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Abstract

Epidemiologic studies have found associations between fine particulate matter (PM2.5) exposure 

and adverse health effects using exposure models that incorporate monitoring data and other 

relevant information. Here, we use nine PM2.5 concentration models (i.e., exposure models) that 

span a wide range of methods to investigate i) PM2.5 concentrations in 2011, ii) potential changes 

in PM2.5 concentrations between 2011 and 2028 due to on-the-books regulations, and iii) PM2.5 

exposure for the U.S. population and four racial/ethnic groups. The exposure models included two 

geophysical chemical transport models (CTMs), two interpolation methods, a satellite-derived 

aerosol optical depth-based method, a Bayesian statistical regression model, and three data-rich 

machine learning methods. We focused on annual predictions that were regridded to 12-km 

resolution over the conterminous U.S., but also considered 1-km predictions in sensitivity 

analyses. The exposure models predicted broadly consistent PM2.5 concentrations, with relatively 
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high concentrations on average over the eastern U.S. and greater variability in the western U.S. 

However, differences in national concentration distributions (median standard deviation: 1.00 μg m
−3) and spatial distributions over urban areas were evident. Further exploration of these differences 

and their implications for specific applications would be valuable. PM2.5 concentrations were 

estimated to decrease by about 1 μg m−3 on average due to modeled emission changes between 

2011 and 2028, with decreases of more than 3 μg m−3 in areas with relatively high 2011 

concentrations that were projected to experience relatively large emission reductions. Agreement 

among models was closer for population-weighted than uniformly weighted averages across the 

domain. About 50% of the population was estimated to experience PM2.5 concentrations less than 

10 μg m−3 in 2011 and PM2.5 improvements of about 2 μg m−3 due to modeled emission changes 

between 2011 and 2028. Two inequality metrics were used to characterize differences in exposure 

among the four racial/ethnic groups. The metrics generally yielded consistent information and 

suggest that the modeled emission reductions between 2011 and 2028 would reduce absolute 

exposure inequality on average.

Keywords

PM2.5; air quality modeling; ensemble modeling; exposure inequality

1. Introduction

Epidemiologic studies have reported associations between concentrations of ambient fine 

particulate matter (PM2.5) and health effects including mortality (e.g., Di et al., 2017; Pappin 

et al., 2019; Pope et al., 2020; USEPA, 2019). Globally, 4.2 million deaths have been 

attributed to PM2.5 air pollution in 2015 (Cohen et al., 2017). Epidemiologic and health-

impact studies rely on accurate characterizations of population exposure to provide 

understanding of the health effects of ambient PM2.5. Due to the limited spatial and temporal 

coverage of routine monitoring networks, many PM2.5 concentration models have been 

developed in recent years to provide complete coverage for exposure applications over large 

domains including the conterminous U.S.

PM2.5 concentration models (hereafter exposure models) have been developed using various 

approaches including geophysical process modeling (Ostro et al., 2015; Wang et al., 2017), 

monitor-only methods (e.g., monitor averaging, nearest-monitor, interpolation) (Keller and 

Peng, 2019), hybrid land-use regression modeling (Beckerman et al., 2013; Jerrett et al., 

2017), satellite-derived aerosol optical depth (AOD) methods (van Donkelaar et al., 2010), 

Bayesian statistical modeling (Berrocal et al., 2010), and data-rich machine learning models 

(Chen et al., 2019; Di et al., 2019; Di et al., 2016; Hu et al., 2017). These exposure models 

often demonstrate good predictive capability based on statistical performance metrics from 

cross-validation tests with withheld observations. For instance, several machine learning 

methods have reported R2 values of 0.80 or greater based on ten-fold cross validation of 

daily PM2.5 predictions over the conterminous U.S. in 2011 (Di et al., 2019; Di et al., 2016; 

Hu et al., 2017). However, model performance may vary with the spatial and temporal 

resolution of the application, and the suitability of a model could depend on the resolution 
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and type of the epidemiologic analysis to be performed (e.g., cross-sectional analysis versus 

case-crossover design).

Epidemiologic studies have examined the influence of different exposure characterizations 

on PM2.5-mortality associations and found some agreement in results. For instance, Jerrett et 

al. (2017) reported associations between PM2.5 exposure and mortality risk using multiple 

exposure models, although methods that incorporated ground-based observations yield 

larger risks than those estimated based on a remote-sensing-only model. Di et al. (2017) 

reported associations between PM2.5 exposure and mortality risks using the neural network 

exposure model of Di et al. (2016) and a nearest-monitor approach, with slightly larger risks 

based on the national exposure model. Health impact assessments have also examined the 

influence of differences in exposure characterization on outcomes. For instance, Jin et al. 

(2019) estimated a 28% uncertainty in the state-level mortality burden for New York 

associated with the choice of method used to estimate PM2.5 exposure. Ford and Heald 

(2016) estimated similar variability in the mortality burden for the U.S. during 2004–2011 

based on satellite-derived exposure estimates.

Comparisons of PM2.5 concentrations based on different exposure models have also been 

performed. Jin et al. (2019) reported that seven publicly available PM2.5 products captured 

the decrease in PM2.5 concentrations over NY between 2002 and 2012, but that the models 

had limited ability to resolve the intra-urban spatial patterns of PM2.5 evident in a high-

resolution monitoring network. Studies have also reported increasing differences in 

concentration among methods and degradation in performance with increasing distance to 

the nearest monitor (Berrocal et al., 2020; Huang et al., 2018; Jin et al., 2019; Kelly et al., 

2019a). These results indicate that performance for many methods degrades in very places 

where we need exposure estimates, locations far from monitors. Diao et al. (2019) recently 

reported inconsistencies in PM2.5 estimates from several publicly available PM2.5 products 

and encouraged future research efforts.

