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Abstract

Background: Blood pressure variability is increasingly linked with cerebrovascular disease 

and Alzheimer’s disease, independent of mean blood pressure levels. Elevated blood pressure 

variability is also associated with attenuated cerebrovascular reactivity, which may have 

implications for functional hyperemia underpinning brain network connectivity. It remains unclear 

whether blood pressure variability is related to functional network connectivity. We examined 

relationships between beat-to-beat blood pressure variability and functional connectivity in brain 

networks vulnerable to aging and Alzheimer’s disease.

Methods: 53 community-dwelling older adults (mean [SD] age = 69.9 [7.5] years, 62.3% 

female) without history of dementia or clinical stroke underwent continuous blood pressure 

monitoring and resting state fMRI scan. Blood pressure variability was calculated as variability 

independent of mean. Functional connectivity was determined by resting state fMRI for several 

brain networks: default, salience, dorsal attention, fronto-parietal, and language. Multiple linear 

regression examined relationships between short-term blood pressure variability and functional 

network connectivity.

Results: Elevated short-term blood pressure variability was associated with lower functional 

connectivity in the default network (systolic: standardized ß = −0.30 [95% CI −0.59, −0.01], p = 

.04). There were no significant associations between blood pressure variability and connectivity 

in other functional networks or between mean blood pressure and functional connectivity in any 

network.

Discussion: Older adults with elevated short-term blood pressure variability exhibit lower 

resting state functional connectivity in the default network. Findings support the role of blood 

pressure variability in neurovascular dysfunction and Alzheimer’s disease. Blood pressure 

variability may represent an understudied early vascular risk factor for neurovascular dysfunction 

relevant to Alzheimer’s disease, with potential therapeutic implications.

Keywords

Blood pressure variability; Functional connectivity; Default network

1. Introduction

Fluctuations in blood pressure (BP) are increasingly recognized to carry important 

information about health beyond traditionally studied mean BP levels (Höcht, 2013; Kollias 

et al., 2017; Parati et al., 2013, 2018). A growing literature suggests elevated blood pressure 

variability (BPV) - whether measured over seconds, minutes, hours, days, weeks, months, 

or even years – independent of mean BP, is associated with cognitive (e.g., cognitive 

impairment and decline, risk for dementia) (de Heus et al., 2019, 2021; Gutteridge et al., 

2023; Lattanzi et al., 2014a, 2014b, 2018, 2019; Nagai et al., 2014, 2015, 2017; Rouch et al., 

Sible et al. Page 2

Neuroimage Rep. Author manuscript; available in PMC 2024 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2020; Yoo et al., 2020), cardiovascular (e.g., stroke) (Höcht, 2013; Parati et al., 2013, 2018), 

and cerebrovascular (e.g., white matter hyperintensities, arteriolosclerosis) (Ma et al., 2021; 

Sible et al., 2021a; Tully et al., 2020) outcomes. One recent arterial spin labelling MRI 

study also found that older adults with higher BPV exhibited attenuated cerebrovascular 

reactivity in response to both hypercapnia and hypocapnia challenge (Sible et al., 2022a). 

Specifically, elevated BPV was associated with a diminished ability of the brain’s blood 

vessels to dilate and constrict in response to stimuli, which may have implications for 

functional hyperemia underpinning brain network connectivity. Deficits in neurovascular 

coupling may be particularly important when affecting brain regions and networks critical 

for cognition and vulnerable to aging and Alzheimer’s disease (AD), such as the medial 

temporal lobe (Iadecola, 2004; Jagust, 2018; Nation et al., 2019; Zlokovic, 2011) and 

default network (Greicius et al., 2003, 2004). Interestingly, several recent studies have 

linked higher BPV to neuroimaging markers of AD in key brain regions, including the 

medial temporal lobes, using structural MRI (e.g., gray matter atrophy) (Gutteridge et al., 

