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Mixed reference frame representations underlie the 

use of multimodal sensory signals for reaching. 

 
Leah Marie Medvick McGuire 

Abstract 

The sensory signals that drive movement planning arrive in a variety of ‘reference 

frames’, and integrating or comparing them requires sensory transformations. I set out to 

examine how the different forms of sensory signals, and the transformations needed to 

compare them, affect the representation and integration of multimodal sensory 

information. I used a combination of human psychophysics and electrophysiological 

recordings from rhesus macaques to examine how visual and proprioceptive information 

are used for reach planning and execution. 

 

  The human experiment was designed to exploit stereotyped patterns of gaze-

dependent reach errors to determine whether the reference frame representations for 

reach planning depend on the visual and proprioceptive sensory information available. 

The results of this experiment were interpreted with a model of reach planning in which 

the statistical properties of sensory signals and their transformations determine how these 

signals are used. I found that no single reference frame representation was adequate to 

explain the observed error patterns when visual and proprioceptive information were 
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varied. Only by integrating movement plans across multiple reference frame 

representations was the model able to capture the observed error patterns (Chapter 1).  

 

Taking the results from this model, I next looked for evidence of these multiple 

reference frame representations across different sensory modalities in sensory-motor 

cortical areas of the rhesus macaque (Area 5 and MIP). I found that neurons in these 

areas use mixed reference frame representations, which are consistent across reaches to 

targets specified by different sensory modalities (visual and/or proprioceptive targets, 

Chapter 2). Additionally, I found that integration of multimodal sensory signals in Area 5 

and MIP emerges primarily across the population response rather than within individual 

cells’ responses (Chapter 3). These findings are consistent with the model results 

showing that sensory information is integrated in multiple reference frame 

representations, regardless of the reference frame in which sensory information enters the 

nervous system. These results illustrate one way that the brain can represent and integrate 

sensory information arriving from different sensory modalities. 
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Introduction 

When interacting with their environment animals use information from multiple 

sensory modalities. For example, if a mosquito lands on a persons arm he may have 

somatosensory information about the location of the mosquito on his arm, which can be 

used to quickly swat at the mosquito. Similarly, if he sees the mosquito land on his shirt 

sleeve he can use this visual information to perform the same movement. If the person 

both feels the mosquito on his arm and sees the mosquito he can use both pieces of 

sensory information to plan and execute a more accurate movement, increasing his 

chances of squashing to mosquito. All of these scenarios illustrate how very different 

sensory stimuli, specifically vision and somatosensation, can be used to plan the same 

movement. 

 

Despite the ease with which visual and somatosensory, or more specifically 

proprioceptive, information are used to plan and execute movements in everyday life, 

these sensory inputs enter the nervous system in very different forms, and little is known 

about how they are represented in the motor circuit. The information arriving in different 

sensory modalities comes from different types of sensory receptors, e.g. photoreceptors in 

the retina for visual information and mechanoreceptors in the muscles and joints for 

proprioceptive information. In addition to signaling different types of stimuli these 

receptors signal different types of spatial information. Visual information enters the 

nervous system as a cite of stimulation on the retina and so conveys information about 

location relative to the position of the eyes, i.e. in an eye-centered or retinotopic reference 

frame, while proprioceptive information enters the nervous system as information about 
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joint angles, which can be interpreted to give positional information relative to the torso, 

i.e. a body-centered reference frame. The spatial information from these sensory 

modalities follows discrete pathways to the primary sensory areas, the visual and 

somatosensory cortices, respectively, where visual and proprioceptive information are 

first represented in the cortex 1. Both of these areas have inputs to the posterior parietal 

cortex (PPC), which is thought to integrate visual and proprioceptive information for 

movement planning 2-7. Given the different types of spatial information contained in these 

sensory inputs, it is unclear what reference frame they should be represented in when 

they converge in the PPC. The focus of my thesis has been to determine how visual and 

proprioceptive information are represented in the PPC for use in reach planning and 

execution. 

 

There is conflicting evidence about whether visual and proprioceptive information 

are represented in different reference frames (each reflecting the reference frame of the 

sensory input) or the same reference frame (which could be eye-centered, body-centered 

or a mixture of reference frames) for movement planning. While the majority of studies 

of reference frames in the PPC have focused on visually guided movements 8-14 a few 

studies have compared the reference frame representations for movements to visual and 

auditory targets 15-17. These studies found, alternately, that a common reference frame was 

used for both visual and auditory targets 15 or that reference frames partially shifted to 

resemble the reference frame of visual or auditory information 16, 17. A partial shift in 

reference frame is possible because representations are often intermediate between pure 

reference frame representations, i.e. pure eye-, hand-, or body- centered coding 4, 11-13, 16, 18-
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27. When responses depend partially on eye, hand, or body position, the importance of 

each of these variables in determining responses can vary, resulting in a partial reference 

frame shift, with different sensory inputs. Representations that partially shift toward the 

reference frame of the sensory input being encoded are common in multimodal sensory 

areas 16, 17, 27-29. This suggests that common reference frame representations are not 

necessary for multimodal representations of spatial information 27. Further, 

psychophysical studies of reaches to visual and proprioceptive targets suggest that 

different reference frame representations may be used for these tasks 30, 31. Thus, I first 

asked which reference frames are used during reaches with different amounts of visual 

and proprioceptive information. 

 

In Chapter 1, I looked at how the reference frames used for reach planning depend 

on the sensory information available with a human psychophysics experiment. Changes 

in eye-dependent reach errors were used to elucidate whether reference frames depend on 

the visual and proprioceptive information available for movement planning.  This data 

was interpreted with a model of reach planning in which sensory information is 

represented in multiple possible reference frames. The pattern of eye-dependent errors 

observed in this experiment can only be explained by the model when the same set of 

reference frames are used to integrate sensory information and plan reaches, independent 

of the sensory information available. Further, the differential weighting of sensory 

information observed previous psychophysical studies 31 emerges naturally from this 

model because of the differential reliability of reference frame representations when 

different sensory information is available. These results suggest that the same reference 
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frames should be used to represent information for reach planning, regardless of the 

sensory information specifying the movement. 

 

In Chapter 2, I set out to directly measure the reference frames used by single 

cells in the PPC of rhesus macaques during reaches to targets specified by visual and 

proprioceptive information. Studies of the reference frame representations used for visual 

reaches in the superior parietal lobule (SPL) suggest that areas in the intraparietal sulcus, 

such as V6A and MIP, tend to have reference frame representations with more 

dependence on eye position 8, 11, 23, 32 while the surface of the SPL, Area 5, tends to have 

reference frame representations with more dependence on hand or body position 10, 12, 13. 

Thus, Area 5 and MIP appear to use different reference frame representations, and 

comparing responses to visual and proprioceptive target reaches across them allowed me 

to distinguish between two possible representation schemes. In the first scheme, the same 

reference frames are used regardless of sensory information, as predicted by the model in 

Chapter 1. In the second scheme, representations are flexible and depend on the sensory 

information available, as described in other multimodal areas 16, 17, 27-29. I found a mixture 

of reference frames in both Area 5 and MIP, but the composition of this mixture was 

independent of whether reaches were to visual or proprioceptive targets. Further, tuning 

curves were largely aligned across target modalities. Thus the first representation scheme 

seems to describe responses in the SPL, reference frames do not depend on the sensory 

information used to specify reach target. 
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One explanation for these shared reference frames across target modalities is that 

they would simplify the integration of sensory information from multiple modalities 33. In 

Chapter 3, I looked at whether sensory integration was occurring in Area 5 and MIP 

when multiple sources of sensory information were available. Individual cells displayed a 

range of changes in responses to bimodal versus unimodal sensory information in both of 

these areas. However, it was the mixture of modality preferences in the population that 

resulted in the greatest increase in population responses for bimodal targets. This increase 

in the population response could provide a stronger position signal for downstream motor 

areas when planning movements, suggesting that the shared representations in Area 5 and 

MIP may be important for integrating sensory information. 

 

The results of these studies support the conclusion that visual and proprioceptive 

information are represented in multiple common reference frames for integration of 

sensory information and movement planning. However, rather than being a series of 

discrete reference frame representations, as implemented in the simple model of reach 

planning (Chapter 1), these reference frames take the form of a continuum of 

intermediate reference frame representations (Chapter 2). Transforming both visual and 

proprioceptive inputs into these mixed representations may aid in integrating sensory 

information from these two sensory modalities (Chapter 3) and in maintaining unified 

visual and proprioceptive percepts about the spatial locations of the hands 30, 31, 34-36. Thus, 

despite entering the nervous system in very different forms, visual and proprioceptive 

information appear to converge in multiple reference frame representations in the PPC for 

movement planning and execution. 
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Chapter 1: 

Sensory transformations and the use of multiple 

reference frames for reach planning. 

 

Introduction 

 

Humans use a variety of sensory signals when interacting with the environment.  

We can just as easily reach to pick up a coin we see in front of us as we can transfer the 

coin from one hand to another without looking.  Using multiple sensory modalities for 

planning similar movements is problematic, since different sensory signals arrive in 

different “reference frames”.  Specifically, early visual pathways represent stimulus 

location relative to current gaze location – a retinotopic representation, while 

proprioceptive signals represent hand location relative to the shoulder or trunk – a body-

centered representation.  In order to combine or compare such signals, some of them 

must be transformed between reference frames. While such transformations may appear 

to be mathematically trivial, here we show that transformations can incur a cost by 

adding bias and variability 31, 37 into the transformed signal. Thus, such transformations 

likely play a major role in determining the flow of information in motor planning circuits. 

 

It has been argued that transforming sensory signals into a common representation 

would simplify reach planning 33, 38-41, and many researchers have attempted to 
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characterize this representation.  Psychophysical studies addressing this issue have 

assumed that the pattern of reach errors reflects the reference frame of the neural 

representations for reach planning.  However, these studies have argued for both 

retinotopic 42-46 and hand- or body-centered 47, 48 planning.  Primate physiology and human 

fMRI studies have also found evidence for a range of neural representations for 

movement planning 8, 10, 13, 24-27, 32.  This abundance of representations makes it seem 

unlikely that reach planning uses a single common representation 19, 20, 22, 25, 49.  We provide 

a quantitative explanation of how noisy sensory transformations make it advantageous to 

have the same movement plan represented in multiple reference frames.  Furthermore, we 

show that the best representation of movement plan depends on the availability and 

reliability of sensory signals.  We test this idea with an experiment in which different 

sensory signals specify the same desired reaching movement. 

 

The focus of our experiment is on how gaze-dependent error patterns change with 

available sensory information. A well-studied gaze-dependent error is the retinal 

eccentricity effect, where subjects overestimate the distance between the center of gaze 

and a visually peripheral target when pointing to the target 50, 51. These errors are most 

parsimoniously described in a retinotopic representation, and they have been cited as 

evidence for retinotopic reach planning 42, 44, 45, 52.  This is just one example of the 

commonly made argument that the reference frame of a movement plan directly 

determines the spatial pattern of errors 40, 46-49, 53-56.  We found that the magnitude of these 

gaze-dependent errors decreases when multiple sources of sensory information about 

hand 42 or target are available and that the direction of the errors changes when reaching 
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to proprioceptive targets.  These results are interpreted with a model of movement 

planning where the available sensory signals are combined in a statistically principled 

manner in two separate reference frames.  The model provides a novel explanation for 

these gaze-dependent reach errors: they arise when transforming sensory information 

about target location between representations due to a biased internal estimate of gaze 

direction toward the target.  These findings demonstrate that spatial pattern of reach 

errors does not necessarily reflect the reference frame of the underlying neural 

representation.  

 

 

Results 

 

Measuring gaze-dependent reach errors 

 

We first examined how the pattern of reach errors depends on the sensory signals 

available during the planning and execution of a movement.  Specifically, we 

manipulated information about target location and initial hand position, the two variables 

needed to compute a movement vector.  Target information was varied by having 

subjects reach either to visual targets (VIS), proprioceptive targets (the index finger of the 

left hand, PROP), or targets consisting of both visual and proprioceptive signals (the left 

index finger with visual feedback, VIS+PROP).  Information about initial hand position 

was varied by having subjects reach either with (FB) or without (NoFB) visual feedback 

of the right (reaching) hand before movement onset, although feedback was never 
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available during the movement.  For each of the six resulting trial types (Fig. 1b), we 

measured movement errors as subjects reached to an array of targets with gaze held on 

one of two fixation points (Fig. 1a). 

 

Figure 1: Experimental setup.  a) Array of eye and hand targets; +  fixation points, • reach targets, 
o start target. Inset: schematic side view of subject in experimental rig, right arm resting on table, 
left hand below the table.  b) Six task conditions; • visual targets, o visual feedback about position 
of left hand at start position. 
 

A comparison of reach endpoints at the midline target for an example subject 

illustrates that reach errors depend on the sensory signals available for movement 

planning (Fig. 2).  The errors differ markedly between gaze locations, and these gaze-

dependent effects change across trial types.  When a visual target is available (Fig. 2a-d), 

reach endpoints are biased away from the gaze location, i.e., the retinal eccentricity effect 

described above, and the magnitude of the effect decreases with increasing sensory 

information (Fig. 2a vs. 2b-d). When only a proprioceptive target is available, this effect 

is not seen, and, if anything, a small bias in the opposite direction is observed (Fig. 2e-f). 

These differences are consistent across targets (Supplemental Fig. S1). In addition to 

these gaze-dependent effects, there is a gaze-independent bias in reaching that may differ 

across targets and trial types.  This effect can be observed either by averaging the 

endpoints in the two fixation conditions or with a separate gaze-free trial condition 
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(Supplemental Figs. S1, S2).  While there is a trend toward overshooting the target, the 

pattern of this bias, across targets and trial types, is idiosyncratic from subject to subject 

(Supplemental Fig. S2), making these patterns difficult to interpret.  We therefore focus 

on the more consistent gaze-dependent effects. 

Figure 2: Reach 
errors at center 
target for an 
example subject 
for all trial types.  
Lines indicate 
mean reach error 
for each gaze-
position, ellipses 
represent standard 
deviation, +  
fixation points, • 
reach targets 
(solid black lines, 
gaze right; dashed 
grey lines, gaze 
left).  The origin 
(not shown) is 
located directly 
below midpoint 
of the eyes. 
 

 

In order to isolate the gaze-dependent effects, we transformed the reach errors 

into polar coordinates about the midpoint of the eyes and subtracted the gaze-free errors 

(Methods and Supplemental Fig. S3).  The resulting angular reach errors are significantly 

different between gaze locations for all trial types, though the pattern varies across trial 

types (Fig. 3). In VIS/NoFB trials (Fig. 3a), the retinal eccentricity effect is clearly seen 

in the angular errors: subjects made rightward (positive) reaching errors when fixating to 

the left of the target and leftward (negative) reach errors when fixating to the right of the 

target.  In VIS/FB trials, the errors for the two gaze locations follow a similar pattern, but 
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with smaller magnitude. (Fig. 3b, and 42).  In contrast, when subjects reached to 

exclusively proprioceptive targets (PROP trials) the reach endpoint is closer to the 

fixation point, rather than further from it (Fig. 3e-f).  The gaze-dependent error patterns 

in the VIS+PROP trial types appear to be a combination of those observed in VIS and 

PROP trials (Fig. 3c-d).  In addition to these gaze-dependent effects, there is a general 

leftward bias in reach error observed in all trial types.  This effect is discussed in 

Supplemental Section 1.2.  We also examined errors in depth, i.e. the radial component of 

reach errors.  While there is an overall trend to overshoot the target, these errors do not 

differ between the two fixation conditions (Supplemental Fig. S4).  In other words, the 

gaze-dependent errors are confined to the angular component of the reach error. 

 

For all trial types, the gaze-dependent error patterns qualitatively align when 

angular error is plotted in a retinotopic reference frame, i.e. as a function of target relative 

to gaze (Fig. 3, insets).  The fact that these errors look like a function of the retinal 

eccentricity of the target appears to support a retinotopic representation for reach 

planning 42, 44, 45, 52.  However, since these patterns differ markedly across trial types they 

cannot be readily explained in terms of a bias arising solely from a retinotopic 

representation. This suggests the need for another explanation of these apparently 

retinotopic errors.  
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Figure 3: Average angular reach 
error across subjects for each trial 
condition. Negative values 
indicate reach endpoints to the 
left of target, positive values 
indicate reach endpoints to the 
right of target.  Before averaging, 
interpolated gaze-free errors for 
each trial type were subtracted.  
Error bars indicate standard 
errors.  p-values determined with 
a paired permutation test. 
 

 

 

 

 

 

 

 

 

 

A Planning Model: Optimal Integration Across Multiple Reference Frames 

 

Here we present a model of reach planning that accounts for the pattern of gaze-

dependent errors observed in our data.  The model has two key features: the presence of 

multiple representations for movement planning and a bias in the transformation between 

those representations.   
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The model begins with sensory inputs signaling target location, the initial hand 

position, and gaze location (Fig. 4a). As sensory signals are inherently variable, we 

model the information they carry as a Gaussian likelihood of true location given the 

sensory input, with variance reflecting the reliability of that sensory modality (for review 

see 57).  Visual signals arrive in a retinotopic representation and proprioceptive signals 

arrive in a body-centered representation.  Each available signal is also transformed into 

the “non-native” reference frame (Fig. 4b). Since subjects’ head positions are fixed 

during the experiment, this complex nonlinear transformation 58 can be approximated by 

adding or subtracting the gaze location, i.e. by convolving their distributions (Fig. 4b, 37 

and Methods). When both sensory modalities are available, the “native” and transformed 

signals are integrated in both representations (Fig. 4b).  Movement vectors are then 

computed within each representation (Fig. 4a).  For each of these computations, we 

assume independence between the signals being combined (see Supplemental Sections 

2.4 and 2.5 for discussion). 

 

Since the transformation between retinotopic and body-centered representations 

relies on an uncertain estimate of gaze direction (Fig. 4e,d), this transformation adds 

variability to the transformed signal (Fig. 4b).  Because of this cost, the location of any 

given stimulus is more reliably represented in one or the other of these reference frames, 

depending on the availability and reliability of visual and proprioceptive signals related to 

the stimulus (Supplementary Equations 1-2).  In line with this idea, the present model 

quantifies how the reliability of a movement vector plan, in either of these 

representations, depends on the available sensory inputs. 
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Figure 4: Movement vector planning in multiple coordinate frames. a) Shows flow of information 
for movement planning. From left to right: Sensory information is represented in native 
coordinate frame (black arrows) and transformed into non-native representation (color arrows).  
Combined estimates are used to compute a movement vector in each coordinate frame.  Final 
movement plan may be read out from a single representation (RET, BODY) or using both 
representations (INTEG). b) Bias and variance introduced during transformation of target 
information for all target conditions with the INTEG model readout. When multiple sources of 
target information are available (VIS+PROP trials) information is integrated to form a combined 
estimate of location.  Subjects would be seated 35 cm from the target and fixation point shown.  
c,d)  Posterior variance in estimated eye position (i.e., “transformation variance”, colored lines), 
gaze likelihood variance (grey), and variance of gaze prior (dashed) (see Methods) for c) 
transformation from retinotopic to body-centered space, and d) transformation from body-
centered to retinotopic space. e) Bias in eye position estimate used in sensory transformations.  
All values in this figure reflect the INTEG fits. 
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In addition to adding variance, the transformation can introduce a bias into the 

estimates of transformed variables.  In particular, we posit that the internal estimate of 

gaze direction used to transform target information is biased toward the target (Fig. 4e).  

This bias takes the form of a Bayesian prior on gaze location 37 centered on the target, 

consistent with the observation that during gaze-free reaches subjects typically fixate 

reach targets 59. Since this prior estimate relies on knowing where the target is, the 

variance of the prior, and hence the magnitude of the bias, is assumed to scale with the 

variance in the internal estimate of the target location being transformed (Fig. 4c,d).  We 

discuss possible origins for this bias more fully below; here we consider how it would 

affect movement planning.  Since the transformation between representations is simply 

the addition or subtraction of gaze direction, the bias in transformed signals will either be 

away from or towards the actual target location depending on the direction of the 

transformation (Fig. 4b-e).  Only “non-native” (transformed) target representations will 

be biased. Thus, the gaze-dependent errors in the model depend on the availability and 

reliability of sensory inputs and on the method of reading out the final movement vector. 

 

We consider three possible output schemes for reading the planned movement 

vector from the model (Fig. 4a).  The retinotopic (RET) or body-centered (BODY) 

representations can each be read out directly. Alternatively, the two movement vector 

estimates can themselves be combined to form an integrated readout (INTEG).  The 

INTEG readout is a maximum likelihood estimate, where the contributions of the two 

representations to the final movement vector plan depends on their relative reliability 

(Supplemental Fig. S6).  
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Each of the three potential readouts provides a quantitative prediction of the reach 

errors as a function of hand, target, and gaze locations. The only free parameters in the 

model are the variances of individual sensory inputs and the gaze priors (Methods). The 

values of the proprioceptive variances are based on previously reported values 60. Four 

parameters remain: visual variance, gaze variance, and two scaling factors relating the 

variance of the gaze prior to the variance in visual and proprioceptive target signals.  We 

fit these parameters to the gaze-dependent errors shown in Figure 3 after mean correction 

(see Methods), using least-squares regression (see Supplemental Table-S1, and 

Supplemental Fig. S5 for fit values).  

 

Model Fits of Constant and Variable Reach Errors 

 

We first consider how well the three output models fit the observed patterns of 

gaze-dependent error differences (Fig. 5). When the model is fit with a single-

representation readout, RET or BODY, it fails to predict errors for all trial types.  This is 

because only transformed target signals contain a gaze-dependent error.  Thus, for VIS 

targets the RET readout has no error (red line, Fig. 5 a-b), and for PROP targets the 

BODY readout has no error (blue line, Fig. 5 e-f).  While both readouts contain 

transformed target signals in the VIS+PROP trial types (Fig. 5 c-d), the errors in the 

retinotopic representation would be in the wrong direction (target biased towards gaze).  

Thus, fitting the RET readout to the data drives the fit visual variance toward zero, which 

causes the model to effectively ignore the seemingly more variable proprioceptive signals 
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(Supplemental Table S1, Fig-S5).  A model that switches between these two readouts 

depending on task also seems unlikely.  First, both the RET and BODY readouts fail to 

capture the differences in the magnitude of gaze-dependent errors that we observed 

between FB and NoFB conditions.  Second, in order to predict the observed errors, the 

switching scheme would need to rely predominantly on the more variable “transformed” 

signals, rather than “native” signals, a sub-optimal arrangement (see Fig-6 below). In 

contrast, when both output representations are combined in the INTEG readout, the 

model performs well for all trial types.  This readout captures both changes in the 

magnitude of gaze-dependent errors (VIS vs. VIS+PROP, and FB vs. NoFB) as well as 

the sign reversal observed 

with PROP targets. It 

accomplishes this by 

differentially weighting the 

two reference frames across 

trial conditions 

(Supplemental Fig. S6). 

 
Figure 5: Model fits for gaze-
dependent reach errors.  Black 
and gray lines show mean 
(standard error) errors across 
subjects for each trial 
condition, after subtracting 
the overall mean separately 
for each of the six trial types.  
Colored lines show best fit 
model predictions: RET-red, 
BODY-green, INTEG-blue.  
Solid lines, gaze right; dashed 
lines, gaze left. 
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In addition to fitting the gaze dependent error patterns, the model predicts the 

differences in movement variability across trial types (Fig. 6a).  Since computations 

within the model are assumed to be noise-free, model output variability is due entirely to 

variability in the sensory inputs, shaped by the model computations, and does not require 

any additional parameter fitting.   The INTEG model fit provides an accurate prediction 

for the changes in output variance across trial types, while the two single-representations 

fits do not. Of course these predictions come from separate fits (to error) for each 

readout.  The parameters used in the model presumably reflect actual variances in the 

neuronal representations of sensory inputs.  For any given value of these variances, e.g. 

those obtained with the INTEG fit, we can ask what the variability in the movement plan 

is for each readout.  We found that the INTEG readout generally yields a lower variance 

estimate (Fig-6b), since it makes better use of all available sensory signals (although the 

range and magnitude of this advantage depends on the statistical properties of the sensory 

transformations; Supplemental Fig. S7).  In contrast to the idea that a single coordinate 

frame should dominate movement planning 8, 10, 33, 38, 40-45, 52, 53, this analysis illustrates that 

having multiple representations of a movement plan would yield more reliable 

performance across task types. 
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Figure 6: Reach variability. a) Differences in angular reach variance across trial types.  For each 
subject, the overall reach variance was subtracted from the variance for each trial type, and the 
black lines are the resulting mean (standard error) across subjects.  This measure emphasizes task 
differences in reach variance.  Colored lines represent model predictions for variance differences: 
RET-red, BODY-green, INTEG-blue. b) Mean model planning variability when a single set of 
variance parameters (INTEG fit) are used for all readouts. 
 

