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Abstract

Middleboxes as a Cloud Service

by

Justine Marie Sherry

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sylvia Ratnasamy, Chair

Today’s networks do much more than merely deliver packets. Through the deployment of
middleboxes, enterprise networks today provide improved security – e.g., filtering malicious
content – and performance capabilities – e.g., caching frequently accessed content. Although
middleboxes are deployed widely in enterprises, they bring with them many challenges: they
are complicated to manage, expensive, prone to failures, and challenge privacy expectations.

In this thesis, we aim to bring the benefits of cloud computing to networking. We argue
that middlebox services can be outsourced to cloud providers in a similar fashion to howmail,
compute, and storage are today outsourced. We begin by presenting APLOMB, a system that
allows enterprises to outsource middlebox processing to a third party cloud or ISP. For en-
terprise networks, APLOMB can reduce costs, ease management, and provide resources for
scalability and failover. For service providers, APLOMB o�ers new customers and business
opportunities, but also presents new challenges. Middleboxes have tighter performance de-
mands than existing cloud services, and hence supporting APLOMB requires redesigning
software at the cloud. We re-consider classical cloud challenges including fault-tolerance
and privacy, showing how to implement middlebox software solutions with throughput and
latency 2-4 orders of magnitude more e�cient than general-purpose cloud approaches.
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Chapter 1

Introduction

Modern enterprise networks are quite complex. Originally, networks had one very simple
goal: forwarding packets. Today, the task of the network has grown to meet new and sophis-
ticated demands. For example, many networks are required to meet security requirements
by detecting and blocking malicious behavior [152, 153, 123]. Others perform performance
optimizations such as compressing and caching data [136]. Public and carrier networks track
bandwidth consumption to bill users for usage [67]. These and many other capabilities –
transcoding, address translation, protocol conversion, to name a few more – are widely sup-
ported today, and go well beyond the early requirements for networks which merely forward
packets.

All of these features are implemented by middleboxes: specialized, on-path systems which
inspect, transform, and manipulate tra�c en route to its destination. Examples of middle-
boxes [60] include the following.

• Intrusion Detection/Prevention Systems (IDS/IPS). These devices inspect both packet head-
ers and contents for known malicious behaviors; upon detection of an attack the device
alerts an administrator and may block the connection.

• Network Address Translators (NATs). Facing a depleting supply of public IPv4 addresses,
NATs allow multiple end hosts to share a single IP address.

• Transcoders. These systems convert file formats as data is transmitted, often down-
grading size and quality of images so they load faster on resource-constrained mobile
devices [162].

While middleboxes are widely deployed to bring well-recognized security and perfor-
mance benefits, they also introduce new challenges in network administration. As this thesis
presents in Chapter 2, middleboxes make network management more complex and more ex-
pensive. Around one out of every three devices in enterprise network is a middlebox, each of
which cost tens of thousands of dollars. Because each middlebox serves a di�erent purpose
(e.g. a transcoder is di�erent from an IDS), cognitive overhead for administrators is high as
each device requires unique expertise. Furthermore, as this thesis elaborates in Chapters 4
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and 5 respectively, middleboxes introduce new and challenging failure modes in networks,
and create privacy concerns – both exacerbating challenges for middlebox administration.

Thesis: By following the blueprint of outsourcing and cloud computing, middleboxes can be made
easier to manage, more cost-e�ective, and more e�cient.

In this thesis, we advocate for a new architecture in how middleboxes are deployed and
operated. Instead of requiring middleboxes to be deployed independently by every edge
network, enterprise, or university – where administrators must ‘reinvent the wheel’ over and
over – we argue that middlebox deployment should be taken out of the hands of average
administrators entirely. Rather, middleboxes should be deployed by clouds and Internet Ser-
vice Providers as public services, allowing experts to solve common challenges once and for
all. Outsourcing middlebox processing in this way mirrors the trend of cloud outsourcing for
other systems, e.g. for compute and storage. As we will show, the cloud computing blueprint
is feasible for networking workloads and brings well-known benefits of cloud deployments to
networking: better manageability, cheaper deployments, and more e�cient software infras-
tructure.

1.1 Traditional Middlebox Deployments

Today, middlebox deployments are instantiated in an uncoordinated, device-by-device
manner dependent on custom, fixed-function hardware devices. When a network administra-
tor requires new functionality in her network – e.g. a new firewall, or a protocol accelerator, or
a cache – she purchases a new device which implements the desired features. She then installs
the device at a ‘choke-point’ in her network where tra�c is guaranteed to traverse it; many
middleboxes may be co-located at the same choke-point to ensure that tra�c receives a series
of di�erent inspections and modifications. These middleboxes must be deployed in partial
topological order: functionality fails if, e.g., data is encrypted before it is passed through
a device which inspects tra�c for malware. Networks which deploy many middleboxes are
hence characterized by the following challenges:

Management Complexity. Management requires knowledge of many heterogenous devices, each
middlebox with di�erent goals and configuration requirements. Administrators must cope
with these di�erent requirements in purchasing, installation, configuration, error-handling
and debugging, etc.. In §2.2 we elaborate further on management challenges, all of which
lead to a high rate of error: as much as 2

3
of administrators cite that misconfiguration is their

most common cause of failure.

High Capital and Operating Expenses. Every device costs tens of thousands of dollars; adminis-
trators must allocate capacity for peak hours of the day when users can consume on average
2-3× as much bandwidth as a typical hour of the day. More physical devices in a network
entails both additional hardware costs and more administrative sta�. We discuss these costs
in §2.1
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Expensive or Nonexistent Failure Recovery. Each middlebox has a custom implementation from a
specific vendor; hence any backup infrastructure requires purchasing duplicate hardware for
each and every middlebox (often called 1-to-1 backup provisioning). We find in §2.3 that some
administrators forgo deploying such backups because of the cost of duplicate infrastructure
which usually goes unused.

Custom Solutions for Common Challenges. Failure recovery is illustrative of how common chal-
lenges are solved for each and every middlebox, increasing complexity for administrators,
wasting resources, and making things more di�cult for middlebox developers. We discuss
failure recovery further in Chapter 4, and other challenges such as scaling, provisioning, and
monitoring that can and should be implemented generally in Chapter 6.

1.2 The Cloud Computing Blueprint

We argue that the challenges discussed in the previous section can be resolved by a new
architecture for middlebox deployments, one based on Cloud the Computing Blueprint [46].
We focus on three core concepts in cloud computing and how they can benefit network
processing: outsourcing, the illusion of infinite resources, and utility computing.

Outsourcing. In cloud computing, third party providers implement middleboxes rather than
end-users. Outsourcing centralizes where advanced expertise is needed: a few experts at
service providers handle common tasks like provisioning, physical configuration, upgrades,
etc. – solving common challenges for all of their clients at once. Client enterprises are freed of
these tasks altogether, reducing administrative complexity. Lower complexity leads to fewer
human-hours dealing with middleboxes, and hence lower operational expenses.

Illusion of In�nite Resources. The huge scale of a third party provider can be tapped into
by clients, but only as needed. Hence, at peak usage hours, a client may purchase more
capacity, but scale down to use fewer resources at average or low usage hours. Overall this
cuts down on capital costs for clients, who do not need to purchase infrastructure planning
for maximum utilization – they simply scale up and down their usage. Similarly, when a
system fails, a client may purchase the capacity of a new device; however, the client does not
need to pay for that device in the absence of failure.

Software Utility Computing. applications are independent from physical infrastructure and
may be migrated from machine to machine, scaled by adding more generic resources, and
integrated with other applications via standardized APIs. Utility computing is a prerequisite
to benefit from outsourcing and infinite resources, and also brings other benefits such as
the ability to design generic solutions to common challenges (such as failover and scaling),
the ability to implement continuous upgrades, and cost benefits of amortizing equipment
costs not only among clients but di�erent applications as well. Middleboxes are traditionally
sold as atomic units with hardware and software entirely coupled and hence not amenable
to utility computing. Shifting middleboxes from the monolithic approach to one based on
software is the focus of an industry movement known as Network Functions Virtualization;
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the goals of NFV dovetail with those of this thesis and hence we discuss NFV in Chapter 6.

1.3 Obstacles to Moving Middleboxes the Cloud

The benefits of moving to the cloud follow a familiar story of the same arguments that
motivated a cloud shift for compute and storage as well. Nonetheless, migrating middleboxes
to the cloud present several unique, technical challenges that must be solved in order to
achieve cloud computing’s promised benefits.

Performance Overheads. Migrating middleboxes to the cloud can introduce performance over-
heads in two ways. First, as we will discuss in Chapter 3, moving middleboxes to a third party
provider necessitates redirecting tra�c to a cloud datacenter to receive processing – poten-
tially inflating latencies, introducing jitter, and reducing throughput. Second, middleboxes
as deployed within the cloud datacenter, if poorly implemented, may fail to meet through-
put requirements of tens of gigabits per second or ultra-low latency requirements per device,
typically under 100µs.

Functional Equivalence. Middleboxes are typically deployed local to an enterprise, and directly
on-path for tra�c. Given performance constraints, implementations in software, and locality
requirements, it’s unclear that moving middleboxes to the cloud will be able to provide the
same functionality as if they were deployed locally. Functional equivalence concerns never
existed for web services or batch compute tasks in migrating to the cloud, as their as their
correct operation is not sensitive to topology.

Privacy. Redirecting tra�c through a service provider’s infrastructure reveals all tra�c con-
tent to this third party – revealing potentially confidential information. Middleboxes already
introduce privacy tension in between users and administrators who are known to them; typ-
ically in o�ce environments a user has no expectation of privacy on a corporate network.
However, the shift to the cloud exposes both user and enterprise-internal tra�c to a third,
external party. Advances in functional cryptography have shown how to ameliorate this chal-
lenge for applications such as databases [126] and webservers [127], but their performance
overheads run in to the milliseconds – too high for middleboxes and network tra�c.

1.4 Summary of Results

This thesis presents three novel systems which demonstrate the feasibility and highlight
some of the benefits of outsourcing middleboxes to the cloud.

APLOMB is a system implementing the overall outsourcing architecture, redirecting tra�c
from a remote enterprise to a cloud provider’s infrastructure where it can receive processing
before being sent out to the Internet. APLOMB illustrates the following:

• The feasibility of outsourcing given wide area performance properties from real universi-
ties and one major enterprise using the APLOMB infrastructure. APLOMB on average
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improves round-trip latencies, penalizes download times by only 5%, and has no notice-
able impact on jitter.

• The feasibility of outsourcing to provide functional equivalence to existing middlebox
deployments. APLOMB serves as an existence proof that almost all middleboxes can
be outsourced, with only one class of middleboxes (discussed in §3.1.4) remaining
behind. A typical large enterprise (10k-100k hosts) would see a 90% reduction in on-
premises middleboxes, and a typical very large (>100k hosts) enterprise would see a
98% reduction.

• The benefit of outsourcing in (a) reducing the number of on-premise middleboxes at
enterprises hence reduced management overhead; and (b) providing resources for scal-
ability which can fluctuate to as much as 13×peak demand relative to average hours of
the day.

We present APLOMB in Chapter 3.

FTMB is a system that performs stateful failure recovery for middleboxes in software. FTMB
demonstrates:

• The benefit of utility-computing in allowing multiple, heterogenous middleboxes to
share one backup device. Since software and hardware are decoupled, a backup is
merely a generic compute server on standby ready to run any middlebox software as
needed. This turns the 1:1 backup ratio to a many:1 ratio.

• The benefit of utility-computing in enabling a generic solution to a common problem
– fault tolerance. All middleboxes can adopt the same algorithms and use common
interfaces to interact with backup components to achieve fault-tolerance in a uniform
mechanism. This saves developers from reinventing new solutions for every device,
and administrators from having to understand diverse implementations of the same
features.

• The feasibility of implementing generic middlebox extensions in software with accept-
ably low overheads. FTMB imposes only 30µs of latency overhead and 5-30% through-
put reductions, making it suitable for practical use within a cloud datacenter.

We present FTMB in Chapter 4.

BlindBox is a system which allows Deep Packet Inspection (DPI) middleboxes to operate
directly over encrypted tra�c, without learning the contents of that tra�c. BlindBox shows:

• The feasibility of implementing outsourced middleboxes without providing the cloud
provider complete access to user data, thus relieving challenges to outsourcing due to
privacy.

• The benefit of utility-computing in enabling a generic solution to a common problem –
again, all DPI middleboxes (including IDS, parental filters, and exfiltration detectors)
can implement common algorithms and invoke the same APIs, as the BlindBox ap-
proach implements a privacy solution that can be used in common across all middleboxes.
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We present BlindBox in Chapter 5.

Overall, these three systems demonstrate the overall feasibility and benefits of the cloud
computing approach for middleboxes. Nonetheless, the APLOMB architecture overall re-
quires careful attention to system implementation in all of its components, many beyond
the scope of this thesis: network virtualization, scaling, scaling and orchestration, software
isolation, I/O performance, and so on. We discuss other systems in active development in
research and industry which integrate into this vision in Chapter 6. In particular, we discuss
Network Functions Virtualization (NFV), which aims to re-architect middleboxes to best take
advantage of software utility computing.

1.5 Dissertation Plan

This thesis proceeds as follows. In Chapter 2 we perform a survey of middlebox de-
ployments as of 2011 to understand traditional middlebox deployments and the challenges
they present. In Chapter 3 we present APLOMB, which serves as a feasibility study of the
overall outsourcing architecture and its benefits for enterprise networks. In Chapter 4, we
discuss FTMB, a system for fault-tolerance in software middleboxes. In Chapter 5, we dis-
cuss BlindBox, which allows tra�c to be processed without revealing tra�c contents to the
cloud provider. Finally, in Chapter 6 we discuss NFV and present activity in developing new
middleboxes, the future of middleboxes as a cloud service, and conclude.
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Chapter 2

Traditional Enterprise Middlebox
Deployments

In the previous chapter we discussed that middlebox deployments su�er from high capital
and operating expenses, management complexity, limited resources for failure recovery, and
a lack of general solutions to common problems. In this chapter we present data substanti-
ating these claims. In 2011, we conducted a survey of 57 enterprise network administrators,
including the number of middleboxes deployed, personnel dedicated to them, and challenges
faced in administering them. To the best of our knowledge, this is the first large-scale survey
of middlebox deployments in the research community. Our dataset includes 19 small (fewer
than 1k hosts) networks, 18 medium (1k-10k hosts) networks, 11 large (10k-100k hosts) net-
works, and 7 very large (more than 100k hosts) networks. Our respondents were drawn
primarily from the NANOG network operator’s group and university networks; 62.9% de-
scribed their role as an engineers, 27.7% described their role as technical management, and
the rest described their role as ‘other.’ We augment our analysis with network measurements
from a single large enterprise with approximately 600 middleboxes and tens of international
sites; we elaborate on this dataset in §3.3.3.

2.1 Middlebox Deployments

Our data illustrates that typical enterprise networks are a complex ecosystem of firewalls,
IDSes, web proxies, and other devices. Figure 2.1 shows a box plot of the number of mid-
dleboxes deployed in networks of all sizes, as well as the number of routers and switches for
comparison. Across all network sizes, the number of middleboxes is on par with the number
of routers in a network! The average very large network in our data set hosts 2850 L3 routers,
and 1946 total middleboxes; the average small network in our data set hosts 7.3 L3 routers
and 10.2 total middleboxes.1

1Even 7.3 routers and 10.2 middleboxes represents a network of a substantial size. Our data was primarily
surveyed from the NANOG network operators group, and thus does not include many of the very smallest



2.2. COMPLEXITY IN MANAGEMENT 8

 1

 10

 100

 1000

 10000

 100000

All Middleboxes

L3 Routers
L2 Switches

IP Firewalls
App. Firewalls

Wan Opt.
Proxies

App. Gateways

VPNs
Load Balancers

IDS/IPS

Very Large
Large

Medium
Small

Figure 2.1: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k
hosts), large (10k-100k hosts), and very large (more than 100k hosts) enterprise networks. Y-axis is in
log scale.
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Figure 2.2: Administrator-estimated spending on middlebox hardware per network.

These deployments are not only large, but are also costly, requiring high up-front invest-
ment in hardware: thousands to millions of dollars in physical equipment. Figure 2.2 displays
five year expenditures on middlebox hardware against the number of actively deployed mid-
dleboxes in the network. All of our surveyed very large networks had spent over a million
dollars on middlebox hardware in the last five years; the median small network spent between
$5,000-50,000 dollars, and the top third of the small networks spent over $50,000.

Paralleling arguments for cloud computing, outsourcing middlebox processing can reduce
hardware costs: outsourcing eliminates most of the infrastructure at the enterprise, and a
cloud provider can provide the same resources at lower cost due to economies of scale.

2.2 Complexity in Management

Figure 2.1 also shows that middleboxes deployments are diverse. Of the eight middlebox
categories we present in Figure 2.1, the median very large network deployed seven categories
of middleboxes, and the median small network deployed middleboxes from four. Our cate-

networks (e.g. homes and very small businesses with only tens of hosts).
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Figure 2.3 : Administrator-estimated number of personnel per network.

gories are coarse-grained (e.g. Application Gateways include smartphone proxies and VoIP
gateways), so these figures represent a lower bound on the number of distinct device types in
the network.

Managing many heterogeneous devices requires broad expertise and consequently a large
management team. Figure 2.3 correlates the number of middleboxes against the number of
networking personnel. Even small networks with only tens of middleboxes typically required
a management team of 6-25 personnel. Thus, middlebox deployments incur substantial op-
erational expenses in addition to hardware costs.

Understanding the administrative tasks involved further illuminates why large administra-
tive sta�s are needed. We break down the management tasks related to middleboxes below.
Upgrades and Vendor Interaction. Deploying new features in the network entails deploy-
ing new hardware infrastructure. From our survey, network operators upgrade in the median
case every four years. Each time they negotiate a new deployment, they must select between
several o�erings, weighing the capabilities of devices o�ered by numerous vendors – an av-
erage network in our dataset contracted with 4.9 vendors. This four-year cycle is at the same
time both too frequent and too infrequent. Upgrades are too frequent in that every four years,
administrators must evaluate, select, purchase, install, and train to maintain new appliances.
Upgrades are too infrequent in that administrators are ‘locked in’ to hardware upgrades to
obtain new features. Quoting one administrator:

Upgradability is very important to me. I do not like it when vendors force me to
buy new equipment when a software upgrade could give me additional features.

Cloud computing eliminates the upgrade problem: enterprises sign up for a middlebox
service; how the cloud provider chooses to upgrade hardware is orthogonal to the service
o�ered.
Monitoring and Diagnostics. To make managing tens or hundreds of devices feasible, en-
terprises deploy network management tools (e.g., [32, 17]) to aggregate exported monitoring
data, e.g. SNMP. However, with a cloud solution, the cloud provider monitors utilization and
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Miscon�g. Overload Physical/Electric
Firewalls 67.3% 16.3% 16.3%
Proxies 63.2% 15.7% 21.1%
IDS 54.5% 11.4% 34%

Table 2.1: Fraction of network administrators who estimated misconfiguration, overload, or physi-
cal/electrical failure as the most common cause of middlebox failure.

failures of specific devices, and only exposes a middlebox service to the enterprise adminis-
trators, simplifying management at the enterprise.
Con�guration. Configuring middleboxes requires two tasks. Appliance con�guration includes,
for example, allocating IP addresses, installing upgrades, and configuring caches. Policy
con�guration is customizing the device to enforce specific enterprise-wide policy goals (e.g. a
HTTP application filter may block social network sites). Cloud-based deployments obviate
the need for enterprise administrators to focus on the low-level mechanisms for appliance
configuration and focus only on policy configuration.
Training. New appliances require new training for administrators to manage them. One ad-
ministrator even stated that existing training and expertise was a key question in purchasing
decisions:

Do we have the expertise necessary to use the product, or would we have to invest
significant resources to use it?

Another administrator reports that a lack of training limits the benefits from use of middle-
boxes:

They [middleboxes] could provide more benefit if there was better management,
and allocation of training and lab resources for network devices.

Training entails not only learning the unique capabilities of each device (e.g. setting fire-
wall rules and configuring caching policies) but also learning how to perform the same tasks
given di�erent interfaces and implementations. For example, administrators at one very large
enterprise shared how devices from di�erent vendors shared data about CPU, memory, and
network utilization using multiple di�erent GUIs and data formats. Outsourcing diminishes
the training problem by o�oading many administrative tasks to the cloud provider, reducing
the set of tasks an administrator must be able perform. In summary, for each management
task, outsourcing eliminates or greatly simplifies management complexity.

2.3 Overload and Failures

Most administrators who described their role as engineering estimated spending between
one and five hours per week dealing with middlebox failures; 9% spent between six and ten
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Figure 2.4: Ratio of average to peak active connections for all proxies, firewalls, and load balancers
in the very large enterprise dataset.

hours per week. Table 2.1 shows the fraction of network administrators who labeled miscon-
figuration, overload, and physical/electrical failures as the most common cause of failures in
their deployments of three types of middleboxes. Note that this table is not the fraction of
failures caused by these issues; it is the fraction of administrators who estimate each issue
to be the most common cause of failure. A majority of administrators stated misconfigura-
tion as the most common cause of failure; in the previous section we highlight management
complexity which likely contributes to this figure.

On the other hand, many administrators saw overload and physical/electrical problems
as the most common causes of errors. For example, roughly 16% of administrators said that
overload was the most common cause of IDS and proxy failure, and 20% said that physical
failures were the most common cause for proxies. The cost to recover automatically from
such failures is high: recovery often relies on the availability of a standby device. Recovery
mechanisms are implemented independently by every vendor, and so for each middlebox
that might fail, a 1:1 physical backup purchased from the same vendor is required, e�ectively
doubling capitol costs. The cloud blueprint helps in two ways. First, a generic software utility
for middlebox redundancy can standardize fault-tolerance and allow multiple middleboxes
to share a single backup. Second, pay-per-use and elastic provisioning enables on-demand
scaling and resolves failure with standby devices – without the need for expensive overprovi-
sioning.

2.4 Discussion

To recap, our survey across 57 enterprises illuminates several middlebox-specific chal-
lenges that cloud deployments can solve: large deployments with high capital and operat-
ing expenses, complex management requirements inflating operation expenses, and failures
from physical infrastructure and overload. Cloud outsourcing can cut costs by leveraging
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economies of scale, simplify management for enterprise administrators. Economies of scale
can provide elastic scaling to limit failures. Software utility computing can standardize ca-
pabilities like resource monitoring and fault-tolerance, making them easier to reason about
and more e�cient in resource usage.

Outsourcing to the cloud not only solves challenges in existing deployments, but also
presents new opportunities. For example, resource elasticity not only allows usage to scale
up, but also to scale down. Figure 2.4 shows the distribution of average-to-max utilization
(in terms of active connections) for three devices across one large enterprise. We see that
most devices operate at moderate to low utilization; e.g., 20% of Load Balancers run at <5%
utilization. Today, however, enterprises must invest resources for peak utilization. With
a cloud solution, an enterprise can lease a large load balancer only at peak hours and a
smaller, cheaper instance otherwise. Furthermore, a pay-per-use model democratizes access
to middlebox services and enables even small networks who cannot a�ord up-front costs to
benefit from middlebox processing.

These arguments parallel familiar arguments for the move to cloud computation [47].
This parallel, we believe, only bolsters the case.
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Chapter 3

Middleboxes as Cloud Services

We now discuss APLOMB, an architecture that enables outsourcing the processing of their
tra�c to third-party middlebox service providers running in the cloud. In the previous chapter,
we discussed shortcomings of the traditional middlebox deployment model. We saw that
these challenges mirror the concerns that motivated enterprises to transition their in-house IT
infrastructures to managed cloud services. Inspired by this trend, APLOMB illustrates how
the promised benefits of cloud computing—reduced expenditure for infrastructure, personnel
and management, pay-by-use, the flexibility to try new services without sunk costs, etc.—
can be brought to middlebox infrastructure. Beyond improving the status quo, cloud-based
middlebox services can also make the security and performance benefits of middleboxes
available to users such as small businesses and home and mobile users who cannot otherwise
a�ord the associated costs and complexity.