2022; Ma et al., 2020b; Sible and Nation, 2021), arterial spin labelling MRI (e.g., cerebral 

perfusion decline and cerebral hypoperfusion) (Sible et al., 2021b, 2022b), and tau positron 

emission tomography (e.g., tau accumulation) (Sible and Nation, 2022a). However, few 

studies have used functional MRI to examine relationships between BPV and functional 

brain network connectivity. Although some evidence suggests more well-studied BP indices 

such as higher mean BP and hypertension status are associated with lower functional brain 

network connectivity (Carnevale et al., 2020; Feng et al., 2020; Gu et al., 2019; Shah et 

al., 2021), understanding the role of BPV in functional network connectivity may further 

bolster BPV as an emerging BP risk indicator associated with brain health outcomes 

beyond traditionally studied mean BP levels. To explore this possibility, we examined 

the relationship between short-term BPV and functional brain network connectivity in a 

sample of community-dwelling older adults. We hypothesized that higher BPV awould be 

associated with deficits in functional brain network connectivity.

2. Methods

2.1. Participants

Study participants were recruited from ongoing studies of aging at the University of 

California Irvine (UCI) and from the local Orange County communities via flyers, word-of-

mouth, and community outreach events. The present study investigated functional brain 

network connectivity and BPV data collected as part of the larger parent projects on 

aging as previously described (Kapoor et al., 2021, 2022; Sible et al., 2022a, 2022b, 

2022c; Yew et al., 2022). Inclusion criteria for the parent studies and the present study 

required participants to be age 55–90 years and living independently in the community. 

Exclusionary criteria for the parent studies and the present study included: history of 

dementia, stroke, traumatic brain injury, learning disability, or other major systemic, 

psychiatric, or neurological disorder known to affect the central nervous system. Participants 

underwent baseline neuropsychological testing including the Mattis Dementia Rating Scale 

– 2 (DRS-2) (Griffiths et al., 2011) and age-adjusted total scaled scores were calculated as a 

measure of global cognitive function to screen for dementia. Participants with DRS-2 scores 

≤126 (established cut-off score to rule out major neurocognitive impairment (Griffiths et al., 
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2011)) were excluded from the study. The study was approved by the Institutional Review 

Board at UCI and all participants provided their written informed consent.

2.2. Measures

2.2.1. Functional MRI assessment—Participants underwent 3 T brain MRI 

(Siemens® MAGNETOM Prisma). T1-weighted magnetization prepared rapid gradient-echo 

(MP-RAGE) sequence for high resolution anatomical images was collected (TR = 2300 ms; 

TE = 2.98 ms; TI = 900 ms; slice thickness = 1.20 mm; flip angle = 9°; field of view 

= 256 mm). Participants also underwent resting state fMRI (rsfMRI) using the following 

scan parameters, as previously described (Jang et al., 2021): TR = 3000 ms; TE = 30 ms; 

flip angle = 80°; voxel size = 3.3 × 3.3 × 3.3 mm; matrix = 64 × 64; field of view = 

212 mm; number of slices = 48; slice order = interleaved; number of time points (scans) 

= 140 contiguous echo-planar imaging (EPI); scan duration = 7 min 11 s. Participants 

were asked to lie still with their eyes open. Images were preprocessed according to the 

CONN Toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012) default processing pipeline, 

which includes the following steps: 1) realignment to the first scan and unwarp 2) center 

to (0,0,0) coordinates 3) slice-timing correction 4) outlier detection 5) direct segmentation 

and normalization to 2 mm isotropic MNI template 6) center to (0,0,0) coordinates 7) 

segmentation and normalization to MNI template 8) smoothing (spatial convolution with 

6 mm full-width half-maximum Gaussian kernel). Further removal of confounding signals 

was completed through nuisance regression. Regressors include: 12 motion parameters 

(6 [3 rotation and 3 translation] obtained from step 1 in preprocessing [realignment] 

and their first-order derivatives); 10 white matter and 5 cerebral spinal fluid principal 

components (derived from white matter and cerebral spinal fluid masks using an anatomical 

component-based noise correction strategy [aComCor]); outlier volumes (identified in step 

4 of preprocessing). Also, the following steps were included: temporal band-pass filtering 

(0.008 – 0.09 Hz); linear detrending. rsfMRI scans were excluded if the number of valid 

scans was less than 50% of the total number of scans (e.g., <70/140 scans). This resulted in 

the exclusion of 6 rsfMRI scans.

