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An automatic method for mapping inland surface waterbodies with
Radarsat-2 imagery

Junhua Li* and Shusen Wang

Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario,
Canada K1A 0E4

(Received 13 May 2014; accepted 14 October 2014)

The use of synthetic aperture radar (SAR) imagery is generally considered to be
an effective method for detecting surface water. Among various supervised/unsu-
pervised classification methods, a SAR-intensity-based histogram thresholding
method is widely used to distinguish waterbodies from land. A SAR texture-
based automatic thresholding method is presented in this article. The use of
texture images substantially enhances the contrast between water and land in
intensity images. It also makes the method less sensitive to incidence angles
than intensity-based methods. A modified Otsu thresholding algorithm is applied
to selected sub-images to determine the optimal threshold value. The sub-images
were selected using k-means results to ensure a sufficient number of pixels for
both water and land classes. This is critical for the Otsu algorithm being able to
detect an optimal threshold for a SAR image. The method is completely unsu-
pervised and is suitable for large SAR image scenes. Tests of this method on a
Radasat-2 image mosaicked from 8 QuadPol scenes covering the Spritiwood
valley in Manitoba, Canada, show a substantial increase in land–water classifica-
tion accuracy over the commonly used SAR intensity thresholding method (kappa
indices are 0.89 vs. 0.79). The method is less computationally intensive and
requires less user interaction. It is therefore well suited for detecting waterbodies
and monitoring their dynamic changes from a large SAR image scene in a near-
real time environment).

1. Introduction

Freshwater is crucial for much of life on Earth and is an essential part of the natural
environment. Almost 9%, or 900,000 km2, of Canada’s total landmass is covered by
freshwater in the form of lakes, rivers, streams, etc. There are over 2 million lakes in
Canada, of which 910,400 have an area greater than 0.1 km2, 84,516 have an area greater
than 1 km2, and 564 have an area greater than 100 km2 (Minns et al. 2008). Lakes and
rivers are important for water supply, fishing, and recreation. Many large lakes in Canada
support commercial and subsistence fisheries which provide vital sources of food and
income for people, especially the First Nations (Minns et al. 2008). The inland water-
bodies play an important role in the terrestrial water cycles and surface water budget
(Wang, Huang, Rivera, et al. 2014; Wang, Huang,Yang, et al. 2014; Wang, McKenney,
et al. 2014), which strongly affect the atmosphere and surface/subsurface processes such
as cloud development (Molders and Raabe 1996), surface albedo (Wang et al. 2006),
evapotranspiration (Wang et al. 2013), stream flow (Koster and Milly 1997), and
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groundwater recharge (Sophocleous 2002). Surface waters are also integral parts of
groundwater flow systems and hence are indicators of the status of the overall freshwater
resource. For example, lakes gain water from groundwater systems and also are a source
of groundwater recharge (Winter et al. 1998). Decreasing groundwater levels may result in
reduced areal extent of lakes and less stable water temperatures. The available freshwater
resources are under increasing pressure from a wide range of human activities. The
greatest threat is the changing climate which is bringing large changes to surface water
such as falling water levels, changing lake distribution, and even the complete disappear-
ance of lakes, especially in permafrost regions of Canada (Riordan, Verbyla, and
McGuire 2006; Smith et al. 2005; Yoshikawa and Hinzman 2003). To successfully
manage this valuable resource requires an understanding that can only be achieved by
improved monitoring. To effectively conserve and manage the fresh surface water
resources, it is essential to have up-to-date information of their spatial and temporal
variability. Due to the large extent of surface water in Canada, with a significant portion
in remote areas, satellite remote sensing is the only practical approach that can map
surface water cost-effectively and in a timely manner (Rundquist, Narumalani, and
Narayanan 2001).