Investigations of PM2.5 concentrations over the conterminous U.S. based on multiple 

methods of exposure are limited and have not included predictions of some of the most 

widely used methods. Also, previous studies have not examined the influence of exposure 

modeling methods on the future-year air quality projections commonly used in regulatory 

planning. Moreover, the implications of differences in modeling approaches for 

characterizing population exposure have received little consideration, despite the importance 

of exposure characterization for epidemiologic and health impact assessments. Finally, 

exposure models have recently been used to examine exposure inequality in Massachusetts 

(Rosofsky et al., 2018), but modeling of exposure inequality over larger domains is limited 

(Bravo et al., 2016) and has not considered possible future changes in PM2.5 exposure 

inequality.

Here, we characterize annual average PM2.5 concentrations in 2011 over the conterminous 

U.S. using nine exposure models that span a wide range of complexity and data sources. We 

then estimate the change in PM2.5 concentrations between 2011 and 2028 due to modeled 

emission changes associated with a suite of on-the-books regulations. Finally, we 

characterize PM2.5 exposure (i.e., population-weighted concentrations) and exposure 
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inequality according to two metrics using modeled PM2.5 concentrations for the 2011 and 

2028 cases. The use of multiple models is intended to provide insights on current exposure 

modeling methods as well as a thorough characterization of PM2.5 concentrations and 

exposure.

2. Methods

We characterized PM2.5 concentrations for 2011 due to the greater availability of exposure 

model predictions for this period than more recent years. Also, chemical transport model 

(CTM) simulations are available from previous work to project 2011 PM2.5 concentrations 

in response to emission changes estimated to occur between 2011 and 2028 (USEPA, 

2017a). Nine exposure models were used that can loosely be classified into categories of 

geophysical process models, interpolation-based models, Bayesian statistical regression, a 

satellite-AOD-based model, and machine learning models. The models are based on a wide 

range of input data and algorithms and were developed independently by multiple research 

groups.

2.1 Exposure Models

PM2.5 concentration estimates from two geophysical CTMs were used. CTMs simulate 

concentrations using scientific parameterizations of the key atmospheric processes that 

govern pollutant concentrations including emissions, transport, chemical reaction, and 

deposition. CTMs are therefore valuable for predicting PM2.5 concentrations under 

hypothetical scenarios where observations are not possible. For exposure applications, CTM 

predictions are often calibrated to observations using statistical models. Here, we consider 

the uncalibrated CTM predictions as a reference for the statistical model predictions, and 

because CTM predictions are sometimes directly used in health studies (Ostro et al., 2015; 

Wang et al., 2017). First, PM2.5 exposure fields were developed from a simulation of 2011 

with the Community Multiscale Air Quality model, version 5.0.2. CMAQ was configured 

with the Carbon Bond 05 (CB05) chemical mechanism, and anthropogenic emissions were 

based version 1 of the 2011 national emission inventory (NEI11). The model configuration, 

performance evaluation, and emission inventory have been described in detail previously 

(Kelly et al., 2019b; USEPA, 2015a). Second, PM2.5 exposure fields were developed using a 

simulation of 2011 based on the Community Atmosphere Model with Extensions (CAMx), 

version 6.3.2. CAMx was configured with the Carbon Bond chemical mechanism (CB6r4), 

and anthropogenic emissions were based on version 2 of NEI11. The CAMx model 

configuration and performance evaluation have been described in detail by USEPA (2017a), 

and model emissions have been described by USEPA (2016) and USEPA (2017b). The 

modeling domain for the CTM simulations covered the conterminous U.S. with 12-km grid 

spacing. The national emission totals for the CMAQ and CAMx simulations were within 2% 

for NOx, SO2, and volatile organic compounds (VOCs), and primary PM2.5 emissions were 

4% higher in the CMAQ simulation.

A PM2.5 exposure field was also developed by interpolating monitor concentrations to the 

12-km CTM grid. We used the Voronoi neighbor averaging (VNA) interpolation approach, 

which calculates the PM2.5 concentration at a prediction location as the inverse-distance-
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squared weighted average of monitored concentrations in neighboring Voronoi polygons 

(Abt, 2012; Fann et al., 2012). Additionally, PM2.5 concentrations were estimated using the 

extended VNA approach that weights the VNA interpolation using the ratio of CTM 

predictions between the monitor location and the prediction point (Abt, 2012; Fann et al., 

2012). This weighting effectively fuses the spatial gradients from the CTM field with the 

interpolated field of observations from VNA. The CAMx simulation described above was 

used in the eVNA calculations. VNA and eVNA predictions were made quarterly on the 12-

km CTM grid using the Speciated Modeled Attainment Test-Community Addition (SMAT-

CEv1.3) software. VNA and eVNA calculations are computationally efficient and can be 

made using publicly available software.

A PM2.5 concentration field was also developed using a Bayesian statistical downscaling 

model (Berrocal et al., 2010) that incorporated PM2.5 monitoring data and the CMAQ 

simulation described above. The downscaler model is a linear regression model that relates 

observed concentrations to CMAQ output using spatially and temporally varying 

coefficients. The downscaler is fit within a Bayesian framework and provides estimates of 

prediction uncertainty (Berrocal et al., 2020). The downscaler has been found to achieve 

relatively good model performance based on a limited amount of input data by explicitly 

accounting for the spatial dependence in PM2.5 concentrations (Berrocal et al., 2020). Daily 

PM2.5 predictions were made on the national 12-km CTM grid.

Also, PM2.5 predictions were used from a model that first relates satellite-derived AOD 

retrievals to surface PM2.5 concentrations using the geophysical relationship predicted by a 

global CTM (GEOS-Chem) with a nested simulation over North America. The initial PM2.5 

estimate (based on AOD and GEOS-Chem) is then calibrated to ground-based observations 

using geographically weighted regression as described by van Donkelaar et al. (2019; 

V4.NA.02). Here we characterize PM2.5 concentrations over the conterminous U.S. using 

the V4.NA.02.MAPLE product, which modifies the original V4.NA.02 product with 

additional developments as part of the MAPLE (Mortality–Air Pollution Associations in 

Low-Exposure Environments) project. Annual predictions at 1-km resolution were available 

from this method (hereafter VD2019), although fine-scale features at 1-km resolution are not 

expected to be fully resolved due to the influence of some coarser resolution inputs on the 

final dataset. Previous studies have reported that earlier versions of the VD2019 approach 

perform relatively well in remote areas due to the use of remote sensing information (Jin et 

al., 2019; Lee et al., 2012).

