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Coupled human and natural systems (CHANS) are complex,
dynamic, interconnected systems with feedback across social and
environmental dimensions. This feedback leads to formidable
challenges for causal inference. Two significant challenges involve
assumptions about excludability and the absence of interference.
These two assumptions have been largely unexplored in the
CHANS literature, but when either is violated, causal inferences
from observable data are difficult to interpret. To explore their
plausibility, structural knowledge of the system is requisite, as is
an explicit recognition that most causal variables in CHANS affect a
coupled pairing of environmental and human elements. In a large
CHANS literature that evaluates marine protected areas, nearly
200 studies attempt to make causal claims, but few address the
excludability assumption. To examine the relevance of interfer-
ence in CHANS, we develop a stylized simulation of a marine
CHANS with shocks that can represent policy interventions,
ecological disturbances, and technological disasters. Human and
capital mobility in CHANS is both a cause of interference, which
biases inferences about causal effects, and a moderator of the
causal effects themselves. No perfect solutions exist for satisfying
excludability and interference assumptions in CHANS. To elucidate
causal relationships in CHANS, multiple approaches will be needed
for a given causal question, with the aim of identifying sources of
bias in each approach and then triangulating on credible infer-
ences. Within CHANS research, and sustainability science more
generally, the path to accumulating an evidence base on causal
relationships requires skills and knowledge from many disciplines
and effective academic-practitioner collaborations.

social-ecological systems | marine protected areas | quasiexperiment |
bioeconomics | spatial dynamics

Coupled human and natural systems (CHANS) are complex,
dynamic, interconnected systems that have important feed-

backs across social and environmental dimensions (1). Re-
searchers have applied CHANS and precursor bioeconomic
models to a wide range of human–environment interactions,
including ocean fisheries, lake fisheries, human disease spread,
wildfires, coastal landscape change, deforestation, invasive spe-
cies spread, desertification, eutrophication, large mammal ex-
tinctions, and collapse of whole civilizations (1–11). In the
science of CHANS, related social-ecological systems (SESs), and
sustainability more broadly, scholars aim to understand and
identify causal relationships (3, 12, 13). In CHANS, a “cause” is
an attribute of the system that could change (i.e., be manipulated
by humans or nature) and a “causal effect” is the difference
between outcomes (results) that are experienced when the at-
tribute is held at one value rather than another value.
To make causal claims, CHANS and SES scholars tend to take

one of two approaches: (i) predictive inference, which fits
models of deterministic or stochastic system dynamics to obser-
vations and judges success by goodness-of-fit criteria or quality
of reconstruction (“Are the data consistent with the model?”),
and (ii) causal inference, which exploits experimental or quasi-
experimental variation in one or more variables to isolate
causal relationships and judges success by the credibility of un-
testable assumptions about the data-generating process (“Are
there plausible rival explanations for the estimated relationships

between causes and effects?”). Because scholars often use sim-
ilar statistical techniques (e.g., regression), conceptual confusion
about the difference between predictive and causal approaches
can lead to methodological confusion about the best ways to
approach empirical analyses in CHANS, SESs, and sustainability
science generally (SI Appendix).
Suppose, for example, that a researcher is interested in un-

derstanding whether changes in the value of X (e.g., road den-
sity) cause changes in the value of Y (e.g., species richness), and
by how much. In predictive inference approaches, one assumes
that if model A, which includes X, explains more of the variation
in Y than model B, which excludes X, model A is preferred.
Intuitively, predictive inference approaches are assumed to shed
light on causal relationships through the following logic: If an
estimated (fitted) model successfully predicts observations out of
sample or is consistent with a theorized dynamic process, the
model is likely to reflect true causal relationships underlying the
system (14). Predictive inference approaches typically shed light
on causal relationships only when strong, often unstated, iden-
tifying assumptions about model structures are invoked.
In contrast, the goal of causal inference approaches is to make

the identifying assumptions transparent and credible in a partic-
ular study design. For example, the credibility of a causal in-
ference in a randomized controlled trial that experimentally
manipulates X is not judged on whether variation in X explains a
lot of the variation in Y [although the precision of the estimate of
X’s effect on Y (i.e., the amount of statistical uncertainty) is an
important attribute of the design, and the magnitude of variation
in Y attributable to X may have important policy implications].
Instead, credibility is judged by whether one can plausibly argue
that the experimental design isolates a true causal relationship
(i.e., whether one can plausibly rule out rival explanations for the
estimated relationship between X and Y) (15).
Judgment about the plausibility of rival explanations, or the

ability of predictive approaches to elucidate causal relationships,
relies on the plausibility of two assumptions:

i) Excludability: the assumption that factors driving variation in
the treatment variable have no causal link to the outcome
variable except through their effects on variation in the treat-
ment (the “treatment” is the causal variable of interest). For
example, if we could randomly manipulate fish stocks (a
treatment) in marine patches, excludability implies that the
manipulation (the driver of variation in treatment) only
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affects economic returns to fishers (an outcome) through the
manipulation’s effect on the fish stocks.

ii) No interference [also known as stable unit treatment value
assumption or “no spillovers among units” assumption]: the
assumption that the outcome for a unit when exposed to a
particular value of a treatment does not depend on the value
of the treatment in any other units. For example, if we ran-
domly manipulate fish stocks in marine patches (the units),
no interference implies that the causal effect of a specific
change in fish stock in one patch is unaffected by whether
or not the fish stock has changed in any other patch.

