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Abstract 

Efficient modeling of concurrency and reactivity along with their efficient implementation in the sim­
ulation kernel are crucial to the overall utility of system level models using the C++ based modeling 
frameworks. However, the concurrency alignment in most modeling frameworks are naturally along 
hardware units. which is supported by the various language constructs. and the system designers express 
concurrency in their system models by providing threads for some modules/units of the model. Our 
experimental analysis show that this concurrency model leads to inefficient simulation performance. 
and a concurrency alignment along dataftow gives much better simulation performance. but changes 
the conceptual model of hardware structures. As a result, we propose an algorithmic transformation 
of designs written in these C++ based environments with concurrency alignment along units/modules. 
This transformation, provided as a compiler front-end, will re-assign the concurrency along the dataftow, 
as opposed to threading along concurrent hardware/software modules, keeping the functionality of the 
model unchanged. Such a front-end transformation strategy will relieve hardware system designers from 
concerns about software engineering issues such as, threading architecture, and simulation performance, 
while allowing them to design in the most natural manner, whereas, the simulation performance can be 
enhanced upto almost two times as shown in our experiments. 



1. Introduction 

The advent of System-on-Chip (SoC) solutions has posed a need for efficient system level models 

for early design stage tradeoffs. Accuracy and speed of simulation are important criteria for employ­

ing a model for design exploration. When considering efficieny of simulation, it is common to rely on 

concurrency enhancements. and concurrency management techniques (using multi-processor hardv.:are. 

and multi-threading etc.). However.actual simulation performance may vary significantly depending on 

the specific choices of concurrency support and mechanisms in the framework, and how they relate to 

application level programming. Further more, explicit modeling of concurrency i.s an important aspect 

of any hardware language framework. The recently introduced C++ based high level modeling frame­

works such as SystemC [11], Cynlib [2], OCAPI [9], etc., model concurrency using either function calls 

or thread packages. The thread library employed can be co-operative or pre-emptive [8]. However. 

since most existing system level simulation and modeling frameworks have implemented their kernels 

based on application level threading libraries (co-operative threads) [6], and these user-space threads 

are transparent to the kernel, these cannot take advantage of multi-processor systems. for performance 

improvement. 

The other dimension to the simulation performance problem is that hardware concurrency, most nat­

urally. is aligned along the units/modules. In other words, system designers, due to natural design 

intuition. and due to language constructs provided in the existing language frameworks. build concur­

rency into the model by providing threads for some modules/units of the model. Garg et al., in [3], 

discuss trade-offs between function calls. and threading, and how to cluster modules together. to obtain 

an efficient simulation model. However. in our experiments, we find that, due to threading packages 

used in the simulation kernels, as well. as designers choice of mapping functionalities into threads, such 

manual design trade-off is not easy to achieve. In this work, we experimentally study the efficiency of 

the concurrency constructs in the context of SystemC. We specifically address two questions: 

1. What is the best threading mechanism to be used in the simulation kernels for efficiency of the 

simulation models? 

7 Given a specific threading mechanism what is the best mapping from hardware modeling con­

structs. and libraries to the underlying threading package? 



In connection \\'ith the first question. we present results of our experiments \Nith various threading mod­

els. for SystemC simulation kernel. Towards ansvv·ering the second question. we show that the task 

based concurrency [10], aligned along system units/modules is much less efficient for simulation than 

if threads were assigned to dataftows in the models. But designing module based concurrency is more 

intuitive for designers. Hence, we propose an algorithmic transformation of designs written in these C++ 

based environments. This transformation, will re-map the concurrency along the dataftow of the com­

putation of the model. as opposed to threading along concurrent hardware/software modules, keeping 

the functionality of the model unchanged. This re-maping can also map the computation of the model 

onto kernel level threads, whereby, exploiting multi-processor systems as well. The simulation perfor­

mance benefits of such re-mapping is shown through experimental results, and the strategies for such 

transformation is outlined in the paper. Such a front-end transformation strategy will relieve hardware 

system designers from worries of threading, simulation performance issues, and allow them to design in 

the most natural manner, whereas, the simulation performance will not be sacrificed. 