PM2.5 exposure fields from three data-rich machine learning methods were also compared. 

Machine learning methods can model the complex nonlinear and interactive relationships 

among predictor variables across wide range of datasets relevant to PM2.5 formation. PM2.5 

predictions were used from a neural network model that incorporated >50 predictor variables 

including predictions of a global CTM and satellite-derived AOD (Di et al., 2016). Daily 

PM2.5 predictions over the conterminous U.S. were available from this method at 1-km 

resolution (hereafter DI2016). Predictions based on a random forest model with about 40 

predictors variables were also used (Hu et al., 2017). Important predictor variables in the 

random forest included satellite-derived AOD and a convolutional layer for nearby PM2.5 

measurements. Daily PM2.5 concentration predictions were developed at 12-km resolution 
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with this method (hereafter: HU2017). Finally, PM2.5 concentrations based on an ensemble 

of predictions from three machine learning methods (gradient boosting, random forest, and 

neural network) were used (Di et al., 2019). PM2.5 estimates from the individual learners are 

optimally combined using a generalized additive model that accounts for geographic 

variations with thin-plate spline functions. This model (hereafter DI2019) incorporated a 

wide range of predictors including the CMAQ simulation described above.

The nine exposure models are summarized in Table 1. Due to differences in the spatial and 

temporal resolution of the methods and domain coverage, we averaged the fields to the 

coarsest spatial (12 km) and temporal (annual) resolution and included only grid cells where 

all models had coverage. Spatial averaging was done by calculating the mean of model 

prediction points located within a 12-km grid cell. The study therefore focuses on 12-km 

resolution, but we also consider 1-km fields in some cases to understand the effects of 

spatial averaging. The performance of the methods against withheld monitoring data has 

been reported previously and is consistent with the state-of-the-science for the individual 

approaches. Model performance is considered further in the Supporting Information (Text 

S1 and Figure S1), and the methods are summarized in Table 1. Note that the PM2.5 from the 

CTMs is calculated as the sum of simulated PM2.5 components and is not identical to the 

measured PM2.5, which is operationally defined by the Federal Reference Method (Noble et 

al., 2001).

2.2 Projecting PM2.5 based on 2011 and 2028 Emissions

We projected the 2011 PM2.5 concentrations from the nine exposure models to 2028 using 

CAMx modeling based on emissions for 2011 and 2028. In addition to the 2011 simulation 

described above, a second CAMx simulation was available that accounted for emission 

changes expected to occur between 2011 and 2028 due to a suite of on-the-books regulations 

and other factors (e.g., planned plant shutdowns). Emission inputs for the 2028 CAMx 

simulation were developed by projecting emission sectors individually from the 2011 CAMx 

case described above using spatially and temporally resolved information. The emission 

totals for the 2011 and 2028 simulations are provided in Table 2, and a full description of the 

emission projections is available in USEPA (2017b). The largest contribution to the 63% 

decrease in SO2 emissions over the conterminous U.S. between the 2011 and 2028 

simulations was from electric generation units (76% decrease). The largest contribution to 

the 50% decrease in modeled NOx (NO + NO2) emissions was from the onroad mobile 

source sector (77% decrease) followed by electric generation units (61% decrease). Note 

that the meteorology and chemical boundary conditions in the 2028 CAMx simulation were 

fixed at their 2011 values, and so the 2028 CAMx modeling reflects changes compared to 

2011 due to emission changes alone.

To help reduce the influence of model bias, PM2.5 concentrations were projected using 

relative response factors (RRFs) developed from the ratios of modeled 2011 and 2028 PM2.5 

concentrations (Cohan and Chen, 2014; NRC, 2004; USEPA, 2018). RRFs are generally 

applied on a species-specific basis to help mitigate the potential influence of a large model 

bias for one species dominating the overall response of PM2.5. RRFs for total PM2.5 in each 
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grid cell were developed from RRFs for individual particle components by taking the 

species-weighted average of the component RRFs:

RRFspecies = C2028, species
C2011, species

(1)

RRFTot, PM2.5 = ∑CObs, speciesRRFspecies
∑CObs, species

(2)

where C2028,species and C2011,species are the modeled PM2.5 component concentrations in the 

2028 and 2011 CAMx simulations, respectively; RRFspecies is the RRF for a given PM2.5 

particle component; CObs,species is the PM2.5 component concentration in 2011 based on 

VNA interpolation of observations that have been adjusted for consistency with total PM2.5 

measurements (Frank, 2006); and RRFTot,PM2.5 is the RRF for total PM2.5. Calculation of 

Cobs,species and RRFspecies was done using SMAT-CEv1.3. Finally, PM2.5 concentrations 

were projected from 2011 to 2028 using the RRFs for total PM2.5 as follows:

PM2.5Mod, 2028 = RRFTot, PM2.5PM2.5Mod, 2011 (3)

where PM2.5Mod,2011 is the modeled PM2.5 concentration in 2011 and PM25Mod,2028 is the 

modeled PM2.5 concentration in the 2028 emission case. Therefore the 2028 projected PM2.5 

concentrations are influenced both by the RRFs (from CAMx) and the 2011 modeled 

concentrations (from each of the nine exposure models).

2.3 Population Data and Exposure Metrics

To examine population exposure using the modeled concentration fields, we calculated 

population-weighted concentrations for the total population in the domain and for racial/

ethnic subgroups as follows:

CPM2.5, Pop . weigℎted = ∑PopiCPM2.5, i
∑Popi

(4)

where CPM25,Pop.weighted is the population-weighted concentration of PM2.5 for a given 

population group, Popi is the population size in grid cell i for the given population group, 

and CPM2.5,i is the PM2.5 concentration in grid cell i.

