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Smooth actions of Lie groups and
Lie algebras on manifolds

Morris W. Hirsch

To Professor Richard Palais with warmest regards
on the occasion of his eightieth birthday

Abstract. Necessary or sufficient conditions are presented for the ex-
istence of various types of actions of Lie groups and Lie algebras on
manifolds.

Mathematics Subject Classification (2010). Primary 57S20; Secondary
57S25, 22E25.
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1. Introduction

Lie algebras were introduced by Sophus Lie under the name “infinitesimal
group,” meaning a finite-dimensional transitive Lie algebra of analytic vector
fields on an open set in R

n. In his 1880 paper Theorie der Transformation-
sgruppen [36, 22] and the later book with F. Engel [37], Lie classified infin-
itesimal groups acting in dimensions one and two up to analytic coordinate
changes. This work stimulated much research, but attention soon shifted to
the structure, classification and representation of abstract Lie algebras and
Lie groups.

There are relatively few papers on nonlinear actions by noncompact
Lie groups (other than R and C). A selection is included in the References
section.

We avoid the important but difficult classification problems, looking in-
stead for connections between algebraic invariants of Lie algebras, topological
invariants of manifolds and dynamical properties of actions. The motivating
questions are whether a given Lie group or Lie algebra acts effectively on a
given manifold, how smooth such actions can be and what can be said about
orbits and kernels.

J. Fixed Point Theory Appl. 10 (2011) 219–232
DOI 10.1007/s11784-011-0069-5
Published online November 12, 2011
© Springer Basel AG 2011

Journal of Fixed Point Theory
and Applications

Author's personal copy



220 Morris W. Hirsch JFPTA

1.1. Background

In 1950 Mostow [44] completed Lie’s program of classifying effective transitive
surface actions. One of his major results is the following.

Theorem 1.1 (Mostow). A surface M without boundary admits a transitive
Lie group action iff 1 M is a plane, sphere, cylinder, torus, projective plane,
Möbius strip or Klein bottle.2

By a curious coincidence these are the only surfaces without boundary
admitting effective actions of SO(2), according to a well-known folk theorem.3

We mention a far-reaching extension of Theorem 1.1 that deserves to
be better known.

Theorem 1.2. Let G be a Lie group and H a closed subgroup such that G/H
is compact. Then χ(G/H) ≥ 0, and if χ(G/H) > 0, then the fundamental
group of G/H is finite.

This is due to Gorbatsevich, Onishchik and Vinberg [12] (Part II, Chap-
ter 5, Corollary 1, p. 174). See also Hermann [22], Felix, Halperin and Thomas
[18, Proposition 32.10], Halperin [19], Mostow [45] and Samelson [49].

1.2. Terminology

The sets of integers, positive integers and natural numbers are denoted by Z,
N+ = {1, 2, . . . } and N = N+ ∪ 0, respectively. i, j, k, l,m, n, r denote natural
numbers, assumed positive unless the contrary is indicated. F stands for the
real field R or the complex field C. Vector spaces and Lie algebras are real
and finite dimensional, and manifolds and Lie groups are connected, unless
otherwise noted. The kernel of a homomorphism h is denoted by ker(h).

A topological manifold is a locally Euclidean metric space. Unless oth-
erwise noted, manifolds are assumed to be analytic. Mn denotes a real or
complex analytic manifold having dimension n over the ground field R or C.
The boundary of M is ∂M . Except as otherwise indicated, manifolds are
connected and maps between manifolds are C∞. The tangent vector space to
M at p ∈ M is Tp(M). A vector field on M is always assumed to be tangent
to ∂M .

“Group” and “algebra” are shorthand for “Lie group” and “Lie algebra.”

G denotes a Lie group with Lie algebra g and universal covering group G̃.
Groups are assumed connected unless the contrary is indicated. The subscript
“◦” denotes the identity component. Lie groups are named by capital Roman
letters and their Lie algebras are named by the corresponding lowercase gothic
letters.