In nonexperimental settings, like those found in CHANS, the
plausibility of these two assumptions is suspect. The strong cou-
pling in social and ecological systems implies that the most com-
mon ways of addressing confounding variables in the CHANS
literature are unlikely to satisfy the excludability assumption.
Moreover, the same coupled nature implies that interference
among study units is a much more widespread, and complex,
problem in CHANS research than previously appreciated.
Although concerns about these assumptions are not new and

neither assumption can be verified empirically, we demonstrate
how one can explore their plausibility in a given CHANS context
through a combination of theory, field knowledge, and indirect
empirical tests. We also conduct a deeper exploration of the ways
in which the no-interference assumption can be violated in
CHANS, how to think about the plausibility of violations in a
specific context, and how to address potential violations should
they likely exist in that context.
To improve the quality of the empirical evidence base within

CHANS, scholars must undertake more deliberate, transparent
efforts to ascertain the plausibility of these two key assumptions,
and to explore the implications of potential violations. To illus-
trate our ideas, we analyze a marine CHANS and focus on es-
timating the effect on fish stocks from marine protected areas
(MPAs) and from hypoxic events. An MPA is a possible positive
shock to the CHANS, whereas hypoxia is a possible negative
shock. Although we use a marine CHANS for illustration, the
ideas and claims outlined in the following sections are broadly
generalizable to all CHANS and highlight the challenges for
CHANS researchers.

Excludability
Imagine that a CHAN marine system experiences a shock, S,
such as an MPA placed on a seascape. An MPA could causally
affect ecological and social outcomes, Y, through a variety of
ecological and economic mechanisms, M (16) (Fig. 1). One could
ask, “By how much do MPAs change, on average, the level of fish
stocks in or around the MPAs?” This causal question implies a
thought experiment: What is the difference in expected fish
stocks in the presence of MPAs and, in the same locations,
expected fish stocks in the absence of those MPAs (“absence”
implies the counterfactual regulatory regimes that would have
existed had the MPAs not been established)?
The first quantity, the stock with MPAs, will be observable

after MPAs are placed on the seascape. In contrast, the second
quantity, the counterfactual stock in the absence of MPAs, will
not be observable. This counterfactual stock could be estimated
by first taking seascape zones in which the effects of an MPA
would be entirely contained, and then randomly assigning MPAs
to some of these zones. Randomization can satisfy the exclud-
ability assumption: The procedure by which some zones are ex-
posed to MPAs has no causal link to the fish stocks except
through its effect on the probability that a zone will be exposed
to an MPA. Thus, fish stocks in zones without MPAs provide an
estimate of the counterfactual fish stocks in the MPA zones.
Randomization, represented by variable Z, ensures that con-

founding variables O and U are absent and the excludability
assumption is satisfied (Fig. 1). Of course, even in an experiment,
many other variables affect fish stocks, such as temperature
(represented by P in Fig. 1). They are important for predictive

modeling or improving the precision of the estimated causal
effect, but they are not relevant in creating an unbiased estimator
of the causal effect of S on Y. Randomization of S is sufficient.
In CHANS, however, random assignment of shocks is rare.

Instead, observed and unobserved factors that systematically
drive spatial and temporal variation in shocks also affect the
outcomes. One cannot assume that O and U in Fig. 1 are absent,
and failure to eliminate their influence in a causal study implies
violation of the excludability assumption. This violation creates
hidden bias. In the social sciences, the source of hidden bias is
often termed unobservable heterogeneity and the problem it
creates is called endogeneity.
To eliminate hidden bias, nonexperimental designs aim to

replicate, conceptually, the idealized experimental design. In
other words, high-quality, nonexperimental designs aim, via de-
sign and statistical methods, to eliminate the confounding effects
of O and U, at least for a subgroup of the population. The theory
for how to eliminate these confounding effects is summarized in
Fig. 1 and has been described elsewhere (15, 17, 18). However,
the implications of the excludability assumption for appropriate
use of these designs in CHANS have not been well described.
We focus on two important implications: (i) Credible causal

inference requires structural knowledge of the CHANS, partic-
ularly about the sources of variation in the causal variable (also
know as the mechanisms through which treatment is assigned),
and (ii) units exposed to shocks in CHANS, so-called “treated
units,” are best viewed as coupled pairings of environmental and
human elements of the CHANS.

Structural Knowledge of the Treatment Assignment Mechanisms.
Empirical designs that attempt to mimic randomized experi-
ments are often referred to as “reduced-form” designs. In contrast
to “structural” designs, reduced-form designs do not attempt to
model the theoretical, functional relationship between the shock
and the outcome, or between the shock, outcome, and con-
founding variables. Nevertheless, structural knowledge is essential
for estimating causal relationships in reduced-form designs.
An essential piece of structural knowledge is information

