
Lawrence Berkeley National Laboratory
Recent Work

Title
ANALYSIS OF PION HELIUM SCATTERING FOR THE PION CHARGE FORM FACTOR

Permalink
https://escholarship.org/uc/item/4kf9q83q

Author
Mottershead, C.T.

Publication Date
1969-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kf9q83q
https://escholarship.org
http://www.cdlib.org/


Submitted to Physical Review; 
	

UCRL-192 16 
Also submitted as a Ph. D. Thesis 

	 Preprint 

ANALYSIS OF PION HELIUM SCATTERING FOR 
THE PION CHARGE FORM FACTOR 

C. T. Mottershead 

June 10, 1969 

AEC Contract No. W-7405-eng-48 

RtCEVED 
LAWRENCE 

RADIATION LABORATORY 

AUG 22 1969 

LB; kr• Y I 	) 

OO' .MNTS 

TWO-WEEK L.OAN COPY 

This is a Ubrary CIrculating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 

Tech. Info. Division, Ext. 5545 

/ 	c•) 

/ 

LAWRENCE RADIATION LABORA7ORY 

17 J UNIVERSITY of CALIFORNIA BERKELEY 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• 	
UCRL-19216 

Contents 

ABSTRACT ............... .............................................. 
 

INTRODUCTION 	 • • 1 

THE BOUTJ])ARY CONDITION METHOD . . . . . . . . . .......... . . . . . . . . . . . . . . . 

flI 

 

	

DATA ANALYSIS • 	 • . 17 

NuClEAR INTERACTION MODELS .............. ..... • • • • • • a . . . ...... • . . 22 

DETER1'IINATION OF THE PION RADIUS ........ 	 . 29 

VI CONCLUSION 	 •. 	32 

ACKMOWIDGMENTS ........... 	. 	. 	 . 	.. 	35 

APPENDICES 	 . 	 . 	 .. 	. 	36 

A Simple Relativistic Reduced Mass Forrialism • 	36 

Some Computational Techniques for the Kisslinger 
Model ........ .. . . . . . . . . . . . . . . . . ......... ............ 43 

Analysis of the Kisslinger Model Singular Point for 

	

Real 	a(r) ........ ........ ......... .......... ......• 

REFERENCES AND FOOTNOTES 	. 	 514 

TABlES • . . . . . ............... . . . . . . . . . . . . • . . . . . . . ........ • . . . . .......• . . 56 - 

FIGURE CAPTIONS 	 6 

FIGURES .............................................................. 63 



UCRL-19216 

* 
ANALYSIS OF PION HELITJN SCATTERING FOR TEE PION CHARGE FORM FACTOR 

C. T. Mottershead 

iwrence Radiation Laboratory 
University of California 

Berkeley, California 

June 10 1  1969 

ABSThACT 

Elastic scattering of ic and it on He is analysed for infor-

mation on the charge radius of the pion using a new method based on 

boundary conditions near the nuclear surface. The pion radius entersthe 

calculation via the electrostatic potential of the pion and Helium charge 

distributions, which is assumed to be the only charge dependent interaction. 

Since He is isoscalar the strong nuclear interaction is assumed charge 

independent. Differential cross section data for both signs of the charge 

are fit simultaneously by a program that uses the logarithmic derivatives 

of the pion radial wave function for each charge as free parameters. If 

the nuclear interaction operator is symmetric (i.e. (,'JUN lE) = 

the difference in the logarithmic derivative for a given partial wave due 

to changing the sign of the charge may be expressed as an integral of the 

internal Coulomb potential weighted by the wave function. Nuclear model 

dependence is greatly reduced by the constraints imposed by the empirical 

boundary conditions on the internal wave function. The Crowe Group's 

data at beam momenta of 130 to 163 MeV/c are analysed by this method 

using both local potential and Kisslinger models for the strong interaction, 

and Gaussian and Yukawa pion charge distributions. The results indicate 

2.2< r < 3.2 F, 	depending on theoretical model, with an experimental 

141  



UCRL-l9216 

precision of 	± 0.5 F . In the course of the analysis, the singular 

point difficulty with the Kisslinger model was examined and found to be 

serious. A simple treatment of the relativistic reduced mass (two 

body problem) is given in an appendix. 

I.. 
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I. INTRODUCTION 

The possibility of measuring the pion electromagnetic form factor 

	

by comparing the elastic scattering of 	and r beams on an isoscClar 

target nucleus such as He has been the subject of a series of recent 

papers. 9  The key assumption of these studies is that the strong nuclear 

interaction, whatever its detailed nature, is the same for both pion charges, 

while the Coulomb potential is the same except for sign. This Coulomb 

potential, which is taken to be the only electromagnetic interaction, de-

pends on the charge distributions of the pion and nucleus, and thus on the 

parameters of their respective form factors. The general plan is to 

analyse the differential cross section data for both charges to separate 

the nuclear and Coulomb contributions to the scattering amplitude. If 

the nuclear charge distribution is knowil, the Coulomb contribution may 

then be interpreted as a measurement of the pion charge radius. 