1We use the late Professor Halmos’ symbol “iff” for “if and only if.”
2For each equivalence class of transitive surface actions, Mostow gives a representative
basis of vector fields. Determining which of these classes contains a specified Lie algebra

can be nontrivial. Here the succinct summary in Belliart [4] is helpful.
3The key points in the proof are that the action is isometric for any metric obtained by
averaging a Riemannian metric, and the existence of arcs transverse to nonconstant orbits
(Whitney [62]).
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GL(m,F) is the group ofm×m invertible matrices over F; its Lie algebra
is gl(m,F). The subgroup of unimodular matrices is SL(n,F), and that of the
unimodular upper triangular matrices is ST (m,F). The k-fold direct product

G× · · · ×G is denoted by Gk. The universal covering group of G is G̃.
The commutator subgroup of G is G′. The upper central series is recur-

sively defined by G(0) = G, G(j+1) = (G(j))′, with corresponding Lie algebras
g(j). Recall that G and g are solvable, of derived length l = �(g) = �(G), if
l ∈ N+ is the smallest number satisfying g(l) = 0. For example, �(st(m,F)) =
m+ 1.

G and g are nilpotent if there exists k ∈ N such that g(k) = {0}, where
g(0) = g and g(j+1) = [g, g(j)]. It is known that g is solvable if and only if g′

is nilpotent (Jacobson [33, Corollary II.7.2]).

Actions and local actions. An action α of G on M , denoted by (G,M,α), is
a homomorphism g �→ gα from G to the group of homeomorphisms of M ,
having a continuous evaluation map

evα : G×M → M, (g, x) �→ gα(x).

The action is called Cs when evα is differentiable of class Cs, where s ∈ N,
s = ∞, or s = ω (meaning analytic). “Smooth” is a synonym for C∞. A flow
is an action of R.

If 1 ≤ r ≤ ω, a Cr Lie algebra action β of g on M , denoted by (g,M, β),
is a linear map X �→ Xβ from g to vr(M) that commutes with Lie brackets
and whose evaluation map is Cr. Unless otherwise indicated it is tacitly
assumed that r = ∞ or ω. The action is complete provided each vector field
Xβ is complete, i.e., all its integral curves extend over R.

An n-action (of a Lie group or Lie algebra) is an action on an n-
dimensional manifold.

A Cs local action λ of G on V (0 ≤ s ≤ ω) is a homomorphism g �→ gλ

from G to the groupoid of Cs diffeomorphisms between open subsets having
the following properties: The evaluation map (g, x) �→ gλ(x) defines a Cs

map Ω → V , where Ω is an open neighborhood of {e} × V . Suppose s > 1.
Corresponding to λ is a Cs−1 action of g on V denoted by dλ. Conversely,
every Cs action of g comes from a Cs local actions of G. When G is simply
connected and the Lie algebra action (g,M, β) is complete, then there exists
an action (G,M,α) such that β = dα. For results on the smoothness of these
actions see Hart [20, 21] and Stowe [53].

The orbit of p ∈ M under (G,M,α) is {gα(p) : g ∈ G}, and the orbit of
p under a Lie algebra action (g,M, β) is the union over X ∈ g of the integral
curves of p for Xβ . An action is transitive if it has only one orbit.

The fixed point set of (G,M,α) is the set

Fix(α) := {x ∈ M : gα(x) = x, (g ∈ G)},
denoted also by Fix(Gα). For Lie algebra actions (g,M, α) the fixed point set
is

Fix(β) := Fix(gβ) := {p ∈ M : Xβ
p = 0, (X ∈ g)}.
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222 Morris W. Hirsch JFPTA

Thus p ∈ Fix(β) if and only if p is a fixed point for the local flows on M
defined by the vector fields Xβ for all X ∈ g.

The support of an action γ on M is the closure of M \Fix(γ).
An action α is effective if ker(α) is trivial and nondegenerate if the fixed

point set of every nontrivial element has empty interior. A degenerate action
α of g is trivial if α is analytic or g is simple.

A group action is almost effective if its kernel is discrete.

2. Constructions of actions

2.1. Analytic actions of Rn

It is true, but not easy to prove, that every real analytic manifold admits a
nontrivial analytic vector field.4 In fact the following theorem holds.

Theorem 2.1. The vector group R
n has an effective analytic action on every

real analytic manifold M of dimension greater than or equal to 2.

The proof relies on the theory of approximation of smooth functions by
analytic functions (Grauert [17]).

Lemma 2.2. Let f : M → R be a nonconstant analytic function that is con-
stant on each boundary component. Then there exists a nontrivial analytic
vector field X on M such that df(Xp) = 0 for all p ∈ M , and X generates
an analytic flow that preserves each level set of f .