CONN provides region-of-interests (ROIs) (“network ROIs”) based on their findings 

from analyzing the connectivity maps of 497 participants in the Human Connectome 

Project (HCP), using independent component analysis. ROI-to-ROI connectivity metric 

within each network represents average connectivity (Fisher’s z-transformed correlation 

coefficients) between all pairs of ROIs specified within the network. We determined 

functional connectivity for several brain networks relevant to aging and AD (Greicius et al., 

2003; Köbe et al., 2020), including default (medial prefrontal cortex, lateral parietal cortex, 

precuneus), salience (anterior cingulate cortex, anterior insula cortex, rostral prefrontal 

cortex, supramarginal gyrus), dorsal attention (frontal eye field, intraparietal sulcus), fronto-

parietal (lateral prefrontal cortex, posterior parietal cortex), and language (inferior frontal 

gyrus, posterior superior temporal gyrus).

2.2.2. BP assessment—BP was collected continuously from participants’ right arm 

using a Biopac® MRI-compatible BP monitoring device during a 5-min period of rest in the 

scanner, approximately 35 min before the rsfMRI scan, as previously described (Sible et al., 
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2022a, 2022b, 2022c). Briefly, data were processed offline using a custom pipeline scripted 

in AcqKnowledge®, which includes removal of outliers ± 3 SD from the mean (Sible et al., 

2022a, 2022b, 2022c; Sturm et al., 2018). We calculated intraindividual BPV as variation 

independent of mean (VIM), a newer index of BPV that is uncorrelated with mean BP levels 

and has been used in several recent biomarker studies (de Heus et al., 2019; Rothwell et al., 

2010b; Rouch et al., 2020; Sible et al., 2021b, 2022b; Sible and Nation, 2020). A bivariate 

correlation between VIM and mean BP confirmed that VIM was not significantly correlated 

with mean BP levels (systolic: r = .05, p = .72; diastolic: r = 0.08, p = .56). VIM was 

calculated as: VIM = standard deviation (SD)/meanx, where the power x was derived from 

non-linear curve fitting of BP SD against average BP using the nls package in R Project, as 

previously described (Rothwell et al., 2010b; Sible et al., 2021a, 2021b, 2022b; Sible and 

Nation, 2020). We also calculated the SD and coefficient of variation (CV [100 x SD/mean]) 

of BPV, as well as the mean BP across the scan.

2.2.3. Other measurements—Blood samples from venipuncture were used to 

determine AD genetic risk gene apolipoprotein (APOE) e4 carrier status (≥1 APOE e4 

allele), as previously described (Kapoor et al., 2021; Sible et al., 2022c). Participants also 

underwent T2-FLAIR MRI sequence (TR = 10,000 ms; TE = 91 ms; T1 = 2500 ms; slice 

thickness = 5.0 mm; flip angle = 150°; field of view = 220 mm) to determine white matter 

lesion burden, as described elsewhere (Sible et al., 2022a, 2022b). One rater blinded to 

other study measures determined the severity of white matter lesions using the established 

Fazekas scoring scale (Fazekas et al., 1987) (0–3). Participants were categorized as taking 

antihypertensive medication (all classes) vs not taking antihypertensive medication. The 

following cardiovascular risk factors and health behaviors were determined from clinical 

interview: history of smoking, history of diabetes, history of hyperlipidemia, current alcohol 

use.

3. Statistical analysis

Multiple linear regression models examined the relationship between BPV (independent 

predictor) and functional connectivity in each of the networks separately (dependent 

outcomes).

To streamline results, systolic BPV findings are reported in the main text while diastolic 

BPV findings are reported in the Supplementary Materials. We also investigated associations 

between mean BP and functional connectivity to compare with potential findings with BPV. 