Accurate calculations, with the fewest possible approximations, 

are needed to find the small effects due to pion size in the large nuclear 

scattering amplitudes. It is also essential to reduce the effect of the 

uncertainties in the pion-nucleus interaction by using model independent 

methods as far as possible. With these objectives, two methods of 

analysis have so far been proposed: 

(i) 	Optical model analysis. The emphasis here is on 

calculationalaccuracy.' 3  The nuclear interaction is represented by an 

optical model potential and the Schr$dinger equation integrated numerically 

for both signs of the charge. The parameters of both the optical and 

Coulomb potentials are then adjusted to fit the cross section data. An 

exact Solution is obtained for the given model, but the method mixes the 
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Coulomb and nuclear parts of the problem, so the pion radius obtained may 

depend on the model chosen. 

Coulomb perturbation methods. These emphasize model 

independence.59  The nuclear amplitude is parameterized by a set of 

phase shifts, and the Coulomb Born amplitude, which is proportional to the 

product of the form factors, is explicitly separated out. The method is 

less model dependent than (i), and it avoids the use of Coulomb wave• 

functions, but it introduces an important first order Coulomb-nuclear 

interference ("distortion") amplitude that is given by a logarithmically 

divergent integral. 

A third method of analysis, using the same basic assumptions as 

the above two, is proposed in Sec. II of this paper in an effort to corn-

bine calculational accuracy with model independence. A close fitting 

boundary surface (radius R) is drawn around the nucleus, and the Coulomb 

potential ± Ze2/r is assumed to be the only interaction in the external 

region (r > B). As in (i), the exact external solution of the 

Scbr5dinger equation is expressed in terms of Coulomb wave functions, and 

related to the logarithmic derivative of the interior solution at the 

boundary. These logarithmic derivatives, however, are taken as free 

parameters, thus giving a model independent fit to the cross section data, 

while avoiding the divergence difficulties that arise in perturbation 

treatments of the long range part of the Coulomb potential. The interior 

Coulomb perturbation on the logarithmic derivatives is then derived for a 

very general form of nuclear interaction operator, and turns out to be 

only slightly model dependent. 

In 3ec. III the method is applied to the Crowe Group's data to 
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determine the empirical boundary conditions at r = R. The relevant 

aspects of models for the pion-nucleus interaction are discussed in 

Sec. IV, and the conclusions about the pion size given in Sec. V. 

Finally,, the effects of some alternative assumptions are discussed in 

Sec. VI. 

I? 
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II. THE BOUIDARY CONDITION METHOD 

The Klein Gordon equation for the motion of a pion of energy E 

and charge te(t = + 1, 0, or -.i) in a fixed electrostatic potential 

Ze/r may be written 

172  + k2  - to 2k/r] *t() = 0  

where k = (E 2  - m27 is the asymptotic mmentüm of the pion, and 

71 = Ze'/ is the Coulomb scattering strength parameter for velocity 

= k/E. A second order term in the potential, which is less than 

10.k2  for our pion-Helium scattering problem, has been omitted from 

Eq. (i) so that conventional Coulomb functions may be used in its 

solution. We slightly generali Eq. (lby taking k to be the momentum 

and f3 the relative velocity in the center of mass coordinate system 

as computed according to conventional two body relativistic kinematics. 

Then *rt() is interpreted as the probability amplitude for the 

interparticle separation r. A simple rationalization of this compromise 

to allow for both nuclear recoil motion and relativistic kinematics is 

given in appendix A. In any case, we assume Eq. (l)applies to the 

pion-nucleus system when the pion is outside some small sphere of radius 

R centered on the nucleus. 

On substitution of the partial wave expansion 

0, 

t 	1 
= 	 (22 + 1) i2 2t u  (r) P2(cosO) 	(2) 

2=o 
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into Eq. . (l),we find that the radial wave function u2t(r) satisfies 

the Coulomb radial equation 

{d:: 	- 	r2 	
+ 	- 2tlk 	u2(r) = 0 	. 	( 3) 

It therefore must be of the form (for r > R) 

u2t( r ) = A2t [cos 62t F 2(t, kr) + sin 5 	 tTj kr)] 

() 

Where F2(r1, x) and G2(r1, x) are the standard regular and irregular 

- Coulomb iunctions, and (A2 t 	t, , e ) are constants to be determined. 

The asymptotic form of Eq. ()-l-)is 

Ar  u2t(r) 	A2  sin kr - t 2n(2kr) - 	+ 2(t1) + t) 

(5) 
Here 	i)a arg F(2 + 1 + i) is the conventional Coulomb phase shift, 

and 8 	is interpreted as an additional phase shift due to whatever 

deviations there are (for r <R) from a pure l/r potential. By 

consideration of its asymptotic incident and outgoing radial fluxes, 

this solution is shown in standard quantum inechanics texts (e.g. Ref. 10) 

to imply a differential cross section for elastic scattering that may 

be written 

= IfNt + fctl 	 (6) 
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Except for an unobservable phase, f c t is the usual Coulomb 

scattering amplitude: 

ft(q) a - 2tik exp I ()]-
1t 2n_ 	. 	 (7) 

The momentum transfer q is related to the center of mass scattering 

angle 0 by 

2 
q=2k(l-cose) 	... 	 (8) 

	

The nuclear scattering amplitude 	t has -the expansion 

00 

• 	 fNt 	 2  (e) = 	 (22 + 1) 72(t) at(k) P2(cos e)  

o 
with the nuclear partial wave amplitudes given by 

	

a2t(k) 	e(2i2(k)) -1)121k = (k cQtB2  - ik 	 (10) 

• The Coulomb phase factors 

a exp 	21(201) 
- 	 ('i)) 	, 	 (n) 	• 

may be conveniently generated from the recursion formulas 
2 

	

.e+ii) 	 * 
 TO y0 ('q) = 1 	

- 

( 
2 	2  (2 ~ i) 

(12) 

If Eq. .(l)were valid for all r, then only the regular solution F 2(i1, x) 

would be permitted in Eq.(4), and all the 82 would have to be zero. 