about the “treatment assignment mechanism” or “selection

Fig. 1. Directed causal graph that depicts the causal relationship of S on Y
and confounding variables that can mask or mimic the causal relationship.
Single-headed arrows represent a causal path between two variables. Four
empirical designs can be used to estimate the causal effect of S on Y (15): (i)
Exert experimental control on S; (ii) condition on observable confounders
(O), and assume that unobserved confounders (U) do not exist or are time-
invariant and that their effects are eliminated via panel data designs; (iii)
exploit nonexperimental variation in S that comes from a source (Z) that has
no path to Y except through S; or (iv) identify an isolated and exhaustive set
of mechanisms (M). Estimating the individual mechanism causal effects on Y
requires additional design features (16, 46). Each design requires different
assumptions for causal inference and, depending on those assumptions, may
identify a different causal estimand.
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mechanism,” the process by which some units in the system came
to be exposed to particular values of the causal variable and
other units were not. This knowledge helps to identify candidate
variables for O, U, and Z (Fig. 1), which then points to the ap-
propriate data and empirical design for estimating a causal re-
lationship between S and Y. Thus, in CHANS studies aimed at
causal inference, we would expect to find clear descriptions of
the treatment assignment mechanism (e.g., why do we see pro-
tected areas where we see them, why are some places subject to
more human interference than other places, what explains the
spatial and temporal variation in species richness or invasive
species?) However, these descriptions are rare outside of a few
CHANS contexts [e.g., terrestrial protected areas (19)].
For example, we reviewed one of the larger empirical literatures

in the marine CHANS context: the impact of MPAs on ecological
and social outcomes (SI Appendix). Among nearly 200 MPA im-
pact studies, less than 10% characterized the sources of spatial
and temporal variation in MPA assignment. Without this in-
formation, one cannot evaluate the credibility of the studies’
causal inferences because it is impossible to evaluate the plausi-
bility of the excludability assumption. The same problem also
makes it impossible to interpret the more than two dozen meta-
analyses on MPA impacts. Meta-analyses cannot address hidden
biases in the original studies, no matter how numerous the studies.
Even without a clear explanation of the treatment assignment

mechanism, we would expect that most MPA studies would
identify and control for many potential observable confounding
variables through conditioning strategies (e.g., regression or
matching estimators), and attempt to control for unobservable,
but fixed (time-invariant), confounders through panel designs
that exploit repeated observations before and after MPA es-
tablishment (20). However, fewer than half of the studies identify
and control for observable confounding factors that affect both
the outcomes and where, and when, MPAs are established, and
most of these studies control for only one or two variables.
Studies typically ensure that outcome indicators are measured in
the same way in control and treated observations, but these ef-
forts do not address underlying differences between the MPA
and the control, or in the before period in a before-after design.
Furthermore, only 6% of the studies have repeated observations
on outcomes before MPA establishment (SI Appendix).
Viewing nonexperimental designs as attempts to replicate

idealized experimental designs also yields expectations about
studies of impacts on fisheries outside the MPAs. The impacts
can arise via ecological dispersal mechanisms. Suppose, for ex-
ample, that the protection covers a biological source patch and
the unprotected patches are sink patches. The ideal randomized
experiment would take pairs of interconnected sinks and sources,
and then randomize some of the sources to be protected. This
design benchmark implies that, in any nonexperimental study,
plausibility of the excludability assumption requires a clear
characterization of source/sink dynamics before protection. It is
not sufficient for the affected and unaffected sinks to be similar
at baseline; their sources should also be similar. However, not a
single published study makes any assertion, or provides any data,
about source/sink dynamics before protection, thereby making it
difficult to evaluate the credibility of the causal inferences made.

Treated Units in CHANS Are Coupled Pairings of Environmental and
Human Elements. Ecologists often view the treated units in
CHANS as clusters of biophysical attributes (e.g., a patch or a
population in a landscape or seascape). In reality, treatments are
assigned jointly to biophysical clusters and human clusters, where
the human clusters may be households, businesses, vessels, or
communities. In the marine context, for example, a hypoxic
event in a fishery affects both the ecological attributes of the
system and the behaviors and welfare of the humans in the sys-
tem. In other words, treatments (causes) are not assigned to the
environmental attributes of the CHANS separate from the
human attributes.

This coupled system perspective implies that behavioral con-
founding variables are just as important as biophysical con-
founding variables, whether the cause being studied is
anthropogenic or not. Thus, the results of ecological studies in
CHANS that fail to consider human sources of bias in their
designs are unlikely to have clear causal interpretations (e.g.,
sardine and anchovy landings in ref. 14). Consider the phase
diagram of the dynamic path toward equilibrium for a CHANS
in which humans harvest a fish stock under open access (Fig. 2),
and imagine the government has established an MPA. A stan-
dard approach to estimating the MPA’s effect on the stock would
be to match the MPA site to a comparison site (or sites) without
an MPA. One would then contrast the change in stock at the
MPA to the change in stock at the comparison site, a design
known as a before-after-control-impact (BACI) design or a
difference-in-differences design.
Imagine researchers pick a comparison site that, in the period

before the MPA establishment, has identical ecological conditions
to the MPA site, including the initial stock. MPA establishment
has been hypothesized to be influenced by fishing history (21). If
researchers ignore this nonrandom assignment mechanism, they
ignore the fact that sites have had different exploitation histories
as embodied by different levels of fishing effort before MPA es-
tablishment. Thus, even when the preprotection stocks and pop-
ulation dynamics are the same at both sites, the postprotection
stocks are going to be different in the absence of any causal effect
of the MPA. The same problem would arise if one were to match
only on effort. The implication is that, in most CHANS, condi-
tioning on both ecological and human confounding variables will
be critical (or at least using two pretreatment time periods to
check for parallel trends, which would imply that the systems may
be subject to similar dynamic paths).
In our review of MPA impact studies, the joint consideration

of ecological and human confounders is nearly absent, even in
the more sophisticated BACI designs. The BACI studies tend to
seek comparison sites that are similar, at baseline, in terms of
habitat type, species richness, biomass, and other environmental
variables (e.g., temperature) (SI Appendix). Greater baseline
similarity is assumed to make the key BACI design assumption
more plausible (22). The observable before-after trend in the
outcome variable at the comparison sites represents the

