∥∥ > λ¯
c0
k,j

4

+ o(1)

6NpP

max
16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > λ¯
c0
k,j

4

+ o(1)

=o(1)

where I use λT 1
2J−

1
2 (lnT )−3 →∞.

(ii) The proof is similar to Su et al. (2016) Theorem 2.2 (ii) and thus omitted.

Theorem 3. Suppose Assumption 1, 2, 3, 4 and 5 hold. Then for any j ∈ {1, ..., p},

k ∈ {1, ..., K0
j },

(i) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂k,j(x)− f 0

k,j(x)
)

D→ N(0, 1)

(ii) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂Ĝk,j(x)− f 0

k,j(x)
)

D→ N(0, 1)
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where

Vk,j,B = BJ(x)′
(
Q̂G0

k,j

)−1 1
Nk,j

∑
i∈G0

k,j

1
T
W ′
i·Σ

1
2
i ViΣ

1
2
i Wi·

(
Q̂G0

k,j

)−1
BJ(x)

Proof. The proof of Theorem 3 is similar to the one in Su et al. (2019) and thus is omitted.

We use ‖·‖ to denote Frobenius norm in the Appendix for simplicity and use C to indicate

some generic constant, which varies.

Lemma 2. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that IE[‖ξit‖q] <∞ for some q > 3,Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > CT−
1
2 (lnT )3

 = o(N−1)

for large enough C > 0 if N2T 1− q2 = O(1).

Proof. This lemma is adapted from Su et al. (2016) Lemma S1.2 and could be derived using

Theorem 2 of Merlevède et al. (2009). A slightly weaker version is

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > cλ

 = o(N−1)

for any c > 0 and λ satisfies that T− 1
2 (lnT )3 = o(λ). For convenience, we could choose

λ = T−
1
2 (lnT )3+v for some v > 0.

Lemma 3. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that max16i6N max16t6T IE[‖ξit‖
q
2 ] < ∞ for some q > 6 such that N2T 1− q2 (lnT )

3q
2 → 0 as
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N, T →∞. Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > c

 = o(N−1)

for any c > 0.

Proof. Let λNT = N2T 1− q2 (lnT )
3q
2 and ηNT = T (lnT )−3 λ

2
q

NT . Let τξ be an arbitrary dξ × 1

nonrandom vector with
∥∥∥τξ∥∥∥ = 1. Let 1it = 1{‖ξit‖ 6 ηNT} and 1̄it = 1− 1it. Define

ξ1,it = τ ′ξ
{
ξit1it − IE [ξit1it]

}
ξ2,it = τ ′ξξit1̄it

ξ3,it = τ ′ξIE[ξit1̄it]

Then ξ1,it + ξ2,it − ξ3,it = τ ′ξξit since IE[ξit] = 0. we prove the lemma by showing that for any

c > 0

(i) NP
(

max16i6N

∥∥∥ 1
T

∑T
t=1 ξ1,it

∥∥∥ > c
)

= o(1)

(ii) NP
(

max16i6N

∥∥∥ 1
T

∑T
t=1 ξ2,it

∥∥∥ > c
)

= o(1)

(iii) max16i6N

∥∥∥ 1
T

∑T
t=1 ξ3,it

∥∥∥ = o(1)
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To prove (i),

NP

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ1,it

∥∥∥∥∥∥ > c


6N

N∑
i=1

P


∥∥∥∥∥∥ 1
T

T∑
t=1

ξ1,it

∥∥∥∥∥∥ > c


6N

N∑
i=1

exp

− C0T
2c2

Tv2
0 + η2

NT + TcηNT (lnT )2


6N2 exp

− C0T
2c2

Tv2
0,max + η2

NT + TcηNT (lnT )2


6 exp

−
C0T

2c2

Tv2
0,max + T 2 (lnT )−6 λ

4
q

NT + TcT (lnT )−3 λ
2
q

NT (lnT )2
+ 2 lnN


→0

To prove (ii),

NP

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ2,it

∥∥∥∥∥∥ > c


6NP

(
max

16i6N
max
16t6T

‖ξit‖ > ηNT

)

6N2T max
16i6N

max
16t6T

P (‖ξit‖ > ηNT )

6N2T
1

T
q
2 (lnT )− 3q

2 λNT
max

16i6N
max
16t6T

IE
‖ξit‖ q2 1

{
‖ξit‖ > T (lnT )−3λ

2
q

NT

}
=o

(
N2T 1− q2 (lnT )

3q
2 λ−1

NT

)
=o(1)
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To prove (iii),

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ3,it

∥∥∥∥∥∥
6 max

16i6N
max
16t6T

∥∥∥∥IE [ξit1̄it]∥∥∥∥
6 max

16i6N
max
16t6T


(

IE‖ξit‖
q
2

) 2
q (
P
(
‖ξit‖ > ηNT

)) q−2
q


6 max

16i6N
max
16t6T


(

IE‖ξit‖
q
2

) 2
q

× max
16i6N

max
16t6T

{(
P
(
‖ξit‖ > ηNT

)) q−2
q

}

6cξ max
16i6N

max
16t6T


(
η
− q−2

2
NT IE

[
‖ξit‖

q
2 1

{
‖ξit‖ > ηNT

}]) q−2
q


=o(1)

This completes the proof.