We used 2010 Census data based on the 1-km gridded product available from the 

Socioeconomic Data and Applications Center (CIESIN, 2017) to characterize population 

distributions. In addition to total U.S. population, we considered the following racial/ethnic 

groups: non-Hispanic Black (NH-Black), non-Hispanic white (NH-white), non-Hispanic 

other (NH-other), and Hispanic. For exposure calculations based on 12-km concentration 

fields, the 1-km population data were regridded to the 12-km domain used for the exposure 

models. For calculations with 1-km fields, modeled concentrations were matched with the 

nearest-neighbor grid point from the 1-km population data product. Population data were 

fixed at 2010 levels in all calculations, and so changes in exposure between 2011 and 2028 

are due to concentration changes only.
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Two metrics were used to characterize differences in exposure for population sub-groups. 

First, we calculated the difference in population-weighted PM2.5 concentrations between the 

most and least exposed groups by state (i.e., the exposure gap), which is similar to the risk 

gap of Thind et al. (2019). The exposure gap is an absolute metric that uses the best-off 

group as the reference and does not include an explicit inequality aversion parameter 

(Harper et al., 2013; Levy et al., 2006). Second, we calculated the Between Group Atkinson 

index (AIBG), which was recently applied by Rosofsky et al. (2018) to examine trends in 

PM2.5 exposure inequality in Massachusetts. The AIBG is a relative metric that uses average 

exposure as the reference and includes an explicit inequality parameter, ε, which reflects the 

level of societal concern for inequality (Harper et al., 2013). The AIBG ranges from zero to 

one, with higher values indicating a less-equal distribution. Following Rosofsky et al. 

(2018), we calculate the AIBG as follows:

AIBG = 1 − ∑
j = 1

n
fj

yj−
y−

1 − ε
1

1 − ε
(5)

where n represents the number of subgroups in the population, fj represents the fraction of 

the total population in each subgroup, ӯj represents mean exposure of each subgroup, and ӯ 
represents the mean exposure over the full population within a given geographic boundary 

(i.e., state).

Here we set ε to 0.75 consistent with previous studies (Fann et al., 2018; Fann et al., 2011; 

Levy et al., 2006; Rosofsky et al., 2018). We perform all AIBG calculations using the inverse 

of the PM2.5 concentrations, since the AI was originally developed for income distributions, 

where high income is considered desirable, whereas we are assessing PM2.5 exposure, where 

high exposure is undesirable (Harper et al., 2013; Rosofsky et al., 2018).

3. Results and Discussion

3.1 2011 PM2.5 Concentrations

Annual average PM2.5 concentrations predicted by the nine models are shown in Figure 1. In 

general, PM2.5 concentrations are higher in the eastern than western U.S., with some 

exceptions such as the high concentrations in the San Joaquin Valley and South Coast Air 

Basin of California. By U.S. climate region (Figure S2), the highest concentrations on 

average were predicted in the Ohio Valley region, where mean PM2.5 ranged from 9.2 to 

10.7 μg m−3 across all models (see Table S1 for the mean and range of model concentrations 

by region). The lowest concentrations were predicted in the Southwest region, where mean 

concentrations ranged from 2.6 to 5.3 μg m−3. The spatial variation in concentrations in the 

western U.S., where some of the cleanest and most polluted areas are located, tended to be 

greater than in the eastern U.S. (Figure 1).

The model predictions are in general agreement and are consistent with previous 

observation-based characterizations of PM2.5 spatial distributions in the U.S. (Hand et al., 

2012; USEPA, 2019). However, differences in the methodologies and input datasets lead to a 

range of model predictions. For instance, the CTMs predicted lower domain-wide average 
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concentrations than the non-CTM models (i.e. 5.7 μg m−3 vs. 6.3 to 7.6 μg m−3) but 

relatively high concentrations in urban areas in the eastern U.S. (Figure 1). The standard 

deviation (sd) across the models (excluding the CTMs) is shown in Figure 2a to illustrate the 

spatial distribution of the spread in model predictions (see Figure S3 for the maximum 

difference across models). The median (25th, 75th percentile) sd over all U.S. grid cells is 

1.00 (0.78,1.26) μg m−3, with the highest values in the western U.S. The sd divided by the 

mean (i.e., the coefficient of variation, cv) is shown in percentage units in Figure 2b. The 

median (25th, 75th percentile) cv over all U.S. grid cells is 15.49 (9.34,25.19) %. The cv is 

lower in the east than the west—e.g., the median value is 9.60% for grid cells east of 100W 

and 25.05% for cells west of 100W. This difference is due in part to the generally higher 

PM2.5 concentrations in the eastern than western U.S. Modeling PM2.5 concentrations in the 

west is more challenging than in the east due to factors such as complex terrain, prevalent 

wildfire, relatively sparse monitoring, and areas with low PM2.5 concentration and sharp 

PM2.5 gradients (Di et al., 2016; Geng et al., 2018; Kelly et al., 2019b).

The sd has limited variation as a function of PM2.5 concentration, with slightly higher values 

in the 5–7 μg m−3 range (Figure S4a). In contrast, the cv increases with decreasing PM2.5 

concentration (Figure S4b). Previous studies have reported some degradation in the R2 

performance statistic with decreasing concentration, whereas bias and RMSE were relatively 

insensitive to concentration (e.g., Just et al., 2020; van Donkelaar et al., 2019). This behavior 

could be due to increases in the proportion of the PM2.5 distribution that is explained by less 

predictable stochastic variation as concentrations decrease (Just et al., 2020). The 

implications for specific applications of differences in performance according to different 

metrics is an area of current research and relates to what types of performance are most 

relevant for the research question of interest (e.g., daily variation or absolute pollutant 

levels).

