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ANATYSIS OF PION HELIUM SCATTERING FOR THE PION CHARGE FORM FACTOR*
C. 7. Mottershead

Tawrence Radiation Laboratory
University of California
Berkeley, California

“June 10, 1969

ABSTRACT

Elastic scattering of ﬁ+ and  on Heu is analysed for infor-
mation on the charge radius of the pion using a new method based on
boundary conditions near the nuclear surface. The pion radius enters the
calculation via the electrostatic potential of the pion and Helium charge
distributions, which is assumed to be the only charge dependent interaction.
Since Heu is.isoscalar the strong nuclear interaction is assumed charge
independent. Differéntial cross section data for bothisigné bf the charge
are fit simgltanéously by a program that uses the logarithmic derivatives

of the pion radial wave function for each charge as free parameters. If

the nuclear interaction operator is symmetric (i.e. (;'IUNIE) = (;IUNI;')),

the difference in the lbgarithmic derivative for a given partial wave due
to changing the sign of the charge may be expressed as an integral of the
internal Coulomb potential weighted by the wave function. Nuclear model
dependence is greatly reduced by the constraints imposed by the empirical
boundary conditions on the internal wave function. The Crowe Group's

data at'beam momenta of 130 to 163 MeV/c are analysed by this method

using both local potential and Kisslinger models for the stroné interaction,
and Gaussian and Yukawa pion charge distributions. The results indicate

2.2< rﬁ <3.2F, depending on theoretical model, with an experimental
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- precision of ~ * 0.5 F . In the course of the analysis, thevsingular
point difficulty with the Kisslinger model was examined and found to be
serious. A simple treatment of the relativistic reduced mass (twd

body‘problem) is given in an appendix.




-1l UCRL-19216

I. INTRODUCTION
The possibility of measuring the pion electromagnetic form factor
by comparing the elastic scattering of ﬁ+ and ®~  beams on an isoscalar
target nucleus such as Heh has been the subject of a series of recent
papers.i-9” The key assumption of these studies is that the stfong nuclear

interaction, whatever its detailed nature, is the same for both pion charges,

while the Coulomb potentlal is the same except for 51gn. This Coulomb

potentlal which is taken to be the only electromagnetic 1nteract10n, de-
pends on the charge distributions of thevpiOn and nucleus, and thus on the
parameters of their respective form factors. The general plan is to
analyse the differential cross section data for both charges to separate
the nuclear and Coulomb contributions to the scattering amplitude. If

the nuclear charge distribution is knowri, the Coulomb contribution may
then be interpreted as a measurement of the pion charge radius.

Accurate calculations, with the fewest possible approximations,
are needed to find the small effects due to pion size in the lérge nuclear
scattering amplifudes. It is also essential to reduce the effect of the
uncertalntles in the pion-nucleus interaction by using model 1ndependent
methods as far as possible. With these obJectlves, two methods of
analys1s have so far been proposed:

(i) Optical model analysis. The emphasis here is on
calculzartional_accuracy.l"3 The nUclearvinterection is fepreseﬁted by an
optical model potential and the Schrddinger - equation integrated numerically
for both signs of the charge. The parameters of both the optical and
Coulomb potentials are then adjusted to fit the cross section data. An

exact solution is obtained for the given model, but the method mixes the
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Coulomb and nuclear parts'of the problem, so the pion radius obtained may
depend on the model chosen.
(ii) Coulomb perturbation methods. These emphasize model

5-9

independence. The nuclear.amﬁlitude is parameterized by a set of
phase shifts, and the Coulomb Born amplitude, which is proportional to the
product of the form factors, is explicitly separated out. The method is
less model dependent than (i), and it avoids the use of Coulomb wave
functions, but it introdﬁces an important first order Coulomb-nuclear
interference ("distortion") amplitude that is given by a 1dgarithmically
divergént integral.

A third method of analyéis, using thé same basic assumptions as
the above two, is proposed in Sec. II of this paper in an effo;t to com-
bine calculational accuracy With model independence. A close fitting
boundary surface (radius R) is drawn around the nucleus, and the Coulomb
potential + Ze /r is assumed to be the only interaction in the external
region ‘(r >R). As in (i), the exact external solution of the
Schrddinger equation is expressed in terms of Coulomb wavevfunétions, and
related to the logarithmic derivative of the interior solution at the
boundary. These logarithmic derivatives, however, are taken as free
parameters, thus giving a model independent fit to the cross section data,
while avoiding the divergence dlfflcultles that arise in perturbation
treatments of the long range part of the Coulomb poteﬁtial. The interior
Coulomb perturbation on the logarithmic derivatives is then derived for a
very general form of nuclear interaction operator, and turns out to be

only slightly mqael‘dependent.

In Sec.fIII the method is applied to the ‘Crowe Group's data to

kL]
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determine the empiriéal boundary conditions at f = R. The relevant
aspectsvof models fof tﬁe pion-nucleus interaction are discussed in
Sec. IV, and the conclusions about the bion size giVen in Sec; V.
Finally, the effects of some alternative assumptions are discussed in

Sec. VI,
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IT. THE BOUNDARYMCONDITION METHOD
The Klein Gordon equation for the motion of a pion of energy Eﬂ
and charge te(t = + 1, O,'or -l) in a fixed electrostatic potential

Ze/r may be written

[ve + kS - e 2qk/r] \lrt(,;) =0 ' (1)

_ o\1 .
where Kk =<%n2 - mﬁ2>2 is the asymptotic momentum of the pion, and

I

fn) : : '
n Ze‘/B is the Coulomb scattering strength parameter for velocity

B

k/Eﬁ. A second order term in the potenﬁiél,-which is less than
lthkg for our pion-Helium scatteriﬁg problem, has been omitted frdm

Eq. (1) so that conventional Coulomb functions may be used in its

solution. We slightly generalize Eq.(1)by taking k to be the momentum
and B the relative velocity in the center of mass coordihate system

as computed éccording to conventiqnal two body relativistic kinematics.
Then wt(;) is interpreted as the probability amplitude for the
interparticle separation r. A simple rationalization of this compromisé
to allow for both nuclear recoil motion and relativistic kinematics is
given in appendix A. In any case, we assume‘Eq.(i)apﬁlies to the
pion-nucleus system when the pion is outside some small sphere of radius

R centered on the nucleus.
On substitution of the partial wave expansion’
[+4]

Vi) = = Z (22 + 1) 1 w,%x) P (coso) (2)
| £=0 ' ‘ : :
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into Eq. (1), we find that the radial wave function uzt(r)v,satisfies

the Coulomb radial equaﬁion

2

d2 ) E(Egl +k‘2_2_t§_k__ 'u;(r)=o ] (3)
dr r

It therefore must be of the form (for r > R)

t t ot
r) = A, [cos 5, Fz(tn, kr) + sin 8, Gg(tn, kr)] .

(4)
Where Fz(n, x) and Gz(n, X) are the standard regular and irregular

t

Coulomb functions, and (Az B th) are constants to be determined.

The asymptotic form of Eq. (W)is

uzt(r) Se A, sin <kr - tn 4n(2kr) - %? + oz(tn) + 6zt> .
(5)
Here cﬂ(n)z arg (£ + 1 + in) is the conventional Coulomb phase shift,
and azt is interpreted as an additional phase ghift due to Whatever
deviations there are (for r < R) from a pure i/r potential. By
consideration of its asymptotic incident and outgoing radial fluxes,
o ' this solution is shown iﬁ standard quantum inechanics texts (e.g. Ref. 10)

to imply a differential cross section for elastic scattering that may

be written
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. : : £
. Except for an unobservable phase, fc is the usual Coulomb

scattering amplitudeg

fct(q) = - g‘c_g_lg exp [- ity £n<—i—k—2->] . | (7)

q
The momentum transfer g is related to the center of mass scattering

angle 6 by

q2 = 2k2(l - cosvé) e | (8)
The nuclear scattering amplitude th has the expénsion
o] .
£,6) = (22 +1) 7,(tn) a,%(x) P,(cos 6) , (9)
N g By hy ’
f=0 ‘ V

with the nuclear partiai wave amplitudes given by

N\=1 .
a;(k) = exp(ei-'é;(k)) -1)/2;k = (k cqt‘c‘}; - ik> . (10)

The Coulomb phase factors

74n) = exp 21(a,(n) - o (n)) y o (11)

may be conveniently generated from the recursion formulas
2
)

(2

7 (1) = 15 7(n) = —igef—ﬁggy- 7l 5y n) = )

(12)

If Eq.(Y)were valid for all r, then only the reguiar solution Fz(n, x)

would be permitted in Eq.(¥), and all the th would have to be zero.