Lastly we tested the model, fit to our own dataset, on an independent dataset from 

Beurze et al. 42, which contains visual target trials with an expanded range of movements 

(i.e., more start, and gaze locations).  Beurze et al. 42 observed the standard retinal 

eccentricity effect in their data and showed, as we did above, that the effect magnitude is 

smaller when visual feedback of the hand is available (data reproduced in Fig. 7a-b).  In 

addition, they found a component of the reach error that correlates with the relative 

positions of the hand and target (data reproduced Fig. 7c-d).   They suggested that these 

errors could be explained by the introduction of errors in the conversion of target and 

hand positions into a retinotopic representation of movement planning. As shown in 

Figure 7e-h our model captures the all of the key features of their dataset, including both 

the retinotopic and hand-centered error components. 
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 Figure 7: Model 
predictions for data from 
Beurze et. al. (2006). a-d) 
Gaze dependent pointing 
error. e-h) Pointing error as 
a function of initial hand 
position relative to the 
target. c,d,g,h) average 
pointing error from Beurze 
et al. a,b,e,f) INTEG model 
predictions of pointing 
error, with parameters fit to 
our data. 
 

 

 

 

 

 

 

 

 

 

 

 

 

The cost of transformations 

 

Our model of sensory transformations allows us to explain another very different 

empirical result, again without additional parameter fitting.  Sober and Sabes 31 reported 
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that the relative weighting of visual and proprioceptive feedback of hand location during 

reach planning depends on the nature of the target.  In particular, they showed that vision 

is weighted more heavily when reaching to visual targets (as in VIS/FB trials here) than 

when reaching to proprioceptive targets (as in PROP/FB trials here).  Sober and Sabes 31 

proposed that this difference was due to the cost of performing sensory transformations – 

the sensory modality that matches the target is weighted more because the other sensory 

signal has to be transformed.  The reach planning model presented here makes this cost 

explicit: the transformed signal is more variable due to uncertainty in the internal 

estimate of gaze direction (Schlicht and Schrater 37 made the same argument with a 

similar planning model).  We were therefore able to use this model to make quantitative 

predictions of the angular error that should result from the artificial shifts in visual 

feedback used in Sober and Sabes.  Figure 8a compares the empirical data and the 

INTEG model readouts.  For both, visual feedback shifts have a weaker effect when 

reaching to proprioceptive targets than when reaching to visual targets. This effect is 

quantified in terms of overall weighting of visual versus proprioceptive feedback (Fig. 

8b), which is much greater for VIS targets than for PROP targets. In the model, this re-

weighting is due to the tradeoff between the retinotopic and body-centered 

representations of the movement plan (Supplemental Fig. S6), evidenced by the fact that 

neither the RET nor BODY readout exhibited the effect.  This result provides further 

support for the use of multiple representations in movement planning.  
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Figure 8: Changes in sensory weighting with target modality.  a) Mean angular error induced by 
artificial shifts in the visual feedback of the hand prior to movement onset.  Data from Sober and 
Sabes (2005).  Error bars represent standard errors.  Model predictions use the INTEG readout, 
parameters fit to our data. b) Relative weighting of visual vs. proprioceptive information about 
initial hand position in movement planning for reaches to VIS and PROP targets.  Error bars 
represent standard deviation across subjects. Colored lines show model predictions for each 
readout scheme: RET-red, BODY-green, INTEG-blue. 
 
 
Origins of the Gaze Bias 

 

We have shown that a bias in the internal estimate of gaze location can account 

for the complex pattern of gaze-dependent reach errors we observed across trial types.  

We now consider several possible origins of this bias and discuss additional evidence for 

its presence.  This bias might arise due to ether a “covert” saccade plan toward the target 

or a shift of attention to the target.  We tested these hypotheses by controlling the saccade 

target or the locus of attention independent of the reach target, but these manipulations 

did not alter the reach error pattern (Supplemental Fig. S8).  Alternatively, the bias could 

arise from a prior expectation that reach targets tend to be foveated, reflecting the fact 

that eye and hand movements tend to be tightly linked 59, 61, 62.  A Bayesian prior 63 on the 
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internal estimate of gaze location used for target transformations can account for our 

observations (see Methods).  While we were not able to determine the source of the 

putative gaze bias directly, we were able to observe the bias using an independent 

measure.  Specifically, we found that a visually peripheral reach target biases a subject’s 

estimate of straight ahead, and this bias is consistent with a shift in the estimated gaze 

direction 64 towards the target (Supplemental Fig. S9).  Both this perceptual effect and the 

constant errors observed in our reach experiment are well modeled by a Bayesian prior on 

gaze location centered at the target. 

 

 

Discussion 

 

This study was aimed at testing two widely held ideas in the field of sensorimotor 

control: that the spatial pattern of errors for a given movement closely reflects the 

underlying neural representation 42, 44-48, 52, 55, and that there should be a single reference 

frame for representing movement-related variables for movement planning 8, 10, 33, 38, 40-45, 52-

54. We have argued that neither of these ideas is correct.  First, we have shown that a 

single, apparently retinotopic, pattern of reach errors can be explained by a model in 

which multiple neural representations are used, e.g. a combination of both retinotopic and 

body-centered reference frames.  Second, we have shown that using more than one 

representation confers an advantage in terms of planning variability. 

 

Spatial patterns of reach errors have often been cited as evidence that underlying 
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neural representation are expressed in a particular reference frame 42, 44-48, 52, 54, 55.  In 

particular, much attention has been paid to retinotopic or gaze-centered error patterns 42-45, 

52, 54.  While we observed similar error patterns here, we found that their magnitude and 

directionality vary with the sensory signals available for movement planning.  This 

variation would be difficult to explain in terms of a bias in a single neural representation.  

Instead, we show that a bias in the transformation of target information between 

retinotopic and body-centered representations can lead to gaze-dependent error patterns 

in both representations. This shows that the spatial pattern of reach errors need not be a 

good indicator of the representation in which a movement is planned.  More generally, 

we argue that when sensory signals are used in a statistically optimal manner 57, 65-71, the 

same information is contained in multiple neural representations, and so there need not be 

a direct relationship between the behavioral output and any single representation of the 

movement plan.   

 

We have proposed that a biased transformation can account for gaze-dependent 

reaching errors.   Of course, the evidence for a purely retinotopic representation of 

movement planning includes the “remapping” of retinal eccentricity effects due to 

intervening saccades.  If subjects shift their gaze subsequent to the presentation of a reach 

target, but before reaching, the reach error matches what would be observed in a no-

saccade trial where the target is presented relative to the new gaze position rather than the 

original configuration 44, 72.  Since the parietal representations of retinotopic space remap 

with saccades 32, 73-75, these results could be explained either by a biased retinotopic 

representation of the movement plan or by a bias in the mapping from this representation 
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to the movement.  Although our model does not directly address such memory delay 

tasks, we believe it is could be extended to address these results. It is plausible that the 

saccade triggers not only a remapping of retinotopic representations, but also a “re-

broadcast” of those representations to other parts of the brain, and in particular to the 

body-centered representations in our model. During the process of remapping, the cells 

which code for the new location in space experience a marked increase in their firing 

rates, similar to that experienced when a real visual stimulus is present, albeit at a slower 

rate 74.  Such time-locked increases across a region of the retinotopic representation could 

act as the trigger for information transfer from one representation to another providing 

updating of errors across gaze shifts. 

 

In this paper, we have focused on azimuthal (left-right) gaze shifts and the 

resulting error patterns.  A vertical component to gaze-dependent errors has been 

observed when comparing vertically separated gaze locations 76.  These errors also follow 

the retinal eccentricity pattern, and are thus qualitatively consistent with our model.  

Gaze-dependent errors in depth were not observed in our dataset (Supplemental Fig. S4), 

most likely because we did not vary the gaze location in depth.  When this manipulation 

is done, a complex pattern of gaze-dependent depth errors is observed 54, presumably 

reflecting the complex binocular, three-dimensional geometry of the eyes 58.  While our 

model might be successfully extended to account for these patterns, it would require 

significantly more complex representations and transformations. 

 

Our simple model of gaze-dependent transformations ignores other possible 
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sources of bias. For instance, we do not address the relationship between head and eye 

movements.  Several studies have explored the effect of head rotations on reach accuracy 

77-79, and one recurring result is a bias in reaching toward the direction in which the head 

is oriented 77, 79.  This effect may result from a bias on the perceived midline of the head 

toward the center of gaze 79.  Indeed, we expect that biases in spatial transformations have 

a pervasive effect on movement planning.  For example, the leftward bias in reach errors 

observed across tasks (Fig. 3) can be modeled as a rightward bias in the proprioceptive 

estimate of the right hand (Supplemental Section 1.2).  Further, the idiosyncratic gaze-

independent error patterns exhibited by individual subjects (Supplemental Fig. S2) are 

also likely to be explained by subject-specific biases on other sensory variables 80.  These 

biases might also arise due the presence of prior expectations 69, although alternate 

sources of bias are plausible, e.g. impoverish representations 81.  

 

Sensory transformations can incur variance as well as bias 31, 37.  In our model, the 

transformation variance is due to uncertainty in the gaze direction, as proposed by 

Schlicht and Schrater 37.  The model thus assumes that sensory uncertainty is the only 

source of variability in this computation.  This viewpoint is the basis of the sensory 

integration model of Ma et al. 82, in which computation is noise-free and neural variability 

serves to represent uncertainty about the external world.  It is important to note, however, 

that in our model the degree of uncertainty in estimated gaze location was a fit parameter.  

This is a quantity that would be difficult to measure directly, since assessing estimated 

gaze location always requires comparing that estimate to other variable signals.  It is 

therefore plausible that these terms capture both sensory uncertainty and additional 
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variance due to the stochastic nature of neural computation 83. 

 

No matter the source, we argue here that the variance due to sensory 

transformations has an important effect on the flow of information within the reach 

planning circuit.  In particular, we argue that these transformation “costs” make it 

advantageous to use multiple representations for the movement plan.  First, we showed 

that when multiple reference frames are used, in a weighted fashion, movement 

variability across trials is improved (Fig. 6b).  Next, we showed that our model is able to 

predict how the weighting of visual feedback of the hand changes with target type (Fig. 

8) 31, but only when multiple representations are used. This is because the relative 

variability of the two representations, and hence their contribution to the output, changes 

with the sensory modality of the target.  Note however, that the relative contributions of 

two signals can also depend on the degree to which they appear to come from the same 

source 84-86, an effect that can also account for sensory reweighting 86 and therefore could 

explain the portion of reweighting that is not predicted by our model (Fig. 8).  Still, the 

decrease in planning variance with multiple reference frames and the corresponding 

reweighting of sensory information across trial types suggest that while a single 

representation might simplify the flow of information 33, 38-41, it does not make optimal use 

of that information for estimating the desired movement vector.   

 

Previous studies have reported patterns of movement errors 31, 47, 49 or 

generalization of motor learning 87, 88 that could not be explained succinctly in a single 

reference frame.  Such error patterns often depend on the availability of sensory signals 31, 
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47, 89, as observed here.  These observations have been explained in terms of task or 

learning-dependent changes in the underlying reference frame 86, 88 or an “intermediate” 

representation of movement planning 49, 87.  Here we provide a different explanation: 

movements are always represented in multiple reference frames, independent of the task. 

It is the statistical reliability of these representations which determines their relative 

weighting.   

 

This model is consistent with the neurophysiological literature, where a variety of 

spatial representations have been observed across the reach planning network 4, 19, 20, 22. 

Retinotopic coding for reaches has been observed within the intraparietal sulcus 8, 15, 

while other studies of parietal cortex have found head- and body-centered coding as well 

as “mixed” representations 10, 13, 16, 27, 90.  In the pre-motor cortex, which has strong 

reciprocal connections to these parietal areas 6, 91, neurons with “mixed” and hand-

centered representations have been observed 18, 24, 26.  Mixed hand, shoulder, and body-

centered representations have even been reported in the primary motor cortex 25. The two 

separate representations of the movement plan in our model might correspond to different 

subsets of these cortical areas.  Alternatively, the same computation could be performed 

using a single neural population that contains both retinotopic and body-centered 

components.  In neurophysiological studies, such an area might appear to have a “mixed” 

or “intermediate” representation.  Indeed, these implementations are two ends of a 

continuum, and the physiology seems to point to a model in which all of these cortical 

areas exhibit “mixed” representations, but the parietal cortex has a more retinotopic 

character and the frontal cortex is more hand or body-centered 19, 22, 92. As this study has 
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shown, however, the ultimate answer is likely to be found not by finer assays of neural 

reference frames, but rather by comparing activity in these areas across tasks with 

different sensory information 16, 27, 33.  

 

 

Materials and Methods 

 

Experimental setup.   

 

Subjects were seated in a simple virtual reality setup (Fig. 1).  The right arm 

rested on the surface of a thin (6 mm) and rigid horizontal table.  The left arm remained 

under the table.  When used as a reach target, the left index finger touched the underside 

the table with the wrist supine.  Thus, while the two index fingers could be brought into 

close proximity with each other, the two hands never came in contact.  The location of 

both index fingers was monitored using an infrared tracker (Optotrak 3020, Northern 

Digitial, Waterloo ON).  Subjects’ view of their hands and arms were blocked by a mirror 

through which they viewed a rear-projection screen (Fig. 1a, inset).  The screen and 

mirror were adjusted so that objects displayed on the screen with a digital projector 

appeared to lie in the plane of the table.  The rig was enclosed in black felt and the room 

was darkened to minimize additional visual cues.  Head movements were lightly 

restrained with a chin rest, and eye movements were monitored with an ISCAN Inc. 

(Burlington, MA) infrared eye tracker. 
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Task design.  

 

Nine potential reach targets were located on the table, on a 35 cm arc centered at 

the point directly below the midpoint of the two eyes (Fig. 1).   The targets were located 

at ±20º, ±15º, ±6º, ±2º, and 0º with respect to midline.  Two gaze fixation points were 

also located on this arc at ±10º.  Visual targets were displayed as 8 mm radius green 

disks, and fixation points were 5mm radius red disks.  Visual feedback was always given 

in the form of an 8 mm radius disk centered on the index finger, white for the right hand, 

blue for the left. 

 

All trials consisted of four steps.  1) Subjects moved their right index finger to a 

fixed starting location.  On feedback (FB) trials, the start location was indicated with a 10 

mm radius green disk, and visual feedback of right hand was illuminated. On no-

feedback (NoFB) trials, neither the feedback nor the target were visible, and subjects 

were guided to the start location using the arrow field method, which provides no 

feedback of absolute hand position 31.  2) When the right index finger came to rest within 

10mm of the start location, one of the two fixation points appeared.  Subjects were 

required to look at the fixation point and maintain fixation for the remainder of the trial.  

3) When fixation was achieved, the reach target was specified.  For VIS and VIS+PROP 

trials, the target disk appeared.  In VIS+PROP trials, feedback of the left hand appeared, 

subjects then moved the left index finger into the target disk, and the target disk was then 

extinguished leaving the blue feedback disk.  For PROP trials an arrow field was again 

used to guild the unseen left hand to the unseen target location.  4) After the target was 
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specified, there was a 500ms delay before an audible “go” tone was played and subjects 

reached to the target.  On FB trials, both the feedback and the start disk were 

extinguished at the time of the “go” tone and remained off for the rest of the trial.  

Finally, subjects were required to hold the final reach position for 500 ms.   Subjects 

practiced the various trial types before beginning the experiment. 

 

Eight subjects (two female, six male) participated in the experiment. Subjects 

were right-handed, had no known neural or motor deficits, and had normal or corrected-

to-normal vision.  The experiment was divided into two sessions, which were performed 

on different days in order to minimize fatigue.  One session contained only FB trials, one 

only NoFB trials, and session order was randomized across subjects.  Each session 

contained six repetitions of each of the 54 conditions (3 target types x 9 targets x 2 

fixation points), for a total of 324 trials (not including error trials, which were repeated).  

These trials were followed by a set of trials in which gaze location was unconstrained.  

This set consisted of six repetitions of 9 trial conditions (3 target types x 3 targets), 

bringing the total number of trials for each session to 378.  The order of presentation 

across conditions was randomized within each repetition.  

 

Data analysis.   

 

For each trial, the reach endpoint was defined as the position where the movement 

speed first fell to 5 mm/sec.  Reach targets and reach endpoints were converted into polar 

coordinates about an origin located directly below the midpoint of the two eyes.  Angular 
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reach error is defined as the angular difference between the endpoint and target, with 

positive values indicting reach endpoints to the right of the target and negative values 

indicating reach endpoints to the left of the target.  For the plots, permutation tests, and 

model fitting in Figures 3 and 5, the angular reach errors were corrected by subtracting 

off the interpolated free-gaze errors (separately for each subject and trial type) in order to 

minimize the effects of idiosyncratic gaze-independent error patterns while preserving the 

relationship between error, gaze location and target  (see Supplemental Figs. S1,S2).  The 

significance of gaze-dependent effects was tested by a paired permutation test of a main 

effect of gaze location 93. 

	
  

Model.	
  	
  

	
  

 Our model of reach planning describes how statistical representations of sensory 

inputs are used to compute a movement vector plan.  Five sensory signals are potentially 

available, modeled as independent Gaussian probability distributions centered on the true 

locations, , i.e. Gaussian likelihoods, , with an isotropic covariance matrix 

:   

	
   vision of right fingertip:   ~  

 proprioception of right fingertip:   ~  

 vision of target:   ~  (1) 

 proprioception of target:   ~  
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 felt gaze position:   ~  

Here lower-case variables are sensory signals with subscripts denoting sensory modality, 

v, visual, p, proprioceptive.  Upper-case variables are true locations with subscripts 

denoting reference frame,  for the retinotopic location,  for body-centered location.  

When a signal is not available in a given trial type (e.g.,  in NoFB trials), the likelihood 

is set to the uniform distribution.  The likelihood represents variability in a sensory signal 

 given the true location .  The computations in the model, however, depend on the 

uncertainty in  given , i.e. on the posterior distributions .  Bayes’ rule 

relates these two distributions, as a function of : 

 , (2) 

where  represents prior information about the location.  For the most part, we 

assume that the prior is flat, so the posterior is proportional to the likelihood (although 

below we describe when the prior is not flat). 

 

 All of the computations in the model are statistical in nature, making locally 

optimal use of the signals required for a particular computation, assuming that those 

signals are mutually independent.  Indeed, there are only two operations performed by the 

network: signal integration and addition (or subtraction).  Integration is the process of 

combining the information about variable  from two signals and .  By Bayes rule 

(Equation 2) and the definition of independence, the integrated posterior is just the 

product of the two input distributions: 

 . (3) 
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The resulting posterior is also Gaussian, with mean and variance 

 . (4) 

In Equation 4 and below, and represent the mean and variance of the 

distribution , respectively.  If either of the input distributions is uniform, i.e. if a 

sensory signal is absent, the integrated posterior is equal to the other input.  Note that the 

integrated variance is smaller than either of the input variances when two distributions 

are combined.  The second operation, addition, is where the network computes the 

posterior of a variable  from input signals  and .  In this case, the output 

posterior is given by the convolution of the inputs: 

 .	
   (5)	
  

The result is also a Gaussian, with mean and variance 

 . (6) 

Note that for both integration and addition, the output mean is a weighted sum of the 

input means, with either constant (unity) weights or weights that depend on the input 

variances.   

 

Given the sensory signals described in Equation 1, the model first builds internal 

representations of the fingertip and target locations, in both a retinotopic and a body-

centered reference frame.  These representations make optimal use of all available 

sensory signals, requiring a transformation of “non-native” signals.  In computing the 

retinotopic representation of target, for example, the proprioceptive signal must be 
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transformed.  Since head position is fixed in our model, , and the 

transformation follows Equation 5: 

 . (7) 

Parallel transformations are used to convert into a retinotopic representation and and 

into body-centered representations.  This can yield two independent estimates of the 

same variable, which are then integrated according to Equation 3.  The retinotopic 

representation of target, for example, has the posterior distribution: 

 .  (8) 

Of course, in VIS or PROP trials, one of the input distributions is uniform. 

 

The model next computes retinotopic and body-centered representation of the 

desired movement vector.  Since the true value of the instructed movement vector is 

, this computation also follows Equation 5: 

  (9) 

Note, however, that both of the inputs to Equation 9 depend on gaze.  If the same 

estimate of gaze is used to transform all sensory variables, then the inputs are not fully 

independent, and Equation 6 is only an approximate solution (see Supplemental Sections 

2.4, 2.5 and Supplemental Fig. S7). 

 

Lastly, the model selects a planned movement vector using one of three readout 

schemes.  The RET and BODY readouts are just the mean values of the  and  
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posteriors, respectively, from Equation 9.  For the INTEG readout, the model integrates 

these two posteriors according to Equation 3, as if they were independent: 

 (10) 

Note that these three readouts are the maximum a posteriori (MAP) estimates given the 

respective posteriors.  In this and the previous step, the model makes use of computations 

that are only strictly correct when the input signals are independent (Equations 8,9), an 

assumption which is not always correct (see Supplementary Section 2.4) 

 

The model described so far would produce unbiased estimates of the movement 

vector.  The final component of the model is a bias in the transformation of target 

position between reference frames.  We model this bias as a systematic misestimation of 

the gaze location due to the presence of a Bayesian prior.  This prior takes the form of a 

Gaussian distribution, .  The mean of the prior distribution  is 

itself a Gaussian random variable with mean  and variance proportional to that of the 

target variable being transformed.  The variance of the prior, , depends on both the 

variance of the target distribution being transformed and a scaling factor that depends on 

the modality of the transformed signal (see Supplemental Table S1).  Note that this prior 

only effects the gaze estimate used for transforming target locations; the prior is assumed 

to be flat in the transformation of finger locations.  A more detailed discussion of the 

statistical properties of the transformation, and their effects on the model predictions, can 

be found in the Supplementary Note (Sections 2.4 and 2.5). 
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Since the model is composed entirely of integration (Equation 3) and addition 

(Equation 5) operations, all expected values in the model, including the movement vector 

readouts, can be written as weighted sums of the means of the initial sensory inputs, with 

coefficients that depend only on the variances of those signals (Equations 4,6).  The trial-

by-trial variances of the readouts, shown in Figure 7, can be readily computed from these 

coefficients and the input variances in Equation 1. 

 

 

Model fitting.   

 

The only parameters in the model are the sensory variances listed in Equation 1 

and the variance of the gaze prior, .  The proprioceptive variances were set a priori 

based on previously published estimates 60.  The variance of visual signals, , is 

assumed to scale linearly with the distance of the stimulus location from the direction of 

gaze, and the scale factor is the first free parameter. The variance of the gaze signal,  

is the second free parameter.  The variance of the gaze prior, , is assumed to scale 

with variance of the target variable being transformed.  Two scale factors, one for each 

target modality, make up the remaining free parameters.  We fit these four free 

parameters to the average angular movement errors, after mean correction, as shown in 

Figure 5.  The model generates Cartesian movement vectors for each trial condition, 

which are then converted into polar coordinates in order to obtain angular errors.  The 

fitting procedure minimized the sum square prediction error across trial conditions using 

the Matlab optimization toolbox (function fmincon; Mathworks, MA).  Optimization was 
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repeated 100 times with random initial parameter values, and the final parameters were 

largely insensitive to initial values.  

 

Modeling other data sets.  

 

 The model predictions for previously published dataset (Figs. 7,8) relied on the 

model parameters fit to our own dataset with the INTEG readout.  When modeling the 

reach errors for Buerze et al. 42 (Fig. 7), we translated their target array into the center of 

our workspace and rescaled the spacing of the targets in order to maintain the same 

azimuthal separation.  The data for Figure 8 come from the gaze-fixed trials in Sober and 

Sabes 31, their Supplemental Figure S3. 
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Supplemental Information for Chapter 1: 

Sensory transformations and the use of multiple 

reference frames for reach planning. 

