
Lawrence Berkeley National Laboratory
Recent Work

Title
ACHIEVING CHEMICAL ACCURACY BY QUANTUM MONTE CARLO

Permalink
https://escholarship.org/uc/item/4km76871

Authors
Lester, W.A.
Reynolds, P.J.

Publication Date
1983-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4km76871
https://escholarship.org
http://www.cdlib.org/


," .. ~ 

" .' 

LBL-16954 
c'd-

Lawrence Berkeley Laboratory 
REe£IVED 

UNIVERSITY OF CALIFORNIA LAWRENCE 
eERKF"LE"v '.ARnQI\ 

Materials & Molecular 
Research Division 

JAN 1 7 1984 

LIBRARY AND 
DOCUMENTS SECTION 

Presented at the Workshop on Energetic Material 
Initiation Fundamentals, Chestertown, MD, 
August 15-17, 1983 

ACHIEVING CHEMICAL ACCURACY BY QUANTUM MONTE CARLO 

W.A. Lester, Jr. and P.J. Reynolds 

August 1983 TWO-WEEK LOAN COpy 

This IS a Library Circulating Copy 

which may be borrowed for two weeks. 

For a personal retention copy~ call 

- Tech. Info. Division~ Ext. 6782. 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 

r 
\}J 
r-
I 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



LBL-16954 

ACHIEVING CHEMICAL ACCURACY BY QUANTUM MONTE CARLO* 

William A. Lester, Jr.+ and Peter J. Reynolds 
Materials and Molecular Research Division 

Lawrence Berkeley Laboratory, University of California 
Berkeley, California 94720 

In order to better understand the processes resulting in the release 
of chemical energy, one needs a computational technique of high accuracy. 
One alternative approach to the current quantum chemistry techniques for 
molecular studies which holds great promise is the quantum Monte Carlo 
(QMC) method. 1-8 In this approach the many-body Schrodinger equation 
is re-interpreted as a diffusion equation. Simulation of an appropriate 
random-walk process enables one to calculate expectation values of 
molecular properties exactly, in principle, subject only' to statistical 
errors (which may be made arbitrarily small). The computational effort 
with QMC rises roughly as N2, where N is the number of electrons, 
making calculations on relatively large systems feasible. Using a 
simple, but accurate fixed-node approximation, the calculated total 
energy remains an upper bound to the true energy. The quality of the 
bound and the magnitude of the statistical error depend on an "importance 
function" which guides the diffusion through phase space. The location 
of the nodes of this function determines the accuracy which can be 
obtained. Even with very simple importance functions, we have obtained 
from 75-100% of the correlation energy of two to ten electron molecules 
(cf., Table I). 

The QMC procedure applies equally well in situations away from the 
equilibrium geometry. In Table II we present some results for the 
ground-state energy of Li2 at a few different nuclear separations. We 
chose the same importance function--with the same parameters--for all 
nuclear separations. Although this choice is not optimal, point-wise 
agreement with the exact results was nevertheless quite good. 

*This work was supported in part by the Director, Office of Energy 
Research, Office of Basic Energy Sciences, Chemical Sciences Division of 
the U. S. Department of Energy under Contract No. DE-AC03-76SF00098 and 
Director's Program Development .Fund. 

+Also University of California, Berkeley, California. 
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Table I. Comparison of the total ground-state energy obtained in the 
fixed-node QMC procedure, with the estimated Hartree-Fock limit, cr, and 
"exact" energies. Except as noted, "exact" means the non-relativistic, 
Born-Oppenheimer energy, derived from experiment. The "quality" of each 
of the three importance functions (~I' ~II, and ~IIt) is also indicated, 
by giving the energy obtained from them in a variatlonal calculation. 
Energies are in Hartrees. [After Ref. 7] 

H LiH Li H 0 
2 2 2 

Hartree- a b c d 
Fock -1.1336 -7.9B7 -14.B72 . -76.0675 

'l' \ variational -1. 1507z0.0009 -7.91z0.01 -14.B5 zO.03 -75.69 z 0.03e 
I fixed-node -1.174Sz0.000B -B.047z0.00S -14.9B5z0.005 -76.23 z 0.02 

'l' . \ variational -7.975z0.005 -14.900z0.004f -76.13 zO.07e 
II fixed-node -B.059z0.004 ':"'14. 991z0.007 -76. 377ZO. 007 

'l'I II \ variational -1. 162ZO.001 -B.041z0.00B -14.95 z 0.01 
fixed-node -1.174z0.001 -B.067z0.002 -14.990z0.002 

9 h i 
Best CI -1.1731 -8.0647 -14.903 -76.3683 

k 1,n m,n 
"Exact" -1.17447 ••• -B.0699 -14.9967 -76.4376 

( a) 
(b) 
(d) 
(e) 
(f) 
(g) 

(h) 
(j) 
(k) 

(l) 
(n) 

Obtained with a nine term expansion in Ref. 9. 
Ref. 10. (c) Ref. 11. 
Rosenberg and Shavitt in Ref. 12. 
Slater determinant part of wavefunction from Ref. 13. 
Variational energy from Moskowitz and Ka10s in Ref. B. 
Ref. 14. Of course, better correlated wavefunctions than CI exist 
for H2. ·For example, Ref. 9 obtains E=-1.1744 from a 40 term 
expansion which includes rij explicitly, and the "exact" result 
of Ref. 15 also uses this method. 
Ref. 16. (i) Refs. 17, lB. 
Meyer in Ref. 12. 
Ref. 15. This value is not derived from experiment, but directly 
from theory. 
Ref. 19. 
Here the zero-point energy has not 
relativistic correction is assumed 
Lamb shift has not been included. 