Proof. 5 First consider the case that M is an open set W in a half-space
Hd = [0,∞)×R

d−1 ⊂ R
d, so that ∂W = W ∩({0}×R

d−1). Fix a nonconstant
analytic function f : W → R that is constant on each boundary component.
The analytic vector field Y = ∂f

∂x2

∂
∂x1

− ∂f
∂x1

∂
∂x2

is nontrivial and annihilates
df and is tangent to ∂W . Endow W with a complete Riemannian metric and
denote the norm of ξ ∈ TW by |ξ|. There is a nonconstant analytic function
u : W → R such that supq∈M |u(q)Yq| < ∞. The vector field X = uY is
complete and it satisfies the lemma.

Now let M be arbitrary. By Whitney’s embedding theorem and the
tubular neighborhood theorem (see Hirsch [26]), we take M to be an analytic
submanifold of some half-space Hd ⊂ R

d such that M ∩ ∂Hd = ∂M , with an
open neighborhood W ⊂ Hd of M having an analytic retraction π : W → M
taking ∂M into ∂Hd. By the first part of the proof, there is a complete,
nontrivial analytic vector field U on W that annihilates the function f ◦
π : W → R. For p ∈ M , set Up = Xp+Zp with Xp, Zp ∈ TpM and dπpZp = 0.
The maps p �→ Up are analytic vector fields on M . We have

0 = d(f ◦ π)pUp = dfp ◦ dπpXp

= dfp ◦ d(π|M)pXp = dfpXp

because π|M is the identity map. �
4This is false for complex manifolds, e.g., Riemann surfaces of genus greater than s1.
5Joint work with Professor Joel Robbin.

Author's personal copy



Vol. 10 (2011) Actions of Lie groups and Lie algebras 223

Proof of Theorem 2.1. Choose an analytic vector field X on M as in the
lemma. Fix analytic functions uj : M → R, j = 1, . . . , n, that are linearly
independent over R such that |ujX| is bounded. The vector fields Lj on M
defined by Lj(p) = uj(f(p))Xp are complete and therefore generate flows φj .
In each level set V of f , Lj |V is a constant scalar multiple of X|V . Therefore,
φj preserves V , and [Lj , Lk] = 0. This shows that the φj generate an analytic
action Φ of the group R

n.
To show that Φ is effective, assume aj ∈ R are such that

∑
j ajLj

vanishes identically, which means (
∑

j ajuj(f(p)))Xp vanishes identically. So

does
∑

j ajuj(f(p)), by analyticity, because Xp �= 0 in a dense open set. It
follows that the aj are zero because the uj are linearly independent. �

2.2. Lie algebra actions on noncompact manifolds

A manifold is open if it is connected, noncompact and without boundary. On
many open manifolds it is comparatively easy to produce Lie algebra actions
that are effective and analytic.

Theorem 2.3. An open manifold Mn admits an effective Lie algebra action
(g,Mn, β) if there is an effective action (g,Wn, α) such that one of following
conditions is satisfied:

(a) Mn is parallelizable (which holds if n = 2 and Mn is orientable),
(b) n = 2 and W 2 is nonorientable.

In each case, β can be chosen to be nondegenerate, analytic, transitive
or fixed-point free provided α has the same property.

Proof. We will define β as the pullback of α by an analytic immersion Mn →
Wn. The fundamental theorem of immersion theory (Hirsch [24, 25], Poe-
naru [48], Adachi [1]) says that such an immersion exists provided Mn is an
open manifold, and the tangent bundle TMn is isomorphic to the pullback
of TWn by map f : Mn → Wn. In case (a) take f to be any constant map.
For case (b) we first show that M2 immerses in the Möbius band B2. To see
this, note that every open surface has the homotopy type of a 1-dimensional
simplicial complex, whence the classification of vector bundles implies that
TM2 is the pullback of TP 2 by a map f from M2 to the projective plane P 2.
As M2 is an open surface, it can be deformed into an arbitrary neighborhood
of its 1-skeleton, hence f can be chosen to miss a point of P 2 and thus have
its image in a Möbius band. This shows that M2 immerses in B2, and the
conclusion follows because B2 immerses in every nonorientable surface. �

The real form of a Lie algebra g of matrices over C or the quaternions
H is denoted by gR. From the natural projective actions of matrix groups we
obtain the following corollary.

Corollary 2.4. The following effective kinds of analytic actions exist:

(a) sl(3,R) and sl(2,C)R on all open surfaces, and on all open parallelizable
k-manifolds for k ≥ 3,

(b) sl(n,R) on all open parallelizable k-manifolds, k ≥ n− 1,
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224 Morris W. Hirsch JFPTA

(c) sl(n,C)R on all open parallelizable k-manifolds, k ≥ 2n− 2,
(d) sl(n,H)R on all open parallelizable k-manifolds, k ≥ 4n− 4.