Fig. 2. Treated units are coupled pairings of ecological and social attributes
of the CHANS. The phase diagram (red) shows how stock and effort of a
potentially treated patch adjust over time (t) in a marine CHANS in the ab-
sence of a shock (the true counterfactual) (8). The stars are individual data
points in the coupled pairing. To estimate the effect of a shock (e.g., hyp-
oxia, creating a protected area), analysts compare a shocked site (red star at
t0) with a site that has a similar baseline stock level but is not shocked (blue
circle at t0). The excludability assumption implies that the dynamic path of
postshock stock in the comparison site represents the counterfactual stock
path in the shocked site had it not been shocked (e.g., at t1). Failure to
condition on baseline social conditions, in the form of fishing effort, results
in a violation of the excludability assumption: Even in the absence of pro-
tection, the stock in the shocked site could be higher (as depicted) or lower
than the stock in the site without a shock (compare the circle path with the
star path).
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unobservable counterfactual trend at the protected sites in the
absence of protection. Human dimensions, however, are typically
ignored: the harvest technology, the scale of the exploited re-
source, market types and proximity, proximity to fishing ports and
processing infrastructure, employment in other fisheries or outside
of fisheries, the management regime or institutional setting, and
other sociocultural factors. More than 80% of the BACI studies
fail to mention anything about the preprotection human dimen-
sions (SI Appendix). In addition to directly addressing pre-
protection human dimensions, BACI designs with repeated
observations before the MPA establishment could make the ex-
cludability assumption more plausible by showing parallel trends
at MPA and comparison sites before MPA establishment.
In general, causal inference requires that controls and treated

units behave similarly in the absence of treatment, and parallel
trends are consistent with this requirement but are not a suffi-
cient condition. In CHANS that are premised on the tight cou-
pling both within and across the human and natural systems, the
potential for parallel trends to be satisfied but excludability vi-
olated introduces caution in interpreting causal inference results.
Given that initial conditions are critical for dynamic trajectories
in CHANS over time, showing similar levels and having more
observations to assess trends could help in this regard because
initial conditions affect short-run dynamics (SI Appendix, Fig.
S1). Assessing whether the excludability assumption is valid in
CHANS should involve a combination of theory, empirical
analysis of outcome variables pretreatment, and empirical
knowledge about human and natural system components as well
as the institutional environment (SI Appendix, Fig. S1).

No Interference
Like excludability, the no-interference assumption is implicit
in both experimental and observational designs. The no-
interference assumption implies that the outcome for unit i with
or without treatment is only conditional on whether unit i has
been treated or not; it does not depend on whether other units
have been treated or not (technically, potential outcomes are
stable no matter what the treatment assignment vector looks
like). So, for example, if marine zone A is protected and, in
response, fishers move to a nearby unprotected zone B to fish,
zone B’s fishing activity in the absence of protection depends on
whether or not zone A is protected. That type of spillover effect
is a violation of the no-interference assumption: an example of
interference among units. Interference among treated units is
also a possibility, but we will focus on treated-to-untreated in-
terference in our simulations.
Interference in CHANS is generated by four mechanisms: (i)

Treatment moves treated humans (e.g., fishers) into untreated
zones; (ii) treatment changes behaviors of untreated humans in
untreated zones; (iii) treatment induces ecological change out-
side of the treated zone through, for example, dispersal of bio-
mass or changes in predator–prey relationships; and (iv)
treatment generates market-mediated spillovers from treated to
untreated zones. In the modeling below, we do not examine
potential interference due to market-mediated spillovers directly
and argue that they are subsumed in (i) and (ii). If treatment
changes a price in a way that constitutes interference, it must
create an incentive that moves treated humans, changes behav-
iors of untreated humans in the untreated zones, or both.
To evaluate how interference can hinder the performance of

empirical designs aimed at causal inference in CHANS, we de-
velop a spatial-dynamic bioeconomic simulation model of a fish-
ery. A fishery bioeconomic model illustrates the key components
of a CHANS: natural resource dynamics, human dynamics, and
feedbacks between the two (1). This model also includes the
central features of SES research: natural resource units, human
users, governance regimes, and feedbacks between the human and
natural subsystems that are mediated by governance (13). Our
model emphasizes the tight coupling between human and natural
systems: The natural system (biological stocks) are observable
through behaviors in the human system (fishing).

The additional layer of spatial dynamics allows us to explore
the consequences for the CHANS when one zone within the
system is affected (treated) by an ecological shock such as hyp-
oxia, a technological disaster such as an oil spill, or a policy in-
tervention such as the creation of an MPA (6). The ecosystem is
divided into discrete patches that correspond to fishing zones
(23–25), and fishers make discrete decisions about whether to
fish and, if so, which zone to fish in (6, 7, 21, 25). The model
generates simulated data on fishing effort and catches from
which fish stocks can be estimated (7). In all of our simulations,
the excludability assumption is satisfied.
We analyze two natural (ecological) system types: (i) a closed

system with own-patch population dynamics in each patch and
(ii) a source-sink system with own-patch population dynamics
and dispersal from a source patch to a sink patch. The model is a
discrete-time version of previously published models (21, 23) (SI
Appendix). The signs and magnitudes of the dispersal parameters
determine the direction and flow of biomass over space (23).
When all dispersal parameters are equal to zero, the system is
closed. In the source-sink system, the source-to-sink dispersal
parameter (emigration) and the sink-from-source dispersal pa-
rameter (immigration) are nonzero.
In the human system, each fisher decides on each choice oc-