(m) Ref. 20. 
been subtracted; also the 
independent of raS' and the 

j 
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Table II. Ground-state energies at selected nuclear separations for 
[12. Results of the fixed-node QMC calculation, obtained using the 
importance function 'II, are compared with Hartree-Fock and "exact" 
energies (in Hartrees). Typical statistical uncertainty in the 
fixed-node results is 0.005 a.u. [After Ref. 7] 

a b 
R (Bohr) E E E 

HR F-N "exact" 

3 -14.786 -14.905 -14.915 

4 -14.853 -14.968 -14.983 

5.05 -14.872 -14.991 -14.997 

6 -14.869 -14.985 -14.992 

7 -14.859 -14.976 -14.982 

(a) Refs. 11, 17, 18. 
(b) Ref. 20. 

Our current work includes exploration of the following directions: 
(1) development and application of methods for excited states. In 
principle, at least certain excited-state calculations can be performed 
readily. For example, if the spin symmetry of a state is different from 
the ground state, this may be enforced on the calculated state' by 
choosing an importance function 'I with this same symmetry. The spin 
arrangement reflected in ~I results in a significantly different nodal 
structure, and thus in different volume elements for the diffusion 
process than for the ground state. We have introduced the above 
considerations in calculations on the 1A1 - 361 energy splitting 
of methylene. In addition to the intrinsic interest in this value,22 . 
this calculation also gives insight into how well the QMC method obtains 
excited-state properties and to its sensitivity in calculating small 
energy differences. (2) Development of adaptive or self-improving Monte 
Carlo schemes. The goal is to feed back knowledge gained from a 
simulation with a 'I into a improved function 'II. Such an algorithm 
should interatively correct a given starting 'I to achieve the best 
possible importance function, even correcting the nodes. (3) As a more 
long-range goal, one wishes to eliminate the fixed-node constraint 
entirely. Such approaches,21 although o~ great interest, are currently 
not practical for molecular calculations. The limitation arises from an 
inherent difficulty in reducing the variances with these algorithms. 
Attempts to overcome this problem create a new problem: the power law 
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. dependence of the computation time on the number of electrons increases, 
making large calculations impractical. (4) Use of "differential" methods 
to obtain potential surfaces. In order to obtain a potential curve or 
surface, in principle, one must re-calculate the Born-Oppenheimer energy 
at various nuclear geometries. This is feasible (cf., Table II) however, 
a separate statistical error bar is associated with each calculation. 
This means that there is also an uncertainty in the shape of the 
potential curve--i.e., in the slope of the curve (or surface) joining the 
points. This problem derives largely from the separateness of the Monte 
Carlo calculations--involved--a different set of random numbers is used 
for each calculation but may be circumvented by calculating averages at 
nearby geometries using the same random numbers. Energies thus calculated 
are strongly correlated. Th~the "differential ll procedure can give 
more accurate relative energies than is possible from separate calcula
tions of the absolute energies. In this way, accurate slopes (and hence 
forces), as well as energies, may be obtained. (5) Use of more accurate, 
compact importance functions. Our present importance functions ~I all 
consist of a single Slater determinant multiplied by a fairly simple 
correlation factor. We have already found that (within the fixed-node 
approximation) we can obtain an additional 50% of the missing correlation 
energy simply by either enlarging the basis set slightly or optimizing 
further the parameters in ~I. In this way we have brought the total 
correlation energy obtained to the order of 90% At the same time, this 
improvement in ~I has led to an appreciable reduction in the fluctua
tions in the energy, and hence a reduction in the statistical error. We 
have studied the effect of a continued increase in the size of the basis 
set on the accuracy and on the precision of the calculated quantities, 
and find it to be negligible. However, to make computational time used 
more practical, we are investigating the reduction in statistical error 
which may be achieved by using different correlation functions. This 
reduction is needed in order to obtain energy differences in the 
kcal/mole range. To further improve absolute energies, we also wish to 
investigate other relatively compact forms of ~I consisting of more 
than one Slater determinant. 

An understanding of the improvement in the results which can be 
derived from improvements in ~I' should enable one to obtain reliably 
between 90-95% (or better) of the correlation energy, and to extrapolate 
with some confidence the total energy and other properties of molecular 
systems, even without the self-adaptive or released-node approaches. 
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