Eq.(E)would then reduce to the well known Rutherford formula for pure

Coulomb écattering.
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Of course Eq.(1)is not valid for all r. At small distances the
electrostétic potential will deviate from the 1/r form due to overlap of
the charge distributions of ﬁhe pion and nucleus. The pion's charge

form factor is felated to its charge distribution tepﬂ(r) by

Fla) = [ afpe™E o () (13)
where pﬂ(r) is normalized so that Fﬁ(O) = _d;r pﬂ(r) = 1.
~ Expansion of Eq. (13)in powers qf q yields
: 1 2,2 1 It 1 6, 6
Fla) = 1- 5 ¢ (%) + =+ ¢ (r) - = 2 - ...
2! 51 T
{1ka)
where. ' )
(rn)lg ™ o(r) lsredr , (1hb)
0]

is the nth moment of the charge distribution. The objecf of this
paper is to develop a mefhod for the extraction of the r.m.s. pion  .
charge radius r o= (re) 3 from pion nucleus scattering data. To
carry out the analysis, the nuclear charge form factor FN(q), de-
fined as in Eq.(13), must be known.

The electrostatic potential énergy of two charge distributions
is given in terms of their form factors Fﬂ’ N(q) and the‘separatibn r

tZegv(r) with

of their centers by VC(r)

1 3 ig .r Yse 2 singr
vir) = d w w — F (- = = —_— F F dg .
) a3 | YT T (q) 2 a) 5 a Tx'¥ Fyla)da .
0

(15)
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- It is sometimes more convenient to evaluate v(r) by solution of
- Laplace's equation with an effective charge distribution g(r) obtained =

by applying e to both sides of Eq.(15):

2 ' .
VZV(I')‘?% ‘S""é‘ I'V'(I') = - l}.ﬂg(r) R _ (168.)
T A .

7C

At lafge'distances v(r) = 1/r. The pion radius therefore enters the

calculation only via its influence on the short range shape of v(r).
{

4

As indicated by electron scattering exoerlments,ll we take the He

nucleus to be a Gaussian shape

| x?/a? |
Py (r) = :572a3 ; . (17a)

with r.m.s. radius r. = /g a = 1.65.03 ¥ and form factor

N
$2r 2 v
| N
Fy(a) = exp - I (170)

If the pion is also assumed to have a Gaussian shape of r.m.s. radius r s

then the effectlve charge dlstrlbutlon is gb(r) exp( - fe/be)/ha/gca,
2
)
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_The corresponding potential is

vG(r) = % erf (%) . ' | (18)

An alternative pion form factor favored for dispersion relation

calculations is -

2 .
Fﬁ(Q) = "5‘&""2—' s (19a)
qQ + . ‘

which yields a Yukawa charge distribution

o(x) = . S — o (199)

with r.= /g}u - According to the vector dominance model, n should be
the mass of the p meson, leading(to a predicted pion radius.of r.= 0.63 F.

The corresponding potential isll'L

2
(x /r_) r
v(r)=%- erf<-£-> + % e N T e"t erre }E + :E-

- epfe | = - E . (20)
T a

b
For r =0, Egs. (18) and (20) give identical results. Fig. 1 shows
- the Heu density distribution, and the effective Coulomb potentials
2 )

Vc(r) = Ze vG(r) calculated from Eq. (18) for r. = 0,1,2, and 3F. The
potential for r = 2F according to Eg. (20), and for a point charge
(VC = Zea/r) are also shown for comparison. Beyond R = 3.5F, which we

choose as the boundary radius, we have essentially pN(r) = 0 and

v(r) = 1/r.
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In addition to this Coulomb potential, the pion for r < R feels
a strong nuclear interaction which we will assume to be short ranged,
rotationally invariant, and charge independent. We therefore generalize

Eqg. (1) in the form

A H . .
{v2 + % - etmev(e)p Vi g) = | &r (vl vz (21)
where <EIUN|£'> is the coordinate representation of some nuclear

interaction operator UN; Charge indepéndehce means that UN is the

same for all vélues of the charge index +t. We choose the boundary radius

R so that in the external region r‘z R, U is negligible

N
((;IUNIr') ~ 0), and v(r) takes its asymptotic form 1/r, so Eq. (21)
takes the form Eq. (1). ‘

The assumption of rotational invariance means we can solve Eq; (21)

one partial wave at a time. In a solution of the form
t, . t m
Vg = %) 1o | (22)
the radial wave function XZ‘ is determined to within a normalization
constant by Eq. (21), and so its logarithmic derivative at the boundary

r = R, defined by

R {g; e,z o - (23)

is completely determined. Since in the external region (r >R), X t(r)

t
£

£
must take the form r—;ugt(r), with uzt(r) given by Eq. (4), A is

related to the nuclear phase shift Szt by
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£ xG;(tn, x) + cot51;~ X F;(tn, x)
}\g = % b (24)
Gz(tn, X) + cot 5, - Fz(tn, x)
X=kR
' 1 55';8(71: X)
where | Fz(n, X) = —=y—— ‘- ete. E

+
For the experiment in question (130-16C MeV/c x~ on Heu), the whole
Coulomb potential Vc(r) inside r = R 1is a small perturbation on
the energy and strong interaction terms in Eg. (21). Therefore changing

the sign of Vc should induce only a small shift in Kzt. Writing

05 B) = Sy R) £ mD, R) (25)

.= %(Kz+ + xz'} to depend

mainly on the strong interaction, while the difference D, = (Kz+ - Xz-)/en

we expect the average logarithmic derivative 8

should depend mainly on the Coulomb effects. From Egs. (10, 24, and 25)

we obtain ; '
1
+ 1 (S‘e | DZ) Fz(i N, X) - X Fz(i n, x)
az == K T g
x=kR
(26)
where .
By, x) = Gyln, x) + 1 Fy(n, x)

Thus, vhen Eq. (1) applies in the external region (r > R), the variables

(Sz 5 Dg) give a parameterization of the observable nuclear partial wave
+

amplitudes az— as general as phase shift analysis, but with the added

advantage (important in practice) that data for both signs of the charge

may be fit simultanedusly.
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i For large £, where the phase shifts Szt are zero; A ¢ is

| : ,
Jjust the logarithmie derivative of the regular Coulomb function

£

Fz(tn, kr).'lOnly the first fev nuclear partial wavesbare expected to be
nonzero, aﬁd so all the information available in thé‘éxperiment abqut
both the nuclear interaction ang the‘pion radius must be contained in
the corresponding valﬁes of Sz and Dz. A computer program was written,
using the Berkeley X2 minimization routine VARMIT, that adjusts Sz
and Dz for the first few partial waves to fit the 1tiHeLL .scgttering
data. The result of its application to the Crowe Group data at 130 to
163 MeV/c will be disqussed in Sec; IIT of this paper. For the remainder
- of Sec. II, Sz and Dz - should bef;iewed as empiricai quantities sum-
marizing the data.

Formulas for the.interpretation of the fit.parameters (Sz,'Dﬂ)
in terms of v(r) and the internal radial wave function may be derived
as follows: Multiply Eq. (21) by the wave function for charge index ‘t',

subtract the corresponding equation with + and t! interchanged, and’

integrate over the internal volume IEJS R to obtain
£ t t ! ot Bt
T V) T - VR () ends - )ule)vE ()

(27)

L t t t!
Tropemt W) Gl i) - v E) Glu e ey .
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The integral on dBr on the right side of Eq. (27) may be extended
over all space, since by assumption (rIUN,r'> = 0 for tsl > R. If

we now further assume that the nuclear interaction operator is symmetric,

Flogl) = gloglgy (28)

then the entire right side vanishes, since r and 1! are equivalent
dunmy integration variables and may be interchanged in the first integrand.
Local potentials (<£"UN'£>-= UN(g) Sgg-g')) are certainly symmetric,
as are a wide class of optical potentials derived from multiple scattering

theory (see Sec. IV for proof), so Eq. (28) is not unduly restrictive..

Using vector identities and Gauss' law, Eqg. (27) may be transformed into

! t It '
=R

xfdszfre o (v (e (29)
0

The angular integration may be done using Eq. (22) and the orthonormality

RZ P ag| ¢

of the spherical harmonics. Then, assuming R is chosen so that

th(R) # 0, divide through by szt'(R)th(B) and use Eq. (23) to obtain
R
n = ng = enR(ees) [ vy, (0, Ye) ar, (30)
o

.
where Y, (r) rxgt(r)/Bth(R) is the radial wave function normalized

to unity at the upper limit r=R.
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Finally, taking t' = 0, t = %1, we derive the following exact
- formulas for Sz and Dz:

R

S, = ?"zo + nkR v(r) yﬁo(r)' [y;(r) - y[(r)J dr )

0]

(31)

0] 1 +, -
D, = 2kR v(r) Y, (r) 5-[y¢ (r) + Y, (r) dr] .
Js
(32)
All the wave functions behave near the origin as 'yzt(r) ~
const. X rz + 1 and are by definition equal at the upper limit:

+ - 0 ; :
Y, (R) = Yy (R) =¥, (R) =1 . The effect of the Coulomb potential is
to give yg-(r) slightly more curvature than ‘ygo(r), and y£+(r)
slightly less. Therefore it should be a good approximation in Eq. (32)

to put

S, ) vy, () 2 v (33)

Also, since the difference ,yzt(r) ~y£_(r) vanishes at both limits
and is expected generally to be of order 1, the second term in Eq. {(31)
_ 2 .

is of order 7 =.0004and is negligible. We may therefore interpret

the fit parameters Sﬂ » Dz by the working approximations'

' L0 d 0 | dyzo(r) |
Szz )\E = R Sf-[’- n I‘Xz (I‘)) =‘ R 'd—r—— . ~
r=R =R ..