In Figure 3a, PM2.5 concentrations over Los Angeles in 2011 are shown for the exposure 

fields averaged to a common 12-km grid. The spatial distributions in PM2.5 concentrations 

vary across methods, but realistic features are generally evident in the fields. These features 

include relatively high PM2.5 concentrations near downtown LA, the Long Beach ports, and 

to the east of downtown LA (i.e., downwind of LA on the sea-breeze). Also, the methods 

generally capture the relatively low PM2.5 over the mountains to the north of LA, although 

this feature is muted in the relatively smooth VNA and Downscaler fields. Since VNA 

predictions are based solely on monitor data, the limited basin-to-mountain gradient in 

PM2.5 concentrations may be attributed to limited monitoring in the elevated terrain. The 

higher PM2.5 concentrations for CMAQ than CAMx could be related to differences in the 

emission inventories and potentially less atmospheric mixing in CMAQ (updates were made 

to enhance mixing in CMAQ version 5.1 (USEPA, 2015b) compared with version 5.0.2 used 

here).

In Figure 3b, PM2.5 concentrations over Los Angeles are shown for the three 1-km fields. 

Terrain features and fine-scale spatial variability in PM2.5 over the area are better 

represented in the 1-km than 12-km fields. However, differences in fine-scale spatial features 

exist among the three 1-km exposure fields, and some of the features are counterintuitive. 

For instance, PM2.5 concentrations are slightly lower over the major roadways than over 
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neighboring areas in the DI2019 method (the opposite pattern exists in some other urban 

areas such as Denver, Figure S5), and roadway features are indistinct in the DI2016 and 

VD2019 fields. Variability in the roadway features across cities in the DI2019 method may 

be due to differences in the relative values of the predictor variables (e.g., elevation) or 

influence of base learners across cities. Differences in roadway features between DI2016 

and DI2019 could be related to the use of random forest and gradient boosting (in addition 

to neural network) in DI2019 but neural network alone in DI2016, since both models were 

trained using road density variables. Traffic influence was considered indirectly in the 

VD2019 method (via AOD, GEOS-Chem, and monitoring), which may not fully resolve the 

fine-scale features associated with roadways. Considering that the models were optimized 

over large domains (i.e., conterminous U.S. for DI2016 and DI2019, and North America for 

VD2019) using different data and algorithms, differences in fine-scale features among the 

models are not surprising. For city-specific applications, recent studies have demonstrated 

the promise of urban-scale models that incorporate non-regulatory data (Huang et al., 2019) 

and low-cost monitors (Bi et al., 2020; Eilenberg et al., 2020; Li et al., 2020).

In Figure 3c, the difference in PM2.5 concentrations between the 12-km and 1-km grids is 

shown. The largest differences occur for grid cells that span a wide range of terrain. For 

instance, a band of cells to the north of Pasadena had lower concentrations at 12-km than 1-

km resolution just south of the mountains, and higher concentrations over the mountains. 

Similarly, relatively large differences between 12-km and 1-km fields are evident for cells to 

the east of LA that include a relatively wide range of terrain elevation (e.g., see VD2019 

field). Spatial maps for additional urban areas are provided in Figures S5-S10 to further 

illustrate features of the exposure fields.

3.2 ΔPM2.5 Concentrations: 2028–2011

The modeled change in PM2.5 concentrations between the simulations for 2028 and 2011 is 

shown in Figure 4. Nationally, the average ΔPM2.5 ranged from −0.85 to −1.02 μg m−3 

across the models. Regional air quality improvements were greater than the national average 

for the Ohio Valley region (−2.1 to −2.4 μg m−3) and lower for the Southwest region (−0.1 to 

−0.2 μg m−3). These patterns are consistent with the locations of the modeled emission 

reductions (e.g., large SO2 emission reductions from electric generation units were projected 

for the Ohio Valley region).

Since the same RRFs (i.e., from CAMx) were used to project all exposure fields, the 

differences in ΔPM2.5 among models are associated with differences in the 2011 PM2.5 

concentrations alone (i.e., PM2.5Mod,2011 in Eqn. 3). The spatial patterns of ΔPM2.5 in 

Figure 4 therefore resemble the concentration fields in Figure 1 (e.g., Downscaler predicts 

relatively large, smooth values in the Ohio Valley and CMAQ predicts relatively narrow 

peaks in urban areas). The spatial distribution of the maximum difference in ΔPM2.5 across 

the non-CTM models is illustrated in Figure S11. Developing RRFs from multiple CTM 

simulations would introduce additional variability into results, although such modeling is not 

available.

In Figure 5, distributions of ΔPM2.5 are shown as a function of different strata of the 2011 

PM2.5 concentrations for the different models. The air quality improvements from 2011 to 
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2028 generally increase with increasing 2011 concentration. This behavior reflects the 

influence of emission reductions from sources that contributed to the relatively high PM2.5 

concentrations in 2011. There was general agreement in ΔPM2.5 estimates among models as 

a function of 2011 PM2.5 concentration, especially for the non-CTM models. For instance, 

the median ΔPM2.5 ranged from −1.77 to −2.01 μg m−3 across models for 2011 PM2.5 

concentrations between 9 and 11 μg m−3. The range in the median ΔPM2.5 across methods is 

slightly greater for 2011 concentrations between 7 and 9 μg m−3 (−0.95 to −1.54 μg m−3) 

and 11 and 20 μg m−3 (−1.92 to −2.67 μg m−3). Overall, the impacts of the emission changes 

on PM2.5 concentrations are broadly consistent among methods, although the CTMs tended 

to have slightly greater impacts, which may be due to the larger uncertainty in the CTM 

simulations than the observationally constrained methods. Note also that the agreement in 

ΔPM2.5 among models is due in part to the use of the same RRFs for projecting the 2011 

PM2.5 fields. Uncertainty in the RRFs, which was not examined here, likely contributes 

more to the uncertainty in ΔPM2.5 than does uncertainty in 2011 PM2.5 field.