Eq.(6)would then reduce to the well known Rutherford formula for pure 

Coulomb scattering. 
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Of course Eq.(l)is not valid for all r. At.small distances the 

electrostatic potential will deviate from the hr form due to overlap of 

the charge distributions of the pion and nucleus. The pion's charge 

form factor is related to its charge distribution tep(r) by 

F(q) = f dr e% 	p(r) 	, 	 (i) 

where p(r) is normalized so that F(0) = 	d 3 r p(r) = 1. 

Expansion of Eq. (1)in powers of q yields 

1 	221 	lj.I. 	1 	66 F(q) = 1 - 	q (r ) + --- q (r ) - 	-- q (r ) - 

(1l.a) 

where 	 00 

(r)= f r (r) 1r2dr 	, 	 (14b) 

is the nth moment of the charge distribution. The object of this 

paper is to develop a method for the extraction of the r.m.s. pion 

2 
3. 

charge radius r a r ) 2 from pion nucleus scattering data. To 

carry out the analysis, the nuclear charge form factor F(q), de-

fined as in Eq. (13) )  must be known. 

The electrostatic potential energy of two charge distributions 

is given in terms of their form factors F 	
() and the separation r 

	

of their centers by V0(r) a 	
2 

tZe v(r) with 

00 

v(r)(2) 
	

f d3 	ei% 	F(q) 	F(-.q) 	.qr F(q) F(q)dq. 

(17) 
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It is sometimes more convenient to evaluate v(r) by solution of 

Laplace's equation with an effective charge distribution g(r) obtained 

by applying V2  to both sides of Eq. (15): 

V2v( r) 	d2 	rv(r) 	= - 47cg(r) , 	 (16a) 

g(r) 	3 f3q F(q) F(q) 	. 	 (16b) 

At large distances v(r) = i/r. The pion radius therefore enters the 

calculation only via its influence on the short range shape of v(r). 

11 As indicated by electron scattering experiments, we take the He 

nucleus to be a Gaussian shape 

22 
-r/a 

PN(r) 	3/23 	 (17a) 

with r.m.s. radiusrN  =a = 1.65±.03 F and form factor 

22 
qr 

= ecp 	
6 	 (17b) 

If the pion is also assumed to have a Gaussian shape of r.m.s. radius r, 

then the effective charge distribution is 	(r) = exp(- r2/c2 )/it 3hl'2 c3,  

with c = ,(TN +r ). 
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The corresponding potential is 

1 	O\ 
vG(r) = - erf 	. 	 (18.) 

An alternative pion form factor favored for dispersion relation 

calculations is 

2 
2 	' 	 (19a) 

q +t 

which yields a Yukawa charge distribution 

2 
p(r) = 	

e r 
	' 	 (i9t) 

with r = 	. According to the vector dominance model, 	should be 

the mass of the p meson, leading to a predicted pion radius of r = 0.63 F. 

The corresponding potential is  14 

1 (r /r )2r 	
(rN  +v(r)=— erf + 

1
erfc •- r 	(~a!

) 

	
e N 	L e  

a 

(,rN 	r\I 

 

eerfc 	 - - I 	.. 	 (20) a 

For r = 0, Eqs. (18) and (20) give identical results. Fig. 1 shows 

• • the He density distribution, and the effective Coulomb potentials 

V(r) = Ze2v(r) calculated from Eq. (18) for r. = 0,1,2, and 3F. The 

potential for r = 2F according to Eq. (20), and for a point chargeit  
(v = Ze2/r) are also shown for comparison. Beyond R = 3.5F, which we 

choose as the boundary radius, we have essentially pN(r) 0 and 

v(r) = hr. 
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In addition to this Coulomb potential, the pion for r < R feels 

a strong nuclear interaction which we will assume to be short ranged, 

rotationally invariant, and charge independent. We therefore generalize 

Eq. (i) in the form 

V2  + k2  - 2trkv(r) ,t() = 	d3r (rJUNIr)1r(r) 	, 	(21) 

where (rIUNIr') is the coordinate representation of some nuclear 

interaction operator UN.  Charge independence means that UN is the 

same for all values of the charge index t. We choose the boundary radius 

R so that in the external region r > H, UN  is negligible 

((rIUNIr') = 0), and v(r) takes its asymptotic form l/r, so Eq. (21) 

takes the form Eq. (1). 