Various optical satellite sensors such as the Advanced Very High Resolution
Radiometer (AVHRR), the Moderate-Resolution Imaging Spectroradiometer
(MODIS), Landsat’s Multispectral Scanner (MSS) and Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+), as well as the Satellite Pour l’Observation
de la Terre (SPOT) High Resolution Visible (HRV) instrument have been employed
for surface waterbody detection (Campos, Sillero, and Brito 2012; Du et al. 2012;
Giardino et al. 2010; Huang, Li, and Xu 2012; Jain et al. 2006; Ma et al. 2007; Sheng,
Gong, and Xiao 2001; Tulbure and Broich 2013). The multispectral nature of optical
sensors provides some advantages for water detection; however, their applications in
detecting surface water are constrained by several environmental factors, such as
cloudy sky conditions, cloud shadows, smoke from wildfires, and haze, etc.
Synthetic aperture radar (SAR) is able to penetrate cloud, haze, and smoke, and
hence observe the Earth’s surface in all weather conditions, day and night. SAR
sensors thus have the ability to provide data for surface waterbody detection that
can overcome the limitations of optical sensors. In fact, SAR is generally considered
an effective tool for detecting surface water (Brisco et al. 2009) and has been used for
flood detection (Giustarini et al. 2013; Kuenzer et al. 2013; Lu et al. 2014; Martinis,
Twele, and Voigt 2009), monitoring open water dynamics (Bartsch et al. 2012), and
delineating shorelines (Shu, Li, and Gomes 2010). Smooth water surfaces usually
provide a specular reflection of microwave radiation, and hence very little energy is
scattered back. In contrast, land surfaces scatter much more energy back to the radar
due to, for example, surface roughness and volume scattering. The difference in the
energy received back leads to a high contrast between water and land.

The contrast between waterbodies and their surrounding land is highly affected by
the roughness of water surfaces and SAR parameters including wavelength, incidence
angle, and polarization (Martinis 2010). The specular reflector is a simplified model
for smooth surface water. The effects of wind and current can lead to rough water
surfaces (e.g. waves), which cause a higher backscatter signal (Martinis 2010). This
may lead to a lower contrast ratio between surface water and land (Solbo et al. 2003),
which affects the ability to identify the respective signal return from waterbodies and
land. Several studies have shown that the cross-polarizations HV and VH are less
affected by water surface roughness induced by winds and currents than HH and VV
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polarization (Henry et al. 2006; Schumann et al. 2007). Over smooth water surfaces,
like-polarization (e.g. HH) offers improved land/water separability compared to cross-
polarization. An increase in surface roughness reduces the ability to discriminate
between water and land in VV more than in HH polarization (Martinis 2010). The
choice of polarization thus plays an important role in surface water detection using
SAR data. A shorter SAR wavelength has greater backscattering from smooth water
surfaces because of increased sensitivity to diffuse scattering. A longer SAR wave-
length is less sensitive to the short amplitudes of landscape features and consequently
has a reduced signal separation between land and water (Drake and Shuchman 1974).
The strongest signal separation and highest contrast between water and land occurs in
a SAR image with shorter wavelength (Martinis 2010). C-band is thus more suitable
for delineating surface waterbodies from land than L-band SAR.

Among the various supervised/unsupervised classification methods, histogram
thresholding is one of the most popular approaches used to delineate waterbodies
from land in SAR intensity imagery (Brisco et al. 2009; Brivio et al. 2002;
Martinis 2010). The threshold value approach to separating water from land in a
SAR image depends on a number of factors that can vary temporally (e.g. wind,
soil moisture), spatially (landscape roughness, vegetation zonation), and by sensor (e.
g. frequency), and also on factors that are processing specific (SAR incidence angle
and polarization choice) (Martinis 2010). The threshold value is determined by visual
inspection of image histograms, quick checking of the classification results, and
refinement of the threshold if necessary until the classification result is satisfactory
(Brisco et al. 2009). Such an interactive thresholding method is analyst dependent and
time consuming, and thus extensive research has been carried out into semi-automatic
or automatic thresholding of SAR imagery (Brisco et al. 2009; Fan and Lei 2012;
Hahmann and Wessel 2010; Kandus et al. 2001; Solbo et al. 2003). Most applications
of histogram thresholding methods have been limited to specific areas, and the
methods mostly require some manual interaction.

Generally, the grey contrast between surface water and land in a SAR image
decreases with decreasing incidence angle (Drake and Patton 1980; Malnes,
Guneriussen, and Høgda 2002; Martinis 2010). This means that higher incidence
angle SAR data are preferable for accurately extracting surface waterbodies. This
requirement reduces by a considerable amount the proportion of SAR data that is
suitable for surface water detection (Solbo et al. 2003). This suggests that a method
for surface water detection independent of the SAR incidence angle is needed.

