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Abstract 
Users sometimes face anomalous behaviors of systems, such as 
machine failures and autonomous agents. Predicting such 
behaviors of systems is difficult. We investigate the benefits of 
the memory-based strategy, which focuses on memorization of 
instances to predict anomalous and regular behaviors of the 
system, with ACT-R simulations with a cognitive model. In 
this study, we presumed the parameters defining the encoding 
processes on anomalous instances and regular instances in the 
model of the memory-based strategy and performed 
simulations to verify how these two parameters influence 
prediction performance. The results of simulations showed that 
(1) regular instances are not encoded as default values in the 
memory-based strategy and that (2) such inactivity on regular 
instances suppresses commission errors of regular instances 
and does not suppress commission errors of anomalous 
instances nor omission errors. 

Keywords: memory-based strategy; prediction; anomalous 
behavior; regular behavior; ACT-R 

Introduction 
There are many various systems around us, and users often 
predict their behaviors. It is relatively easy for users to predict 
systems’ stationary behaviors by applying schemas 
(henceforth referred to as “regular behaviors”). However, 
users sometimes observe that systems’ behaviors deviate 
from regular behaviors (henceforth referred to as “anomalous 
behaviors”). Predicting anomalous behaviors is effortful (e.g., 
Besnard & Bastien-Toniazo, 1999; Casner, Geven, & 
Williams, 2013) and requires users to execute much cognitive 
processing such as reallocation of cognitive resources (Meyer, 
Reisenzein, & Schützwohl, 1997). Therefore, it is necessary 
to process anomalous behaviors and regular behavior 
differently in order to predict systems’ behaviors precisely. 

One of the strategies to predict systems’ behaviors is the 
“inference-based strategy,” which focuses on inferences and 
understandings regarding the causal structure from systems’ 
behaviors. The literature from various areas of research show 
that users apply the inference-based strategy spontaneously 
when encountering anomalous instances (e.g., Baker et al., 
2009; Clary & Tesser, 1983; Howard & Holcombe, 2010; 
Tremoulet & Feldman, 2000, 2006). Inferences contribute to 
users’ understanding of systems, but these inferences include 
advanced integration processes of the knowledge and the 

environment (Darabi, Nelson, & Palanki, 2007); therefore, 
the inference-based strategy is not always effective for highly 
complex systems. 

We define the “memory-based strategy,” which focuses on 
memorization of instances to predict systems’ behaviors 
without understandings regarding causal structure. A 
knowledge base, such as a database of prior failure instances, 
is an example of the memory-based strategy. Experimental 
studies have demonstrated that the benefits of the memory-
based strategy appear in the test situations, which is the same 
as the learning situations (e.g., Lane, Mathews, Sallas, 
Prattini, & Sun, 2008). 

Our previous study reveals that the memory-based strategy 
is effective in a high-complexity task and the inference-based 
strategy is effective in a low-complexity task (Matsubayashi, 
Miwa, & Terai, in press). This study indicates that the 
benefits of the memory-based strategy are likely to be 
provided by the activity in which the instances representing 
the regular behaviors (henceforth referred to as “regular 
instances”) are not encoded as default values, whereas the 
instances representing the anomalous behaviors (henceforth 
referred to as “anomalous instances”) are intentionally 
encoded. In this study, we investigate these features of the 
memory-based strategy in detail, with a cognitive model. 

First, we review our argument that regular instances are not 
encoded in the memory-based strategy by reproducing the 
human data in the psychological experiment. We presume the 
two parameters defining the encoding processes on 
anomalous instances and regular instances, and then examine 
whether the simulated data with inactivity of encoding 
regular instances provide a good fit to the human data. 
Second, we reveal why the benefits of the inactivity of 
encoding regular instances appear by confirming the 
performance with settings of two encoding parameters. 
Specifically, when the parameters are set for encoding not 
only anomalous instances but also regular instances, what 
happens to the simulated performance data? 