 

Figures, equations, and tables in this Supplementary Note are numbered with a preceding 

“S”, e.g. Figure S1.  Any references to figures without the leading “S” refer to a figure in 

the main text. 

 

1. Additional Data and Analyses 

1.1. Cartesian reach errors for an example subject 

The pattern of reach errors for each target, gaze location, and trial type (Fig. 1) are 

shown for a sample subject in Figure S1 (same subject as Fig. 2, main text).  Here we 

highlight several key features of this subject that are typical of what we observed across 

subjects and that can also be observed in the mean angular errors in Figure 3 of the main 

text.  First, while the error patterns differed across trial types, they vary smoothly as a 

function of target location and show a systematic dependence on gaze location.  During 

trials with a visual target (VIS and VIS+PROP trials) the reach endpoint is relatively 

biased away from the point of fixation. This effect is most pronounced in reaches to 
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targets that lie between the two gaze locations, suggesting a sub-linear relationship 

between reach bias and the retinotopic distance to the target (c.f. the retinotopically 

aligned insets in Fig. 3, main text).  The magnitude of this gaze-dependent effect depends 

on the availability of sensory signals.  Specifically the effect is smaller when either visual 

feedback of the reaching hand or a proprioceptive target is available.  In contrast, reaches 

to PROP targets are relatively biased toward the fixation point, although the effect for 

this sample subject is small and variable. These gaze-dependent effects show the same 

directional trends across all subjects and reached significance on an individual subject 

level in most tasks for all eight subjects.  In addition to these gaze-dependent effects, this 

subject exhibits gaze-independent biases (i.e. common effects for both gaze locations) 

that vary across targets and trial types.  In order to measure these biases, we had subjects 

make additional reaches to three of the target locations in a gaze-free condition (green 

lines in Fig. S1).  These gaze-independent effects are much more idiosyncratic across 

subjects, as discussed in the next section. 

 

  
 
Figure S1:  Mean reach errors across the workspace for an example subject. Lines show mean 
reach error for an individual target: red is fixation right, blue is fixation left, and green is gaze-
free reaches. Ellipses show standard error of the mean. 
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1.2. Gaze-independent effects and inter-subject variability in reach errors 

Figure S2 shows the pattern of mean errors for each subject during the gaze-free 

reach condition, in which no fixation point was presented.  While there is substantial 

inter-subject variability in these error patterns, for individual subjects they vary smoothly 

across the workspace and are similar across trial types.  Consistent with previous reports 

46, 47, 94, many of these error patterns resemble a constant error vector in a polar coordinate 

frame centered about a point near the starting location, head, or shoulder.  While such 

error patterns could be well-described in terms of spatial biases, the idiosyncratic nature 

of these errors across subjects would make it difficult to incorporate them into the model.  

We chose instead to focus the gaze-dependent errors, which followed more consistent 

patterns across subjects. 

 

  
 
Figure S2: Mean gaze-free reach error for all subjects. Subjects made gaze-free reaches to targets 
located at -20, 0, and +20 degrees from the midline. Vectors show average error for each target. 
Each color shows reach errors for a different subject, colors are consistent across tasks. 
 

In order to isolate the gaze-dependent errors (Fig. 3, main text), we subtracted a 

linearly interpolated estimate of the mean gaze-free angular error from the angular errors 

in the gaze-fixed trials for each subject. Figure S3 shows the mean (across subjects) gaze-
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free errors and uncorrected gaze-fixed errors.  A comparison of the mean corrected (Fig. 

3) and uncorrected (Fig. S3) errors shows that the key trends in the data were present 

before correction.  The gaze-free reach errors accounted for a large portion of the inter-

subject variability in gaze-fixed errors, as can be seen by comparing the error bars across 

these two figures. 

 

One difference between the corrected and uncorrected errors is that when the 

gaze-free reach errors are subtracted off (corrected), a leftward bias in reach error is 

present across all trial types (mean 0.69 ± 1.58 deg., present in all trial types with no 

significant difference between trial types; see Fig. 3).  A potential explanation for these 

errors is the presence of a bias on the internal estimate of the right hand in gaze-fixed 

conditions.  Indeed, we can largely capture this effect in our model by including a bias to 

the proprioceptive estimate of the right hand.  When fit to the data in Figure 3, we obtain 

a best-fit value of a 0.63 cm rightward bias in proprioception with a resulting mean 

angular error of 0.80 degrees across all trial conditions.  The effect of this bias is largely 

orthogonal to the gaze-dependent effects, as evidenced by the fact that fitting with the 

bias parameter leads to only slight changes in the other best-fit parameter values.  Of 

course the effects of this bias is only observed when gaze is constrained, suggesting 

either that the bias is itself a result of the gaze constraint or that when the gaze is free the 

effect is absent or highly attenuated.  This analysis exemplifies how the model can be 

expanded to incorporated additional error effects, allowing the development of a more 

comprehensive model of movement planning. 
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Figure S3: 
Average 
angular reach 
error across 
subjects 
without gaze-
free biases 
subtracted 
off. Error bars 
show 
standard error 
of the mean. 
 

 

 

1.3. Errors in depth 

This paper focuses only on reach errors in the azimuthal angle that result from 

gaze displacements from the target location along the azimuthal axis (targets and gaze 

locations were all equidistant from the midpoint of the eyes).  A previous study of 

reaching to visual targets found error patterns similar to those observed here for gaze 

displacements in both azimuth and elevation 76, suggesting that our model would 

generalize to account for angular effects along any axis.  Other researchers have observed 

gaze-dependent errors when the fixation point is displaced in depth relative to a visual 

target 54.  However, these error patterns are relatively complex and are not likely to be 

explained in terms of a simple misestimation of gaze angle.  We suspect that this 
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difference is due in large part to the greater complexity involved in interpreting vergence 

and other depth cues, compared to angular cues 58. 

 

It is possible that by focusing on angular errors, we could be missing significant 

gaze-dependent effects in the depth components of the reach errors.  A plot of the radial 

component of the reach errors for all trial conditions (Fig. S4) shows no significant 

difference between trials with left and right gaze fixation (solid and dashed lines).  This 

observation is supported by a 4-way ANOVA of the radial errors for the gaze-fixed trials 

(Target Location x Gaze Location x Target Type x Feedback).  The only significant 

effects are the main effects of Target Location (p=0.005), seen in the sloping lines in 

Figure S4, and in Target Type (p<0.0001).  In particular, there is no effect of gaze 

location on the radial reach errors.  In contrast, the same ANOVA performed on the 

angular errors in Figure S3 indentified interactions between Target Type and both Gaze 

Location (p<0.001) and Target (p<0.001), as well as the main effects seen in radial errors 

(Target Location, p=0.03; Target Type, p<0.0005).  These results show that our focus on 

azimuthal errors allowed us to study angular gaze-dependent errors fully while isolating 

them from the more complex errors that arise from gaze displacement in depth.  Further, 

our model is consistent with the data, both in its ability to capture the experimental data 

(Figs. 5-6, main text) and in its prediction of no radial gaze-dependent errors due to 

angular gaze-displacement from the target in our experimental design. 
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Figure S4: Average radial reach error across subjects for the two gaze conditions. Error bars show 
standard error of the mean. 
 
 
 

2. Additional Model Details and Analyses 

2.1. Transformation variance and the relative variability of representations 

Here we show how the cost of a sensory transformation between retinotopic and 

body-centered representations (Fig. 4, main text) affects the relative uncertainty of 

integrated position estimates in these two representations.  We begin with three 

assumptions: 1) both visual and proprioceptive information about the position are 

available and they are independent given the true location, 2) both signals are 

transformed into the other (“non-native”) reference frames, and 3) the two signals are 

optimally combined 65 (minimum variance) in each reference frame. If and  are the 
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variances of the visual and proprioceptive signals, and if is the variance injected by 

the transformation (c.f., Equation 6, main text), then the resulting variances of the two 

combined position estimates (retinotopic and body-centered) are 

 

 

From the expressions on the right, it is evident that the least variable representation is the 

one with the smallest variation in its associated sensory input.  For example, when visual 

variability is smaller than proprioceptive variability, the retinotopic representation will be 

have lower variance than the body-centered representation.  When one of the sensory 

inputs is missing, then the native reference frame of the sensory input which is present 

will always have lower variance.  For example, if there is no visual input, then  

while .  Thus, the optimal representation of target and hand position 

depends both on the relative reliability of the two sensory modalities and on which 

sensory inputs are available. 

 

2.2. Fit values of sensory and motor variances 

The parameters of our model are terms describing sensory variability and internal 

uncertainty (Table S1).  These parameters are either variance values (e.g. ) or 
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parameters from which variances are computed (e.g. the slope of with retinal 

eccentricity).  Interpreting the latter can be less intuitive, and so Figure S5 provides a 

direct visualization of the key variances for each model fit.  In all cases, these variances 

are scalar; the model assumes isotropic variability of all sensory signals, a simplification 

60, 70, 95.  

  
 
Table S1: Variances for RET, BODY and INTEG readout models. Fit variances are shown in 
black. Variances that were set before fitting are shown in grey. * Value went to limit of fit range. 
 
 

  
 
Figure S5: Best fit variance of sensory inputs for each output model. Variance of visual and 
proprioceptive signals for target location and transformation variances for target information are 
plotted as a function of the distance between target and the center of gaze. Since only one start 
location was used the variances of the initial hand signals are constant. 
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Proprioceptive Variance:  The proprioceptive variances were determined a priori.  

Values were roughly estimated from the values measured by van Beers et al.60, who 

deconvolved the behavioral variability measured in inter-sensory alignment tasks at three 

different locations in the workspace in order to estimate the underlying sensory variances.   

 

Visual Variance:  The slope of visual variance  on the retinotopic distance of 

the stimulus was the first fit parameter.  For this parameter, the INTEG fits appear most 

consistent with the existing literature.  van Beers et al.60 inferred the variability of the 

visual sense of hand location in same study discussed above.  They found azimuthal 

standard deviations in the range of 0.20–0.46°, which translates to a Cartesian variance 

 between 0.02–0.10 cm2 in our workspace.  Since gaze location was not controlled in 

these studies, direct comparison to our fits is difficult.  Nonetheless, this variance range 

matches those we found for the INTEG parameters (Fig. S5c) when the targets are 

located approximately 0.9°–5.0° from fixation, a plausible range for the gaze-free 

alignment trials performed in the van Beers studies.  Schlicht and Schrater 37, in building 

a model very similar to our own, inferred values of  from previous two-point 

discrimination studies.  For the range of targets used in our study, their parameters would 

yield  in the range of 0.003-0.12 cm2, a range 4-5 times smaller than we what we 

inferred with the INTEG fit.  This difference may well be due to differences inherent in a 

two-point discrimination task versus a more difficult localization task.  In any case, the 

INTEG fits compare much more favorably than those for the other readout models: the 
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values from the BODY fit were significantly larger (Fig. S5b), and the values from the 

RET readout were implausibly small (Fig. S5a). 

 

Transformation variance:  The total transformation variance, i.e. the uncertainty 

added to a sensory signal due to the transformation, shown in the black lines of Figure 

S5.  It is somewhat difficult to assess these values since there have been no previous 

attempts to measure these quantities.  Nonetheless, Schlicht and Schrater 37, inferred this 

quantity (which they called “coordinate transformation uncertainty”, or CTU) quite 

indirectly from a study of saccade variability 96.  When converted into our workspace, 

their values for the transformation variance ranged from 0.024-0.65 cm2
.  This is 

comparable to, but slightly lower than, the values we obtained with the INTEG fit, which 

ranged from 0.6 to 1.0 cm2 over the targets used in our study.   

 

It is important to note that for the RET and BODY fits, the transformation 

variance is not a well-constrained variable.  To see why, first consider the fact the 

transformation bias (i.e. the effect of the prior expectation of gaze position) depends only 

on the relative magnitudes of the gaze and prior variances,  vs. , not on their 

absolute magnitudes (c.f. Equation 4).  Second, the uncertainty of a transformed signal is 

the sum of the original sensory variance and the total variance of the transformation (c.f. 

Equation 6).  Since only one representation is used in the RET and BODY readouts, only 

this sum matters, not the individual terms.  Thus, for example, in the RET readout panel 

of Figure S5, it is the sum of the blue and black lines that matter, not the absolute values 
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of the two lines.  Finally, while the transformation variance in the model is formally 

equivalent to the uncertainty in gaze direction, we estimated its value simply by fitting to 

the reach errors.  It is therefore plausible that this term captures both sensory uncertainty 

and additional variability that arises during the transformation, e.g. due to the stochastic 

nature of neural computation 83. 

 

2.3. Reference frame weighting in the integration (INTEG) readout 

In the main text, we argue that the fits obtained with the INTEG readout are 

evidence for the presence of multiple reference frames for reach planning.  In making this 

argument, it is important to consider the relative contributions of the retinotopic and 

body-centered movement vectors to this readout.  In particular, we want to show that both 

representations contribute to the movement plan across trial conditions, as opposed to a 

single-representation plan with a task-dependent choice of reference frames.  To address 

this issue, we plot the relative contribution, or “weighting”, of the retinotopic reference 

frame for each trial type, as a function of retinotopic target distance (Fig. S6).  The value 

of the weighting can vary between 0 (BODY readout) and 1 (RET readout).  For all trial 

conditions, the weighting is in the range of approximately 0.2-0.7.  Thus, the INTEG 

readout does make significant use of both reference frames on any given trial.  
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    Figure S6: Weighting of retinotopic vs. body-
centered representations for the INTEG model 
readout. 

 
 
 

 

 

2.4.  Variability, uncertainty and the assumption of independent inputs 

In the Methods section of the main text, we distinguish between the trial-by-trial 

variability of a sensory signal  given the true value and the model uncertainty of  

given the signal .  For the initial sensory inputs the former is given by the variance of 

the likelihood (Equation 1), the latter by the variance of the model posterior, and they are 

simply related by Bayes’ rule (Equation 2).  When the prior is assumed to be flat, these 

two variances are equal.  However at later stages, the model uncertainty about given 

, i.e. the variance of the posterior, will not necessarily equal the trial-by-trial variance 

of the mean of the posterior, .  There are two reasons for this: the presence of 

priors in the model and the assumption of independence between local input signals.  We 
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will discuss the affect that priors have on the trial-by-trial variability in the next section.  

Here we briefly discuss the assumption of independence. 

 

The core computational elements in our model, Equations 3 and 5, implicitly rely 

on the assumption that the input signals are independent, despite the fact that they 

sometimes are not (e.g. Equations 8, 9).  The assumption of independence was motivated 

in part by recent models of optimal sensory integration (Equation 3) and transformation 

(Equation 5) in neuronal populations 82, 97.  In these models, the uncertainty of each input 

population is encoded independently in the gain and/or neural variability of the 

population, and trial-by-trial correlations between these inputs are ignored.  This is a 

simple and attractive model, as higher-dimensional correlations need not be represented 

and each brain area need only consider the signals it is currently receiving in order to 

perform its computation.  In principle, however, a downstream area could learn such 

correlations and re-weight the inputs accordingly.  Therefore we implemented a model 

that took all correlations into account (i.e. a model that performed true MAP estimation).  

While this model was roughly able to capture the mean errors observed in our data, the 

changes in variance across tasks did match our observed variances (data not shown).  

This result provides support, albeit quite indirect, that the brain performs local inference 

using approximations of independence. 
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2.5. The statistics of the sensory transformation and the optimality of multiple 

reference frames 

A principal result of this paper is that the use of multiple reference frames for 

motor planning leads to a reduction in the variability of the final movement plan, as 

shown in Figure 6b in the main text.  Here we show that, while the relative variability of 

the three readout schemes is highly dependent on the statistical details of the sensory 

transformation, for all options that we considered the INTEG readout remains the best 

overall performer (Fig. S7).  In particular, we consider how the degree of correlation 

between various transformation-related signals affects model output variability. As noted 

in Section 2.4 above, individual computations in the model assume that local inputs are 

independent, and so estimates of uncertainty within the model are unaffected by 

correlations between sensory signals.  Since the weighting of sensory signals depends 

only on these estimates of uncertainty (Equation 4), the MAP estimates of location, and 

thus the model fits (Fig. 5), are also unaffected by the presence or absence of correlations 

between sensory signals.  Of course the actual trial-by-trial variability of the output (Fig. 

6) does depend on these correlations.  We consider two specific cases here. 

 

Gaze signals:  The transformations between retinotopic and body-centered 

representations require the addition or subtraction of the gaze location.  Four such 

transformations are performed: the retinotopic to body-centered transformation (R→B) 

and the body-centered to retinotopic transformation (B→R), for both the target and initial 

finger locations.  Since these transformations are likely to take place within different 
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neural circuits, they are also likely to be at least partly uncorrelated from each other 

across trials.  For the model, four scenarios were considered:  4-estimates, in which each 

transformation has a separate independent and identically distributed (i.i.d.) gaze signals 

(as per Equation 1, Fig. S7a);  2-estimates, in which the R→B and B→R transformations 

rely on separate i.i.d. gaze signals (Fig. S7b); and 1-estimate, in which all four 

transformations use the same gaze signal (Fig. S7c). 

Target signals:  The gaze-dependent reach errors in the model are due to the 

presence of a Bayesian prior on gaze location.  This prior is only applied during the 

transformation of the target location.  While this choice was made in based on our 

behavioral data (Fig. 3), it can be motivated using the same “local statistics” argument 

presented in the previous section.  Specifically, we hypothesize that the prior arises 

within the neural circuits performing this transformation in response to the long-term 

statistics of gaze and target locations.  The prior takes the form , 

where is itself a Gaussian random variable.  Consistent with the local statistics 

argument, is drawn from the same distribution as  for R→B transformations and 

the same distribution as  for B→R transformations.  There are two ways to implement 

this model: independent prior, where is independent from  and (Fig. S7, solid 

lines); and dependent prior, where the same variable is used for and  or (Fig. S7, 

dashed lines).  Note that in both cases the trial-by-trial variability of the mean of  is 

determined by the target variance,  or .  In contrast, the uncertainty in the prior 
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 is proportional to the target variance (gain factors listed in Table S1).  This is 

another example in which variability and uncertainty diverge in the model. 

 

  
 
Figure S7: Predicted planning variability across tasks for models with different degrees of 
correlation between the estimate of gaze used to transform between reference frames.  Solid lines 
show model predictions when prior on gaze is independent of target information, dashed lines 
show model predictions when the prior is the estimate of target location. a) Shows model 
predictions when the same estimate of gaze is used to transform all sensory signals. b) Shows 
model predictions when the estimates of gaze used to transform information from retinotopic to 
body-centered representations or from body-centered to retinotopic representations are 
independent. c) Shows model predictions when the estimates of gaze used to transform each 
sensory input (visual or proprioceptive target or hand position) are all independent. 
 

Figure S7 shows the predicted output variability for each combination of 

scenarios just described.  For every scenario, the integrated movement plan (purple 

curves) performs markedly better than either of the unimodal readouts when visual 

feedback of the reaching hand is available (FB conditions).  When no feedback is 

available, the body-centered readout (blue curves) outperforms the integrated readout for 

scenarios with a single gaze estimate (Fig. S7c).  Note however that the difference 

between the variances is quite small in these conditions.  More generally, we expect that 

the true answer would lie somewhere in between these extremes, i.e. that different 

representations of the same external stimuli would be correlated, but not identical.  In this 
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scenario, the integrated and body-centered readouts will perform comparably for no-

feedback reaches, while the integrated readout will perform best for reaches with 

feedback.  Notably, the retinotopic readout is generally a good deal more variable than 

the others. 

 

3. Experimental Investigations into the Origin of the Gaze Bias 

A key element of our model is a bias in the internal estimate of gaze location used 

to transform target information.  While we show in the main text that this bias allows us 

to predict complex patterns of reach errors, we did not provide an explanation of how this 

bias might arise.  Here we describe two experiments that tested possible explanations for 

a gaze bias and another experiment that quantitatively measured the bias independent of 

the approach used in the rest of the paper. 

 

3.1. Saccadic planning and gaze bias 

We first tested the hypothesis that the bias in estimated gaze location results from 

the (partial) updating of the gaze estimate due to a “covert” saccade planned toward the 

pending reach target.  Neurons in the posterior parietal cortex have been shown to remap 

their patterns of activity in order to account for a shift in retinotopically represented 

spatial variables before a pending saccade 74.  If subjects plan (but do not execute) 

saccades to the reach target location, a partial shift in representation could occur. This 
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shift would mimic a bias in estimated gaze direction.  If this were the case, then when 

subjects make a saccade to an alternate location, it should change the direction of the 

effective gaze bias, thereby disrupting the observed pattern of gaze-dependent reach 

errors.  

 

To test this idea, we designed an experiment in which subjects were required to 

saccade to a cued location at the onset of the reach. Four subjects participated in this 

experiment. The saccade target could either be the same as the reach target or a position 

on the opposite side of the initial gaze location from the target (Fig. S8a-c).  Trials were a 

modified version of the VIS/NoFB trials from the main text.  Two reach targets were 

used, 10 degrees to the right or left of midline.  For each reach target, two initial gaze 

locations were used, 10 degrees to the right or left of the target.  For each reach-

target/gaze combination, subjects were instructed to make a saccade to a cue location 10 

degrees from the fixation point.  The cue was either at the reach target or 10 degrees from 

the fixation point in the opposite direction (Fig. S8b,c). This resulted in a total of eight 

different trial conditions, and subjects completed 20 repetitions of each.  To ensure that 

the saccade coincided with the start of the reach, subjects were required to maintain 

fixation until they started moving and to fixate the new eye target before their fingertip 

moved 40% of the nominal reach distance. Subjects were required to make single 

continuous movements to the reach target in order to successfully complete a trial.  This 

experimental design allowed us to measure the effect of making a saccade to or away 

from the reach target across multiple target and gaze locations. 
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If this saccade hypothesis were correct, we would expect to see a reduction or 

reversal in the magnitude of gaze dependent errors when subjects saccade to the cue 

opposite the reach target and no change in gaze dependent errors when subjects saccade 

to the reach target. However, no such difference was observed (Fig. S8d).  Indeed, for 

both cue locations, trials with initial fixation to the left of the reach target (filled markers) 

had rightward errors, and trials with initial fixation to the right of the reach target (open 

markers) had leftward errors.  This is the retinal eccentricity effect observed in the 

VIS/NoFB condition in the main paper (Fig. 3a), and it is not reduced by peri-reach 

saccade away from the target as predicted by this hypothesis. These results suggest that 

saccade-related remapping of retinotopic representations does not lead to a bias in the 

internal estimate of gaze location.  However, it is also possible that we were unable to 

sufficiently control the time of the saccade.  For example, subjects could have been 

covertly planning a saccade to the reach target during the critical reach planning period, 

even though they were later able to execute a saccade in the opposite direction.  The latter 

explanation is not entirely infeasible: since subjects found it very difficult to initiate a 

saccade to one location while reaching to another, somewhat loose timing criteria for the 

saccade were required in order to obtain reasonable success rates. 
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Figure S8: Effects of saccade and attention on gaze bias. a) Target configuration for both 
experiments:  • left target,  • right target, + fixation points, o saccade target and cue positions.  For 
each reach target, the two nearest gaze locations were used.  For each gaze location and target, the 
cue was located opposite the target (b)	
  or at the target (c). d,e) Magnitude of pointing errors for 
cue opposite target versus cue at target.  (d) Saccade task, (e) Attentional task. Colors represent 
target positions in (a). Filled symbols indicate fixation to right of the target, hollow symbols 
indicate fixation to left of the target.  Each marker shape corresponds to data from one subject. 
Error bars show standard error of the mean. 

