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" NUMERICAL INTEGRATION "

T e 'éfe‘j.‘intenééfo-'éd ']iﬁ':évaluai-in.gj“';oijé.cts, of the form, if(x)dx e
s - L . o e A s e
'miiéffSuch obJects are’ called deflnlte 1ntegrals,';ﬁl ff-irw :" L

In the event that f(x) O for »a.Aﬁ x:Eéﬁh.lws'ﬁayiintsfprét;i ;
;f;fs f(x) dx as the area enclosed by the curves, ;%:gsdi;“ y = f(X), i'*”a,'
& e e . L . o ST N
7i“and x " The concept of the "area“ of‘such an arbltrary conflguration 1njl
"‘;jﬁ;_fa;flf; ﬁthe plase 1s bullt up from our 1ntu1tlonal bellef that the 'area' of a j'

"i;’rectangle whose 31des have lengths a and b lS a x b

In order to measure the area of an arbltrary flgure we cover 1t

r

;“w1th rectangles, add up the areas of the rectangles to obtaln a number, and ff':

fthen take the least of all such numbers This nrocess 1s exactly the one'flfﬂwli

: .;rused in deflnlng S f(x) dx However, except in the simplest cases, the T‘f,;_””

. . L8
ﬁuse of thla deflnltlon 1n evaluatlng an 1ntegral would be tedlous so we

}trlvto deVlse a better method g‘?5 1ff'L:f;}"jlﬁﬂlr’jf
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The best method is given by the ‘following,
-Theorem: If F is such a function that for every x, ald x<b

b.
mplles F'(x) - f(x) then & f(x) dx - F(b) - F(a) .

Unfortunately, welare ﬁot always able to flnd such a functlon, our knewledge
of f may be J.ncomplete, there may be no functlon F such that F = f;
or we may not be skillful enough or patn,ent enough to find one. |

For this reason it becomes necessarv to devise other methods for

_evaluatmg deflm.te 1ntegrals

2. Motivation o o

In ;311 that follows, we will be attemptlnv to evaluate f(x) dx.

mterval ra, bJ
Whatwe propose is to replace f in the 1nterval La, b] by functlons'
whose 1ntegral may be evaluated by the fundamental theorem. For example, if

" we replace f in [a, b] by the functlon T where

T(x) - f(a)_,__ f(b) - fgaz (x - a)
ere obta-iﬁ

e s o '[f"a?* o]

which is-the well known trapegoid rﬁie‘,

| In thls case we have replaced the function f in the interval
[a, b_] by the stralght line connecting (a f(a)) and - (b f(b)) and
approxlmated the integral of f by the integral of the la.ne - The accuracy

_of this approx:Lmatlon depends, of courSe, on the character'of_ f in [a, bJ H
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‘ f.o;' example, Af 8 = - 1, b :+l; f(x) = x2, then

. T(x),.-_-vl ~ and

2/3 Wi'xile.-

ol
. ‘
. N
-
-
£
Y

abd\re, if we divide [-l, +'1J into [ -1, 0 | and [O,‘l] we

" ‘then ob‘taiﬁ the following approximation Aﬁto_ the ,integral of f:

(- x . for xi_[hl,o]
T(x) =
: x for  x ¢ [O,l]
S T(x)dx_:‘ §-xdx+gxdx' =1 ,
a1 S

Thus, 'we see that’ the error in the. case of one subinterval,is h/3, while
the_ error in the case of 2 subintervals is 1/3 » and, in fact, the

oo : n - . n '
error if we take 2 Subintervals is A/BQA which converges rapidly to .

zero,



poitit; .and : fm .'1:s the functlon value at.v the 1’th lelSlon p01nt

1ntegrals over i’ xn(1-+ 1)

‘The formula used 1n obtalmng 'I’n 1s called the trapezomal mle,
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f'tfls also true that
el i n-—--)uc

3‘In the event that we have a: good deal of 1nformat10n about the

1funct10nff, the follow1ng theorem 1s very useful - i

_jTheoremﬁ

- An7obvious corrollar' of5thi; theorem, 1f f satlsfles the same hypotheses,-;i, )
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“Now let us: consider




“valu '{j;should ;weichoose for n” We determlne th1s value -.,-f-‘__'" '
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00010; the .coroliary’gives

, Coe . v‘~'_ E Ly

“?%10', and our formula 1n1f:ﬁi
s but E2 = '& ‘ So thls formulaJJ:“";

1f the smoothest curVe drawn through

'”greater than the allowable error SAn :
Qﬂiprocedure repeatedﬁ'b R

*In our example
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jhﬁ?e}ré}-ef;_éi_. 1n the values of the f ‘s Wlll contrlbute an

“::tbu5sg For example, 1f we are: 1ntegrat1ng over j?

,§iwhether heelntegral exists or: not To 1nvest1gate the ex1stence of the

l:;The above theorem 1s'not‘ae'workable as the follow1ng one, §;:i;ﬁuff i"“
1j¢~5yzggg§g@3- If f:g g(x) dx ex1sts and 1f*for eachf'x 1h'50me;neigh59r+,

) %};ggénfffiyr(iv‘agrg,*’ep-vj}“

exlsts,

?ébraé#ample,uflet»:é;:xa"
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L OOl e and we ma'y procede 5
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If our original regxon of mtegratlon, say D s is not a rectangle,

r

' _we may replace .D by a rectangle R s and f by fl such that

1 RO
: ’ = . . wob .
o | (f(xy 3) for (x, y) € D-
i) £1(x, ) = - o o
: : . 0 ' for (x, y) é R ~D
then | | |
é_f(x, ‘y) dA - § fl(x, y)dA and we are back to our original

-gcase,

To evaluate integrals over spaces of dimen51on greater than two we

follow a procedure exactly analogous to the one outlined above

Aoyt ..
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