casion whether or not to fish and, if choosing to fish, picks one of
the zones (SI Appendix). The economic model is sufficiently ge-
neric to apply to a range of fishery CHANS. Similar models have
been applied to a broad range of economic scales and of species
and ecological conditions (7, 26–33). Statistical generalizations are
often used in empirical applications (28, 30, 31), but the model is
sufficiently complex to produce simulated data that are consistent
with the basic choice structure faced by fishers (6, 7, 25).
The human and natural systems are coupled through the link

between fishing effort and biological stock (8) (Fig. 3 and SI
Appendix). When stocks are lower, expected harvests and cor-
responding expected revenues in a patch are lower. Lower rev-
enues discourage effort, making fishing in other patches, or not
fishing, relatively more attractive. This mechanism affects the
underlying state variables (e.g., fish stocks) in each location such
that all dynamic trajectories of the CHANS are altered.
Before introducing the role of ecological dispersal, we simulate

a shock to the closed system that highlights the role of human
mobility on interference. Specifically, we first simulate the system
without a shock to produce true counterfactual paths of the bi-
ological stocks. We then simulate the system again, but after some
period of time, we decrease the stock and carrying capacity in the
treated patch by 50%, allowing carrying capacity to stay at 50% of
its original level for the remainder of the simulation (i.e., for all
posttreatment periods) (Fig. 3, Top). A 50% negative shock could
reflect a deleterious ecological disturbance such as hypoxia or an
oil spill, but it could also reflect creating a marine reserve closed
to fishing in half of the patch when there is no compensating
ecological spillover. The marine reserve interpretation is consis-
tent with two studies of large-scale marine reserves that compare
changes in fishing, before and after reserve formation, in multiple
zones: Each treated zone is a broad area that contains a reserve,
and each control zone does not contain a reserve (34, 35). To
simulate a positive shock, we follow the same process, but increase
stock and carrying capacity by 50% in the treated patch in the
posttreatment period. In both cases, the other two patches without
a shock are candidate controls.
We then introduce the role of ecological dispersal by simu-

lating a shock in a four-patch source-sink system (Fig. 3, Bottom).
We first simulate the system without a shock to produce the true
counterfactual paths of the four biological stocks. We then
simulate the effect of creating a marine reserve in source patch 4.
The sink for this source patch, patch 3, is the treated patch be-
cause it receives the biomass immigration from the source patch
that is closed to fishing. Patch 1 is a sink patch whose source
(patch 2) is not closed to fishing, and thus could serve as a
control. In both systems, the simulations generate an actual
(with-shock) and counterfactual (without-shock) time series of
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biological stocks. The difference between the two is the true
treatment effect of the shock. The simulation also produces a
panel dataset on catches and fishing effort. These panel data
mimic data that are typically available in commercial fisheries
and used to estimate the effects of marine reserves and other
shocks. We can use these data to estimate the treatment effect of
a shock in our systems. We can then compare the estimated
effect with the true effect to assess the performance of designs
that depend on observational data in the system to estimate the
true treatment effect.
We explore how the difference between the true and esti-

mated effects (in other words, the effect of interference) is
moderated by human and capital mobility. In our simulated
CHAN, human (labor) and capital mobility are the same: Fishing
labor travels along with the fishing capital (the vessels). In other
CHANS, the two forms of mobility may operate separately. We
define mobility in the model as the responsiveness of fishers to
fishing revenues relative to distance (in other words, the mar-
ginal rate of substitution between expected revenue and travel
cost) (SI Appendix). If mobility is high, a small difference in
expected revenues across patches will trigger vessel movements,
whereas if mobility is low, a large difference in expected revenues
is required to incentivize vessel movements (6, 23). In CHANS
more generally, human and capital mobility is typically moder-
ated not only by distance and mode of transport but also by in-
stitutional structures, such as property rights and regulations,
and cultural norms, such as proclivities to migrate.

Interference in the Ecologically Closed System. In an ecologically
closed system (Fig. 3, Top), human mobility is both a cause of
interference in estimating the treatment effect and a moderator
of the treatment effect itself (Fig. 4 and SI Appendix, Figs. S2 and

S3). When mobility is low, interference is low: The negative
shock to the treated patch has minimal effect on the untreated,
candidate control patches. No interference implies that the ac-
tual stock of a candidate control tracks its own counterfactual
path (Fig. 4, Top and SI Appendix, Fig. S2A). This path is also the
counterfactual path of the treated patch’s stock. As a result, the
estimated treatment effect is similar to the true treatment effect
(Fig. 4, Bottom and SI Appendix, Fig. S3, Bottom). As mobility
increases, the negative shock to the treated patch has more
pronounced effects on untreated patches, and the actual stock of
a candidate control decreases relative to its counterfactual path
and the counterfactual path of the treated stock (Fig. 4, Middle
and SI Appendix, Fig. S2 B–D). This divergence leads to growing

Fig. 3. Schematic of the coupled human-natural system with and without
biological dispersal. (Top) In the ecologically closed system, there are three
patches that correspond to fishing zones. Each patch has population dy-
namics that operate within the zone and do not disperse to other zones
(ecological dispersal). The zones are connected by economic decisions about
whether and where to fish (economic dispersal). When patch 3 is treated
with a shock, ecological dispersal is not affected, and patches 1 and 2 are
candidate control sites. (Bottom) In an ecologically interconnected system,
there are four patches, which represent two pairs of source and sink patches.
Each patch has population dynamics that operate within the zone and dis-
perse across zones (from patch 2 to 1 and from patch 4 to 3). When a source
(patch 4) is closed to fishing, its paired sink (patch 3) is treated because it
receives dispersal from the closed source. The sink patch 1 is a candidate
control because its corresponding source (patch 2) is not closed to fishing.