3.2. Reach planning and the locus of attention 

We next tested a similar hypothesis, that having the locus of attention at the reach 

target is the source of the gaze bias. It has been shown that the presence of a salient 
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peripheral visual cue can bias the report of target located away from that cue 98, 99. This 

“attentional repulsion effect” resembles the retinal-eccentricity effect, and is consistent 

with a shift in the internal estimate of gaze toward the attentional locus. We tested 

whether manipulating attention could alter gaze-dependant reach errors using an 

experimental paradigm similar to that described in the previous section. Four subjects 

participated in this experiment. The target, gaze location, and cue configurations used in 

this experiment were identical to those described above.  However, rather than having 

subjects saccade to a cued location, subjects were required to attend to the cue in order to 

detect reach “go” and “abort” signals.  In this experiment, no go tone was used.  Instead, 

the white attentional cue turned a pale green (from [1 1 1] to [.5 1 .5] in RGB space) to 

indicate “go”. Subjects then had 800 ms to start the movement or the trial was considered 

an error.  In order to ensure that subjects continued to pay attention to the cue after reach 

initiation, an “abort” cue was issued during the movement on 35% of the trials (the 

attentional cue turned pale red, [1 .6 .6] in RGB space), at which point subjects were 

required to move their hand back towards the start position within 800 ms or the trial was 

considered an error.  Subjects quickly learned to minimize error trials.  As in the previous 

experiment, the attentional cue was located either in at the reach target (Fig. S8c) or on 

the opposite side of the gaze location from the reach target (Fig. S8b).  Subjects 

completed 20 repetitions of all target, gaze and cue combinations. 

 

If attentional locus biases the estimated gaze location, then we would expect that 

the direction of gaze-dependent errors would reverse when subjects attended to the cue 

opposite the reach target.  Instead, we observed the same retinal eccentricity pattern in 
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with both cue locations (Fig. S8d). While subjects displayed large gaze-dependent error 

patterns consistent with those observed above and in the main text, the error patterns for 

the two attention conditions were almost exactly matched.  We conclude that either 

attention to the reach target is not the origin of the gaze bias or that this paradigm was 

unable to sufficiently divert attention from the reach target. 

 

3.3. Measuring gaze bias 

The two experiments above seem to exclude a clear role for the saccadic or 

attentional systems in the origin of a gaze bias. A third possibility is that the bias 

estimated gaze direction arises from a prior expectation that the reach targets tend to be 

foveated.  This expectation could reflect the fact that eye and hand movements tend to be 

tightly linked 59, 61, 62, 100.  If this expectation acted as a Bayesian prior 63, it would bias the 

internal estimate of gaze direction used to transform target information toward the target. 

It is not yet apparent to us how the existence of such a prior could be convincingly 

proved or disproved. Instead, we performed an experiment designed to detect and 

quantify any reach-related gaze bias, using measures different from those in the main 

paper.   

 

Subjects viewed a transient visual stimulus and were asked to report whether the 

stimulus was located to the right or left of “straight ahead”.  In order to make this 

assessment, subjects must use the internal estimate of gaze direction to compare the 
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retinal stimulus to the head- or body-based sense of straight-ahead.  Any bias in the 

internal estimate of gaze should translate to a bias in the estimated location of the 

stimulus with respect to straight-ahead (Fig. S9b,64), providing an indirect measure of 

gaze bias.  We performed this perceptual task in the context of reaching trials, with the 

expectation that the internal estimate of gaze location would be biased toward the reach 

target.  However, it is known that a peripheral distracter can bias the reported location of 

a flashed cue, even when the distracter is not a movement target 98, 101. Therefore, we also 

tested whether a target-like cue might be enough to bias reporting of straight ahead, even 

when no reach was required.  This experiment was thus performed with both reach and 

no-reach trials.  During reach trials, subjects both reached to a peripheral visual target and 

reported the location of a bar that was flashed when the hand was ~40-60% of the way to 

the reach target.  In no-reach trials, subjects were presented with the same scene as in the 

reach trials, but their hand remained in the start position throughout the trial. Trials were 

randomly interleaved, but subjects were informed before each trial whether it would be a 

reach or no-reach trial, and the target color was different for the two trial types.  For each 

of these trial types, 22 bar locations, two gaze locations, and four targets were used, for a 

total of 176 trials.  For each gaze location and reach target, we fit a psychometric curve to 

the categorical response data as a function of bar location (left or right).  From the 

inflection point in this fit, we obtained an estimate of localization bias.  Since eye 

position has been shown to effect subjects’ report of straight ahead 79, the two gaze 

locations were located symmetrically 3 deg on either side of midline (Fig. S9a), and the 

bias estimates from the two gaze locations were averaged.  We thus obtained an estimate 

of localization bias for each subject, trial type, and target.  In order to remove 
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idiosyncratic biases in perception of straight ahead, we removed the grand mean for each 

subject before averaging across the six subjects who participated in this experiment. Two 

of six subjects showed such extreme leftward biases in the estimate of straight ahead that 

insufficient “rightward” responses were given in order to obtain a good psychometric fit.  

For these subjects trial conditions with insufficient data were excluded from the group 

average.  This resulted in the exclusion of all data collected with one of the gaze locations 

for the first subject, and the reach data for one gaze location for the second subject. 

Because we subtracted off the subjects’ grand mean before averaging across subjects, the 

bias caused by excluding one gaze position did not affect the measure of the bias due to 

target position.   

 
 

We found that the presence of peripheral visual targets induced a bias in the 

localization of visual stimulus with respect to straight-ahead (Fig. S9c).  For both reach 

and no-reach trials, this bias is consistent with a bias in estimated gaze location toward 

the target.  However, the effect magnitude is roughly half of what would be needed to 

fully account for the gaze-dependent reach errors we observed in the main paper 

(compare Fig. S9c to Fig. 3d). This difference is likely due to the differences in the two 

measures used. Specifically, the gaze bias used in the model incorporates both the 

position of the eyes and the position of the head on the body, while the perceptual effect 

measured here only took into account the position of the eyes (subjects were asked to 

report whether they perceived the line to be to the right or left of a line coming directly 

out of their nose). Finally, the fact that this effect is independent of the intent to reach 

would appear to suggest either that subjects were covertly planning reaches even during 
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no-reach trials or, alternatively, that some sort of attentional mechanism is responsible for 

the effect. 

	
  

  
 
Figure S9: Inferring the eye bias via target-dependent bias on perceived location of straight 
ahead.  a) Target array used for this experiment: + fixation points, • targets.  b) Schematic of how 
bias in eye position toward the target would influence reported location of a transient visual 
stimulus relative to straight ahead. c) Inferred biases in the estimate of straight ahead.  Solid line, 
no-reach trials; dashed line, reach trials. Error bars show standard error. 
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Chapter 2: 

Mixed representations are shared across reaches to 

visual and proprioceptive targets in the superior 

parietal lobule. 

 

Introduction 

 

The simple tasks of reaching to pick up a coin or transferring the same coin from 

one hand to another without looking require similar movements, but use very different 

sources of sensory information. In the first case, vision of the coin enters the nervous 

system as a site of stimulation on the retina, so its location is defined in a retinotopic or 

eye-centered reference frame. In the second case, information about the position of the 

target hand enters the nervous system as mechanosensory signals about the state of the 

muscles and joints. These joint angles can be used to compare the position of the hand to 

the torso, a body-centered reference frame. These very different sensory signals are 

processed in the primary visual or somatosensory cortices, respectively, before 

converging in the parietal cortex, where they enter the motor circuit 3, 5-7, 102-106. As the 

spatial information encoded by these two sensory streams must undergo costly 31, 37, 107 

reference frame transformations to be compared 108, it is unclear what reference frame 

representation should be used when they converge in the parietal cortex. 
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 A wide range of reference frames have been found in the superior parietal lobule 

(SPL) in studies of visually guided reaching 8-14. Computational modeling suggests mixed 

or intermediate reference frames may be used to transform sensory information between 

reference frames 97, 109, 110. Given the proposed role of the SPL in integrating sensory 

information arriving in a variety of reference frames for movement 3, 20, 33, 90, 111 this may 

explain the mixture of reference frames reported. However, there are consistent trends in 

the reference frame studies of the SPL, which suggest a link between the reference 

frames of sensory inputs to an area and the reference frames found in that area. For 

instance, while Area 5 responds to both visual and proprioceptive stimuli 21, 35, 90, 111-113, it 

receives greater somatosensory input 3, 103 and seems to have reference frame encoding 

that relates to hand or body centered (proprioceptive) reference frames 10, 12, 13. Similarly, 

while MIP responds to both visual and proprioceptive stimuli 21, 90, 114, it receives greater 

inputs from visual areas in the occipital lobe 3, 103, 115, and seems to have reference frame 

encoding in eye-centered or eye-dependent (visual) reference frames 8, 11, 32. Thus, one can 

ask whether the reference frames found in these areas are an inherent property of each 

area or are related to the reference frames of the sensory inputs.  

 

Studies of multimodal cortical areas suggest that the reference frame of the 

sensory input affects, but does not completely determine, the reference frame of 

individual cells responses within a cortical area 16, 17, 27-29. However, shared representations 

seem important for comparing and integrating sensory information 33, 38, 40, 116 (though see 

27). Further, a study looking at reaches to auditory targets in the parietal reach region 
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(PPR which overlaps MIP and V6A, 117) found a similar representation to that used for 

reaches to visual targets 8, 15, though no within neuron comparison of responses to the two 

modalities was made. Thus, whether different sensory inputs are encoded in a common 

reference frame may depend on the role of the cortical area and task being performed.  

 

Here we asked whether the sensory information available changes the reference 

frames used in the SPL. By directly comparing the reference frame representations used 

for reaches to visual and proprioceptive target we examined whether representations in 

Area 5 and MIP reflect the reference frame in which information enters the nervous 

system or is an invariant property of the cortical area. We found that the representations 

in these areas did not depend on the sensory information available, though a mixture of 

reference frame representations were present in both areas. 

 

Methods 

 

Experimental Setup  

 

Two adult male rhesus macaque monkeys (12-15kg) were used in this experiment. 

All procedures were approved by the UCSF Institutional Animal Care and Use 

Committee and followed the NIH guidelines for care and treatment of laboratory animals.  

 

The monkeys were trained to make reaches in a virtual reality setup allowing 

control of visual information during the task (Figure 1A). The monkeys were seated in a 
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primate chair with an open front panel open to allow arm movements. Head position was 

fixed with animals facing a mirror in which visual targets and feedback about hand 

position were presented. A digital video projector (NEC HT1100) displayed visual 

stimuli on a rear projection screen located directly above the mirror. The mirror and 

screen were positioned so that all visual objects appeared in the plane of the upper 

horizontal table on which the reaching arm rested. Eye position was monitored using an 

ISCAN (Woburn, MA) infrared eye tracking system. The monkeys were trained to wear a 

mesh jacket with stiff gloves that kept the hand prone. Magnetic sensors were attached to 

the gloves, and hand position was monitored with a Polhemus (Colchester, VT) Liberty 

magnetic tracking system. The arm contralateral to the recording chamber was used for 

reaching and rested on top of a thin (6 mm) horizontal table. The ipsilateral arm rested 

horizontally 5.5 cm below the upper table and was secured to a custom motor-driven 

sleigh that moved the arm passively between target locations.  Behavioral and neural 

event times were recorded with a signal acquisition system that includes a programmable 

processor (Tucker Davis Technologies, Alachua, FL). Experiments were controlled with 

custom routines in Matlab (Natick, MA). 

 

Target Modalities and Array 

 

 The monkeys were trained to reach to three different types of targets. They made 

reaches to visual (VIS), proprioceptive (the ipsilateral hand, PROP), and visual and 

proprioceptive (VIS+PROP) targets (Figure 1B). Visual targets were a presented as filled 

disks 2 cm in diameter. The disks were green during VIS trials and blue during 
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VIS+PROP trials to distinguish purely visual trials from trials were the target coincided 

with the position of the ipsilateral hand. The proprioceptive targets were the last joint of 

the two middle fingers of the ipsilateral hand, which were moved to the correct location 

with the positioning sleigh. These three trial types were preformed for the same set of 

reach conditions, i.e. reach target location, fixation point, and start location. 

 

 

Figure 1: Experimental setup and time series. A) Schematic side view of experimental rig. B) 
Three target conditions. O visual reach target, | fixation point, o feedback about reaching hand. 
C) Array of reach targets and fixation points. Only the center start location was used during most 
recording sessions, the additional right and left start positions were used for expanded start 
condition sessions. D) Schematic trial timeline for the three modalities. Colored lines show 
changes in hand and eye positions. Black lines show visual start, target and fixation point onset 
and offset. Grey shaded regions show behavioral epochs of interest. 

 

Reach targets for all trial types were located in an arc equidistant from the 

projection of the monkeys’ cyclopean eye position onto the tables (Figure 1A,C). This 
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point on the bottom table was also the pivot point for the lever arm of the positioning 

sleigh. The exact length of the arc was determined by the extension of the ipsilateral arm 

and varied slightly as the hand moved within the positioning sleigh (average radius 26 cm 

monkey C, 22 cm monkey E). Targets were positioned at 10 degree intervals with respect 

to the origin of the target arc (approximately 10 degrees visual angle) from -30 to +30 

degrees from midline (Figure 1C). 

 

 During reaches the monkeys maintained fixation at one of two fixation points 

located at ±10 degrees from straight ahead. The fixation point was a filled red disk 8 mm 

in diameter. For each fixation point reaches were made to only six of the seven potential 

target locations (Figure 1C).  

 

All reaches were made from a visual start location with initial feedback about the 

reaching hand. The start location was a green disk 2.4 cm in diameter and the feedback 

was a white disk 1 cm in diameter, positioned on the last joint of the two middle fingers. 

During most recording sessions a single start target was used. This start target was 

located on the midline (measured from target arc origin: 15 cm forward monkey C, 11 cm 

forward monkey E). In a subset of recording sessions two additional start targets were 

used to look at the effects of initial hand position on neural responses. These start targets 

were located at ±20 degrees visual angle at the same distance from the origin as the 

central start location. Reaches were made to a limited subset of reach targets from the 

additional start locations (-30, -10, +10 degree targets for -20 start target, and -10, +10, 

+30 degree targets for +20 degree start target).   
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Trial Presentation Order 

 

The three trial types were presented in blocks so that all combinations of reach 

conditions were completed for PROP reaches, then VIS+PROP reaches, and finally VIS 

reaches before the next block (repetition) started.  The trial types were kept separate 

within the blocks so that the animals knew what type of trial they were performing. All 

combinations of trial conditions (target position, fixation point, and start location) for 

each trial type were presented in random order within the trial type section of the block. 

Error trials were repeated at the end of the trial type section within the block. All trial 

conditions had to either be successfully completed or a maximum number of unsuccessful 

trials (typically 5) had to be reached before the next subsection would start. The animals 

generally completed trials successfully before the maximum error number was reached. 

 

Trial and Reward Structure 

 

In order to successfully complete a trial the monkeys had move their contralateral 

hand to the reach target without failing to complete any of the sequence of positional 

holds and delay periods enumerated here (Figure 1D). 1) Start target acquisition: The 

monkey moved the hand into the start target disk and held the hand there for 500 ms. 2) 

Target hand positioning: On PROP and VIS+PROP trials the ipsilateral hand was moved 

to the target location. 3) Fixation point acquisition: The fixation target appeared and the 

monkey fixated it, maintaining fixation within 10-12 mm (~2.5 degrees visual angle) of 
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the initial fixation point in the X coordinate (in line with the target arc). 4) Visual target 

presentation: After a 700 ms fixed delay the visual target appeared on the VIS and 

VIS+PROP trials. The same delay was used in PROP trials, though no visual target 

appeared. 5) Instructed delay: The monkey maintained fixation and position at the start 

location for an additional variable delay of 500-1000 (Figure 1D, light grey). 6) Go-

signal: A go-tone sounded and the start target was extinguished indicating that the 

monkey should move the contralateral hand to the reach target (Figure 1D, light grey). 7) 

Reaction time: The monkey began the reach after the go tone (Figure 1D, medium grey). 

When the hand moved 1 cm from the initial position, feedback of the hand was 

extinguished to eliminate the possibility of stimulating cells with visual motion. 8) 

Movement: The monkey had to reach without stopping to a point within a set distance 

from the center of the reach target (Figure 1D, dark grey, monkey C: 4 cm VIS and 

VIS+PROP, 5 cm PROP; monkey E: 3 cm VIS and VIS+PROP, 4.5 cm PROP). 9) 

Target hold: The final position had to be held for 200 ms to successfully complete a trial. 

10) Reach feedback: On successful trials the fixation point was extinguished and visual 

feedback for the contralateral hand was turned back on for 500 ms, providing visual 

feedback about endpoint distance from the reach target. On unsuccessful trials a 1 second 

error signal indicated which of the trial holds the monkey had violated. 11) Reward: 

Monkey C received a water or fruit juice reward after successful trials. Monkey E 

received a food reward in the form of a slurry of monkey biscuits, apple juice, and banana 

after successful trials. Unsuccessful trials had no reward and a 1-5 second timeout before 

the next trial began.  
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 To encourage accuracy, the amount of the reward depended in part on the 

proximity of the reach endpoint to the center of the reach target.  Reaches within the 

inner third of the reach window received a full reward, while reaches outside this range 

received a reward that was half of the total reward scaled by the distance from the target 

divided by the size of the reach window. This reward never dropped below the minimum 

reward time of 50 ms (monkey C liquid reward delivered at ~1-1.2 ml/sec, monkey E 

slurry reward delivered at ~2.6-3.4 ml/sec). The maximum reward time was fixed within 

a block but increased at predetermined intervals throughout the day to keep the monkeys 

motivated. This reward scheme resulted in very similar rewards across trial types (Table 

1). 

 

A small portion of trials (10% in monkey C and 5% in monkey E) served as catch 

trials. In these trials the monkeys were rewarded without making a reach if they 

successfully maintained fixation through the final delay period (5), which was always 

extended to 1.5 seconds. These trials served the dual purpose of encouraging the animals 

to maintain fixation and preventing them from anticipating the go-signal on long delay 

trials. 

 

Recording Cylinders 

 

Both monkeys were trained extensively on the tasks before physiological 

recordings began.  Immediately before the start of recording a 18 mm inner diameter 

titanium recoding cylinder, was positioned over a craniotomy opened above the IPS 
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(monkey C: 11 mm left, -4 mm posterior; monkey E: 12 mm right, -8 mm posterior, 

stereotactic coordinates relative to earbars). Monkey E had previously had chronic 

recording arrays implanted over his left motor and premotor cortices. The craniotomy 

was positioned with the guidance of structural Magnetic Resonance Images (MRIs). The 

animals were anesthetized and placed in a stereotax for the procedure. All surgical 

procedures and post operative care followed NIH guidelines.  

 

For both monkeys, all recording sessions occurred within 10 months of 

implanting the recoding cylinder. Periodically, the dura mater was thinned to allow 

electrodes to penetrate into cortex. Mitomycin C, an antimitotic agent, was applied to the 

recoding chamber of monkey E to minimize tissue growth and reduce the required 

frequency of dural thinning. 

 

Neural Recording 

 

Single electrode recordings were used for all data collection. A Narishige 

Microdrive was used to lower a 2 mΩ (nominal) Alpha Omega tungsten electrode into 

cortex. All well isolated neurons that appeared modulated by the task were recorded 

without pre-selection for direction tuning. Neurons were recorded until the monkey 

completed 6-8 blocks (repetitions) or until isolation was lost. All neurons for which at 

least four blocks of trials were completed were included in further analysis. Included 

neurons had anywhere from 4-13 blocks with a mean of 6.2 blocks and a median of 6 

blocks.  
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After recording, spikes were sorted and individual neurons were identified using 

Plexon Offline Sorter. Neurons were identified as having been nominally recorded in 

Area 5 or MIP based on the xy position of recording within the chamber and the depth of 

recording. The MRIs used for cylinder placement were used to make a map of the 

cylinder that, along with the observed neural responses to eye and hand movements, was 

used to identify neurons recorded from the SPL (Figure 2). Neurons recorded less than 

2000 µm from the surface of the cortex in the SPL were categorized as Area 5 neurons 

while neurons recorded below this depth were categorized as MIP neurons. This depth 

cutoff was chosen because it typically corresponded to a quiet period, after the cells on 

the surface of the cortex, in which the electrode was likely passing through white matter. 

 

Figure 2: Inferred 
recording 
locations for 
monkeys C and E. 
Landmarks, black 
lines, are taken 
from structural 
MRIs used for 
cylinder 
placement. 
Parallel black 
lines show 
contours of the 
IPS. Yellow 
indicates cylinder 
position. Red 
stars show 
nominal Area 5 
cells. Blue stars 
show nominal 
MIP cells  
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Behavioral Epochs For Analysis of Neural Data 

 

 Neural firing rates were averages across three different behavioral epochs defined 

as follows (Figure 1D, grey boxes). 1) The instructed delay (Delay) for VIS and 

VIS+PROP trials started at visual target onset and ended at the go-signal. Delay for 

PROP trials started at fixation point acquisition and ended at the go-signal. 2) The 

reaction time (Reaction) was started at the go-signal and ended at the initiation of 

movement. Movement initiation was the first time contralateral hand velocity exceeded 

10 mm/s after the go-tone or the first time the hand moved more than 5 mm away from its 

start position.  3) The movement (Move) was from the start of movement to the end of 

movement. The end of movement was the first time the velocity of the contralateral hand 

dropped below 10 mm/s after movement initiation. The average firing rate on each trial 

during these epochs was determined for all neurons and used for the analysis described 

below. 

 

Tuning Curve Fits: Reference Frame Shift and Gain Dependence on Eye Position 

 

 The firing rates of each neuron were fit separately to a tuning function for all 

target modalities and behavioral epochs. As our target array sampled only a portion of the 

workspace (60 degrees visual angle and ~85-110 degrees reach angle from start location), 

we chose a generic tuning function rather than the more traditional Gaussian tuning 

function. We found that a quadratic function (Equation 1) was generally sufficient to 

describe the cells tuning.  
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   (1) 

 

Here R is the firing rate on a given trial, T and E are the reach endpoint in degrees and 

fixation point in degrees, respectively, and the parameters α1, α2, α3, and δ, where fit to 

the cells response using nonlinear least squares optimization (Matlab function 

lsqcurvefit). While using either target position or reach endpoint for T provided very 

similar fits, the reach endpoint fits generally had slightly higher R2 values. Thus, all 

tuning curves reported here used reach endpoint as the target variable. The tuning 

function in Equation 1 includes a shift term (δ), which allows for the dependence of rate 

on reach endpoint (T) relative to the fixation point (E).  This term was allowed to range 

from -0.5 to 1.5 and served as a smoothly varying metric for the reference frame for each 

cells response for a given epoch and modality.  A shift value of 0 would correspond to a 

perfectly hand or body (the two cannot be distinguished with this analysis) centered 

representation while a shift value of 1 would correspond to a perfectly eye-centered 

representation. By bootstrapping the data across trials 1000 times 118 95% confidence 

intervals and standard deviation for tuning curve parameters were determined. Cells had 

significantly different shift values across modalities when the 95% confidence intervals 

did not encompass the shift value of the other modality. In order to be included in the 

shift analysis of reference frame, cells had to have a 95% confidence interval for the shift 

(δ) term that was less than 75% of the allowable range of values. If one of the confidence 

intervals was pegged at the edge of the fitting range, the intervals were assumed to be 

symmetric and the range of this presumed confidence interval had to be less than 75% of 
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the fitting range. Further, cells had to have significant reach endpoint tuning (p<0.05/9 = 

0.0056, Bonferroni correction, 3 modalities x 3 epochs), determined as described below, 

for inclusion in analysis. 

 

Some cells showed gain modulation by eye position, thus, all cells were also fit to 

a tuning function which included an eye position dependent gain term instead of a shift 

term (Equation 2).  

 

   (2) 

 

This gain term served as a secondary measure of eye position dependence of tuning.  

Some cells showed both shift and gain effects and so all cells were also fit to a tuning 

curve that included both shift (δ) and gain (γ) terms (Equation 3). 

 

  (3) 

 

This model was selected to describe the cells response instead of Equation 1, to 

determine shift, or instead of Equation 2, to determine gain, if inclusion of the gain term 

(γ) or the shift term (δ) significantly improved the tuning curve fit in at least 2 of the 3 

modalities in a given epoch. We used a single model selection criteria across modalities, 

despite the possibility of modality differences, because using the same model ensured 

that differences observed were due to differences in modalities and not the way different 

tuning cures were accounting for the same eye effects (gain and shift were often 
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redundant variables). Significant improvement in fit was determined using permutation 

tests with 1000 repetitions 93. Briefly, for gain term inclusion, the sum square error (SSE) 

of the fit to Equation 3 was compared to the distribution of SSE values obtained from fits 

in which the values of E used in the gain term (1-γ E) were permuted across trials. 