Sensitivity analyses controlled for 1) antihypertensive medication use, 2) race/ethnicity, 3) 

Fazekas score, 4) APOE e4 carrier status, 5) history of smoking, 6) history of diabetes, 

7) history of hyperlipidemia, 8) current alcohol use (see Supplementary Tables 2–3). BPV 

models controlled for age, sex, and mean BP while mean BP models controlled for age 

and sex. Multiple comparison corrections using the False Discovery Rate (FDR) method 

(Benjamini and Hochberg, 1995) was set at p < .05. All analyses were 2-sided with 

significance set at p < .05 and were carried out in R (R Core Team, 2020).
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4. Results

90 participants were enrolled in the ongoing studies of aging at the time of analysis. Of 

those, 10 participants did not have rsfMRI data available and 23 participants did not have 

BPV data available. Of those that did, 53 participants had both valid rsfMRI and valid BPV 

data available. Therefore, a total of 53 participants were included in the present investigation 

(Supplementary Fig. 1). The present study investigated BPV and rsfMRI data that were 

collected as part of ongoing studies of aging with myriad outcomes. Therefore, the sample 

size of the present analysis was calculated a posteriori of overall study data collection. Based 

on a post hoc power analysis to detect moderate-to-large effect sizes using G*Power (α = 

0.05, 3 covariates, total sample size), achieved power was 91.6%.

Included participants were mean (SD) 69.9 (7.5) years old, 62.3% female, 75.5% non-

Hispanic White, and had mean (SD) 17.0 (2.1) years of education. Demographic information 

is reported in Table 1. Mean (SD) systolic BP was 130.1 (15.9 SD) mmHg and mean (SD) 

systolic BPV was 3.7 (2.2 SD) mmHg for BPV SD, 2.8 (1.6 SD) mmHg for BPV CV, and 

2.5 (1.2 SD) mmHg for BPV VIM.

4.1. BPV

As summarized in Table 2 and shown in Fig. 1, elevated systolic BPV was associated 

with lower functional connectivity in the default network (VIM: ß = −0.30 [95% CI 

−0.59, −0.01], p = 0.04). There were no significant associations between systolic BPV 

and functional connectivity in the salience, dorsal attention, fronto-parietal, or language 

networks (p’s = 0.10 – 0.43). Consistent findings were observed with diastolic BPV 

(Supplementary Table 1). BPV findings did not survive after FDR-correction (p’s = 0.20 

– 0.46).

4.2. Mean BP

As reported in Table 3, mean systolic BP or diastolic BP was not significantly related to 

functional connectivity in any brain network (p’s = .61 – 0.99).

4.3. Sensitivity analyses

Associations remained significant in sensitivity analyses controlling for race/ethnicity, 

Fazekas score, APOE e4 carrier status, history of smoking, history of diabetes, history of 

hyperlipidemia, and current alcohol use (see Supplementary Tables 2–3). However, findings 

were no longer significant when controlling for antihypertensive medication use (systolic p’s 

= 0.06 – 0.07; diastolic p’s = 0.06 – 0.07).

5. Discussion

Findings suggest older adults with elevated short-term BPV exhibit lower functional brain 

connectivity, specifically in the default network that is highly vulnerable to AD (Greicius 

et al., 2003, 2004). Prior work has used structural MRI (Gutteridge et al., 2022; Ma et al., 

2020b; Sible and Nation, 2021), arterial spin labelling MRI (Sible et al., 2021b, 2022b), 

and positron emission tomography (Sible and Nation, 2022a) to characterize associations 
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between BPV and neuroimaging markers of AD. The present investigation adds to this work 

by using rsfMRI to explore relationships with functional connectivity in brain networks 

relevant to aging and AD. Together these studies support the possibility that elevated BPV 

may be related to early neuroimaging markers of vascular and neuronal dysfunction in AD.

In addition to growing evidence that BPV may be related to AD brain changes (Ma et 

al., 2020b, 2021; Sible et al., 2021b, 2022b; Sible and Nation, 2021, 2022a), several 

studies report strong links between BPV and cerebrovascular disease (Ma et al., 2020a, 

2021; Sible et al., 2021a; Tully et al., 2020). BPV can be understood in the context of 

BP homeostasis (Parati et al., 2020), or the flexible responses of cardiovascular control 

mechanisms to changes in physiological demands and environmental conditions to ensure 

stable organ perfusion (Meng et al., 2019). It has been hypothesized that chronic BP 

surging may have a “tsunami effect” (Saji et al., 2016) on cerebral arterial walls and 

promote microvascular damage – beyond the effects of mean BP levels (Tully et al., 2020). 