3. Lie contractible groups

Let G denote either a Lie group G or its Lie algebra g. A deformation of G
is a 1-parameter family θ = {θt}t∈R of endomorphisms θt : G → G having the
following properties:

(D1) θt is the identity automorphism if t ≤ 0,
(D2) θt = θ1 if t ≥ 1,
(D3) the map R× G → G, (t, g) �→ θt(g), is C

∞.

If θ is a deformation of G, the family {θ′t(e)}t∈R of derivatives at the unit
element e ∈ G constitutes a deformation θ′ of g. When G is simply connected,
every deformation of g comes in this way from a unique deformation of G.

A Lie contraction of G is a deformation θ such that θ1 is the trivial
endomorphism, in which case G is called Lie contractible. It can be shown that
this implies that G is solvable, and G is contractible as a topological space. It
is easy to see that the direct product of finitely many Lie contractible groups
is Lie contractible.

We prove below that st(n,F) and its commutator ideal, which is nilpo-
tent, are Lie contractible. But DeKimpe [8] pointed out that some nilpotent
Lie algebras have unipotent derivation algebras, ruling out Lie contractibility.
Goodman [14] cites an example due to Müller-Römer [46] of such an algebra,
namely, the 7-dimensional Lie algebra with a basis such that

[X1, Xk] = Xk+1, k = 2, . . . , 6,

[X2, X3] = X6, [X2, X4] = X7,

[X3, X4] = X7, [X2, X5] = −X7.

See also Ancochea and Campoamor [2], Dixmier and Lister [9] and Dyer [10].
Let H ⊂ G be a subalgebra or subgroup. A deformation θ of G is a

retraction of G into H provided

θ1(G) ⊂ H, θt(H) ⊂ H for all t ∈ R.

When such a θ is given and ψ is a deformation of H, there is a deformation
ψ#θ of G and the concatenation of ψ and θ, defined by

(ψ#θ)t =

{
θ2t if −∞ < t ≤ 1/2,

ψ2t−1 ◦ θ1 if 1/2 ≤ t < ∞
is also another retraction of G into H. Note that (ψ#θ)1 = ψ1 ◦ θ1. If θ is a
Lie contraction of H, then ψ#θ is a Lie contraction of G.
Theorem 3.1. The groups S̃T ◦(N,F), ST ′(n,F) and their Lie algebras are
Lie contractible.

Proof. It suffices to prove that the Lie algebras are Lie contractible. Give
t(n,F) the basis {T (ij)}1≤i≤j≤m, where the unique nonzero entry of the n×n
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matrix T (ij) is 1 in row i, column j. The matrices T (ij) with i < j form
a basis for the commutator ideal st(n,F)′, and {T (11), . . . , T (n−1,n−1)} is a
basis for the subalgebra d(n,R) ⊂ s(n,R) of diagonal matrices.

For 1 ≤ i < j ≤ n and t ∈ R, the functions

cij : R → [0, 1], cij(t) :=

⎧⎪⎨⎪⎩
1 if t ≤ 0,

exp (j−i)t
1−t if 0 < t < 1,

0 if t ≥ 1

(1)

are C∞, analytic in the open interval ]0, 1[ and flat at all t /∈]0, 1[. They
satisfy

cij(t) · cjk(t) = cik(t), i ≤ j ≤ k. (2)

Consider the 1-parameter family of linear maps

θt : st(n,F) → st(n,F), t ∈ R,

defined on the basis elements by

θt

(
T (ij)

)
=

⎧⎪⎨⎪⎩
T (ij) if t ≤ 0 or i = j,

c(ij)(t) · T (ij) if 0 < t < 1 and i < j,

0 if t ≥ 1 and i < j.

(3)

The first equation in (3) implies that θ maps st(n,F)′ into itself and reduces
to the identity deformation of d(n,R).

Equation (3) defines a retraction θ of st(n,F) into d(n,F), thanks to (2),
and θ restricts to a Lie contraction θ1 of st(n,F)′. To obtain a Lie contraction
of st(n,F), it suffices to form a concatenation ψ#θ, where ψ is an algebraic
contraction of d(n,F). For example, set

ψt

(
T (ii)

)
= c(t) · T (ii), i = 1, . . . , n,

where c(t) := c21(t) from equation (1). �

3.1. Deformations of actions

Let α0, α1 be actions of G on M . A deformation of α0 to α1 is a 1-parameter
family of actions β = {(G,M, βt)}t∈R such that

• βt = α0 (t ≤ 0),
• βt = α1 (t ≥ 1),
• the map R×G×M → M , (t, g, x) �→ gβt(x), is C∞.