An automatic method for detecting inland surface water using Radarsat-2 imagery is
presented in this article. The method is based on histogram thresholding of the texture
image, which is not significantly influenced by the incidence angle.

2. Study area and data sets

The study area covers the Spiritwood buried valley (red polygon in Figure 1) which
extends from southwest Manitoba, Canada, to North Dakota, USA. The dominant land-
cover class is agricultural crops, intermingled with grassland, surface waterbodies and
forests. Surface water is fairly abundant in this area, in numerous small waterbodies of the
prairie landscape.

Radarsat-2 QuadPol (fully polarimetric mode) wide fine-beam-mode images (with a
swath of 50 km and an azimuth resolution of 7.6 m) were used in the analysis. To cover

International Journal of Remote Sensing 1369



the entire study area, two neighbouring paths (4 scenes to each path) were acquired on 26
July 2013 (FQ1W with incidence angle ~20.0°) and 2 August 2013 (FQ3W with
incidence angle ~21.5°) and processed into a single-look complex product type. All
eight scenes of the images were first processed to generate calibrated multilook back-
scatter images and then auto-orthorectified using the GAMMA program. The eight
orthorectified images were mosaicked (with radiometric normalization) to one image
with a resolution of 30 m. A 5 × 5 enhanced Lee filter was applied to the mosaic
image for speckle noise reduction. The background image in Figure 1 shows the compo-
site of the HH (red), HV (green), and VV (blue) polarized images.

To evaluate the performance of the proposed method, a reference map was created for
a small portion of the Radarsat-2 mosaic image from the 5 m-resolution SPOT-5 pan-
sharpened multispectral image by visual interpretation and manual digitizing. The high-
lighted blue square in Figure 1 indicates the location and coverage of the reference map.
10% of the area covered by the reference map consists of surface water, shown in yellow,
and 90% is land.

3. Method

The proposed automated thresholding method is based on the Otsu algorithm, which is
one of the best threshold selection methods for image binarization (Fan and Lei 2012).
The Otsu algorithm selects the threshold value that maximizes the between-class
variances of the histogram. This is optimal for thresholding large objects from the
background, which means that it is ideal for thresholding a histogram with bimodal or

Figure 1. The location of study area (the red polygon shows the boundary of the Spritiwood
watershed) and ground truth reference map (highlighted in blue) with waterbodies (shown in yellow
polygons) derived from a 5 m SPOT-5 image.
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multimodal distribution (Ng 2006). Generally speaking, SAR images do not have such
characteristics. Water often occupies a small portion in a large SAR image scene and
thus a SAR image histogram may be unimodal. The Otsu algorithm may also fail to
select the optimal threshold value in a large SAR image scene. To resolve the issue of
uneven distribution of water and land classes in SAR images, a sub-image selection
process can be applied to divide the original image into smaller sub-image tiles with a
user-defined size. This provides a data set that is likely to have a higher probability of
containing a sufficient proportion of both classes. Only the selected sub-images are used
for the Otsu thresholding. To fulfil the sub-image selecting process, it is necessary to
obtain an initial classification map of water and land. The histogram thresholding
method only works on single polarization images. Thus, the selection of optimal
polarization as the method’s input is necessary if multiple polarizations are available.
Multiple criteria can be employed in this process, for example, weather on the SAR
image acquisition date can be assessed and visual analysis of the wind effects on the
images can be reviewed. An overview of the automated thresholding method for surface
water detection in a SAR image is shown in Figure 2. The main steps of this method are
summarized below:

Figure 2. The flow chart of the proposed method for surface water detection.
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Step 1: k-means cluster analysis. An initial waterbody mask, as well as a low-
backscatter image mask, is created by applying k-means clustering to the SAR
intensity image.

Step 2: Sub-image selection. This step selects sub-images containing a sufficient
proportion of land and water classes.

Step 3: Entropy texture image histogram analysis. This step generates the entropy
texture of the SAR intensity image. The histogram of the sub-images selected at
step 2 is then computed.

