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Dynamics of Electricity Markets with Unknown Utility Functions: An
Extremum Seeking Control Approach*

Kai Ma1, Guoqiang Hu1 and Costas J. Spanos2

Abstract— This paper studies the dynamics of electricity
markets with unknown utility functions (i.e., the profit func-
tions of consumers and the cost functions of suppliers). The
market clearing procedure is formulated as a social welfare
optimization problem, and the dynamics of electricity markets
is modeled as primal-dual dynamics based on gradient esti-
mation. The gradients of the unknown utility functions are
estimated by adding and multiplying periodic signals at the
measurable input and output, respectively. We prove the semi-
globally practically asymptotically (SPA) stability of the market
dynamics. Numerical results demonstrate the SPA stability and
the balance between supply and demand.

I. INTRODUCTION

Matching supply with demand has been an active topic
in operating electricity markets. Traditionally, we need to
achieve the balance between supply and demand, which
requires substantial infrastructure to be idle for all but a
few hours a year. Recently, demand response is proposed
to control the load of consumers and provide more flexible
balance strategies. In that case, the market operator can
schedule the supply and the demand simultaneously. With
the development of smart grid, which enables reliable and
real-time communications between the suppliers and the
consumers, the supply and the demand can be scheduled
within much shorter intervals. The communications between
the market operator and the consumers are dependent on an
advanced metering infrastructure (AMI) [1], which supports
to collect the electricity consumption and publish the elec-
tricity price, such as time of use (TOU), critical peak pricing
(CPP), and real time pricing (RTP) [2].

Convex optimization was utilized to model the market
clearing procedure in smart grid. The objective of the market
operator is to maximize the social welfare, which is defined
by subtracting the total cost to the suppliers from the total
profits of the consumers. These works dealt with different
constraints in the optimization model. Specifically, ideal
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power balance constraints with and without statistical de-
mand elasticity were considered in [3] and [4], respectively,
and the market dynamics was modeled as a distributed
iterative algorithm. The constraints on the operations of
appliances were considered in the optimization model [5],
[6], which can be solved by the primal-dual dynamics. Fur-
thermore, the volatility of electricity markets under RTP was
studied based on the primal-dual dynamics [7]. The above
works assumed that the profit functions and the cost functions
were known to the consumers and the suppliers. Some
quadratic functions were used for approximating the profits
of the consumers and the cost to the suppliers [8]–[10].
However, the accurate model of the profits and cost are hard
to obtain because of many uncertainties, such as the changing
environment factors and operating conditions. In fact, the
market dynamics are dependent on the gradients of the utility
functions, which are unknown to the market participants.
On the other hand, extremum seeking control (ESC) is an
adaptive learning method to search for the optimal solution
of an unknown function [11]. Some reference have dealt
with the extremum seeking for the non-cooperative game
[12], [13] and constrained convex optimization problems
[14], [15]. However, the optimization problems and the
seeking algorithms can not used for modeling the dynamics
of electricity markets.

In this study, we use ESC to study the dynamics of
electricity markets, which does not require the market partic-
ipants to know the utility functions. The market participants
only need to measure the input and output values of the utility
functions and search for the optimal strategies with estimated
gradients. The novelty of this work is two-fold. First, we use
ESC to develop a type of primal-dual dynamics based on
gradient estimation. Second, we apply the ESC-based primal-
dual dynamics to model the behaviors of the participants in
electricity markets. To the best of our knowledge, this is the
first work to apply ESC to model the dynamics of electricity
markets.

The rest of the paper is organized as follows. Preliminaries
are given in Section II. The dynamics of electricity markets
are formulated in Section III. Section IV proves the stability
of the dynamics based on gradient estimation. Numerical
results are shown in Section V. Finally, we draw conclusions
in Section VI.

II. PRELIMINARIES

In this section, we first introduce the notations and defi-
nitions used in the paper. Given a vector x, we define ∥x∥
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denotes the Euclidean norm and x ∈ L∞ denotes ∥x∥L∞ =
ess supt≥0∥x(t)∥< ∞.

Definition 1: [16] A continuous function β : R≥0×R≥0 →
R≥0 is of class K L if it is nondecreasing in its first
argument and converging to zero in its second argument.

Definition 2: [17] A vector function f (x,ε) ∈ Rn is said
to be O(ε) if for any compact set D if there exist positive
constants k and ε such that ∥ f (x,ε)∥ ≤ kε , for ε ∈ (0,ε∗],
x ∈ D .