(%)
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o 2
D, ~ 2kR v(r) Y, (r) ] ar . (35)

For the best fitting nuclear modeis of Sec. IV, the error in these
approximations is < 0. 2% for Eq. (34), avnd < 0.1% for Eq. (35).
Since thisvis well within the experimental uncertainties (Table I),
Egs. (34) and (35) are entirely adequate for our présent purposes.

The role of the nuclear interaction model in the analysis is
" now clear: it is to provide a reasonable internal wave function so that
the observedvvalue of Dg may be 1nterpreted according to Eq. (35) in
terms of the effective Coulomb potentlal. The parameters of the model are
to be adjusted so the logarithmic derivative of the neutral (t = 0)
wave function satisfies Eq. (3&) for the observed values of Sz But
no matter what model is used, the weighting function (yﬂ r)) must

always satisfy:

2
yzo (r) =~ const - 22 eor small r, (36a)
2 2 2S
o°| a 0 S5y
Y, =1 , and i (yﬁ ) = 5 .
=R r=R

(36b)

These constraints on the form of yz serve in practice to greatly re-

duce the sensitivity of D, %o the details of the nuclear interaction.

b/

The boundary condition method outlined above thus provides a gnod

separation betweeh the strong and electrodynamic parts of the problem.
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The general behavior of Sz and. DZ may be anticipated from
Egs. (34) and (35). The pion radius determines essentially the central
value v(0) of the Coulomb potential: +the more diffuse the charge
, is a

monotonically'decreaéing function of r. To increase the sensitivity

distribution, the shallower the potential (Fig. l). Hence D

of Dz to T the boundary radius R should be chosen as sﬁall as
possible consistent with the condition 'v(r) ~ l/r for r > R. As

£ increases, the integral in Eq. (35) is more dominated by the outermost
values of v(r), 80 Dﬂ becomes both smaller and much less sensitive

to T It also becomes harder to measure, since Sz generally

increases with £, eventually taking the form S, ~ £ + 1, and

2

completely dominating the D, term in Eq. (25). It is therefore the

£
fit parameters (Sz, Dz) for the lbw partial waves, especially the S
wave, that must be well determined to permit measurement of L The

higher partial waves need only be consistent with the general formalism..
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IIT. DATA ANALYSIS

The Crowe group data consists of measurements of the niHe elastic
scattering differeﬁtial cross sectionsv oi(e) at 15 scattering angles and
4 beam momenta: 130.2, l%é;B, 153.2, andvl63.Q MéV/c. The cross
sections show a deep intefference minimum of about 0.3 - 0.5 mb/sr
near 70°, then rise to some 5 to 7 mb/sr in the backward direction.

(Fig. 3) See.fheir paper for the full data set and details of the
experiﬁent.
From this data the fractional difference

A(8) = [::‘(e) - o*(e>] /'[% (a7Co) + o*(_@))] O

is formed. This difference is due in general to Coulomb-nuclear
interference effects, and is expected to be sensitive to the pion radius,
especially near the minimum where the nuclear amplitude is small and
momentum transfer is not (g ~ 0.8 Fm-l). Although A(8) is not
independent information, its precision benefits from the cancellation of
some uncertainties in beam normalization. The total data set thus
consists of 120 cross section points oik(ei) and 60 semidependent
derived quantities Ak(ei).

The data was analysed independently at each beam energy using
Egs. (6 - 12), and (26). To account for inelastic prbcesses, complex
values of S, and DE were allowed in the first three partial waves

£

(£ <2). Higher partial waves were omitted (a

£
basic fitting procedure was to fix the ng and adjust the Sz to fit

=0 for £>2). The

+
the 30 cross section points '(c_(Gi) i= 1, 15) by minimizing

ol [

< f o
X N + X where
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15 . 2
(

o (6,) - o 6.)
XtE _ g calc éc(ei)data i , - (38)

i=1

and So(Gi) is the experimental error. Similiarly for fixed § the

z}

D, were adjusted to fit the 15 A(Gi) data points by minimizing the

corresponding &AE' With the improved Dg, the Sg were refitted and

vice versa for as many iterations as needed untii the process cdnverged,
It was found that not all of the.lE parameters (real and imaginary

parts of SE and Dz for £ = 0,1,2) could be determined by the‘data;

In particular, ﬁhe imaginary parts were poorly constrainéd; since only

elastic scattering data was used. Therefore only ImSO and ImDO were

left free to fit the data, while the other imaginary parts were fixed

at reasonable values. The choice of the "reasonable values" was

guided by considerations of smooth enefgy dependence, unitarity

(i.e. Im sgi > 0), and, in the later stages, Eg. (35) for DZ with

fitted optical model wave functions. The necessity of making some such

afbitrary choices is easily seen if only the main S and P wave

amplitudes are considered,.and the small Couiomb and D wave amplitudes

neglected. In that case there would be 4 free parameters (say

Re Sz and Im 82 for £ = O,l) but, since the cross section would be

quadratic in cosf, only 3 coefficients could be determined by the elastic

Scattering data. Although our actual case isn't so simple since we do

have some sensitifity to the imagihary parts via interference with the

Coulomb'amplifude, the net empirical result is essentially that the

combination Im}\0 + const X Tmh (const. m 1.5) is well
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determined, while the orthogonal combination Im?»O - Imhl / const. is
undetermined by the data. As a check on the imaginary parts, the absorbtion

cross section was calculated from

o«

. . [ ots )t 2] (29)
cbs(k)= ;5 Z (22 + 1) ;- e ,
£=0 o

and compared with the experimental values.of Block et al, (Fig.E)- The
faif agreement 1ende confidence to the choices made. In any case it ie
the real parts that are significaht for the measurement of the pion
- radius, and their best fitting values &ere essentially independent
‘of the values chosen for the imaginary parts. The only constraint
placed on the real parts was that in the final fit;: ReD2 for 153.2
MeV/c was fixed on a smooth curve passing through the best fitting
values of ReD2 for the other energies. This was the only constraint
necessary to give a smooth energy dependence to all the fit parameters.
Table I lists the final fit parameters (s 2 D ) at a boundary
- radius of R = 3.5F . The corresponding phase shlfts are calculated
from Egs. (24)and(25). Table IT lists some kinematic quentities, the final
X'52 achieved, and some indications of fhe relative accuracy of the
four data sets. At each energy, the data was taken ﬁith all the cross
section points having‘roughly the same percentage experimental error
By = 80(61) / o(ei), so that the fraetionel difference daﬁe points
would have roughly equal errors SA(Gi)f . The inverse r.m.s. percentage

| N
5 = Z 3 (40)
D - |

error p, defined by

=
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is giveh as a measure éfvfhe precision of the cross section data. The
iﬁverse r.m.s._error EZ, defined similarly, specifies the average weight
of the A(Gi) déta points {cf. Eé. %8), and hence the scale of the
corresponding XA' It should be notgd that although the 142.3 MeV/é
data has the highesf X'se, it also has the gréatest statistical precision,
and in fact yields the best fits relative to the scale of its X2. This
is also appérent in Figs. 3 and 4, where the best fit curves calculated
from Egs. (6-12), (25), (26), and (37), using the values of Sz and D,
in Tablé I, are shown with the data points. it should be emphasized at
this poiht that, except fér the assumption that Eq. (1) applies for
r>R, the values given in Table I are a model iﬁdependent fit to the
data. Since the diffefences of the logarithmic derivatives Dz are
determined by fitting the A(ei) data, the proper relationship of
0+(9) to ¢ (6) is enforced in the final adjustment of the average
logarithmic derivativeé 8, to fit the combined cf(ei) and o-(ei) data.
This constraint is absent from a éonventional phase shift analysis that
separately fits the cross sections for éach pion charge. Otherwise the
two methods are equivalent. The fact that the resulting fit parameters
show a smoéth and physically reasonable energy dependence, even thoﬁgh
each energy was analysed separafely, is viewed as further evidence in
favor of these solutions.

The indicated errors in the tables are the deviations in each
variable that produce a 10% increase in X2 with all the other variables
held fixed. These are to be taken as a somewhat arbitrary, but scale

independent, measure of the relative sensitivity of the fit to the

various parameters. The conventional error estimates for fitted

e
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parameters are the déviations thaf give unit increase in X2 above

its minimuﬁ value, which isAsupposed to be less théﬁ the,numﬁer of data
ﬁoints. This was thought inappropriate in fhe present case because

of the mixed way the data was fit, and because of the large X's?
obtained. - Since we are doing a model'independent‘fit equivalent to a

phase sﬁift analysis, the larger than expected X2 suggests under-

~ estimated data errors, possibly systematic. For example, the data

points at 6 = 80° consistently lie above the best fit cross sections
for both charges,‘and the 100° points consistently lie below. These
two angles account for nearly half the total X2 of the oi(e) fits.
When the 142.3 MeV/c. o, data ﬁas refitted without them, the X2
improved dramatically ffom 112 to 48, bﬁt the fittedvvalues of SZ
hardly change (about 1%). It should be noted that this kind of
systematic error, that affects both charges in the same way, tends to

cancel out of the A(6) data that is used to determine the pion radius.