Step 4: Otsu algorithm for automatically determining the threshold value. A mask
image with low entropy is generated by applying a modified Otsu algorithm to the
histogram computed in step 3.

Step 5: Generation of the final waterbody image. The low-backscatter image mask
created in step 1 is used to refine the low-entropy mask image to obtain the final
waterbody image.

The purpose of the first three steps is to optimize the input SAR image for an optimal
auto-image thresholding, which is implemented with the Otsu algorithm. The specific
details of this method are explained in the following sub-sections.

3.1. k-means clustering analysis

The initial step in the analysis is the application of the k-means algorithm to a single
polarization SAR image to generate an initial waterbody mask for further analysis. The k-
means algorithm is first applied to the SAR intensity image to obtain a map with an initial k
clusters. The cluster map encodes each cluster with a unique grey-level value. The cluster
number is represented by the grey level. For example, cluster 1 is assigned a grey-level
value of 1 corresponding to dark appearance in the SAR intensity image, and cluster 2 is
assigned a grey-level value of 2, which may correspond to a mixture of water and land. The
initial waterbody mask is generated by assigning cluster 1 as water and other clusters as
land, in which the water class may include some land pixels. A major problem with the k-
means algorithm is that the number of clusters (k) should be decided a priori. A limitation
exists in finding the number of homogeneous objects (k) for large natural scenes, but this is
not the case in this study because only an initial (not accurate) waterbody map is needed at
this step. Tests of different values of k ranging from 10 to 20 on several different SAR scenes
over different areas show that all values produce similar results and capture most (>85%) of
the areal extent of the water (cluster 1), which is sufficient for the initial water mask. In this
study, k is set to 15. In addition, a low-backscatter image mask is obtained by regrouping
clusters 1–7 as low backscatter and others as high backscatter.

3.2. Sub-image selecting

To complete the sub-image selection, a SAR image is divided into M non-overlapping
sub-images with an analyst-defined size of w × w. The selection of w, which determines
M, depends on the extent of the two classes, water and land, within the SAR image
(Martinis, Twele, and Voigt 2009). Due to the fact that the Ostu algorithm is optimal for
thresholding a histogram with a bimodal distribution, only sub-images that contain a
sufficient number of pixels from both water and land classes are selected for the threshold
computation. Martinis, Twele, and Voigt (2009) introduced two statistical measures for the
contrast within an image, on which the selection of appropriate sub-images was based.
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However, for SAR images the empirical threshold values of the measures vary from image
to image. In this study, since the initial water/land classification is available, appropriate
sub-images can be easily selected without defining the threshold values for the measures
of the contrast in the SAR image. According to Bazi, Bruzzone, and Melgani (2007), for
accurate detection of threshold values, it is sufficient if each class has at least 10% of the
pixels in an image belonging to it. Very highly reflecting pixels (cluster number > 7), for
example those corresponding to urban areas, are excluded from the computation of the
proportions of the water and land classes. This process prohibits the mis-selection of sub-
images that have tri-modal histograms containing more than two classes. The criterion for
the water proportion in the sub-images to be selected is set to 10%–90%. If no sub-image
meets this criterion, the image partitioning process is repeated by decreasing w by 10 each
time until sub-images with adequate water content are successfully extracted.

3.3. Entropy texture analysis

Texture is defined as the tonal variation within a neighbourhood and thus reflects the
spatial relations between pixels in an image. The texture information derived from a SAR
image is a valuable feature for discriminating between different land-cover types, and thus
texture analysis has been widely used for image segmentation and land-cover classifica-
tion. Some studies have indicated that texture information is more useful than the intensity
image for SAR image classification and segmentation (Song, Sohn, and Park 2007). Solbo
et al. (2003) demonstrated that a texture-based surface water detection method performed
better than the SAR intensity image thresholding method. Among the commonly used
texture measures (e.g. variance, entropy, contrast, etc.), computed using grey-level co-
occurrence matrix (GLCM), the entropy texture is often used in SAR image segmentation
(Kekre and Gharge 2010; Samanta and Paul 2011; Samanta and Sanyal 2012). In this
study, the surface water auto-detection strategy is proposed by using the entropy texture
derived from the GLCM of SAR imagery The GLCM is a two-dimensional array,
indicating the frequency of a pair of pixels within a local window. Each element p(l1,l2)
represents the probability of the occurrence of the pair of grey levels (l1,l2) separated by a
given distance d at angle θ. The entropy H of a SAR intensity image is computed by:

H ¼ �
Xl1¼L�1

l1¼0

Xl2¼L�1

l2¼0

pðl1l2Þlog2 pðl1l2½ �Þ; (1)

where L is the number of grey levels of the SAR image. The entropy is a measure of non-
uniformity in the SAR image. The histogram of the sub-images selected in step 2 is then
computed.

3.4. Otsu algorithm

The Otsu algorithm is an automatic threshold selection method for the reduction of a grey-
scale image to a binary image containing two classes. It selects an optimal threshold value
separating those two classes so that the between-class variance is maximized. The Otsu
algorithm does not depend on modelling the probability density function. It assumes a
bimodal distribution of grey-level values or two classes of pixels in an image. The
advantage of this algorithm is that only the grey-level histogram is needed to derive an
image threshold without any other a priori knowledge. For a given image with L grey
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levels, the number of pixels with grey-level i is denoted by ni. If N is the total number of
pixels, the probability pi of the occurrence of grey-level i is then calculated as:

pi ¼ ni
N
: (2)

The total mean (µT) grey-level of the entire image is calculated as:

μT ¼
XL�1

i¼0

ipi: (3)

In the case of a single threshold, k, the pixels in the image are divided into two classes
C1 = [0, 1, ……, k] and C2 = [k + 1, k + 2, ……, L − 1] based on grey levels. The
probabilities of two classes are calculated as:

ω1 kð Þ ¼
Xk

i¼0

pi; (4)

ω2 kð Þ ¼
XL�1

i¼kþ1

pi: (5)

The mean values of the two classes are:

μ1 kð Þ ¼
Xk

i¼0

ipi=ω1 kð Þ; (6)

μ2 kð Þ ¼
XL�1

i¼kþ1

ipi=ω2 kð Þ: (7)

The between-class variance σB
2(k) of the two classes, C1 and C2, is defined as:

σ2B kð Þ ¼ ω1 kð Þ μ1 kð Þ � μTð Þ2 þ ω2 kð Þ μ2 kð Þ � μTð Þ2 ¼ ω1 kð Þ μ12 kð Þ þ ω2 kð Þ μ22 kð Þ:
(8)

The optimal threshold k* can be determined by maximizing the between-class var-
iance σ2B kð Þ as:

k� ¼ arg max
0<k <L

σ2B kð Þ ¼ arg max
0< k <L

ω1 kð Þ μ12 kð Þ þ ω2 kð Þ μ22 kð Þ� �
: (9)

The Otsu algorithm works well when the image histogram is close to a bimodal distribu-
tion with equal variances (Fan and Lei 2012). In this study, although the sub-image
selection process is employed to choose sub-images with bimodal distribution, the two
classes may not have equal variances, which may result in an incorrect threshold value
when applying the Otsu method. To improve the threshold selections in these cases, we
use a modified Otsu method named valley-emphasis method proposed by Ng (2006). The
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valley-emphasis method makes the threshold closer to the actual valley of the histogram.
It selects a threshold value that has small probability of occurrence (valley in the grey-
level histogram) and also maximizes the between-class variance (Ng 2006). The optimal
threshold k* is selected as:

k� ¼ arg max
0< k <L

1� pkð Þσ2B kð Þ ¼ arg max
0<k <L

1� pkð Þ ω1 kð Þμ12 kð Þ þ ω2 kð Þμ22 kð Þ� �
: (10)

The multiplication of the weight 1 − pk by the between-class variance ensures that the
selected threshold will always be a value that resides in the valley or on the bottom rim of
the grey-level distribution. The histogram computed in step 3 first has to be normalized to
a certain grey-level, L (e.g. 255). In this case, the entropy texture image will be trans-
formed to contain values lying in the range 0–L (e.g. 255). An optimal threshold k* for the
normalized entropy texture image can then be determined by applying the valley-empha-
sis Otsu method to the normalized histogram.