Experimental Task 

Stimulus 
The experimental task required participants to predict the 
final position of the ball based on its observed movement. 
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The screen used in this task comprises a visible region and an 
invisible region (see Figure 1). A hidden object is placed in 
the invisible region. If the ball makes contact with the object, 
it changes its direction, whose trajectory is defined as an 
anomalous instance. Conversely, a regular instance is 
generated when the ball goes straight without direction 
changes. The ball is ejected from a certain initial position in 
the outer frame and at a certain angle. The ball is temporarily 
invisible while it passes through the invisible region. The ball 
becomes visible again when it enters the visible region. The 
ball’s movement finally stops at the outer frame. Hereafter, 
an initial position and an initial angle of the trajectory are 
defined as “input,” and a final position and a final angle are 
defined as “output.” 

 

Figure 1: Overview of the task. (a) In the observation 
phase, the movement of the ball is presented and then the 

confirmation screen is displayed. (b) In the test phase, 
participants can move the paddle. 

 

Figure 2: Difficulty settings of the task. Shapes of hidden 
objects and examples of trajectories in a low-complexity 

task (left) and in a high-complexity task (right). 
 

Table 1: Composition of the trials in blocks 2−5. 
 

Phase Instance Experience 
Observation Anomalous (3)  
 Regular (9)  
Test Anomalous (6) Novel (3) 
  Experienced (3) 
 Regular (6) Novel (3) 
  Experienced (3) 

The observation phase and the test phase are alternated 
repeatedly in this task. In the observation phase, participants 
observe the movement of the ball from its ejection (i.e., input) 
until its stoppage in the outer frame (i.e., output). Participants 
are also shown the confirmation screen with two arrows 
representing the input and the output (see Figure 1a). 

In the subsequent test phase, the ball stops as soon as it 
enters the invisible region, and a paddle is also displayed (see 
Figure 1b). To predict the final position of the ball and catch 
it with the paddle, participants are required to move the 
paddle with a left click button and determine its position with 
a right click button. The paddle is displayed at the same 
location in which the ball would arrive if it went straight 
without direction changes. In other words, it is not necessary 
to move the paddle in regular instances but is necessary to 
move the paddle in anomalous instances to catch the ball. The 
number of correct trials in which the range of the paddle 
includes the genuine final position of the ball is regarded as 
the prediction performance. No feedback on the predictions 
is provided to participants. 

The shapes of the hidden objects in the invisible region 
determine the complexity of the tasks (see Figure 2). 
Anomalous instances follow a simple trajectory in a low-
complexity task with a square-shaped object and a complex 
trajectory in a high-complexity task with a circular object. 

Procedure 
Prior to the observation phase, participants were informed 
that they were required to predict, as precisely as possible, the 
final position of the ball in the test phase. Participants were 
instructed to focus on and memorize the two arrows 
representing the input and the output in the confirmation 
screen in the observation phase. Participants are expected to 
use the memory-based strategy and encode the combination 
composed of an initial position, an initial angle, and a final 
position as an instance comprised of the input and the output. 

The movement of the ball constituted one sequence, and 
each sequence constitutes one trial. A block comprised 12 
trials in the observation phase and 12 trials in the test phase. 
All trials in block 1 corresponded to regular instances in the 
observation phase and in the test phase. Trials comprised 
three anomalous instances and nine regular instances in the 
observation phase in blocks 2−5. In the test phase, trials 
comprised six anomalous instances and six regular instances. 
In addition, each trial in the test phase comprised three novel 
instances, which were shown only at this time, and three 
experienced instances, which had been shown in the previous 
observation phase (see Table 1). 

Participants implemented a 5-block low-complexity task 
and a 5-block high-complexity task. The positions and the 
shapes of hidden objects are consistent throughout all the 
trials in each task. 

Summary of Psychological Experiment Results 
Overall, the data of 24 participants were analyzed. A 
summary of the results is described here, and the details are 
mentioned with the simulation results (see Figure 3). 

(b) 

(a) 
Output Input 
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Figure 3: Prediction performance in block 5. Error bars 
represent standard errors. 

 

Figure 4: Correlation coefficients on prediction 
performance in block 5 between the simulated data and 
human data. Ra represents the rehearsal probability of 
anomalous instances and Rr represents the rehearsal 

probability of regular instances. 
 