Similarly, for shift term inclusion the SSE fit was compared to the distribution of SSE 

values obtained from fits to Equation 3 when the values of E used in the shift terms (δΕ ) 

were permuted. The p-value for both tests was the percentage of times the permuted SSE 

was smaller then the SSE of the unpermuted fit. 

 

  Significant modulation of firing rate by reach endpoint was also determined using 

a permutation test with 1000 repetitions. Reach endpoints (T) in the tuning model 

selected (from Equations 1-3 as described above) were permuted with respect to firing 

rates and the p-value was the fraction of times the permuted SSE was smaller than the 

SSE with reach target information included. 

 

Direct Rate Comparison of Reference Frames 

 

 It is possible that a poor tuning curve fit could result in miss-categorization of a 

cells reference frame. We therefore wished to examine the dependence of firing rate on 

fixation position without relying on tuning curve fits. In order to do this we looked at 

whether there were significant differences in firing rates between trial conditions that 

were matched in different coordinate frames. By looking at the category, or set of 

categories, in which firing rates were not significantly different we could determine the 
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reference frame that best described the cells response. We used a paired permutation test 

with 5000 repetitions to ask whether firing rates were significantly different (Bonferroni 

correction, p< 0.05/3 = 0.0167) between target pairs when targets were aligned in 

hand/body-centered coordinates (targets in same position relative to the body), eye-

centered coordinates (targets aligned when plotted relative to fixation position, shifted 

over two targets in Figure 1C), or intermediate coordinates (in between hand/body-

centered and eye-centered, shifted over one target in Figure 1C). For each modality and 

epoch a cell was categorized as responding in the reference frame (hand/body, 

intermediate, eye) or set of reference frames (hand/body or intermediate, intermediate or 

eye) for which there was no significant difference between paired firing rates. If the cells 

responses did not fit into any of these reference frame categories the firing rates were 

normalized for each fixation position and the test was repeated. This allowed cells that 

had gain modulation by eye position to be categorized by this analysis, and did not effect 

the pattern of reference frames observed. 

 

Direct Rate Comparison of Target versus Movement Vector Representations 

 

We used an analogous test to categorize the response properties of the cells 

recorded during reaches from multiple start targets. This subset of cells allowed us to 

look at whether responses where related to reach target position or movement vector, and 

the reference frame in which target and movement vector are encoded. We tested for 

significant differences in firing rate between reaches that had the same body-centered 

movement vector, the same eye-centered movement vector, or the same target position in 
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both body and eye coordinates but different movement vectors using a paired permutation 

test with 5000 repetitions. Cells were categorized as responding in the category or 

convergence of categories in which there was no significant difference between firing 

rates. As these categories tested very different aspects of the cells tuning, inferences 

could be draw about the tuning properties of the cells when responses were not 

significantly different than more than one category. For instance, if a cells responses were 

well matched when reaches were paired for eye-centered movement vector and target 

position independent of movement vector, then having the same eye-centered target 

position, was the key variable. The same argument holds for body-centered target coding 

when the responses are well matched in body-centered movement vector and target 

position independent of movement vector. This is because the cells’ response does not 

depend on movement vector (as demonstrated by the target position independent of 

movement vector category), so only target position in a particular reference frame, eye or 

body, is important. Similarly if responses were well matched for both the body-centered 

and eye-centered movement vector then it is apparent that movement vector, which is 

hand-centered, is the key variable for that cell. If the firing rates were significantly 

different across all pairings, the firing rates for each fixation position where normalized 

to account for gain modulation and the test was repeated.  

	
  

	
  

Results	
  

	
  

Behavioral performance  
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Both monkeys were trained until performance on all three modalities plateaued 

before neural recordings began. Monkey C achieved a typical success rate of 60-75% 

correct trials a day. The low percentage of correct trials was due largely to a tendency to 

break fixation, particularly on visual reaches to the central target, which could not be 

reduced. Monkey E achieved a typical success rate of 90-97% correct trials a day. Both 

monkeys would typically perform 800 to 1400 total trials in a day. 

 

The most striking behavioral difference between the three target modalities was 

the change in reach endpoint variance (Table 1). However, these changes are similar to 

those observed in humans using visual versus proprioceptive information for reaching 107 

and reflect the differences in the reliability of the sensory modalities specifying target 

location 60, 70 not differences in the way the monkey is performing the task. This is 

supported by the fact that the VIS+PROP reaches have the smallest endpoint variability, 

suggesting that the monkeys were using both sources of sensory information about the 

target when available. Finally, the endpoint variance for all modalities was smaller than 

the distance between targets, so this variability does not affect our ability to determine the 

tuning for any of the modalities. 

Table 1: Data for monkey C is from 63587 correct trials collected over 109 days. Data for 
monkey E is from 62672 correct trials collected over 70 days. Error is standard deviation.  
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Though velocity, reaction time and reward are similar across modalities, showing largely 
overlapping distributions, all differences shown are significant with p<0.0001 (t-test). 
 

The monkeys’ reaching movements were comparable across all three reach target 

modalities (VIS, VIS+PROP, and PROP). The animals performed smooth, rapid reaches 

with bell shaped velocity profiles in all trial types (data not shown).  In order to quantify 

the relationship between movements for the three modalities we compared the peak 

velocity and the reaction time, two key parameters in reaching. While we found slight 

differences between the three modalities in these parameters, these differences are only a 

fraction of the standard deviation for these measures within any of the modalities (Table 

1).  Thus, the differences between the reaches performed for these modalities are small 

compared to the trial to trial variability in these reach parameters, and are unlikely to 

have large effects on the neural responses in parietal cortex. Similarly, the graded reward 

schedule successfully resulted in roughly equal rewards across the three modalities for 

each of the monkeys. This means that it is unlikely that differences in expected reward 

value played a role in neural responses in this study. All of these measures indicate that 

comparing neural responses to VIS, VIS+PROP, and PROP reaches will compare 

encoding of similar behaviors specified by different sensory parameters. 

 

Cell tuning across areas and modalities 

 

We recorded a total of 375 cells from two areas in the posterior parietal cortex: 

193 cells from Area 5 (101 monkey C, 92 monkey E) and 182 cells from area MIP (95 

monkey C, 87 monkey E) (Figure 2, and Methods). Of the cells recorded, 160 cells had 
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significant tuning in Area 5 (see Methods, 78 monkey C, 82 monkey E), and 164 cells 

had significant tuning in MIP (86 monkey C, 78 monkey E). Results were qualitatively 

the same across the two monkeys so all data is presented combined across animals. 

 

Cells that met the tuning criteria (see Methods) were typically tuned for multiple 

modalities across epochs. Figure 3 illustrates this overlap in tuning with Venn diagrams. 

Within a given behavioral epoch there were slight differences in the proportion of cells 

tuned in the three modalities, but most of these differences were not significant (p>0.4, 

chi square test, Figure 3). The one exception is tuning during Delay in Area 5, which 

showed significantly fewer VIS tuned cells than PROP or VIS+PROP tuned cells 

(p=0.001<0.05/6=0.008, chi square test, Bonferroni correction). Many cells were tuned in 

more than one modality in a given epoch (Figure 3), though the proportion of cells tuned 

in all three modalities was not significantly different than expected by chance given the 

tuning for each modality (p=0.059 for Area 5, p=0.396 for MIP, chi square test). In both 

areas there were 40-102 cells tuned in each modality and epoch (modality-epoch) and a 

large percentage of cells were significantly tuned for each modality (68% in Area 5 and 

82% in MIP had VIS tuning, 73% in Area 5 and 87% in MIP had VIS+PROP tuning, and 

83% in Area 5 and 81% in MIP had PROP tuning).  Additionally, many cells were tuned 

in more than one behavioral epoch (63% in Area 5 and 88% in MIP, see Figure 3 last 

column for overlap between epochs). The smaller proportion of cells tuned for more than 

one epoch in Area 5 may reflect the, on average, smaller target modulation seen in Area 5 

compared to MIP (data not shown). However, the large number of cells tuned across 
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multiple epochs and modalities in both areas provided ample comparisons for examining 

differences neural responses to these modalities. 

 Figure 3: Venn diagrams showing number of cells with significant tuning in the three modalities 
across behavioral epochs. First three columns show number of cells tuned in each modality within 
that epoch. Last column shows number of cells tuned in any modality in the three behavioral 
epochs. 
 

 

Reference frame effects on neural responses 

 

We began by comparing the reference frames in which target information is 

represented across modalities. As reference frames within the parietal cortex have been 

the subject of debate 8-14, 16, 19, 20, 23, 38, 92, 119, 120 we used three different analyses to examine 

reference frame and eye position effects. We first determined the reference frame which 

best described the cells response in each modality using the reference frame shift analysis 

(see Methods) which allowed us to compare a continuous measure of reference frame 
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(measured as dependence of tuning on eye position) across modalities. We then 

compared responses across modalities when eye position effects were attributed to gain 

modulation rather than reference frame shifts. Finally, we used a direct rate comparison 

reference frame analysis (see Methods), similar in spirit to the reference frame analysis 

used to describe responses in these areas previously 8, 10, 15, 16, 23, to assign reference frames 

and compared these results to our continuous measure of reference frame. All of these 

analyses gave comparable results when modality, epoch, and area effects were examined.  

 

Within cell comparison of tuning shift. Here we compare the reference frames that 

describe neurons responses during reaches to VIS, VIS+PROP, and PROP reaches. To do 

this, we fit a tuning curve to each modality that described the reference frame of the cells 

response in terms of a single parameter (tuning shift, δ, see Methods).  The value of the 

tuning shift for each cell was determined by the dependence of tuning curve on eye 

position relative to reach endpoint. Our target and fixation point array (Figure 1C) was 

designed to distinguish between hand- or body-centered (δ = 0) and eye-centered (δ = 1) 

coding of reach endpoint. However, shift (δ) was a continuous variable, allowing us to 

capture intermediate reference frame responses, and was allowed to range between -0.5 

and 1.5, so as not to over constrain the fits. As we will show below, the majority of fit 

values naturally fell between these boundaries. 

 

Figure 4 shows and an example of this analysis for a single MIP neuron during 

Move. Note that the average firing rates for reaches made with the two fixation points do 

not align in either hand/body-centered coordinates (Figure 4A,C,E) or eye-centered 
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coordinates (Figure 4B,D,F). Indeed the ideal alignment between the two curves appears 

to be somewhere between these two extremes. The best-fit shift parameter for this cell 

ranges from δ = 0.64 in VIS to δ = 0.35 in PROP, corresponding to “intermediate” 

reference frame encoding. This analysis was performed for all tuned modalities and 

behavioral epochs for a given cell (all tuned modality-epoch-cell responses). All of the 

modality-epoch-cell shift fits that met the minimum criteria for having a best shift (see 

Methods) were used to look at the relationship between reference frame and modality, 

both within a cell and across the population in Area 5 and MIP. 

 

Figure 4: Example cell 
responses for the three 
modalities during Move. 
Panels show firing rate of 
the cell during reaches to 
the target array with 
responses for the two 
fixation points separated. 
Error bars show standard 
error. A,C,E) Responses 
aligned in body/hand-
centered coordinates. 
B,D,F) Responses aligned 
in eye-centered 
coordinates. Shift values 
above each row show the 
fit tuning shift values for 
each trial type for this 
cell. 
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We first asked whether reference frame was modality dependent. To do this we 

compared the best shift (δ), across modalities for each epoch-cell (Figure 5, each epoch-

cell is one point). The relationships between modalities’ shifts were similar across 

behavioral epochs and cortical areas, though Area 5 and MIP showed differences in shift 

values that we will discuss below. Collapsing across epoch and area did not alter the 

results of this analysis or many of the analysis presented later, so Figure 5 and several 

later figures show comparisons for both areas and all behavioral epochs. The percentage 

of epoch-cells with significant differences across modality shifts (δ) depended on the 

modalities being compared (hollow versus filled points in figure 5, p=0.05 no correction 

for multiple comparisons, see methods). The smallest percentage of differences, 13.4 %, 

was between VIS and VIS+PROP (Figure 5A). The VIS+PROP and PROP comparison 

had an intermediate percentage of modality differences, 28.2% (Figure 5B). The largest 

percentage of differences, 33.3%, was seen between VIS and PROP (Figure 5C). These 

percentages were higher than would be expected by chance (5%) but the majority of cells 

for all three modality comparisons (66.7% for the weakest relationship, VIS and PROP) 

were not significantly different across modalities. These results suggest that tuning shifts 

are generally similar across modalities, thought not all cells have the same tuning shift 

across modalities. 

 

Within these differences, one might expect the tuning shifts for VIS to be closer 

to 1 (more eye-centered) than the tuning shifts for PROP, since VIS target information 

enters the nervous system in an eye-centered reference frame (δ=1) and PROP target 

information enters the nervous system in a body centered reference frame (δ=0). 
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However, this is clearly not the case (Figure 5C, difference in mean p=0.543, paired 

permutation test, difference in distribution p=0.150, Kolmogrov-Smirnov test). Indeed, 

we found a strong correlation between the tuning shifts for any pair of modalities across 

epoch-cells (see Figure 5 for group R values, p<0.001<0.05/3=0.017 Spearman’s 

correlation, Bonferroni correction). This relationship is strongest between the VIS and 

VIS+PROP shifts, followed by VIS+PROP and PROP, with VIS and PROP shifts 

showing slightly weaker, though still highly significant correlations. Thus, having 

common sensory information about target appears to strengthen the relationship between 

tuning shifts across modalities. However, the differences between VIS and PROP shift 

values within a cell and epoch do not appear to be related to the reference frames in 

which the different sensory information is naturally represented. Instead, these 

differences appear to reflect random deviations about the same mean representation. 

 

 

Figure 5: Comparison of tuning shift (δ) values across modalities for all epoch-cells, combined 
across Area 5 and MIP. All epoch-cells with best shift values (see Methods) in the pair of 
modalities being compared are shown. Error bars show bootstrapped standard deviation of tuning 
shift values. Correlations between tuning shift values across modalities were similar when 
responses were divided up by area (Area 5: VIS versus VIS+PROP R=0.773, VIS+PROP versus 
PROP R= 0.600, PROP versus VIS R=0.577, MIP: VIS versus VIS+PROP R=0.778, VIS+PROP 
versus PROP R= 0.637, PROP versus VIS R=0.533) and qualitatively the same when responses 
were divided into behavioral epochs. 
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Population distribution of tuning shift for modality, area, and epoch. In addition 

to within cell comparisons of tuning shift we examined tuning shifts for all modalities 

and epochs separately for Area 5 and MIP (Figure 6). This allowed us to look for 

differences in the tuning shift across the population that might only arise in cells that 

were tuned in only one of the modalities or epochs being compared. We found no 

significant differences between the mean (p>0.3, permutation test) or distribution (p>0.2, 

Kolmogorov-Smirnov) of tuning shifts for the three modalities in either Area 5 or MIP 

(Figure 6A&B). This again shows that there is no bias toward the reference frame of the 

sensory input in tuning shift values across modalities in these areas. There is, however, a 

slight trend in both areas toward higher shift values in later behavioral epochs relative to 

Delay (Figure 6C,D). This trend does not reach significance in Area 5 

(p=0.049>0.05/6=0.008, Delay vs. Reaction, p=0.017>0.008, Delay vs. Move, 

permutation test, Bonferroni correction) but is significant in MIP (p<0.001<0.008 Delay 

vs. Move, permutation test, Bonferroni correction). This slight trend may be a real 

difference in encoding across epochs or may be related to the saccade the monkeys made 

to the reach target after the end of the movement (see Figure 1D and Methods), our data 

cannot distinguish these possibilities.  

 

The most is a striking feature in Figure 6 is the difference between tuning shifts in 

Area 5 and MIP. This difference is highly significant between the mean (p<0.001, 

permutation test) and distribution (p<0.001, Kolmogorov-Smirnov test) of shifts across 

the two areas (compare Figure 6 A&C to B&D). Area 5 had a mean shift value of δ = 

0.25 while MIP had a mean shift value of δ = 0.51 indicating that MIP had significantly 
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more eye-centered character in its coding of reach endpoint.  These differences in shift 

values are consistent with differences in the information that can be read out from cells in 

these areas. When the cells from Area 5 and MIP were used to decode target position in 

either hand/body or eye-centered coordinates, we found that Area 5 contained more 

information in body-centered coordinates while MIP contained similar information in 

both reference frames (Supplemental Figure 1). However, it should be noted that both of 

these areas had mixed hand/body- and eye-centered coding, and there is considerable 

overlap in the distribution of shift values across the two areas. Thus, while the reference 

frame encoding of task parameters is clearly different across the two areas, neither area is 

well described by any single reference frame.  

	
   
Figure 6: 
Histograms of 
tuning shift 
values in Area 5 
(A&C) and MIP 
(B&D). A&B) 
Show the 
percentage of 
epoch-cells that 
had a given shift 
value within each 
modality. C&D) 
Show the 
percentage of 
modality-cells 
that had a given 
shift value within 
each epoch. The 
number of tuning 
shifts in each 
modality or epoch 
is shown in the 
figure legends. 
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While majority of modality-epoch-cells shown in Figures 5&6 have shift values 

which either lie between δ=0 and δ=1, or are not significantly different from these values, 

there are a few cases (122 of 1376 tuning shifts, 7.6% Area 5, 9.7% MIP) in which the fit 

tuning shift values differ significantly from this range. Many of these differences may be 

explained by noise, but there are a number of other explanations for these cells that 

should be examined. One possibility is that some of these cells may exhibit ‘complex 

interactions’ between eye-position and reach endpoint (see 16, 23). Complex interactions 

mean that the cells response is not well described by any combination of 0-1 tuning shift 

and eye position gain effects. Such complex representations would push the shift values 

toward -0.5 or 1.5 as these values decrease the overlap between the two fixation-point 

tuning curves. Alternatively, a more conventional explanation for these extreme shift 

values is that these cells are actually gain modulated by eye position.  Many of our cells 

are not sufficiently modulated across reach endpoints to distinguish a shift in reference 

frame from gain modulation by eye position. We examine the possible effects of gain 

modulation on cells responses in detail in the next section. 

 

Additional analysis: gain modulation by eye position. The tuning shift analysis 

shown above favors reference frame shift over gain modulation as an explanation for eye 

position effects on tuning. This is a result of only including gain modulation by eye 

position in the tuning curve function if it significantly improved the model fit over a 

function with only tuning shift (see Methods). We wished to be sure we where not 

biasing our results by miss-categorizing responses, so we next carried out an analysis in 
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which we compared gain modulation across modalities in a tuning curve fit that only 

included a shift term if it significantly improved model fit (see Methods).  

 

Describing eye position effects in terms of gain modulation showed similar 

relationships in eye position effects across modalities and areas to those seen in the shift 

analysis (Figure 7). This analysis included all cells and epochs that had significant tuning, 

unlike the shift analysis, because as cells that lacked best tuning shift values due to 

insufficient modulation still had a fit gain value. The inclusion of these cells did not 

change the relationship between eye position effects across modalities; the percentage of 

epoch-cell modality comparisons that are significantly different across modalities is 

nearly identical between the tuning shift and eye gain analyses, differing by at most 2.8% 

(compare percentages in Figures 6&8).  Additionally, the correlations in gain values 

across modalities are nearly identical to the correlations in shift values across modalities, 

differing by at most 0.071. Thus, whether eye position effects are described in terms of 

gain or tuning shift there is a very strong relationship between the representations used 

across modalities for individual cells. The difference in eye position effects across areas 

is also significant when measured as either gain or shift. The distribution of gain values 

between Area 5 and MIP is significantly different (p=0.001, permutation test) with MIP 

showing a tendency to have larger absolute gain values (data not shown). Thus, the model 

implementation of eye dependent effects does not change the conclusions that 

representations are generally shared across modalities and differ between Area 5 and 

MIP.  
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Figure 7: Comparison of eye-gain (γ) values across modalities for all epoch-cells, combined 
across Area 5 and MIP. All epoch-cells with significant tuning (see Methods) in the pair of 
modalities being compared are shown. Error bars show bootstrapped standard deviation of gain 
values. Correlations between gain values across modalities were qualitatively the same when 
responses were divided up by area or epoch. 
 

Additional analysis: direct rate comparison of reference frames.  Many 

researchers have looked at reference frame by comparing rates across trials which were 

paired in a given reference frame 8, 10, 12, 13, 15, 16, 23.  This type of analysis provides a 

measure of reference frame that does not rely on a tuning function fit. As a final test we 

compared the results of our tuning shift analysis to the reference frames assigned by 

direct firing rate comparisons in three discrete reference frames (hand/body-centered, 

shift = 0, intermediate, shift = 0.5, or eye-centered, shift = 1). Cells were assigned to the 

reference frame or pair of reference frames for which there was no significant difference 

between firing rates on spatially paired trials (see Methods). Many modality-epoch-cells 

had a best reference frame determined with both the tuning shift and direct rate 

comparison analysis. The reference frames assigned with these two analyses were in 

good agreement (Figure 8). Additionally, only 6.8% of modality-epoch-cells reference 

frames were significantly different than all three reference frame categories tested. Of 

these, 34% (of the modality-epoch-cells that also had a best tuning shift) had tuning shifts 
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that were significantly outside the zero to one range, suggesting that tuning for these cells 

lies outside the continuum of body/hand to eye centered reference frame encoding. 

However, the small percentage of cells that are significantly poorly described by any of 

the reference frame categories suggests that most cells responses can be described as a 

linear combination hand/body and eye-centered coding, such as our tuning shift model.  

 
Figure 8: Comparison of tuning shift and direct rate comparison reference frames. Heat map 
shows percentage of modality-epoch-cell in a given direct rate comparison reference frame 
category that had a particular shift value. Histogram on y-axis shows distribution of reference 
frames from direct rate comparison analysis. Histogram on x-axis shows distribution of reference 
frames from tuning shift analysis. Black lines show all modality-epoch-cells with best references 
frames in each analysis (see Methods). Red lines show modality-epoch-cells that had best 
reference frames in both analysis and are included in the heat map. 
 

 While the reference frame assignments were similar across the two analyses the 

patterns of values assigned for each analysis (see histograms on X and Y axes in Figure 

8) reveal that there were differences in the distribution of reference frames assigned with 

each analysis. The direct rate comparison analysis in particular has biases in assignments. 

This is due to the fact that there were more target pairs in the intermediate reference 
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frame (more chances for differences, making this category less likely), and the fact that 

inclusion in joint reference frames (e.g. intermediate/eye) only required rejection from 

one category while inclusion in the a single reference frame category required rejection 

from two categories (see Methods). Nevertheless, both analyses show similar trends in 

the relationship between reference frame and modality, behavioral epoch, and cortical 

area (data not shown). Like the tuning shift analysis the direct rate analysis had no 

significant difference in reference frame across modalities (p=0.809, Kruskal-Wallis test), 

though there were significant differences in reference frame across behavioral epochs 

(p<0.001<0.05/3=0.017, Kruskal-Wallis test, Bonferroni correction) and between Area 5 

and MIP (p<0.001<0.017, Kruskal-Wallis test, Bonferroni correction). Thus, the main 

findings of this study do not depend on the method used to determine reference frame. 

 

General conclusions from eye position effects analysis. The main conclusions 

from the three analyses of reference frame (or more generally eye position effects) on 

neural responses presented above are the same. First, and most importantly, the reference 

frame in which a cell encodes movement parameters appears to be independent of the 

sensory information used to specify the target, in both Area 5 and MIP.  Second, there is 

a slight trend towards having larger eye position effects in later task epochs. This effect 

may represent a general trend across these areas or be the result of the animal planning to 

saccade to the reach target after the movement. Whatever the underlying cause of this 

trend, it does not appear to affect the relationship between representations across 

modalities and is relatively small in magnitude. Third and finally, there is a significant 

difference in the magnitude of eye position effects between Area 5 and MIP. However, it 
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must be noted that both areas exhibit a broad distribution of eye position effects and the 

majority of cells are not well described by a pure hand/body or eye-centered reference 

frame. 