Definition 3: [17] Given a parameterized family of sys-
tems:

ẋ = f (t,x,ε), (1)

where x ∈ Rn, t ∈ R+ and ε ∈ Rl
+ are the state vector, time

variable and parameter vector, respectively. The system (1)
is said to be semi-globally practically asymptotically (SPA)
stable, uniformly in (ε1, . . . ,ε j), j ∈ {1, . . . , l}, if there exists
β ∈ K L and constructed parameters ε = (ε1, . . . ,εl) such
that

∥x∥ ≤ β (∥x(0)∥,(ε1 · ε2 · · · · · εl)(t − t0))+ v, (2)

for all t ≥ t0, where the constructed parameters ε and the
initial state vector x0 = x(t0) satisfy: For each pair of strictly
positive real numbers (∆,v), the initial state ∥x(0)∥ ≤ ∆
and there exist real numbers ε∗k = ε∗k (∆,v) > 0,k = 1, . . . , j
and for each fixed εk ∈ (0,ε∗k ),k = 1, . . . , j there exist εi =
εi(ε1, . . . ,εi−1,∆,v), with i = j+1, . . . , l.

Lemma 1: [16] Suppose that W : [0,∞)→ R satisfies

D†W (t)≤−αW (t)+ γ(t), (3)

where D† denotes the upper Dini derivative, α is a positive
constant, and γ(t) ∈ L∞. Then,

∥W (t)∥ ≤ e−αt∥W (0)∥+α−1∥γ(t)∥L∞ . (4)

III. PROBLEM FORMULATION
We consider an electricity market consisting of suppli-

ers, consumers and a market operator, which is usually
named as independent system operator (ISO). Both the
suppliers and the consumers can communicate with the
ISO in real time and schedule the electricity consumption
and production according to the market clearing price. The
electricity consumption of the consumers are denoted as x =
(x1, . . . ,xi, . . . ,xN)

T, where xi is the electricity consumption
of consumer i∈N= {1, . . . ,N}. Each consumer is associated
with a profit function ui(xi) : R+ → R, where ui(xi) denotes
the individual profit obtained from consuming xi units of
electricity. Similarly, the electricity production of the suppli-
ers are denoted as q = (q1, . . . ,q j, . . . ,qM)T, where q j is the
electricity production of supplier j ∈M= {1, . . . ,M}. Each
supplier is associated with a cost function c j(q j) : R+ → R,
where c j(q j) denotes the cost of producing q j units of
electricity. In general, the market clearing procedure can be
formulated as

maximize
N

∑
i=1

ui(xi)−
M

∑
j=1

c j(q j)

subject to
N

∑
i=1

xi ≤
M

∑
j=1

q j. (5)

Before solving (5), we assume that the profit function ui(xi)
is concave in xi and the cost function c j(q j) is convex in
q j, which are common assumptions in the market dynamics
based on convex optimization [3]–[7]. Then, (5) has a unique
optimal solution and can be solved by its lagrangian dual
with no dual gap [18]. The Lagrangian function of (5) is
defined as

L(x,λ ) =
N

∑
i=1

ui(xi)−
M

∑
j=1

c j(q j)−λ (
N

∑
i=1

xi −
M

∑
j=1

q j), (6)

where λ is the lagrangian multiplier. Since the Lagrangian
function is concave in x and q and convex in λ , the saddle
point of the Lagrangian function is the optimal solution of
(5). Then, we can transform (5) into the following individual
optimization problems:

x∗i = argmaxui(xi)−λxi, (7)

and

q∗j = argmaxλq j − c j(q j). (8)

The corresponding dual optimization problem is defined as

λ ∗ = argmax
λ>0

D(p), (9)

where D(p)= L(x∗,λ ) is the dual function. Then, the primal-
dual gradient dynamics to obtain the optimal solution are
given as

ẋi = ki(
dui(xi)

dxi
−λ ), (10)

q̇ j = h j(λ −
dc j(q j)

dq j
), (11)

λ̇ = g[
N

∑
i=1

xi −
M

∑
j=1

q j]
+
λ . (12)

Equations (10), (11), and (12) model the dynamics of the
market participants, including the consumption dynamics of
the consumers, the production dynamics of the suppliers,
and the price dynamics of the ISO. The above primal-dual
dynamics need the gradient information of the profit func-
tions and the cost functions, which are easy to obtain when
the profit functions and the cost functions are accurately
known to the consumers and the suppliers, respectively. In
electricity markets, these two functions are difficult to obtain.
However, we can establish a profit/cost calculation model
as a reference system for the consumers and the suppliers
and measure the profits and the cost in real time. Next, we
use ESC to model the dynamics of the electricity markets
with unknown profit functions and cost functions. The core
idea is to estimate the gradient by adding and multiplying
periodic signals to the input and output of the unknown
utility functions, respectively. We give the ESC-based market
dynamics in Fig. 1 and the implementations in Fig. 2. The
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ESC-based market dynamics can be modeled as