In any case, thé full data set was used in the final analysis.
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IV. NUCLEAR INTERACTION MODEILS

To interpret the empifical values of ‘DB in Table 1 according
to Eq. (35), we need a specific form, such as the optical model potential,
for the nucleér interaction opefator UN’ so that Eq. (21) can be
integrated to brovide a sultable internal wave function. In a multiple

15,17

scattering theory derivation of the optical model, the scattering
vave function of a pion on a nucleus 1is constructed from the pion-
single nucleon scattering amplitude and properties of the nuclear states,
particularly the spacial aensity of nuclebns. The optical potential

is then defined as the equivalent interaction operator, acting on pion

- coordinates only, that generates the same elastic scattering amplitude.

15

In Watson's formulation, the momentum space matrix elements of
the optical potential are, in the impulse approximation, and with negléct
of nuclear correlations,

1 > d3
(2r)

(ol = x o(x) 2B TR (e (g, 5]
(42)

All that remains of nuclear structure in this formula is the density of

nucleons p(x), normalized so that p(X)dBX is the number of nucleons

in the volume element d3x. The amplitude, averaged over spin and

isospin, for any one c¢f them to_scatﬁer the pion from incident momenfum

k to final momentum k' is f(k, k'). The exponential provides that’

each volume element contributes with the proper phase to the total

amplitude.
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The coordinate space matrix elements of this optical potential

. are obtained by Fourier transformation. In Dirac notation

<<~I;|1.§,> = (2?'[)"5/2 e E) we have -

(2l Y I (el (s iz . (143)

Since (5J5} = <£J§>* = (5[-5)) and k and k' are dummy integration
variables, we see by inspection that (r"Ule) satisfies the symmetry

condition of Eq. (28) provided

£k, - 5) = £k, k') . - ()

v

In terms of a partial wave expansion

©o
‘ AOA n
£k, k') = > (2£+1)a (k, k') P,(k - k) with k=z[k| , k= k/x
£=0

| (145)

this only requires the partial wave amplitudes be symmetric in %k and k'

az(k, k') = az(k’, k) . ' (46)

This is trivially satisfied on the energy shell where k = k' . Thus the

symnetry condition of Eg. (28), which is essential to the derivation of

the key Egs. (34%) and (35), is translated in the optical model forralism

)
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into a symmetry condition Eq. (46) on the off shell behavior of the pion
nucleon partial wave amplitudes. In Eq. (44), this condition takes the
form of an off shell extrapolation of time reversal invariance.
Kisslinger's optical potential is a convenient and widely used
approximation to Egs. (hé)through(h5). It consists of keeping only the

first two partial waves of Eq. (45) in the form

“hrf(k, k') ~ b+ck -k, (b7)

where D and ¢ are certain linear combinations of the S and P vave
scaﬁtering lengths. All of the integrations in Eq. (43) may then be
done eXpllcltJJ, yleldlng finally an 1nteractlon operator whose effect

in coordinate space representation is

gy = vo(m) Wz - T (olo) 9¥ (x)
| (48)

The wave Eq. (21) then becomes

[sz C (e or) g - U(r>] (z) = enct v(x) ¥Wx)
(49)

where U(r) = b p(r) is a local nuclear potential, and oa(r) = cp(r)
is a non-local interaction term. The local nuclear interaction 'U(r)
is dominant in the S wave and is repﬁisive. The non-local interaction
operator -V + oV 1is attractive and dominates all higher partial waves.
The Ericsons have refined the model, taking into account more details of
nuclear Structure and pion-nucleon interactions, but finding the same

general form of wave equation.l7 For our purposes, b and ¢ may be
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considered complex phenomenological constants to be determined by the
data. When Eq. (49) is resolved in partial waves by the substitution

tha) = Xﬂt(r) Yzm(Q) the resulting radial equation is

ax ©

a £
dr

dr

re(l + Q) + e |2 -'U(r) - enktv(r)

(1 +a(r)) oz ; 1) th(r) =0 . (50)

r

It is eV1dent from the form of Eq. (50) taat both XZ
ax
ﬁﬂ =r (l + Q) —Eé must be continuous everywhere, and so (except

and the gquantity
where X£ = 0) must be

t t t S
ME) = 1w g/, (r) - 1+ (L+a) -
(51)
This generalized logarithmic derivative 1s consistent with Eq. (23) a

the boundary r = R where ofR) =

We take a QGaussian form

o(r) = A n-B/EIaN;5 exp (- re/aN2 > » (52)

for the Helium nucleon density, and assume it has the same extent
(aN = 1.34 F ) as the observed charge distribution. (Fig. 1).
With b = bl + ib2 and ¢ = cy + ic?, there are 4 real parameters to be

determined. Computer Programs were written to numerically integrate

Eq. (50) for t =0 with the expectation that b and ¢ could be adjusted
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so that the calculaﬁed Xzo would match the complex empirical values of
Sé for the 5 and P waves listed in Table I. (Some of the formulas
used are discussed in appendix B.) As expected, b was determined

mainly by SO, ahd cq by. Re Sl' For these values of b and ¢y however,

there was no value of <5 that would give the empirical value of TIm S

lJ
essentially because of a discontinuity in Kﬂ._at c2'= O. There is, in
effect, an intrinsic imaginafy part to Xﬂ’ having the same sign as Cos

that remains even in the limit b, = 0, cé - 0. Cbnséquenfiy, as ¢,

pésSes through zero in the search routine, Im A Jumps from a value well

1
below Im Sl to a value well above it; the emp;rical value lies in

the excluded region. The soﬁrce‘of this discontinuity is shown in the
appendix to be the singular point r in the radial Eg. (50) where
L+ofr)) =0. If c,=0,and &0) = cp(0) < -1, r,  will be in the
nuclear éurface where the density has fallen to the value p(fo) = - l/cl.
(From Table III, we have Re o(0) ~ -2) The radial wave function in this |
,caée has a 1ogarithmié branch point at . rO; and so an imaginary part for
r >-ro. whose sign depénds on hdw the singularity is handled. 1In

general the singular point will be at the complex value of r, for

‘which p{r ) = - 1/(e., + ic.), but for small c. will still lie very
P o) 1 2 k .

2
near the path of integration élbng the real r axis from O to R, and
will still have a profound effect on thé wave function. In particular,
the intrinsic imaginary part to the logarithmic derivatives calculated
from the Kisslinger model means that b2 and 02 are really arbitrary, and
cannot Ee determined by fitting absorbtion data.

Even though the Im Sl listed in Tabhle I are not really well

determined by the data, this is still a serious difficulty in principle
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with the Kisslinger model, at leést as it applies to Helium. It means.
that, When this wave function branch p01nt effect occurs, the Kisslinger
modﬁl cannot properly account for absorbtion phenomena.

~ For our present purposes however, all we really require is a set
of radial wave function; <Xzo(r) (1= 0,1,2) éatisfying fhe boundary
conditions hzo = Sz, to be used to interpret the empirical Dﬂ's
according to Eq. (35). To this-end, ﬁe have adopted the following ad hoc
procedure. The ihaginary partbof the'vP wave logarithmic derivative,

Im S was temporarily replaced by a fake value Imzsl’ vlarge enough

1’
to_permit'é sélution for (b,é) that satisfies the corresponding modified
S and P wa&e boundary conditions. The result is giVen in the first 3
columns of Table III. Then with c¢ fixed at the vaiue so determined,

the cémplex'parameter b was readjusted separately for each partial wave
£o exactly satisfy the original empirical bounaary conditions. For the
3 wavé there was, of course, nb changé in b. For the P and D waves
we fiﬁd b2 >0, to paftially cancel the anomalously_large negative Im Sz
resulting from the singﬁlar point. These values érelgiven in the last
two columns of Table IIT. We refer to this solution in the nextvsection
as the "modified Kisslinger model". At 142.3 MeV/c, a fit was also done
with ay = 1.27 ¥ as a check on the sensitivity to nuclear density.

For a simple alternative solution, the same programs were used
with ¢ = 0 to fit a local potential to each partia; wave. The
varameters of this local model ére given in Table IV. Fig. 5 shows'the
real part of fitted weighting functions

. 2 e
y 2@ = e ) /Rx (z)
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for boﬁh models at 142.3 MeV/c. The peculiar bump in the Kisélinger
model wave functions, ocburing at r = ro = i.lF"fof 8y = 1.34F s ié
.another manifestation of the singulér point 'Re @ = -1. The local
potential solutions are well behaved as expécted. Since the true physical
wave function presumably does not have logarithmic branch points, even if
the local potential interaction itself is unrealistic, the weighting functions
it generates may be the most realistic; especially since all possiﬁle
weighting functions must satisfy the empirical boundary conditions of

Eq. (36). In fact, Lepore and Riddell have shown by direct numerical
solution in momentum space of thejpartial wave SchrSdinger equation

for the optical model interaction‘Eq. (42) that the singular point

effects in the wave function disappéar if the coeffibients (b, c) of

Eq. (47) are given a gradual cutoff for large k and k'.18
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V. DETERMINATION OF THE PION RADIUS

Given an internal wave function ygo(r) that satisfies the
conditions of Eq. (36), and a formula such as Eq. (18) or (20) for the
internal Coulomb potential v(r), we may.caléulate Dz as a function
of rﬁ. Since we have ﬁwo nuclear models (Kisslinger and local) and two

ﬁion_shapes (Gaussian and Yukawa), there are four cases to consider.