The assumption of rotational invariance means we can solve Ecj. (21) 

one partial wave at a time. 

the radial wave function 

constant by Eq. (21), and so 

r = H, defined by 

In a solution of the form 
Ym(e) 	, 	 (22) 

is determined to within a normalization 

its logarithmic derivative at the boundary 

x2t H 	2n(rXt(r) 	
r=H 	

(2)
19 

is completely determined. Since in the external region (r > H), X2  (r) 

must take the form r -1u (r), with u 2  (r) given by Eq. 	), X 	is 

related to the nuclear phase shift 5 	 by 
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xG2(tTl, x) + cot& 	x F(t1, x) 

%= 	 - 	 , 	(21i-) 
G 0(tl1, x) + cot 	x) 

N 	
x=kR 

g TlX 
where 	F2(r1, x) a 	 ••• etc.ax  

For the experiment in question (130-160 MeV/c ir on He n), the whole 

Coulomb potential V(r) inside r = H is a small perturbation on 

the energy and strong interaction terms in Eq. (21). Therefore changing 

the sign of V should induce only a small shift in X. Writing 

+ 
X(k, H) a s2(k, H) ± T D2(k, H) 	, 	(25) 

we expect the average logari -tbmic derivative s = (x + x) to depend 

mainly on the strong interaction, while the difference D = (?. - 

should depend mainly on the Coulomb effects. From Eqs. (10, 24, and 25) 

we obtain 

± 	 (S2  ± Tj D2 ) F2(± , x) - x F2(± , x) 
2 - 	k 	(s2  ± D2) H2(± , x) - x H(± , x) 

x=kR 

(26) 

where 

H2(ri, x) = G2(r, x) + i F2(, x) 

Thus, when Eq. (i) applies in the external region (r > R), the variables 

(st  , D2) give a parameterization of the observable nuclear partial wave 
+ 

amplitudes a2  as general as phase shift analysis, but with the added 

advantage (important in practice) that data for both signs of the charge 

may he fit simultaneously. 
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For large £, where the phase shifts 	t 	 t are zero, X 	 is 

jutht the logarithmic derivative of the regular Coulomb function 

F(t7), kr). Only the first fei nuclear partial waves are expected to be 

nonzero, and so all the information available in the experiment about 

both the nuclear interaction and the pion radius must be contained in 
the corresponding values of S2  and D2 . A computer program was written J  

using the Berkeley X minimization routine VAP'IIT, that adjists S 2  

and D2  for the first few partial waves to fit the mtHe scattering 

data. The . result of its application to the Crowe Group data at 130 to 

163 MeV/c will be discussed in Sec. III of this paper. For the i'emainder 

of Sec. II, S and B2  should be viewed as empifical quantities sum- 

marizing the data. 

Formulas for the interpretation of the fit;parameters (s2, D2 ) 

in terms of v(r) and the internal radial wave function may be derived 

as follows: Nultiply Eq. (21) by the wave function for charge index t', 

subtract the corresDonding equation with t and t interchanged, and 

inteate over the internal volume Irk R to obtain 

f d3r 	?t'() 	t(r) - 	(r)t1(r) ± 2k(t'- t ) v( r)t t ( r )t( r) 	= 

1<R 

(27) 

fd3r f 	Itt 	(rJU lrt) iVt ( r t) - to 	(rIU Irt)tt(r1) dr' 	() 	
iw 	 MI Al -J 
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The integral on d3r on the right side of Eq. (27)  may be extended 

over all space, since by assumption (rtTJNrt) = 0 for Irl > H. If 

we now further assume that the nuclear interaction operator is symmetric, 

(r'IUIr) = (rIU Jr') 

	

m 	 '. 	
, 	 ( 28) 

then the entire right side vanishes, since r and r' are equivalent 

dummy integration variables and may he interchanged in the first integrand. 

Local potentials ('IUNI)= uN(s) 6(rr')) are certainly snetric, 

as are a wide class of optical potentials derived from multiple scattering 

theory (see Sec. IV for proof), so Eq. (28) is not unduly restrictive. 

Using vector identities and Gauss' law, Eq. (27) may be transformed into 

	

R2f4tt 	

t ti1 
- •4t 	

r 	= 2Tik(t-t') 

R 

	

)ffr2v(r)t'(r)t(r)dr 	
(29) 

The angular integration may be done using Eq. (22) and the orthonormality 

of the spherical harmonics. Then, assuming H is chosen so that 

Xt(R) 	0, divide through by RXt(R)x2t(H) and use Eq. (23) to obtain 

- xt = 211(t-t') f v(r)y2t'(r)y2t(r) dr, () 
where y t( r ) 	

rXt(r)/HX2t(E) is the radial wave function normalized 

to unity at the upper limit r=R. 
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Finally, taking t' = 0, t = ±1, we derive the following exact 

formulas for S and 

= 0 	

f v(r) y20(r) [;(r) - Y2 (r)] dr 

o 

 

= 2kR f v(r) y20(r) • 	 + y(r) dr] 

o 

 

All the wave functions behaVe near the origin as y2t(r) 

const.)( r + l and are by definition equal at the uper limit: 

y(R) = y2 (R) = y20(R) =1 . The effect of the Coulomb potential is 

to give y2 (r) slightly more curvature than y20(r), and y2 (r) 

slightly less. Therefore itaou1d be a good approximation in Eq. (32) 

to put 

	

1 + 	- 	 0 
(y2  (r) + y (r)) 	y2  (r) 	. 	 (33) 

Also, since the difference y2t(r) -y2 (r) vanishes at both limits 

and is expected generally to be of order , the second term in Eq. (31) 

is of order 112 =.0004and is negligible. We may therefore interpret 

the fit parameters S , D, by the working approximations 

0  
S2 	

= 	

[ 	
£n(rX20( r ))] 	= 

R dy2(r) 

(3L) 
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2kB 

fo 

v(r) I YX0  (r)1 dr 	 (35) 

For the best fitting nuclear models of Sec. IV, the error in these 

approximations is < 0.2 11", for Eq. (34),  and <o.i% for Eq. (35). 