˙̂xi = ki(ζi − λ̂ ), (13)
˙̂q j = h j(λ̂ −ξ j), (14)

˙̂λ = g[
N

∑
i=1

x̂i −
M

∑
j=1

q̂ j]
+

λ̂
, (15)

ζ̇i = −ω̂c
i (ζi −

2
a

ui(x̂i +asin(ωt))sin(ωt)), (16)

ξ̇ j = −ω̂s
j(ξ j −

2
a

c j(q̂ j +asin(ωt))sin(ωt)), (17)

where ki, h j, and g are the adaptive gains of the market
dynamics, and ω̂c

i and ω̂s
j are the frequencies of the low-

pass filters. To separate (16) and (17) from (13)–(15), we
choose ω̂c

i and ω̂s
j such that ki = δω̂c

i and h j = δω̂s
j with

small scalar δ . In the ESC-based market dynamics (13)–
(17), we only need to measure the input and output values
of the utility functions.

IV. MAIN RESULTS

In this section, we will prove the SPA stability
of the ESC-based market dynamics. We first define
ω̂c

i = ωLωc
i , ω̂s

j = ωLωs
j ,g = δωLω p, where ωL is a positive,

real number, and ωc
i , ωs

j and ω p are positive, rational
numbers. We define ωc

min =min{ωc
1 , . . . ,ω

c
i , . . . ,ωc

N}, ωs
min =

min{ωs
1, . . . ,ω

s
j , . . . ,ωs

M}, ωc
max = max{ωc

1 , . . . ,ω
c
i , . . . ,ωc

N},
ωs

max = max{ωs
1, . . . ,ω

s
j , . . . ,ωs

M} and assume that
ωc

min/ω p ≫ δ ,ωs
min/ω p ≫ δ ,ωc

min/ωs
max ≫ δ ,ωs

min/ωc
max ≫

δ , which ensure that (16) and (17) can be separated from
(13)–(15). Next, we prove the SPA stability in the following
theorem:

Theorem 1: The ESC-based market dynamics (13)–(17)
are SPA stable with respect to δ , a, and ωL, if the following
conditions are satisfied:

• The profit function ui(xi) is concave and Lipschitz
continuous in xi, for i = 1, . . . ,N, and the cost function
c j(q j) is convex and Lipschitz continuous in q j, for
j = 1, . . . ,M.

• d2ui(xi)/dx2
i ≤ −η1 and d2c j(qi)/dq2

j ≥ η2, where η1
and η2 are positive real numbers.
Proof: Let τ = ωLt, we obtain the market dynamics in

the new time scale τ ,

dx̂i

dτ
= δωc

i (ζi − λ̂ ), (18)

dq̂ j

dτ
= δωs

j(λ̂ −ξ j), (19)

dλ̂
dτ

= δω p[
N

∑
i=1

x̂i −
M

∑
j=1

q̂ j]
+

λ̂
, (20)

dζi

dτ
= −ωc

i (ζi −
2
a

ui(x̂i +asin(ωt))sin(ωt)), (21)

dξ j

dτ
= −ωs

j(ξ j −
2
a

c j(q̂ j +asin(ωt))sin(ωt)). (22)

According to the averaging theory [16], the dynamic
system with periodic disturbance can be approximated by

i
ζ

i
x̂

2 a

(15)

i
k

s

λ̂

( + sin( ))
i i
ˆu x a tω

sin( )tωsin( )a tω

+ +
_

× ×
c

i

c

i

ˆ

ˆs

ω

+ω

(a) Dynamics of electricity consumption.

2 a

(15)

j
h

s

j
q̂

j
ξ

ˆλ

( + sin( ))
j j
ˆc q a tω

sin( )tωsin( )a tω

×_++ ×
s

j

s

j

ˆ

ˆs

ω

+ω

(b) Dynamics of electricity production.

j
q̂

M
q̂

1q̂

i
x̂

N
x̂1x̂

g

s

λ̂
+_

N

N

O

O

(c) Market clear pricing.

Fig. 1. ESC-Based Market Dynamics.