3.3 Population Exposure

In this section, we combine the modeled PM2.5 concentrations with population data to 

examine PM2.5 exposure levels in an approach often called population-weighting. In Figure 

6a, the percentage of U.S. grid cells and population exposed to 2011 PM2.5 levels are shown 

for the exposure models. For instance, a negligible percentage of grid cells have 

concentrations less than about 2 μg m−3 across all models, and almost all grid cells have 

concentrations less than about 12.5 μg m−3 (Figure 6a, left panel). A roughly 2.8 μg m−3 

spread exists among models (1.7 μg m−3 excluding the CTMs) in the concentration predicted 

at the 50% exposure level across U.S. grid cells. Agreement is closer for population-

weighted averages (Figure 6a, right panel) than uniformly weighted averages across the 

domain. A roughly 1 μg m−3 spread exists among models (0.8 μg m−3 excluding the CTMs) 

in the concentration predicted at the 50% exposure level for the U.S. population. The closer 

agreement in terms of population weighting than for equal weighting of all grid cells is 

because relatively large differences among models occur in sparsely populated parts of the 

western U.S. (e.g., Figure 2a).

Cumulative exposure curves for the U.S. population to ΔPM2.5 concentrations (2028 – 2011) 

are shown in Figure 6b. Good agreement exists among model estimates for population-

weighted ΔPM2.5 concentrations. For instance, a 0.2 μg m−3 spread exists among models in 

the ΔPM2.5 concentration predicted at the 50% exposure level. The agreement among 

models is due in part to the use of the same RRFs in projecting all exposure fields from 2011 

to 2028. Overall, the results in Figure 6 indicate that agreement among models is closer for 

population exposure than for average domain levels, and the change in population exposure 

is relatively insensitive to differences in the baseline exposure field. However, CTM results 

deviate by a relatively large amount from the other models and demonstrate the value of 

calibrating CTMs with monitoring data in exposure applications.

Modeled 2011 PM2.5 exposure concentrations are shown for the total population and the 

four racial/ethnic groups in Figure 7a. The spread among the non-CTM models in the 

average population-weighted concentration ranges from to 0.5 to 0.9 μg m−3 for the five 
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population categories. The relative rank in exposure concentration for the racial/ethnic 

groups is similar among models, with all models estimating the lowest exposure 

concentrations for the NH-white population and highest for the NH-Black population. This 

result is consistent with previous studies (Bell and Ebisu, 2012; Miranda et al., 2011). 

Population-weighted average concentrations for the 1-km fields (i.e., DI2016, DI2019, and 

VD2019) are generally similar to those for the respective 12-km fields, but with slightly 

higher values for the 1-km field in the DI2019 (up to 0.3 μg m−3) and VD2019 (up to 0.5 μg 

m−3) cases (Figure S12).

Population-weighted average ΔPM2.5 concentrations (2028–2011) are shown for the total 

population and four racial/ethnic groups in Figure 7b. The values are similar among models 

for the five population groups. The NH-Black population, which experienced the highest 

exposure in 2011, is projected to experience the greatest reduction in exposure among racial/

ethnic groups by 2028. The smallest air quality improvement is projected for the Hispanic 

group, possibly due to the relatively large percentage of the Hispanic population in the 

western U.S. and parts of the domain that experienced fewer PM2.5 reductions (c.f., Figure 

S13 and Figure 4). On a percentage basis, the reductions in population-weighted PM2.5 

between 2011 and 2028 were similar for the NH-white (−19%) and NH-Black (−20%) 

populations and slightly lower for the Hispanic population (−15%).

In Figure 8a, the difference in population-weighted PM2.5 concentrations between the 

highest and lowest exposed racial/ethnic group (i.e., the exposure gap) is shown by state, 

with labels for the highest exposed group when differences exceed 0.5 μg m−3 (this value 

was selected considering the sd among model predictions, discussed below). Results in 

Figure 8a are based on the mean concentration across the non-CTM models. The exposure 

gap in 2011 is less than 1 μg m−3 in most states but approaches 2 μg m−3 in Arizona and 

South Dakota. The relatively large gaps in these states appear to be driven by the distribution 

of the NH-Black population toward the the cities (e.g., Soux Falls, SD and Pheonix, AZ), 

where PM2.5 concentrations are relatively high, compared with the relatively broad 

distribution of the NH-other population throughout the state, where PM2.5 concentrations are 

lower on average (c.f., Figure 1 and Figure S13). The distributions of the NH-other 

population in these states appear to be strongly influenced by those of the American Indian 

and Alaskan Native population (Figure S14). The exposure gap is projected to decrease from 

2011 to 2028, with most states having values less than 0.5 μg m−3 and all states having 

values less than 1.5 μg m−3 in the 2028 case. This projected decrease continues a trend of 

decreasing absolute exposure disparity associated with roughly proportional reductions in 

PM2.5 concentrations in recent decades (Colmer et al., 2020).

Although the general patterns in Figure 8a are consistent with results for the individual 

models (Figure S15), some variability in the magnitude of the exposure gap and identity of 

the most-exposed group is evident. In Figure 8b, the sd of the exposure gap across the non-

CTM models is shown along with the number of models that identified the same most-

exposed group as for the mean concentration field used in Figure 8a. The sd for the fields is 

less than 0.5 μg m−3 in all states except Wisconsin, where a relatively large difference in 

concentration between the urban and northwestern areas led to a greater gap in the VD2019 

field (c.f. Figure 1 and S15). Also, there is general agreement in the most exposed group 
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among models (Figure 8b). This agreement builds confidence in the use of the models for 

large-scale exposure applications, although distinguishing small differences in exposure 

among groups in a given area may require development of an area-specific model that 

incoporates local information.