Since this is well within the experimental uncertainties (Table I), 

Eqs. (34) and (35) are entirely adequate for our present purposes. 

The role of the nuclear interaction model in the analysis is 

now clear: it is to provide a reasonable internal wave function so that 

the observed value of D may be interpreted according to Eq. (35) in 

terms of the effective Coulomb potential. The parameters of the model are 

to he adjusted so the logarithmic derivative of the neutral (t = 0) 

wave function satisfies Eq. (34) for the observed values of S 2 . But 

no matter what model is used, the weighting function(y 20(r))2 
 must 

always satisfy: 

2 
22+2 

y2 
0 
 (r) 	const • r 	for small r, 	(36a) 

lyo2] =1 , and 	(y02)J R =  
le 

(36b) 

These constraints on the form of y 2  serve in practice to greatly re-

duce the sensitivity of D 2  to the details of the nuclear interaction. 

The boundary condition method outlined above thus provides a good 

separation between the strong and electrodynainic parts of the problem. 
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The general behavior of S and D2  may be anticipated from18  

Eqs. (34)  and (3). The pion radius determines essentially the central 

value v(0) of the Coulomb potential: the more diffuse the charge 

distribution, the shallower the potential (Fig. 1). Hence D is a
19 

monotonically decreasing function of r. TO increase the sensitivity 

of D2  to r, the boundary radius B should be chosen as small as 

possible consistent with the condition 'v(r) = hr for r > R. As 

£ increases, the integral in Eq. (35) is more dominated by the outermost 

values of v(r), so D becomes both smaller and much less sensitive 

to r. It also becomes harder to measure, since S 2  generally 

increases with £, eventually taking the form S 2  - 2 + 1, and 

completely dominating the D 2  term in Eq. (25). It is therefore the 

fit parameters 	
2' D

2) for the low partial waves, especially the S 

wave, that must be well determined to permit measurement of r. The 

higher partial waves need only be consistent with the general formalism. 
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III. DATA ANALYSIS 

The Crowe group data consists of measurements of the i( + He elastic 

scattering differential cross sections a 
+
(0) at 15 scattering angles and 

! beam momenta: 130.2, 142.3, 173.2, and 163.0  MeV/c. The cross 

sections show a deep interference minimum of about 0.3 - 0.5 mb/sr 

near 700,  then rise to some 5 to  7 mb/sr in the backward direction. 

(Fig. 3) See their paper for the full data set and details of the 

experiment. 3  

From this data the fractional difference 

(e) 	[a(0) - a(e)] / 	1  (a(e) + a±(0))] 	 (37) 

is formed. This difference is due in general to Coulomb-nuclear 

interference effects, and is expected to be sensitive to the pion radius, 

especially near the minimum where the nuclear amplitude is small and 

momentum transfer is not (q.  0.8 Fin). Althouth A(e) is not 

independent information, its precision benefits from the cancellation of 

some uncertainties in beam normalization. The total data set thus 

consists of 120 cross section points f1 (0.) and 60 semidependent 

derived quantities 

The data was analysed independently at each beam energy using 

Eqs. (6 - 12), and (26). To account for inelastic processes, compJ..ex 

values of S and D 2  were allowed in the first three partial waves 

(. < 2). Higher partial waves were omitted (a 2 	0 for 2 > 2). The 

basic fitting procedure was to fix the D2  and adjust the S 2  to fit 

the 30 cross section points (a(G i ) I 	1, 15) by minimizing 

X +X 	where 
+ 	- 
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= 	1 	

(ca1ct( 	
data e) 

)2 , 

	( 38) 

and 8a(e.) is the experimental error. Similiarly for fixed S 2, the 

were adjusted to fit the 15 ( e.) data points by minimizing the 

corresponding X 2 . With the improved D 2, the S2  were refitted and 

vice versa for as many iterations as needed until the process converged. 