RTP

sin( )a tω

+

sin( )tω

×       Profit/Cost 

 Calculation Model

Consumption 
Primal Dynamics

Production

Dual Dynamics

  Gradient

Estimation

ISO

Consumer

Supplier

Fig. 2. Implementations in Electricity Markets.

its average system,

dx̂A
i

dτ
= δωc

i (ζ A
i − λ̂ A), (23)

dq̂A
j

dτ
= δωs

j(λ̂ A −ξ A
j ), (24)

dλ̂ A

dτ
= δω p[

N

∑
i=1

x̂A
i −

M

∑
j=1

q̂A
j ]
+

λ̂ A , (25)

dζ A
i

dτ
= −ωc

i (ζ A
i − 2

a
QA

i ), (26)

dξ A
j

dτ
= −ωs

j(ξ A
j −

2
a

FA
j ), (27)

where QA
i and FA

j are defined as

QA
i =

1
2π

∫ 2π

0
ui(x̂i +asin(ωt))sin(ωt)dt, (28)

FA
j =

1
2π

∫ 2π

0
c j(q̂ j +asin(ωt))sin(ωt)dt. (29)
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Approximating ui(x̂i +asin(ωt)) and c j(q̂ j +asin(ωt)) with
the Taylor series, we have

2
a

QA
i =

1
aπ

∫ 2π

0
(ui(x̂i)+asin(ωt)

dui(x̂i)

dx̂i

+
∞

∑
n=2

(asin(ωt))n

n!
dnui(x̂i)

d(x̂i)n )sin(ωt)dt

=
dui(x̂i)

dx̂i
+Ox

i (a
2). (30)

2
a

FA
j =

1
aπ

∫ 2π

0
(c j(q̂ j)+asin(ωt)

dc j(q̂ j)

dq̂ j

+
∞

∑
n=2

(asin(ωt))n

n!
dnc j(q̂ j)

d(q̂ j)n )sin(ωt)dt

=
dc j(q̂ j)

dq̂ j
+Oq

j(a
2). (31)

Let α = τδ and substitute (30) and (31) into the average
system (23)–(27), we have the dynamic system in time scale
α ,

dx̂A
i

dα
= ωc

i (ζ A
i − λ̂ A), (32)

dq̂A
j

dα
= ωs

j(λ̂ A −ξ A
j ), (33)

dλ̂ A

dα
= ω p[

N

∑
i=1

x̂A
i −

M

∑
j=1

q̂A
j ]
+

λ̂ A , (34)

δ
dζ A

i
dα

= −ωc
i (ζ A

i − dui(x̂i)

dx̂i
−Ox

i (a
2)), (35)

δ
dξ A

i
dα

= −ωs
j(ξ A

j −
dc j(q̂ j)

dq̂ j
−Oq

j(a
2)). (36)

The system (32)–(36) is a standard singular perturbation
form with fast dynamics, ζ A

i and ξ A
j when δ is small.

“Freezing” the dynamics (35) and (36) at the equilibrium
ζ A∗

i = dui(x̂i)
dx̂i

+Ox
i (a

2) and ξ A∗
j =

dc j(q̂ j)
dq̂ j

+Oq
j(a

2), we obtain
the reduced system.

dx̂r
i

dα
= ωc

i (
dui(x̂r

i )

dx̂r
i

+Ox
i (a

2)− λ̂ r)), (37)

dq̂r
j

dα
= ωs

j(λ̂ r −
dc j(q̂r

j)

dq̂r
j

−Oq
j(a

2)), (38)

dλ̂ r

dα
= ω p[

N

∑
i=1

x̂r
i −

M

∑
j=1

q̂r
j]
+

λ̂ r . (39)

Let x̃r = x̂r − x̂r∗, q̃r = q̂r − q̂r∗, and λ̃ r = λ̂ r − λ̂ r∗, we
select the following Lyapunov function:

V =V1 +V2 +V3 =
1
2

x̃rTΦ−1x̃r +
1
2

q̃rTΨ−1q̃r +
1

2ω p (λ̃
r)2,

(40)
where Φ = diag{ωc

i } and Ψ = diag{ωs
j} are diago-

nal matrices. Defining Ox = (Ox
1, . . . ,O

x
i , . . . ,O

x
N)

T, Oq =
(Oq

1, . . . ,O
q
j , . . . ,O

q
M)T, RN = (1, . . . ,1)T with |RN | = N and

RM = (1, . . . ,1)T with |RM|= M. Then, the derivative of the
Lyapunov function along the reduced system (37)-(39) is

denoted as
dV
dα

= x̃rT(u′(x̂r)+Ox(a2)− λ̂ rRN)