3.5. Generation of final surface waterbody image

A low-entropy mask image is obtained by applying the selected threshold k* to the
normalized entropy texture image. In addition to the waterbodies, the low-entropy mask
image may also contain some smooth wetland and agriculture areas, where standing water
exists. These areas have a bright tone in the SAR intensity image due to double-bounce
return of standing water and plants. Therefore, with the help of the low-backscatter mask
image created in step 1, we can generate the final waterbody map by masking out the
wetland and agriculture areas in the low-entropy mask image.

4. Results and discussion

The proposed histogram thresholding method (the ‘texture method’) only works on single
polarization images, thus the selection of optimal polarization as the input is necessary.
According to previous analysis, like-polarization (e.g. HH) images rather than cross-polariza-
tion images are selected if there is no wind or if the effects of the wind are small. If the water
surfaces do not appear as smooth surfaces, a cross-polarization image (e.g. HV) is chosen.
Figure 3 shows the effects of the wind on the QuadPol mosaics in different polarizations: (a)
HH, (b) HV, (c) VH, and (d) VV. The HV- and VH-polarized images are less affected by the
wind than the HH- and VV-polarized images. After checking the weather data for the
acquisition dates of the SAR images and visually examining the wind effects, we selected
the HV-polarized image for the Radarsat-2 QuadPol mosaic data as the input to the proposed
method. For the purposes of performance assessment, we also tested a ‘traditional’ method
(the ‘intensity method’), in which the valley-enhanced Otsu algorithm is directly applied to
the image intensity rather than the entropy texture after step 2 of the proposed method. The
results obtained from both methods were then compared against the water polygons extracted
from the 5 m-resolution SPOT-5 pan-sharpened multispectral image.

The initial waterbody mask and the low-backscatter mask were generated by applying
the k-means algorithm to the QuadPol SAR HV image. Figures 4(a)–(c) show the HV
polarization intensity image, initial waterbody mask, and the low-backscatter mask,
respectively. By assigning cluster 1 to the water class, it was found that the water bodies
defined using the initial water body mask made up about 85% of the total area of the
water bodies. In the second step, the window size for the image splitting was set to 100. A
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total of eight 100 pixel × 100 pixel sub-images were selected. The cyan squares shown in
Figure 4(a) indicate the location and coverage of these selected sub-images. Figures 4(d)
shows the entropy texture image derived from the QuadPol SAR HV intensity image. The
waterbodies are areas of low entropy, whereas most of the land areas correspond to areas
of high entropy in the entropy texture image. Figures 4(a) and (d) indicate that the contrast
between water and land in the entropy texture image is substantially higher than it is in the
intensity image. It can also be seen that, as well as the waterbodies, a few wetland (marsh)
areas (e.g. the area highlighted by the red circle) are also areas of low entropy. However,
these areas have a bright tone in the intensity image since their main scattering mechanism
is the double-bounce return from standing water and grass. Therefore, these wetland areas
can be excluded from the histogram computation of the sub-images by using the low-
backscatter mask image. Figure 5 shows the histograms of the selected sub-images: (a) for
the QuadPol HV intensity image and (b) for the QuadPol HV entropy image. The
histograms have been normalized to 256 grey levels. The intensity and entropy texture
images are then transformed so that all values are in the range 0–255. Threshold values of
50 for the HV intensity image and 105 for the entropy image were determined by the
valley-enhanced Otsu algorithm. The dashed arrows in Figure 5 indicate the positions of
these thresholds in the normalized histograms. The waterbody maps were generated by

Figure 3. Wind effects Radarsat-2 QuadPol mosaic images: (a) HH, (b) HV, (c) VH, and (d) VV.
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Figure 4. (a) The HV polarization intensity image; (b) the initial waterbodies mask in blue; (c) the
low-intensity mask in blue; and (d) the entropy image derived from the HV intensity image.

Figure 5. The histograms of the selected sub-images of (a) normalized HV intensity image and (b)
normalized HV entropy image.
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setting pixels with grey levels less than the determined threshold values as water. Some
wetlands were, however, misclassified as water due to their low-entropy values when the
texture method was used. The waterbody map was further refined by using the low-
backscatter mask – this eliminates wetlands, which have high backscatter and a bright
tone in the intensity image.