Statistical results show that the interaction of the instance 

factor (anomalous/regular) and the experience factor 
(novel/experienced) was significant for the prediction 
performance in each task in block 5 (low-complexity: F(1, 
23) = 13.8, p < .005, η2 = .60; high-complexity: F(1, 23) = 
10.7, p < .005, η2 = .47). Specifically, the performances for 
anomalous-experienced instances are higher than those for 
anomalous-novel instances  (low-complexity: F(1, 46) = 27.6, 
p < .001; high-complexity: F(1, 46) = 41.6, p < .001). This 
result indicates that anomalous instances were encoded in the 
observation phase. Additionally, no differences are observed 
in the performance for regular-novel instances and for 
regular-experienced instances (low-complexity: F(1, 46) = 
0.0, p = 1.0, r = .00; high-complexity: F(1, 46) = 2.2, p = .13, 
r = .32). This result indicates that regular instances were not 
encoded in the observation phase; therefore, they were not 

retrieved even for regular-experienced instances in the test 
phase. 

Simulations with Cognitive Model 
This study adopts ACT-R simulations (Anderson, 2007) with 
a cognitive model to investigate the details of processing. 
Two retrieval errors critical to the memory-based strategy are 
available in ACT-R, that is, commission errors representing 
that wrong instances are retrieved and omission errors 
representing that encoded instances are not retrieved. 

In this study, we examine the following two points with 
simulations. First, we reveal the features of the memory-
based strategy by performing simulations with two 
parameters defining the encoding processes of anomalous 
instances and regular instances. If the simulated data with the 
parameters meaning inactivity of encoding regular instances 
provide a good fit to the human data, our argument regarding 
such an inactivity is supported. Second, we reveal the reason 
why the benefits of inactivity of encoding regular instances 
appear in the memory-based strategy. Two research questions 
are drawn: How does the parameter on encoding regular 
instances decrease the prediction performance? What type of 
retrieval error is the cause of such decline in performance? 

Simulation Settings 
The following is the outline of the memory-based strategy 
model. In the observation phase, the model detects an input 
arrow and an output arrow, reads the position and the angle 
of each arrow, and then encodes them as a chunk in the 
declarative memory. This chunk comprises three slots―the 
initial position, the initial angle, and the final position. Next, 
the model runs rehearsals by repeating retrievals of the chunk. 
The rehearsal probability parameters determine whether the 
model continues to run a rehearsal on every rehearsal. There 
are two types of rehearsal probability parameters. If an input 
angle is different from an output angle, the model regards this 
trial as “an anomalous instance” and runs rehearsals on the 
basis of the rehearsal probability of anomalous instances 
(henceforth referred to as “Ra”). Additionally, if an input 
angle is the same as an output angle, the model regards this 
trial as “a regular instance” and runs rehearsals on the basis 
of the rehearsal probability of regular instances (henceforth 
referred to as “Rr”). 

In the subsequent test phase, the model reads the position 
and the angle of an input arrow and makes a retrieval request 
to declarative memory with them as a clue. If the model fails 
to retrieve an instance or the retrieved final position is 
included in the range of the paddle, the model does not move 
the paddle. Otherwise, the model moves it to the retrieved 
final position with left click button. After that, the model 
confirms the position of the paddle with a right click button.  

Making retrieval errors on two adjacent initial positions is 
likely because these two positions are highly similar and 
difficult to distinguish from each other. Therefore, the 
similarity parameters between two adjacent initial positions 
are set to −0.5. Other similarity parameters are set to −1.0 as 
default. 
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Figure 5: Variations of prediction performance on a 
function of the rehearsal probability of regular instances 
(Rr). ANO, REG, NOV, and EXP represent anomalous, 

regular, novel, and experienced respectively. 

Figure 6: Variations of retrieval errors on anomalous-
experienced instances on a function of the rehearsal 

probability of regular instances (Rr). 
 
Each Ra and Rr has five levels; therefore, 25 parameter 

combinations are simulated. The five levels of rehearsal 
probability correspond to 0%, 20%, 40%, 60%, and 80%, that 
is, the expected values of the number of rehearsals are 0.00, 
0.25, 0.67, 1.50, and 4.00 respectively. 