+q̃rT(λ̂ rRM − c′(q̂r)−Oq(a2))

+λ̃ r[x̃rTRN − q̃rTRM]+
λ̂r
, (41)

whereu′(x̂r)=(du1(x̂r
1)/dx̂r

1,. . .,dui(x̂r
i )/dx̂r

i ,. . .,duN(x̂r
N)/dx̂r

N)
T

andc′(q̂r)=(dc1(q̂r
1)/dq̂r

1,. . .,dc j(q̂r
j)/dq̂r

j,. . .,dcM(q̂r
M)/dq̂r

M)T.
We note that λ̃ r[x̃rTRN − q̃rTRM]+

λ̂ r ≤ λ̃ r(x̃rTRN − q̃rTRM),
and then

dV
dα

≤ x̃rT(u′(x̂r)+Ox(a2)− λ̂ rRN)

+q̃rT(λ̂ rRM − c′(q̂r)−Oq(a2))

+λ̃ r(x̃rTRN − q̃rTRM)

= x̃rTu′(x̂r)− λ̂ r∗x̃rTRN + x̃rTOx(a2)

−q̃rTc′(q̂r)+ λ̂ r∗q̃rTRM − q̃rTOq(a2)

= x̃rT(u′(x̂r)−u′(x̂r∗))+ x̃rTOx(a2)

−q̃rT(c′(q̂r)− c′(q̂r∗))− q̃rTOq(a2). (42)

Using the Mean Value Theorem [19] and conditions
d2ui(xi)/dx2

i ≤−η1 and d2c j(qi)/dq2
j ≥ η2, we obtain

dV
dα

≤ −η1∥x̃r∥2 −η2∥q̃r∥2 +∥x̃r∥∥Ox(a2)∥

≤ −2η1ωc
minV1−2η2ωs

minV2+
√

2ωc
max∥Ox(a2)∥

√
V1.

(43)

There exists a positive saclar η∗ such that

η∗V = 2η1ωc
minV1 +2η2ωs

minV2. (44)

When η ∈ [0,η∗], we have

dV
dα

≤ −ηV +
√

2ωc
max∥Ox(a2)∥

√
V

= −ηV +2θ
√

V , (45)

where θ is defined by

θ =

√
ωc

max

2
∥Ox(a2)∥. (46)

Setting W =
√

V , we obtain

D†W ≤−η
2

W +θ , (47)

which, from Lemma 1, implies that

∥W∥ ≤ e−
η
2 α∥W (0)∥+ 2

η
θ . (48)

Let z̃r = (x̃r
1, . . . , x̃

r
N , q̃

r
1, . . . , q̃

r
M, λ̃ r)T, we obtain

∥z̃r∥ ≤
√

2ωmax∥W∥

≤
√

2ωmax(e−
η
2 α∥W (0)∥+ 2

η
θ), (49)

where ωmax = max{ωc
1 , . . . ,ω

c
N ,ωs

1, . . . ,ω
s
M,ω p}. Thus, the

reduced system (37)–(39) is SPA stable with respect to a in
the α-time scale.
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Defining the boundary system as ex
i = ζ A

i − 2
a QA

i for all
i = 1, . . . ,N and eq

j = ξ A
j − 2

a FA
j for all j = 1, . . . ,M. From

(35) and (36), we see that the boundary system is globally
asymptotically stable. Combining with the SPA stability of
the reduced system and Lemma 2 in [20], the average system
(23)–(27) is SPA stable with respect to a and δ in the τ-time
scale. Finally, using the Lemma 1 in [20], the original system
(13)–(17) is SPA stable with respect to a, δ , and ωL in the
t-time scale.

V. NUMERICAL RESULTS

In this section, we consider an electricity market consisting
of 10 consumers and 5 suppliers. The profit functions and the
cost functions are assumed to be some quadratic functions
with coefficients randomly selected.

u1(x1) =−2x2
1 +9x1

u2(x2) = 1.5x2
2 +6x2

u3(x3) =−0.5x2
3 +7x3

u4(x4) =−0.6x2
4 +6x4

u5(x5) =−x2
5 +7x5

u6(x6) =−2x2
6 +10x6

u7(x7) =−0.5x2
7 +5x7

u8(x8) =−0.9x2
8 +8x8

u9(x9) =−0.6x2
9 +10x9

u10(x10) =−1.5x2
10 +8x10

(50)

and 

c1(q1) = 0.2q2
1 −2q1 +5

c2(q2) = 0.18q2
2 −1.8q2 +3

c3(q3) = 0.15q2
3 −1.7q3 +1

c4(q4) = 0.13q2
4 −1.5q4 +3

c5(q5) = 0.1q2
5 −1.2q5 +5

(51)