 

Tuning curve shape across modalities 

 

Given the similarity in eye position effects across modalities, we wanted to ask 

the more general question of how similar tuning curve shape is across modalities. To do 

this we looked at the correlation between firing rates for all trial conditions across 

modalities. This provided a quantitative measure of the similarity in the shape and 

preferred direction of tuning across modalities. Both areas tended to have high positive 

correlations between modalities for an epoch-cell (well above the correlations seen when 

pairs of epoch-cells were chosen randomly), indicating that tuning was very similar 

across modalities in both Area 5 and MIP (Figure 9A-C).  

  

Figure 9: Histograms of correlation coefficients between firing rates in all reach conditions across 
modalities. Filled histograms show percentage of epoch-cells that had a given correlation 
coefficient the pair of modalities being compared. Hollow histograms show the percentage of 
times a given correlation coefficient occurs across the population when pairs of cells are chosen 
at random. 
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In both areas the correlation between firing rates across modalities was weakly 

negatively correlated with differences in tuning shift (R values range from -0.236 to -

0.285, p<0.002<0.5/3=0.017, Spearman’s correlation, Bonferroni correction). This 

indicates that epoch-cell responses with larger differences in reference frame across 

modalities had lower correlation between modality tuning curves, as would be expected. 

Overall these results suggest that the similarity in reference frames across modalities in 

these areas is related to a more general correlation in tuning properties across modalities. 

 

Encoding multiple movement parameters 

 

The analyses presented so far have looked at cells tuning with respect to target or 

reach endpoint and eye position in terms of the reference frame of encoding. We found 

that tuning properties of cells with respect to these parameters are largely invariant across 

modalities. However, there are additional movement variables, namely the position of the 

reaching hand at the start of movement, and the relative positions of the reaching hand 

and target or eyes, that have been shown to be encoded by the parietal cortex 10, 12, 13. Here 

we consider how these parameters affect the responses of neurons in Area 5 and MIP.  

 

By adding additional start locations to our task conditions for a subset of cells, we 

were able to look at how target and movement vector encoding interact with eye position 

or reference frame effects (see Methods). We collected extended data sets for 87 Area 5 

cells (20 monkey C, 67 monkey E) and 57 MIP cells (12 monkey C, 45 monkey E). Of 

these cells 62 Area 5 cells and 51 MIP cells were significantly tuned (p<0.05/9=0.006, 
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ANOVA, Bonferroni correction). The fact that the additional start position data was 

collected at the same time as the full dataset used to determine reference frame limited 

the number of reaches that could be added, limiting the power of this analysis. However, 

we were able to add sufficient differences in start location and movement vector to place 

many modality-epoch-cell responses into one of six possible reference frames (see 

Methods for details, Figure 10A). Three of these reference frames encoded the reach 

movement vector in body-centered, eye-centered, or hand-centered coordinates (pure 

movement vector coding). The remaining three reference frames encoded target position 

independent of initial hand position in body-centered, eye-centered, or mixed eye- and 

body-coordinates (responses were well described when targets were matched in both eye- 

and body-coordinates but not in either reference frame alone). A small portion of cells, 

4.9%, had a significantly poor fit in all possible categories. The existence of such cells is 

not surprising as the reference frames examined were very regimented and our shift 

analysis suggests that many cells exhibit intermediate reference frame coding. 

Nevertheless, modality-epoch-cell responses for which we were able determine a best 

match reveal distinct trends within the data. 

 

The results of this analysis are consistent with the reference-frame analyses 

presented above in that they show no significant modality differences and only weak 

epoch differences in reference frame. When the epoch-cell responses are compared across 

modalities (Figure 11B) there are no significant differences across the six reference frame 

categories listed above (p=0.962, chi-square test). The similarity in modality responses 

holds even when these categories are grouped to compare movement vector and target 
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coding (first three categories versus last three categories in Figure 10B, p=0.301, chi-

square test).  There are no significant differences in between epochs in the six reference 

frame groupings  (Figure 10C, p=0.330, chi-square test). However, there is a transition 

from having more movement vector coding in Delay to having more target coding in 

Move, though this is not quite significant, even when movement vector and target 

groupings are directly compared (p=0.009>0.05/6=0.008, Chi-square test, Bonferroni 

correction). As with the epoch differences observed above, this may reflect a gradual 

change in the encoding properties of the cell over the course of the movement or planning 

for the saccade made after completion of the reach.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure10: Target versus movement vector reference frame responses of cells recorded during 
additional start location sessions. A) The number of modality-epoch-cells that were not 
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significantly different when trials were paired in any of the reference frames tests, had a best 
reference frame of the reference frames tested, and were significantly different than all of the 
reference frames tested. B) The percentage of epoch-cells within a modality that fell into each 
reference frame category. C) The percentage of modality-cells within an epoch that fell into each 
reference frame category. D) The percentage of modality-epoch-cells in Area 5 and MIP that fell 
into each reference frame category. The first three reference frame categories in B-D are different 
reference frames with movement vector coding of reach responses. The last three reference frame 
categories in B-D are different reference frames with target position coding of reach responses. 

 

The most striking difference in reference frame categories is between cortical 

areas (Figure 10D). While both Area 5 and MIP have conditions that fall into all six 

possible reference frames, Area 5 has a distinct peak in hand-centered movement vector 

coding, while MIP has a distinct peak in eye-centered target coding. The differences 

between these areas are significant for both the fine scale division of reference frame and 

the movement vector versus target comparison (p<0.001<0.008, Chi-square test, 

Bonferroni correction). The distribution of responses across Area 5 and MIP are 

consistent with the reference frame analyses presented above in that both areas exhibit a 

mixture of reference frames, with Area 5 showing more hand/body-centered coding, and 

MIP showing more mixed and eye-centered coding. Even with the rough categorizations 

used in Figure 10, both areas show a range of coordinate frame representations. Thus, any 

attempt to define the coding of these areas in a single reference frame will miss important 

properties of the population responses.  

 

	
  

Discussion 

The main purpose of this study was to investigate whether reference frames in the 

SPL used for reaching depended on the sensory modality used to specify target location. 
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There is evidence from other cortical areas suggesting that reference frame 

representations are often affected by the sensory modality of the input being represented 

16, 17, 27-29, 121. To investigate this possibility, we compared reaches to visual targets and 

proprioceptive targets (the ipsilateral hand) in two parietal areas, nominally Area 5 and 

MIP (see Figure 2 for recording locations). As Area 5 and MIP are involved in early 

integration of these sensory inputs for movement planning, changes in representations 

related to the sensory information available would likely be apparent in these areas. We 

found that while reach representations differ between these two cortical areas, they do not 

appear to depend on the sensory modality used to specify the movement. 

 

The reference frames in movement parameters are represented in the parietal 

cortex have been the subject of much debate 8-14, 16, 19, 20, 23, 38, 92, 119. We found that both Area 

5 and MIP exhibited a mixture of encoding schemes, with many neurons showing 

intermediate reference frame representations. Within the observed distribution of 

responses, Area 5 neurons had a slight preference for movement vector encoding, and a 

trend towards more hand/body-centered representations (Figure 6A&C and Figure 10D). 

MIP neurons showed a slight preference for target position coding, with trend towards 

intermediate reference frame representations (Figure 6B&D and Figure 10D).  Our results 

are broadly consistent with previous studies that found that Area 5 exhibits primarily 

body-centered or hand-centered 12, 13 coding while MIP and PRR exhibit primarily mixed 

eye  and  hand 11 or mixed eye and head/body-centered coding 16, 23. However, our 

findings do not, at first, appear consistent previous studies showing that Area 5 encodes 

eye-centered movement vector 10 and PRR (which overlaps MIP) encodes eye-centered 
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target position 8. Part of the discrepancy between our findings and those of Batista et. al. 

may be explained by recording location, as we were likely recording anterior to PRR 117. 

However much of the apparent discrepancy between our results is likely due to these 

studies overly regimented characterization of neuron responses into a single best 

reference frame response. This is illustrated by the recent finding that when reference 

frames in PRR are measured with a continuous measure of reference frame, similar to the 

shift value used in this study, a wide distribution of responses in seen, with a peak near 

the eye-centered coding scheme previously described 8, 11. Taken in this context, our 

results provide a more detailed, but largely consistent, picture of the encoding scheme 

found in the parietal cortex. Further, our results combined with the results of Chang et. al. 

suggest a continuous gradient in the distribution of reference frames across the SPL, with 

broadly eye centered coding in the posterior IPS 11, intermediate eye- and body coding 

further forward in the IPS (MIP) and broadly hand/body-centered coding on the surface 

of the SPL (Area 5). 

 

 There is an increasing body of evidence that different kinds of sensory 

information, arriving in distinct reference frames, are represented in a variety of 

intermediate and mixed reference frames throughout the motor system 4, 11-13, 16, 18-26. 

Computational modeling studies have shown that mixed representations may arise 

naturally in networks of neurons performing coordinate frame transformations 97, 109, 110 

and that pure representations would not necessary be expected in areas encoding spatial 

information from multiple sensory modalities 27, 97. Further, our decode model shows that 

variables can be reliably interpreted from these mixed representations in a number of 
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different reference frames (Supplemental Figure 1). This is not to say that the spatial 

information contained across different reference frames is not important. We have 

previously shown that there may in fact be some computational benefit, in terms of 

reduced variability, in having multiple reference frame representations for movement 

planning 107. However, it is becoming increasingly apparent that while the idea of simple 

discrete reference frame representations within the cortex is attractive in its simplicity, it 

is not necessary or perhaps even desirable to encode movement variables in a series of 

discrete and pure reference frame representations.  

 

The precise mixture of representations found in our study varied slightly over the 

course of movement planning and execution. There were slight trends in both Area 5 and 

MIP towards having more eye-centered coding (higher shift values, Figure 6C&D) and 

more target coding (or less movement vector coding, Figure 10C) in later behavioral 

epochs. It is impossible to determine from our study whether these differences represent 

real changes in the variables encoded over the course of the reaching movement or relate 

to the saccade the animal was allowed to make to the target 200 ms after the end of 

movement. A previous study looking at reference frame over the course of the reach did 

not find significant differences over time 9. However, they only roughly categorized 

reference frame and did not examine time points as far into the movement as we did, so 

the subtle differences we found may have been overlooked. These changes could reflect 

fact that the initial hand position is important for planning a movement vector but is less 

relevant as the hand approaches the target. Alternately, the changes could reflect the 

change from movement planning to feedback control of the movement 38, 122-125. Whatever 
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the underlying cause, the differences seen across epochs were very small relative to 

distribution of reference frame representations seen in either Area 5 or MIP across all 

modality types. 

In examining the relationship between representations across modalities it is 

important to note that both motor and sensory responses are common in the parietal 

cortex 7, 21, 35, 90, 92, 111, 112, 114, 117, 126, 127 We chose to record from cortex contralateral to the 

reaching hand because contralateral firing rates are more closely related to movement 

parameters 128.  However, the parietal cortex has significant responses to the ipsilateral 

hand 112-114, 127, 128 as well as responses to the presence of the visual target 90, 112, 126. Having 

these different sensory representations present should, if anything, increase the likelihood 

of seeing differences between representations used for visual and proprioceptive reaches. 

Indeed, this may explain the slight decrease in correlation between VIS and PROP 

reference frames relative the correlation between VIS or PROP and the VIS+PROP 

reference frames (Figure 5). However, there was still a strong relationship between 

reference frames for VIS and PROP reaches and no difference in the average coordinate 

frame representation for any modality comparisons.  

The similarity in reference frames and tuning curves seen across modalities in this 

study is difficult to reconcile with the results of multimodal studies in other areas. Studies 

comparing the reference frames used to represent discrete sensory inputs have most 

commonly found reference frames are skewed towards the reference frame in which the 

sensory information in entering the nervous system 16, 17, 27-29. These results suggest that 

there is no general requirement for the alignment of responses across the different target 

sensory modalities observed here. Some of the differences between our result and the 
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results of previous studies may be explained by differences in areas sensory versus motor 

roles. We chose to record ipsilateral to the target hand and contralateral to the reaching 

hand, which may have biased our results toward encoding of motor rather than sensory 

parameters 112, 114, 127, 128. As the movements were similar across modalities (Table 1), this 

would increase the likelihood of seeing similar representations. However, given the 

bilateral responses in parietal cortex 112-114, 127, 128 this is unlikely to fully explain our 

results. Indeed, several studies that showed differences in reference frame across target 

modalities for saccades were in LIP and SC 16, 17, 29 which are important for the targeting 

and execution of saccades 129 similar to the SPL’s role in reaching 3, 20, 38. Further, studies 

in some of the same areas, using different behavioral tasks, have found no difference in 

reference frame representations across sensory modalities 15, 130 similar to the results of 

this study. Thus, the most important element in understanding why we see similar 

reference frames across different target modalities may be the role of Area 5 and MIP in 

using visual and proprioceptive information for reaching. 

 

The SPL is thought to function in the representation of spatial information for 

movements across multiple effectors 19, 90, 92, 126 and in the integration of sensory 

information 35, 112, 131-133, both of which would be simplified by sharing common 

representations 33, 92, 116, 131. Our finding that modality representations are similar could be 

related to the similar tuning seen across tasks in the posterior SPL 90, 126. This ‘global 

tuning’ is hypothesized to reflect a strategy for coordinating the movement of eyes and 

hands in space 19, 92, 134, 135. In this case, movements involving the two hands would simply 

be another kind of effector interaction to bring into spatial register. The SPL has also 
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been suggested to be important for maintaining a unified position estimate for vision and 

proprioception of the hand 34 and in integrating this information 35. In daily activities, both 

visual and proprioceptive signals about hand position are generally available and 

congruent, and sharing similar tuning across these inputs may be important for 

integrating this information for movement planning. Indeed, having the same set of 

representations independent of sensory modality of the target may be beneficial when 

integrating sensory information 107. In support of this idea, a recent study in MST showed 

that cells with similar representations across sensory inputs are more likely to be drawn 

upon during sensory integration 136. These results suggest that the correlation between 

visual and proprioceptive representations could be the related these areas’ role in 

maintaining unified spatial percepts 34, 92, 135 and integrating sensory information 35 for 

movement planning 3, 4, 21, 137, 138.  
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Supplemental Information for Chapter 2: 

Mixed representations are shared across reaches to 

visual and proprioceptive targets in the superior 

parietal lobule. 

 

 

Decoding movement parameters from mixed representations 

 

Given the heterogeneous reference frames observed in both Area 5 and MIP, we 

set out to determine whether the observed differences in the distribution of reference 

frames across these areas had a meaningful affect on the information that can be decoded 

from them. In order to do this we built a linear decoding model. We used linear 

regression with the desired readout (hand/body-centered target position, or eye-centered 

target position) as the dependent variable. Because we used cells recorded across many 

recording sessions for this population analysis, we had to use target position rather than 

reach endpoint for this regression. The individual trial firing rates of a subset of cells 

were used to generate the independent variables for the regression. All cells reported in 

this paper had at least four blocks of repetitions, though the majority of cells had more. In 

this analysis we discarded any repetitions beyond the first four so that all cells would 

have the same number of trials. Because the firing rates of the neurons are correlated 

when they have similar tuning curves, we first computed the principle components of the 
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firing rates using Principle Components Analysis (PCA) and projected the cells firing 

rates onto the principle components.  The projections of the rates where then ranked 

according to how much of the dependent variable response they explained. The 

projections where added into the regression one at a time in order of their contribution 

and a leave out one trial out cross validation R2 value was computed. Rate projections 

were added to the regression until the cross validation R2 failed to decrease by more than 

1% of the previous R2 value. This process was carried out for 1000 random subsets of 

neurons containing 10, 20, 30, 40, and 50 cells for each epoch and modality in both areas 

for both monkeys.  From these measures we computed a mean and standard deviation for 

the cross validation R2 for each possible readout and sample size. This model was not 

intended to mimic the brain, it was meant simply to provide us with a measure of the 

information encoded by the firing rates of a group of cells. 

 

 The results of this decode analysis revealed a number of distinct trends in the 

population decodes across areas. In both Area 5 and MIP the R2 values rapidly 

asymptoted for most readouts as the number of cells included in the decode increased 

(Supplemental Figure 1). In Area 5 the highest R2 decode values were obtained for the 

hand/body-centered target location with eye-centered target location having the second 

highest value (Supplemental Figure 1A). This indicates that Area 5 encodes more 

information in hand/body-centered coordinates than eye-centered coordinates, which is 

consistent with the reference frame analyses presented in the main text. It is important to 

note that the target position in hand/body and eye-centered coordinates are highly 

correlated variables, so the fact that the R2 values were still relatively high in the Area 5 
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eye-centered readout is not surprising. MIP on the other hand, had almost identical R2 

values for the hand/body and eye-centered decodes (Supplemental Figure 1B), indicating 

that there is roughly equal amounts of information about these two variables in the 

population response of MIP.  This is consistent with the average tuning shift value of δ = 

0.51 for MIP cells. Thus, the differences in reference frame distributions across areas are 

related to the fidelity with which movement parameters in different reference frames can 

be decoded from these areas. 

 

Supplemental Figure 1: Population decode of reach target in eye-centered coordinates, reach 
target in hand/body-centered coordinates, and eye position, with different population sizes for 
Area5 and MIP. Error bars show standard deviation of decode R2 value across 1000 randomly 
selected groups of cells (see Methods). 
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Chapter 3: 

Integration of visual and proprioceptive information 

in population responses of the posterior parietal 

cortex. 

 

   

Introduction   

 

When reaching to swat a mosquito on ones arm, a person may rely exclusively on 

somatosensory information to target the movement, or may also look at the arm to gather 

additional sensory information and improve his chances of squashing the mosquito.  

Making use of and integrating multiple sources of sensory information are a fundamental 

part of animals’ interactions with their environment. Psychophysical studies have shown 

that humans integrate sensory information in a statistically optimal manner under a 

variety of conditions 65, 66, 70, 139. However, while many studies have investigated how 

individual neurons change their responses when multiple sensory inputs are present 116, 120, 

136, 140-145 little is known about how this integration is carried out in multimodal areas of 

the brain.     
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A major focus of previous studies of sensory integration has been the responses of 

individual neurons in the superior colliculus (SC), which is important for saccadic eye 

movements 129. These studies found that the firing rates of many cells change when 

multiple sources of sensory information are available 116, 140-142. Super-additive bimodal 

responses, responses that are greater than the sum of the unimodal responses, have 

received much attention 140, 142. However, many factors, such as spatial and temporal 

coincidence of stimuli, and stimuli strength, affect how cell responses change with 

bimodal stimuli, and additive responses are much more common when strong sensory 

stimuli are used 116, 141, 142. Additive responses to bimodal stimuli match the predictions of 

network models of sensory integration, which demonstrate that the enhancement of 

individual cells bimodal responses, embodied as summation of unimodal responses, can 

provide a basis for optimal sensory integration 82.  

 

However, studies of individual cell responses in multimodal areas of the cortex 

have revealed some important differences between sensory integration in the cortex and 

midbrain. Changes in bimodal relative to unimodal responses in cortex are generally 

smaller than those observed in midbrain, with the vast majority of changes being sub-

additive, i.e. smaller than the sum of the unimodal responses 120, 136, 143-145. Additionally, a 

substantial portion of individual neurons show suppression rather than enhancement of 

bimodal responses relative to unimodal responses. How this mixture of sub-additive 

enhancement and suppression of individual cell responses might contribute to the 

integration of sensory information remains to be shown. There is evidence that in the 

medial superior temporal cortex (MST) bimodal neural responses can be thought of as 
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sub-additive linear combinations of unimodal responses 144 and that enhancement and 

suppression of individual neuron responses is related to the congruence of the cells 

unimodal spatial tuning 136. Gu et al. further found that neurons with congruent tuning, 

and hence enhancement of bimodal responses, tended to be more predictive of behavior 

than cells with non-congruent unimodal tuning.  These results suggest that the spatial 

properties of responses to unimodal stimuli may be important in understanding how 

changes in individual neuron responses contribute to sensory integration. However, it 

remains to be seen whether similar explanations of mixed enhancement and suppression 

will hold in other multimodal areas. 

 

While studies of sensory integration in cortex have begun to uncover distinct 

mechanisms of sensory integration, so far only a very limited subset of multisensory 

areas have been studied, and the form of sensory integration may vary across cortical 

areas. Many areas in the posterior parietal cortex (PPC) receive multimodal sensory 

inputs and are important for integrating and representing sensory information for 

movement 3, 5, 6, 21, 112, 114, 138, 146. Further, studies in the superior parietal lobule (SPL) have 

found interactions in individual neuron responses to visual, proprioceptive and motor 

inputs 35, 90, 92, 126, 147, 148 suggesting that areas in the SPL play an important role in 

integrating these inputs. 

 

The purpose of this study was to elucidate the neural mechanisms of integration 

of visual and proprioceptive reach target information in the PPC. We recorded from Area 

5 and MIP, as well as nearby Area 7, in order compare integrative responses in areas that 
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receive different amounts of visual and proprioceptive input 6, 21, 103, 149. We examined both 

individual neuron response properties in bimodal versus unimodal target reaches and the 

relationship of individual neuron responses to the population response in these areas. We 

found that individual neuron bimodal responses show a mixture of enhancement and 

suppression, which is unrelated to the spatial properties of the unimodal responses. 

However, the specific form of individual neurons’ bimodal responses determine whether 

the population response in a given behavioral epoch and cortical area is indicative of 

sensory integration, i.e. gives a stronger position signal, or is similar to or smaller than 

unimodal population responses. 

 

 

Methods 

 

Experimental setup  

 

Two adult male rhesus macaque monkeys (12-15kg) were used in this experiment. 

All procedures were approved by the UCSF Institutional Animal Care and Use 

Committee and followed the NIH guidelines for care and treatment of laboratory animals. 

As the data presented here was the basis for a previous paper, the experimental 

procedures for this paper have been described previously (Chapter 2). Here we 

summarize these procedures briefly. 
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The monkeys were trained to make reaches in a virtual reality setup allowing 

control of visual information during the task. The monkeys were head-fixed facing a 

mirror in which visual targets and feedback about hand position were presented. A digital 

video projector was used to project images onto a rear projection screen positioned above 

the mirror so that visual stimuli appeared in the plane of the horizontal table on which the 

reaching hand, the contralateral hand, rested. The target hand, the ipsilateral hand, rested 

on a second table positioned directly below the top table. A motor driven sleigh was used 

to position the ipsilateral arm at the target locations. Eye and hand position were 

monitored throughout the experiment. Behavioral and neural event times were recorded 

with a signal acquisition system that includes a programmable processor (Tucker Davis 

Technologies, Alachua, FL). Experiments were controlled with custom routines in 

Matlab (Natick, MA). 

 

Target Modalities and Array 

 

 The monkeys were trained to reach to three different target modalities. They made 

reaches to visual (VIS), proprioceptive (the ipsilateral hand, PROP), and visual and 

proprioceptive (VIS+PROP) targets. Visual targets were filled disks 2 cm in diameter, 

green for VIS and blue for VIS+PROP. Proprioceptive targets were the last joint of the 

two middle fingers of the ipsilateral hand, moved into position with the sleigh. Reaches to 

these three target types were preformed for the same set of reach conditions, i.e. reach 

target location, fixation point, and start location. 

 



 117 

Reach targets for all modalities were located in an arc equidistant from the 

projection of the monkeys’ cyclopean eye position onto the tables. The exact length of 

the arc was determined by the extension of the ipsilateral arm (average radius 26 cm 

monkey C, 22 cm monkey E). Targets were positioned at 10 degree intervals with respect 

to the origin of the target arc (approximately 10 degrees visual angle) from -30 to +30 

degrees from midline. 

 

 There were two possible fixation points, indicated with a filled red 8mm diameter 

disk, located at ±10 degrees from straight ahead. For each fixation point reaches were 

made to only six of the seven potential target locations (-30,-20,-10,0,+10,+20 for -10 

fixation, -20,-10,0,+10,+20,+30 for +10 degree fixation).  

 

All reaches were made from a visual start location, a green disk 2.4 cm in 

diameter, with initial feedback about the reaching hand, a white disk 1 cm in diameter at 

the last joint of the two middle fingers. The start target was located on the midline 

(measured from target arc origin: 15 cm forward monkey C, 11 cm forward monkey E).  

 

Trial Presentation Order 

 

The three modalities were presented in blocks so that all combinations of reach 

conditions were completed for PROP reaches, then VIS+PROP reaches, and finally VIS 

reaches before the next block (repetition) started.  The modalities were separate within 

the blocks but the trial conditions were randomized within each modality subsection of 
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the block. Error trials were repeated at the end of the modality subsection within the 

block.  