Results of Simulations 
Best Parameters First, in order to investigate the features of 
the memory-based strategy, we calculate correlation 
coefficients between the simulated data and the human data 

on prediction performance in block 5. Figure 4 shows that the 
simulated data in which anomalous instances are encoded 
sufficiently and regular instances are not encoded provide a 
best fit to the human data. Prediction performance at Ra 80% 
and Rr 0% is reproduced well. Specifically, there is no 
difference in the performance for regular-experienced 
instances and for regular-novel instances, and the 
performance for anomalous-experienced instances is higher 
than that for anomalous-novel instances (see Figure 3). These 
results support our argument that regular instances are not 
encoded and anomalous instances are encoded. Notably, the 
simulated data are wholly lower than the human data. We will 
discuss this topic in Discussion and Conclusion. 
Effects of Encoding Regular Instances Second, we 
investigate the reason why the benefits of the inactivity of 
encoding regular instances appear in the memory-based 
strategy. What happens to the prediction performance when 
the Rr parameter is set to 20% or higher?	

Figure 5 represents the variations of the prediction 
performance based on a function of Rr. The results show that 
the performances for anomalous-experienced instances 
decrease gradually as Rr increases and that the performances 
for regular instances decrease rapidly when Rr increases to 
80%. 

We verify what retrieval error is the cause of decline in 
performance. There are three types of errors on anomalous 
instances―commission errors in which regular instances are 
retrieved incorrectly, commission errors in which another 
anomalous instances are retrieved, and omission errors, in 
which no instance is retrieved. On the other hand, there are 
three types errors on regular instances―commission errors in 
which another regular instances are retrieved, commission 
errors in which anomalous instances are retrieved incorrectly, 
and omission errors. However, the omission errors on regular 
instances do not correspond to retrieval errors because 
participants can catch the ball even if they do not move the 
paddle and such trials are regarded as successful prediction. 
Therefore, we verify the only two commission errors on 
regular instances as possible causes of decline in performance 
for regular instances. 

Figure 6 represents the variations of retrieval errors on 
anomalous-experienced instances. The results show that 
commission errors of regular instances increase as Rr 
increases to 80%. Additionally, there is no change on 
commission errors of anomalous instances and on omission 
errors from Rr 0% to 60%, but rapid drops appear in these 
errors at Rr 80% in each task. We found that the cause of 
declines in performance for anomalous-experienced 
instances is the commission errors in which regular instances 
are retrieved inappropriately. 

Subsequently, Figure 7 represents the transitions of 
retrieval errors on regular instances. The results show that 
commission errors of regular instances increase as Rr 
increases to 80% and that commission errors of anomalous 
instances decrease at 80%. As a result, the cause of declines 
in performance for regular instances is the commission errors 
in which another regular instance is retrieved. 
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Figure 7: Variations of retrieval errors on regular 
instances on a function of the rehearsal probability of 

regular instances (Rr). 
 
In summary, we found that the commission errors of 

regular instances contribute to the declines in performances 
on anomalous-experienced instances and on regular instances. 
That is, encoding regular instances in the memory-based 
strategy leads to increases in retrieval of inappropriate regular 
instances. In other words, participants using the memory-
based strategy are likely to inhibit the commission errors of 
regular instances by not encoding regular instances. 
Additionally, and notably, commission errors of anomalous 
instances and omission errors do not increase according to Rr 
and decrease at Rr 80%. We will discuss this topic in 
Discussion and Conclusion. 

Discussion and Conclusion 
In this study, we performed the simulations of the processing 
of the memory-based strategy with a cognitive model and 
revealed the following two points in the context of the 
prediction on anomalous behaviors. First, by reproducing the 
human data, we found that the results support our argument 
that regular instances are not encoded as default value, and 
anomalous instances are encoded in the memory-based 
strategy. Second, the simulations in prediction performance 
with settings of encoding parameters show that the benefits 
of the memory-based strategy appear when such inactivity on 
regular instances inhibits commission errors of inappropriate 
regular instances and does not inhibit commission errors of 
anomalous instances nor omission errors. 

Processes of Memory-based Strategy 
We found that the simulated data in which regular instances 
are not encoded provide a best fit to the human data. This 
result confirms our argument that regular instances are not 
encoded in the memory-based strategy. Additionally, this 
result corresponds to the results in our previous experiment 
about participants’ subjective evaluations toward anomalous 
instances and regular instances (Matsubayashi et al., in press). 