In Figure 9, the AIBG for 2011 and 2028 is shown by state based on the mean PM2.5 

concentrations across the seven non-CTM exposure models. The spatial pattern of AIBG 

resembles that of the exposure gap metric in Figure 8a, with relatively high values in SD, 

AZ, NM, NY, and CA. The AIBG also decreases from 2011 to 2028 due to reductions in the 

relatively high PM2.5 concentrations (Figure 5) that narrow the distribution of exposure 

across groups in 2028. However, the sd for the AIBG appears to be relatively large in relation 

to the mean compared with the exposure gap metric. For example, the cv is 99% for the 

AIBG in South Dakota in 2011, compared with 23% for the exposure gap. The relatively 

large cv for the AIBG might be related to the use of the mean concentration as the reference 

(Eqn. 5) compared with the best-off group for the exposure gap metric (i.e., deviations from 

the mean may be harder to distinguish compared with the full exposure gap). This 

information, as well as the general consistency in results for AIBG and the exposure gap and 

other properties of the metrics (Harper et al., 2013; Levy et al., 2006), may be useful in 

guiding future study design.

4. Conclusions

At regional and national scales, the nine exposure models provided broadly consistent 

estimates of annual average 2011 PM2.5 concentrations, with relatively high concentrations 

in the eastern U.S. and more variability in the west. The general agreement among the non-

CTM models suggests that exposure studies based on the individual models may yield 

broadly similar conclusions in some cases. Yet differences in model performance for the 

methods are evident from previous reports, and some differences in PM2.5 concentration 

predictions were found here due to the differences in model algorithms and input data. The 

median sd for the non-CTM models that had been averaged to a common 12-km grid was 

1.00 μg m−3 nationally. The CTMs, which are not constrained by observations, predicted 

lower domain-average concentrations than the other models (i.e. 5.7 μg m−3 vs. 6.3 to 7.6 μg 

m−3) but relatively high concentrations in urban areas in the eastern U.S.

All models estimated relatively high PM2.5 concentrations over urban areas compared with 

surrounding areas, but differences in the spatial patterns within urban areas were evident. 

Fine-scale features associated with terrain and major roadways that were present in the 1-km 

fields were largely removed when concentrations were based on the 12-km grid. However, 

fine-scale features were inconsistent among the 1-km fields. Considering these differences 

and the similarity in results for the 12-km and 1-km fields in terms of national population-

weighted concentrations and model-observation comparisons, the 12-km resolution may be 

justified for estimating exposure statistics over large domains. High-resolution exposure 

applications for individual cities may benefit in the future from the development of city-

specific models that incorporate local information (e.g., low-cost sensors).
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PM2.5 concentrations were estimated to decrease by about 1 μg m−3 on average due to 

modeled emission changes between 2011 and 2028 associated with on-the-books 

regulations. Decreases of more than 3 μg m−3 were predicted in areas with relatively high 

2011 PM2.5 concentrations (e.g., the Ohio Valley region) due in part to SO2 emission 

reductions from electric generation units. The projected pattern of greater PM2.5 

improvements for areas with relatively high 2011 PM2.5 concentrations was generally 

consistent among the models.

Cumulative distributions of PM2.5 concentrations over the U.S. illustrated the spread in 

predicted concentrations among models. For the non-CTM models, a roughly 1.7 μg m−3 

spread exists in the 2011 PM2.5 concentration estimated at the 50% exposure level for model 

grid cells, and a smaller spread (roughly 0.8 μg m−3) exists in terms of population exposure. 

The closer agreement in terms of population-weighted averages than uniformly weighted 

averages is due to the relatively large differences among models in sparsely populated and 

monitored parts of the western U.S. About 50% of the population was estimated to 

experience PM2.5 concentrations less than 10 μg m−3 in 2011 and PM2.5 improvements of 

about 2 μg m−3 due to modeled emission changes between 2011 and 2028.

Differences in population-weighted concentrations among the non-CTM models ranged 

from 0.5 to 0.9 μg m−3 nationally for the total U.S. population and four racial/ethnic groups. 

The relative rank in the average exposure concentration for the racial/ethnic groups was 

similar among models. The NH-Black population was estimated by all models to have the 

highest PM2.5 exposure in 2011 and experience the greatest reduction in PM2.5 exposure 

between 2011 and 2028.

Eight states were predicted to have exposure gaps among racial/ethnic groups greater than 1 

μg m−3 in 2011, but this decreased to three states in 2028 due to the modeled emission 

reductions. The AIBG metric also suggested improvements in exposure inequality between 

2011 and 2028. The projected decrease in absolute exposure inequality continues a trend 

over recent decades (Colmer et al., 2020). The sd in the AIBG metric among the non-CTMs 

was relatively large compared with the sd in the exposure gap metric in relation to the 

respective values calculated using the mean concentration field. These differences could be 

due to the use of mean exposure as a reference in the AIBG metric and best-off group in the 

exposure gap.

By examining predictions of multiple models, our study provided insights on current 

exposure modeling methods as well as a thorough characterization of PM2.5 concentrations 

and exposure. However, the performance of the individual models and their suitability for 

operational use varies, and so a multi-model approach may be less effective than a single-

model approach in a specific application, and the choice of method may influence results 

depending on the exposure features that are of interest and model performance. Improved 

understanding of how model skill in terms of various performance metrics relates to 

outcomes in specific applications would help inform future study design. Relating the PM2.5 

exposure concentrations described above to health risks would also be valuable.
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Figure 1. 
Annual average PM2.5 concentrations (μg m−3) in 2011 based on nine exposure models 

averaged to a common 12-km grid.
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Figure 2. 
Standard deviation and coefficient of variation for PM2.5 concentrations from the exposure 

models in Figure 1, excluding the CTMs (CMAQ and CAMx).
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Figure 3. 
Annual average PM2.5 concentrations over Los Angeles in 2011 based on (a) 12-km and (b) 