Fig. 4. Coupled human-natural system with a 50% negative shock in one
zone and a candidate control zone within the same system. Treatment oc-
curs in period 100. The degree of human mobility is the marginal rate of
substitution of fishing revenue for travel cost (MRS). The counterfactual
candidate control stock tracks the counterfactual treated stock. (Top) With
low human mobility, the actual candidate control stock tracks the counter-
factual treated stock, allowing identification of the treatment effect from
actual data using a BACI design (difference-in-differences). (Middle) With
high mobility, the actual candidate control stock decreases relative to the
counterfactual treated stock, biasing downward the estimated treatment
effects. The true treatment effect is also lower in the Top compared with the
Middle because mobility transmits some of the actual effect of treatment to
candidate control zones. (Bottom) As mobility increases, the true treatment
effect decreases in magnitude and the bias toward zero in the estimated
treatment effect increases. For an unbiased estimator, the scatter would
follow the 45° plane depicted.
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bias in the estimation of treatment effects as mobility increases
(Fig. 4, Bottom and SI Appendix, Fig. S3, Bottom).
Mobility causes interference through its effect on candidate

control stocks in the CHANS. A negative shock causes the
treated patch to become less preferred as a fishing choice. With
high mobility, fishers are more responsive to expected revenues
in other locations, and so more fishers choose to fish in a can-
didate control patch. This extra fishing decreases the stocks in
the candidate control patches relative to what they would have
been had there been no shock (i.e., their counterfactual stock).
Thus, the candidate control patch no longer represents the
counterfactual stock of the treated patch. Dispersal of fishers
over space in response to expected revenues is consistent with
a large empirical literature on spatial behavior in fisheries,
although the extent of responsiveness varies across empirical
settings (26–31, 33).
The way in which mobility affects interference also moderates

the magnitude of the treatment effect (Fig. 4 and SI Appendix,
Figs. S2 and S3). With a negative shock, higher mobility results in
a faster recovery of the stock (Fig. 4, Top and Middle), which
means a smaller negative treatment effect from the shock (SI
Appendix, Fig. S3, Top).
Human mobility thus creates two interconnected challenges

for analyzing shocks to CHANS. First, as mobility increases, the
size of the treatment effect on the treated zone decreases such
that analysts are trying to detect an effect empirically that is
increasingly subtle. Second, as mobility increases, the bias asso-
ciated with interference increases because greater mobility
means more contamination of the candidate control zones. In
essence, the outcomes are more integrated across treated zones
and candidate control zones when more of the shock is trans-
mitted from the treated zone to candidate control zones. Visu-
ally, the actual and counterfactual paths compress as mobility
increases (SI Appendix, Fig. S2). By depicting fishing effort
without any shocks, we see another view of how this integration
unfolds: With low mobility, fishing effort is roughly constant (low
volatility) in each fishing zone, whereas with high mobility, it is
highly reactive and bounces from one extreme to another with
high mobility (SI Appendix, Fig. S4). This process is similar to
how trading volume contributes to market integration (36).
The process of integration also points to the dynamics of the

treatment effect. In the high-mobility system (Fig. 4, Middle),
comparing the candidate control with the actual treated fishery in
the period immediately after treatment would yield a larger esti-
mated treatment effect with less bias. As time passes, the treated
stock rises and the candidate control stock declines, introducing
more bias in the estimation procedure. Dynamics of the treatment
effect are also present in a simpler setting like the one in Fig. 2.
Here, potential bias is more of a problem in the short-run dy-
namics, and the bias dissipates in the steady state (SI Appendix,
Fig. S1). Together, these examples highlight the importance of
when the treatment effect is measured and how theory and an-
cillary empirical information can assist causal inference.
The results for a positive shock in a closed ecological system are

similar (SI Appendix, Figs. S5 and S6). As mobility increases, the
system becomes more integrated (SI Appendix, Fig. S5) and the
magnitude of the true treatment effect decreases, while bias from
interference in the estimation increases (SI Appendix, Fig. S6).
Despite the important potential role of human mobility in empir-
ical analyses, fewer than 10% of the studies in our review of MPA
impact studies mention human mobility as a potential problem.

Interference in the Ecologically Interconnected System. When the
ecosystem has source-sink dispersal, human mobility is again both
a cause of interference and a moderator of the treatment effect. In
contrast to the closed system, low mobility in the source-sink
system leads to more complex and nonmonotonic effects. Spe-
cifically, with very low mobility, the estimated treatment effects
are biased upward (Fig. 5, Top and SI Appendix, Figs. S7A and
S8). The mechanism reflects an interplay of economic and eco-
logical gradients (24). Closing down the source patch leads to

some economic dispersal to its paired sink patch (the treated
patch), but also to some economic dispersal to the ecologically
unconnected source and sink patches. The ecologically un-
connected sink patch is the candidate control (Fig. 3, Bottom), so
its stock slightly decreases relative to its counterfactual stock. As a
result, the actual sink stock of the candidate control diverges from
the counterfactual stock of the treated sink, creating a positive
bias in the estimated treatment effects (Fig. 5, Top).
At slightly higher mobility, more economic dispersal takes

place, but the overall system is more exploited because the fleet
is more responsive to revenues, and the magnitude of the
treatment effect is larger (SI Appendix, Figs. S6B and S7). This
dampens the upward bias in the estimated treatment effects. It
also reflects the well-understood theoretical result that a marine