Fig. 6 shows the calculated ReD, vs 'rﬁ. at 142.3 MeV/c for the first 3

y/
partial waves. The calculated curves for free waves (i.e. Xz(r) =
spherical bessel function) are also included to show the effect of wave
function diétortion by the nuclear force. The nuclear force is re-
pulsive in the §° wave, attractive in higher waves. This results inv
a decrease in ReDO and an increase in ReDz for 2 > i from their
free wave values. To show thé dependence on the pion model, the S
wave curves are drawn forvboth pion charge'distributions. The two‘
distributions are of course identical at rﬂ = O; but for large pion
radius, the Yukawa model(Eq. (20)) gives the larger value of Dy
corresponding to a deeper central value of the Coulomb potential. The
effect of the nuclear model onvthe calculated values of Dz is also
exhibited. For the same internél Coulomb potential, the modified
Kisslinger model wave function yields a value of ReDO some 6%

larger than the local model. Fbr the P and D waves, where the internal
wave function is more dominated by the centrifugal potential, the nuclear
model dependence of ReDz is 2.8% and 1.6% respectively.

The horizontal bands are the empirical values of RéDz from:

Table I, with the deviations that cause a 10% increase in XAE. The
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pion radius for each model may be read from the intersection of the
computed curve for RéDO with the data band. This indicates.a
surprisingly large pion radius of betwéen 2and 3F . With the pion
radius so determined, the calculated ReDz for the P and D waves:
lies somewhat.above-the corresponding data bands. Nevertheless, thé
numerical agreément is close enough to be taken as some confirmation of
the basic Egs. (34, 35, and 36). Note thét_without the wave function
distortion by the nucléar force, there‘would be no agreement on the value
of rn among the partiél waves.

For a data fit completely consistén%rwifh a given modél, we
compute Dz for all partial waves as a function of pion fadius, and
using the empirical values of S, from Table I, plct &AE vs. r_ (Fig. 7).

The values of XAQ and rjt at.the minima, with the deviations Ar&
thét cause a 10% incréase in XA? for the various models, are listed

in Table V. Some of these values of r, are also shown in Fig. 6. The
minimum values of XA2 are larger than for the model”independent fit

of Table I because of the additional constraint: the P wave is well
determined by the precise data in the minimum, and it disagrees slightly
with the calculated &alue for each model. The following remarks may be
made about Fig. 6 and Table V :

(i) The 142.3 MeV/c data again has the highest X 2 (around

A
60 for 15 data points), but has the sharpest minima, reflected in the
size of the Arﬂ.
(ii) The modified Kisslinger model gives pion radii about

Ao~ 6 F larger than the local model with the same pion form. Since

the wavefunctions generated by these two models are about as different
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as possible within the constraints imposed by the boundarylconditions
at r=04dnd r = R, we may estimate that the uncertainty in r due -
to the nuclear model dependence is S 0.6 F.

(iii) In the 2 to 3 F range, with a given nuclear model, the
exponential pion model indicates an rJT about 0.2 - 0.5 F bigger
than the Gaussian pibn model. This is a measure of ﬁhe uncertanity in
r_ due to choice éf pion shape.

(iv) A1l four energies are consistent, with perhaps a slight
tendency for the higher energies to require a bigger: T, to fit.

Figure 4 shows that data and caléulated values of A(6) at each
energy for the best model independent fits (Table I). The curves for
the best model dependent fits (Tables ITI, 1V, V) are very similar,
although they give somewhat higher ng. The curves‘for r. = 0
calculated with the fitted Kisslinger model wave functions are shown for
comparicon. These gave the highest calculated ng'(cf. Fig. 7). A1l
this shows that A(6) is too small in the forward direction, or
éorrespondingly, that c+(9) is too close to o (6) to permit a small

value of rn .
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VI. CONCLUSION

Within our basic assumption that the Coulomb potential Eqg. (15)
is the enly charge dependent interactioh in the generalized Klein Gordon
BEq. (21), data analysis indicates a surprisingly large rTt of>2 to 3 F.
AThe boundary condition method effectively reduces the uncertainty in r
due to nuclear model dependence to about the level of the uneertainty due
>to experimental statistics. Tﬁe use of the exact external (r > R)
solution of the radial wave equation avoids the long range Coulomb
divergence difficulties. EVidently then, fhe large pion radius result
1s inherent in the data and our basic theoretical assumption (Eqs. 15, 21),
and is not due to either calculational difficulties or the detailed choice
of nuclear interaction model. In view of the disagreement‘with the simple
vector dominance model prediction of vr = 0.63 ¥, some comments on
pos31ble alternatives are in order:

(i) We have taken relativity explictly into account only in
the kinematics used to calculate k and‘ n Oniy7the instantaneous
(Coulomb gauge) electrostatic potential is included in +the eqﬁationAof
motion. The magnetic field seen in the center of mass (CM) system due
to the recoil motion of the nucleus is neglected. Rix and Thaler19
suggest that k and n be chosen for the relativistic two body problem
so that the pure Coulomb amplitude Eq. (7) agrees to first order with
the covariant Feynman Born amplitude for the electromagnetic interaction
of two spinless bosons. This leads to 2kn = 2Ze (ElE + k )/ E + E ),
where El’ E2 are the CM energies of the two particles, and k is
the CM'_momentum. Our formula differs only;in the absence of the k2

. : 2
term from the numerator. (This k° term presumably represents the
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magnetic contrlbutlon ) Another alternatlve would be to neglect nuclear
recoil motion, and use the Lab momentum and velocity of the pion to
compute (k, n). Magnetlc interaction would then be strictly zero,

and the Klein Gordon eéuation in a Coulomb field woﬁld govern the long
range motion of the pion; Both these alternatives give a value of 1
about 2 to'3% laiger fhan ours, and lead ultimately to a small increase
in the measured value.of .

(ii) The assumption of exact charge independence of the nuclear
interaction operator is crucial to this whole approach to the measurement
of ro. If the nuclear interaction of ﬂ+ diffefed slightly from that
of ﬁ—,'there would be a direct strong-ipteraction contribution to the
logarithmic derivative difference Dz (Eq. 25). Ilet UNi be the

+ _
nuclear interaction operator for 7, and assume that the difference

AUN = U UN— is a local operator. Then, by the derivation leading
to Eq. (35), e have D, - D, (r ) + ,e , where Dgc(rﬂ) is the

pion radius dependent Coulomb contribution given by Eq. (55), and D)eS

is an additional strong charge asymmetry contribution given by

R
R N
DS = = AUN(T) Y, (r)| dr . (53)

The experimental values of Dz from Table I are now to be interpreted

according to

- Dgc(rﬂ),+ D, . o (54)
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Any combination of r and, AUN that satisfies Eq. (5&)[Via Egs. (3%) and

533'will agree with the data. The values of r. given in Table V are

‘based on the assumption that Dzs = 0s Since ch is a decreasing

. i )
function of r (Fig. 6), we require in general D" <0 (UN+ < Uy ) to

fit the data with smaller valﬁes of ro- For example, using the local
' s

o

~1.13 to bring the

fie

model wave functions, it would require ReDO
1h2.3 MeV/c 5 wave data into agreement with r.o= 0.63 F. Evaluation
- of BEq. (53) on the assumption that Uy (r) = (b 2 5 Ab)p(aN;r), where
b= 1.1 F from Table IV, and p(aN;r) is given by Eq. (52), then leads

to a fractional strength‘difference Ab/b = + 073 DO

S o ..083.
o .
)s

+ . .
Similiarly, if U_"(r) = bp(aI * = Aa;or we have to, lowest
N \ 2 -
' 0
order a fractional range difference Aa/aN/ x --10 D" =+ .113. At
least for these simple models then, roughly a 10% violation of strong
interaction charge independence is required to bring our fit into

~agreement with the vector dominance model prgdiction for o

(ii1) Finally, although the simple p pole term of the vectér
dominance model Eq. (19a) may well represent the pion form factor for
the large timelike Four momentum traﬁsfers near fhe pole, it is not -
"nece$sari1y sufficient for the small spacelike q2 considered here.
See, e.g. Ref. 19 for an estimate that inclusion of the contribution of

the Al(lf) meson leads to r ~ 1.4 F.
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APPENDIX

A. Simple Relativistic Reduced Mass Formalism

The Klein Gordon equation describing the motion of a particle of
mass m and total energy E in a fixed electrostatic potential V(r)

may be written

V¥(r) = [13 - 28V(r) +*V2(r)]\,]f(r) L, (1)

wheré k2 = E2 - mg. This is used, for example, to calculaterwave-
functions of a pion in the Coulomb field of a heavy nucleus. The assumpfion
of fixed potential then corresponds to neglect of nuclear rééoilvmotion.