 

Trial and Reward Structure 

 

In order to successfully complete a trial the monkeys had move their contralateral 

hand to the reach target without failing to complete any of the sequence of positional 

holds and delay periods enumerated here. 1) Start target acquisition. 2) Target hand 

positioning: For PROP and VIS+PROP only. 3) Fixation point acquisition. 4) Visual 

target onset: After a 700 ms fixed delay, for VIS and VIS+PROP only. Same delay for 

PROP. 5) Instructed delay: Additional variable delay of 500-1000. This was the Delay 

behavioral epoch. 6) Go-signal: A go-tone sounded and the start target was extinguished. 

7) Reaction time: When the hand moved 1 cm from the initial position, feedback of the 

hand was extinguished. 8) Movement: The monkey had to reach without stopping to a 

point within a set distance from the center of the reach target (monkey C: 4 cm VIS and 

VIS+PROP, 5 cm PROP; monkey E: 3 cm VIS and VIS+PROP, 4.5 cm PROP). This was 

the Move behavioral epoch. 9) Target hold: 200 ms. 10) Reach feedback: On successful 

trials the fixation point was extinguished and visual feedback for the reaching hand was 

turned back on for 500 ms. On unsuccessful trials a 1 second error signal indicated which 

of the trial holds the monkey had violated. 11) Reward: Monkey C received a water or 

fruit juice reward. Monkey E received a food reward in the form of a slurry of monkey 

biscuits, apple juice, and banana. Unsuccessful trials had no reward and a 1-5 second 

timeout before the next trial began.  
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 To encourage accuracy, the amount of the reward depended in part on the 

proximity of the reach endpoint to the center of the reach target.  Reaches within the 

inner third of the reach window received a full reward, while reaches outside this range 

received a reward that was half of the total reward scaled by the distance from the target 

divided by the size of the reach window. This reward never dropped below the minimum 

reward time of 50 ms (monkey C liquid reward delivered at ~1-1.2 ml/sec, monkey E 

slurry reward delivered at ~2.6-3.4 ml/sec). The maximum reward time was fixed within 

a block but increased at predetermined intervals to keep the monkeys motivated. This 

reward scheme resulted in very similar rewards across target types (Chapter 2). 

 

A small portion of trials (10% in monkey C and 5% in monkey E) served as catch 

trials. In these trials the monkeys were rewarded without making a reach if they 

successfully maintained fixation through the final delay period (5), which was always 

extended to 1.5 seconds 

 

Recording Cylinders 

 

Both monkeys were trained extensively on the task before physiological 

recordings began.  Immediately before the start of recording an 18 mm inner diameter 

titanium recoding cylinder, was positioned over a craniotomy opened above the IPS with 

the guidance of structural Magnetic Resonance Images (MRIs, monkey C: 11 mm left, -4 
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mm posterior; monkey E: 12 mm right, -8 mm posterior, stereotactic coordinates relative 

to earbars). All surgical procedures and post operative care followed NIH guidelines.  

 

Neural Recording 

 

Single electrode recordings were used for all data collection. All well isolated 

neurons that appeared modulated by the task were recorded without pre-selection for 

direction tuning. All neurons for which at least four blocks of trials were completed were 

included in further analysis. Included neurons had anywhere from 4-13 blocks with a 

mean of 6.2 blocks and a median of 6 blocks.  

 

After recording, spikes were sorted and individual neurons were identified using 

Plexon Offline Sorter. Neurons were identified as having been recorded in Area 5, MIP 

or Area 7 based on the xy position of recording within the chamber and the depth of 

recording. The MRIs used for cylinder placement were used to make a map of the 

cylinder that, along with the observed neural responses to eye and hand movements, was 

used to identify the region from which neurons were recorded (Chapter 2). Neurons 

recorded less than 2000 mm from the surface of the cortex were categorized as Area 5 if 

they were recorded in the SPL and as Area 7 if they were recorded in the IPL. Neurons 

recorded below this depth in the SPL were categorized as MIP neurons. This depth cutoff 

was chosen because it typically corresponded to a quiet period, after the cells on the 

surface of the cortex, in which the electrode was likely passing through white matter. 
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Comparison of individual cells responses across target types  

 

 In the behavioral epochs of interest, Delay and Move, cells were tested for 

significant reach endpoint tuning for each modality. To do this, the firing rates were fit to 

a quadratic tuning curve (Equation 1) in which the rate (R) was a function of reach 

endpoint (T) and eye position (E) in degrees. The fit shift term (δ) allowed for eye 

position dependent tuning and α1, α2, α3 were fit to the individual cells response. An 

additional term (1-γ E) was added to allow for gain modulation of responses by eye 

position (Equation 2) when it significantly improved the model fit across the majority of 

target modalities in that epoch.  

 

     (1) 

  (2) 

 

Permutation tests 93 with 1000 repetitions were used to determine whether gain 

modulation significantly improved the tuning curve fit and whether reach endpoint tuning 

was significant. Inclusion of the gain term was determined by permuting the values of E 

used to fit gain (1-γ E) in Equation 2 across trials. Significance was determined by 

comparing the fraction of times the permuted SSE was smaller than the SSE with gain 

unpermuted. Similarly, significant endpoint tuning was determined by permuting the 

reach endpoints (T) across trials. The p value was computed as the fraction of times the 

permuted SSE was smaller than the SSE with reach endpoint information unpermuted. 

The epoch and modality response was significant when the p value was less than 0.05/9 = 
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0.0056 (Bonferroni correction, 3 target types x 3 epochs = 9). Cells were only included in 

further analysis if they had significant tuning in at least one modality in the epoch of 

interest. 

 

Individual cell response differences across target modalities 

 

In each epoch the two reach conditions with the highest firing rates (the peak of 

tuning) and the two reach conditions with the lowest firing rates (the minimum of tuning) 

were selected using the average firing rates across modalities. We have previously shown 

that tuning curves are generally highly correlated across the three target modalities 

(Chapter 2). Thus, selecting peak and minimum conditions from the average rate 

provided a good measure of changes in the response across target modalities and gave 

qualitatively the same results as comparisons made with peak and minimum selected 

separately across modalities. Significant differences across modalities at the peak and 

minimum as well as significant differences in modulation (peak - minimum) were 

determined using a permutation test with 5000 repetitions. 

 

Individual cell firing rate decode 

 

In order to obtain a measure of how predictive a cells’ firing rate in a given 

modality and epoch (modality-epoch-cell) was of behavior we used a linear decode of 

firing rate. To do this we used a linear regression where firing rate was the independent 

variable and reach endpoint, with the dependence on eye position (δ) determined from 
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Equation 1, was the dependent variable (T - δ E). We used leave-one-out cross validation 

across trials to compute an R2  value for this regression. The cross validation R2  value 

then served as a measure of how predictive firing rate was of reach endpoint. 

 

Comparison of population responses across target modalities 

 

In order to look at how specific types of changes in the tuning curve for bimodal 

versus unimodal responses affected population coding, we rearranged each cells 

responses so that all cells could be thought of as having the same canonical tuning curve. 

To do this we ranked each cells’ responses for the twelve task conditions (6 targets for 

each of 2 fixation points) from lowest to highest firing rate, based on the average 

response across modalities (the results of this analysis were unchanged if the responses 

were ranked separately for each target modality). The responses to for each of the twelve 

conditions were then reordered to follow this ranking for the cell. This aligned all cells’ 

firing rates in order from minimum response to maximum response and allowed us to 

compare how changes in each part of the tuning curve affected the population response. 

The assumption here is that if we had measured all of the neurons in the area the 

population response would be made up of many groups of cells with similar tuning. 

These groups of neurons would form the population code for target and movement 

information in these areas. By rearranging our cells responses we are pretending that we 

have sampled a single group with the same tuning rather than a subset of cells with many 

different preferred directions. The changes in the population response for this resampled 
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group, which now shares a single preferred direction, should in theory occur in all groups 

coding the same preferred direction. 

 

In order to compare changes across the population each cells’ responses 

(irrespective of modality) were normalized so the responses across Delay, Reaction time, 

Move fell between zero and one. The population tuning for the VIS+PROP targets was 

then compared either to the highest unimodal task response (VIS or PROP) chosen 

independently for each cell, or to the population responses during the VIS and PROP 

tasks. In each case the ranked and aligned responses were fit with linear regression to a 

line. A paired permutation test with 5000 repetitions was used to determine whether the 

fit parameters were significantly different between the population responses being 

compared. 

 

 

Results 

 

Behavior across target types 

 

The behavioral performance was comparable across target types, and has been 

reported in detail previously (Chapter 2). Briefly, both monkeys preformed smooth quick 

reaches to all three target types with the distributions of reaction times and peak 

velocities overlapping across target types. Additionally, the graded reward scheme (see 

Methods) successfully minimized differences in the rewards across target types. The 



 125 

average rewards differed by less than 30 ms (~3 µl at ~1 ml/sec monkey C, ~10 µl at ~3 

ml/sec monkey E) across target types for both animals, while the standard deviation in 

reward size was more than 130 ms for all target types. Thus, while there are small 

behavioral and reward differences across target types, these differences are much smaller 

than the natural variation within a target type, making them unlikely to play a large role 

in the neural responses reported here. 

 

 One important, and comparatively large, difference between the three target types 

was reach endpoint variance. Visual and proprioceptive information have different 

amounts of intrinsic variability 60, 70. Providing target information with vision or 

proprioception should lead to changes in reach endpoint variance that reflect both the 

computations needed to plan the reach and the reliability of the sensory modality 70, 107. 

This change in endpoint variance across target types is readily apparent in both monkeys’ 

data, with VIS variance being considerably smaller than PROP variance (Figure 1). If the 

monkeys are integrating sensory information, when both visual and proprioceptive 

information are available, the reach endpoint variance should be smaller than the 

unimodal variances 57, 63, 70. Comparing reach endpoint variance across days of recording 

reveals that this is the case; the VIS+PROP variability is generally smaller than both the 

VIS (Figure 1A) and the PROP (Figure 1B) variability. Additionally, changes in the day-

to-day VIS+PROP variance are correlated with both the VIS and PROP variance (see 

Figure 1A&B for R values). These correlations are higher than the day-to-day correlation 

between VIS and PROP variance (R=0.195 p=0.043 monkey C, R=0.386 p=0.001 

monkey E), indicating that the monkeys are using both sources of sensory information to 
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plan and execute their reaches. Further, while the decrease in VIS+PROP variance 

relative to VIS variance was relatively small, it was highly significant (p<<0.0001, t-test) 

and followed a similar pattern to the decrease in variability seen in humans performing 

the same tasks (compare Figure 1C&D). Thus, the changes in reach endpoint variance 

seen across the three target types support the conclusion that the monkeys are using and 

integrating the sensory information available in a statistically principled manner. 

 

Figure 1: Reach endpoint 
variance across target 
modalities. A) 
Comparison of reach 
endpoint variance in VIS 
and VIS+PROP for all 
recording days. B) 
Comparison of reach 
endpoint variance in 
PROP and VIS+PROP for 
all recording days. Each 
point is the average 
variance on a single day 
of recording. Large circles 
show average variance 
across days. C) Average 
changes in reach endpoint 
variance for humans 
performing reaches to 
VIS, VIS+PROP, and 
PROP targets with (FB) 
and without (NoFB) 
initial visual feedback of 
the reaching hand (from 
107). D) Changes in reach 
endpoint variance for 
monkeys C and E during 
VIS, VIS+PROP, and 
PROP FB reaches. 
VIS+PROP variance is 
significantly smaller than 
PROP or VIS variance 
(p<0.0001, t-test). 
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Neuron responses in the PPC 

 

We recorded a total of 446 neurons from the PPC for this experiment. Of these 

cells 193 were nominally in Area 5 (101 monkey C, 92 monkey E), 182 were nominally 

in MIP (95 monkey C, 87 monkey E), and 71 were nominally in Area 7 (monkey E). We 

will focus primarily on the Area 5 and MIP responses. A complete breakdown of the 

tuning properties across target type and epoch of the cells recorded from Area 5 and MIP, 

as well as the presumed recording locations for these cells, has been reported previously 

(Chapter 2). Cells were included in the analyses presented here if they had significant 

reach endpoint tuning for at least one target type in the epoch of interest (see Methods).  

 

We first asked how neural activity differed for the two unimodal target types, VIS 

and PROP, in Area 5 and MIP. We have previously shown tuning properties are similar 

across VIS and PROP reaches for individual cells (Chapter 2). Thus, we quantified 

differences between VIS and PROP by comparing the modulation, the difference between 

the peak and minimum firing rate across all reach conditions, across target types. The 

majority of cells in Area 5 and MIP did not have significant differences in modulation 

(p<0.05) between VIS and PROP reaches (68% Area 5 Delay, 58% MIP Delay, 72% 

Area 5 Move, 55% MIP Move). The cells that did have significant differences between 

VIS and PROP modulation showed heterogeneous modality preferences, though there 

were significant differences in average modulation across tasks. During Delay Area 5 

cells showed significantly greater modulation during PROP reaches across the population 

(Figure 2A, p=0.003<0.05/2=0.025, permutation test, Bonferroni correction, 2 epochs), 
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while MIP cells showed significantly greater modulation during VIS reaches ((Figure 2B, 

p<0.001<0.025, permutation test, Bonferroni correction). During Move the Area 5 

population lost its tendency to be more modulated by PROP reaches, showing if anything 

a slight preference for VIS reaches, though this tendency was not significant (Figure 2C, 

p=0.053, permutation test). The MIP population maintained its preference for VIS 

reaches during Move (Figure 2D, p<0.001<0.025, permutation test, Bonferroni 

correction).  Thus, we found that both Area 5 and MIP have strong responses to VIS and 

PROP targets, though Area 5 shows a slight tendency to respond more strongly to PROP, 

and MIP shows a tendency to respond more strongly to VIS, which is consistent with the 

different strengths of the visual and somatosensory inputs to these areas 3, 103, 115. 

 

  
 
Figure 2: Histograms of differences in firing rate modulation in VIS versus PROP reaches in Area 
5 and MIP for Delay and Move. Filled histograms show cells with significant differences 
(p<0.05, paired permutation test) in modulation between target modalities. Arrows indicate 
average difference. P-values for mean differences come from paired permutation tests. 
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Modulation of single cell responses by bimodal target information 

 

We first looked for changes in individual neuron’s instructed delay period (Delay) 

responses when bimodal target (VIS+PROP) responses were compared to unimodal 

target (VIS or PROP) responses. As Delay period responses in the PPC are generally 

thought to correspond to movement planning 4, 6, 38, 117, 137 neural correlates of the 

behavioral decrease in variance for bimodal targets seen in our task (Figure 1) should be 

apparent in these responses. 

 

There were a variety of changes in individual cells Delay VIS+PROP responses 

relative to their unimodal responses in both Area 5 and MIP (Figure 3 shows several 

example cells). Bimodal sensory integration on the single cell level is generally defined 

as a difference between the cells bimodal response and its best (VIS or PROP, higher 

firing rate at peak) unimodal response 150. Some cells displayed enhancement at the peak 

of the tuning curve (Figure 3A, p=0.014, permutation test), which could provide a more 

reliable position signal during the VIS+PROP reaches. However, cells also showed 

significant suppression of VIS+PROP responses relative to the best unimodal response. 

This suppression could be general suppression relative to the best unimodal response 

(Figure 3B p<0.001 at peak and p=0.003 at minimum, permutation test) or specific to 

either the peak of the tuning curve (Figure 3C, p<0.001, permutation test) or, less 

frequently, the minimum of the tuning curve. Additionally, the majority of cells had 

similar responses to the best unimodal and VIS+PROP targets (Figure 3D, p=0.299 at 

peak and p=0.292 at minimum, permutation test). These responses were matched to the 
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VIS response in some cases and the PROP response in others. Thus, individual cells 

showed enhancement, suppression, or no change in response for bimodal versus 

unimodal targets. 

 

 

Figure 3: Example cells’ responses across the three target modalities. Responses for the two 
fixation points are separated for clarity. A) Cell shows enhancement of VIS+PROP responses at 
the peak of the tuning curve (p=0.014). B) Cell shows suppression of VIS+PROP responses 
relative to the best unimodal (PROP) responses at the peak (p<0.001) and minimum (p=0.003) of 
the tuning curve. C) Cell shows suppression of VIS+PROP responses relative to the best 
unimodal (VIS) responses at the peak of the tuning curve (p<0.001). D) Cell has similar 
responses for VIS+PROP and best unimodal (VIS) reaches (p=0.299 at peak, p=0.292 at 
minimum. P-values determined with paired permutation tests (see Methods). Error bars show 
standard error. 
 

We next asked whether there were any specific types of changes in response that 

were more common than others across the population. As changes in the peak and the 

minimum of tuning provide a proxy for measuring changes in the neurons 

responsiveness, and many neurons seemed to have changes specific to these parts of the 

tuning curve, we tested all cells for significant differences in peak or minimum between 

VIS+PROP and the best unimodal response (p<0.05, 2 comparisons no correction for 

multiple comparisons see methods). Of the cells tuned for Delay, 28/98 Area 5 cells and 

52/132 MIP cells showed either significant enhancement or suppression at either the peak 
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or the minimum of the tuning curve. We also examined responses during the movement 

epoch (Move), and found that 42/103 Area 5 cells and 56/136 MIP cells showed either 

significant enhancement or suppression at either the peak or the minimum of the tuning 

curve. In general all changes in modulation were subadditive, i.e. less than the sum of the 

unimodal responses (Supplemental Figure 1). While both enhancement and suppression 

were common, there were subtle differences in the distribution of these effects between 

the peak and minimum of the tuning curve in both areas during Delay and Move 

(Supplemental Figure 1). Thus, we next set out to determine how changes in different 

parts of individual cells’ tuning curves will affect the population response for bimodal 

versus unimodal targets. 

 

Population Delay responses to VIS+PROP reaches in Area 5 and MIP 

 

Changes in response at different parts of the tuning curve will have different 

implications for information coding within the cell. For example, selective suppression at 

the peak of the tuning curve would in theory provide less information, while selective 

suppression at the minimum of the tuning curve would in theory provide more 

information. This is because these two changes would have opposite affects on the cells 

overall modulation. In order to look for changes in the VIS+PROP response that were 

localized to different parts of the tuning curve, we aligned all of the cells responses so 

that we could compare changes across the tuning curve. In order to do this we ranked the 

firing rates of each cell on all reach conditions from the lowest response the highest 

response (1-12, for each of the 6 target x 2 fixation conditions) and aligned the conditions 
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in order of their mean rate (see Methods). This allowed us to treat the entire population of 

cells as though they had the same tuning and look for changes in specific parts of the 

population tuning curve in response to bimodal sensory information. If we could sample 

the entire population of cells within an area, the population response would be made up 

of many groups of cells with similar preferred directions and tuning curves. By aligning 

all of our cells so that they have the same nominal tuning curve we can use our sample as 

a proxy for changes in population activity across all preferred tuning directions.  

 

We first looked for consistent changes in individual cells’ Delay responses to 

bimodal targets relative to their best unimodal response. Unimodal task preferences were 

heterogeneous in both Area 5 and MIP (Figure 2), so the best unimodal response was 

chosen separately for each cell as described above. When the average VIS+PROP 

response was compared to the average across all cells’ best unimodal responses, a slight 

but significant trend towards suppression of bimodal responses at the minimum of the 

tuning curve was seen in both Area 5 and MIP (gold versus grey lines, Figure 4A&C, 

p<0.001<0.05/8=0.006, paired permutation test, Bonferroni correction, 2 line parameters 

x 2 comparisons x 2 sets of comparisons). In contrast, changes in individual cells’ 

responses at the peak of the tuning curve had no net effect on VIS+PROP responses 

relative to the average of cells’ best unimodal responses (p>0.5, paired permutation test).  

Thus, in both Area 5 and MIP many of the changes in individual neurons bimodal 

responses relative to their unimodal responses have no net effect on the population 

response. There are, however, small localized changes in tuning curves across the 

population, which could increase the amount of information present for bimodal stimuli. 
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Figure 4: Delay population responses in Area 5 and MIP. Responses for each cell are ordered 
from lowest firing rate reach condition to highest firing rate condition. Each cells’ firing rate is 
normalized so that it ranges from zero to one in its Delay, React and Move responses (the same 
normalization is used across target modalities). A&C) Show average VIS+PROP responses 
compared to the average of the best and worst unimodal responses chosen for each cell. B&D) 
Show average VIS+PROP responses compared to average VIS and PROP responses. Error bars 
show standard error. Dashed lines show linear fit to average responses. P-values are from paired 
permutation tests for significantly different fits across average responses. 
 
 

However, comparing the population responses across target types provides a 

much clearer picture of an area’s population than comparing individual cells’ bimodal 

and best unimodal responses. Individual cells’ responses to VIS and PROP targets were 

often very similar (Figure 2) and the choice of best unimodal response in these cases was 

within measurement noise. Further, as both Area 5 and MIP had heterogeneous unimodal 

preferences when there were significant differences across modalities, this is illustrated 

by the fact that the average Delay responses for VIS and PROP fell in between the 

average of the best and worst unimodal responses (compare Figure 4 A&C to B&D, 

though Area 5 was on average more modulated for PROP, and MIP was on average more 

modulated for VIS, p<0.001, paired permutation test). This distinction between mean VIS 
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and PROP and average of the best unimodal responses alters the picture of bimodal 

responses across the population. The mean VIS+PROP responses were significantly 

greater than VIS or PROP mean responses near the peak of the tuning curve in both Area 

5 and MIP (Figure 4B&D p<0.001<0.008, permutation test, Bonferroni correction). In 

contrast, the mean VIS+PROP and unimodal responses are similar at the minimum of the 

tuning curve (similar to PROP in Area 5, similar to VIS and PROP in MIP, p>0.6, paired 

permutation test). Thus, at the peak, where we saw no change in mean VIS+PROP 

relative to cells’ best unimodal response, we see enhancement relative to VIS and PROP. 

At the minimum, where we saw selective suppression relative to best unimodal response, 

we see no change relative to unimodal. This suggests an interaction between changes in 

individual cells bimodal relative to unimodal responses and the heterogeneous task 

preferences in Area 5 and MIP. This interaction results in increased VIS+PROP 

modulation across the population in both Area 5 and MIP. This could provide a stronger 

position signal for downstream areas to account for the decrease in reach endpoint 

variance seen in our behavioral data (Figure 1). 

 

The increase in mean VIS+PROP response does not depend on reordering 

responses or on having cells that respond to only one modality. When cells’ responses are 

not reordered to align their tuning curves, the average VIS+PROP responses are similar 

to or greater than VIS or PROP responses for all reach conditions (Supplemental Figure 

2A&B). Additionally, when small groups of cells with the same preferred direction are 

averaged, the same trend towards increased VIS+PROP response at the peak of the tuning 

curve can be seen (Supplemental Figure 2C-F). This suggests that our reordering results 
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are indeed representative of the population response for a large group of cells with the 

same tuning. Further, the increased VIS+PROP modulation seen in Figure 4 is present 

even when only cells tuned for all three target types are included in the population 

average (data not show). Thus, this effect is not the trivial result of separate VIS and 

PROP populations being averaged together. All of these findings support the idea that the 

difference between mean VIS+PROP and mean unimodal responses is a specific increase 

in bimodal modulation across a multimodal population of neurons. 

   

It should be noted that either the selective suppression of the minimum (Figure 

4A&C) or the selective enhancement of the peak (Figure 4B&D) would increase 

modulation of cells’ responses. To examine the role of changes in individual cells’ 

bimodal responses relative to the role of heterogeneous target type preferences we next 

examined the modulation of individual cells in Area 5 and MIP. We compared the 

VIS+PROP Delay modulation to the modulation in the best unimodal target response, 

and to either VIS modulation or PROP modulation (Figure 5). While the VIS+PROP 

responses show a slight trend towards increased modulation relative to the best unimodal 

response for each cell, this trend fails to reach significance in either area (Figure 5A&B, 

p=0.052 in Area 5, p=0.097 in MIP, paired permutation test). In contrast the VIS+PROP 

responses showed on average greater modulation than either the VIS (Figure 5C&D, 

p<0.001<0.05/6=0.008, paired permutation test, Bonferroni correction) or the PROP 

(Figure 5E&F, p<0.001<0.008, paired permutation test, Bonferroni correction) responses 

in both Area 5 and MIP. This suggests that the heterogeneous modality preferences in 

Area 5 and MIP play a larger role in the increased VIS+PROP modulation than changes 
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in the individual cell responses, though both may be important for the integration of 

sensory information. 