Fig. 5. Coupled human-natural system with two paired source and sink
patches and a marine reserve placed in a source patch. Treatment occurs in
period 100. The degree of human mobility is the marginal rate of sub-
stitution of fishing revenue for travel cost (MRS). The counterfactual can-
didate control stock tracks the counterfactual treated stock (Top andMiddle,
red and blue dashes). (Top) With low human mobility, the actual candidate
control stock is below the counterfactual treated stock, introducing upward
bias in the estimated treatment effects from actual data using a BACI design
(difference-in-differences). (Middle) With high mobility, the true treatment
effect is smaller, and the actual candidate control stock is above the coun-
terfactual treated stock, such that the estimated treatment effects are bi-
ased downward. (Top and Middle) With higher mobility, the overall
exploitation in the system is higher and the pretreatment stocks are lower.
(Bottom) As mobility increases, the true treatment effect increases and then
decreases in magnitude. For an unbiased estimator, the scatter would follow
the 45° plane depicted. The cluster bends toward and then crosses the 45°
plane. At low mobility, the estimated treatment effects are biased upward,
and at high mobility, they are biased downward.
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reserve can generate a win-win effect for the fishery when the
ecological dynamics are source-sink dispersal and the baseline
exploitation level is high (21, 24). To generate spillover benefits
from closing a patch to fishing, the patch had to be heavily
exploited before the closure; otherwise, the increased dispersal
to the sink patch would be small.
At high mobility, the system becomes more integrated (i.e.,

stock paths are compressed) (SI Appendix, Fig. S7 C and D). This
integration produces two countervailing effects: (i) The pre-
reserve stocks are lower and can benefit more from the reserve
(win-win effect), and (ii) the higher mobility level transmits more
of the gains to the remaining open zones, including the candidate
control zones (Fig. 5, Middle and SI Appendix, Fig. S7 C and D).
The latter effect exacerbates interference to create a downward
bias in the estimated treatment effects (Fig. 5, Middle and SI
Appendix, Fig. S8, Bottom), and it reduces the true treatment
effects (Fig. 5, Bottom and SI Appendix, Fig. S8, Top). The re-
lationship between human mobility and system integration re-
flects a broad theme in CHANS research: As economic
globalization progresses and the importance of global environ-
mental change increases, couplings between human and natural
systems tighten (12).

Conclusions
Careful consideration of excludability and interference is es-
sential for making credible inferences about causal relationships
in CHANS. Understanding these relationships is critical for
creating an evidence base about the impacts of policy interven-
tions, technological disasters, and ecological disturbances in
CHANS. While CHANS are broader than marine systems and
MPAs, we use the review of the large empirical MPA literature
to illustrate that these issues are underappreciated. In fact, we
found only one MPA study that addresses them both (37). Al-
though these issues are widely omitted, one might legitimately
question whether ignoring them matters for science and policy.
The terrestrial protected areas evaluation literature demon-

strates that excludability violations are real problems, rather than
abstract conceptual concerns. In this literature, a well-known
pattern of treatment assignment exists: Protection is assigned to
habitat that is less productive for alternative economic uses and
near communities with low labor and capital mobility (19). This
assignment pattern implies that not much land-use change would
have occurred in the absence of protection, and thus terrestrial
protected areas may have only modest effects on land-use change
(38). These effects, however, will be overstated in studies that fail
to address the ecological and economic factors that drive the
nonrandom assignment. In one study (39), for example, the es-
timated treatment effect is between one-third and four-fifths
smaller when the design directly addresses the nonrandom as-
signment compared with a simpler BACI design that is common
in the ecology literature. To our knowledge, such comparisons
have not been published in the literature on other CHANS.
Without such comparisons, we cannot determine if the failure to
take seriously the excludability assumption, as well as the po-
tential for interference, is creating substantial bias in other
CHANS studies. However, we can conclude that this failure
makes the level and nature of MPA effects and other causal
relationships in CHANS unclear.
Addressing nonrandom assignment requires structural

knowledge of the CHANS, specifically the factors that affect
variation in the exposure of units to the causal variable. A de-
scription of these factors is often called a description of “selec-
tion” or the treatment assignment mechanism. Such descriptions
are almost entirely absent in CHANS studies. Moreover, in the
absence of panel data with repeated observations before and after
shocks, causal inference in CHANS will be a serious challenge.
Panel data provide some scope for eliminating the confounding
effects of fixed, unobservable attributes and time-varying observ-
able attributes of the CHANS (20). Nevertheless, fully satisfying
the excludability assumption in a nonexperimental CHANS design
will be difficult. Thus, studies should also be complemented by

sensitivity analyses or bounding approaches (partial identification)
on inferences, which allow one to explore the implications of ex-
cludability violations (16).
Like violations of the excludability assumption, violations of