Alterations in microvascular integrity, such as a leaky blood brain barrier, could have effects 

on neurovascular unit functioning and neural milieu (Iadecola, 2004; Zlokovic, 2011). 

Consistently, higher BPV was recently associated with attenuated cerebrovascular reactivity 

(Lattanzi et al., 2023; Sible et al., 2022a), an index of neurovascular functioning in response 

to vasoactive stimuli relevant to prodromal cerebrovascular disease (Liu et al., 2019). It is 

therefore interesting that in the current investigation, elevated BPV was related to lower 

functional connectivity – even at rest - which represents the strength of connection between 

hubs of active neurons at baseline. Since active neurons require a supply of increased local 

blood flow, our findings raise the possibility that higher BPV may also be associated with 

impaired neurovascular response to local basal neuronal activity. Large fluctuations in BP, 

therefore, could disrupt cerebrovascular functioning at a global level (e.g., cerebrovascular 

reactivity) and at a local network level (e.g., functional connectivity). Importantly, we 

examined functional network connectivity at rest, but it is possible that the observed 

associations could be amplified when examining connectivity during cognitively demanding 

tasks that require a dynamic and coordinated neurovascular response. Additionally, deficits 

in the neurovascular response – both for basal activity and in response to stimuli – may be 

exacerbated by arterial stiffness (Gutteridge et al., 2023). Due to the cross-sectional study 

design, we were not able to infer the directionality of these relationships.

Interestingly, associations were observed only in the default network, a system known 

to decline in the context of advancing AD (Greicius et al., 2004; Mevel et al., 2011). 

This finding is consistent with prior work suggesting particular links between BPV and 

brain changes in AD-prone regions, such as the medial temporal lobe (Gutteridge et al., 

2022; Ma et al., 2020b; Sible et al., 2021b, 2022b; Sible and Nation, 2021, 2022a). 

It could be that repeated BP dipping/surging may alter pulse wave dynamics, including 

pushing the pulse wave deeper into the brain parenchyma, the effects of which may be 

greater in already vulnerable regions/networks (Nagai et al., 2017). Prior work suggests 

that vascular burden may impair functional connectivity, especially in networks susceptible 

to AD (Köbe et al., 2020). Specifically, individuals with more well-studied vascular 

risk factors (e.g., hypertension, dyslipidemia, obesity) have been shown to exhibit lower 

default network functional connectivity (Köbe et al., 2020). Together with our current 

findings with BPV, these studies highlight the vulnerability of default network structures’ 
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cerebrovascular integrity. However, in our study, mean BP was not significantly associated 

with functional connectivity in any network, underscoring the unique role BPV may play 

in functional cerebrovascular health. The dissociation of findings with BPV vs mean BP in 

the current study and several others (de Heus et al., 2021; Tully et al., 2020) support the 

growing hypothesis that controlling the variability in BP levels may require antihypertensive 

treatment approaches that are distinct from current strategies aimed at managing mean 

BP levels. Some evidence suggests that certain classes of antihypertensive agents are 

able to lower both the mean and variability in BP levels better than others (Rothwell et 

al., 2010a; Webb et al., 2010), with potential implications for cerebrovascular health and 

cognitive function (Mahinrad et al., 2023). Importantly, recent studies suggest that even in 

adults with strictly controlled mean BP levels, higher BPV is associated with cognitive 

decline (Sible and Nation, 2022b) and increased risk for mild cognitive impairment 

and dementia (de Havenon et al., 2021; Guo et al., 2023). The current investigation 

was not adequately powered to examine antihypertensive treatment effects on functional 

connectivity, but future work in this area is needed and has the potential to update BP control 

guidelines for older adults. Nevertheless, both BPV elevation and attenuated default network 

functional connectivity have independently been shown to emerge before the onset of major 

neurocognitive symptoms of AD (Chhatwal et al., 2013; Sible and Nation, 2020). These 

findings suggest early changes in vascular and neuronal functioning associated with high 