We illustrate that APLOMB is both feasible and bene�cial as a mechanism for enterprise
middlebox deployments. To be feasible, APLOMB must meet three challenges:
(1) Functional equivalence. A cloud-based middlebox must o�er functionality and semantics
equivalent to that of an on-site middlebox – i.e., a firewall must drop packets correctly, an
intrusion detection system (IDS) must trigger identical alarms, etc. In contrast to traditional
endpoint applications, this is challenging because middlebox functionality may be topology
dependent. For example, tra�c compression must be implemented before tra�c leaves the
enterprise access link, and an IDS that requires stateful processing must see all packets in both
directions of a flow. Today, these requirements are met by deliberately placing middleboxes
‘on path’ at network choke points within the enterprise – options that are not readily available
in a cloud-based architecture. As we shall see, these topological constraints complicate our
ability to outsource middlebox processing.
(2) Low complexity at the enterprise. As we shall see, an outsourced middlebox architecture still
requires some supporting functionality at the enterprise. We aim for a cloud-based middlebox
architecture that minimizes the complexity of this enterprise-side functionality: failing to do
so would detract from our motivation for outsourcing in the first place.
(3) Low performance overhead. Middleboxes today are located on the direct path between two
communicating endpoints. Under our proposed architecture, tra�c is instead sent on a
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detour through the cloud leading to a potential increase in packet latency and bandwidth
consumption. We aim for system designs that minimize this performance penalty.

We explore points in a design space defined by three dimensions: the redirection op-
tions available to enterprises, the footprint of the cloud provider, and the complexity of the
outsourcing mechanism. We find that all options have natural tradeo�s across the above re-
quirements and settle on a design that we argue is the sweet spot in this design space, which
we term APLOMB, the Appliance for Outsourcing Middleboxes. We implement APLOMB
and evaluate our system on EC2 using real end-user tra�c and an analysis of tra�c traces
from a large enterprise network. In our enterprise evaluation, APLOMB imposes an aver-
age latency increase of only 1 ms and a median bandwidth inflation of 3.8%. We also show
benefits of middlebox outsourcing through a case study of a large enterprise deployment;
e.g. showing that enterprises can dynamically invoke additional scaling or new middlebox
services in response to new workload requirements with minimal configuration changes or
downtime.

3.1 Design Space

Having established the potential benefits of outsourcing middleboxes to the cloud, we
now consider how such outsourcing might be achieved. To start, any solution will require
some supporting functionality deployed at the enterprise: at a minimum, we will require
some device to redirect the enterprise’s tra�c to the cloud. Hence, we assume that each
enterprise deploys a generic appliance which we call an Appliance for Outsourcing Middleboxes
or APLOMB. However, depending on the complexity of the design, the functionality might
be integrated with the egress router. We assume that the APLOMB redirects tra�c to a Point
of Presence (PoP), a datacenter hosting middleboxes which process the enterprise’s tra�c.

As a baseline, we reflect on the properties of middleboxes as deployed today within the
enterprise. Consider a middlebox m that serves tra�c between endpoints a and b. Our
proposal is to change the placement of m – moving m from the enterprise to the cloud.
Moving m to the cloud eliminates three key properties of its current placement:
(1) on-path: m lies on the direct IP path between a and b
(2) choke point: all paths between a and b traverse m
(3) local: m is located inside the enterprise.

The challenges we face in outsourcing middleboxes all derive from losing the above prop-
erties, and our design focuses on compensating for this loss. More specifically, in attempting
to regain the benefits of the above properties, we arrive at three design components, as
described below.

Redirection: Being on-path makes it trivially easy for a middlebox to obtain the tra�c
it must process; being at a choke point ensures the middlebox sees both directions of tra�c
flow between two endpoints (bidirectional visibility is critical since most middleboxes operate
at the session level). A middlebox in the cloud loses this natural ability; hence we need a
redirection architecture that routes tra�c between a and b via the cloud, with both directions
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Figure 3.1: Comparing two redirection architectures.

of tra�c consistently traversing the same cloud PoP.
Latency Strategy: A second consequence of being on-path is that the middlebox intro-

duces no additional latency into the path. In contrast, sending tra�c on a detour through the
cloud could increase path latency, necessitating a practical strategy for low latency operation.

Further, certain ‘extremely local’ middleboxes such as proxies and WAN optimizers rely
on being local to obtain significant reductions in latency and bandwidth costs. Caching prox-
ies e�ectively terminate communication from an enterprise host a to an external host b thus
reducing communication latency from that of path a-m-b to that of a-m. Likewise, WAN op-
timizers include a protocol acceleration component that achieves significant latency savings
(although using very di�erent mechanisms from a proxy).Thus, the latency optimizations
we develop also must serve to minimize the latency increase due to taking extremely local
middleboxes out of the enterprise.

APLOMB +: ‘Extremely local’ middleboxes not only reduce latency, but also reduce
bandwidth consumption. Caching proxies, by serving content from a local store, avoid fetch-
ing data from the wide area; WAN Optimizers include a redundancy elimination component.
To retain the savings in bandwidth consumption, we propose what we term APLOMB + appli-
ances that extend APLOMB to provide comparable bandwidth reduction to extremely local
appliances.

We explore solutions for the above design components in §3.1.1 (redirection), §3.1.2 (low
latency) and §3.1.3 (APLOMB+). Recall that our design goals are to ensure: (i) functional
equivalence, (ii) low performance overhead, and (iii) low enterprise-side complexity. We
analyze our design options through the lens of these goals and recap the solution we arrive
at in §3.1.4.
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3.1.1 Redirection

We consider three natural approaches to redirection and discuss their latency vs. com-
plexity tradeo�s.

Bounce Redirection

In the simplest case, the APLOMB gateway at the enterprise tunnels both ingress and
egress tra�c to the cloud, as shown in Figure 3.1(a). Incoming tra�c is bounced to the cloud
PoP (1), processed by middleboxes, then sent back to the enterprise (2,3) and delivered to
the appropriate hosts. Outgoing tra�c is similarly redirected (4-6).

This scheme has two advantages. First, the APLOMB gateway is the only device that
needs to be cloud-aware; no modification is required to existing enterprise network or ap-
plication infrastructure. Second, the design requires minimal gateway functionality and
configuration—a few static rules to redirect tra�c to the PoP. The obvious drawback of this
architecture is the increase in end-to-end latency due to an extra round trip to the cloud PoP
for each packet.1

IP-based Redirection

To avoid the extra round-trips in bounce redirection, we might instead route tra�c directly
to/from the cloud as in Figure 3.1(b). One approach is to redirect tra�c at the IP level: for
example, the cloud provider could announce IP prefix P on the enterprise’s behalf. Hosts
communicating with the enterprise direct their tra�c to P and thus their enterprise-bound
tra�c is received by the provider. The cloud provider, after processing the tra�c, then
tunnels the tra�c to the enterprise gateways, who announce an additional prefix P ′. 2

In practice, enterprises would like to leverage the multi-PoP footprint of a provider for
improved latency, load distribution and fault tolerance. For this, the cloud provider might
advertise P from multiple PoPs so that client tra�c is e�ectively ‘anycasted’ to the closest
PoP. Unfortunately, IP-based redirection breaks down in a multi-PoP scenario since we cannot
ensure that tra�c from a client a to enterprise b will be routed to the same cloud PoP as that
from b to a, thus breaking stateful middleboxes. This is shown in Figure 3.2 where the Cloud-
West PoP is closest (in terms of BGP hops) to the enterprise while Cloud-East is closest to the
external site. Likewise, if the underlying BGP paths change during a session then di�erent
PoPs might be traversed, once again disrupting stateful processing. Finally, because tra�c
is redirected at the network layer based on BGP path selection criteria (e.g., AS hops), the
enterprise or the cloud provider has little control over which PoP is selected and cannot (for

1We could eliminate a hop for outgoing tra�c by routing return tra�c directly from the cloud to the external
target. However, this would require the cloud provider to spoof the enterprise’s IP addresses, and such messages
may be filtered by intermediate ISPs.

2The prefix P would in fact have to be owned by the cloud provider. If the cloud provider simply advertises
a prefix assigned to the enterprise, then ISPs might filter the BGP announcements as they would fail the origin
authorization checks.
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Figure 3.3 : DNS redirection step by step.

example) pick PoPs to optimize end-to-end latency. Because of these limitations, we reject
IP-based redirection as an option.

DNS-based Redirection

DNS-based redirection avoids the problems of IP-based redirection. Here the cloud provider
runs the DNS resolution on the enterprise’s behalf [4]. We explain this using the example in
Figure 3.3. After an enterprise client provides its cloud provider with a manifest of their exter-
nally accessible services, the provider registers DNS names on behalf of the client’s external
services (step 1); e.g., the provider registers ‘MyEnterprise.com’. When a user performs a
DNS lookup on MyEnterprise.com (step 2), the DNS record directs it to the cloud PoP.
The user then directs his tra�c to the cloud PoP (step 3), where the tra�c undergoes NAT to
translate from the public IP address mapped to the cloud PoP to a private IP address internal
to the enterprise client’s network. The tra�c is then processed by any relevant middleboxes
and tunneled (step 4) to the enterprise.

This scheme addresses the bidirectionality concerns even in a multi-PoP setting as the in-
termediate PoP remains the same even if the network-level routing changes. Outbound tra�c
from the enterprise is relatively easy to control; the gateway device looks up a redirection
map to find the PoP to which it must send return tra�c. This ensures the symmetric traversal
of middleboxes. Finally, Internet tra�c initiated by enterprise hosts undergo NAT at the
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Figure 3.4: Round Trip Time (RTT) inflation when redirecting tra�c between US PlanetLab nodes
through Amazon PoPs.

cloud provider. Thus, return tra�c is forced to traverse the same PoP based on the public IP
the provider assigned this connection.3

Redirection Tradeo�s

To compare the latency inflation from bounce redirection vs. DNS-based redirection, we
use measurements from over 300 PlanetLab nodes and twenty Amazon CloudFront locations.
We consider an enterprise “site” located at one of fifty US-based PlanetLab sites while the
other PlanetLab nodes emulate “clients”. For each site e, we pick the closest Amazon Cloud-
Front PoP P ∗e = argminP Latency(P, e) and measure the impact of tunneling tra�c to/from
this PoP.

Figure 3.4 shows that the simplest bounce redirection can increase the end-to-end RTT by
more than 50ms for 20% of inter-PlanetLab paths. The basic DNS-based redirection reduces
the 80th percentile of latency inflation 2× compared to bounce redirection. In fact, for more
than 30% of the pairwise measurements, the latency is actually lower than the direct IP path.
This is because of well-known triangle inequality violations in inter-domain routing and the
fact that cloud providers are very well connected to tier-1/2 ISPs [94]. Hence because the
additional enterprise-side complexity required for DNS-based redirection is minimal and yet
it achieves significantly lower latencies than Bounce redirection, we choose the DNS-based
design.

3.1.2 Low Latency Operation

We now consider additional latency-sensitive PoP selection algorithms and analyze the
scale of deployment a cloud provider requires to achieve low latency operation.

3Many enterprises already use NATs to external services for other reasons (e.g., flexibility and security); we
introduce no new constraints.
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Smarter Redirection

So far, we considered a simple PoP selection algorithm where an enterprise site e picks its
closest PoP. Figure 3.4 shows that with this simple redirection, 10% of end-to-end scenarios still
su�er more than 50ms inflation. To reduce this latency further, we will try to utilize multiple
PoPs from the cloud provider’s footprint to optimize the end-to-end latency as opposed to
just the enterprise-to-cloud latency. That is, instead of using a single fixed PoP P ∗e for each
enterprise site e, we choose the optimal PoP for each c, e combination. Formally, for each
client c and enterprise site e, we identify:

P ∗c,e : argmin
P

Latency(P, c) + Latency(P, e)

We quantify the inflation using smart redirection and the same experimental setup as
before, with Amazon CloudFront sites as potential PoPs and PlanetLab nodes as enterprise
sites. Figure 3.4 shows that with this “Smart Redirection”, more than 70% of the cases have
zero or negative inflation and 90% of all tra�c has less than 10ms inflation.

Smart redirection requires that the APLOMB appliance direct tra�c to di�erent PoPs
based on the client’s IP and maintain persistent tunnels to multiple PoPs instead of just
one tunnel to its closest PoP. This requirement is modest: mappings for PoP selection can be
computed at the cloud provider and pushed to APLOMB appliances, and today’s commodity
gateways can already support hundreds of persistent tunneled connections.

Finally, we note that if communication includes extremely local appliances such as proxies
and WAN optimizers, then the bulk of communication is between the enterprise and the
middlebox and hence the optimal strategy (which we follow) for such cases is still to simply
pick the closest PoP.

Provider Footprint

We now analyze how the middlebox provider’s choice of geographic footprint may impact
latency. Today’s clouds have a few tens of global PoPs and expand as new demand arises [5].
For greater coverage, we could envision an extreme point with a middlebox provider with a
footprint comparable to CDNs such as Akamai with thousands of vantage points [154]. While
it is clear that a larger footprint provides lower latency, what is not obvious is how large a
footprint is required in the context of outsourcing middleboxes.

To understand the implications of the provider’s footprint, we extend our measurements
to consider a cloud provider with an Akamai-like footprint using IP addresses of over 20,000
Akamai hosts [62]. First, we repeat the the end-to-end latency analysis for paths between
US PlanetLab nodes and see that a larger, edge-concentrated Akamai footprint reduces tail
latency, but the overall changes are marginal compared to a smaller but well connected
Amazon-like footprint. End-to-end latency is the metric of interest when outsourcing most
middleboxes – all except for ‘extremely local’ appliances. Because roughly 70% of inter-
PlanetLab node paths actually experience improved latency, these results suggest that a mid-
dlebox provider can service most customers with most types of middleboxes (e.g., NIDS,
firewalls) with an Amazon-like footprint of a few tens of PoPs.
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Figure 3.5 : PlanetLab-to-PlanetLab RTTs with APLOMB redirection through Amazon and Akamai.
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Figure 3.6 : Direct RTTs from PlanetLab to nearest Akamai or Amazon redirection node.

To evaluate whether we can outsource even extremely local middleboxes without a high
latency penalty (we discuss bandwidth penalties in §3.1.3), we look at the RTT between
each Planetlab node and its closest Akamai node in Figure 3.6. In this case, we see a more
dramatic impact of Akamai’s footprint as it provides sub-millisecond latencies to 20% of sites,
and less than 5 ms latencies to almost 90% of sites. An Amazon-like footprint provides only
30% of sites with an RTT <5 ms. Hence our results suggest that an Amazon-like footprint can
serve latency acceleration benefits in only a limited portion of the US; to serve a nation-wide
set of sites, an Akamai-like footprint is necessary.

3.1.3 APLOMB+ Gateways

As mentioned earlier, extremely local appliances optimize both latency and bandwidth
consumption. Our results above suggest that, with an appropriate provider footprint, these
appliances can be outsourced and still o�er significant latency savings. We now consider the
question of the bandwidth savings they enable. Unfortunately, this is a harder problem since
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bandwidth optimizations must fundamentally be implemented before the enterprise access
link in order to be useful. We thus see three options, described below.

The first is to simply not outsource these appliances. From the enterprises we surveyed
and Figure 2.1, we see that WAN optimizers and proxies are currently only deployed in large
enterprises and that APLOMB is of significant value even if it doesn’t cover proxies and
WAN optimizers. Nevertheless, we’d like to do better and hence ask whether a full-fledged
middlebox is really needed or whether we could achieve much of their benefit with a more
minimal design.

Thus the second option we consider is to embed some general-purpose tra�c compres-
sion capabilities into the APLOMB appliance—we term such an augmented appliance an
APLOMB+. In §3.3.3, we evaluate APLOMB+ against traditional WAN optimizers using
measurements from a large enterprise and show that protocol-agnostic compression [44] can
provide similar bandwidth savings (Figure 3.14). While our measurements suggest that in
the specific case of WAN optimization a minimalist APLOMB+ su�ces, we do not claim that
such a minimal capability exists for every conceivable middlebox (e.g., consider an appliance
that encodes outgoing tra�c for loss protection), nor that APLOMB+ can fully replicate the
behavior of dedicated appliances.

Our third option considers more general support for extremely local appliances at the
APLOMB gateway. For this, we envision a more “active” appliance architecture that can
run specialized software modules (e.g., a FEC encoder). A minimal set of such modules
can be dynamically installed either by the cloud provider or the enterprise administrator.
Although more general, this option increases both device and configuration complexity for
the enterprise. For this reason, and because APLOMB+ su�ces to outsource the extremely
local appliances we find in today’s networks, we choose to implement APLOMB+ in our
design.

Type of Middlebox Enterprise Device Cloud Footprint
IP Firewalls Basic APLOMB Multi-PoP

Application Firewalls Basic APLOMB Multi-PoP
VPN Gateways Basic APLOMB Multi-PoP
Load Balancers Basic APLOMB Multi-PoP

IDS/IPS Basic APLOMB Multi-PoP
WAN optimizers APLOMB+ CDN

Proxies APLOMB+ CDN

Table 3.1: Complexity of design and cloud footprint required to outsource di�erent types of
middleboxes.

3.1.4 Summary

We briefly recap our design and its performance and complexity tradeo�s. At the enter-
prise end, the functionality we require is embedded in an APLOMB appliance. The basic
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APLOMB tunnels tra�c to multiple cloud PoPs and stores a redirection map based on which
it forwards tra�c to the cloud. The cloud provider uses DNS redirection to redirect tra�c
from the enterprise’s external contacts to a cloud PoP before forwarding it to the enterprise.
APLOMB+ augments this basic functionality with general compression for bandwidth sav-
ings.

In addition to middlebox processing, a cloud-based middlebox provider must support
DNS translation for its customers, NAT, and tunneling. The key design choice to a provider
is the scale of its deployment footprint. We saw that an Amazon-like footprint often decreases
latency relative to the direct IP path. However, for performance optimization devices, we
saw that a larger Akamai-like footprint is necessary to provide extremely local services with
nation-wide availability.

Today APLOMB, Multi-PoP
APLOMB+, MultiPoP APLOMB+, CDN
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Figure 3.7 : Average number of middleboxes remaining in enterprise under di�erent outsourcing
options.

Table 3.1 identifies the design option (and hence its associated complexity) that is needed
to retain the functional equivalence of the di�erent middleboxes observed in our survey, e.g.,
outsourcing an IP firewall requires only a basic APLOMB at the enterprise and an Amazon-
scale footprint.4

Based on this analysis, Figure 3.7 shows the number of middleboxes that remain in an
average small, medium, and large enterprise under di�erent outsourcing deployment options.
This suggests that small and medium enterprises can achieve almost all outsourcing benefits
with a basic APLOMB architecture using today’s cloud providers (we discuss the remaining
middleboxes, ‘internal firewalls’, in §3.3.3). The same basic architecture can outsource close
to 50% of the appliances in very large enterprise networks; using APLOMB+ increases the
percentage of outsourced appliances to close to 90%.

4We note that even load balancers can be outsourced since APLOMB retains stateful semantics. One subtle
issue is whether load balancers really need to be physically close to backend servers; e.g., for identifying load
imbalances at the sub-millisecond granularity. Our conversations with administrators suggest that this is not a
typical requirement.
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Figure 3.8 : Architectural components of APLOMB.

3.2 APLOMB: Detailed Design

In describing the detailed design of the APLOMB architecture, we focus on three key
components as shown in Figure 3.8: (1) a APLOMB gateway to redirect enterprise tra�c,
(2) the corresponding functions and middlebox capabilities at the cloud provider, and (3) a
control plane which is responsible for managing and configuring these components.

3.2.1 Enterprise Con�guration

Redirecting tra�c from the enterprise client to the cloud middlebox provider is simple:
an APLOMB gateway is co-located with the enterprise’s gateway router, and enterprise ad-
ministrators supply the cloud provider with a manifest of their address allocations. APLOMB
changes neither routing nor switching, and end hosts require no new configuration.

Registration

APLOMB involves an initial registration step in which administrators provide the cloud
provider with an address manifest. These manifests list the enterprise network’s address blocks
in its private address space and associates each address or prefix with one of three types of
address records:

Protected services: Most private IP addresses are registered as protected services. These
address records contain an IP address or prefix and the public IP address of the APLOMB
device at the gateway to the registered address(es). This registration allows inter-site enter-
prise tra�c to traverse the cloud infrastructure (e.g. a host at site A with address 10.2.3.4 can
communicate with a host at site B with address 10.4.5.6, and the cloud provider knows that
the internal address 10.4.5.6 maps to the APLOMB gateway at site B). The cloud provider al-
locates no permanent public IP address for hosts with ‘protected services’ addresses; Internet-
destined connections instead undergo traditional NAPT.
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DNS services: For hosts which accept incoming tra�c, such as web servers, a publicly
routeable address must direct incoming tra�c to the appropriate cloud PoP. For these IP
addresses, the administrator requests DNS service in the address manifest, listing the private
IP address of the service, the relevant APLOMB gateway, and a DNS name. The cloud
provider then manages the DNS records for this address on the enterprise client’s behalf.
When a DNS request for this service arrives, the cloud provider (dynamically) assigns a
public IP from its own pool of IP addresses and directs this request to the appropriate cloud
PoP and subsequent APLOMB gateway.

Legacy IP services: While DNS-based services are the common case, enterprise may require
legacy services that require fixed IP addresses. For these services, the enterprise registers the
internal IP address and corresponding APLOMB gateway, and the cloud provider allocates
a static public IP address at a single PoP for the IP service. For this type of service, we fall
back to the single-PoP Cloud-IP solution rather than DNS redirection discussed in §3.1.

APLOMB gateway

The APLOMB gateway is logically co-located with the enterprise’s gateway router and
has two key functions: (1) maintaining persistent tunnels to multiple cloud PoPs and (2)
steering the outgoing tra�c to the appropriate cloud PoP. The gateway registers itself with
the cloud controller (§3.2.3), which supplies it with a list of cloud tunnel endpoints in each
PoP and forwarding rules (5-tuple → cloud PoP Identifier) for redirection. (The gateway
router blocks all IP tra�c into the network that is not tunneled to a APLOMB gateway.)
For security reasons, we use encrypted tunnels (e.g., using OpenVPN) and for reducing
bandwidth costs, we enable protocol-agnostic redundancy elimination [44]. Note that the
functionality required of the APLOMB gateway is simple enough to be bundled with the
egress router itself or built using commodity hardware.

For scalability and fault tolerance, we rely on traditional load balancing techniques. For
example, to load balance tra�c across multiple APLOMB gateways, the enterprise’s private
address space can be split to direct tra�c to, e.g. 10.1.0.0/17 to one gateway, and 10.1.128.0/17
to another. To handle gateway failures, we envision APLOMB hardware with fail-open NICs
configured to direct the packets to a APLOMB replica under failure. Since each APLOMB
box keeps almost no per-flow state, the replica receiving tra�c from the failed device can
start forwarding the new tra�c without interruption to existing flows.

3.2.2 Cloud Functionality

To provide basic outsourcing functionality, the cloud provider has three main tasks: (1)
map publicly addressable IP addresses to the appropriate enterprise customer and internal
private address, (2) apply middlebox processing services to the customers’ tra�c according
to their policies (§3.2.3), and (3) tunnel tra�c to and from the appropriate APLOMB gateways
at enterprise sites. Thus, the core components – and the enabling technologies to implement
them – at the cloud PoP are:
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• Tunnel Endpoints to encapsulate/decapsulate tra�c from the enterprise (and to encrypt/
decrypt and compress/decompress if enabled). Tunnel endpoints are implemented using
any VPN software [84, 86, 19].
• Middlebox Instances to process the customers’ tra�c. Middleboxes may be implemented
in hardware or software.
• NAT Devices to translate between publicly visible IP addresses and the clients’ internal
addresses. NAT devices manage statically configured IP to IP mappings for DNS and
Legacy IP services, and generate IP and port mappings for Protected Services (§3.2.1).
• Policy switching logic to steer packets between the above components. Policy switching
relies on virtual networking to ‘steer’ tra�c between the appropriate middleboxes [102,
129, 125].
Specific outsourcing solutions may di�er along two key dimensions depending on whether

the middlebox services are: (1) provided by the cloud infrastructure provider (e.g., Ama-
zon) or by third-party cloud service providers running within these infrastructure providers
(e.g., [38]), and (2) realized using hardware- (e.g., [30, 21]) or software-based middleboxes
(e.g., [136, 40, 27, 142]. Our architecture is agnostic to these choices and accommodates a
broad range of deployment scenarios as long as there is some feasible path to implement
the four components described above. The specific implementation of APLOMB runs as a
third-party service using software-based middleboxes over an existing infrastructure provider.