It was found that not all of the 12 parameters (real and imaginary 

parts of S 2  and D for £ = 0,1,2) could be determined by the data.18 

In particular, the imaginary parts were poorly constrained, since only 

elastic scattering data was used. Therefore only ImS 0  and ImD were 

left free to fit the data, while the other imaginary parts were fixed 

at reasonable values. The choice of the "reasonable values" was 

guided by considerations of smooth enerr dependence, unitarity 

(i.e. Im 82±  > 0), and, in the later stages, Eq. (35) for D .  with 

fitted optical model wave functions. The necessity of making some such 

arbitrary choices is easily seen if only the main S and P wave 

amplitudes are considered, and the small Coulomb and D wave amplitudes 

neglected. In that ease there would be ii. free parameters (say 

Re 82 and Im 82 for £ = o,i) but, since the cross section would be 

quadratic in cosO, only 3 coefficients could be determined by the elastic 

scattering data. Although our actual case isn't so simple since we do 

have some sensitivity to the imaginary parts via interference with the 

Coulomb amplitude, the net empirical result is essentially that the 

combination ImX + const )( ImX1  (const. IV  1.5) is well 
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determined, while the orthogonal combination Im?. - IrnX1 / const, is 

undetermined by the data. As a check on the imaginary parts, the absorbtion 

cross section was calculated from 

06 

abs 	= 2 	(22 + 1) 	- e2212J , 

and compared with the experimental values.of Block et al. (Fig.2). The 

fair agreement lends confidence to the choices made. In any case it is 

the real parts that are significant for the measurement of the pion 

radius, and their best fitting values were essentially independent 

of the values chosen for the imaginary parts. The only constraint 

placed on the real parts was that in the final fit, ReD 2  for 15.2 

MelT/c was fixed on a smooth curve passing through the best fitting 

values of ReD2  for the other energies. This was the only constraint 

necessary to give a smooth energy dependence to all the fit parameters. 

Table I lists the final fit parameters 	D2) at a boundary 

radius of B = 5.5F . The corresponding phase shifts are calculated 

from Eqs. (24)and(25). Table II lists some kinematic quantities, the final 

X's2  achieved, and some indications of the relative accuracy of the 

four data sets. At each energy, the data was taken with all the cross 

section points having roughly the same percentage experimental error 

8a(O.) / o(O.), so that the fractional difference data points 

would have roughly equal errors &i(e.). The inverse r.m.s. percentage 

error p, defined by 

l.. 
—2 

N 

1 
2' 

p. 
1=1 	1 

(I.o) 
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is given as a measure of the precision of the cross section data. The 

inverse r.m.s. error 	, defined similarly, specifies the average weight 

of the i(e) data points (cf. Eq. 38), and hence the scale of the 

corresponding X. It should be noted that although the 142.3 MeV/c 

data has the highest X's 2, it also has the greatest statistical precision, 

and in fact yields the best fits relative to the scale of its X 2 . This 

is also apparent in Figs. 3 and ii-, where the best fit curves calculated 

from Eqs. (6-12), (25), (26), and (37), using the values of S and 

in Table I, are shom with the data points. It should be emphasized at 

this point that, except for the assumption that Eq. (1) applies for 

r>R, the values given in Table I are a model independent fit to the 

data. Since the differences of the logarithmic derivatives D2  are 

determined by fitting the t(e1 ) data, the proper relationship of 

to 	is enforced in the final adjustment of the average 

logarithmic derivatives S to fit the combined a(e1 ) and cT(O.) data. 

Thisconstraint is absent from a conventional phase shift analysis that 

separately fits the cross sections for each pion charge. 0therdse the 

two methods are equivalent. The fact that the resulting fit parameters 

show a smooth and physically reasonable energy dependence, even though 

each energy was analysed separately, is viewed as further evidence in 

favor of these solutions. 

The indicated errors in the tables are the deviations in each 

variable that produce a io% increase in X2  with all the other variables 

held fixed. These are to be taken as a somewhat arbitrary, but scale 

independent, measure of the relative sensitivity of the fit to the 

various parameters. The conventional error estimates for fitted 
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2 
parameters are the deviations that give unit increase in X above 

its minimum value, which is supposed to be less than the number of data 

points. This was thought inappropriate in the present case because 

of the mixed way the data was fit, and because of the large X's2  

obtained. Since we are doing a model independent fit equivalent to a 

• phase shift analysis, the larger than expected X suggests under- 

estimated data errors, possibly systematic. For example, the data 

• points at 6 = 800 consistently lie above the best fit cross sections 

for both charges, and the 100 0  points consistently lie below. These 

two angles account for nearly half the total X 2  of the 	fits. 

When the 12.3 MeV/c o 	data was refitted without them, the 

improved dramatically from 112 to 48, but the fitted values of S 2  

hardly change (about 1%).  It should be noted that this kind of 

systematic error, that affects both charges in the same way, tends to 

cancel out of the (e) data that is used to determine the pion radius. 

In any case, the full data set was used in the final analysis. 
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IV. NIJ CLEAR INTERACTION MODELS 

To interpret the empirical values of D 2  in Table 1 according 

to Eq. (35), we need a specific form, such as the optical model potential, 

for the nuclear interaction operator UN,  so that Eq. (21) can be 

integrated to provide a suitable internal wave function. In a multiple 

scattering theory derivation of the optical model, 15 ' the scattering 

wave function of a pion on a nucleus is constructed from the pion- 

single nucleon scattering amplitude and properties of the nuclear states, 

particularly the spacial density of nucleons. The optical potential 

is then defined as the equivalent interaction operator, acting on pion 

coordinates only, that generates the same elastic scattering amplitude. 