Figure 6 shows the final waterbody maps generated by (a) the texture method and (b)
the intensity method. It can be seen that the intensity method produces a greater area
covered by surface water than the texture method. Error matrices were generated to assess
the performance of the two methods using around 8000 samples selected from the
reference waterbody map that had been derived from the 5 m-resolution SPOT-5 image.

Figure 6. The surface waterbodies (in blue) detected by (a) the texture-method and (b) the
intensity-method.
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Table 1 shows the error matrices for the classification results obtained using (a) the
texture method and (b) the intensity method. From the error matrices, the kappa indices can
be calculated in order to evaluate the accuracy of the distinguishing between water and land
classifications. The kappa index measures the agreement between the actual land-cover
classes and the classified classes (Congalton 1991). A value of 0 indicates no agreement
between the two variables; a value of 1 indicates perfect agreement, with all the values
falling on the diagonals. The values of the kappa indices obtained indicate that the texture
method (kappa index = 0.89) has a higher accuracy than the intensity method (kappa
index = 0.79) for the water/land classifications. For comparison, of 423 land pixels
misclassified as water pixels by the intensity method, the texture method reduces the
land/water misclassification error to 146 pixels. This misclassification is attributable to
the miscalculation of the threshold value in the intensity method. From the histogram in
Figure 5(a), it can be seen that the land class in the intensity image presents a flat histogram
with a long tail on the right-hand side, which may result in a larger threshold value when the
modified Otsu algorithm is used. Out of a total of 2686 water reference pixels, the texture
method produces 409 (15.2%) error pixels (water misclassified as land and vice versa), in
comparison with the 752 error pixels (28.0%) produced by the intensity method.

The texture method produces a lower classification error for the water pixels than the
intensity method. However, about 10% of the error for water pixels that are misclassified
as land pixels is still measured. It might be explained by the different acquisition dates of
the SPOT-5 and Radarsat-2 data and temporal changes in water level. Another error
source may come from the water and land edge pixels. As a result of the 3 × 3 window
operation that is part of the computation of the entropy texture, the edge pixels of a
waterbody may have higher entropy than the pixels inside, which may result in the water
being misclassified as land. Therefore, the classification accuracy could possibly be
improved by expanding one pixel of the detected waterbodies, but this would need to
be verified by applying a morphological operator in future studies. Table 1 indicates that
about 3% of the land pixels are misclassified as water. A probable reason for this is the
confusion of water and roads. Roads present the same backscattering mechanism as water,
and consequently roads also appear as a dark colour in a SAR image. This error could be
further reduced by making use of the existing road network data.

One advantage of the proposed texture method is the usage of the sub-image
selection process and the entropy texture. These are critical for the valley-enhanced
Otsu algorithm to be able to detect an optimal threshold. Because of the small portion
of water in a large SAR image scene, and the unimodal or close to unimodal histogram,
the Otsu algorithm may not detect an optimal threshold value for a large SAR image

Table 1. Error matrices of classification results obtained using (a) the texture method and (b) the
intensity method.

(a) Texture method (b) Intensity method

Reference data Reference data

Classified data Land Water Total Classified data Land Water Total

Land 5314 263 5577 Land 5037 329 5366
Water 146 2423 2569 Water 423 2357 2780
Total 5460 2686 8146 Total 5460 2686 8146
Kappa index: 0.89 Kappa index: 0.79