APLOMB implements basic services relying entirely on existing technologies. Nonethe-
less, software utility computing – should a cloud provider focus primarily on software mid-
dleboxes – opens up opportunities for more robust, e�cient, and rich services. These new
opportunities often rely on technologies that are new or as of yet unexplored. For exam-
ple, APLOMB provides the resources for automatic fault-tolerance, but implementing correct,
generic fault-tolerance will require new algorithms (as we discuss in Chapter 4). For re-
source e�ciency, one might wish to have a scheduler that is aware of network-intensive work-
loads [119]; for high throughput one might wish for new fast I/O mechanisms [115, 99]; or one
might wish to be able to verify the correctness of middlebox software and pipelines of com-
posed middleboxes [75, 120]. We discuss two such opportunities – fault-tolerance (Chapter 4)
and privacy (Chapter 5) – and others from related work in Chapter 6.

3.2.3 Control Plane

A driving design principle for APLOMB is to keep the new components introduced by
our architecture that are on the critical path – i.e., the APLOMB gateway device and the
cloud terminal endpoint – as simple and as stateless as possible. This not only reduces
the enterprise’s administrative overhead but also enables seamless transition in the presence
of hardware and network failures. To this end, the APLOMB Control Plane manages the
relevant network state representing APLOMB gateways, cloud PoPs, middlebox instances,
and tunnel endpoints. It is responsible for determining optimal redirection strategies be-
tween communicating parties, managing and pushing middlebox policy configurations, and
dynamically scaling cloud middlebox capacity to meet demands.
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In practice, the control plane is realized in a cloud controller, which manages every APLOMB
gateway, middlebox, tunneling end point, and the internals of the cloud switching policy.5

Each entity (APLOMB device, middlebox, etc.) registers itself with the controller. The con-
troller sends periodic ‘heartbeat’ health checks to each device to verify its continued activity.
In addition, the controller gathers RTTs from each PoP to every prefix on the Internet (for
PoP selection) and utilization statistics from each middlebox (for adaptive scaling). Below we
discuss the redirection optimization, policy management, and middlebox scaling performed
by the cloud controller.

Redirection Optimization. Using measurement data from the cloud PoPs, the cloud
controller pushes the current best (as discussed in §3.1.2) tunnel selection strategies to the
APLOMB gateways at the enterprise and mappings in the DNS. To deal with transient routing
issues or performance instability, the cloud controller periodically updates these tunneling
configurations based on the newest measurements from each cloud PoP.

Policy Con�guration. The cloud controller is also responsible for implementing enterprise-
and middlebox-specific policies. Thus, the cloud provider provides a rich policy configuration
interface that exports the available types of middlebox processing to enterprise administrators
and also implements a programmatic interface to specify the types of middlebox processing
required [101]. Enterprise administrators can specify di�erent policy chains of middlebox pro-
cessing for each class of tra�c specified using the traditional 5-tuple categorization of flows
(i.e., source and destination IPs, port values and the protocol). For example, an enterprise
could require all egress tra�c to go through a firewall → exfiltration engine → proxy. and
require that all ingress tra�c traverse a firewall→ IDS, and all tra�c to internal web services
further go through an application-level firewall. If appropriate, the provider may also export
certain device-specific configuration parameters that the enterprise administrator can tune.

Middlebox Scaling. APLOMB providers have a great deal of flexibility in how they
actually implement the desired middlebox processing. In particular, as utilization increases
on a particular middlebox, the APLOMB provider simply increases the number of instances
of that middlebox being utilized for a client’s tra�c. Using data from heartbeat health checks
on all middleboxes, the cloud controller detects changes in utilization. When utilization
is high, the cloud controller launches new middleboxes and updates the policy switching
framework; when utilization is low, the cloud controller deactivates excess instances. Detailed
mechanisms for software middlebox scaling are explored in [119, 161, 88, 133].

3.2.4 Implementation

We built a prototype system for cloud middlebox processing using middlebox processing
services running on EC2 and APLOMB endpoints in our lab and at the authors’ homes. We
consciously choose to use o�-the-shelf components that run on existing cloud providers and
end host systems. This makes our system easy to deploy and use and demonstrates that the
barriers to adoption are minimal. Our APLOMB endpoint software can be deployed on a

5While the cloud controller may be in reality a replicated or federated set of controllers, for simplicity this
discussion refers to a single logically centralized controller.
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Figure 3.9 : Software architecture of APLOMB.

stand-alone software router or as a tunneling layer on an end host; installing and running
the end host software is as simple as connecting to a VPN.

Figure 3.9 is a software architecture diagram of our implementation. We implement a
cloud controller on a server in our lab and use geographically distributed EC2 datacenters
as cloud PoPs. Our cloud controller employs a MySQL database to store data on middlebox
nodes, RTTs to and from cloud PoPs, and registered clients. The cloud controller monitors
APLOMB devices, calculates and pushes routing tables to the APLOMB devices, requests
measurements from the cloud PoPs, monitors middlebox instances, and scales middlebox
instances up or down as demand varies.

At the enterprise or the end host, the APLOMB gateway maintains several concurrent
VPN tunnels, one to a remote APLOMB at each cloud PoP. On startup, the APLOMB
software contacts the cloud controller and registers itself, fetches remote tunnel endpoints
for each cloud PoP, and requests a set of initial tunnel redirection mappings. A simple
tunnel selection layer, populated by the cloud controller, directs tra�c to the appropriate
endpoint tunnel, and a redundancy elimination encoding module compresses all outgoing
tra�c. When run on a software router, ingress tra�c comes from an attached hosts for whom
the router serves as their default gateway. Running on a laptop or end host, static routes in
the kernel direct application tra�c to the appropriate egress VPN tunnel.

EC2 datacenters host tunnel endpoints, redundancy elimination decoders, middlebox
routers, and NATs, each with an inter-device switching layer and controller registration and
monitoring service. For tunneling, we use OpenVPN [19], a widely-deployed VPN solution
with packages for all major operating systems. We use a Click [107] implementation of the
redundancy elimination technique described by Anand et al [44]. For middlebox process-
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Figure 3.10 : CDF of HTTP Page Load times for Alexa top 1,000 sites with and without APLOMB.

ing, we use Vyatta [36], a customizable software middlebox. Our default Vyatta installation
performs firewalling, intrusion detection, caching, and application-layer web filtering. Policy
configurations (§3.2.3) are translated into Vyatta configurations such that each client can have
a unique Vyatta configuration dependent on their needs. Finally, each cloud PoP also hosts
one ‘measurement node’, which periodically issues ping measurements for RTT estimation
to assist in PoP selection.

3.3 Evaluation

We now evaluate APLOMB. First, we present performance benchmarks for three common
applications running over our implementation (§4.5.1).We then demonstrate APLOMB’s dy-
namic scaling capability and its resilience to failure (§3.3.2). Having shown that APLOMB
is practical, we return to our goal of outsourcing all middlebox functionality in an enterprise
with a trace-driven evaluation of middlebox outsourcing using APLOMB, applied to data
from a middlebox deployment in a large enterprise (§3.3.3).

3.3.1 Application Performance

We first demonstrate that APLOMB’s architecture is practical for enterprise use with
performance benchmarks for common applications using our APLOMB implementation.

HTTP Page Loads: In Figure 3.10, we plot page load times (fetching the front page and
all embedded content) from a university network for the Alexa top 1,000 most popular web
pages with and without APLOMB processing. We performed this experiment with a vacant
cache. For pages at the 50th percentile, page loads without APLOMB took 0.72 seconds,
while page loads with took 0.82 seconds. For pages at the 95th percentile, using APLOMB
results in shorter page load times: 3.85 seconds versus 4.53 seconds.
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BitTorrent: While we don’t expect BitTorrent to be a major component of enterprise traf-
fic, we chose to experiment with Bit Torrent because it allowed us to observe a bulk transfer
over a long period of time, to observe many connections over our infrastructure simultane-
ously, and to establish connections to non-commercial endpoints. We downloaded a 698MB
public domain film over BitTorrent with and without APLOMB from both a university net-
work and from a residential network, five times repeatedly. The average residential download
took 294 seconds without APLOMB, with APLOMB the download speed increased 2.8% to
302 seconds. The average university download took 156 seconds without APLOMB, with
APLOMB the average download took 165 seconds, a 5.5% increase.

Voice over IP: Voice over IP (VoIP) is a common enterprise application, but unlike the
previously explored applications, VoIP performance depends not only on low latency and
high bandwidth, but on low jitter, or variance in latency. APLOMB easily accommodates
this third demand: we ran VoIP calls over APLOMB and for each call logged the jitter
estimator, a running estimate of packet interarrival variance developed for RTP. Industry
experts cite 30ms of one-way jitter as a target for maximum acceptable jitter [8]. In the
first call, to a residential network, median inbound/outbound jitter with APLOMB was 2.49
ms/2.46 ms and without was 2.3 ms/1.03 ms. In the second, to a public WiFi hotspot, the
median inbound/outbound jitter with APLOMB was 13.21 ms/14.49 ms and without was 4.41
ms/4.04 ms.

In summary, these three common applications su�er little or no penalty when their tra�c
is redirected through APLOMB.

3.3.2 Scaling and Failover

To evaluate APLOMB’s dynamic scaling, we measured tra�c from a single client to the
APLOMB cloud. Figure 3.11 shows capacity adapting to increased network load over a 10-
minute period. The client workload involved simultaneously streaming a video, repeatedly
requesting large files over HTTP, and downloading several large files via BitTorrent. The
resulting network load varied significantly over the course of the experiment, providing an
opportunity for capacity scaling. The controller tracks CPU utilization of each middlebox
instance and adds additional capacity when existing instances exceed a utilization threshold
for one minute.

While middlebox capacity lags changes in demand, this is primarily an artifact of the low
sampling resolution of the monitoring infrastructure provided by our cloud provider. Once
a new middlebox instance has been allocated and initialized, actual switchover time to begin
routing tra�c through it is less than 100ms. To handle failed middlebox instances, the cloud
controller checks for reachability between itself and individual middlebox instances every
second; when an instance becomes unreachable, APLOMB ceases routing tra�c through it
within 100ms. Using the same mechanism, the enterprise APLOMB can cope with failure
of a remote APLOMB, re-routing tra�c to another remote APLOMB in the same or even
di�erent cloud PoP, providing fault-tolerance against loss of an entire datacenter.
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Figure 3.11: Network load (Y1) and number of software middlebox instances (Y2) under load. Exper-
iment used low-capacity instances to highlight scaling dynamics.

3.3.3 Case Study

We set out with the goal of outsourcing as many middleboxes as possible and reducing
enterprise costs, all the while without increasing bandwidth utilization or latency. We revisit
this using the data from the very large enterprise to determine:

• How many middleboxes can the enterprise outsource?
• What are the gains from elastic scaling?
• What latency penalty will inter-site tra�c su�er?
• How much does the enterprise’s bandwidth costs increase?

Middleboxes Outsourced: Figure 3.12 shows that the large enterprise can outsource
close to 60% of the middleboxes under a CDN footprint with APLOMB+.

This high fraction of outsourceability comes despite an atypically high deployment of
“internal” firewalls and NIDS at this enterprise. Internal firewalls protect a host or subnetwork
not only from Internet-originated tra�c, but from tra�c originated within the enterprise; the
most common reason we found for these deployments was PCI compliance for managing
credit card data. While the average enterprise of this size deploys 27.7 unoutsourceable
internal firewalls, this enterprise deploys over 100 internal firewalls. From discussions with
the network’s administrators, we learned these were installed in the past to protect internal
servers against worms that preferentially scanned internal prefixes, e.g. CodeRed and Nimda.
As more IT infrastructure moves to the cloud (see §4.7), many internal firewalls will be able
to move to the cloud as well.

Cost Reduction: To evaluate benefits from elastic scaling, in Figure 3.13 we focus on
each site of the enterprise and show the ratio of peak-to-average volumes for total inter-site
tra�c. We use sites across three continents: North America (NA-x), Asia (AS-x), and Europe
(EU-x). The peak represents a conservative estimate of the tra�c volume the enterprise has
provisioned at the site, while the average is the typical utilization; we see that most sites are
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Figure 3.12: Number of middleboxes in the enterprise with and without APLOMB+. The enterprise
has an atypical number of ‘internal’ firewalls and NIDS.

provisioned over 2× their typical load, and some of the smaller sites as much as 12×! In
addition, we show peak-to-average values for the top four protocols in use. The per-protocol
numbers are indicative of elasticity savings per middlebox, as di�erent protocols are likely
to traverse di�erent middleboxes.

Latency: We measured redirection latency for inter-site tra�c between the top eleven
sites of the enterprise through the APLOMB infrastructure by pinging hosts at each site from
within EC2. We found that for more than 60% of inter-site pairs, the latency with redirection
is almost identical to the direct RTT. We found that most sites with inflated latency were in
Asia, where EC2 does not have a wide footprint.

We also calculated a weighted inflation value, weighted by tra�c volume and found that
in expectation a typical redirected packet experiences only 1.13 ms of inflation. This results
from the fact that the inter-site pairs with high tra�c volume actually have negative inflation,
by virtue of one or both endpoints being in the US or Europe, where EC2’s footprint and
connectivity is high.

Bandwidth: Last, we evaluate bandwidth inflation. We ran a tra�c trace with full packet
payloads collected at a di�erent small enterprise [15] through our APLOMB prototype with
and without generic redundancy elimination. Without Generic RE, the bandwidth utilization
increased by 6.2% due to encryption and encapsulation overhead. With Generic RE, the
bandwidth utilization reduced by 28%, giving APLOMB+ a 32% improvement over basic
APLOMB.

Many larger enterprises already compress their inter-site tra�c using WAN optimizers.
To evaluate the impact of switching compression for inter-site tra�c from a traditional WAN
optimizer solution to APLOMB+, we compared our observed benefits to those provided
by WAN optimizers at eight of the large enterprise sites. In Figure 3.14, we measure the
bandwidth cost of a given site in terms of the 95th percentile of the total tra�c volume with
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Figure 3.14: 95th percentile bandwidth without APLOMB, with APLOMB, and with APLOMB+.

a WAN Optimizer, with APLOMB, and with APLOMB+. With APLOMB, the worst case
inflation is 52% in the median case and at most 58%; APLOMB+ improves this to a median
case of 3.8% inflation and a worst case of 8.1%.

3.4 Discussion

Before concluding, we mention some final thoughts on the future of “hybrid” enter-
prise/cloud architectures, potential cost models for bandwidth, and security challenges that
continue to face APLOMB and cloud computing.

IT Outsourcing and Hybrid Clouds: APLOMB complements the ongoing move by enter-
prises from locally-hosted and managed infrastructure to outsourced cloud infrastructure. A
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Pricing Model Total Cost $/GB $/Mbps
Standard EC2 30003.20 0.0586 17.58

Amazon DirectConnect 11882.50 0.0232 6.96
Wholesale Bandwidth 6826.70 0.0133 4.00

Table 3.2: Cost comparison of di�erent cloud bandwidth pricing models given an enterprise with a
monthly transfer volume of 500TB (an overestimate as compared to the very large enterprise in our
study); assumes conversion rate of 1Mbps of sustained transfer equals 300GB over the course of a
month.

network administrator at one large enterprise we surveyed reported their company’s manage-
ment had issued a broad mandate to moving a significant portion of their IT infrastructure
to the cloud. Federal government agencies are also rapidly moving their IT infrastructure
to the cloud, in compliance with a mandate to adopt a "cloud first" policy for new services
and to reduce the number of existing federal datacenters by 800 before 2015 [109]. As these
services move to the cloud, the middleboxes protecting them (including internal firewalls,
which APLOMB itself cannot outsource) will move to the cloud as well.

Nevertheless, many enterprises plan to keep at least some local infrastructure, citing
security and performance concerns for applications currently deployed locally [41]. Further,
user-facing devices such as laptops, desktops, smartphones, and printers will always remain
within the enterprise – and the majority of middlebox services benefit these devices rather
than servers. With some end hosts moving to the cloud, and the majority remaining behind
in the enterprise, multiple vendors now o�er services for integrating public cloud services
with enterprises’ existing infrastructure [3, 34], facilitating so-called “hybrid clouds” [96].
APLOMB allows administrators to evade the middlebox-related complexity in this hybrid
model by consolidating middleboxes in only one deployment setting.

Bandwidth Costs: APLOMB reduces the cost of middlebox infrastructure, but it may in-
crease bandwidth costs due to current cloud business models. Today, tunneling tra�c to a
cloud provider necessitates paying for bandwidth twice – once for the enterprise network’s
access link, and again at the cloud provider. Nevertheless, this does not mean that APLOMB
will double bandwidth costs for an enterprise. We observed earlier that redundancy elim-
ination and compression can reduce bandwidth demands at the enterprise access link by
roughly 30%. This optimization is not possible without redirection through a cloud PoP, and
could allow a lower capacity, less expensive access link to satisfy an enterprise’s needs.

The largest factor in the cost of APLOMB for an enterprise is the bandwidth cost model
used by a cloud provider. Today, cloud providers price bandwidth purely by volume; for
example, Amazon EC2 charges between $0.05-$0.12 per GB of outgoing tra�c, decreasing
as volume increases (all incoming tra�c is free). On the other hand, a dedicated APLOMB
service provider would be able to take advantage of wholesale bandwidth, which is priced by
transfer rate. We convert between the two pricing strategies (per-GB and per-Mbps) with the
rough conversion factor of 1Mbps sustained monthly throughput equaling 300GB per month.
This is in comparison with “wholesale” bandwidth prices of $3-$5 per Mbps for high-volume
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customers. As a result, though current pricing strategies are not well-suited for APLOMB, a
dedicated APLOMB provider could o�er substantially lower prices. Indeed, Amazon o�ers
a bulk-priced bandwidth service, “DirectConnect”, which o�ers substantially lower per-GB
costs for high-volume customers [3]. Table 3.2 provides a comparison of the bandwidth costs
for a hypothetical enterprise which transfers 500TB of tra�c per month to and from a cloud
service provider under each of these models. These charges a minimal compared to expected
savings in hardware, personnel, and other management costs.

Security Challenges: Adopting APLOMB brings with it the same security questions as
have challenged cloud computing. These challenges have not stopped widespread adoption
of cloud computing services, nor the willingness of security certification standards to cer-
tify cloud services (for example, services on Amazon EC2 can achieve PCI-1 compliance,
the highest level of certification for storing credit card data). However, these challenges re-
main concerns for APLOMB and cloud computing in general. Just as cloud storage services
have raised questions about providing a cloud provider unencrypted access to data, cloud
middlebox services give the cloud provider unencrypted access to tra�c flows. We believe
this is potentially a major obstacle to many enterprises making use of middlebox process-
ing services. While some cloud services such as those used for storage can use end-to-end
cryptography to shield data from third party providers, middlebox processing cannot use
standard cryptography techniques since the service requires allowing middleboxes access to
unencrypted data. Hence, we discuss a functional cryptography-based technique to address
privacy concerns in Chapter 5.

3.5 Related Work

Our work contributes to and draws inspiration from a rich corpus of work in cloud com-
puting, redirection services, and network management.

Cloud Computing: The motivation for APLOMB parallels traditional arguments in
favor of cloud computing, many of which are discussed by Armbrust et al. [47]. APLOMB also
adapts techniques from traditional cloud solutions, e.g. utilization monitoring and dynamic
scaling [25], and DNS-based redirection to datacenters with optimal performance for the
customer [150].

MiddleboxManagement: Others have tackled middleboxmanagement challenges within
the enterprise [101, 102, 51, 73, 142]. Their solutions o�er insights we can apply for manag-
ing middleboxes within the cloud – e.g., the policy-routing switch of Joseph et al. [102], the
management plane of Ballani et al. [51], and the consolidated appliance of Sekar et al. [142].
None of these proposals consider moving middlebox management out of the enterprise en-
tirely, as we do. Like us, ETTM [73] proposes removing middleboxes from the enterprise
network but, where we advocate moving them to the cloud, ETTM proposes the opposite:
pushing middlebox processing to enterprise end hosts. As such, ETTM still retains the prob-
lem of middlebox management in the enterprise. Sekar et al [142] report on the middlebox
deployment of a single large enterprise; our survey is broader in scope (covering a range
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of management and failure concerns) and covers 57 networks of various scales. They also
propose a consolidated middlebox architecture that aims to ameliorate some of the admin-
istrative burden associated with middlebox management, but they do not go so far as to
propose removing middleboxes from the enterprise network entirely.

Redirection Services: Tra�c redirection infrastructures have been explored in prior
work [45, 148, 159] but in the context of improving Internet or overlay routing architectures
as opposed to APLOMB’s goal of enabling middlebox processing in the cloud. RON showed
how routing via an intermediary might improve latency; we report similar findings using
cloud PoPs as intermediaries. Walfish et al. [159] propose a clean-slate architecture, DOA, by
which end hosts explicitly address middleboxes. Gibb et al. [92] develop a service model for
middleboxes that focuses on service-aware routers that redirect tra�c to middleboxes that
can be in the local network or Internet.

Cloud Networking: Using virtual middlebox appliances [36] reduces the physical hard-
ware cost of middlebox ownership, but cannot match the performance of hardware solutions
and does little to improve configuration complexity. Some startups and security companies
have cloud-based o�erings for specific middlebox services: Aryaka [6] o�ers protocol acceler-
ation; ZScalar [38] performs intrusion detection; and Barracuda Flex [7] o�ers web security.
To some extent, our work can be viewed as an extreme extrapolation of their services and
we provide a comprehensive exploration and evaluation of such a trend. CloudNaaS [54] and
startup Embrane [11] aim at providing complete middlebox solutions for enterprise services
that are already in the cloud.

3.6 Conclusion

Outsourcing middlebox processing to the cloud relieves enterprises of major problems
caused by today’s enterprise middlebox infrastructure: cost, management complexity, capac-
ity rigidity, and others. APLOMB succeeds in outsourcing the vast majority of middleboxes
from a typical enterprise network without impacting performance, making scalable, a�ord-
able middlebox processing accessible to enterprise networks of every size.

In this chapter, we illustrated that outsourcing was feasible and beneficial for enterprises.
In the following two chapters, we show (a) how software utility computing and new algorithms
can provide strong correctness guarantees for middlebox applications with low performance
overheads (Chapter 4), and (b) how to use functional cryptography to ameliorate privacy
concerns surrounding cloud services (Chapter 5).
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Chapter 4

Fault-Tolerance For Middleboxes

We saw in Chapter 2 that failures are a common source of problems for network admin-
istrators, many of whom lack resources or mechanisms to implement automatic recovery. In
the previous chapter we mentioned that outsourcing can provide the illusion of infinite re-
sources for clients, providing redundancy for failover as needed. In this chapter, we discuss
how to implement failover. Importantly, we aim to avoid relying on custom, per-middlebox
solutions (e.g. one approach for IDSes and another for WAN optimizers), aiming instead for
a generic fault-tolerance approach that is suitable to arbitrary packet processers.

In traditional deployments, the common approach to fault tolerance in middleboxes is
a combination of careful engineering to avoid faults, and deploying a backup appliance to
rapidly restart when faults occur. Unfortunately, neither of these approaches – alone or
in combination – are ideal. With traditional middleboxes, each “box” is developed by a
single vendor and dedicated to a single application. This allows vendors greater control in
limiting the introduction of faults by, for example, running on hardware designed and tested
for reliability (ECC, proper cooling, redundant power supply, etc.). This approach will not
apply to to software middlebox deployments in a cloud provider, where developers have
little control over the environment in which their applications run and vendor diversity in
hardware and applications will explode the test space.

The second part to how operators handle middlebox failure is also imperfect. With current
middleboxes, operators often maintain a dedicated per-appliance backup. This is ine�cient
(requiring 1:1 redundancy) and o�ers only a weak form of recovery for the many middlebox
applications that are stateful – e.g., Network Address Translators (NATs), WAN Optimizers,
and Intrusion Prevention Systems all maintain dynamic state about flows, users, and network
conditions. With no mechanism to recover state, the backup may be unable to correctly
process packets after failure, leading to service disruption. (We discuss this further in §4.2.2
and quantify disruption in §5.7.)