To include this recéil motion requires invprinciple the soiution of a

two body p?oblem. This is easily accomplished in the non-relativistic Jimit
where the introduction of center of mass and relative coordinates reduces

it to a pair of one body probleﬁs. In the cenfér of mass (CM) system,

the relative coordinatg E=ZX1 "% of_the.two particles (masses

’ml, me)_ ﬁaries as if it were‘the coordinate pf a single particle having

the reduced mass
MR = mlmg/(ml + m2) s ' (a2)

and moving with the actual available energy E in the fixed interaction

CM
potential V(r). The fully covariant two body problem however is in.
principle much more difficult, and is not attempted here. Nevertheless,
for many applications a simple generalization to relativistic kinematics

of the familiar reduced mass formalism outlined above would be useful.

One such generalization is suggested iﬁ the following.
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We begin by reviewing the nonrelativistic case in & form that has
an easy'relativistic analog. In the center of mass system where both

particles have momentum of magnitude p, the total kinetic energy is

. D . .p- oL . , o
Tow = mot 2m, Egg - V(x) . - (a3)

The reduced mass MR is, by definition, the mass a single particle must

have if its momentum is p and its kinetic energy T, , i.e.

CH
bR = pE/ETCM. Its role in the equation of motion is to give a single

particle like appearence to the actual relation of p to E and V(xr):

CH

_ 7 - Al
P = 2 (ECM v(r)) ) (AlL)

On quantization in the coordinate basis, p2 is represented by - Vﬁ,
and Eq. (AlL) becomes the time independent SchrSdinger equation for a

particle of mass byg @nd energy Eoqy 1in a fixed potential V(r). -

,vzw(r) = QHNR (ECM - V(rfvw(r) . i (A5)

The wave function ¥(r) satisfying Eq. (A5) is interpreted as the
_ probability amplitude for the interparticle seperation r. Now for a
relativistic analog of Eq. (A3) we assume that in the CM system, the

nomentum p of either particle satisfies

1/2 /e
W= <p2 + m12> + (p2 +.m22> +V(r) , (a6)

 vwhere W gis the total-energy,'ihcluding'rest energy m1~+ mP.
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Equation (A6) may be solved for the classical momentum p as a

function of r, yielding

vbp - F(I‘) ’ . » o . | (A_['d)
Pz B%V - V(r)32 - (ml + mQ)E} [(ﬁ - V(r)>2 - (ml - mg)g]
o | LW - V(r))?
(ATb)

This is the relativistic analog of Eg. (4). The corresponding wave

egquation is

FUg) = Fm) Wg) . (AB)
In order to compare Eq. (A7) and (A8) with the relativistic single

particle Eq. (A1), we expand F(r) in powers of the potential V(r):

2

F=Fy+FV+ FQV‘ +R(V) (A9a)
where _
[WE - (ml + m)2:| [W2 - (m, - m )2}
, 2 . 1 2 .
Fo= : 5 ;o (A90b)
hw
_ Wu —v(ml2 - m22)?
Fo= -2 (49¢)
2 iy ’
g, 5(m12 i m22)2 |
F2 = l;. 3] (A9d)
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andr

2 20
(bw - 3y
R(V) = 1 2 : v | (A9e)

(w - v)2

Equation (A9) is easily verified to be an exact algébraic identity.
Comparison with Eq. (Al) indicates that the asymptotic22 momentun of

the equivalent single particle is given by k2 = FO = lim F(r). This
V=0

is the usual relativistic formula for the barycentric nomentum of two
free particles with total energy W. Of course it &also follows directly
from W = El + E2 where the asymptotic single particle energies Ei

are given by

i W2 + m 2 m 2
2 2 |2 1 T
E,o= k™ + my = 57 s (Al0a)
1 2 2
— W™ +m - 1
(.2 2 _ 2 1 ,
B, = (K7 + m,, = 57 . (A10Db)

E=z - % F. = : . (A11)
W

With use of Eq. (A10) this may be rewritten as a "reduced energy"

EE :
jE = __]____2___ . : (AlQ)
f E., + E : .
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The terms higher than 2nd order in V are collected in the explicit

remainder

(A13)

For potentials V << W (the usual case), this remainder may be treated
as a small perturbation, or neglected entirely. Then Eq. (A8) may be
approximated'by

_vgw(g)_: [k2 - OF V(E) + |1- %E VQ(E)] W(r) ,  (Alk)

where the definition. of E has been used to simplify the  V2 term;
Equation (Alk) is»ﬁhe relativistié analog of Eg. (AS): both represent
the reduction of relative motion in a two body systém to an equivalent
one body system. Thé reduction is exdct in the nonrelativistic case, but
only approximate in the relét;vistic case. in particulgr, the V? term

in Eq. (Al4) is somewhat smaller than in Eq. (A1), and terms of order
)

T have been omitted. : ' -

'In the nonrelativistic éase, the introduction of center of mass'

and relative coordinates may be done with equal result either before or

after quantization. The same may not be said for the relativistic case.

: 23

oldberger and Watson

=)

1)
2

[03]

for a discussion of the conditions on V
under vhich the Schrddinger equation for the scattering of a relativistic

beam particle on a massive ( nonrelativistic) target may be reduced
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to an equivaient one body equafion similar to Eq. (Alh).

The definiﬁion Eq. (Ala)vof,thé equivalent energy;also has the
reasonable COnsequenée thatIthé'asymptotic.vélocity: B =Kk/E of the
equivalent partiéie is juét thevasymptotic relative vglocity of the two

actual particles:
BB+ Bé where g, = /z, . : (215)

If a s:ngle freé particle were to hd§c momentum - kigaﬁd total energy E,
its mass would have to be_':' | .
e [ N2 5

9 (ke) = Eg'- K° = B |1~ 52 . (A16)
With fhe E rand k given above Eq. (Al6) deflnes a relat1v1st1c analog
oP the reduced mass. It has in’ general a ra+her compllcated momentum
dependence, but obviously approaches (. (E (A2))for k << m s M,
Note however that onlj E and k appear in the wave Fq (A1L); it itselfl
is not needed. - .

Equation (A14) is based entirely on the assuﬁptionvthat Eq. (46)
holds in the barycentric system. No'comment on the Loreﬁtz transformation
pbroperties of V is intended beyond the remark that the other terms in
Eq. (AG) are the time components of four- Vectors; as is the V in Eq. (A1).
Although its derivation is'rather-heuristic, Eq. (A1k) héé the following
desirgble properties:’

' (5) It . is symmetric in the masses m

l} mg .’".

{v) For e, My 3>k, VUit becomes the Schrédinger Eq. (A
. =L oo B

o=
A1
)

F1EN Tediand 1 ac
with reduced mass MR
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(c) For m_>n k,V, it becomes the Klein Gordon

2 1’

Eq. (Al) for a particle of mass ml in a fixed potential V(r).

(d) As V- o it'reproduces the standard barycentric
relativistic kinematics of two free particles of any energy.
We therefore adopt Eq. (Aih) as a generalization of the Klein Gordon
equation to include the kinemgtic effects of the recoil motioh of the
target nucleus. For our problem (~150 MeV/e pions on Heu) neglect of
this nuclear recoil motion leads to about a 5% increase in k, and_a

2.55 increase in the Coulomb parameter n-Za/S We have

m, = = LO M m. =M, = . MeV. ere c
n,o=mo= 139 6 MeV, m “He 3727.6 MeV and VC(r) < 2 MeV. Therefore

; - o -l
the remainder term R < bx 107 V2 and V%S 2 x 107" k2, so both are

neglected in Eq. (1) of the text.
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APPENDIX
Some Computational Technigues for the Kisslinger Model
justing

In this appendix, we list some formulas useful in the practical

B.
problem of 1nFc0rating the Kisslinger model radial equation and ad
tne nuclear interaction parameters to make the resulting wave function
1. R just outside
is

assigned boundary conditions at some radius
Local potential models are of course included ag the

'1dentically Zero.
pair of coupled linear first order differential equations
‘ (B1a)

sat'.fy
the nucleus. ‘
special case where the gradient interaction function afr)
It is convenient for the follow1ng derivations to
split the hlssllnger model radial equation Eq. (50) of the text into a

2 ax
r (i +or) >

(Bib

¥(r)

Qr)x(r)

ay _
(Blc)

dr

where
E(U r) - kg) + ML+ 1 (l + a(r»

Qr) =
This form was also necessary for the numerical integration routine
Given £ _k2, U(r), and o(r), this

(Berkeley ZAM) that was available.
routine was set up to generate the solution with the form
near the origin (r =0). The logarithmic derivative

X(r) ~ censt.vx r
this wave function, defined as (cf Eq. (51) of text)
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relr (e el o ym/E) , (ee)
r=R : ! :

depends implicitly on the choice of U(r) and a(r). To investigate the
changes in A due to changes in (U,a), we compare the solution

_ : A A
(X,¥) of Eq. (B1l) with the solution (X,¥) generated by an alternate

AN A
choice (U,q):
X ;3 ete. . (B3)

By usual multiplication of Eq. (Blb) by X, Eq. (B3b) by X, and

subtraction we have

N , A A A .