A Lie contraction θ of G determines the deformation β of α0 to the trivial
action, defined by

βt = α0 ◦ θt,
indicated by the following theorem.

Theorem 3.2. Let G be a Lie contractible group having an almost effective
smooth action on Sn−1. Then on every topological n-manifold Mn there is
an effective action of G which is the identity outside a coordinate ball, and
which is smooth if Mn is smooth.
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Proof. Let θ be a Lie contraction of an effective smooth action (G,Sn−1, α).
An action (G,Sn−1 × R, β) is defined by

gβ : (x, t) = (θt(g)
α(x), t).

β is smooth and effective, and

gβ : (x, t) =

{
(gα(x), t) if t ≤ 0,

(x, t) if t ≥ 1.

Transfer β to an action (G,Rn\{0}, γ0) by by the diffeomorphism

R
n\{0} → Sn−1 × R, (x, t) �→ e−tx.

This action extends to a smooth effective action (G,Rn, γ) which is the iden-
tity outside the unit ball. It can therefore be transferred to the desired action
on Mn. �
Corollary 3.3. For all n ≥ 2, k ≥ 1 there are effective smooth actions of

ST◦(n,R)k on every smooth n-manifold and of S̃T (n,C) on every smooth
2n-manifold.

Proof. ST◦(n,R) and S̃T (n,C) are Lie contractible (Theorem 3.1) and they
have effective smooth actions on Sn−1 and S2n−1, respectively. By Theo-
rem 3.2, there are k coordinate balls with disjoint closures in Mn (respec-
tively, M2n) that support effective smooth actions of ST◦(n,R) (respectively,
S̃T (n,C)). The desired actions are obtained by letting the jth factor of the
direct product act smoothly and effectively in the jth coordinate ball and
trivially outside it. �

4. The Epstein–Thurston obstruction to effective
solvable actions

In this section G can be either real or complex. In the complex case an n-
action means a holomorphic action on a complex n-dimensional manifold.

Epstein and Thurston [11, Theorem 1.1] discovered a fundamental nec-
essary condition for effective local actions of solvable Lie groups.6

Theorem 4.1. Assume G is solvable and has an effective local n-action. Then
n ≥ �(G)− 1, and n ≥ �(G) if G is nilpotent.

The same conclusions hold for solvable Lie algebras actions. It turns
out that in the borderline dimensions there are further restrictions on the
structure of G and its orbits.

Theorem 4.2. Assume G is solvable with derived length l. Let (G,Mn, α) be
a nondegenerate local action, with n = l if G is nilpotent and n = l − 1
otherwise.

6The authors pointed out that their proof, stated for the real field, is valid in any category
having a “good” dimension theory. It probably works for algebraic actions over arbitrary
fields.
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(i) The union W of the open orbits is dense.
(ii) Suppose G(l−1) lies in the center C of G. Then dim(G(l−1)) = dim(C) =

1 and G(l−1) = C.

Proof. (i) G(l−1) acts trivially in each orbit of dimension less than n by the
Epstein–Thurston theorem. As the action is effective, there is an orbit U in
which G(l−1) acts nontrivially. The Epstein–Thurston theorem implies that
U is n-dimensional. This shows that W is nonempty. Each orbit M\W has
dimension less than n, thereforeG(l−1) acts trivially inM\W . Nondegeneracy
implies that M\W contains no open set, hence W is dense.

(ii) Fix a 1-dimensional subspace Z ⊂ C. In view of (i), we assume
α is transitive and the orbits of Zα are the fibres of a trivial fibration of
π : Mn → V n−1. Let (G/Z, V n−1, β) be the action related equivariantly to α
by π. The Epstein–Thurston theorem implies that β|G(l−1) is trivial, hence α-
orbits of G(l−1) × Z are the 1-dimensional orbits of Zα. Let K ⊂ G(l−1) × Z
be the stabilizer of some point of Mn under the action of α|(G(l−1) × Z).
Centrality of G(l−1) ×Z and transitivity of α imply that Kα stabilizes every
point of Mn, and is therefore trivial because α is effective. Consequently,
dim(G(l−1) × Z) = 1, which implies (ii) because G(l−1) is nontrivial by the
Epstein–Thurston theorem. �

Examination of the proof yields the following corollary.

Corollary 4.3. Assume that G, l and n satisfy the hypothesis of Theorem 4.2,
the center C of G contains G(l−1) and dimC > 1. Then the kernel of any
analytic n-action of G contains a 1-dimensional central subgroup.