In this chapter, we aim to design middleboxes that guarantee correct recovery from fail-
ures. This solution must be low-latency (e.g., the additional per-packet latency under failure-
free conditions must be well under 1ms) and recovery must be fast (e.g., in less than typical
transport timeout values). To the best of our knowledge, no existing middlebox design sat-
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isfies these goals. In addition, we would prefer a solution that is general (i.e., can be applied
across applications rather than having to be designed on a case-by-case basis for each indi-
vidual middlebox) and passive (i.e., does not require one dedicated backup per middlebox).

Our solution – FTMB– introduces new algorithms and techniques that tailor the classic
approach of rollback recovery to the middlebox domain and achieves correct recovery in
a general and passive manner. Our prototype implementation introduces low additional la-
tency on failure-free operation (adding only 30µs to median per-packet latencies, an improve-
ment of 2-3 orders of magnitude over existing fault tolerance mechanisms) and achieves rapid
recovery (reconstructing lost state in between 40-275ms for practical system configurations).

4.1 Problem Space

We present our system and failure model (§4.1.1 and §4.1.2) and the challenges in building
fault-tolerant middleboxes (§4.1.3).

4.1.1 System Model

Parallel implementations: We assume middlebox applications are multi-threaded and run
on a multicore CPU (Figure 4.1). The middlebox runs with a fixed number of threads. We
assume ‘multi-queue’ NICs that o�er multiple transmit and receive queues that are partitioned
across threads. Each thread reads from its own receive queue(s) and writes to its own transmit
queue(s). The NIC partitions packets across threads by hashing a packet’s flow identifier
(i.e., 5-tuple including source and destination port and address) to a queue; hence all packets
from a flow are processed by the same thread and a packet is processed entirely by one
thread. The above are standard approaches to parallelizing tra�c processing in multicore
systems [74, 97, 141, 124].
Shared state: By shared state we mean state that is accessed across threads. In our paral-
lelization approach, all packets from a flow are processed by a single thread so per-flow state
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Figure 4.1: Our model of a middlebox application
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is local to a single thread and is not shared state. However, other state may be relevant to
multiple flows, and accesses to such state may incur cross-thread synchronization overheads.
Common forms of shared state include aggregate counters, IDS state machines, rate limiters,
packet caches for WAN optimizers, etc.
Virtualization: Finally, we assume the middlebox code is running in a virtualized mode. The
virtualization need not be a VM per se; we could use containers [14], lightweight VMs [114], or
some other form of compartmentalization that provides isolation and supports low-overhead
snapshots of its content.

4.1.2 Failure Model

We focus on recovery from “fail-stop” (rather than Byzantine) errors, where under failure
‘the component changes to a state that permits other components to detect that a failure
has occurred and then stops’ [140]. This is the standard failure model assumed by virtual
machine fault tolerance approaches like Remus [69], Colo [76], and vSphere [35].

Our current implementation targets failures at the virtualization layer and below, down
to the hardware.1 Our solutions – and many of the systems we compare against – thus cope
with failures in the system hardware, drivers, or host operating system. According to a recent
study (see Figure 13 in [128]), hardware failures are quite common (80% of firewall failures,
66% of IDS failures, 74% of Load Balancer failures, and 16% of VPN failures required some
form of hardware replacement), so this failure model is quite relevant to operational systems.

4.1.3 Challenges

Middlebox applications exhibit three characteristics that, in combination, make fault-
tolerance a challenge: statefulness, very frequent non-determinism, and low packet-processing
latencies.

As mentioned earlier, many middlebox applications are stateful and the loss of this state
can degrade performance and disrupt service. Thus, we want a failover mechanism that
correctly restores state such that future packets are processed as if this state were never lost
(we define correctness rigorously in §4.2.1). One might think that this could be achieved via
‘active:active’ operation, in which a ‘master’ and a ‘replica’ execute on all inputs but only
the master’s output is released to users. However, this approach fails when system execution
is non-deterministic, because the master and replica might diverge in their internal state and
produce an incorrect recovery.2

Non-determinism is a common problem in parallel programs when threads ‘race’ to access
shared state: the order in which these accesses occur depends on hard-to-control e�ects (such

1In §4.7, we discuss how emerging ‘container’ technologies would allow us to extend our failure model to
recover from failures in the guest OS. With such extensions in place, the only errors that we would be unable
to recover from are those within the middlebox application software itself.

2Similarly, such non-determinism prevents replicated state machine techniques from providing recovery in
this context.
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as the scheduling order of threads, their rate of progress, etc.) and are thus hard to predict.
Unfortunately, as mentioned earlier, shared state is common in middlebox applications, and
shared state such as counters, caches or address pools may be accessed on a per-packet or per-
flow basis leading to frequent nondeterminism.3 In addition, non-determinism can also arise
because of access to hardware devices, including clocks and random number generators,
whose return values cannot be predicted. FTMB must cope with all of these sources of
nondeterminism.

As we elaborate on shortly, the common approach to accommodating non-determinism
is to intercept and/or record the outcome of all potentially non-deterministic operations.
However, such interception slows down normal operation and is thus at odds with the other
two characteristics of middlebox applications, namely very frequent accesses to shared state
and low packet processing latencies. Specifically, a piece of shared state may be accessed 100k-
1M times per second (the rate of packet arrivals), and the latency through the middlebox
should be in 10-100s of microseconds. Hence mechanisms for fault-tolerance must support
high access rates and introduce extra latencies of a similar magnitude.

4.2 Goals and Design Rationale

Building on the previous discussion, we now describe our goals for FTMB (§4.2.1), some
context (§4.2.2), and the rationale for the design approach we adopt (§4.2.3)

4.2.1 Goals

A fault-tolerant middlebox design must meet the three requirements that follow.
(1) Correctness. The classic definition of correct recovery comes from Strom and Yemeni [149]:
“A system recovers correctly if its internal state after a failure is consistent with the observ-
able behavior of the system before the failure." It is important to note that reconstructed state
need not be identical to that before failure. Instead, it is su�cient that the reconstructed state
be one that could have generated the interactions that the system has already had with the
external world. This definition leads to a necessary condition for correctness called “output
commit", which is stated as follows: no output can be released to the external world until
all the information necessary to recreate internal state consistent with that output has been
committed to stable storage.

As we discuss shortly, the nature of this necessary information varies widely across dif-
ferent designs for fault-tolerance as does the manner in which the output commit property is
enforced. In the context of middleboxes, the output in question is a packet and hence to meet
the output commit property we must ensure that, before the middlebox transmits a packet
p, it has successfully logged to stable storage all the information needed to recreate internal
state consistent with an execution that would have generated p.

3We evaluate the e�ects of such non-determinism in §5.7.
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(2) Low overhead on failure-free operation. We aim for mechanisms that introduce no
more than 10-100s of microseconds of added delay to packet latencies.
(3) Fast Recovery. Finally, recovery from failures must be fast to prevent degradation in
the end-to-end protocols and applications. We aim for recovery times that avoid endpoint
protocols like TCP entering timeout or reset modes.

In addition, we seek solutions that obey the following two supplemental requirements:
(4) Generality. We prefer an approach that does not require complete rewriting of middlebox
applications nor needs to be tailored to each middlebox application. Instead, we propose
a single recovery mechanism and assume access to the source code. Our solution requires
some annotations and and automated modifications to this code. Thus, we di�er from some
recent work [132, 133] in not introducing an entirely new programming model, but we cannot
use completely untouched legacy code. Given that many middlebox vendors are moving their
code from their current hardware to software implementations, small code modifications of
the sort we require may be a reasonable middle ground.
(5) Passive Operation. We do not want to require dedicated replicas for each middlebox
application, so instead we seek solutions that only need a passive replica that can be shared
across active master instances.

4.2.2 Existing Middleboxes

To our knowledge, no middlebox design in research or deployment simultaneously meets
the above goals.4

In research, Pico[132] was the first to address fault-tolerance for middleboxes. Pico guar-
antees correct recovery but does so at the cost of introducing non-trivial latency under failure-
free operation – adding on the order of 8-9ms of delay per packet. We describe Pico and
compare against it experimentally in §5.7.

There is little public information about what commercial middleboxes do and therefore
we engaged in discussions with two di�erent middlebox vendors. From our discussions, it
seems that vendors do rely heavily on simply engineering the boxes to not fail (which is also
the only approach one can take without asking customers to purchase a separate backup box).
For example, one vendor uses only a single line of network interface cards and dedicates an
entire engineering team to testing new NIC driver releases.

Both vendors confirmed that shared state commonly occurs in their systems. One vendor
estimated that with their IDS implementation, a packet touches 10s of shared variables per
packet, and that even their simplest devices incur at least one shared variable access per
packet.

Somewhat to our surprise, both vendors strongly rejected the idea of simply resetting all
active connections after failure, citing concerns over the potential for user-visible disruption
to applications (we evaluate cases of such disruption in §5.7). Both vendors do attempt state-
ful recovery but their mechanisms for this are ad-hoc and complex, and o�er no correctness

4Traditional approaches to reliability for routers and switches do little to address statefulness as there is no
need to do so, and thus we do not discuss such solutions here.
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guarantee. For example, one vendor partially addresses statefulness by checkpointing se-
lect data structures to stable storage; since checkpoints may be both stale and incomplete
(i.e., not all state is checkpointed) they cannot guarantee correct recovery. After recovery,
if an incoming packet is found to have no associated flow state, the packet is dropped and
the corresponding connection reset; they reported using a variety of application-specific op-
timizations to lower the likelihood of such resets. Another vendor o�ers an ‘active:active’
deployment option but they do not address non-determinism and o�er no correctness guar-
antees; to avoid resetting connections their IDS system ‘fails open’ – i.e., flows that were active
when the IDS failed bypass some security inspections after failure.

Both vendors expressed great interest in general mechanisms that guarantee correctness,
saying this would both improve the quality of their products and reduce the time their de-
velopers spend reasoning through the possible outcomes of new packets interacting with
incorrectly restored state.

However, both vendors were emphatic that correctness could not come at the cost of
added latency under failure-free operation and independently cited 1ms as an upper bound
on the latency overhead under failure-free operation.5 One vendor related an incident where a
trial product that added 1-2ms of delay per-packet triggered almost 100 alarms and complaints
within the hour of its deployment.

Finally, both vendors emphasized avoiding the need for 1:1 redundancy due to cost. One
vendor estimated a price of $250K for one of their higher-grade appliances; the authors
of [141] report that a large enterprise they surveyed deployed 166 firewalls and over 600
middleboxes in total, which would lead to multi million dollar overheads if the dedicated
backup approach were applied broadly.

4.2.3 Design Options

Our goal is to provide stateful recovery that is correct in the face of nondeterminism, yet
introduces low delay under both failure-free and post-failure operation. While less explored
in networking contexts, stateful recovery has been extensively explored in the general systems
literature. It is thus natural to ask what we might borrow from this literature. In this section,
we discuss this prior work in broad terms, focusing on general approaches rather than specific
solutions, and explain how these lead us to the approach we pursued with FTMB. We discuss
specific solutions and experimentally compare against them in §5.7.

At the highest level approaches to stateful recovery can be classified based on whether lost
state is reconstructed by replaying execution on past inputs. As the name suggests, solutions
based on ‘replay’ maintain a log of inputs to the system and, in the event of a failure, they
recreate lost state by replaying the inputs from the log; in contrast, ‘no-replay’ solutions do
not log inputs and never replay past execution.

As we will discuss in this section, we reject no-replay solutions because they introduce high
latencies on per-packet forwarding – on the order of many milliseconds. However, replay-

5This is also consistent with carrier requirements from the Broadband Forum which cite 1ms as the upper
bound on forwarding delay (through BGN appliances) for VoIP and other latency-sensitive tra�c[39].
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based approaches have their own challenges in sustaining high throughput given the output
frequency of middleboxes. FTMB follows the blueprint of rollback-recovery, but introduces
new algorithms for logging and output commit that can sustain high throughput.

4.2.4 No-Replay Designs

No-replay approaches are based on the use of system checkpoints: processes take periodic
“snapshots” of the necessary system state and, upon a failure, a replica loads the most recent
snapshot. However, just restoring state to the last snapshot does not provide correct recovery
since all execution beyond the last snapshot is lost – i.e., the output commit property would
be violated for all output generated after the last snapshot. Hence, to enforce the output
commit property, such systems bu�er all output for the duration between two consecutive
snapshots[69]. In our context, this means packets leaving the middlebox are bu�ered and
not released to the external world until a checkpoint of the system up to the creation of the
last bu�ered packet has been logged to stable storage.

Checkpoint-based solutions are simple but delay outputs even under failure-free opera-
tion; the extent of this delay depends on the overhead of (and hence frequency between)
snapshots. Several e�orts aim to improve the e�ciency of snapshots – e.g., by reducing their
memory footprint[132], or avoiding snapshots unless necessary for correctness[76]. Despite
these optimizations, the latency overhead that these systems add – in the order of many mil-
liseconds – remains problematically high for networking contexts. We thus reject no-replay
solutions.

4.2.5 Replay-Based Designs

In replay-based designs, the inputs to the system are logged along with any additional
information (called ‘determinants’) needed for correct replay in the face of non-determinism.
On failure, the system simply replays execution from the log. To reduce replay time and
storage requirements these solutions also use periodic snapshots as an optimization: on
failure, replay begins from the last snapshot rather than from the beginning of time. Log-
based replay systems can release output without waiting for the next checkpoint so long as
all the inputs and events on which that output depends have been successfully logged to
stable storage. This reduces the latency sensitive impact on failure-free operation making
replay-based solutions better suited for FTMB.

Replay-based approaches to system recovery should not be confused with replay-based
approaches to debugging. The latter has been widely explored in recent work for debugging
multicore systems [156, 43, 110]. However, debugging systems do not provide mechanisms
for output commit, the central property needed for correct recovery – they do not need to,
since their aim is not to resume operation after failure. Consequently, these systems cannot
be used to implement high availability. 6

6A second question is whether or not we can adopt logging and instrumentation techniques from these
systems to detect determinants. However, as we discuss experimentally in §5.7, most debugging approaches
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Instead, the most relevant work to our goals comes from the classic distributed systems
literature from the 80s and 90s, targeting rollback-recovery for multi-process distributed sys-
tems (see [80] for an excellent survey). Unfortunately, because of our new context (a single
multi-threaded server, rather than independent processes over a shared network) and perfor-
mance constraints (output is released every few microseconds or nanoseconds rather than
seconds or milliseconds), existing algorithms from this literature for logging and output com-
mit cannot sustain high throughput.

With all recovery approaches, the systemmust check that all determinants – often recorded
in the form of vector clocks [111] or dependency trees [79] – needed for a given message to
be replayed have been logged before the message may be released. This check enforces the
output commit property. In systems which follow an optimistic logging approach, this output
commit ‘check’ requires coordination between all active process/threads every time output is
released. This coordination limits parallelism when output needs to be released frequently.
For example, in §5.6 we discuss a design we implemented following the optimistic approach
which could sustain a maximum throughput of only 600Mbps (where many middleboxes pro-
cess tra�c on the order of Gbps) due to frequent cross-core coordination. Other systems,
which follow a causal logging approach, achieve coordination-free output commit and better
parallelism, but do so by permitting heavy redundancy in what they log: following the ap-
proach of one such causal system [79], we estimated that the amount of logged determinants
would reach between 500Gbps-300Tbps just for a 10Gbps of packets processed on the data-
plane. Under such loads, the system would have to devote far more resources to recording
the logs themselves than processing tra�c on the dataplane, once again limiting throughput.

Hence, instead of following a standard approach, we instead designed a new logging and
output commit approach called ordered logging with parallel release. In the following section,
we describe how our system works and why ordered logging with parallel release overcome
the issues presented by previous approaches.

4.3 Design

FTMB is a new solution for rollback recovery, tailored to the middlebox problem domain
through two new solutions:

1. ‘ordered logging’: an e�cient mechanism for representing and logging the information
required for correct replay; ordered logging represents information in such a way that
it is easy to verify the output commit property.

2. ‘parallel release’: an output commit algorithm that is simple and e�cient to implement
on multicore machines.

rely on heavyweight instrumentation (e.g., using memory protection to intercept access to shared data) and
often logging data that is unnecessary for our use cases (e.g., all calls to malloc) – this leads to unnecessarily
high overheads.
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Figure 4.2: Architecture for FTMB.

The architecture of FTMB is shown in Figure 4.2. A master VM runs the middlebox appli-
cation(s), with two loggers that record its input and output tra�c. Periodic system snapshots
are sent from the master to stable storage, and used to start a backup in case the master
crashes. In our prototype, the master and backup are two identical servers; the input and
output loggers are software switches upstream and downstream from the master node; and
the stable storage is volatile memory at the downstream switch – the storage is ‘stable’ in that
it will survive a failure at the master, even though it would not survive failure of the switch
it resides on. 7

As explained in earlier sections, the crux of ensuring correct recovery is enforcing the
output commit property which, for our context, can be stated as: do not release a packet until
all information needed to replay the packet’s transmission has been logged to stable storage. Enforcing
this property entails answering the following questions:

• What information must we log to resolve potential nondeterminism during replay? In
the language of rollback recovery protocols this defines what the literature calls deter-
minants.

• How do we log this information e�ciently? This specifies how we log determinants.

• What subset of the information that we log is a given packet dependent on for replay?
This defines an output’s dependencies.

• How do we e�ciently check when an individual packet’s dependencies have been logged
to stable storage? This specifies how we check whether the output commit requirements
for an output have been met.

7There is some flexibility on the physical placement of the functions; our system can withstand the failure
of either the middlebox (Master/Backup) or the node holding the saved state but not both simultaneously. We
envisage the use of “bypass” NICs that fail open on detecting failure, to survive failures at the loggers[13].
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We now address each question in turn and present the architecture and implementation of
the resultant system in §5.6.

4.3.1 De�ning Determinants

Determinants are the information we must record in order to correctly replay operations
that are vulnerable to nondeterminism. As discussed previously, nondeterminism in our
system stems from two root causes: races between threads accessing shared variables, and
access to hardware whose return values cannot be predicted, such as clocks and random
number generators. We discuss each of them below.
Shared State Variables. Shared variables introduce the possibility of nondeterministic ex-
ecution because we cannot control the order in which threads access them.8 We thus simply
record the order in which shared variables are accessed, and by whom.

Each shared variable vj is associated with its own lock and counter. The lock protects
accesses to the variable, and the counter indicates the order of access. When a thread pro-
cessing packet pi accesses a shared variable vj , it creates a tuple called Packet Access Log
(PAL) that contains (pi, nij, vj, sij) where nij is the number of shared variables accessed so
far when processing pi, and sij is the number of accesses received so far by vj .

As an example, figure 4.3 shows the PALs generated by the four threads (horizontal lines)
processing packets A, B, C, D. For packet B, the thread first accesses variable X (which has
previously been accessed by the thread processing packet A), and then variable Y (which has
previously been accessed by the thread processing packet C).

Note that PALs are created independently by each thread, while holding the variable’s
lock, and using information (the counters) that is either private to the thread or protected
by the lock itself.

Shared pseudorandom number generators are treated in the same way as shared variables,
since their behavior is deterministic based on the function’s seed (which is initialized in the
same way during a replay) and the access order recorded in the PALs.
Clocks and other hardware. Special treatment is needed for hardware resources whose
return values cannot be predicted, such as gettimeofday() and /dev/random. For these,
we use the same PAL approach, but replacing the variable name and access order with
the hardware accessed and the value returned. Producing these PALs does not require any
additional locking because they only use information local to the thread. Upon replay, the
PALs allow us to return the exact value as during the original access.

4.3.2 How to Log Determinants

The key requirement for logging is that PALs need to be on stable storage (on the Output
Logger) before we release the packets that depend on them. While there are many options

8Recent research[68, 71] has explored ways to reduce the performance impact of enforcing deterministic
execution but their overheads remain impractically high for applications with frequent nondeterminism.
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Figure 4.3 : Four threads (black lines) process packets A, B, C, D. As time goes (left to right), they
access (circles) shared variables X, Y, Z, T generating the PALs in parentheses. The red tree indicates
the dependencies for packet B.

for doing so, we pursue a design that allows for fine-grained and correct handling of depen-
dencies.

We make two important design decisions for how logging is implemented. The first is
that PALs are decoupled from their associated data packet and communicated separately to
the output logger. This is essential to avoid introducing unnecessary dependencies between
packets. As an example, packet B in the figure depends on PAL (A, 1, X, 1), but it need not
be delayed until the completion of packet A, (which occurs much later) – it should only be
delayed until (A, 1, X, 1) has been logged.

The second decision has to do with when PALs are placed in their outgoing PAL queue.
We require that PALs be placed in the output queue before releasing the lock associ-
ated to the shared variable they refer to. This gives two guarantees: i) when pi is queued,
all of its PALs are already queued; and ii) when a PAL for vj is queued, all previous PALs
for the same variable are already in the output queues for this or other threads. We explain
the significance of these properties when we present the output commit algorithm in §4.3.4.

4.3.3 De�ning a Packet’s Dependencies

During the replay, the replica must evolve in the same way as the master. For a shared
variable vj accessed while processing pi, this can happen only if i) the variable has gone
through the same sequence of accesses, and ii) the thread has the same internal state. These
conditions can be expressed recursively in terms of the PALs: each PAL (pi, n, vj,m) in turn
has up to two dependencies: one per-packet (pi, n − 1, vk, sik), i.e., on its predecessor PAL
for pi, and one per-variable (pi′ , n

′, vj,m− 1), i.e., on its predecessor PAL for vj , generated
by packet pi′ . A packet depends on its last PAL, and from that we can generate the tree
of dependencies; as an example, the red path in the figure represents the dependencies for
packet B.

We should note that the recursive dependency is essential for correctness. If, for instance,
packet B in the figure were released without waiting for the PAL (D, 1, Z, 1), and the thread
generating that PAL crashed, during the replay we could not adequately reconstruct the state
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of the shared variables used while processing packet B.

4.3.4 Output Commit

We now develop an algorithm that ensures we do not release pi until all PALs correspond-
ing to pi’s dependencies have arrived at the output logger. This output commit decision is
implemented at the output logger. The challenge in this arises from the parallel nature of our
system. Like the master, our output logger is multi-threaded and each thread has an inde-
pendent queue. As a result, the PALs corresponding to pi’s dependencies may be distributed
across multiple per-thread queues. We must thus be careful to minimize cache misses and
avoid the use of additional synchronization operations.

Rejected Design: Fine-grained Tracking

The straightforward approach would be to explicitly track individual packet and PAL
arrivals at the output logger and then release a packet pi after all of its PAL dependencies have
been logged. Our first attempt implemented a ‘scoreboard’ algorithm that did exactly this at
the output logger. We used two matrices to record PAL arrivals: (i) SEQ[i, j] which stores the
sequence number of pi at vj and (ii) PKT[j, k], the identifier of the packet that accessed vj
at sequence number sk. These data structures contain all the information needed to check
whether a packet can be released. We designed a lock-free multi-threaded algorithm that
provably released data packets immediately as their dependencies arrived at the middlebox;
however, the overhead of cache contention in reading and updating the scoreboard resulted
in poor throughput. Given the two matrices described above, we can expect O(nc) cache
misses per packet release, where n is the number of shared variables and c the number of
cores (we omit details due to space considerations). Despite optimizations, we find that
explicitly tracking dependencies in the above fashion will result in the scoreboard becoming
the bottleneck for simple applications.

Parallel release of PALs

We now present a solution that is slightly more coarse-grained, but is amenable to a
parallel implementation with very limited overhead. Our key observation here is that the
rules chosen to queue PALs and packets guarantee that both the per-packet and per-variable
dependencies for a given packet are already queued for release on some thread before the
packet arrives at the output queue on its own thread. This follows from the fact that the PAL
for a given lock access is always queued before the lock is released. Hence, we only need to
transfer PALs and packets to the output logger in a way that preserves the ordering between
PALs and data packets.

This is achieved with a simple algorithm run between the Master and the Output Logger,
illustrated in Fig. 4.4. Each thread on the Master maps ‘one to one’ to an ingress queue on
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Figure 4.4: Parallel release. Each PAL is assigned a sequence number identifying when it was generated
within that thread; a packet is released from the output logger if all PALs that were queued before it
(on any thread) have been logged.

the Output Logger. PALs in each queue are transferred as a sequential stream (similar to
TCP), with each PAL associated to an per-queue sequence number. This replaces the second
entry in the PAL, which then does not need to be stored. Each thread at the Master keeps
track of MAX, the maximum sequence number that has been assigned to any PAL it has
generated.
On the Master: Before sending a data packet from its queue to the output logger, each
thread on the master reads the current MAX value at all other threads and creates a vector
clock VOR which is associated with the packet. It then reliably transfers the pending PALs
in its queue, followed by the data packets and associated vector clocks.
On the Output Logger: Each thread continuously receives PALs and data packets, request-
ing retransmissions in the case of dropped PALs. When it receives a PAL, a thread updates
the value MAX representing the highest sequence number such that it has received all PALs
prior to MAX. On receiving a data packet, each thread reads the value MAX over all other
threads, comparing each with the vector clock VOR. Once all values MAXi ≥ VORi, the
packet can be released.