  
 
Figure 5: Histograms of individual cell differences in Delay modulation for Area 5 and MIP. 
A&B) Differences between VIS+PROP and each cells best unimodal response modulation. C&D) 
Differences between cells VIS+PROP and VIS modulation. E&F) Differences between 
VIS+PROP and PROP modulation. Filled histograms show individual cells with significant 
differences. Arrows indicate mean difference in response. P-values for mean difference come 
from paired permutation tests. 
 

Correlates to changes in Delay modulation during VIS+PROP reaches  

 

We have used changes in modulation as an indicator for how much information 

about target location is being encoded by both individual cells and across the population. 
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Here we examine more closely how changes in firing rate modulation relate to the 

alignment between cells unimodal tuning curves and the information that can be decoded 

for each target type about reach endpoint. 

 

Studies in other multimodal areas have shown a relationship between whether 

individual cells’ bimodal responses were enhanced or suppressed and the tuning 

properties of the unimodal responses 136. Specifically, cells with similar tuning across the 

unimodal sensory inputs tended to show enhancement of bimodal responses, while cells 

that showed divergent tuning across unimodal inputs tended to show suppression of 

bimodal responses. While we have previously shown that tuning curves tend to be highly 

correlated across VIS and PROP reaches (Chapter 2) this alignment of responses is not 

perfect, and it was possible that slight variations in tuning across visual and 

proprioceptive inputs could account for the mixture of enhancement and suppression 

observed here. However, when the correlation between individual cells VIS and PROP 

tuning curves was compared to the changes in modulation in VIS+PROP relative to the 

best unimodal response no relationship between these factors was apparent (Figure 6A, 

R= -0.025, p>0.790, Spearman’s correlation, combined across areas as the results were 

similar for Area 5 and MIP). This indicates that the mixture of enhancement and 

suppression of individual cell responses cannot be explained by differences in tuning 

across the unimodal tasks. 

 

We next wanted to verify that the changes in modulation reflected changes in the 

information encoded by individual cells. In order to test this we a used a linear decoding 
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model of each cells’ trial by trial firing rate to look at the reach endpoint information that 

could be read out for each target type (see Methods). We then compared changes in 

modulation across target types to changes in how predictive the cells’ firing rate was of 

reach endpoint (Figure 6B). There is a significant positive correlation between changes in 

modulation between the VIS+PROP and best unimodal response and changes in 

predictiveness across the VIS+PROP and best unimodal responses (Figure 6B, R=0.382, 

p<0.001<0.05/3=0.016, Spearman’s correlation, Bonferroni correction).  Thus, 

enhancement and suppression of modulation in VIS+PROP relative to the best unimodal 

responses is related to the information that can be read out from the cells’ firing rate. 

However, the fact that this relationship lead to both increases and decreases in 

information indicates that additional factors, such as the heterogeneous target type 

preferences seen in both Area 5 and MIP, must be involved to obtain the increase in 

target position information suggested by the behavioral decrease in endpoint variance for 

bimodal targets. 

 

Figure 6: A) Comparison of difference between VIS+PROP and best unimodal modulation to 
correlation in unimodal tuning curves for individual cells Delay responses. B) Comparison of 
difference between VIS+PROP and best unimodal modulation to difference decode R2 value 
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between VIS+PROP and best unimodal Delay responses. R and p-values are from Spearman’s 
correlation. 
 

Population Delay responses to VIS+PROP reaches in Area 7 

 

There are several factors that contribute to the increase in VIS+PROP modulation 

seen in Area 5 and MIP and make this a feasible mechanism for sensory integration in 

these areas. First, changes in bimodal versus best unimodal response are small across the 

population and localized to selective suppression of the minimum of the tuning curve 

(Figure 4A&C). Second, unimodal target preferences are heterogeneous in these areas 

resulting in strong responses to both visual and proprioceptive target information (Figure 

2 and Figure 4B&D). Third and finally, the tuning curves across all target types are 

roughly aligned (Chapter 2 and Figure 6A) so downstream areas can read out positional 

information across the whole population irrespective of the sensory modality specifying 

target information. Here we compare responses in Area 5 and MIP to responses in Area 7 

and show that when the first two conditions are not met there is no increase in bimodal 

responses. 

 

 When average VIS+PROP Delay responses in Area 7 are compared to either best 

unimodal or VIS and PROP responses, with the same analysis used for Area 5 and MIP 

responses above, a different pattern of bimodal changes in response emerges. In Area 7 

the mean VIS+PROP response showed general suppression relative to the mean of each 

cells best unimodal response (Figure 7A, p=0.003<0.05/8=0.006, paired permutation test, 

Bonferroni correction). This is in contrast to the selective suppression seen in Area 5 and 
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MIP (Figure 4A&C). In addition cells in Area 7 respond much more strongly for reaches 

to VIS than PROP targets (p<0.001, paired permutation test), and when the population 

response is compared across target types, the mean VIS+PROP response in Area 7 is 

significantly suppressed relative to the mean VIS response (Figure 7B, p=0.001<0.006, 

paired permutation test, Bonferroni correction). Though the suppression of VIS+PROP 

responses relative to VIS responses appears greater at the base of the tuning curve than at 

the peak (Figure 7B), there is no significant difference between modulation of 

VIS+PROP and VIS responses in Area 7 (p=0.870, paired permutation test), suggesting 

that the difference between VIS+PROP and VIS responses is consistent with general 

suppression of responses. Thus, Area 7 does not display the localized changes in bimodal 

versus best unimodal response or the heterogeneous task preferences seen in Area 5 and 

MIP. The absence of these effects results in changes in bimodal responses in Area 7 that 

appear more consistent with suppression due to competition between sensory inputs than 

integration resulting increased modulation of bimodal responses. 

Figure 7: Delay population responses 
in Area 7. Responses for each cell are 
ordered from lowest firing rate reach 
condition to highest firing rate 
condition. Each cells’ firing rate is 
normalized so that it ranges from zero 
to one in its Delay, React and Move 
responses (the same normalization is 
used across target modalities). A) 
Average VIS+PROP responses 
compared to the average of the best 
and worst unimodal responses chosen 
for each cell. B) Average VIS+PROP 
responses compared to average VIS 
and PROP responses. Error bars show 
standard error. Dashed lines show 
linear fit to average responses. P-
values are from paired permutation 
tests for significantly different fits 
across average responses. 



 141 

 

Population Move responses to VIS+PROP reaches in Area 5 and MIP 

 

Examining population responses during Move in Area 5 and MIP reveals a 

divergence between planning and movement activity, and illustrates the importance of the 

specific type of changes in individual cells’ bimodal versus best unimodal responses. 

During Move the average bimodal relative to best unimodal response is generally 

suppressed, with greater suppression at the peak of the tuning curve, in both Area 5 and 

MIP (Figure 8A&C, p<0.001<0.05/8=0.006, paired permutation test, Bonferroni 

correction). This is in contrast to the selective suppression at the minimum seen during 

Delay. This general suppression of bimodal responses, combined with these areas’ 

heterogeneous modality preferences (Figure 2), results in similar mean responses to 

VIS+PROP and unimodal reaches across the population (similar to VIS and PROP in 

Area 5, similar to VIS in MIP, Figure 8B&D, p>0.015>0.006, paired permutation test, 

Bonferroni correction). The similar bimodal and unimodal target responses suggests that 

the selectivity of the suppression seen during Delay is key to the increase in bimodal 

modulation during movement planning, and that, unlike Delay, Move may not encode 

stronger positional information for bimodal targets. 
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Figure 8: Move population responses in Area 5 and MIP. Responses for each cell are ordered 
from lowest firing rate reach condition to highest firing rate condition. Each cells’ firing rate is 
normalized so that it ranges from zero to one in its Delay, React and Move responses (the same 
normalization is used across target modalities). A&C) Show average VIS+PROP responses 
compared to the average of the best and worst unimodal responses chosen for each cell. B&D) 
Show average VIS+PROP responses compared to average VIS and PROP responses. Error bars 
show standard error. Dashed lines show linear fit to average responses. P-values are from paired 
permutation tests for significantly different fits across average responses. 
 
 

The changes in average Move modulation are related to changes in individual 

cells’ modulation. Individual cells’ VIS+PROP Move modulation is on average smaller 

than their best unimodal modulation in both Area 5 and MIP (Supplemental Figure 

3A&B, p<0.014<0.05/3=0.017, paired permutation test, Bonferroni correction). 

However, there are on average no significant differences in individual cells’ modulation 

between VIS+PROP and VIS or PROP in Area 5 (Supplemental Figure 3C&E, p>0.13, 

paired permutation test, Bonferroni correction) or between VIS+PROP and VIS in MIP 

(Supplemental Figure 3D, p>0.13, paired permutation test, though VIS+PROP responses 

are more modulated than PROP responses due to this areas’ preferences for VIS targets, 
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Supplemental Figure 3F). This suggests that the general suppression of VIS+PROP 

versus best unimodal responses serves to equalize responses between VIS+PROP and 

VIS or PROP responses in Area 5, and VIS responses in MIP. The lack of changes in 

individual cells’ bimodal versus unimodal modulation supports the idea that cells in Area 

5 and MIP are not providing additional information about bimodal target location during 

Move. 

 

The change from increased modulation in VIS+PROP during Delay to similar 

modulation in VIS+PROP and unimodal responses during Move emerges gradually over 

the course of the trial (Figure 9). When Delay tuned cells are aligned on the Go-Signal, 

the increased VIS+PROP modulation is significant before the movement starts, during 

the instructed delay, but decreases after the Go-Signal, as the movement approaches, in 

both Area 5 and MIP (Figure 9A&C). When Move tuned cells are aligned on the start of 

movement, VIS+PROP modulation is not significantly different than VIS or PROP 

modulation in Area 5 and not significantly different than VIS modulation in MIP, both 

during the reaction time before the movement and after the initiation of the movement 

(Figure 9A&C). Thus, the change in modulation of VIS+PROP target responses appears 

to emerge during the transition from planning to execution of the movement. This 

suggests that the change from movement planning to reach feedback results in differential 

processing of multisensory information. 

 

 

 



 144 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 9: Peristimulus time histograms of population modulation. A) Delay tuned Area 5 cells 
aligned on Go-Tone. C) Delay tuned MIP cells aligned on Go-Tone. Grey bars in A&C indicate 
period during which the visual target appeared. B) Move tuned Area 5 cells aligned on movement 
start. D) Move tuned MIP cells aligned on movement start. Each cells response is normalized 
over the range of the PSTH. Dashed lines indicate standard error. Stars indicate time bins when 
the VIS+PROP modulation was significantly different than VIS and PROP modulation (p<0.05, 
paired permutation test on line fit to ranked and ordered responses). Differences in modulation 
were only tested for the 500 ms before and after the aligning cue. Average reaction time across 
both animals was 370 ms. 
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Discussion 

 

This study examined how the responses of neurons in the PPC change when 

bimodal sensory information, rather than unimodal information, about target position is 

available. Specifically we looked at how visual and proprioceptive, in this case the 

ipsilateral hand, target information affect the responses of both individual neurons and 

the population during reaching. During instructed delay, we found that many neurons in 

Area 5 and MIP show enhancement or suppression of bimodal responses relative to their 

best unimodal responses. The exact form of these changes varied greatly from neuron to 

neuron, and only a slight suppression of responses at the minimum of the tuning curve 

was consistent across the population in these areas. However, this specific suppression of 

minimum responses, combined with the areas heterogeneous task preferences, resulted in 

increased bimodal modulation across the population in both Area 5 and MIP during 

Delay. By movement initiation, the increased bimodal modulation disappeared, 

suggesting that the roles of Area 5 and MIP in sensory integration for planning and 

feedback may be different. The interaction between changes in bimodal responses in 

single cells and the population across the planning and movement periods in this study 

suggest a novel way of thinking about sensory integration within a cortical area. 

 

One factor that likely played a role in the types of responses seen in this study was 

the decision to use the ipsilateral and not the contralateral hand as the proprioceptive 

target. This decision was motivated by the desire to study the way in which visual and 

proprioceptive information are used, both separately and jointly, to guild reaching. Neural 
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responses in the contralateral hemisphere of the PPC have been shown to be more 

correlated with reach reaction time than responses in the ipsilateral hemisphere 128, 

suggesting that the contralateral responses are more closely linked to movement. 

However, areas within the PPC respond to ipsilateral stimuli and hand movements 111-114, 

127, 128, and substantial bimanual responses to somatosensory stimuli have been reported in 

somatosensory cortex adjacent to Area 5 151, 152. Further, both the premotor and motor 

cortices have neurons that respond to ipsilateral and bilateral hand movements 153-157. 

Thus, coordinating movements between the two hands involves both hemispheres of 

many motor and sensory-motor areas, which likely include Area 5 and MIP. While 

recording from the contralateral hemisphere might provide more insight into the purely 

sensory aspects of integrating visual and proprioceptive information, the ipsilateral 

hemisphere also has purely sensory responses 90, 112, 114, 126, 127 and will provide more insight 

into how visual and proprioceptive information is integrated for movement.  

 

To the extent that the mechanisms of integration are shared across hemispheres 

and task conditions, our findings complement previous studies reporting interactions 

between visual and proprioceptive inputs in several areas of the SPL 35, 90, 126.  These 

studies reported changes in neurons responses when reaches made with the contralateral 

hand to visual targets were preformed in the light versus in the dark 90, 126, or when a 

realistic fake monkey arm was positioned above the contralateral arm in the absence of a 

task 35. The second study found that aligning the fake arm with the real arm resulted in a 

10% increase in firing rate across the population (at the preferred direction) compared to 

proprioception alone, which matches the increase observed in our study (Figure 4B&D). 
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The similarity of these results is striking, both because they were recording from the 

contralateral hemisphere while we were recording from the ipsilateral hemisphere, and 

because Graziano et al. found that the visual stimuli had to be an extremely realistic 

monkey arm to see to this increase, while we saw this increase with a disk at the tip of the 

fingers. In our study, the monkeys learned that the target disk was coincident with the 

hand when it was blue and independent of hand position when it was green. This learned 

visual stimuli modulated neurons responses both on the individual cell and the population 

level during the task, suggesting that the requirement for realistic vision of the monkey 

arm may actually be a requirement for relevant sensory stimuli. Further, because we had 

trials during which the monkey was signaled that proprioceptive information was 

irrelevant, we were able to compare bimodal responses to responses when vision alone or 

proprioception alone were the relevant stimuli.  

 

This analysis revealed that changes in bimodal responses relative to cells’ best 

unimodal response follow a much different pattern across the population than changes in 

response relative to proprioception or vision. We found that the majority of neurons in 

Area 5 and MIP have bimodal target responses that match their best unimodal responses, 

showing that much of the difference between proprioceptive or visual responses and 

bimodal responses is due to heterogeneous task preferences and in these areas. However, 

while the changes in bimodal versus best unimodal response were quite mixed and only 

had small effects on the population level, the form of these effects was important in 

shaping the population responses to bimodal stimuli. For instance, the selective 

suppression of the minimum bimodal responses across the population during Delay 



 148 

(Figure 4A&C) contributes to the increased modulation of bimodal responses relative to 

VIS and PROP.  The importance of the selectivity of this suppression is illustrated by the 

way the general suppression of bimodal relative to the best unimodal responses during 

Move leads to similar population responses for bimodal and unimodal targets.  

 

The reason for this switch from increased bimodal modulation to similar bimodal 

and unimodal responses in going from Delay to Move is unclear, but may be related to a 

shift in the role of the parietal cortex from movement planning to feedback control in 

these periods 38, 122-125. If the parietal cortex encodes a forward model of the arm trajectory 

during movement 122, 124, 125, 137 the strength of the prediction, indicated by the strength of 

the response, may be less dependent on the sensory input specifying target. However this 

cannot completely explain our results as responses in MIP are stronger when visual 

information is available. This suggests that error feedback or feedback control in some 

areas may split into primarily unisensory streams of information, perhaps to aid in 

comparing visual and proprioceptive localization 34, 36. 

 

The strong unimodal responses in Area 5 and MIP provide the framework on 

which the changes in bimodal versus best unimodal responses act to shape population 

modulation in Delay and Move.  The strong responses to both visual and proprioceptive 

target reaches in Area 5 and MIP are not surprising given the somatosensory and visual 

inputs to these areas 3, 5, 6, 102, 103 and the visual and proprioceptive responses in these and 

nearby areas 90, 112, 114, 126, 127. The importance of strong responses to both sensory 

modalities for higher bimodal responses across the population is illustrated by the 
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suppression of bimodal responses in Area 7 (Figure 7), which responds more strongly to 

visual than proprioceptive inputs 21. However, it is the fact that that these strong 

responses to both sensory modalities are occurring in a largely overlapping set of cells 

that keep this increase from being a trivial summing across different populations. This 

highlights the importance of the similar tuning properties for visual and proprioceptive 

responses in individual cells (Chapter 2) in the population encoding of positional 

information. Representing sensory information in a common form can aid in sensory 

integration 33, 92, 116, 131, because positional information can be read out by downstream 

areas independent of it’s sensory source.  The shared representation of strong visual and 

proprioceptive responses in Area 5 and MIP provides a population response which can 

give increased bimodal modulation or similar bimodal and unimodal responses with only 

small changes in tuning properties across the population (Figure 4 and Figure 8). 

 

 

In examining multimodal effects in Area 5 and MIP we have focused on how 

changes individual neuron’s responses affect the population response across target types. 

This is in contrast to previous studies, which used changes in individual neurons bimodal 

responses relative to their best unimodal responses as the measure of sensory integration 

116, 120, 136, 140, 142-145, 150, and leads to very different conclusions about how integration is 

occurring in Area 5 and MIP. On the single cell level, many cells in Area 5 and MIP 

show significant, though generally subadditive (Supplemental Figure 1), enhancement or 

suppression of bimodal relative to the best unimodal responses in both Delay and Move 

(29% Area 5 Delay, 39% MIP Delay, 41% Area 5 Move, 42% MIP Move). Taken at face 



 150 

value these changes could indicate that the cells are integrating bimodal sensory 

information 116, 120, 136, 140, 142-145, 150, though they cannot fit into the framework of additive 

unimodal responses suggested by network models of sensory integration 82 without some 

form of response normalization 158. However, the single cell definition of sensory 

integration fails to take into account where on the tuning curve these effects are 

occurring, and how they change the cells modulation, two factors that greatly affect 

whether the change in a cells response increases or decreases the information encoded by 

the cell. Several recent studies have looked at how multimodal effects interact with the 

tuning properties of cells in MST across different sensory inputs 136, 144. However, when 

we looked for a similar relationship between the change in bimodal response and 

correlation in unimodal tuning curves or the predictiveness of a cells firing rate for 

behavior, we found no relationship between these factors (Figure 6). Thus, to interpret the 

enhancement and suppression effects of individual cells we needed to look at their affects 

on tuning properties across the population for a given area. This population analysis 

revealed increases in the modulation of Delay population responses in Area 5 and MIP 

that could provide a stronger positional signal about location. These results suggest that 

integration of visual and proprioceptive information in the SPL may employ different 

mechanisms of sensory integration than other areas. This difference may be explained by 

the fact that while other multimodal areas studied likely play a role in representing 

multimodal information that may or may not share a common source (SC, VIP, MST, 85, 

86, 136, 140, 143, 144), the SPL seems to play a key role in integrating visual and proprioceptive 

inputs to maintain spatially coherent estimates of arm position for movement 34, 35. 
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Supplemental Information for Chapter 3: 

Integration of visual and proprioceptive information 

in population responses of the posterior parietal 

cortex.  

 

 

VIS+PROP versus best unimodal response at peak and minimum  

 

Across both Area 5 and MIP cells showed distinct patterns of enhancement and 

suppression of bimodal versus unimodal responses at the peak and minimum of the 

tuning curve. During Delay, cells in both areas had balanced enhancement and 

suppression of bimodal versus best unimodal responses at the peak of the tuning curve 

(Supplemental Figure 1A&B). However, at the minimum of the tuning curve, both areas 

showed slight suppression of bimodal responses, though this suppression only reached 

significance in Area 5 after correction for multiple comparisons (Supplemental Figure 

1C&D, p=0.012<0.05/2=0.025 for Area 5, p=0.043>0.025 for MIP, paired permutation 

test, Bonferroni correction). In contrast, during Move, both Area 5 and MIP bimodal 

responses were suppressed at the peak of the tuning curve, and Area 5 had smaller, 

though still significant, suppression at the minimum of the tuning curve (Supplemental 

Figure 1E-H). The majority of the suppression and enhancement effects in both epochs 

and areas were subadditive, i.e. smaller than the sum of the unimodal responses. The 
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results suggest that bimodal response modulation is not uniformly expressed across 

individual cells tuning curves or across behavioral epochs. 

 

 
Supplemental Figure 1: Histograms of individual cell differences in VIS+PROP versus best 
unimodal response at peak and minimum of tuning curve. Differences are divided by the sum of 
the unimodal responses to give a modulation index (percent of additive response). Filled 
histograms show cells with significant differences (p<0.05, paired permutation test) between 
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VIS+PROP and best unimodal responses. Arrows indicate mean difference in response. P-values 
for mean difference come from paired permutation tests, values are significant if p<0.05/4=0.013, 
Bonferroni correction (2 epochs x 2 comparisons). 
 

Delay population responses to VIS+PROP without realignment 

 

The increase in average VIS+PROP responses relative to VIS or PROP responses 

can be seen even when reach conditions are not reordered to give all cells the same tuning 

curve. When population responses are averaged across all target and fixation conditions 

without reordering, VIS+PROP responses are generally greater than or similar to 

unimodal averages (Supplemental Figure 2A&B). Further, when the responses of small 

groups of cells with the same preferred direction are averaged, the increase in VIS+PROP 

responses can still be observed (Supplemental Figure 2C-F). VIS+PROP responses are 

greater than unimodal responses at the peak in 9/12 Area 5 preferred direction groups and 

8/12 MIP preferred direction groups during Delay, with preferred directions with more 

cells being more likely to show increased responses. The localization of this effect to the 

peak of the tuning curve is not as clear in these small groups as it is in the reordered 

population. Nevertheless, the same trends can be seen in small groups of cells selected 

based on preferred direction as when all cells are reordered. This supports the ideas that: 

the reordered population averages can be thought of as subsets of cells with the same 

preferred direction, and changes in specific parts of this reordered population tuning 

curve are indicative of changes in tuning across the population. 
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Supplemental Figure 2: Mean normalized population response without reordering. Error bars 
show standard error. A&B) Show the population average for VIS, VIS+PROP, and PROP for all 
reach conditions without reordering of conditions to align tuning curves. C-F) Show the average 
response of all cells that had the highest firing rate at the indicated target. C) Mean across 17 
Area 5 cells with peak of tuning at target -30 deg, fixation -10 deg. D) Mean across 8 Area 5 cells 
with peak of tuning at target +20 deg, fixation -10 deg. E) Mean across 15 MIP cells with peak of 
tuning at target -20 deg, fixation +10 deg. F) Mean across 14 MIP cells with peak of tuning at 
target +30 deg, fixation +10 deg. 
 

Move changes in individual cells VIS+PROP modulation 

 

Individual cells in Area 5 and MIP show decreased modulation of VIS+PROP 

versus best unimodal responses (Supplemental Figure 3A&B), but similar modulation 

across the population for VIS+PROP and unimodal responses, during Move 

(Supplemental Figure 3C-F, similar to VIS and PROP in Area 5, similar to VIS in MIP). 
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This suggests that the suppression of individual neurons bimodal versus best unimodal 

responses during Move serves to equalize the overall bimodal and unimodal responses in 

these areas. 

 
Supplemental Figure 3: Histograms of individual cell differences in Move modulation for Area 5 
and MIP. A&B) Differences between VIS+PROP and each cells best unimodal response 
modulation. C&D) Differences between cells VIS+PROP and VIS modulation. E&F) Differences 
between cells VIS+PROP and PROP modulation. Filled histograms show individual cells with 
significant differences. Arrows indicate mean difference in response. P-values for mean 
difference come from paired permutation tests. 
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