1-km gridded exposure fields, and (c) difference between 12-km and 1-km fields (12 km – 1 

km).
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Figure 4. 
Change in annual average PM2.5 concentrations (2028–2011; μg m−3) based on nine 

exposure models averaged to a common 12-km grid.
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Figure 5. 
Box and whisker plot depicting distributions of modeled ΔPM2.5 (2028–2011) as a function 

of 2011 PM2.5 concentration. The boxes bracket the interquartile range (IQR; 25th to 75th 

percentiles), the horizontal line within the box represents the median, whiskers represent 1.5 

times the IQR from either end of the box, and circles represent individual values less than 

and greater than the range of the whiskers, respectively.
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Figure 6. 
The percentage of (a) U.S. grid cells and population exposed to PM2.5 concentrations less 

than the values depicted by the curves and (b) U.S. population exposed to ΔPM2.5 

concentrations less than the values depicted. Population data is based on the 2010 Census.
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Figure 7. 
Population-weighted average (a) 2011 PM2.5 and (b) ΔPM2.5 (2028–2011) concentrations 

for the total population and four racial/ethnic groups based on 2010 Census data. DS: 

Downscaler.
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Figure 8. 
(a) Difference in population-weighted PM2.5 concentration based on the mean of the non-

CTM models between the highest and lowest exposed racial/ethnic group (i.e., exposure 

gap) with labels for the highest exposed group when differences exceeded 0.5 μg m−3 and 

(b) the sd of the exposure gap calculated from the seven non-CTM models, with the number 

of models that identified the same most-exposed group as the median field.
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Figure 9. 
(a) AIBG for 2011 and 2028 based on the mean PM2.5 concentrations from the non-CTM 

models and (b) the sd of the AIBG calculated from the seven non-CTM models.
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Table 1.

Summary of exposure modeling methods

Case Method Description Original 

Resolution
a Performance Statistics

b Reference

CMAQ Geophysical process model based on 
unconstrained bottom-up methods

Hourly, 12-km c
Total R2: 0.24

RMSE: 7.36
MB: 0.57
Slope: 0.62

USEPA (2015a); Kelly et 
al. (2019b)

CAMx Geophysical process model based on 
unconstrained bottom-up methods

Hourly, 12-km c
Total R2: 0.27

RMSE: 6.35
MB: −0.29
Slope: 0.53

USEPA (2017a)

VNA Inverse-distance-squared weighted 
interpolation of PM2.5 observations in 
neighboring Voronoi polygons

Quarterly, 12-km d
Total R2: 0.68

RMSE: 3.5
MB: 0.20
Slope: 0.74

Abt (2012); Kelly et al. 
(2019a)

eVNA VNA Interpolation of monitor data but with 
interpolation weighted by the ratio of CTM 
predictions in the monitor cell to the 
prediction cell.

Quarterly, 12-km d
Total R2: 0.48

RMSE: 5.60
MB: 0.40
Slope: 0.88

Abt (2012); Kelly et al. 
(2019a)

Downscaler Bayesian statistical regression of CTM 
predictions and observations with spatially 
varying coefficients

Daily, 12-km d
Total R2: 0.66

RMSE: 3.7
Bias: 0.8
Slope: 0.78

Berrocal et al. (2010); 
Kelly et al. (2019a)

VD2019 CTM scaling of satellite AOD to surface 
PM2.5 with geographic weighted regression of 
residuals.

Monthly, 1-km e
R2: 0.73 (0.55,0.86)

RMSE: 1.8 (1.5,2.4)
Bias: 0.05 (−0.09,0.20)
Slope: 0.88 (0.72,0.95).

van Donkelaar et al. 
(2019), following Table 
1, modified as per 
V4.NA.02.MAPLE 
update

DI2016 Neural network model based on wide range of 
predictors including satellite AOD and CTM 
modeling

Daily, 1-km f
Total R2: 0.81

RMSE: 2.83
Bias: 0.38
Slope: 0.99

Di et al. (2016)

HU2017 Random forest model based on ~40 predictors 
including satellite AOD and CTM modeling

Daily, 12-km f
Total R2: 0.80

RMSE: 2.83
Slope: 1.00

Hu et al. (2017)

DI2019 Ensemble model based on random forest, 
gradient boosting, and neural network learners 
with a wide range of predictors

Daily, 1-km f
Total R2: 0.832

RMSE: 2.670
Bias: 0.742
Slope: 0.940

Di et al. (2019)

a
Fields were averaged here to the annual period and a common 12-km grid

b
RMSE: root-mean-square error (μg m−3); MB: mean bias (μg m−3)

c
Statistics are based on daily PM2.5 predictions for 2011 that were not constrained with observations

d
Statistics are based on 10-fold cross-validation of daily PM2.5 predictions for 2015

e
Statistics are based on 10-fold cross-validation of annual PM2.5 for 2000–2016 in the U.S. (mean and range for individual years)

f
Statistics are based on 10-fold cross-validation of daily PM2.5 predictions for 2011
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Table 2.

Modeled emission totals
1
 for conterminous U.S. in 2011 and 2028 CAMx simulations.

Pollutant 2011 (t yr−1) 2028 (t yr−1) Change 2011 to 2028

SO2 6,403,986 2,351,163 −63%

NOx 14,163,826 7,135,556 −50%

VOC 17,160,045 13,660,423 −20%

PM2.5 4,599,665 4,413,668 −4%

1
Emission totals were developed by projecting sectors individually with spatially and temporally resolved information. Projections for electric 

generation unit emissions include the Final Mercury and Air Toxics rule (December 21, 2011); the Cross-State Air Pollution Rule (CSAPR) (July 
6, 2011); and the CSAPR Update Rule (October 26, 2016). Projections for onroad mobile sources include the Tier-3 Vehicle Emissions and Fuel 
Standards Program (March 2014); the California Low-Emission Vehicle (LEVIII) program; and Light-Duty Vehicle Greenhouse Gas Emissions and 
Corporate Average Fuel Economy Standards (October, 2012); and Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for 
Medium- and Heavy-Duty Engines and Vehicles (September, 2011). See USEPA (2017b) for more details.
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