Performance

Our parallel release algorithm is e�cient because i) threads on the master and the output
logger can run in parallel; ii) there are no write-write conflicts on the access to other queues,
so memory performance does not su�er much; iii) the check to release a packet requires a
very small constant time operation; iv) when batching is enabled, all packets released by the
master in the same batch can use the same vector clock, resulting in very small overhead
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on the link between the master and the output logger and amortizing the cost of the ‘check’
operation.

4.4 System Implementation

We present key aspects of our implementation of FTMB. For each, we highlight the perfor-
mance implications of adding FTMB to a regular middlebox through qualitative discussion
and approximate back-of-the-envelope estimates; we present experimental results with our
prototype in §5.7.

The logical components of the architecture are shown in Figure 4.2. Packets flow from
the Input Logger (IL), to the Master (M), to the Output Logger (OL). FTMB also needs
a Stable Storage (SS) subsystem with enough capacity to store the state of the entire VM,
plus the packets and PALs accumulated in the IL and OL between two snapshots. In our
implementation the IL, OL and SS are on the same physical machine, which is expected to
survive when M crashes.

To estimate the amount of storage needed we can assume a snapshot interval in the 50–
200 ms range (§5.7), and input and output tra�c limited by the link’s speed (10–40 Gbit/s).
We expect to cope with a large, but not overwhelming PAL generation rate; e.g., in the order
of 5 M PALs/s (assuming an input rate of 1.25M packets/second and 5 shared state accesses
per packet).

4.4.1 Input Logger

The main role of the IL is to record input tra�c since the previous snapshot, so that
packets can be presented in the same order to the replica in case of a replay.

The input NIC on the IL can use standard mechanisms (such as 5-tuple hashing on
multiqueue NICs) to split tra�c onto multiple queues, and threads can run the IL tasks
independently on each queue. Specifically, on each input queue, the IL receives incoming
packets, assigns them sequence numbers, saves them into stable storage, and then passes
them reliably to the Master.
Performance implications: The IL is not especially CPU intensive, and the bandwidth to
communicate with the master or the storage is practically equal to the input bandwidth: the
small overhead for reliably transferring packets to the Master is easily o�set by aggregating
small frames into MTU-sized segments.

It follows that the only e�ect of the IL on performance is the additional (one way) latency
for the extra hop the tra�c takes, which we can expect to be in the 5–10µs range[85].

4.4.2 Master

The master runs a version of the Middlebox code with the following modifications:
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• the input must read packets from the reliable stream coming from the IL instead of
individual packets coming from a NIC;
• the output must transfer packets to the output queue instead of a NIC.
• access to shared variables is protected by locks, and includes calls to generate and
queue PALs;
• access to special hardware functions (timers, etc.) also generates PALs as above.

A shim layer takes care of the first two modifications; for a middlebox written using Click, this
is as simple as replacing the FromDevice and ToDevice elements. We require that developers
annotate shared variables at the point of their declaration. Given these annotations, we
automate the insertion of the code required to generate PALs using a custom tool inspired
by generic systems for data race detection [139].

Our tool uses LLVM’s [112] analysis framework (also used in several static analysis tools
including the Clang Static Analyzer [9] and KLEE [59]) to generate the call graph for the
middlebox. We use this call graph to record the set of locks held while accessing each shared
variable in the middlebox. If all accesses to the shared variable are protected by a common
lock, we know that there are no contended accesses to the variable and we just insert code
to record and update the PAL. Otherwise we generate a “protecting” lock and insert code
that acquires the lock before any accesses, in addition to the code for updating the PALs.
Note that because the new locks never wrap another lock (either another new lock or a
lock in the original source code), it is not possible for this instrumentation to introduce
deadlocks [48, 66]. Since we rely on static analysis, our tool is conservative, i.e. it might
insert a protecting lock even when none is required.

FTMB is often compatible with lock-free optimizations. For example, we implemented
FTMB to support seqlocks [37], which are used in multi-reader/single-writer contexts. seqlocks
use a counter to track what ‘version’ of a variable a reader accessed; this version number
replaces sij in the PAL.
Performance implications: the main e�ect of FTMB on the performance of the Master is
the cost of PAL generation, which is normally negligible unless we are forced to introduce
additional locking in the middlebox.

4.4.3 Output Logger

The Output Logger cooperates with the Master to transfer PALs and data packets and to
enforce output commit. The algorithm is described in §4.3.4. Each thread at M transports
packets with a unique header such that NIC hashing at OL maintains the same a�nity,
enforcing a one-to-one mapping between an eggress queue on M to an ingress queue on OL.

The tra�c between M and OL includes data packets, plus additional information for
PALs and vector clocks. As a very coarse estimate, even for a busy middlebox with a total
of 5 M PALs and vector clocks per second, assuming 16 bytes per PAL, 16 bytes per vector
clock, the total bandwidth overhead is about 10% of the link’s capacity for a 10 Gbit/s link.
Performance implications: once again the impact of FTMB on the OL is more on latency
than on throughput. The minimum latency to inform the OL that PALs are in stable storage
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is the one-way latency for the communication. On top of this, there is an additional latency
component because our output commit check requires all queued PALs to reach the OL be-
fore the OL releases a packet. In the worst case a packet may find a full PAL queue when
computing its vector clock, and so its release may be delayed by the amount of time required
to transmit a full queue of PALs. Fortunately, the PAL queue can be kept short e.g., 128 slots
each, without any adverse e�ect on the system (PALs can be sent to the OL right away; the
only reason to queue them is to exploit batching). For 16-byte PALs, it takes less than 2µs of
link time to drain one full queue, so the total latency introduced by the OL and the output
commit check is in the 10-30µs range.

4.4.4 Periodic snapshots

FTMB takes periodic snapshots of the state of the Master, to be used as a starting point
during replay, and avoid unbounded growth of the replay time and input and output logs
size. Checkpointing algorithms normally freeze the VM completely while taking a snapshot
of its state.
Performance implications: The duration of the freeze, hence the impact on latency, has a
component proportional to the number of memory pages modified between snapshots, and
inversely proportional to bandwidth to the storage server. This amounts to about 5µs for each
4 Kbyte page. on a 10 Gbit/s link, and quickly dominates the fixed cost (1-2ms) for taking the
snapshot. However, a worst case analysis is hard as values depend on the (wildly variable)
number of pages modified between snapshots. Hence it is more meaningful to gauge the
additional latency from the experimental values in §5.7 and the literature in general[69].

4.4.5 Replay

Finally, we describe our implementation of replay, when a Replica VM starts from the
last available snapshot to take over a failed Master. The Replica is started in “replay mode”,
meaning that the input is fed (by the IL) from the saved trace, and threads use the PALs to
drive nondeterministic choices.

On input, the threads on the Replica start processing packets, discarding possible dupli-
cates at the beginning of the stream. When acquiring the lock that protects a shared variable,
the thread uses the recorded PALs to check whether it can access the lock, or it has to block
waiting for some other thread that came earlier in the original execution. The information
in the PALs is also used to replay hardware related non deterministic calls (clocks, etc.). Of
course, PALs are not generated during the replay.

On output, packets are passed to the OL, which discards them if a previous instance
had been already released, or pass it out otherwise (e.g., copies of packets still in the Master
when it crashed, even though all of their dependencies had made it to the OL). A thread exits
replay mode when it finds that there are no more PALs for a given shared variable. When this
happens, it starts behaving as the master, i.e. generate PALs, compute output dependencies,
etc.
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Middlebox LOC SVs Elts Source
Mazu-NAT 5728 3 46 Mazu Networks [26]
WAN Opt. 5052 2 40 Aggarwal et al. [42]
BW Monitor 4623 251 41 Custom
SimpleNAT 4964 2 42 Custom
Adaptive LB 5058 1 42 Custom
QoS Priority 5462 3 56 Custom
BlindFwding 1914 0 24 Custom

Table 4.1: Click configurations used in our experiments, including Lines of Code (LOC), Shared
Variables (SVs), number of Elements (Elts), and the author/origin of the configuration.

Performance implications: other than having to re-run the Middlebox since the last snap-
shot, operation speed in replay mode is comparable to that in the original execution. §4.5.2
presents some experimental results. Of course, the duration of service unavailability after a
failure also depends on the latency of the failure detector, whose discussion is beyond the
scope of this paper.

4.5 Evaluation

We added FTMB support into 7 middlebox applications implemented in Click: one con-
figuration comes from industry, five are research prototypes, and one is a simple ‘blind for-
warding’ configuration which performs no middlebox processing; we list these examples in
Table 4.1.

Our experimental setup is as follows. FTMB uses Xen 4.2 at the master middlebox with
Click running in an OpenSUSE VM, chosen for its support of fast VM snapshotting [24].
We use the standard Xen bridged networking backend; this backend is known to have low
throughput and substantial recent work aims to improve throughput and latency to virtual
machines, e.g., through netmap+xennet [135, 115] or dpdk+virtio [99, 138]. However, neither
of these latter systems yet supports seamless VM migration. We thus built two prototypes:
one based on the Xen bridged networking backend which runs at lower rates (100Mbps) but
is complete with support for fast VM snapshots and migration, and a second prototype that
uses netmap+xennet and scales to high rates (10Gbps) but lacks snapshotting and replay. We
primarily report results from our complete prototype; results for relevant experiments with
the high speed prototype were qualitatively similar.

We ran our tests on a local network of servers with 16-core Intel Xeon EB-2650 processors
at 2.6Ghz, 20MB cache size, and 128GB memory divided across two NUMA nodes. For all
experiments shown, we used a standard enterprise trace as our input packet stream [72];
results are representative of tests we ran on other traces.

We first evaluate the FTMB’s latency and bandwidth overheads under failure-free opera-
tion (§4.5.1). We then evaluate recovery from failure (§4.5.2).
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4.5.1 Overhead on Failure-free Operation

How does FTMB impact packet latency under failure-free operation? In Figure 4.5, we
present the per-packet latency through a middlebox over the local network. A packet source
sends tra�c (over a logging switch) to a VM running a MazuNAT (a combination firewall-
NAT released by Mazu Networks [26]), which loops the tra�c back to the packet generator.
We measure this RTT. To test FTMB, we first show the base latency with (a) just the Mazu-
NAT, (b) the MazuNAT with I/O logging performed at the upstream/downstream switch, (c)
the MazuNAT with logging, PAL-instrumented locks, parallel release for the output commit
condition and (d) running the MazuNAT with all our fault tolerance mechanisms, including
VM checkpointing every 200ms. Adding PAL instrumentation to the middlebox locks in
the MazuNAT has a negligible impact on latency, increasing 30µs over the baseline at the
median, leading to a 50th percentile latency of 100µs.9 However, adding VM checkpointing
does increase latency, especially at the tail: the 95th %-ile is 810µs, and the 99th %-ile s 18ms.

To understand the cause of this tail latency, we measured latency against time using the
Blind Forwarding configuration. Figure 4.6 shows the results of this experiment: we see
that the latency spikes are periodic with the checkpoint interval. Every time we take a VM

9In similar experiments with our netmap-based prototype we observe a median latency increase of 25µs and
40µs over the baseline at forwarding rates of 1Gbps and 5Gbps respectively, both over 4 cores.
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Figure 4.7 : Local RTT with FTMB and other FT systems.

snapshot, the virtual machine suspends temporarily, leading to a brief interval where packets
are bu�ered as they cannot be processed. As new hardware-assisted virtualization techniques
improve [1, 63] we expect this penalty to decrease with time; we discuss these opportunities
further in §4.7.

How does the latency introduced by FTMB compare to existing fault-tolerance so-
lutions? In Figure 4.7, we compare FTMB against three proposals from the research com-
munity: Pico [132], Colo [76], and Xen Remus [69]. Remus and Colo are general no-replay
solutions which can provide fault tolerance for any VM-based system running a standard
operating system under x86. Remus operates by checkpointing and bu�ering output until
the next checkpoint completes; this results in a median latency increase for the MazuNAT by
over 50ms. for general applications Colo can o�er much lower latency overhead than Remus:
Colo allows two copies of a virtual machine to run side-by-side in “lock step”. If their output
remains the same, the two virtual machines are considered identical; if the two outputs di�er,
the system forces a checkpoint like Remus. Because multi-threaded middleboxes introduce
substantial nondeterminism, though, Colo cannot o�er us any benefits over Remus: when
we ran the MazuNAT under Colo, it checkpointed just as frequently as Remus would have,
leading to an equal median latency penalty.

Pico is a no-replay system similar to Remus but tailored to the middlebox domain by
o�ering a custom library for flow state which checkpoints packet processing state only, but
not operating system, memory state, etc., allowing for much lighter-weight and therefore faster
checkpoint. The authors of Pico report a latency penalty of 8-9ms in their work which is a
substantial improvement over Colo and Remus, but still a noticeable penalty due to the
reliance on packet bu�ering until checkpoint completion.

How does inserting PALs increase latency? To measure the impact of PALs over per-
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Figure 4.9 : Ideal [116] and observed page load times when latency is artificially introduced in the
network.

packet latency, we used a toy middlebox with a simple pipeline of 0, 1, or 5 locks and ran
measurements with 500-byte packets at 1Gbps with four threads dedicated to processing in
our DPDK testbed. Figure 4.8 shows the latency distributions for our experiments, relative to
a baseline of the same pipeline with no locks. At 5 PALS/Locks per packet, latency increases
to 60µs with 5 PALS/Locks per packet, relative to a median latency under 40µs in the baseline
– an increase of on average 4µs per PAL/Lock per packet. Note that this latency figure includes
both the cost of PAL creation and lock insertion; the worst case overhead for FTMB is when
locks are not already present in the base implementation.

How much does latency matter to application performance? We measured the impact of
inflated latency on Flow Completion Times (FCTs) with both measurements and modeling.
In Figure 4.9, we show flow completion times for a 2MB flow (representative of web page load
sizes) given the flow completion time model by Mittal et al. [116] marked as ‘Ideal’. Marked
as ‘Observed’, we downloaded the Alexa top-1000 [2] web pages over a LAN and over a WAN
and used tc to inflate the latency by the same amounts. In both the datacenter and LAN
cases, adding 10ms of latency on the forward and reverse path increases flow completion
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Figure 4.10 : Impact of FTMB on forwarding plane throughput.

times to 20× the original in the simulated case; in the experimental LAN case it increased
FCT to 10×. In the WAN case, page load times increased to 1.5× by adding 10ms of latency
from a median of 343ms to 492ms. An experiment by Amazon shows that every 100ms of
additional page load time their customers experienced costs them 1% in sales [106].

Given these numbers in context, we can return to Figure 4.7 and see that solutions based
on Colo, Pico, or Remus would noticeably harm network users’ quality of experience, while
FTMB, with introduced latency typically well under 1ms, would have a much weaker impact.

How much does FTMB impact throughput under failure-free operation? Figure 4.10
shows forwarding plane throughput in a VM, in a VMwith PAL instrumentation, and running
complete FTMB mode with both PAL instrumentations and periodic VM snapshotting. To
emphasize the extra load caused by FTMB, we ran the experiment with locally sourced tra�c
and dropping the output. Even so, the impact is modest, as expected (see §4.4.2). For most
configurations, the primary throughput penalty comes from snapshotting rather than from
PAL insertion. The MazuNAT and SimpleNat saw a total throughput reduction of 5.6% and
12.5% respectively. However, for the Monitor and the Adaptive Load Balancer, PAL insertion
was the primary overhead, causing a 22% and 30% drop in throughput respectively. These
two experience a heavier penalty since typically they have no contention for access to shared
state variables: the tens of nanoseconds required to generate a PAL for these middleboxes is
a proportionally higher penalty than it is for middleboxes which spend more time per-packet
accessing complex and contended state.

We ran similar experiments with Remus and Colo, where throughput peaked in the low
hundreds of Kpps. We also ran experiments with Scribe [110], a publicly-available system for
record and replay of general applications, which aims to automatically detect and record data
races using page protection. This costs about 400us per lock access due to the overhead of
page faults.10 Using Scribe, a simple two-threaded Click configuration with a single piece of
shared state stalled to a forwarding rate of only 500 packets/second.

10Measured using the Scribe demo image in VirtualBox.
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Figure 4.12: Packet latencies post-replay.

4.5.2 Recovery

How long does FTMB take to perform replay and how does replay impact packet
latencies? Unlike no-replay systems, FTMB adds the cost of replay. We measure the
amount of time required for replay in Fig. 4.11. We ran these experiments at 80% load
(about 3.3 Mpps) with periodic checkpoints of 20, 50, 100, and 200ms.

For lower checkpoint rates, we see two e�ects leading to a replay time that is actually
less than the original checkpoint interval. First, the logger begins transmitting packets to the
replica as soon as replay begins – while the VM is loading. This means that most packets are
read pre-loaded to local memory, rather than directly from the NIC. Second, the transmission
arrives at almost 100% of the link rate, rather than 80% load as during the checkpoint interval.

However, at 200ms, we see a di�erent trend: some middleboxes that make frequent ac-
cesses to shared variable have a longer replay time than the original checkpoint interval be-
cause of the overhead of replaying lock accesses. Recall that when a thread attempts to access
a shared-state variable during replay, it will spin waiting for its ‘turn’ to access the variable
and this leads to slowed execution.

During replay, new packets that arrive must be bu�ered, leading to a period of increased
queueing delays after execution has resumed. In Figure 4.12, we show per-packet latencies for
packets that arrive post-failure for MazuNAT at di�erent load levels and replay times between
80-90ms. At 30%-load, packet latencies return to their normal sub-millisecond values within
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Figure 4.13 : Application performance with and without state restoration after recovery. Key (top
right) is same for all figures.

60ms of resumed execution. As expected recovery takes longer at higher loads: at 70% load
per-packet latency remains over 10ms even at 175ms, and the latencies do not decrease to
under a millisecond until past 300ms after execution has resumed.
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Is stateful failover valuable to applications? Perhaps the simplest approach to recovering
from failure is simply to bring up a backup from ‘cold start’, e�ectively wiping out all con-
nection state after failure: i.e., recovery is stateless. To see the impact of stateless recovery on
real applications, we tested several applications over the wide area with a NAT which either
(a) did not fail (our baseline), (b) went absent for 300ms,11 during which time tra�c was
bu�ered (this represents stateful recovery), or (c) flushed all state on failure (representing
stateless recovery). Figure 4.13 shows the time to download 500 pages in a 128-thread loop
from the Alexa-top US sites, percentage file completion over time for a large FTP download,
and percentage file completion for two separate BitTorrent downloads. In all three config-
urations, stateful recovery performs close to the performance of the baseline. For stateless
recovery over the HTTP connections, we see a sharp knee corresponding to the connection
reset time: 180 seconds12. The only application with little impact under stateless recovery is
one of the BitTorrent downloads – however, the other BitTorrent download failed almost en-
tirely and the client had to be restarted! The torrent which failed had only 10 available peers
and, when the connections were reset, the client assumed that the peers had gone o�ine.
The other torrent had a large pool of available peers and hence could immediately reconnect
to new peers.

Our point in these experiments is not to suggest that applications are fundamentally
incapable of rapid recovery in scenarios of stateless recovery, but simply that many existing
applications do not.

4.6 Related Work

We briefly discuss the three lines of work relevant to FTMB, reflecting the taxonomy of related
work introduced in §4.1.

First are no-replay schemes. In §5.7 we described in detail three recent systems – Remus,
Pico and Colo – that adopt this approach and compared FTMB to them experimentally.

The second are solutions for rollback recovery from the distributed systems literature.
The literature includes a wide range of protocol proposals (we refer the reader to Elnozahy
et al. [80] for an excellent survey); however, to our knowledge, there is no available system
implementation that we can put to the test for our application context.13 More generally, as
mentioned earlier, the focus on distributed systems (as opposed to a parallel program on a
single machine) changes the nature of the problem in many dimensions, such as: the failure
model (partial vs. complete failure), the nature of non-determinism (primarily the arrival
and sending order of messages at a given process vs. threads that ‘race’ to access the same
variable), the frequency of output (for us, outputs are generated at a very high rate) and the

11We picked 300ms as a conservative estimate of recovery time; our results are not sensitive to the precise
value.

12Firefox, Chrome, and Opera have reset times of 300 seconds, 50 seconds, and 115 seconds respectively.
13In their survey paper, Elnozahy et al. state that, in practice, log-based rollback-recovery has seen little

adoption due to the complexity of its algorithms.
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frequency of nondeterminism (per-packet for us), and where the performance bottlenecks lie
(for us, in the logging and output commit decision). These di�erences led us to design new
solutions that are simpler and more lightweight than those found in the literature.

The final class of solutions are the multicore record-and-replay systems used for debug-
ging. These do not implement output commit. We discussed these solutions in broad terms
in §4.1 and evaluated one such system (Scribe) in §5.7.

In the remainder of this section we briefly review a few additional systems.
Hypervisor-based Fault Tolerance [58] was an early, pioneering system in the 90s to implement
fault-tolerance over arbitrary virtual machines; their approach did not address multicore
systems, and required synchronization between the master and replica for every nondeter-
ministic operation.
SMP Revirt [77] performs record-and-replay over Xen VMs; unlike FTMB SMPRevirt is hence
fully general. As in Scribe, SMP ReVirt uses page protection to track memory accesses. For
applications with limited contention, the authors report a 1.2-8x slowdown, but for so-called
“racy” applications (like ours) with tens or hundreds of thousands of faults per second we
expect results similar to those of Scribe.
Eidetic Systems [70] allow a user to replay any event in the system’s history – on the scale of
even years. They achieve very low overheads for their target environment: end user desktops.
However, the authors explicitly note that their solutions do not scale to racy and high-output
systems.
R2 [95] logs a cut in an application’s call graph and introduces detailed logging of information
flowing across the cut using an R2 runtime to intercept syscalls and underlying libraries; the
overhead of their interception makes them poorly suited to our application with frequent
nondeterminism.
ODR [43] is a general record-and-replay system that provides output determinism: to reduce
runtime overhead ODR foregoes logging all forms of nondeterminism and instead searches
the space of possible executions during replay. This can result in replay times that are several
orders of magnitude higher than the original execution (in fact, the search space is NP hard).
This long replay time is not acceptable for applications looking to recover from a failure (as
opposed to debugging post-failure).

4.7 Discussion

In this chapter, we presented FTMB, a system for rollback recovery which uses ordered
logging and parallel release for low overhead middlebox fault-tolerance. We showed that
FTMB imposes only 30µs of latency for median packets through an industry-designed mid-
dlebox. FTMB has modest throughput overheads, and can perform replay recovery in 1-2
wide area RTTs. In outsourced environments, FTMB can implement correct recovery from
failure, even when middleboxes are implemented in software and on shared infrastructure.
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Chapter 5

Privacy Preserving Middleboxes

Many network middleboxes perform deep packet inspection (DPI) to provide a wide range
of services which can benefit both end users and network operators. For example, Network
Intrusion Detection/Prevention (IDS/IPS) systems (e.g., Snort [136] or Bro [122]) detect if
packets from a compromised sender contain an attack. Exfiltration prevention devices block
accidental leakage of private data in enterprises by searching for document confidentiality wa-
termarks in the data transferred out of an enterprise network [146]. Parental filtering devices
prevent children from accessing adult material in schools, libraries, and homes [33]. These
devices and many others [21, 23, 22] all share the common feature that they inspect packet
payloads; the market for such DPI devices is expected to grow to over $2B by 2018 [145].