In Watson's formulation, 15  the momentum space matrix elements of 

the optical potential are, in the impulse approximation, and with neglect 

of nuclear correlations, 

(k'lU 1k) 	1 
N 	

(2) f d3x 	i(i - ') • x 	
(, p(x) e 

(Li2) 

All that remains of nuclear structure in this formula is the density of 

nucleons p(x), normalized so that p(x)d 3x is the number of nucleons 

in the volume element d3x. The amplitude, averaged over spin and 

isospin, for any one of them to scatter the pion from incident momentum 

k to final momentum k' is f(, 
'). 

The exponential provides that 

each volume element contributes with the proper phase to the total 

amplitude. 
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The coordinate space matrix elements of this optical potential 

are obtained by Fourier transformation. In Dirac notation 

= (2)/2 e 	we have 
AW 

) 

(r'JUN  Ir) = - fd3x p(x) fd)lc fd3l f(, 	)AM 

I k I >(' I)(I() 

gince (j 	 = Krl-,), and 	and kT are dummy integrationAV  

variables, we see by inspection that (r' IUNIr) satisfies the symmetry 
A. 

condition of Eq. (28) provided 

f( -k', - 	= f(k, k') 44 '- - 

In terms of a partial wave expansion 

Co 

f(, ') = 	(22+l)a 2(k, ki) P2(k 	k) with k 	k , k a k/k 
Al A 	 AT. - 

2=0 

(!i.5) 

this only requires the partial wave amplitudes be symmetric in k and k' 

a2(k, k') = a2(k', k) 	. 	 (46) 

This is trivially satisfied on the energy shell where k = k' . Thus the 

symmetry condition of Eq. (28), which is essential to the derivation of 

the key Eqs. () end 5), is translated in the optical model formalism 
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into a symmetry condition Eq. (46) on the off shell behaviOr of the pion 

nucleon partial wave amplitudes. In Eq. (14), this condition takes the 

form of an off shell extrapolation of time reversal invariance. 

Kisslinger's optical potential is a convenient and widely used 

approximation to Eqs. (42)through5). It consists of keeping only the 

first two partial waves of Eq. (45) in the form 

-li.itf(, 	) 	b + c k • 	, 	 ( 47) 

where b and c are certain linear combinations of the S and P wave 

scattering lengths. All of the integrations in Eq. (43) may thei be 

done explicitly, yielding finally an interaction operator whose effect 

in coordinate space representation is 

KrJUl 	= bp(r) i(r) - cV 	(p(r) V* () 

 

The wave Eq. (21) then becomes 

[v. (1 + a(r)) V ± k2  - U(r)] Vt(r) = 2kt v(r) t() 

 

where U(r) 	b p(r) is a local nuclear potential, and a(r) 	cp(r) 

is a non-local interaction term. The local nuclear interaction U(r) 

is dominant in the S wave and is repulsive. The non-local interaction 

operator -V aV is attractive and dominates all higher partial waves. 

The Ericsons have refined the model, taking into account more details of 

nuclear structure and pion-nucleon interactions, but finding the same 

general form of wave equation. 17  For our purposes, b and c may be 
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considered complex phenomenologicai constants to be determined by the 

data. When Eq. (49) is resolved in partial waves by the substitution 

t( r) = X2t(r) 2m() the resulting radial equation is 

d [2 	dX
2
tl 

dr 	 dr 	
2 [k2 

~ 
r 	U(r) - 2ktv(r) 

-(1 + a(r)) 2(2 + 1)1 
X2 (r) = 0 	. 	 (50) 

r 	j 

It is evident fromthe form of Eq. (o) that both 	and the quantity dX 

02 r2(l + a) - 	 must be continuous everhere, and so (except dr 

where X = 0) must be 

X2t(r) a 1 + Øt/Xt) 
= 1 + (i + a)

ry  

(51) 

This generalized logarithmic derivative is consistent with Eq. (23) at 

the boundary r = R where a(R) = 0. 

We take a Gaussian form 

	

p(r) = A -3/2 	exp 
(- 

r2/aN2) 	, 	 (52) 

for the Helium nucleon density, and assume it has the same extent 

(aN = 1.31 F ) as the observed charge distribution. (Fig. 1). 

With b = b1  + ib2  and c = C 1  + ic2, there are ! real parameters to be 

determined. Computer programs were written to numerically integrate 

Eq. (50) for t = 0 with the expectation that b and c could he adjusted 
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so that the calculated X° would.match the complex empirical values of 

S for the S and P waves listed in Table I. (Some of the formulas 

used are discussed in appendix B.) As expected, b was determined 

mainly by S0, and c1  by Re S 1 . For these values of b and c 1  however, 

there was no value of c2  that would give the empirical value of Im S 1 , 

essentially because of a discontinuity in X . at c2  = 0. There is, in 

effect, an intrinsic imaginary part to X, having the same sign as c 2 , 

that remains even in the limit b0  = 0, c - 0. Consequently, as c 2 	 . 	,,  

passes through zero in the search routine, Im X jumps from a value well 

below Im S 
l  to a value well above it; the empirical value lies in 

the excluded region. The source of this discontinuity is shown in the 

appendix to be the singular point r in the radial Eq. (70) where 

1 + a(r) = 0. If c2  = 0, and a(0) = c 1p(0) < -1, r 	will be in the 

nuclear surface where the density has fallen to the value p(r) = - 1/c1 . 