the no-interference assumption are also likely to be real prob-
lems in CHANS. For example, in the US Gulf of Mexico, shrimp
fishing vessels are highly mobile; large vessels routinely range
from Louisiana waters to Texas waters. Empirical estimation of
that mobility (6) implies substantial potential for interference in
that system. Our simulation results predict that in such contexts,
a negative shock on fish stocks will be masked by interference in
typical causal inference designs. Consistent with this prediction,
an evaluation of the impacts of hypoxia in the Gulf of Mexico
using a BACI design like the one in Fig. 3, Top, could not detect
any effect of the hypoxic event on landings (6).
Globalization, with its concomitant human and capital mo-

bility, will exacerbate interference. Vessels in the global market
for tuna and Alaskan groundfish, for example, are highly mobile,
ranging over vast areas of the ocean (26, 28, 29). Moreover,
large-vessel fishing effort is relatively unresponsive to fuel costs
(40), suggesting high mobility. Other forces in the economy, such
as declining transport costs and globalization of the seafood
trade, reinforce the effects of high mobility (41, 42). In fact, a
recent study that claims “oceanic isolation” moderates the im-
pact of MPAs in a positive direction may simply be revealing that
designs using isolated MPAs as the treated units are less subject
to interference (43).
To address interference in CHANS, scholars have several

options (details are provided in SI Appendix): (i) Acknowledge
interference exists in the design and redefine the estimand to
include interference; (ii) use structural knowledge of the
CHANS to estimate the likely bias from interference and bound
the true treatment effect from above or below; (iii) use experi-
mental or quasiexperimental saturation designs to detect and
estimate an interference function [if interference is not in-
teresting from a policy perspective, one can use the estimated
function to strip the effects of interference from the causal es-
timates; otherwise, one can use the estimated function to create
a structural model for simulations (scenario projections under
different treatment assignment permutations)]; and (iv) assume
the population can be partitioned into groups or clusters, with
the interference limited to units within the same cluster. This
latter approach could be as complicated as graph-cutting meth-
ods from the network literature or as simple as choosing com-
parison sites far away from treated sites.
Like excludability, interference also has a connection to the

nonrandom assignment of treatments. When the treatment as-
signment is negatively correlated with the causes of interference,
we expect lower levels of interference. As noted above, terres-
trial protected areas are often sited in zones with low mobility.
Thus, we would predict that interference is unlikely to be a
problem. The literature appears to confirm this prediction. To
our knowledge, no terrestrial protected area studies that have
tried to detect interference have found strong evidence of it.
Thus, were MPAs assigned in the same way that terrestrial
protected areas are assigned, interference in MPA studies would
be less problematic than, for example, studies of the causal ef-
fects of hypoxic events.
No perfect solutions exist for satisfying the excludability and

no-interference assumptions. To elucidate causal relationships in
CHANS, multiple approaches will be needed, with the aim of
identifying sources of bias in each approach for a given causal
question and then triangulating on credible inferences (44). For
example, a researcher might use structural (e.g., mechanistic
modeling, such as empirical bioeconomic modeling or inverse
modeling in ecology) and reduced-form predictive inference
(e.g., time-series analysis, machine learning) approaches to aid in
causal inference in CHANS.
Structural modeling can contribute to causal inference in at

least five ways. First, a structural model, like an empirical bio-
economic model, can generate theoretically grounded ex ante

Ferraro et al. PNAS Latest Articles | 7 of 8

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

CO
LL
O
Q
U
IU
M

PA
PE

R

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805563115/-/DCSupplemental


predictions about how the system will respond to treatment (25).
Modeling anticipated outcomes is important in CHANS because
these systems involve feedbacks and nonlinearities that are dif-
ficult to synthesize without the presence of a formal model.
Second, a structural model can reveal how sensitive outcome
variables are to underlying parameters of the bioeconomic sys-
tem, such as a fish stock’s intrinsic growth rate (SI Appendix, Fig.
S1). Using the model in this way can help researchers to select
candidate controls that are consistent with the untestable ex-
cludability assumption. Third, a structural model can provide an
alternative ex post estimate of the treatment effect, albeit one
that is based on a number of mechanistic assumptions (45). The
alternative estimate could be compared with an estimate from a
BACI design to triangulate, or the structural model estimate
might be the only way to estimate a treatment effect because a
viable control is lacking. Fourth, a structural model can help to
diagnose the severity of interference in a design. In the Gulf of
Mexico hypoxia case, an empirical bioeconomic model was able
to determine how much human mobility was necessary to create
severe bias in a BACI design. A separate estimate of fishing
fleet behavior then demonstrated that actual fleet mobility far
exceeded this threshold. Fifth, structural modeling can be used
to generate indirect tests of causal hypotheses using time series
data. In fact, when there is high interference in reduced-form

causal models due to high human mobility, indirect tests may be
more powerful because high mobility leads to tighter mechanistic
coupling, and thus stronger predictions about the behavior of
time series. In the Gulf of Mexico hypoxia case, null findings
from a BACI design attributed to high mobility prompted the use
of a market counterfactual to isolate the hypoxia signal in price
data. To generate and test predictions about the time series of
shrimp prices, the analysis combined structural information
about seafood markets with structural information about the
ecological effects of hypoxia (6).
The CHANS causality literature is characterized by two op-

posing features: the challenge of causal inference in CHANS is
formidable, yet the most widespread approaches to causal in-
ference in the literature are rudimentary. This striking juxtapo-
sition is a serious obstacle to advancing the science of CHANS
and to accumulating an evidence base on which the effective
management of CHANS is possible. As with all obstacles in
sustainability science, overcoming it will require skills and
knowledge from many disciplines and effective academic-
practitioner collaborations.
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