The optimal solutions of (5) are obtained as
x∗ = {2.1,1.8,6.4,4.5,3.2,2.4,4.4,2.1,7.9,2.5} and
q∗ = {6.4,6.6,7.6,7.9,8.8}. The adaptive gains of the
market dynamics are defined as ki = 0.2, h j = 0.2 and
g = 0.1. We set the parameters of the ESC dynamics as
a = 0.1, δ = 0.1, ω = 20, ω̂c

i = 2, ω̂s
j = 2 and ω̂ p = 1. Fig.

3–Fig. 5 show the ESC-based market dynamics converge
to a neighborhood around the optimal solutions of (5) (i.e.,
SPA stability). To evaluate the balance between supply and
demand, we define the absolute matching errors (AME) as

AME =
N

∑
i=1

x̂i −
M

∑
j=1

q̂ j, (52)

and the relative matching errors (RME) as

RME =
∑N

i=1 x̂i −∑M
j=1 q̂ j

∑N
i=1 x̂i

×100%. (53)

The AME and the RME versus the iterations of the ESC-
based market dynamics are shown in Fig. 6 and Fig. 7,
respectively. Both the AME and the RME converge to a
neighborhood around 0 with rapid speed. The amplitude of
the fluctuations is within [-0.2, 0.2] for the AME and within
[-1%, 1%] for the RME at the equilibrium.
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Fig. 3. Convergence of electricity consumption.
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Fig. 4. Convergence of electricity production.
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Fig. 5. Convergence of market clearing price.
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VI. CONCLUSIONS

In this study, we use ESC to model the dynamics of
electricity markets with unknown utility functions. It is
shown that the ESC-based market dynamics can converge to
the equilibrium within a small neighborhood of the optimal
solutions of the social-welfare optimization problem and
achieves the balance between supply and demand. In the
future, we will study the influence of the ESC dynamics on
the price volatility in the electricity markets and consider
more complicated market models with physical constraints
and renewable power.

REFERENCES

[1] A. Zaballos, A. Vallejo, and J. M. Selga, “Heterogeneous communi-
cation architecture for the smart grid,” IEEE Network, vol. 25, no. 5,
pp. 30–37, 2011.

[2] M. H. Albadi and E. El-Saadany, “A summary of demand response in
electricity markets,” Electric Power Systems Research, vol. 78, no. 11,
pp. 1989–1996, 2008.

[3] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. Wong, and J. Jatske-
vich, “Optimal real-time pricing algorithm based on utility maximiza-
tion for smart grid,” in Proceedings of The 1st IEEE International
Conference on Smart Grid Communications, October 2010, pp. 415–
420.

[4] R. Yu, W. Yang, and S. Rahardja, “Optimal real-time price based on
a statistical demand elasticity model of electricity,” in Proceedings of
The 1st IEEE International Workshop on Smart Grid Modeling and
Simulation, Brussels, Belgium, October 2011, pp. 90–95.

[5] N. Gatsis and G. B. Giannakis, “Residential load control: Distributed
scheduling and convergence with lost ami messages,” IEEE Transac-
tions on Smart Grid, vol. 3, no. 2, pp. 770–786, 2012.

[6] L. Chen, N. Li, L. Jiang, and S. H. Low, “Optimal demand response:
Problem formulation and deterministic case,” in Control and Optimiza-
tion Methods for Electric Smart Grids. Springer, 2012, pp. 63–85.

[7] M. Roozbehani, M. A. Dahleh, and S. K. Mitter, “Volatility of power
grids under real-time pricing,” IEEE Transactions on Power Systems,
vol. 27, no. 4, pp. 1926–1940, 2012.

[8] A. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Transactions on Smart Grid, vol. 1, no. 3, pp. 320–331,
2010.

[9] A. Kiani and A. Annaswamy, “Wholesale energy market in a smart
grid: Dynamic modeling and stability,” in Proceedings of The 50th
IEEE Conference on Decision and Control and European Control
Conference, Orlando, FL, USA, December 2011, pp. 2202–2207.

[10] K. Ma, G. Hu, and J. C. Spanos, “Distributed energy consumption con-
trol via real-time pricing feedback in smart grid,” IEEE Transactions
on Control Systems Technology, to be published.
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