Implementing DPI services entails that the middleboxes operate over unencrypted tra�c.
The need for unencrypted tra�c at times introduces tension between user privacy and the need
for security tra�c inspection. For example, in public networks such as cafes and universities,
users may desire that their data be kept secret from observers including frin network admin-
istrators; today these users can either have privacy or the network administrators can decrypt
the tra�c for inspection. In traditional enterprise deployments, however, there is usually
no such concern: network users are employees of the enterprise carrying out company busi-
ness over the network. Any transmissions over the company network are likely to be logged,
recorded, and monitored for security, auditing, and company record-keeping. However, in
proposing cloud outsourcing, we have now introduced into enterprise networks the same
tension between privacy and DPI that troubles public networks because the enterprise and
its users may wish to keep their data secret from network service providers at the cloud. Pri-
vacy concerns regarding cloud providers are exercerbated by the documented data breaches
by cloud employees or hackers [65, 157]. These privacy concerns can act as an obstacle to
outsourcing network middleboxes to the cloud.

In this chapter, we demonstrate that it is possible to build a system that provides privacy
of the plaintext tra�c, while still allowing a third party middlebox provider to implement DPI
services. We present BlindBox, the first system that provides both the benefits of encryption
and functionality at a DPI middlebox. The name “BlindBox” denotes that the middlebox
cannot see the private content of tra�c. BlindBox keeps data private from any middlebox
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provider and is applicable both to the ‘public network’ use case (where users in cafes and
universities want privacy from middleboxes in their local network) as well as in the outsourc-
ing scenario (where users and their enterprise administrators wish to keep data secret from
the cloud provider).

Our approach is to perform the inspection directly on the encrypted payload, without decrypt-
ing the payload at the middlebox. Building a practical such system is challenging: networks
operate at very high rates requiring cryptographic operations on the critical path to run in
micro or even nano seconds; further, some middleboxes require support for rich operations,
such as matching regular expressions. A potential candidate is expressive cryptographic
schemes such as fully homomorphic or functional encryption [90, 87, 93], but these are pro-
hibitively slow, decreasing network rates by many orders of magnitude.

To overcome these challenges, BlindBox explores and specializes on the network setting.
BlindBox enables two classes of DPI computation each having its own privacy guarantees:
exact match privacy and probable cause privacy. Both of BlindBox’s privacy models are much
stronger than the state-of-the-art “man in the middle" approach deployed today, where tra�c
is decrypted to enable any processing at all. In both of these models, BlindBox protects
the data with strong randomized encryption schemes providing similar security guarantees
to the well-studied notion of searchable encryption [147, 103]. Depending on the class of
computation, BlindBox allows the middlebox to learn a small amount of information about
the tra�c to detect rules e�ciently.

The first class of computation consists of DPI applications that rely only on exact string
matching, such as watermarking, parental filtering, and a limited IDS. Under the associated
privacy model, exact match privacy, the middlebox learns at which positions in a flow attack
keywords occur; for substrings of the flow that do not match an attack keyword, the middlebox
learns virtually nothing.

The second class of computation can support all DPI applications, including those which
perform regular expressions or scripting. The privacy model here, probable cause privacy, is a
new network privacy model: the middlebox gains the ability to see a (decrypted) individual
packet or flow only if the �ow is suspicious; namely, the flow contains a string that matches
a known attack keyword. If the stream is not suspicious, the middlebox cannot see the
(decrypted) stream. Hence, privacy is a�ected only with a cause.

BlindBox allows users to select which privacy model they are most comfortable with.
To implement these two models, we developed the following techniques:

• DPIEnc and BlindBox Detect are a new searchable encryption scheme [147] and an as-
sociated fast detection protocol, which can be used to inspect encrypted tra�c for certain
keywords e�ciently. As we explain in §5.2, existing searchable encryption schemes [147,
103, 52] are either deterministic (which can enable fast protocols, but provide weak secu-
rity) or randomized (which have stronger security, but are slow in our setting). DPIEnc
with BlindBox Detect achieve both the speed of deterministic encryption and the security
of randomized encryption; detection on encrypted tra�c runs as fast as on unencrypted
tra�c.
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Figure 5.1: System architecture. Shaded boxes indicate algorithms added by BlindBox.

• Obfuscated Rule Encryption is a technique to allow the middlebox to obtain encrypted
rules based on the rules from the middlebox and the private key of the endpoints, without
the endpoints learning the rules or the middlebox learning the private key. This technique
builds on Yao’s garbled circuits [164] and oblivious transfer [117, 131, 83].

• Probable Cause Decryption is a mechanism to allow flow decryption when a suspicious
keyword is observed in the flow; this is the mechanism that allows us to implement our
probable cause privacy model.
We implemented BlindBox as well as a new secure transport protocol for HTTP, which we

call BlindBox HTTPS. We show that BlindBox’s performance is practical for many settings.
For example, the rate at which the middlebox can inspect packets is as high as 186Mbps
per core in our experiments. Given that standard IDS implementations, such as Snort [136],
peak at under 100Mbps, this performance is competitive with existing deployments. We
achieve this performance due to DPIEnc and BlindBox Detect. When compared to two straw-
men consisting of a popular searchable encryption scheme [147] and a functional encryption
scheme [104], DPIEnc with BlindBox Detect are 3-6 orders of magnitude faster.

Nevertheless, a component of BlindBox is not yet as fast as desirable: the setup of an
HTTPS connection. This setup performs obfuscated rule encryption and it takes time pro-
portional to the number of attack rules. For rulesets with tens of keywords, this setup com-
pletes in under a second; however, for large IDS installations with thousands of rules, the
setup can take up to 1.5 minutes to complete. Hence, BlindBox is most fit for settings using
long or persistent connections through SPDY-like protocols, and not yet practical for short,
independent flows with many rules.

5.1 Overview

Fig. 5.1 presents the system architecture. There are four parties: sender (S), receiver (R),
middlebox (MB), and rule generator (RG) – these reflect standard middlebox deployments
today. RG generates attack rules (also called signatures) to be used by MB in detecting
attacks. Each rule attempts to describe an attack and it contains fields such as: one or
more keywords to be matched in the tra�c, o�set information for each keyword, and some-
times regular expressions. The RG role is performed today by organizations like Emerging
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Threats [12], McAfee [16], or Symantec [29]. S and R send tra�c through MB. MB allows S
and R to communicate unless MB observes an attack rule in their tra�c.

In today’s deployments, MB can read any tra�c sent between S and R. With BlindBox,
MB should be able to detect if attack rules generated by RG match the tra�c between R and
S, but should not learn the contents of the tra�c that does not match RG’s attack rules.

5.1.1 Usage Scenarios

Before formalizing our threat model, we illustrate our usage scenario with three examples.
For each individual in these examples, we indicate the party in our model (R, S, MB, or RG)
that they correspond to.

Example #1: University Network: Alice (R or S) is a student at the University of SIG-
COMM and brings her own laptop to her dorm room. However, university policy requires
that all student tra�c be monitored for botnet signatures and illegal activity by a middlebox
(MB) running an IDS. Alice is worried about her computer being infected with botnet soft-
ware, so she also desires this policy applied to her tra�c. McAfee (RG) is the service that
provides attack rules to the middlebox and Alice trusts it. However, she is uncomfortable
with the idea of someone she doesn’t know (who has access to the middlebox) potentially
being able to read her private Facebook messages and emails. Alice installs BlindBox HTTPS
with McAfee’s public key, allowing the IDS to scan her tra�c for McAfee’s signatures, but
not read her private messages.

Example #2: Enterprise Service: Bob is an administrator of a small company with many
middleboxes. He wants to outsource his middlebox processing to a third-party middlebox
service provider as in APLOMB [143], but he doesn’t want company secrets revealed to agents
at the cloud provider. Within the enterprise, clients always use HTTPS to keep sensitive data
encrypted; middleboxes within the enterprise know how to decrypt these streams to scan for
malicious or restricted content. Bob wants to outsource these middleboxes, but he doesn’t
want them to be able to decrypt the content. Bob pushes an update to all company servers,
laptops, phones, etc., installing BlindBox HTTPS and Symantec’s public key. These encrypted
HTTP streams are then tunneled to the cloud provider, who searches for Symantec’s rules
within the encrypted data.

In the above examples, Alice and Bob want to have a middlebox check for the attack rules
the corresponding trusted parties permit, but the middlebox should not learn anything else about
the content of the tra�c. A key requirement is that there exists an RG which Alice, Bob and
the MB trust with rule generation; if this is not the case, the parties cannot use BlindBox.

Anti-Example #1: Political Dissident: Charlie (R or S) is a political dissident who fre-
quently browses sensitive websites, and is concerned about government monitoring. If the
government coerces one of MB or RG, Charlie remains protected. However, BlindBox should
not be used in a setting in which both MB and RG can be controlled by an attacker: in this
case, RG can produce signatures for sensitive terms and MB will use these to match the traf-
fic. Hence, if the government can coerce both MB and RG together, Charlie should not use
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BlindBox. Similarly, if the government can coerce root certificate generators, Charlie should
not use vanilla HTTPS either because it may allow man-in-the-middle attacks on his tra�c.

5.1.2 Security and Threat Model

The goal of our work is to protect the privacy of user tra�c from MB. Any solution must
satisfy a set of systems requirements we discuss in §5.1.2. We then discuss the threat model
in §5.1.2 and the privacy guarantees BlindBox provides in §5.1.2.

System Requirements

BlindBox retains key system goals of traditional IDS deployments today: (1) BlindBox
must maintain MB’s ability to enforce its policies (i.e., detect rules and drop/alert accord-
ingly), and (2) endpoints must not gain access to the IDS rules. The rationale behind the
second requirement is twofold. First, in order to make IDS evasion more di�cult for an at-
tacker at the user, the rules should be hidden from the endpoints [122]. Second, most vendors
(e.g., Lastline and McAfee Stonesoft) rely on the secrecy of their rulesets in their business
model, as their value added against competitors often includes more comprehensive, more
e�cient, or harder to evade rules.

BlindBox maintains these two requirements, and adds an additional one: (3) that the mid-
dlebox cannot read the user’s tra�c, except the portions of the tra�c which are considered
suspicious based on the attack rules.

Threat Model

There are two types of attackers in our setup.

The original attacker considered by IDS: This is the same attacker that traditional (un-
encrypted) IDS consider and we do not change the threat model here. Our goal is to detect
such an attacker over encrypted tra�c. As in traditional IDS, one endpoint can behave mali-
ciously, but at least one endpoint must be honest. This is a fundamental requirement of any
IDS [122] because otherwise two malicious endpoints can agree on a secret key and encrypt
their tra�c under that key with a strong encryption scheme, making prevention impossible by
the security properties of the encryption scheme. Similarly, the assumption that one endpoint
is honest is also the default for exfiltration detection and parental filtering today. Parental fil-
ters can assume one endpoint is innocent under the expectation that 8-year-olds are unlikely
replace their network protocol stack or install tunneling software. Commercial exfiltration
detection devices primarily target accidental exfiltration (e.g., where an otherwise innocent
employee attaches the wrong file to an email), recognizing that deliberate exfiltration requires
control of the end host.

The attacker at the middlebox: This is the new attacker in our setting. This attacker
tries to subvert our scheme by attempting to extract private data from the encrypted tra�c
passing through the middlebox. We assume that the middlebox MB performs the detection
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honestly, but that it tries to learn private data from the tra�c and violate the privacy of the
endpoints. In particular, we assume that an attacker at MB reads all the data accessible to
the middlebox, including tra�c logs and other state. Given this threat model, BlindBox’s
goal is to hide the content of the tra�c from MB, while allowing MB to do DPI. We do not
seek to hide the attack rules from the MB itself; many times these rules are hardcoded in the
MB.

Privacy Models

We now describe our privacy models.
Exact Match Privacy gives the following guarantee: the middlebox will be able to discover
only those substrings of the tra�c that are exact matches for known attack keywords. For
example, if there exists a rule for the word “ATTACK”, the middlebox will learn at which
o�set in the flow the word “ATTACK” appears (if it appears), but does not learn what the
other parts of the tra�c are. Tra�c which does not match a suspicious keyword remains
unreadable to the middlebox.
Probable Cause Privacy gives a di�erent guarantee: that the middlebox will be able to
decrypt a �ow only if a substring of the flow is an exact match for a known attack keyword.
Probable cause privacy is useful for IDS tasks which require regular expressions or scripting
to complete their analysis. This model is inspired from two ideas. First, it is inspired from
the notion of probable cause from United States’ criminal law: one should give up privacy
only if there is a reason for suspicion. Second, most rules in Snort that contain regular
expressions first attempt to find a suspicious keyword in the packet – this keyword is selective
so only a small fraction of the tra�c matches this string and is passed through the regexp.
Indeed, the Snort user manual [151] urges the presence of such selective keywords because
otherwise, detection would be too slow. Since rules are structured this way, it becomes easier
to implement our probable cause privacy model by decrypting the stream if there is a match
to the suspicious keyword.

Exact match privacy provides security guarantees as in searchable encryption [147], which
are well-studied. Probable cause privacy is a new privacy model, and we believe it may
be useful in other network domains beyond middleboxes (e.g. network forensics or search
warrants), although we leave such investigation to future work. We formalize and prove the
security guarantees of BlindBox using standard indistinguishability-based definitions in our
extended paper [144]. Both models are stronger than the “man in the middle” approach in
deployment today, where all tra�c is decrypted regardless of suspicion. A user who prefers
exact match privacy over probable cause privacy can indicate so within BlindBox HTTPS.

5.1.3 System Architecture

We now return to Fig. 5.1 to explain each module and how BlindBox functions from a
high level; we delve into the protocol and implementation details in the following sections.

Prior to any connection, RG generates a set of rules which contain a list of suspicious
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keywords known to formulate parts of attacks; RG signs these rules with its private key and
shares them with MB, its customer. S and R, who trust RG, install a BlindBox HTTPS
configuration which includes RG’s public key. Beyond this initial setup, RG is never directly
involved in the protocol. We now discuss the interactions between R, S, and MB when R and
S open a connection in a network monitored by MB.

Connection setup: First, the sender and receiver run the regular SSL handshake which
permits them to agree on a key k0. The sender and receiver use k0 to derive three keys (e.g.,
using a pseudorandom generator):
• kSSL: the regular SSL key, used to encrypt the tra�c as in the SSL protocol,
• k: used in our detection protocol, and
• krand: used as a seed for randomness. Since both endpoints have the same seed, they
will generate the same randomness.

At the same time, MB performs its own connection setup to be able to perform detection
over S and R’s tra�c. In an exchange with S and R, MB obtains each rule from RG determin-
istically encrypted with key k – this will later enable MB to perform the detection. However,
this exchange occurs in such a way that MB does not learn the value of k and in such a way that
R and S do not learn what the rules are. We call this exchange obfuscated rule encryption and we
describe how it is implemented in the following section.

Unlike the above handshake between S and R, which bootstraps o� the existing SSL
handshake, obfuscated rule encryption is a new exchange. In existing deployments, clients
typically do not communicate directly with DPI middleboxes (although for other kinds of
middleboxes, such as explicit proxies [55] or NAT hole-punching [61], they may do so). Even
though this step removes the complete “transparency” of the DPI appliance, it is an incre-
mental change that we consider an acceptable tradeo� for the benefits of BlindBox.

Sending tra�c: To transmit, the sender: (1) encrypts the tra�c with SSL as in a non-
BlindBox system; (2) tokenizes the tra�c by splitting it in substrings taken from various o�sets
(as discussed in §5.2); and (3) encrypts the resulting tokens using our DPIEnc encryption
scheme.

Detection: The middlebox receives the SSL-encrypted tra�c and the encrypted tokens.
The detect module will search for matchings between the encrypted rules and the encrypted
tokens using BlindBox Detect (Sec. 5.2.2). If there is a match, one can choose the same
actions as in a regular (unencrypted IDS) such as drop the packet, stop the connection, or
notify an administrator. After completing detection, MB forwards the SSL tra�c and the
encrypted tokens to the sender.

Receiving tra�c: Two actions happen at the receiver. First, the receiver decrypts and
authenticates the tra�c using regular SSL. Second, the receiver checks that the encrypted
tokens were encrypted properly by the sender. Recall that, in our threat model, one endpoint
may be malicious – this endpoint could try to cheat by not encrypting the tokens correctly
or by encrypting only a subset of the tokens to eschew detection at the middlebox. Since we
assume that at least one endpoint is honest, such verification will prevent this attack.
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Because BlindBox only supports attack rules at the HTTP application layer, this check
is su�cient to prevent evasion. Almost all the rules in our datasets were in this category.
Nonetheless, it is worth noting that, if an IDS were to support rules that detected attacks
on the client driver or NIC – before verification –, an attacker could evade detection by not
tokenizing.

5.1.4 Protocols

BlindBox provides three protocols. In Protocol I, a rule consists of one keyword. MB
must be able to detect if the keyword appears at any o�set in the tra�c based on equality
match. This protocol su�ces for document watermarking [146] and parental filtering [33]
applications, but can support only a few IDS rules. In Protocol II, a rule consists of mul-
tiple keywords as well as position information of these keywords. This protocol supports a
wider class of IDS rules than Protocol I, as we elaborate in §5.7. Protocol I and II provide
Exact Match Privacy, as discussed in §5.1.2. Protocol III additionally supports regular ex-
pressions and scripts, thus enabling a full IDS. Protocol III provides Probable Cause Privacy,
as discussed in §5.1.2.

5.2 Protocol I: Basic Detection

Protocol I enables matching a suspicious keyword against the encrypted tra�c. An attack
rule in this protocol consists of one keyword. Even though this protocol is the simplest of our
protocols, it introduces the majority of our techniques. The other protocols extend Protocol
I.

To detect a keyword match on encrypted text, one naturally considers searchable encryp-
tion [147, 103]. However, existing searchable encryption schemes do not fit our setting for
two reasons. First, the setup of searchable encryption requires the entity who has the secret
key to encrypt the rules; this implies, in our setting, that the endpoints see the rules (which is
not allowed as discussed in §5.1.2). Our obfuscated rule encryption addresses this problem.

Second, none of the existing schemes meet both of our security and network performance
requirements. There are at least two kinds of searchable encryption schemes: deterministic
and randomized. Deterministic schemes [52] leak whether two words in the tra�c are equal
to each other (even if they do not match a rule). This provides weak privacy because it allows
an attacker to perform frequency analysis. At the same time, these schemes are fast because
they enable MB to build fast indexes that can process each token (e.g. word) in a packet
in time logarithmic in the number of rules. On the other hand, randomized schemes [147,
103] provide stronger security guarantees because they prevent frequency analysis by salting
ciphertexts. However, the usage of the salt in these schemes requires combining each token
with each rule, resulting in a processing time linear in the number of rules for each token;
as we show in §5.7, this is too slow for packet processing. In comparison, our encryption
scheme DPIEnc and detection protocol BlindBox Detect achieve the best of both worlds: the
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detection speed of deterministic encryption and the security of randomized encryption.
Let us now describe how each BlindBox module in Fig. 5.1 works in turn. Recall that S

and R are the sender and receiver, MB the middlebox and RG the rule generator.

Tokenization: The first step in the protocol is to tokenize the input tra�c. We start with
a basic tokenization scheme, which we refer to as “window-based” tokenization because it
follows a simple sliding window algorithm. For every o�set in the bytestream, the sender
creates a token of a fixed length: we used 8 bytes per token in our implementation. For
example, if the packet stream is “alice apple”, the sender generates the tokens “alice ap”,
“lice app”, “ice appl”, and so on. Using this tokenization scheme, MB will be able to detect
rule keywords of length 8 bytes or greater. For a keyword longer than 8 bytes, MB splits it in
substrings of 8 bytes, some of which may overlap. For example, if a keyword is “maliciously”,
MB can search for “maliciou” and “iciously”. Since each encrypted token is 5 bytes long and
the endpoint generates one encrypted token per byte of tra�c, the bandwidth overhead of
this approach is of 5×.

We can reduce this bandwidth overhead by introducing some optimizations. First, for
an HTTP-only IDS (which does not analyze arbitrary binaries), we can have senders ignore
tokenization for images and videos which the IDS does not need to analyze. Second, we can
tailor our tokenization further to the HTTP realm by observing how the keywords from attack
rules for these protocols are structured. The keywords matched in rules start and end before
or after a delimiter. Delimiters are punctuation, spacing, and special symbols. For exam-
ple, for the payload “login.php?user=alice”, possible keywords in rules are typically “login”,
“login.php”, “?user=”, “user=alice”, but not “logi" or “logi.ph”. Hence, the sender needs to
generate only those tokens that could match keywords that start and end on delimiter-based
o�sets; this allows us to ignore redundant tokens in the window. We refer to this tokenization
as “delimiter-based" tokenization. In §5.7, we compare the overheads and coverage of these
two tokenization protocols.

5.2.1 The DPIEnc Encryption Scheme

In this subsection, we present our new DPIEnc encryption scheme, which is used by the
Encrypt module in Fig. 5.1. The sender encrypts each token t obtained from the tokenization
with our encryption scheme. The encryption of a token t in DPIEnc is:

salt, AESAESk(t)(salt) mod RS, (5.1)

where salt is a randomly-chosen value and RS is explained below.
Let us explain the rationale behind DPIEnc. For this purpose, assume that MB is being

handed, for each rule r, the pair (r, AESk(r)), but not the key k. We explain in §5.2.3 how
MB actually obtains AESk(r).

Let’s start by considering a simple deterministic encryption scheme instead of DPIEnc:
the encryption of t is AESk(t). Then, to check if t equals a keyword r, MB can simply check
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if AESk(t)
?
= AESk(r). Unfortunately, the resulting security is weak because every occurrence

of t will have the same ciphertext. To address this problem, we need to randomize the
encryption.

Hence, we use a “random function" H together with a random salt, and the ciphertext
becomes: salt, H(salt,AESk(t)). Intuitively, H must be pseudorandom and not invertible. To
perform a match, MB can then compute H(salt,AESk(r)) based on AESk(r) and salt, and
again perform an equality check. The typical instantiation of H is SHA-1, but SHA-1 is not
as fast as AES (because AES is implemented in hardware on modern processors) and can
reduce BlindBox’s network throughput. Instead, we implement H with AES, but this must
be done carefully because these primitives have di�erent security properties. To achieve
the properties of H, AES must be keyed with a value that MB does not know when there
is no match to an attack rule – hence, this value is AESk(t). Our algorithm is now entirely
implemented in AES, which makes it fast.

Finally, RS simply reduces the size of the ciphertext to reduce the bandwidth overhead,
but it does not a�ect security. In our implementation, RS is 240, yielding a ciphertext length
of 5 bytes. As a result, the ciphertext is no longer decryptable; this is not a problem because
BlindBox always decrypts the tra�c from the primary SSL stream.

Now, to detect a match between a keyword r and an encryption of a token t, MB computes
AESAESk(r)(salt) mod RS using salt and its knowledge of AESk(r), and then tests for equality
with AESAESk(t)(salt) mod RS.

Hence, naïvely, MB performs a match test for every token t and rule r, which results in a
performance per token linear in the number of rules; this is too slow. To address this slow-
down, our detection algorithm below makes this cost logarithmic in the number of rules, the
same as for vanilla inspection of unencrypted tra�c. This results in a significant performance
improvement: for example, for a ruleset with 10000 keywords to match, a logarithmic lookup
is four orders of magnitude faster than a linear scan.

5.2.2 BlindBox Detect Protocol

We now discuss how our detection algorithm achieves logarithmic lookup times, re-
solving the tension between security and performance. For simplicity of notation, denote
Enck(salt, t) = AESAESk(t)(salt).

The first idea is to precompute the values Enck(salt, r) for every rule r and for every
possible salt. Recall that MB can compute Enck(salt, r) based only on salt and its knowledge
of AESk(r), and MB does not need to know k. Then, MB can arrange these values in a search
tree. Next, for each encrypted token t in the tra�c stream, MB simply looks up Enck(salt, t)
in the tree and checks if an equal value exists. However, the problem is that enumerating
all possible salts for each keyword r is infeasible. Hence, it would be desirable to use only
a few salts, but this strategy a�ects security: an attacker at MB can see which token in the
tra�c equals which other token in the tra�c whenever the salt is reused for the same token.
To maintain the desired security, every encryption of a token t must contain a di�erent salt
(although the salts can repeat across di�erent tokens).
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To use only a few salts and maintain security at the same time, the idea is for the sender
to generate salts based on the token value and no longer send the salt in the clear along with every
encrypted token. Concretely, the sender keeps a counter table mapping each token encrypted so
far to how many times it appeared in the stream so far. Before sending encrypted tokens, the
sender sends one initial salt, salt0, and MB records it. Then, the sender no longer sends salts;
concretely, for each token t, the sender sends Enck(salt, t) but not salt. When encrypting a
token t, the sender checks the number of times it was encrypted so far in the counter table,
say ctt, which could be zero. It then encrypts this token with the salt (salt0+ctt) by computing
Enck(salt0 + ctt, t). Note that this provides the desired security because no two equal tokens
will have the same salt.