X ¥'= Xy = (Q - Q) XX - . (Bha)
Use of Egs. (Bla) and (B3a) allows this to be rewritten as

A A AN A B

= =x8) = (@-Dx s P -HY v (BUb).
. _ | A
Integration from O to R, and division by RX(R) X{R) +then results in
~ an exact formula for the logarithmic derivative shift due to the change

(w0 - 3,8

A _Q = <IU(R) + Ia(R)> / (R;\((R) X(Rs) PR (B5a)

I,(R) = [U(r) - ’I\J(r)] r? Q(r) X(r) ar (BSb)
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and ' _ ' | K

I(R) = [a(r) - (o)) [2 + 1)§‘<(r)x<1.~3+ 24 ;«(ﬂ] ar .

vThis general formula has several interesting special cdses:

(i) 1 &(r) = ar), B(r) = UN(r) + t'2nkv(r) and U(r) =
UN(I') +'t 2nkv(r), then Eq. (B5) reduce to Eq. (30) of the texﬁ, leading
directly for this model to the formula'CEq. 55).fo¥'the Coulomb difference
Dﬂ.

(ii) With the same (U,a), but @ = G = 0, the comparison
solution is just the spherical bessel function: Q(r) = jz(kr). Then,
after a partial integration on I, (utilizing Eq. (B3b) and assuming
a(R) = 0), Eq. (B5) yield an integral representation for the neutral
(t = 0) logarithmic derivative in terms of the norméiized internal
wave function y(r) = rX(r) / RX(R)

KR ,(kR) rjz(kr)(UN(r) N Ka(r)) - krjfz(kr)a'(r)

A= 1+ — + | dr y{r)

J KR JZ(kR)

(B6)
Of course if X(r) were known, A would be given by Eq. (B2). But
conversly if A were fhelkndwn'quantity (e.g. Table I), y(r) would
be strongly constrained (cf. Eq. (56)of text) and Eg. (B6) could be usea
to display the contribution to A of the various terms in the wave

equation, Similar formulas for the other charges (t = * 1) may be .
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derived using ‘a(r) = 2nkt/r. Then (kr)jﬂ(kr) is replaced by the
regﬁlar Coulomb function Fz(tn;kr), and Eq. (B6) has an additional
Couiomb term. -

(iii) Suppose U and @ depend on a set of parameters
s = (sl, Spy eeees > 8.): U= U(s;r) and @ = a(s;¥). Then the logaritimic
derivative A(s) will also depend on these paramétérs, and Eq. (B5)
may be used to construct the derivatives bx/BSi from a single
calculation of the wave functionv X(é;r). This permits the use of
efficient gradient type iteration ﬁethods to adjust the parameters to

match an assigned value of A. Taking U = U(Qﬁr) and & = a(@}r) where

D= (sl, SYRERETRRPIE Asi, ceenay sn) s, in the limit As, = 0
we have

- A

X = X(s3r) — X(s;r)
and

QX X 2 U , ’ o
% RX(R)Z o EX(?)] &, f'[”(z + 1)X(x)
0 .
+ (%X'(ri)e] 22_ . | | (57)

os ,
1

In Sec. IV we used U(r)»:(bl + ibe) p(r) and ofr) = (cl + icg)p(r). The
pararmeter set is s = (bl’ bys cys 02), and Eq. (B7) was used with
BU/Bb1 = p(r), ete., to fit the calculated \'s to the empirical ones.

Note that if Uand a are analytic functions of avcomplex variable
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Z = sl + isg, and so satisfy the Cauchy-Riemann.conditions

(BU/BSEY= iBU/le, etc.), then AN z) is also ana;ytic in 2z because
1t also satisfies these conditions. The one restriction to be observed
is that if the parameters are such that X(s;r) has a branch cut

(cf. Appendix C),' % and 5 must be chosen on the same side of the
cut to achieve 2 - X in the limit 8 - s. In this connection, note
fgét substituting thé complex conjugates of U and ¢ into Eq. (B1) does
not necessarily generéte the complex éonjugate of ‘X. Therefore use of
Eg. (B5) to construct A - K*'= Ei. Im N must be done with caution.

These restrictions are not necessary if ofr) > -1. everywhere, as in

the special case of local potential models where alr) = 0.
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APPENDIX

C. Analysis of the Kisslinger Model Singular Point for Real a(r).

The radial Schrgdinger Equation for the Kisslinger model of pion-

nucleus interactions has the general form

2 [re(l £ ofx)) %] + [I‘e(ke ) - (1w ale)) Al s _1)] X =0 .

(c1)

The complex non-local iﬁtéraction COefficient a(r) is in general
prOportiongl to the nuclear density' p(r), and vanishes outside the
nucleus. We take for simplicity va(r) = Cp(r) where ¢ = cl + ic2 is
a complex constant. The essential features of the following argument
remain valid,'however, for more complicated forms of d(f) such as those
given in Ref. 17.' Equétion (1) has a singula% point Ty whére

1+ a(ro) = 0. If cy =YO, and a(0) = clp(O) < -1, this singular
point will be in the nuclear surf;ce where the density has fallen to the
~value p(f;) = -l/cl.' If ¢, ¥ 0, the singular pointlwill be at the |
complex value of r_  where p(ro) = ~1/c = ( ey ¥ ice)/lcl2. For the
Gaﬁssian density distribution, and presumably in general, Im rd has

the opposite sign from ¢ for c, <O, ro lies above the real r

2" 2
axis, and comes down onto the axis as e, 0.

To investigate the effect of this singular point on the
Kisslinger radial wave function, we apply the classical analysis of

second order linear differential equations as given in Ref. 24. Writing

the radial equation in the form

X" 4 p(r) X' 4 q(Ar) X=0 . (c2)
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we find that both

2 a'(r) k5 - U(r)- L(£ + 1)
p(r) = r 1+ alr _and o(r) = 1o+ o) - 2 ?

r
(c3)
have first order poles at r = ro. Substitution of power series
: N2
expansions about r  for ( r—rb) p(r) and U“i%) a(r), and the
form

oo

ylz) = (x-x )P |1+ Z ar&r-?o)n , o (cn)

m=1

for X into Eq. (C2) then yields a set of recursion formulas for the
a - The first of these is the indicial equation whiéh turns out to be

52 = 0. Therefore y(r) is analyticat r:

(r- rd)d + ..., (C9)

‘y(r) = 1 + al(r -vro)‘+ a,

and, since the indicial equatlon has equal roots, the second independent
solution must be sought by variation of parameters., Writlng it in the

..form w(r) = &(r)y(r), we find on substitution in Eq. (C2) that

: 1 .
2201 + o))y (r)

erf-'l-
Lo 38 10
i
N
Q
[6)Y
pa—g

This means that since 1 + a(r) has a simple zero at_;ro, t'(r) has
a simple pole there,band ¢(r) has a logarithmic branch'point} The

general sdlution of Eq. (C2)
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X(r) (@ +Bg(r)3y ) | (c7)

where A and B are arbitarary constants, £hen also has a logarithmic
branch p01nt at ro (unless B =0). DNow the physical solution of the
radial equation must start at the brigin as X(r) ~ const. x rg. We
want to propagate this solution outwarq along the.real- r axis té the
boundary r = R, using the form (C7) to crbés fhe singular point. The
conétants (A,B) are determined by the contlnulty of X(r) and

Wr) = r (i + a))X' at r=r =7r_ -Ar

1 (¢]

y(r) Wr) - x, (1+ar>3y ) X(r)

o
!

(c8)

=
fl

X(r ) fy(x)) - BE(r ) .

Since y(r) and X(r) both satisfy Eq. (C2)y B is actually independent

of ry- The same continuity conditions are used again at r = r, = ro + Ar

to obtain the values of X(rg); ¢(r2) needed to continue the integration:

)
X(x,) = ;’Tl% © X)) v rn(eny) - o))

(c9)

11:(1*2) = .‘)7-11‘_27 [Bv + rgg(l + a(rg)\y’(vrg) X(re)] I
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We therefore must somehow evaluate the singular integral

I(Ar)

]

dr '

E(rg) - §(ri) = r2(1:+ a(rd} Y(T)e

r - Ar
o]

(c10)
o - Tmay be explicitly sepérated by a partial ffaction'
expansion of the integrand.

The poie at r=r

Writing the denominator in the.form
(with z=171 - p )

in

50+ a(e)) A(2)? = s + 2 n(2) |

) | (c11)

— 21 - 2 ‘ ) )
we have g = r o (ro), and h(z) hO + hlz + hgz + .... , where

5 a'(r )

A o 2 1 )
hO = 2ro T + U(ro) j k" + T @ \ro) , ete
(c12)
Then
AT
1 1 h( z) -
I(ar) = . z T T zanaT | dz= Il + I2(Ar) .