2. Multi-Threading in SystemC 

For modeling of the hardware systems. the modeling framework should have constructs for modeling 

reactivity and concurrency. For example. SystemC provides efficient constructs for modeling reactivity 

in form of H"atching and waiting[?]. For modeling concurrency SystemC provides two type of pro­

cesses: synchronous and asynchronous. A synchronous process is a process that communicates with 

other processes only at specific instances of time determined by the clock edge to which the process is 

sensitive. On the other hand, Asynchronous objects are more general form of the synchronous processes 

that can be used to model any kind of circuit. SystemC provides two types of asynchronous objects: an 

asynchronous process and an asynchronous block 1. 

In SystemC, the asynchronous block is implemented using function calls. These are evaluated by 

the main SystemC kernel thread. The synchronous and asynchronous processes are implemented using 

Quick thread library[6]. The Quick thread provides a co-operative thread library, where a thread yields 

the control to another thread at its will. A thread cannot pre-empt another on the basis of priority or 

1 Although our experiments were done with SystemC version 1.0.2. we believe. the same discussions hold for SystemC 

2.x. as well. 
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blocking. So at a time only one thread can be in naming or blocked state while all the other threads are 

in ready state waiting for the running thread to yield the control. The SystemC[l l] kernel follow~ the 

following simulation semantics: 

1. All asynchronous objects with sensitive input signals that have changed are executed. 

7 All the signals that have been changed are updated. 

3. Step l and 2 are repeated until no signal changes its value. 

4. All synchronous processes sensitive to the clock edge that has changed are executed. 

5. Simulation time is advanced to next clock edge. 

Recognizing that co-operative threads are not known to operating system kernel, and hence cannot 

be scheduled on multi-processor, we embarked on the following experiment. We replaced the usage of 

Quick threads in SystemC with the POSIX threads[l2] to have a pre-emptive version of the SystemC 

kernel. With POSIX threads, if the running thread is blocked then the control is passed to another ready 

thread by the system. As the result a blocked thread would not occupy the CPU and a ready thread can 

be switched to utilized the CPU. The simulation semantics still remain the same. The asynchronous 

blocks are still executed sequentially, but the asynchronous processes ~an go in parallel with each other. 

Similarly all the synchronous processes can be executed in parallel with each other. An asynchronous 

process and a synchronous process cannot go in parallel to maintain the SystemC simulation semantics. 

The mutual exclusion for the shared data structures has been implemented using semaphores. The Sys­

temC implementation of a reasonably sized example, namely AMRM prototype [l] has been simulated 

for various configurations. We vary the number of threads by altering the balance between asynchronous 

blocks and processes in the model. Initially all the components are modeled using asynchronous blocks. 

One-by-one, we moved the asynchronous blocks to asynchronous processes to see the effect of increas­

ing threading on the simulation speed. 

A Sun Ultra 5 station is used for running simulation in single processor enviornment. We used a Sun 

Ultra 4 workstation with 4 processors to run simulations in a multiprocessor environment. The different 

SystemC simulation kernels used are one with co-operative Quick threads and other with pre-emptive 

POSIX threads. As the components are moved to asynchronous processes, the simulation times in min­

utes are shown in table 1. The column l in the table represents the total number of threads in the system 

when the component is modeled with asynchronous process. Column 2 shows the simulation time for 

4 



simulating in a single processor environment with co-operative threading. Column 3 coITesponds to 

multi-processor environment \Vith co-operative threading. Column 4 represents single processor en­

vironment with pre-emptive threading. Column 5 corresponds to multi-processor environment with 

pre-emptive threading. 