Lemma 4. Suppose that Assumption 1 and 2 hold, then

(i)

P (0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞) = 1− o(N−1)

(ii) ∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−r + J
1
2T−

1
2 )

(iii)
1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2r + JT−1)

(iv)

P

(
max

06i6N

∥∥∥Q̂i,z̃ẽ

∥∥∥ > c
(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v

)
= o(N−1)

for any c > 0 and some v > 0.

Proof. (i) Consider the difference between Var(zit) and Q̂i,z̃z̃.
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Let µk(A) be the kth largest eigenvalue of matrix A. Denote SpJ as the permutation

group of {1, ..., pJ}. By Hoffman-Wielandt inequality,

min
σ∈SpJ

pJ∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

Because

∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

62
∥∥∥Q̂i,zz − IE[zitz′it]

∥∥∥2
+ 2

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

(i) Consider the first item, for any c > 0, v > 0,

Similar as the proof in Lemma 3, we could get

P

max
16r6p

max
16s6p

max
16i6N

max
16j6J

max
16k6J

∣∣∣∣∣∣ 1T
T∑
t=1

JBJ
rit,jB

J
sit,k − IE

[
JBJ

rit,jB
J
sit,k

]∣∣∣∣∣∣ > cJ−
1
2


=o(N−1)

Note that there are only O(J) nonzero elements in BJ
itB

J
it
′ − IE

[
BJ
itB

J
it
′].

Thus for any c > 0,

P

(
max

16i6N

∥∥∥Q̂i,zz − IE[zitz′it]
∥∥∥2

> c

)
= o(N−1)

(ii) Consider the second item, for any c > 0, similar as the proof in Lemma 3,

P

max
16r6p

max
16i6N

max
16j6J

∣∣∣∣∣ 1T
√
JBJ

rit,j − IE
[√
JBJ

rit,j

]∣∣∣∣∣ > cJ−1

 = o(N−1)
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Thus we could get

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

> c

 = o(N−1)

Combining part (i) and (ii) together, we have

P

min
σ∈SpJ

pJ∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6 c

 = 1− o(N−1)

(ii) Let Q̂i,z̃δ̃ = 1
T

∑T
t=1 z̃itδ̃hi,it, and Q̂i,z̃ũ = 1

T

∑T
t=1 z̃itũit, where δ̃hi,it = ∑p

j=1 δ̃hi,j ,it, then

we have
∥∥∥Q̂i,z̃ẽ

∥∥∥ 6∥∥∥Q̂i,z̃δ̃

∥∥∥+
∥∥∥Q̂i,z̃ũ

∥∥∥.
For the first part, since

∥∥∥Q̂i,z̃δ̃

∥∥∥
=

∥∥∥∥∥∥Q̂i,zδ −
1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
6
∥∥∥Q̂i,zδ

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
For the first item,

IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
δhi,it

∥∥∥∥∥∥
2
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For any 1 6 r 6 p,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
δhi,it

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

rit

′
BJ
risδhi,itδhi,is

]

6θ2
NTJ

1
T 2

T∑
t=1

T∑
s=1

IE
[
BJ
rit

′
BJ
ris

]

=θ2
NTJIE

 1
T

T∑
t=1

BJ
rit

′ 1
T

T∑
s=1

BJ
rit


=θ2

NTJ
J∑
j=1

IE
 1
T

T∑
t=1

BJ
rit,j

1
T

T∑
s=1

BJ
rit,j


=O

(
J−2r

)

Thus IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

= O
(
J−2r

)
.

For the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


Similarly, we could get that

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2
 = O

(
J−2r

)
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For the second part, similarly

∥∥∥Q̂i,z̃ũ

∥∥∥
=

∥∥∥∥∥∥Q̂i,zu −
1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
6
∥∥∥Q̂i,zu

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
Consider the first item,

IE
[∥∥∥Q̂i,zu

∥∥∥2
]

=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
uit

∥∥∥∥∥∥
2


For any 1 6 r 6 p,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
uit

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

rit

′
BJ
risuituis

]

6
CJ

T 2

T∑
t=1

T∑
s=1

IE [uituis]

=O(T−1J)

Thus IE
[∥∥∥Q̂i,zu

∥∥∥2
]

= O(T−1J).
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Consider the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=O(T−1)

Thus
∥∥∥Q̂i,z̃ũ

∥∥∥ = Op(J
1
2T−

1
2 ).

