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October 7, 1952 

James Baker 

NUMERICAL INTEGRATION 

10 Introduction 

We are interested in evaluating objects of the fo, 	f(x) dx 

Sich objects are called definite integrals 

In the event that 	f(x) ~ 0 	for 	a 	x 	b 	we may interpret 
b 

f(x) dx 	as the area enclosed by the curves, 	y 	0 , 	 y = f(x), 	x 	a, 

and x 	b 	The concept of the "area" of such an arbitrary configuration in 

the plane is built up*from our intuitional belief that the 'area' of a 

rectangle, whose sides have lengths a and b, is a x b0 

In order to measure the area of an arbitrary figure we cover it 

with rectangles, add up the areas of the rectangles to obtain a number, and 

then take the least of ,  all such numbers 	This orocess is exactly the one 
b 

used in defining 	f(x) dx 	Hwever, except in the simplest cases, the 
a 

use of this definition in evaluating an integral would be tedious so we 

try to devise a better method 
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The best method is given by the following 

Theorem: 
If F is such a function that for every x, a 4 x 

. b 
implies F'(x) = f(x) then 	f(x) dx = F(b) 

- F(a) 

Unfortunately, we are not always able to find such a function; our knowledge 

of f may be incomplete; there may be no function F, such that F T  f ; 
or we may not be skillful enough or patient enough to find one. 

or this reason it becomes necessary to devise other methods for 

evaluating definite integrals. 

2. Motivation 

In all that follows, we will be attempting to evaluate 	f(x) dx. 
At this stage of

,  the game we assume f to be Continuous in the closed 

interval ia, b] 

• 	 What we propose is to replace f in the interval La, b] by functions 
whose ixtegra1 may be evaluated by the fundamental theorem. For example, if 

• 	we replace r in [a, bJ by the function T where 

T(x) 	f(a)~ 	
) - 

f( 	(x - a) 
b - a 

we obtain 

dx - (b;a) If(a) 	f(b)] 
which Is-the well known ti'apezbjd rule 0  

In this case we have replaced the function f in the 
interval 

[a, b J by the straight line connecting (a, f(a)) and b, f(b), and 

approximated the integral of f by the integral of the line. The accuracy 

of this approximation depends, of course, on the character of f in [a, b] ; 



	

for eamplejf a 	b 	f(x) -x2  then 
and 

	

f(x) dx 	2/3 	while 

	

S T(x)dx 	2 

We can thake a better approxjaj0 to the integral of 
 divjdj 	aj 	 f by 

b] into Subjntea1s and taking the su of the 
Of the aPproxig funct 	in each of them 	

integrals 

, For instance, in the exap1e above, If e divide [_i, iJ into 	
[ -i o 	

we 
J and 	0, 1 

then obtaj the following approatjon to the intera1 of f: 

	

- 	 for 

x 	 for 	x 

	

5 T(x)dx: 	
Xdx+SxdJCj 

Thus, we see that' the error in the case of one SUbjnteryalis 
4/3, while the error in the case of 2 Subjntea1s is 

113 , and, in fact, the n 

	

error if we take 2 Subjfltea1s I 
4/3 	which converges rapidly to zero 0  

It is 	
Oincjdence that the values of the Integrals of th appro) at 

izI9 functjo5 in th 	
e 

e abo-e exap1e converge to the integra of 
f0 

This happy eventwjll occur. for every cotj05 function, using any of the 

which we are aboit to discuss 





r .  
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Let f(x) 	, b = 2 , 	then 
x 

I 	= 	5 	f(x)dx 1n2 69315 

Let us first co nsider 

1 	, x21  2 

1, 	1 
2 

1 ,2 , 	f22 	= 

S 2 	1 ( 1 ±4 + 	) 	69444 , 

I 2 00129 

(iv)) - 	24 	arid for  - 
X  

(iv)( 
24 

so by our theorem 

5'. (i: . 	.... h 
.... 

£ 	() 1 	24 0033 
;.90 .; ,. 

290•• 

Thus we obtain a bound on 	which differs from by a factor of 

Now let us consider 	S4  

h4  

x4 	1, = 5 	, x42  x43  = 	= 	2 

1 	' 
'42 = f43 	L 	£44 
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4 	+ 4 4 f + 	4 	24 
4 	12 	 7 

z 	69325 

So 	: 	E4 	00010 

By the corollary we obtain 

E4J 	f(1V) (f ) (1 	2) • 

418O 

1. 	424 	0002, 
5 1 

and by the theo±'em itself 

E4 	1 f 

;: 
L 	1 	(24 fr 4 74074) 	200031 
- 490 

So the corollary yields a bound that is five tiine greater than 	E4  , while 

the bbund derived from the theorem differs from 	E4  by a factor of 3 

Suppose now that we wish to obtain a result ih16h is correct to five 

figures. 	What value should we choose for 	n 	We determine this value 

by solving the following irequality derived from the corollary 

000005 	5 x 1O 

5 
nh 	(iv)•) 	5 x 10 
io 

now 

h: 	a) 	and 
iv( 	

) 1- 24 	, 	1 	2 - 

: and 	b 
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We note thdt these formulas irWolve function 	1ues outside of 	[a, b 

Let us use this method to p1ace a bound on 	E4 	for our previous 
I  exampleeca11 that 	f(x) 	, 	a 	1, 	b 	2 	Now 

X45 	 f4(1) 	 f45 	= 

E 	1 	r4 	4 	— 4(l -841 
id 

E4 	0l654 

Recall that 	00010, the corollary 	ive 	E4 	00052 	and , 

the theorem gives 	E4 	00031 	So our new bound differs from the actual 

error by a factor 	f 100, 

Despite this reassuring (if inaccurate) result we are unable to say 

that this formula will eten furnish us with a bound n every case 	For 

example, if,  we try- to evaluate 	sin x 	dx , and pick 	n 	2 , then 

0 	, 	S2 	0 , and our formula in 

terms of the 	f2 s gives us 	E 2 	0 	, but 	E2 	4 	So this formula 

gives us a reasonable bound only if the smoothest curve drawn through 

does not stray too far from the graph of 	f 

A more certain (though more laborious) method of checking accuracy 

is to compute 	S 	and then compute 	If S 	
— 32n 	smaller is 

than the allowable error it is usuallysafe to stop 	If the difference is 

greater than the allowable error, S4 r1 	should hecomru ted and the whole 

procedure repeated 	In our exarnpl 

(52 — S4 J 	00119 	, and 	 010 







I 
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If our original region of integration, say D , is not a rectangle, 

	

• 	we may replace D by a rectangle, 	, arid f by f, such that 

	

• 	 1) 

(f(x, y) 	for (x,y) 	D 
f1 (x, y) 

	

• 	 0 	for (x, y) f .R 'D 

then 	• 	 • 

f(x, y) dA = 	f1(x, y)dA and we are back to our original 

	

• 	• 	• case. 

• 	To evaluate integrals over spaces of diniension greater than two we 

follow a procedure exactly an1ogousto the one outlined above. 
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