Number of Co-oper Co-oper Pre-empt Pre-empt 

Threads Single Multi Single Multi 

0 9.43 9.11 12.59 9.21 

12 9.33 9.00 17.13 48.45 

19 9.49 9.14 19.27 68.00 
I 

41 9.50 10.12 28.35 85.00 

54 9.54 10.60 28.07 120.0 

Table I. Simulation time with co-operative and pre-emptive threads in single and multi processor environment 

As can be seen from the table, the co-operative threading implementation has out-perfomed the pre­

emptive threading implementation. Although marginally, the simulation time first decreases and then 

increases with co-operative threading in both the multi- and single processor environments. Of course, 

in case of co-operative threads, difference in simulation time between single CPU, and multi-CPU ma­

chines. is not significant, because in either case, the threads are never scheduled on the extra processors. 

With pre-emptive threading, simulation time increases as the number of threads in the model increases. 

This is because, for the AMRM model, level of description is the register-transfer(RT) level with a pre­

dominantly FSM models. There is little computation done in each state, that leads to higher overheads 

due to synchronization than the gains from parallelization of code using pre-emptive threads. This fact is 

evident from the simulation time for the multi-processor environment which are even worse than for the 

single processor environment due to higher synchronization overheads. In examples where the compo­

nents of the system model are computationally intensive then the gain from parallelization of code using 

threads will be higher compared to the synchronization overheads imposed. Modeling systems at higher 

abstraction, for example at the level of tasks and functions, may be efficient with the pre-emptive thread 

implementation. Clearly, the SystemC implementation with co-operative threads is optimized for mod­

els where the amount of computation per cycle is relatively low compared to the cost of synchronization 
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across. as is commonly the case \Vith RT-level models. 

This leads us to the strategy of concurrency re-assignment. Since. we do not v;ant the designers to 

be concerned with the amount of computation per thread, and threading architecture of the simulation 

kernel, we suggest, this methodology of concurrency re-mapping or re-assignment. In this strategy, the 

computation in a thread will be enough to justify the creation of threads, and to overcome the synchro­

nization overheads. This is very similar to the design of network protocol stack implementation using 

multi-threaded architecture as in [10]. 

3. Rationale for Concurreny Re-Assignment 

As mentioned earlier, hardware systems are inherently concurrent. The system designers are used to 

describing their systems as a collection of concurrent modules. This allows for an easy intuitive, design, 

which facilitates synthesizability, but as shown in the previous section using this paradigm directly to 

drive simulation does not scale well to multiprocessor systems. Preemptive threads are required if we 

are to use multiprocessor systems to improve simulation time but they can impose a prohibitive context 

switching overhead and thus have to be judiciously used if they are to be efficient. 

When considering a multiprocessor simulator we take the following.into account: 

• Consider a system described using concurrent processes (e.g. SC_[C]THREAD processes in Sys­

temC) and assume that we associate a thread with each process. Since all threads must synchronize 

with the clock edge (so that modified signals are updated), threads have to wait for each other at 

the clock edge. This means that some threads will be idle while the slowest thread in the system 

finishes its workload for that cycle. This can result in a significant amount of CPU cycles not 

being utilized. 

• Complex systems may have a large number of processes. Assigning a thread to each process 

(especially if the number of available processors is much smaller than the number of threads) 

means that there will be a significant amount of context switching. And considering that most 

designs are simulated for a large number of cycles, this may result in a significant overhead due to 

context switches. 

So, intuitively. if we can first reduce the number of threads and then try to keep those threads as fully 
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utilized as possible. we should be able to obtain better simulation performance in a multiprocessor 

environment. 

Generally speaking, multithreaded systems fall generally in two categories: task-based or message­

based [10]. The first binds processing elements (i.e. processors) to one or more tasks in the system and 

the tasks pass the necessary messages between them. The second binds a task to one message and takes 

it through the whole system. If we think, for example, of SystemC signals dataflow as messages, we 

can view SystemC description of a system with concurrency aligned along the modules, as a task-based 

approach. Each SystemC process is assigned to a thread and signals are used to communicate between 

them (e.g. each thread processes incoming signals and updates outgoing signals). Rather than requiring 

a new modeling style by the designers, we seek to automatically convert a given task-based system 

description into a message-based description such that simulating it can be scalable to multiprocessor 

platforms. Scalability will be achieved if we can reduce the number of threads in the system and also 

expose any parallelism implicitly available in the description such that multiprocessor systems can take 

advantage of it. 