Example 4.4. For all n ≥ 2 the group N(n,F) := ST (n,F)′ × F has effective
smooth actions on every n-manifold (Theorem 3.3). The actions constructed
in the proof are highly degenerate, and in fact:

• Every n-action of N(n,F) is degenerate.

This follows from Theorem 4.2(ii): N(n,F) is nilpotent with derived length
n, and its center is 2-dimensional (over F) and contains the 1-dimensional
subgroup Nn−1

n .

5. Semisimple actions

Let (G,M,α) be an analytic action of a semisimple group. If the linearization
dαp at p ∈ Fix(G) is trivial, then α is trivial, because in a neighborhood
of p, α is analytically equivalent to dαp (Kušnirenko [35], Guillemin and
Sternberg [16], Hermann [22]).

Cairns and Ghys [7] constructed effective C∞ actions of SL(2,R) on
R

3 and of SL(3,R) on R
8 with fixed points at the origin, at which they are

not topologically locally conjugate to analytic actions. Nevertheless the same
conclusion holds for C1 actions by a striking result, Thurston’s “Generalized
Reeb Stability Theorem,” [56].
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Theorem 5.1 (Thurston). If α is a nontrivial local C1 action of a semisimple
Lie group, at every fixed point p the linearized action dαp is nontrivial.

Proof. While Thurston states his theorem for global Lie group actions, the
proof is entirely local. �

Other results on semisimple actions are given in the papers cited above,
and in Asoh [3], Schneider [50], Stowe [53], Uchida [59, 60], Uchida and
Mukoyama [61].

Example 4.4 showed that all n-actions of ST (n,R)′ ×R are degenerate.
This phenomenon cannot occur for effective C1 actions by semisimple groups.

Theorem 5.2. Let G be a semisimple Lie group and (G,Mn, α) an effective
C1 local action. Then α is nondegenerate, as is the induced action in ∂Mn.

Proof. It suffices to consider a C1 local group action (G,Mn, α). For ev-
ery invariant set L ⊂ M , let (G,L, αL) be the action induced by α. Fix a
nonempty open set U ⊂ Mn and let K ⊂ G denote the kernel of αU . Every
point p ∈ U is a fixed point of α|K at which the linearized action dαp|k is
trivial. As K is normal in G and therefore semisimple, Thurston’s theorem
applied to (K,Mn, α|K) shows that K ⊂ ker(α). Therefore, K is the trivial
subgroup because α is effective, proving that α is nondegenerate.

Assume per contra that α∂M is degenerate. The preceding paragraph
shows that there is a nontrivial proper normal subgroup H ⊂ G such that
Hα acts trivially on ∂M . Let (H,Mn.γ) be the action induced by α. At
every p ∈ ∂Mn there is an analytic coordinate chart centered at p taking
a neighborhood of p onto an open subset of the origin in the closed half-
space of Rn defined by xn ≥ 0. In these coordinates, dγp represents H in
the abelian subgroup comprising the matrices A ∈ GL(Rn) having the block
form

[
In−1 b
0 1

]
. Semisimplicity of H implies that dγp is trivial. Therefore, γ is

trivial by Thurston’s theorem, contradicting effectiveness of α. �

Here is another application of Thurston’s result.

Theorem 5.3. If ∂Mn �= ∅, every C1 local action (SL◦(n + 1,R),Mn, α) is
trivial.

Proof. The Epstein–Thurston theorem (Theorem 4.1) implies that the sub-
group ST◦(n+1,R) does not have effective local actions on (n−1)-manifolds.
Therefore, α∂Mn is degenerate, so α is trivial by Theorem 5.2. �

Example 5.4. Theorem 5.3 shows that S̃L◦(2,R) does not have effective C1

local actions on the compact interval [0, 1]. On the other hand,

• S̃L◦(2,R) has nondegenerate continuous actions on [0, 1].

To construct such an action, identify the open unit interval ]0, 1[ with a
universal covering space of S1, lift the natural action (SL◦(2,R),S1, α) to an

action (S̃L◦(2,R), ]0, 1[, β) and extend β to an action (S̃L◦(2,R), ]0, 1[, δ).
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By putting δ on each radius of the compact n-disk Dn, for every n we

get a nondegenerate action of S̃L◦(2,R) on Dn that is trivial on ∂Dn. This
leads to

• S̃L◦(2,R) acts nondegenerately on all CW -complexes.7
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