BPV may have synergetic contributions to cognitive decline that could be intervened on 

with existing antihypertensive medications. Our study was cross-sectional and observational, 

but future longitudinal and/or interventional studies are needed to further appreciate the 

directionality of growing links between BPV and brain health outcomes, and potentially 

inform treatment decisions. Even small changes in BP control (Barnes and Yaffe, 2011; 

Yaffe, 2019), including taking any BP medication (Ding et al., 2020), has the potential to 

reduce dementia risk.

The present investigation provides new information on the relationship between short-term 

BPV and functional brain network connectivity. By utilizing rsfMRI, we were able to 

examine how BPV may be related to local cerebrovascular response in canonical brain 

networks. In addition to recent work linking higher BPV to attenuated cerebrovascular 

reactivity (Sible et al., 2022a), the current findings support the hypothesis that elevated 

short-term BPV may also be related to functional hyperemia underpinning brain 

connectivity in networks with known vulnerability to AD. Consistent with prior BPV 

work using other neuroimaging modalities (Ma et al., 2020b; Sible et al., 2021b, 2022a, 

2022b; Sible and Nation, 2021, 2022a), study findings provide additional evidence that 

potentially modifiable BPV may be a newer aspect of BP control linked with vascular 

and neuronal brain changes relevant to aging and AD. The present study has several 

limitations. First, the sample size is relatively small and replication of the findings in larger 

cohorts is warranted. Relatedly, the limited sample size precluded our ability to examine 

potential interaction effects with antihypertensive treatment, APOE e4 carrier status, 

and other medical/demographic variables. Additionally, study participants were without 

major neurocognitive impairment and understanding the relationship between BPV and 

functional connectivity in samples with varied cognitive abilities is needed. The majority 

of participants had relatively minimal cerebrovascular risk (e.g., 75.5% had Fazekas scores 
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≤1), which may limit generalizability of findings to samples with greater cerebrovascular 

burden. The study sample was comprised of largely non-Hispanic White individuals and 

studying cohorts with greater racial and ethnic diversity is essential for advancing our 

broader understanding of health disparities in vascular (CDC, 2021) and brain aging (Manly 

et al., 2022). Due to other sensor placements and MRI scan protocols, BP was collected 

from participants’ right arm only. Some studies suggest measuring BP from both arms for 

improved accuracy of cardiovascular risk (Clark et al., 2012). Consistent with other recent 

studies on BPV and brain health (Sible et al., 2022a, 2022b, 2022c), we assessed BPV on 

a beat-to-beat scale using a device that has been validated with ultra-sensitive intra-arterial 

BP monitoring (Biopac, 2019; Gratz et al., 2017; Kwon et al., 2022). However, the BPV 

field is emerging and gold standards in methodology are not yet fully established (Parati 

et al., 2013, 2018). Nevertheless, several lines of evidence converge to suggest that higher 

BPV, whether measured over seconds to years, is robustly associated with poor brain health 

outcomes (de Heus et al., 2021; Ma et al., 2020a; Nagai et al., 2017; Tully et al., 2020).

6. Conclusions

Elevated short-term BPV, independent of mean BP, in older adults without major 

neurocognitive impairment is associated with lower functional connectivity specifically in 

the default network. Prior work links higher BPV with vascular and neuronal brain changes 

in AD and the current findings provide new evidence that higher short-term BPV may also 

be related to functional hyperemia relevant to aging and AD. BPV may be an understudied 

– and potentially modifiable – vascular risk factor associated with neurovascular dysfunction 

and AD.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Elevated systolic BPV is associated with lower functional connectivity in default network
Scatterplots display the relationship between default network functional connectivity 

and systolic BPV A) SD B) CV and C) VIM. 95% confidence intervals are shaded. 

Abbreviations: BPV = blood pressure variability; SD = standard deviation; CV = coefficient 

of variation; VIM = variation independent of mean.
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Table 1

Demographic information.