Although the tendencies on prediction performance in 
simulations are reproduced well, the simulated data are 
wholly lower than the human data. This result indicates that 
participants in the memory-based strategy could perform 
other additional processing than the encoding processing that 
we presumed in the current model when they observed 
various instances. For example, participants might integrate 
some similar instances into one chunk, make an inference 
regarding the causal structure through the anomalous 
trajectories, or revise relevant schema (Meyer et al., 1997). 

The studies on category learning have presumed the 
models that implement multiple processing when observing 
an instance (Nosofsky, Palmeri, & McKinley, 1994). 
Furthermore, our previous study indicates that participants 
adopt the inference-based strategy and the memory-based 
strategy when not provided explicit instructions about 
strategies (Matsubayashi et al., in press). The human data 
cited in this article correspond to the data when participants 
were urged to use the memory-based strategy, but we cannot 
dismiss the possibility that the participants use the inference-
based strategy alongside. However, the inference-based 
strategy is possible to consume much cognitive resources 
(Darabi et al., 2007); therefore, using both strategies could 
reduce prediction performance. Notably, the trade-off 
between the costs and the benefits on two strategies must be 
verified for future work. 

Benefits of Memory-based Strategy 
The benefits of the memory-based strategy appear because of 
the inhibition of retrieval errors of inappropriate regular 
instances. The inactivity on regular instances inhibits 
commission errors in which regular instances are retrieved 
incorrectly on anomalous instances and commission errors in 
which another inappropriate regular instances are retrieved 
on in-situ regular instances. In summary, such inactivity of 
the memory-based strategy has a critical role in preventing 
confusion in encoded instances when they are retrieved and 
in saving cognitive resources to encode instances. The results 
of the simulations show that when regulars are encoded as 
frequently as anomalous instances are, more commission 
errors of regular instances occur, which indicates that it is 
critical not to encode regular instances in the memory-based 
strategy. 

On the other hand, the commission errors of anomalous 
instances or the omission errors do not increase even if 
regular instances are encoded. Furthermore, we found that 
these two errors decrease only if regular instances are 
encoded as frequently as anomalous instances are. These 
decreases seem to occur, confounded with the effect of the 
increase in the commission errors of regular instances. If 
regular instances are encoded as frequently as anomalous 
instances are, the current model stores three anomalous 
instances and nine regular instances in the declarative 
memory in each block, with similar activation levels. 
Consequently, regular instances are more likely to be 
retrieved than anomalous instances, which results in a relative 
decrease in the commission errors of anomalous instances 
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and omission errors. However, the benefits of encoding 
regular instances do not appear because the whole prediction 
performance decreases even if these two errors decrease. 

The features of cognitive processing on anomalous 
instances have been verified with visual search tasks. Studies 
have revealed that the objects incongruent with the schema of 
the scene are difficult to identify (Mudrik, Deouell, & Lamy, 
2011) and these objects are represented internally prior to the 
objects congruent with the schema (Hollingworth & 
Henderson, 2000). Our findings that there are no benefits of 
encoding regular instances are not contradictory to such 
studies. Furthermore, our study reveals the cognitive 
processing on regular instances, which are congruent with the 
schema, while other studies have referred to that on 
anomalous instances, which are incongruent with the schema. 
Model-based approaches can clarify the internal cognitive 
processes that are difficult to observe and have been used in 
various areas, such as category learning (Erickson & 
Kruschke, 1998). Particularly, studies on the cognitive model 
about instance-based learning have revealed decision making 
processes from experience (Gonzalez & Dutt, 2011; Paik & 
Pirolli, 2013). Our findings regarding regular instances could 
not have been obtained without the simulations with a 
cognitive model. 

In this study, we performed simulations of the processing 
of the memory-based strategy with a cognitive model from a 
perspective of predicting anomalous behaviors. First, by 
reproducing the human data, we found the results that support 
our argument that regular instances are not encoded as default 
values and anomalous instances are encoded in the memory-
based strategy. Second, simulations in performance with 
encoding parameters clarified that the benefits of the 
memory-based strategy appear when such inactivity on 
regular instances inhibits the commission errors of 
inappropriate regular instances and does not inhibit the 
commission errors of anomalous instances nor the omission 
errors. 
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