International Journal of Remote Sensing 1379



scene. A sub-image selection process is applied to divide the original image into a tiling
of smaller sub-images with a user-defined size and then to select sub-images that have a
high probability of containing a sufficient proportion of water and land classes. To fulfil
the task, an ancillary GIS data set containing the water–land boundary and statistical
measures (Martinis, Twele, and Voigt 2009) is often used in the selection of the proper
sub-images. However, the water/land boundary GIS data are not always available and
the optimal thresholds for statistical measures must be predetermined by analysts. The
k-means algorithm can be easily implemented to automatically generate an initial
waterbody mask with sufficient accuracy. The initial waterbody mask ensures that the
proper sub-images containing only water and land are selected. For simplicity, the k-
means algorithm is applied directly to the original intensity image in this study. When
required, the initial waterbody map could be enhanced by a histogram clipping of the
intensity image (Amitrano et al. 2014) because the clipping could relax the dynamics of
the lowest value scatters and push the highest values towards the right-hand part of the
distribution. It is noted that the Otsu algorithm still fails to detect an optimal threshold
value for the SAR intensity image since the land class there is a lot of variability in the
grey levels for this class (Figure 5(a)). There is no such problem with the entropy
texture, which substantially enhances the contrast between water and land (Figures 4(d)
and 5(b)). Therefore, the use of the entropy texture image instead of the intensity image
as an input to the Otsu algorithm can improve the results. In addition, higher incidence
angle SAR data are preferred for accurately extracting surface waterbodies since the
tonal contrast between surface water and land in a SAR image decreases with decreas-
ing incidence angle. Since texture is characterized by the spatial distribution of grey
levels in a neighbourhood (Kekre and Gharge 2010) and refers to the local variation in
land-cover types, the texture is less sensitive to the incidence angle. Champion et al.
(2008) performed a variance analysis to test the influence of the SAR incidence angle
on texture values and showed that the SAR image incidence angle does not signifi-
cantly influence the texture features (Champion et al. 2014), and that only signal
intensity and signal-to-noise vary significantly with incidence angle. Thus, the texture
method is less sensitive to the incidence angle and overcomes the limitations of
intensity thresholding which requires the use of SAR imagery with a high incidence
angle. It also overcomes the water detecting limitations of ScanSAR, which achieves a
large swath coverage but has large variations in the incidence angles from the near
range (~20°) to the far range (~60°). Therefore, the texture method increases the
amount of SAR data suitable for surface waterbody detection. It may also provide an
automatic method for flood detection and shoreline delineation using SAR data, since
all these water-related applications are facilitated by the grey contrast between water
and land in SAR imagery (Giustarini et al. 2013; Kuenzer et al. 2013; Lu et al. 2014;
Martinis, Twele, and Voigt 2009; Shu, Li, and Gomes 2010).

This study presents a fully unsupervised method that generated a satisfactory result. It
should be noted that the human interpreters’ high-level cognitive function and landscape
recognition training should not be overlooked (Amitrano et al. 2014; Datcu and
Seidel 2005; Madhok and Landgrebe 2002). The human–machine interaction could help
identify and correct misclassifications made with an automatic method. A system imple-
menting this automatic method may provide an interface for a user to adjust (if necessary)
the threshold based on the output histogram. Such a system would optimize the strength
of machine algorithms in solving very complicated mathematical tasks with the humans’
capacity for discriminating and interpreting images to facilitate recursive operations with a
desired accuracy.
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5. Conclusions

This study presents an automatic texture thresholding method for waterbody detection
using large SAR image scenes. It combines the k-means clustering algorithm, sub-image
selection process, and a modified Otsu thresholding algorithm. Using k-means clustering,
sub-images that contain sufficient proportions of water and land classes are selected. It is
critical for the Otsu algorithm to detect an optimal threshold for a SAR image. In contrast
to the intensity image, the entropy texture image can enhance the contrast between water
and land and reduce the variability in the grey level for the land class. It also makes the
method less sensitive to incidence angles and thus increases the amount of SAR data that
is useful (e.g. low incidence angle SAR images and ScanSAR images) for detecting
surface waterbodies. An improved result is obtained when the Otsu algorithm is applied to
the entropy texture image. The proposed approach was tested on a Radasat-2 QuadPol
mosaic scene covering the Spritiwood valley in Manitoba, Canada. The results showed
higher classification accuracy and lower classification error than the commonly used
intensity method for overall land/water classification. The results presented in the article
indicate that the waterbodies in a large SAR image can be delineated from land auto-
matically by the proposed texture method. The method can be applied to a single
geocoded SAR image, with no additional data (other than DEM data used for geo-
orthorectification) required. In addition, all algorithms used in the texture method provide
fast execution and require minimal computational effort. These advantages mean that it
can be easily implemented and used for extracting the waterbodies from a SAR image in
near-real time.
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