For example, consider the sender needs to encrypt the tokens A,B,A. The sender com-
putes and transmits: salt0, Enck(salt0, A), Enck(salt0, B), and Enck(salt0 + 1, A). Not sending
a salt for each ciphertext both reduces bandwidth and is required for security: if the sender
had sent salts, MB could tell that the first and second tokens have the same salt, hence they
are not equal.

To prevent the counter table from growing too large, the sender resets it every P bytes
sent. When the sender resets this table, the sender sets salt0 ← salt0 + maxt ctt + 1 and
announces the new salt0 to MB.

For detection, MB creates a table mapping each keyword r to a counter ct∗r indicating the
number of times this keyword r appeared so far in the tra�c stream. MB also creates a search
tree containing the encryption of each rule r with a salt computed from ct∗r : Enck(salt0+ct∗r, r).
Whenever there is a match to r, MB increments ct∗r, computes and inserts the new encryption
Enck(salt0 + ct∗r, r) into the tree, and deletes the old value. We now summarize the detection
algorithm.

BlindBox Detect: The state at MB consists of the counters ct∗r for each rule r and a fast
search tree made of Enck(salt0 + ct∗r, r) for each rule r.
1: For each encrypted token Enck(salt, t) in a packet:

1.1: If Enck(salt, t) is in the search tree:

1.1.1: There is a match, so take the corresponding action for this match.
1.1.2: Delete the node in tree corresponding to r and insert Enck(salt0+ct∗r+1, t)

1.1.3: Set ct∗r ← ct∗r + 1

With this strategy, for every token t, MB performs a simple tree lookup, which is logarith-
mic in the number of rules. Other tree operations, such as deletion and insertion, happen
rarely: when a malicious keyword matches in the tra�c. These operations are also logarith-
mic in the number of rules.
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5.2.3 Rule Preparation

The detection protocol above assumes that MB obtains AESk(r) for every keyword r,
every time a new connection (having a new key k) is setup. But how can MB obtain these
values? The challenge here is that no party, MB or S/R, seems fit to compute AESk(r): MB
knows r, but it is not allowed to learn k; S and R know k, but are not allowed to learn the
rule r (as discussed in §5.1.2).

Intuition: We provide a technique, called obfuscated rule encryption, to address this problem.
The idea is that the sender provides to the middlebox an “obfuscation” of the function AES
with the key k hardcoded in it. This obfuscation hides the key k. The middlebox runs this
obfuscation on the rule r and obtains AESk(r), without learning k. We denote this obfuscated
function by ObfAESk.

Since practical obfuscation does not exist, we implement it with Yao garbled circuits [164,
113], on which we elaborate below. With garbled circuits, MB cannot directly plug in r as
input to ObfAESk(); instead, it must obtain from the endpoints an encoding of r that works
with ObfAESk. For this task, the sender uses a protocol called oblivious transfer [117, 49],
which does not reveal r to the endpoints. Moreover, MB needs to obtain a fresh, re-encrypted
garbled circuit ObfAESk() for every keyword r; the reason is that the security of garbled
circuits does not hold if MB receives more than one encoding for the same garbled circuit.

A problem is that MB might attempt to run the obfuscated encryption function on rules
of its choice, as opposed to rules from RG. To prevent this attack, rules from RG must be
signed by RG and the obfuscated (garbled) function must check that there is a valid signature
on the input rule before encrypting it. If the signature is not valid, it outputs null.

Let us now present the building blocks and our protocol in more detail.

Yao garbling scheme [164, 113]. At a high level, a garbled circuit scheme, first introduced by
Yao, consists of two algorithms Garble and Eval. Garble takes as input a function F with n bits
of input and outputs a garbled function ObfF and n pairs of labels (L0
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pair for every input bit of F . Consider any input x of n bits with xi being its i-th bit. ObfF has
the property that ObfF(Lx1

1 , . . . , L
xn
n ) = F (x). Basically, ObfF produces the same output as F

if given the labels corresponding to each bit of x. Regarding security, ObfF and Lx1
1 , . . . , L

xn
n

do not leak anything about F and x beyond F (x), as long as an adversary receives labels for
only one input x.

1-out-of-2 oblivious transfer (OT) [117, 49]. Consider that a party A has two values, L0 and L1,
and party B has a bit b. Consider that B wants to obtain the b-th label from A, Lb, but B
does not want to tell b to A. Also, A does not want B to learn the other label L1−b. Hence,
B cannot send b to A and A cannot send both labels to B. Oblivious transfer (OT) enables
exactly this: B can obtain Lb without learning L1−b and A does not learn b.

Rule preparation: Fig. 5.2 illustrates the rule preparation process for one keyword r. One
endpoint could be malicious and attempt to perform garbling incorrectly to eschew detection.
To prevent such an attack, both endpoints have to prepare the garbled circuit and send it to
MB to check that they produced the same result. If the garbled circuits and labels match,
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Figure 5.2: Rule preparation. The endpoint has a key k and the middlebox has a keyword r.

MB is assured that they are correct because at least one endpoint is honest (as discussed
in Sec. 5.1.2). To enable this check, the endpoints must use the same randomness obtained
from a pseudorandom generator seeded with krand (discussed in Sec. 5.1.3).

Rule preparation:
1: MB tells S and R the number of rules N it has.
2: For each rule 1, . . . , N , do:

2.1: S and R: Garble the following function F .

F on input [x, sig(x)] checks if sig(x) is a valid signature on x using RG’s public
key. If yes, it encrypts x with AESk and outputs AESk(x); else, it outputs ⊥.
In the garbling process, use randomness based on krand. Send the resulting
garbled circuit and labels to MB.

2.2: MB: Verify that the garbled circuits from S and R are the same, and let
ObfAESk be this garbled circuit. Let r and sig(r) be the current rule and
its signature. Run oblivious transfer with each of S and R to obtain the labels
for r and sig(r). Verify that the labels from S and R are the same, and denote
them Lr1

1 , . . . , L
rn
n .

2.3: MB: Evaluate ObfAESk on the labels Lr1
1 , . . . , L

rn
n to obtain AESk(r).

Rule preparation is the main performance overhead of BlindBox HTTPS. This overhead
comes from the oblivious transfer and from the generation, transmission and evaluation of
the garbled circuit, all of which are executed once for every rule. We evaluate this overhead
in §5.7.

We additionally use a performance optimization that, instead of garbling the verification
of sig, it garbles a hash computation while achieving the same security level.
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5.2.4 Validate Tokens

As shown in Fig. 5.1, the validate tokens procedure runs at the receiver. This procedure
takes the decrypted tra�c from SSL and runs the same tokenize and encrypt modules as the
sender executes on the tra�c. The result is a set of encrypted tokens and it checks that these
are the same as the encrypted tokens forwarded by MB. If not, there is a chance that the
other endpoint is malicious and flags the misbehavior.

5.2.5 Security Guarantees

We proved our protocol secure with respect to our exact match privacy model; the proofs
can be found in our extended paper [144]. We formalized the property that DPIEnc hides
the tra�c content fromMB using an indistinguishability-based security definition. Informally,
MB is given encryptions of a sequence of tokens t′1, . . . , t

′
n and keywords r1, . . . , rm. Then,

MB can choose two tokens t0 and t1 which do not match any of the keywords. Next, MB
is given a ciphertext c = Enck(salt, tb) for some bit b and salt generated according to the
BlindBox Detect protocol. The security property says that no polynomial-time attacker at
MB can guess the value of b with chance better than half. In other words, MB cannot tell
if t0 or t1 is encrypted in c. We can see why this property holds intuitively: if MB does
not have AESk(tb), this value is indistinguishable from a random value by the pseudorandom
permutation property of AES. Hence, Enck(·, tb) maps each salt to a random value, and there
are no repetitions among these random values due to the choice of salt in BlindBox Detect.
Thus, the distributions of ciphertexts for each value of b are essentially the same, and thus
indistinguishable.

As part of our privacy model, BlindBox reveals a small amount of information to make de-
tection faster: BlindBox does not hide the number of tokens in a packet. Also, if a suspicious
keyword matches at an o�set in the tra�c stream, MB learns this o�set. Hence, BlindBox
necessarily weakens the privacy guarantees of SSL to allow e�cient detection. (Note that
BlindBox preserves the authenticity property of SSL.)

5.3 Protocol II: Limited IDS

This protocol supports a limited form of an IDS. Namely, it allows a rule to contain: (1)
multiple keywords to be matched in the tra�c, and (2) absolute and relative o�set information
within the packet. In our industrial dataset, the average rule contained three keywords; a rule
is “matched” if all keywords are found within a flow.

This protocol supports most of the functionality in the rule language of Snort [151]. A few
functional commands are not supported, the most notable being pcre, which allows arbitrary
regular expressions to be run over the payload. This command is supported by Protocol III.

For example, consider rule number 2003296 from the Snort Emerging Threats ruleset:

alert tcp $EXTERNAL_NET $HTTP_PORTS
-> $HOME_NET 1025:5000 (
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flow: established,from_server;
content: “Server|3a| nginx/0.”;
o�set: 17; depth: 19;
content: “Content-Type|3a| text/html”;
content: “|3a|80|3b|255.255.255.255”; )

This rule is triggered if the flow is from the server, it contains the keyword “Server|3a|
nginx/0.” at an o�set between 17 and 19, and it also contains the keyword “Content-Type|3a|
text/html” and “|3a|80|3b|255.255.255.255”. The symbol “|” denotes binary data.

Protocol II builds on Protocol I in a straightforward way. The sender processes the stream
the same as in Protocol I (including the encryption) with one exception: if the delimiter-based
tokenization is used, the sender attaches to each encrypted token the o�set in the stream
where it appeared. In the window-based tokenization, the o�set information need not be
attached to each encrypted token because a token is generated at each o�set and hence the
o�set can be deduced.

Detection happens similarly to before. For each encrypted token, MB checks if it appears
in the rule tree. If so, it checks whether the o�set of this encrypted token satisfies any range
that might have been specified in the relevant rule. If all the fields of the relevant rule are
satisfied, MB takes the action indicated by the rule.

Security Guarantee: The security guarantee is the same as in Protocol I: for each rule
keyword, the middlebox learns if the keyword appears in the tra�c and at what o�set, but
it learns nothing else about the parts of the tra�c that do not match keywords. Note that
the security guarantee is defined per keyword and not per rule: MB learns when a keyword
matches even if the entire rule does not match.

5.4 Protocol III: Full IDS with
Probable Cause Privacy

This section enables full IDS functionality, including regexp and scripts, based on our
probable cause privacy model. If a keyword from a rule (a suspicious keyword) matches a
stream of tra�c, MB should be able to decrypt the tra�c. This enables the middlebox to then
run regexp (e.g., the “pcre” field in Snort) or scripts from Bro [122] on the decrypted data.
However, if such a suspicious keyword does not match the packet stream, the middlebox
cannot decrypt the tra�c (due to cryptographic guarantees), and the security guarantee is
the same as in Protocol II.

Protocol insight: The idea is to somehow embed the SSL key kSSL into the encrypted tokens,
such that, if MB has a rule keyword r that matches a token t in the tra�c, MB should be
able to compute kSSL. To achieve this goal, we replace the encrypted token Enck(salt, t) with
Enck(salt, t) ⊕ kSSL, where ⊕ is bitwise XOR. If r = t, MB has AESk(t) and can construct
Enck(salt, t), and then obtain kSSL through a XOR operation. The problem is that this slows
down detection to a linear scan of the rules because the need to compute the XOR no longer
allows a simple tree lookup of an encrypted token into the rule tree (described in Sec. 5.2.2).
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Protocol: To maintain the e�ciency of the detection, we retain the same encrypted token as
in DPIEnc and use it for detection, but additionally create an encrypted token that has the key
embedded in as above. Now, the encryption of a token t becomes a pair [c1 = Enck(salt, t),
c2 = Enc∗k(salt, t)⊕kSSL], where Enc∗k(salt, t) = AESAESk(t)(salt+1) and the salt is generated as
in BlindBox Detect (§5.2.2). Note that it is crucial that the salt in Enc∗k di�ers from the salt in
any c1 encryption of t because otherwise an attacker can compute c1⊕c2 and obtain kSSL. To
enforce this requirement across di�erent occurrences of the same token in BlindBox Detect,
the sender now increments the salt by two: it uses an even salt for c1 (and so does MB for the
rules in the tree), while it uses an odd salt for c2. MB uses c1 to perform the detection as
before. If MB detects a match with rule r using BlindBox Detect, MB computes Enc∗k(salt, r)
using AESk(r), and computes Enc∗k(salt, r) ⊕ c2, which yields kSSL. We prove the security of
this protocol in our extended paper [144].

5.5 Discussion

In this section, we discuss adoption of BlindBox and privacy implications of the choice
of rules and tokenization strategy in BlindBox.

5.5.1 Adoption and Deployment

ISP Adoption. In enterprises and private networks, BlindBox provides a good trade-o�
between the desires of users (who want privacy, and may want processing) and the network
administrator (who wants to deploy processing primarily, and is willing to respect privacy if
able to do so). Hence, deploying BlindBox is aligned with both parties’ interests. However,
in ISPs, sales of user data to marketing and analytics firms are a source of revenue – hence,
an ISP has an incentive not to deploy BlindBox. Consequently, deployment in ISPs is likely
to take place either under legislative requirement through privacy laws, or through a change
in incentives. In outsourcing/cloud scenarios, where clients pay directly for middlebox processing
we expect provider adoption of BlindBox’s schemes to be more attractive, as it can attract
more customers paying for the tra�c inspection itself.
Client Adoption. BlindBox proposes a new end-to-end encryption protocol to replace
HTTPS altogether. A truly ideal solution would require no changes at the endpoints – in-
deed, the success of middlebox deployments is partly due to the fact that middleboxes can be
simply “dropped in” to the network. Unfortunately, existing HTTPS encryption algorithms
use strong encryption schemes, which do not support any functional operations and cannot
be used for our task; hence one must change HTTPS. Nonetheless, we believe that, in the
long run, a change to HTTPS to allow inspection of encrypted tra�c can be generic enough
to support a wide array of middlebox applications, and not just the class of middleboxes in
BlindBox. We believe these benefits will merit widespread “default” adoption in end host
software suites.
Other Middleboxes. A set of other middleboxes do not fit into the DPI model adopted by
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BlindBox, such as proxies, caches, compression engines, protocol accelerators, and transcoders [163,
143]. Hence, there remains work to resolve the tension between SSL/TLS and middleboxes
in general. We believe that computation over encrypted data will remain a useful approach
for these devices in general.

5.5.2 Generating Rules

The choice of rules a�ects privacy significantly. In the extreme, rules that match each
letter ‘a’, ‘b’, . . . , ‘z’, result in no privacy at all. With BlindBox, rule designers must consider
privacy implications of the rules they choose: ideally, a keyword should not match benign
tra�c at all.

Note that we do not provide guidelines on how to choose keywords or rules that are safe
to use with our protocols; we contribute only the mechanism for implementing matching
and probable cause decryption once the rules are chosen carefully. Choosing rules in a way
that preserves matching and privacy requires careful thought. In fact, we emphasize that
some existing rules are not safe to use with our protocols, and need to be changed. This
is not surprising considering that existing rules were not written with privacy in mind. For
example, in the Snort community rules, there are rules with keywords that match often such
as ‘.exe’. This can cause frequent matching in Protocol II or frequent decryption in Protocol
III.

An interesting future work question is to design a scheme that enables the middlebox to
learn if a rule matches in an all-or-nothing way: that is, if a rule has more than one keyword,
the middlebox should learn only if all strings match, and not if a subset of them match.
How to Tokenize Existing Rules Consider a set of rules. Define “e�ective keyword” to be
a keyword that must be matched by BlindBox on the tra�c. For Protocol II, every keyword
of each rule is an e�ective keyword. For Protocol III, there is one e�ective keyword per rule
as defined in §5.5.2. Since e�ective keywords have di�erent lengths, the tokenization can
happen in lengths of 2, 4, 8, 16, 32, 64, and 128. If an e�ective keyword is of size `, a rule
keyword is tokenized using the largest token size at most `. For example, if the string is size
65, it is broken into two strings each of size 64 that overlap in 63 positions. One must not
break the e�ective keywords in smaller tokens because this will leak more than necessary.
Hence, for example, if there is only one e�ective keyword that is short, say of length 4, tokens
of size 4 in the tra�c will match only this e�ective keyword and not other rules.
Tokenization for Protocol III Given a rule for Protocol III, to decrease the frequency of
decryption, the probable cause decryption must be triggered by a string in this rule that
appears in the tra�c as infrequently as possible (ideally, only when the tra�c is suspicious).
This string can be a keyword or a substring of a regular expression that is matched by equality.
Probable cause decryption should be triggered by only one such string per rule (because a
rule matches only when all such strings match). For example, for a rule with content =‘abc’
and content = ‘abcdefghij’, the trigger should be the second string. If the rule additionally
contains pcre = ‘[1-9]abcdefghij123’, the trigger should be ‘abcdefghij123’.
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5.6 System Implementation

We implemented two separate libraries for BlindBox: a client/server library for transmis-
sion called BlindBox HTTPS, and a Click-based [107] middlebox.
BlindBox library. The BlindBox HTTPS protocol is implemented in a C library. When
a client opens a connection, our protocol actually opens three separate sockets: one over
normal SSL, one to transmit the “searchable” encrypted tokens, and one to listen if a mid-
dlebox on path requests garbled circuits. The normal SSL channel runs on top of a modified
GnuTLS [31] library which allows us to extract the session key under Protocol III. On send,
the endpoint first sends the encrypted tokens, and then sends the tra�c over normal HTTPS.
If there is a middlebox on the path, the endpoints generate garbled circuits using JustGar-
ble [53] in combination with the OT Extension library [20].
Themiddlebox. We implemented the middlebox in multithreaded Click [107] over DPDK [99];
in our implementation, half of the threads perform detection over the data stream (“detec-
tion” threads), and half perform obfuscated rule encryption exchanges with clients (“garble”
threads). When a new connection opens, a detection thread signals to a garble thread and
the garble thread opens an obfuscated rule encryption channel with the endpoints. Once the
garble thread has evaluated all circuits received from the clients and obtained the encrypted
rules, it constructs the search tree. The detection thread then runs the detection based on
the search tree, and allows data packets in the SSL channel to proceed if no attack has been
detected.

When a detection thread matches a rule, under Protocols I and II, the middlebox blocks
the connection. Under Protocol III, it computes the decryption key (which is possible due
to a match), and it forwards the encrypted tra�c and the key to a decryption element.
This element is implemented as a wrapper around the open-source ssldump [28] tool. The
decrypted tra�c can then be forwarded to any other system (Snort, Bro, etc.) for more
complex processing. We modeled this after SSL termination devices [56], which today man-
in-the-middle tra�c before passing it on to some other monitoring or DPI device.

5.7 Evaluation

When evaluating BlindBox, we aimed to answer two questions. First, can BlindBox sup-
port the functionality of our target applications – data exfiltration (document watermarking),
parental filtering, and HTTP intrusion detection? Second, what are the performance over-
heads of BlindBox at both the endpoints and the middlebox?

5.7.1 Functionality Evaluation

To evaluate the functionality supported by BlindBox, we answer a set of sub-questions.
Can BlindBox implement the functionality required for each target system? Table 5.1 shows what
fraction of “rules” for di�erent target applications rely solely on single-exact match (as
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in Protocol I), multiple exact-match strings (as in Protocol II), or regular expressions or
scripts (as in Protocol III). We evaluate this using public datasets for document watermark-
ing [146], parental filtering [33], and IDS rules (from the Snort community [136] and Emerging
Threats [12]). In addition, we evaluate on two industrial datasets from Lastline and McAfee
Stonesoft to which we had (partial) access.

Document watermarking and parental filtering can be completely supported using Proto-
col I because each system relies only on the detection of a single keyword to trigger an alarm.
However, Protocol I can support only between 1.6-5% of the policies required by the more
general HTTP IDS applications (the two public Snort datasets, as well as the datasets from
McAfee Stonesoft and Lastline). This limitation is due to the fact that most IDS policies
require detection of multiple keywords or regular expressions.

Protocol II, by supporting multiple exact match keywords, extends support to 29-67%
of policies for the HTTP IDS applications. Protocol III supports all applications including
regular expressions and scripting, by enabling decryption when there is a probable cause to
do so.
What fraction of existing rules can be used with Protocol II and a given minimum token length?
Protocol II allows a middlebox to search for multiple exact-match strings to detect an attack.
A rule generator may choose to restrict the minimum size of transmitted tokens to avoid
many false positive matches (trivially, the set of rules ‘a’, ‘b’... ‘z’ would allow a middlebox
to decrypt all text), requiring tokens of 4, 8, or 16 bytes. Figure 5.3 shows the number of
rules from the Emerging Threats Snort ruleset such that all search strings in the rule are n
characters long or more. This further reduces the number of rules that can be implemented
with BlindBox ‘as is.’ A rule generator may be able to rewrite these rules such that they do
not require searches for such short tokens, removing the short terms and potentially adding
in additional search terms to avoid increasing false positives. We leave an exploration of such
a mechanism to future work.
Does BlindBox fail to detect any attacks/policy violations that these standard implementations would
detect? The answer depends on which tokenization technique one uses out of the two tech-
niques we described in §5.2: window-based and delimiter-based tokenization. The window-
based tokenization does not a�ect the detection accuracy of the rules because it creates a
token at every o�set. The delimiter-based tokenization relies on the assumption that, in IDSes,
most rules occur on the boundary of non-alphanumeric characters, and thus does not transmit
all possible tokens – only those required to detect rules which occur between such “delim-
iters”. To test if this tokenization misses attacks, we ran BlindBox over the ICTF2010 [158]
network trace, and used as rules the Snort Emerging Threats ruleset from which we removed
the rules with regular expressions. The ICTF trace was generated during a college “capture
the flag” contest during which students attempted to hack di�erent servers to win the com-
petition, so it contains a large number of attacks. We detected 97.1% of the attack keywords
and 99% of the attack rules that would have been detected with Snort. (Recall that an attack
rule may consist of multiple keywords.)
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Dataset I. II. III.
Document watermarking [146] 100% 100% 100%
Parental filtering [33] 100% 100% 100%
Snort Community (HTTP) 3% 67% 100%
Snort Emerging Threats (HTTP) 1.6% 42% 100%
McAfee Stonesoft IDS 5% 40% 100%
Lastline 0% 29.1% 100%

Table 5.1: Fraction of attack rules in public and industrial rule sets addressable with Protocols I, II,
and III.
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Figure 5.3 : Number of rules in the Emerging Threats dataset which (a) do not require regular expres-
sions, and (b) search for exact match strings of minimum lengths 2 - 32.

5.7.2 Performance Evaluation

We now investigate BlindBox’s performance overheads at both the client and the network.
For all experiments, the client software uses Protocol II, which has higher overhead than
Protocol I. We do not evaluate Protocol III directly; the di�erences we would expect from
Protocol III relative to II would include a secondary middlebox to perform regular expression
processing, and an increase in bandwidth due to the key being embedded in each encrypted
token.

Our prototype of the client software runs on two servers with 2.60 GHz processors con-
nected by a 10GbE link. The machines are multicore, but we used only one thread per
client. The CPU supports AES-NI instructions and thus the encryption times for both SSL
and BlindBox reflect this hardware support. Since typical clients are not running in the same
rack over a 10GbE links, in some experiments we reduced throughput to 20Mbps (typical of
a broadband home link) and increased latency to 10ms RTT. Our prototype middlebox runs
with four 2.6GHz Xeon E5-2650 cores and 128 GB RAM; the network hardware is a single
10GbE Intel 82599 compatible network card. All of our experiments were performed on this
testbed. For microbenchmarks (as in Table 5.2), we measured time to complete a loop of
10,000 iterations and took an average. For flow completion benchmarks we took an average
of five runs.
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HTTPS FE Strawman Searchable Strawman BlindBox

Client

Encrypt (128 bits) 13ns 70ms 2.7µs 69ns
Encrypt (1500 bytes) 3µs 15s 257µs 90µs
Setup (1 Keyword) 73ms N/A N/A 588 ms
Setup (3K Rules) 73ms N/A N/A 97 s

MB

Detection:
1 Rule, 1 Token NP 170ms 1.9µs 20ns
1 Rule, 1 Packet NP 36s 52µs 5µs
3K Rules, 1 Token NP 8.3 minutes 5.6ms 137ns
3K Rules, 1 Packet NP 5.7 days 157ms 33µs

Table 5.2: Connection and detection micro-benchmarks comparing Vanilla HTTPS, the functional en-
cryption (FE) strawman, the searchable strawman, and BlindBox HTTPS. NP stands for not possible.
The average rule includes three keywords.