In sum, we have proved that

∥∥∥Q̂i,ze

∥∥∥ = Op(J−r + J
1
2T−

1
2 )

(iii) Consider

IE
 1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


= 1
N

N∑
i=1

IE
[∥∥∥Q̂i,z̃ẽ

∥∥∥2
]

6
2
N

N∑
i=1

(
IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

+ IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
])

Note that from the proof of (ii), we could strengthen the results to

max
16i6N

IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

= O
(
J−2r

)
max

16i6N
IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
]

= O(T−1J)

Consequently,

IE
 1
N

N∑
i=1

∥∥∥Q̂i,ze

∥∥∥2
 = O(J−2r + T−1J)
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This completes the proof.

(iv) Note that
∥∥∥Q̂i,z̃ẽ

∥∥∥ =
∥∥∥Q̂i,z̃δ̃

∥∥∥+
∥∥∥Q̂i,z̃ũ

∥∥∥. To prove (iv), we can show that for large enough

C > 0, any c > 0 and any v > 0,

P

(
max

16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ > CJ−r
)

= o(N−1)

P

(
max

16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

)
= o(N−1)

(i) For the first part, consider
∥∥∥Q̂i,zδ

∥∥∥ and
∥∥∥ 1
T

∑T
t=1 zit

1
T

∑T
t=1 δhi,it

∥∥∥ separately. First,

∥∥∥Q̂i,zδ

∥∥∥2

=
p∑
r=1

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

ritδhi,it

∥∥∥∥∥∥
2

6θ2
NTJ

p∑
r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

Consider 1
T

∑T
t=1 B

J
rit,j, for any c > 0 and 1 6 j 6 J , we want to show

P

max
16r6p

max
16j6J

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1

 = o(N−1)

Since

NP

max
16r6p

max
16j6J

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1


6pN

N∑
i=1

p∑
r=1

J∑
j=1

P


∣∣∣∣∣∣ 1T

T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1


6pN2J exp

− C0c
2T 2J−2

Tv0,max + 2 + 2cTJ−1 (lnT )2



As long as (lnT )3 JT−1 = o(1), we could get the result. Then for large enough
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C > 0 and for any 1 6 j 6 J ,

P

max
16r6p

max
16j6J

max
16i6N

1
T

T∑
t=1

BJ
rit,j > CJ−1


6P

max
16r6p

max
16j6J

max
16i6N

1
T

T∑
t=1

IE
[
BJ
rit,j

]

+ max
16r6p

max
16j6J

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > CJ−1


=o(N−1)

Thus for large enough C > 0,

P

max
16i6N

J
p∑
r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

> C2


6P

J2p max
16r6p

max
16j6J

max
16i6N

 1
T

T∑
t=1

BJ
rit,j

2

> C2


6P

max
16r6p

max
16j6J

max
16i6N

 1
T

T∑
t=1

BJ
rit,j

2

> C2J−2p−1


6P


max

16r6p
max
16j6J

max
16i6N

1
T

T∑
t=1

BJ
rit,j

2

> C2J−2p−1


=o(N−1)
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Combining the previous results, we have for large enough C > 0

P

(
max

16i6N

∥∥∥Q̂i,zδ

∥∥∥ > CJ−r
)

6P

(
max

16i6N

∥∥∥Q̂i,zδ

∥∥∥2
> C2J−2r

)

6P

θ2
NT max

16i6N
J

p∑
r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

> C2J−2r


6P

max
16i6N

J
p∑
r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

> C


=o(N−1)

Similarly, we could prove that for large enough C > 0

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥ > CJ−r

 = o(N−1)

Thus P
(

max16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ > CJ−r
)

= o(N−1).

(ii) For the second part, since

∥∥∥Q̂i,z̃ũ

∥∥∥
6

p∑
r=1

∥∥∥∥∥∥ 1
T

T∑
t=1

p∑
r=1

√
JBJ

rituit

∥∥∥∥∥∥+
p∑
r=1

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

uit

∥∥∥∥∥∥

Consider
∥∥∥ 1
T

∑T
t=1
√
JBJ

rituit
∥∥∥, By Lemma 2, for any c > 0 and v > 0,

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rituit

∥∥∥∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

 = o(N−1)
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Similarly,

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

uit

∥∥∥∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

 = o(N−1)

This completes the proof.
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