~52-  UCRL-19216

The second integral, _IE(Ar), is a.dull, well behaved function of

Ar. To lowest ordér in r it is

Iar) - 22 Ar s Gy . (cw)
) g } ]
To evaluate Il “however, we~mﬁst detour around the pole in the integrand.

For a continuation of the solution when the pole is above the axis

(cé < b), we use the z-plane contour

O A
Then I. = +in/g. Similarly, for a continuation of the solution when

1

bég > 0, we must go above thelpole.' This yields Il = —iﬂ/g.
Substituﬁiﬁg all this back into Eg. (C9), and expanding everything to

lowest order in Ar, we have

X(rz) = X(rl) + 2%3 ;w(rl)'f 2Ar'[al(lgi iv%). X(rl) + ES W(rl)] + oue

(C15)

+ e 5 N

3

Wry) = \lf(ri) +'2élAi" [(-1 * i %). W(ry) + gX(rl)]

where the upper“sigh éorresponds to_contihuation from negative Ch and

a, = (U(r) - kg)/a'(ro) .

Thus even if the radial wave function X(r) started off real for
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small r, as it‘cbuld if'the optiéalvpotentials Gf(r) ( )) were
real, it would dcvelop an: imaginary part on Dropdgatlon through the
singular point ,ro. Consequently the logar1thm1c derivative at the

boundary R > ros deflned oy ’

MR) = 1+ WR)/RX(R)

will be complex éven in the limit of a real optical potential. And since
the sign of its imaginary part depends on whether _62 approaches . zero from
above or oelow Im MR) will have a dlscontlnultyiat c, = 0. If we
let 'U(r) = b p(r), and consider X(R) as a functnon of the two COMPlPA
variables b= b, + ib, and c = él + ie,, we have in general
k(b%,'c%) = K%(b,c). This implies that when the Jocal potential is
complex b % 0), Re A (R) aluo develops a dlscontlnu1+y at c, = 0.

The conclusion is then that the Kisslinger model‘Wave<function
X(r) and its logarithmic derivative A(R) are in genéral not continuous
functions of thg iﬁteréction parameters b and q, ﬁhere being in particular
a discontinuity in A(R) as c, = Im c passes through zero. Since
I, = %4 /e, vhere g é'roga'(ro) = - rozp'(ro)/p(ro), this dis-
continuity depends inversly on the gradient of the nuclearkdensity at
the singuiar poiﬁt. These wave function branch point effects will
evidently be absent in only 3 cases:‘

(i) 1f «a(0) = clp(O) > -1, there is no éingular point neaf
physical values of r.‘ |

(ii) 1If B = W(ro) = 0, (Eés. (c7) andv(C8)) the singular component
is absentjfrom the.physicéi solution. | | |

(1i1) In the limit of a uniform square well nuclear Sensity

distribution, g - © and Illﬂ 0.
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. Table I. Model independent fit parameters for 5,P, and D waves

S0 £ Logarithmic derivative avg. and diff. (Sz'Dz) Nuclear phase shifts 5lt (degrees)**
{dev/z) Re's, © ms, Re D, D, Re5,” ms,’ Reo,”  Ime”
1%.2 5 -1.161+0.007 -6.11010.00& 4.1840.21 0.4040.24 -7.320.2 22:02 -9.020.2 2.5t0.'2
1.2.3 3 ;1.92310.008 -0.125%0.008 6.0?10.18 0.89+0.19 ~7.730.1  1.6%0.2 ~3.5#041  2,0#0.1
155.2 3 -2.93140.021 ~0.17220.021 9.9010. T4 1.4520.Th -8.2#0.3  1.520.3 -9.71:0.5‘ 1.810.3
163.0 S ~4,304340.03k. ~0.32610,033 1)‘..6710.'86 2.83+0.88 -8.320.3 1.840.3  -10,1#0.2 2,140.2
130.2 P 0.520£0.004 -0.067 £0.005 1.6120.12  0.13 0.16 8,740.1  1,840.2 8.910.1  1.90.2
14k2.3 P 0.174+0,004 -0.100*10.005' 2.05%0.07 0.17*i0.11 10.910.1  2,630.1 11.140.1 2.810.1
153.2 P -0.191+0.007 -0.154"£0.009 2.2420.22 0,30 $0.32 12.840.2  3.810.3 12.6£0.2 4.0£043
163.0 P ' -0.6110.007 -0.226"+0.010 2.80+0,18 0.55*10.28 14.910.2  5.0#0.3 14,720,2 5.30.3
1%0.2 D 2,100£0.009 -0.013 20.012 0.70£0.29  0.02720.36 1.040.1  0,1#0.1 1.00.1 0.1£0.1
12,3 D 1.921+0.006 -0.015*10.007 0.78+0.12 0.02"10.16 1.5¢0.1  0.110.1 1.540.1 0.2:0.1'
155.2 D - 1.750%0.009 -0.020"£0.010 'o.88“+g.3g 0.05#0.25  2.080.1 0.240.2 2.080.1  0.3:0.2
163.0 - D . 1.568+0.007 -0.022"$0.008 1.00£0.18 0.0k £0.20 2.7+0.1  0.3#0.1 2,7£0.1 0.3t0.1

"These variatles arcvitrarily fixed at "reasonable values" in final fit (see text).

Ea
Listed errors on (SJ'DJ) are the deviations that increase X2 Ly 105. They are propagated crudely

to the phase shifts using Egs. (25) and (26).
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Table III. Modified.Kisslinger model-optical parameters
data  fake c (fB) " readjusted local const. b(F)
set* ImS, 8 wave P wave - D vave
a -0.13  -6.40-0.16 1  1.24-0.26 1  1.16+0.k1 i 3.1540.22 3
b -0.19 -6.62-0.25 i 1.37-0.15 1 | 1.87+0.59 1 3.4240.59 1
b'  -0.19  -6.14-0.10 i  1.28-0.17 i 1.8240.61 i 2.27+0.66 1
c -0.25  -6.61-0.26 1  1.50-0.07 1 1.9840.55 1 3.79+0.47 1
-0.35 -6.78-0.15 i 1.6550.04 i 2.2040.50 i L,10+0.41 1

Model b' has density radius parameter a, = 1.2T F. (cf. Eq. (52)).

The rest have ay = 1.34 P,




data
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Table IV, Logg; model optical parameterg; (c = 0)
' ad justed b(F)'
- S wave P wave : D wave.

1.08 - 0.34 1 -6.47 - 0.92 -12.31 - 0.90 1
01,10 - 0.26 i -6.59 -~ 1.10 -12.70 - 0.92 i
© 1.07 - 0.26 i -6.78 - 1.08 -14.30 - 0.99 i
112 - 0.23 i -6.58‘- 1.36 | -12.39 - 1.12 1
1.13 - 0.27 i ~6.75 - 1.56 -12.67 - 1.10 i
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FIGURE CAPTIONS
Nuclear density distribution p(r)/p(0), and effective
coulomb potentialé' Vc(r) (MeV) fdr Gaussian pion charge
distribution (Eq. (18)) with r = 0,1,2, and 3 F.; Yukawa
pion charge distribution (Eq. (20)) with r =2F. (dashed
Curve);'and pure l/r poténtial of two point éharges (curve
P).
Total absorbtion cross sections (mb) vs. lab momentun

(MeV/c) for = (triangles) and =~ (circles). Solid

symbols are data from Ref. 9, open symbols are calculated

values from fit parameters of Table I.
; : t
Elastic differential cross sections o (6) (mb/sr) vs.
' + ' . .
cos@cM for =7 on Heh. Theoretical curves are calculated

from the model independent fit parameters of Table I.

. + . . -
. Triangles are =« data; circles are =« data.

Fractional difference data A(6) wvs. cosQCM . Curve MI

calculated from model independent fit parameters of Table I;

 Curve for r, = 0 calculated using Kisslinger model wave

functions in Eq. (35).

Real part of normélized wéighting Tunctions

ng(r) = [; Xzo(r)/ Rxﬂo(R):]2 for S,P, and D vaves at
142.3 MeV/c lab momentum. Solid curves for modified

Kisslinger model, dashed curves for ldcal potential model.



Fig. 6.

Fig. 7.
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Re Dza'vs; r (F) for 5,P, and D vaves at 1h2.3 MeV/c
(data set b). .Horizontal bands are déta values and érrors
from model independént fit (Table I). Solid curves (G)
caléuléted from Eq. (35) wifh Gaussian pion charge distribution
using wéve functions generated by local.(L) and Kisslinger
(X) nuélearvinterac%ion modéls. Curves for free particle
wave functions (F) are showm for comparison. Dashed curves
(Y) are for Yukawa pion modél‘(Eq;'(QO)); The "data points"
are. the fitted pion radii ahd errors from Table V. |

2

%A' vs.‘,:ﬁ(F) for Gaussian pion model and both nuclear

models. Iabels:a,b,c,d refer to the data sets at the four

" beam momenta (cf. Table II);
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Fig. 3a.
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Fig. 3d.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

- resulting from the use of any information, apparatus, method, or
process disclosed in this report. '

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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