To summarize our performance results, BlindBox is practical for long-lived connections:
the throughput of encryption and detection are comparable with rates of current (unen-
crypted) deployments. Additionally, BlindBox is 3 to 6 orders of magnitude faster than
relevant implementations using existing cryptography; these solutions, by themselves, are
incomplete in addition to being slow. The primary overhead of BlindBox is setting up a
connection, due to the obfuscated rule encryption. This cost is small for small rulesets, but
can take as long as 1.5 minutes for rulesets with thousands of rules; hence, BlindBox is not
yet practical for systems with thousands of rules and short-lived connections that need to run
setup frequently. We now elaborate on all these points.

Strawmen

BlindBox is the only system we know of to enable DPI over encrypted data. Nevertheless,
to understand its performance, we compare it to standard SSL as well as two strawmen,
which we now describe.

A searchable encryption scheme due to Song et al. [147]: This scheme does not enable obfuscated
rule encryption or probable cause decryption, but can implement encryption and detection
as in Protocols I and II (but not Protocol III). We used the implementation of Song et al.
from [126], but replaced the use of SHA512 with the AES-NI instruction in a secure way, to
speed up this scheme.

Generic functional encryption (FE) [87, 93]: Such schemes, if enhanced with our obfuscated
rule encryption technique, can in theory perform Protocols I, II, and III. However, such
encryption schemes are prohibitively expensive to be run and evaluated. For example, one
such scheme [93] nests fully homomorphic encryption twice, resulting in an overhead of at
least 10 orders of magnitude. Instead, we chose and implemented a simple and specialized
functional encryption scheme due to Katz et al. [104]. The performance of this scheme is a
generous lower bound on the performance of the generic protocols (the Katz et al. scheme
does not support Protocol III because it can compute only inner product).
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Figure 5.4: Download time for TLS and BlindBox (BB) + TLS at 20Mbps×10ms.
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Figure 5.5 : Download time for TLS and BlindBox (BB) + TLS at 1Gbps×10ms.

Client Performance

How long does it take to encrypt a token? Table 5.2 provides micro-benchmarks for encryp-
tion, detection, and setup using BlindBox, HTTPS, and our strawmen. With HTTPS (using
GnuTLS), encryption of one 128-bit block took on average 13ns, and 3µs per 1400 byte
packet. BlindBox increases these values to 69ns and 90µs respectively. These figures include
the time to perform HTTPS transmission in the primary channel, as well as the overheads
from BlindBox: the tokenization process itself (deciding which substrings to tokenize) as well
as the encryption process (encrypting and then hashing each token with AES). The search-
able strawman performs encryption of a single token on average 2.7µs and 257µs for an entire
packet; the primary overhead relative to BlindBox here is multiple calls to /dev/urandom be-
cause the scheme requires random salts for every token. With fixed or pre-chosen salts, we
would expect the searchable strawman to have comparable encryption times to BlindBox.
As we discuss, the detection times for this strawman are slower. The FE strawman takes six
orders of magnitude longer than BlindBox and is even further impractical: a client using this
scheme could transmit at most one packet every 15 seconds.

How long does the initial handshake take with the middlebox? The initial handshake to perform
obfuscated rule encryption runs in time proportional to the number of rules. In the datasets
we worked with, the average Protocol II rule had slightly more than 3 keywords; a typical 3000
rule IDS rule set contains between 9-10k keywords. The total client-side time required for 10k
keywords was 97 seconds; for 1000 keywords, setup time was 9.5s. In a smaller ruleset of 10
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or 100 keywords (which is typical in a watermark detection exfiltration device), setup ran in
650ms and 1.6 seconds, respectively. These values are dependent on the clock speed of the
CPU (to generate the garbled circuits) and the network bandwidth and latency (to transmit
the circuits from client to sender). Our servers have 2.6GHz cores; we assumed a middlebox
on a local area network near the client with a 100µs RTT between the two and a 1Gbps
connection. Garbling a circuit took 1042µs per circuit; each garbled circuit transmission is
599KB.

Neither strawman has an appropriate setup phase that meets the requirement of not mak-
ing the rules visible to the endpoints. However, one can extend these strawmen with Blind-
Box’s obfuscated rule encryption technique, and encrypt the rules using garbled circuits. In
this case, for the scheme of Song et al., the setup cost would be similar to the one of BlindBox
because their scheme also encrypts the rule keywords with AES. For the scheme of Katz et
al., the setup would be much slower because one needs garbled circuits for modular expo-
nentiation, which are huge. Based on the size of such circuits reported in the literature [53],
we can compute a generous lower bound on the size of the garbled circuits and on the setup
cost for this strawman: it is at least 1.8 · 103 times larger/slower than the setup in BlindBox.

How long are page downloads with BlindBox, excluding the setup (handshake) cost? Figure 5.4
shows page download times using our “typical end user" testbed with 20Mbps links. In this
figure, we show five popular websites: YouTube, AirBnB, CNN, The New York Times, and
Project Gutenberg. The data shown represents the post-handshake (persistent connection)
page download time, with tokenization on 8-byte boundaries. YouTube and AirBnB load
video, and hence have a large amount of binary data which is not tokenized. CNN and The
New York Times have a mixture of data, and Project Gutenberg is almost entirely text. We
show results for both the amount of time to download the page including all video and image
content, as well as the amount of time to load only the Text/Code of the page. The overheads
when downloading the whole page are at most 2×; for pages with large amount of binary
data like YouTube and AirBnB, the overhead was only 10-13%. Load times for Text/Code
only – which are required to actually begin rendering the page for the user – are impacted
more strongly, with penalties as high as 3× and a worst case of about 2×.
What is the computational overhead of BlindBox encryption, and how does this overhead impact
page load times? While the encryption costs are not noticeable in the page download times
observed over the “typical client” network configuration, we immediately see the cost of
encryption overhead when the available link capacity increases to 1Gbps in Figure 5.5 –
at this point, we see a performance overhead of as much as 16× relative to the baseline
SSL download time. For both runs (tr15/figs. 5.4 and 5.5), we observed that the CPU was
almost continuously fully utilized to transfer data during data transmission. At 20Mbps, the
encryption cost is not noticeable as the CPU can continue producing data at around the link
rate; at 1Gbps, transmission with BlindBox stalls relative to SSL, as the BlindBox sender
cannot encrypt fast enough to keep up with the line rate. This result is unsurprising given
the results in Table 5.2, showing that BlindBox takes 30× longer to encrypt a packet than
standard HTTPS. This overhead can be mitigated with extra cores; while we ran with only
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(a) Window-Based Tokenization
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(b) Delimiter-Based Tokenization

Figure 5.6 : Bandwidth overhead over top-50 web dataset.

one core per connection, tokenization can easily be parallelized.

What is the bandwidth overhead of transmitting encrypted tokens for a typical web page? Minimizing
bandwidth overhead is key to client performance: less data transmitted means less cost, faster
transfer times, and faster detection times. The bandwidth overhead in BlindBox depends on
the number of tokens produced. The number of encrypted tokens varies widely depending
on three parameters of the page being loaded: what fraction of bytes are text/code which
must be tokenized, how “dense” the text/code is in number of delimiters, and whether or not
the web server and client support compression.

Figures 5.6 (a) and (b) break down transmitted data into the number of text-bytes,
binary-bytes, and tokenize-bytes using the window-based and delimiter-based tokenization
algorithms (as discussed in §5.2); the right hand axis shows the overhead of adding tokens
over transmitting just the original page data. We measured this by downloading the Alexa
top-50 websites [2] and running BlindBox over all page content (including secondary re-
sources loaded through AJAX, callbacks, etc.) The median page with delimited tokens sees
a 2.5× increase in the number of bytes transmitted. In the best case, some pages see only
a 1.1× increase, and in the worst case, a page sees a 14× overhead. The median page with
window tokens sees a 4× increase in the number of bytes transmitted; the worst page sees a
24× overhead. The first observable factor a�ecting this overhead, as seen in these figures, is
simply what fraction of bytes in the original page load required tokenization. Pages consisting
mostly of video su�ered lower penalties than pages with large amounts of text, HTML, and
Javascript because we do not tokenize video.
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Figure 5.7 : Tokens generated for each of six popular websites using delimiter-based tokenization and
a minimum token size between 1-32 bytes.
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A second factor, better observed in Figures 5.8 and 5.9(a) is whether or not the web
server hosting the page supports gzip compression. Many web servers will compress content
before sending it to clients, which then unzip the data before passing to rendering in the
browser. Where window based tokenization imposes a penalty of one token (five bytes) per
plaintext byte (and delimiter-based tokenization imposes less than half of a token – 2.2 bytes
– by eliminating tokens which are redundant to the DPI engine), compressing the plaintext
makes the perceived penalty higher: the baseline data can be compressed, but encrypted
tokens cannot. In Figure 5.8 we show a CDF of the ratio of BlindBox bytes to SSL bytes
when gzip is not enabled, and when gzip is enabled exactly as in the original trace (i.e. we
compare against the bytes gzipped when we downloaded the dataset from the webservers; if
any data was not compressed we left it as-is and did not try to compress it further). When
compared against plaintext, both window and delimiter based tokenization have “tight” tails
– the worst page with window based tokenization has slightly more than 5× overhead, and
the worst page with delimiter tokenization has around 4× overhead. But, for pages which
benefit strongly from compression, the penalty can begin to look dramatic at the tail, going
as high as 24× for one page (Craigslist.com, which is mostly text/code and benefits strongly
from compression). Figure 5.9(a) shows for each page the number of tokens produced on
average per byte, plotted against the page reduction achieved by the web server by using
gzip.
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Figure 5.9 : Impact of compression and delimiter density on tokenization overhead for delimiter-based
tokenization only.

The final factor is simply the number of delimiters seen in a page – text-only pages like
Project Gutenberg do well in this metric, since there are few code-like characters in the text.
The worst performers in this area are pages which make large use of compressed javascript
code, where a large fraction of characters result in tokenization. Figure 5.9(b) illustrates this
e�ect for the same dataset as previously.

Middlebox Performance

We investigate performance at the middlebox using both micro-benchmarks and overall
throughput.

What throughput can BlindBox sustain and how does this compare to standard IDS?When running
our BlindBox implementation over synthetic tra�c, we measured a throughput of 166Mbps;
when running Snort over the same tra�c, we measured a throughput of 85Mbps. Hence,
BlindBox performed detection twice as fast as Snort, which inspects unencrypted tra�c. The
reason behind this situation is twofold. First, BlindBox reduces all detection to exact match-
ing, pushing all regular expression parsing to a secondary middlebox, invoked rarely. Second,
our implementation is built over DPDK-click, a faster packet-capture library than what Snort
uses by default. Hence, it is unsurprising that BlindBox performs detection more quickly.
Nevertheless, the point of this experiment is not to show that BlindBox is faster than Snort,
but instead to demonstrate that BlindBox provides competitive performance to today’s de-
ployments.

How does BlindBox compare in detection time against other strawmen approaches? While we did
not implement a version of BlindBox which relied on our strawmen, we can compare against
it using a smaller benchmark. Once again, in Table 5.2, the FE strawman is seen to be
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prohibitively impractical: detection over a single packet against a 3000 ruleset takes more
than a day.

The searchable strawman is also prohibitively slow: it performs detection over a 1500
byte packet in 157 ms, which is equivalent to no more than 6-7 packets per second. This
performance is three orders of magnitude slower than the performance of BlindBox’s mid-
dlebox. This overhead results from the fact that the searchable strawman must perform an
encryption operation over every keyword to perform a comparison against a client token,
resulting in a task linear in the number of keywords. In contrast, BlindBox’s DPIEnc scheme
encrypts the data in such a way that the middlebox can use a fast, pre-computed search tree
(which gives a logarithmic search) to match encrypted tokens to rules.

5.8 Related work

Related work falls into two categories: insecure proposals, and work on computing on
encrypted data.

5.8.1 Insecure Proposals

Some existing systems mount a man-in-the-middle attack on SSL [100, 98] by installing
fake certificates at the middlebox [105, 137]. This enables the middlebox to break the security
of SSL and decrypt the tra�c so it can run DPI. This breaks the end-to-end security of SSL,
and results in a host of issues, as surveyed by Jarmoc [100].

Some proposals allow users to tunnel their tra�c to a third party middlebox provider,
e.g. Meddle [134], Beyond the Radio [155], and APLOMB [143]. These approaches allow
the middlebox owner to inspect/read all tra�c. The situation is preferable to the status
queue (from the client’s perspective) in that the inspector is one with whom the client has
a formal/contractual relationship – but, unlike BlindBox, the client still must grant someone
access to the plaintext tra�c. Further, this approach is not preferable to service providers,
who may wish to enforce policy on users in the network, e.g., that no hosts within the network
are infected with botnet malware.

5.8.2 Computing on Encrypted Data

Fully homomorphic encryption (FHE) [90] and general functional encryption [87, 93]
are encryption schemes that can compute any function over encrypted data; hence, they
can in principle support the complexity of deep packet inspection tasks. However, they do
not address all the desired security properties in our threat model, and more importantly,
they are prohibitively slow, currently at least 8 orders of magnitude slower than unencrypted
computation [91].

Some recent systems such as CryptDB [126] and Mylar [127] showed how to support
some specialized computation e�ciently on encrypted data. However, these systems perform
di�erent tasks than is needed for middleboxes and do not meet our threat model.
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There has been a large amount of work on searchable encryption [147, 103, 57, 52]. No
searchable encryption scheme provides a strategy for encrypting the rules securely and for
supporting arbitrary regexps, both of which BlindBox provides. Moreover, existing schemes
cannot provide the performance required for packet processing. For example, BlindBox is
three orders of magnitude faster than a system using the symmetric-key searchable scheme
of Song et al. [147]. Public-key searchable encryption schemes, such as [57], are even slower
because they perform a cryptographic pairing (which takes hundreds of microseconds per
pairing), for every pair of token to rule content (a linear, rather than logarithmic task in the
number of rules).

5.9 Conclusion

In this chapter, we presented BlindBox, a system that resolves the tension between secu-
rity and DPI middlebox functionality in networks. To the best of our knowledge, BlindBox
is the first system to enable Deep Packet Inspection over encrypted tra�c without requir-
ing decryption of the underlying tra�c. BlindBox supports real DPI applications such as
IDS, exfiltration detection, and parental filtering. BlindBox performs best over long-running,
persistent connections using SPDY-like or tunneled protocols. Using BlindBox Detect, a mid-
dlebox running BlindBox can perform detection on a single core at 186Mbps – competitive
with many deployed IDS implementations.

We envisage that BlindBox is the first step towards a general protocol to resolve the tension
between encryption and all categories of middleboxes. BlindBox currently supports middle-
boxes for DPI filtering only, however, we believe that the general blueprint BlindBox provides
– computation over encrypted tra�c – can be extended to implement other middlebox capa-
bilities, including caches, protocol accelerators, compression engines.
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Chapter 6

Conclusion, Lessons Learned &
Thoughts for the Future

In this thesis, we have argued that by following the blueprint of outsourcing and cloud
computing, middleboxes can be made easier to manage, more cost-e�ective, and more e�-
cient.

With APLOMB (Chapter 3) we designed, implemented, and evaluated a system that
shows the feasibility of the outsourcing architecture overall. APLOMB allows an enterprise
to remove almost all of its middlebox infrastructure, o�oading the processing to a third party
provider instead. APLOMB imposes only modest performance overheads while improving
manageability (by pushing many di�cult management tasks from enterprise administrators
to experts at the cloud provider) and cost (by allowing infrastructure to ‘scale on demand’
and administrators pay for usage).

With FTMB (Chapter 4) we discussed how moving middleboxes to the cloud dovetails
with software middlebox implementations. We showed how to take advantage of elastic
resources available in cloud environments to automatically fail over to a backup when a mid-
dlebox fails. FTMB avoids the common pitfall in today’s middlebox deployments of custom,
per-device solutions, instead designing for arbitrary packet processors. FTMB provides relia-
bility guarantees with performance overheads on the order of tens of µs – orders of magnitude
better than competing designs.

Finally, with BlindBox (Chapter 5) we confronted privacy as an obstacle to outsourcing
middlebox infrastructure. Where classic ‘Deep Packet Inspection’ devices must decrypt tra�c
to operate over it, BlindBox uses functional cryptography to allow middleboxes to operate
over data while it remains encrypted, learning only what is necessary to detect attacks in the
plaintext. BlindBox shows that outsourcing middleboxes need not come with heavy sacrifices
to user privacy.

Before concluding, we turn to the present and future of middleboxes and the cloud
blueprint, discussing the Network Functions Virtualization movement (NFV) and lessons
learned from this research for middlebox deployments going forward.



6.1. THE RISE OF NETWORK FUNCTIONS VIRTUALIZATION 90

6.1 The Rise of Network Functions Virtualization

In 2012, the European Telecommunications Standards Institute (ETSI) issued a proposal
they called Network Functions Virtualization (NFV) [82]. NFV aims to move middlebox
packet processing from dedicated, special purpose hardware on to general-purpose infras-
tructure using software and virtualization – just as we propose that cloud providers do in
APLOMB and this thesis.

NFV grew out of ISPs desire to improve the manageability and e�ciency of their own
infrastructure, which was composed of fixed-function, vendor-specific hardware middlebox
implementations. Since then, NFV has expanded to include enterprises and datacenters also
re-deploying their own, internal infrastructure with software middlebox implementations.
Further, there is some early interest among some ISPs to extend the benefits of NFV with
outsourcing opportunities for clients to o�oad processing to their ISPs [50]. Hence, despite
di�erent starting motivations, the goals of NFV and this thesis strongly overlap.

Along these lines, several projects and systems designed in the context of NFV give
solutions to open challenges in the cloud computing blueprint. For example, the industrial
and research designs in the NFV space have proposed schedulers/orchestraters for automatic
instantiation of middleboxes, optimizing middlebox placement, instantiating new middlebox
instances as demand scales up, and monitoring availability and health of running middlebox
instances [119, 10, 18]. Other projects have looked at scaling and shared data abstractions for
scaled out middleboxes [133, 89, 161]. The IETF’s Service Function Chaining working group
is actively investigating how to best implement routing through multi-middlebox topologies
and enforce policies about which tra�c receives processing by which middleboxes [130].

At present, the space is actively growing with over 270 members in the ETSI NFV work-
ing group [81]. It is likely that the future of the cloud computing blueprint for middlebox
processing rests in the success of NFV.

6.2 Lessons Learned and Thoughts for the Future

We now discuss a few broad lessons learned over the course of this research, and what
they suggest about future middlebox deployments.

Processing data at packet-sized scales magni�es the impact of even small overheads
and hence requires new algorithms and system designs.

Implementing the APLOMB redirection infrastructure (as discussed in Chapter 3), we
the authors found ourselves surprised at how well our prototype of redirection infrastructure
performed. However, implementing the software for middlebox infrastructure that would
run within the cloud was quite the opposite experience. We had (perhaps naively) assumed
that we would be able to take advantage of existing algorithms and systems for scaling, fault-
tolerance, scheduling, etc. ‘out of the box.’ The failure of existing fault-tolerance approaches
to cope with the performance constraints of packet processing led to the development of
FTMB. As we discussed in Chapter 4, the overheads assumed to be reasonable by traditional
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cloud services like web servers or big data analytics frameworks include millisecond latency
overheads and increases in processing time, which amount to drastic performance penalties
when packet processing tasks release packets ever microsecond or so. Hence this thesis refers
to the ‘blueprint’ of cloud computing – that the cloud can provide resources for failover and
scaling, that utility computing can improve management, extensibility and portability of
middlebox software – but not that exactly the same mechanisms and implementations to do
so will achieve success.

For this reason we are skeptical of NFV architectures which rely in the packet-processing
dataplane on existing software from the cloud domain. We have already seen this point play
out, e.g., when it comes to virtualization. Early NFV proposals used standard virtualization
network interfaces (indeed, we did in implementing APLOMB), but these interfaces could
not sustain multi-gigabit line rates required by the largest middlebox deployments. Only later
did specialized proposals like ClickOS’ [115] netmap-based [135] Xen network interface, or
NetBricks’ [121] Zero-Copy Software Isolation (ZCSI) enable the classic cloud benefit of
multitenant isolation with acceptable overheads for packet processing workloads.

Middlebox processing is not always embarassingly parallel.
We observed throughout the work in this thesis that middlebox processing maintains

complex state on the dataplane. As we discussed in Chapter 4, state that is shared between
many cores or machines inhibits parallelism. At the same time, network bandwidth demands
are increasing – in 2014, the average user consumed 18.5 GB of data per month, while in 2013
this figure was just 2.9GB [118]. With the end of Moore’s law, scaling e�ectively requires the
ability to parallelize. This pushes middlebox architects directly in conflict with Amdahl’s law,
as the growth of complex state in middleboxes and growth in demand for network throughput
are inherently at odds with each other. Consequently, middlebox architects will be forced to
either cut back on shared and aggregate data, or develop ways to partition and distribute
data more e�ciently between parallel processors.

Middlebox tussles can sometimes be converted to multiparty computation challenges.
Middleboxes have often been cited as an example of a network ‘tussle space’, where

‘players who make up the Internet millieu’ have ‘interests directly at odds with each other’
[64]. For example, firewalls represent the interests of network administrators who wish to
restrict what protocols and types of tra�c can be sent on their network, and their use is at
odds with the interests of users who want to send banned tra�c. In Chapter 5, we describe
another tussle in which admins seek to decrypt data and inspect it for attacks, which is at
odds with user’s desire for privacy. As the number of players in the space increases, the
number of competing interests rise as well. APLOMB proposes adding cloud administrators
to the picture. Recent press suggests that auditors increasingly have a stake in what middlebox
processing is performed and how, in ensuring that data is processed according to commercial
and government standards [108], and government agencies seem increasingly ambitious in
inserting wiretapping middleboxes in to public ISPs [78]. Tussles in packet processing often
(but not always) center on the privacy of the data being transmitted and analyzed.

BlindBox shows how secure multi-party computation approaches – like searchable encryp-
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tion – can ease tussle. Secure multi-party computation (SMPC) is a class of techniques that
allow multiple parties to jointly compute a function over their inputs while keeping those
inputs private [160]. SMPC eases tussle when conflicting parties do not object to the actions
or goals of the other parties, but only object to the incidental loss of privacy due to the other
parties’ actions. BlindBox is one such case: users likely do not object to their tra�c being
inspected for attacks, but do object to the incidental privacy loss due to their data being
decrypted in the process of detecting attacks. We suspect that some other tussles surround
middleboxes can be aligned by multiparty computation techniques as well. For example,
mobile phone ISPs must identify users at base-stations to authenticate their device and de-
termine whether or not they have paid their bills; this identification step may worry users
since it allows the ISP to physically track their location. Could a cryptographic technique
at the authenticating middlebox allow the ISP to identify that the phone is permitted on the
network and it’s bills are paid without actually learning which user the device belongs to
specifically?

Nonetheless, SMPC techniques only ease tussle when the conflict between players centers
on incidental loss of privacy. When a player objects to another players action outright (e.g.,
a government wishes to inspect and store all data about a specific user who does not wish to
be tracked, or an ISP wishes to filter tra�c that a client wishes to send) SMPC o�ers little
towards a solution.

Building cloud-inspired, general-purpose middlebox infrastructure opens the door to
new network service deployments.

The cloud-computing blueprint for middlebox processing may not only serve to port
existing network processing needs to new and more e�cient infrastructure. As more clouds
and ISPs deploy generic software packet processing infrastructure on their public networks,
networking researchers, startups, and developers will have a platform for deploying new
services. New proposals in protocol design, packet scheduling, network services, and security
extensions might all be tested and deployed on such a platform. If NFV and the cloud-
computing blueprint achieve widespread adoption, we may arrive at a future where network
innovations are deployed as quickly and easily as startups and researchers deploy their code
to clouds like EC2 and Azure today.
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