4. Concurrency Re-Assignment Strategy 

The strategy we propose attempts to do just that: extract a logical sequence for the processes describ­

ing a task-based system such that it can be restructured into a message-based system and then determine 

how these new threads can be executed relative to each other and themselves . 

. ,u The Re-assignment Algorithm 

Our Algorithm works as follows: Starting from a program dependence graph (similar to [5]), the 

algorithm has four steps. 

Step 1. Divide processes into subprocesses slicing at synchronization points 

Step 2. Analyze subprocess dependencies 

Step 3. Schedule subprocess graphs 

Step 4. Insert Synchronization events as necessary 
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The first step can be thought of as a slicing of the processes based on the current cycle and the signals 

updated. It has two sub-steps. First processes are subdivided at cycle boundaries (we need this to 

maintain cycle information based on i,vait() and wait -1mtil () statement in SystemC) and the implicit 

sequencing between them is made explicit. Each resulting subprocess. that is activated by more than one 

signal is then sliced based on each such signal (or signals if they are compounded by logical AND). 

We do this because once a signal has been updated we need to know which dependent subprocesses can 

potentially be activated but also want to isolate the effects of incoming signals. 

At this point we have determined all the subprocesses in the system together with what signals each 

subprocess reads or writes and are ready for the next step. We use information from the system de­

scription (e.g. sensitivity lists, ivait_wztil() statements, regular port read/writes and process variables 

in SystemC) to determine how subprocesses interact With each other. This is similar to doing a data 

flow analysis and will generate a graph similar to a PDG [5, 4]. If the graph is actually a collection of 

independent graphs then each such graph will later on be mapped to one thread of execution. We can 

now perform step 3: schedule (e.g. ASAP) each graph and thus get the sequence of subprocesses in the 

threads of execution. 

The final step is needed to account for having multiple instances of.the same thread executing simul­

taneously (i.e. multiprocessor simulator). We need to preserve the proper order of execution and can 

do this by reanalyzing the subprocess dependencies from a loop-carried point of view (e.g. each thread 

is viewed as the body of a loop). Any loop-carried dependencies need to be enforced by inserting a 

synchronization event to ensure that the threads execute those subprocesses in the proper order. 

S. Experimental Results 

We envision the above algorithm being implemented as a source-to-source transformation as a part of 

a compiler front-end. The implementation should accept the source code (e.g. SystemC) and generate 

CIC++ as its output retaining the functional correctness and original semantics. In our experiments we 

have verified the functional correctness by manual tests, however, how to verify the semantic equivalence 

of the newer version and the original model, is a research direction that we also intend to follow in the 

future. The newly threaded output can be compiled with any standard optimizing CIC++ compiler. 

To illustrate our algorithm we have looked at two examples included in the SystemC 1.0.2. distribu-
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ti on: a pipeline example and a simple RICS-like processor. The examples were simulated on a dual Pen­

tium II 300MHz machine. Since we wanted to use the same platform for both single and dual threaded 

runs we ran single-threaded scenarios by specifying that the thread be only bound to one processor. 

The pipeline example is a straightforward example with five independent stages (i.e. each stage only 

depends on signals from the one before it). We manually applied our algorithm and then simulated 

1.000,000 cycles in three scenarios: stages implemented as SC.J\1ETHOD processes. SC_CTHREAD 

processes. and. finally. using our reconstructed thread and present the results in Table 2. Data flow analy­

sis has revealed that each pipeline pass was independent and such there was no need for synchronization 

(other than to make sure that the right number of cycles has been executed). This accounts for the dif­

ference between 8.20 sec and 7.67 sec (ideal 50% of the SC.J\1ETHOD run time). As we can see in this 

particular example we are very close to optimal speed up from going to a multiprocessor simulator. 