Total sample (N = 53)

Age (years) 69.9 (7.5)

Sex (M/F) 20/33

Race (n, %)

 Asian 11 (20.8%)

 Black 1 (1.9%)

 White 40 (75.5%)

 Other 1 (1.9%)

Ethnicity (n, %)

 Hispanic 2 (3.8%)

 Non-Hispanic 51 (96.2%)

APOE e4 (n, % carrier) 30 (56.6%)

 0 e4 alleles 23 (43.4%)

 1 e4 allele 28 (52.8%)

 2 e4 alleles 2 (3.8%)

Fazekas score (n, %)

 0 4 (7.6%)

 1 36 (67.9%)

 2 10 (18.9%)

 3 3 (5.7%)

Education (years) 17.0 (2.1)

DRS-2 total (scaled score)a 12.2 (1.7)

Antihypertensive medication use (n, %) 21 (39.6%)

History of smoking (n, %) 19 (35.9%)

History of diabetes (n, %) 5 (9.4%)

History of hyperlipidemia (n, %) 23 (43.4%)

Current alcohol use (n, %) 32 (60.4%)

Systolic BP

 Mean 130.1 (15.9)

 SD 3.7 (2.2)

 CV 2.8 (1.6)

 VIM 2.5 (1.2)

Diastolic BP

 Mean 78.1 (10.6)

 SD 1.9 (1.1)

 CV 2.4 (1.3)

 VIM 1.8 (.9)

Functional connectivityb

 Default .45 (.2)

 Salience .37 (.1)
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Total sample (N = 53)

 Dorsal attention .41 (.2)

 Fronto-parietal .57 (.1)

 Language .45 (.2)

Abbreviations: BP = blood pressure; BPV = blood pressure variability; M = male; F = female; SD = standard deviation; CV = coefficient of 
variation; VIM = variation independent of mean; DRS-2 = Dementia Rating Scale – second edition; APOE = apolipoprotein.

Mean (SD) reported unless otherwise indicated.

a
DRS-2 total scaled scores are age-adjusted.

b
ROI-to-ROI connectivity metric within each network represents average connectivity (Fisher’s z-transformed correlation coefficients) between all 

pairs of ROIs specified within the network.
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Table 2

Model estimates of systolic BPV predicting functional connectivity.

Systolic BPV

SD P-value CV P-value VIM P-value

Network

 Default −.31 [−.60, −.01] .04 −.31 [−.59, −.02] .04 −.30 [−.59, −.01] .04

 Salience .26 [−.05, .57] .10 .24 [−.06, .54] .12 .24 [−.06, .54] .12

 Dorsal attention −.13 [−.45, .19] .43 −.12 [−.43, .20] .46 −.13 [−.44, .18] .41

 Fronto-parietal .18 [−.13, .48] .25 .17 [−.13, .46] .27 .16 [−.13, .46] .27

 Language .24 [−.07, .54] .12 .24 [−.05,.54] .10 .24 [−.06, .54] .11

Standardized beta (ß) and 95% confidence intervals shown unless otherwise indicated.

Bolded items indicate systolic BPV is significantly associated with functional connectivity in that network.

Models covaried for age, sex, and mean systolic BP.

Abbreviations: SD = standard deviation; CV = coefficient of variation; VIM = variation independent of mean; BPV = blood pressure variability.
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Table 3

Model estimates of mean BP predicting functional connectivity.

Network Systolic BP   Diastolic BP  

P-value P-value

Default .06 [−.28, .39] .73 .04 [−.30, .37] .83

Salience −.003 [−.34, .34] .99 .09 [−.26, .43] .61

Dorsal attention .01 [−.34, .35] .96 .05 [−.30, .40] .78

Fronto-parietal .06 [−.27, .40] .70 −.04 [−.37, .30] .82

Language .05 [−.29, .39] .77 .03 [−.31, .37] .85

Standardized beta (ß) and 95% confidence intervals shown unless otherwise indicated.

Bolded items indicate mean BP is significantly associated with functional connectivity in that network.

Models covaried for age and sex.

Abbreviations: BP = blood pressure.
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