Wall Clock User Time System Time 

(sec) (sec) (sec) 

sc_method 15.34 15.02 0.00 

sc_thread 16.53 16.52 0.00 

threaded 8.20 16.23 0.00 

Table 2. Simulation time with Concurrency Re-assignment 

However this is a rather atypical example where there is no cross-cycle interaction between processes 

and thus minimum perfomance hit from synchronization. Next we consider a more complex example 

of a RISC-like processor. Its description in SystemC consists of eight SC_CTHREAD processes and 

30 connecting signals. In Figure L we show only some of those signals to help illustrate some of the 

modifications that were made to the original description. 

Figure 2 shows the threading structure after the concurrency reassignment. Note that DataMem I and 

DataMem.2 are both passes of the DataMem process but one is for data reading when invoked by the 

Decode process while the other is for data writing invoked by the WriteBack process. Similarly other 

processes have been sliced but we are only presenting here important ones. 

Analysis of the data flow through the signals connecting the processes has also led to the necessity of 

two synchronization events and these are marked with dashed lines in the Figure 2. One is to prevent 
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Figure 1. processes and connecting signals in a RISC-like processor 

subsequent threads from fetching the next instruction until the next program counter has been resolved 

and the other to prevent register and data argument values to be read before previous values have been 

committed. 

Table 3 shows the results from simulation run of the original and restructured models. 

f 

Simulation Results Total Time User Time System Time 

(sec) (sec) (sec) 

r Ori gin al I -threaded I2.75 I2.68 0.02 I ,__ 

Modified I-threaded I3.22 I2.83 0.25 

Modified 2-threaded 9.87 I3.25 2.53 

Table 3. Simulation time with Concurrency Re-assignment in the RISC processor Example 

We can see that the modified single threaded version is already faster than the original SystemC 

version. This is due to a couple of factors: first, fewer context switches (cooperative threads still have 

context switching overhead) as a result of the subprocesses being spliced together into a single thread. 

The other reason is that as opposed to our first example, we are not using most of the SystemC simulator 
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Figure 2. Re-assigned Process Flow 

runtime. In particular signaling was simplified in the modified version: when a signal is written to the 

subprocesses dependent on it will be scheduled automatically instead of being polled each clock edge to 

see if their signal was activated. The results for the dual-threaded run show that thread execution could 

be overlapped (i.e. some parallelism was extracted) given the new thread structure and that resulted in 

better simulation performance but also that synchronization costs can be an issue. 

Our last example is an MP3 decoder, which has been modeled in three different ways, as was the 

previous example. We just mention the data in Table 4, to show how concurrency re-assignment helped 

improve the simulation speed. 

6. Summary and Future Work 

In this paper, \Ve first showed that even when we replace the co-operative threading model used in 

most C++ library based hardware design environments, with pre-emptive threading model, one cannot 

exploit multi-processor based speed up. The reason is that the amount of computation per cycle in a 
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1 Wall Clock liser Time Kernel Time 

(sec) (sec l t sec) 

Original I -threaded 20.02 I9.8I 0.09 i 
I 
I 

Modified I -threaded 2I.42 20.5I 0.78 
I 

Modified 2-threaded I3.I5 20.57 1.35 

Table.+. Simulation time with Concurrency Re-assignment in MP3 decoder Example 

typical hardware modeling style is too small to overcome the kernel level synchronization costs. As a 

result, one might ask of the designers to change their natural hardware modeling styles, to be able to 

speed up simulation. However, we do not want to burden a hardware designer with software engineering 

issues. Hence, we have presented an algorithm that takes a SystemC description of a hardware design 

(which is typically modeled using a task-based paradigm) and automatically restructure it into a data­

ftow paradigm that is more suitable for fast simulation on both single and multiprocessor architectures. 

We have seen that improvements in simulation performance (often upto 2x) are possible for both the 

single processor and multiprocessor cases. We believe we can improve this even further. Further research 

is needed to better understand how to control synchronization costs, experiment with larger numbers of 

processors and explore ways of trading off cycle accuracy for simulation speed. 
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