(From Table 1.11, we have Re a(o) 	-2) The radial wave function in this 

.case has a logarithmic branch point at . r, and so an imaginary part for 

r > r0  whose sign depends on how the singularity is handled. In 

general the singular point will be at the complex value of r 0  for 

which p(r) = - 1/(c1  ± Ic2), but for small c 2  will.still lie very 

near the path of integration along the real r axis from 0 to R, and 

will still have a profound effect on the wave function. In particular, 

the intrinsic imaginary part to the logarithmic derivatives calculated 

from the Kisslinger model means that b 2  and c2  are really arbitrary, and 

cannot be determined by fitting absorbtion data. 

Even though the In S 1  listed in Table I are not really well 

determined by the data, this is still a serious difficulty in principle 
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with the Kisslinger model, at least as it applies to Helium. It means 

that, when this wave function branch point effect occurs, the Kisslinger 

model cannot properly account for ahsorbtion phenomena. 

For our present purposes however, all we really require is a set 

of radial wave functionsX20(r) (1 = 0,1,2) satisfying the boundary 

conditions 	= S2, to be used to interpret the empirical D 2 's 

according to Eq. (35). To this end, we have adopted the following ad hoc 

procedure. The imaginary part of the P wave logarithmic derivative, 

Im S1, was temporarily replaced by a fake value Im S1 t large enough 

to permit a solution for (b,c) that satisfies the corresponding modified 

S and P wave boundary conditions. The result is given in the first 3 

columns of Table III. Then with c fixed at the value so determined, 

the complex parameter b was readjusted separately for each partial wave 

to exactly satisfr the original empirical boundary conditions. For the 

S wave there was, of course, no change in b. For the P and D waves 

we find b2  > 0, to partially cancel the anomalously large negative In S 

resulting from the singular point. These values are given in the last 

two columns of Table III. We refer to this solution in the next sectiOn 

as the "modif' d Kisslinger model". At 142.3 MeV/c, a fit was also done 

with aN  = 1.27 F as a check on the sensitivity to nuclear density. 

For a simple alternative solution, the same programs were used 

with c = 0 to fit a local potential to each partial wave. The 

parameters of this local model are given in Table IV. Fig. 5 shows the 

real part of fitted weighting functions 

(Y20(r)) 2 
	

[r x0() / R x20(R)] 
2 
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for both models at 142.5 MeV/c. The peculiar bump in the Kisslinger 

model wave functions, occuring at r = r 
0 
= 1-1F for aN = 1.3F , is 

another manifestation of the singular point Re a = -1. The local 

potential solutions are well behaved as expected. Since the true physical 

wave function presumably does not have logarithmic branch points, even if 

the local potential interaction itself is unrealistic, the weighting functions 

it generates may be the most realistic, especially since all possible 

weighting functions must satisfy the empirical boundary conditions of 

Eq. (36). In fact, Lepore and Riddell have shown by direct numerical 

solution in momentum space of the partial wave Schrdinger equation 

for,  the optical model interaction Eq. (.2) that the singular point 

effects in the wave function disappear if the coefficients (b, c) of 

Eq. (47) are given a gradual cutoff for large k and k'.18  
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V. DETERMINATION OF THE PION RADIUS 

Given an internal wave function y 20(r) that satisfies the 

conditions of Eq. (36), and a formula such as Eq. (18) or (20) for the 

internal Coulomb potential v(r), we may calculate D 2  as a function 

of r. Since we have two nuclear models (Kisslinger and local) and two 

pion shapes (Gaussian and Yukawa), there are four.cases to consider. 

Fig. 6 shows the calculated ReD s  vs r1 at 142.3 MeV/c for the first 

partial waves. The calculated curves for free waves (i.e. X 2(r) = 

spherical bessel function) are also included to show the effect of wave 

function distortion by the nuclear force. The nuclearforce is re-

pulsi.ve in the S wave, attractive in higher waves. This results in 

a decrease in ReD0  and an increase in ReD2  for 2 > 1 from their 

free wave values. To show the dependence on the pion model, the S 

wave curves are drawn for both pion charge distributions. The two 

distributions are of course identical at r 	0, but for large pion 

radius, the Yukawa model(Eq. (20)) gives the larger value of D V  

corresponding to a deeper central value of the Coulomb potential. The 

effect of the nuclear model on the calculated values of D 2  is also 

exhibited. For the same internal Coulomb potential, the modified 

Kisslinger model wave function yields a value of ReD 0  some 6% 

larger than the local model. For the P and D waves, where the internal 

wave function is more dominated by the centrifugal potential, the nuclear 

model dependence of ReD 2  is 2.8% and 1.6% respectively. 

The horizontal bands are the empirical values of ReD 2  from 

Table I, with the deviations that cause a 10% increase in X 2 . The 
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pion radius for each model may be read from the intersection of the 

computed curve for ReD0  with the data band. This indicates.a 

surprisingly large pion radius of between 2 and 3 F . With the pion 

radius so determined, the calculated ReD 2  for the P and D waves 

lies somewhat above the corresponding data bands. Nevertheless, the 

numerical agreement is close enough to be taken as some confirmation of 

the basic Eqs. (34, 35, and 36). Note that without the wave function 

distortion by the nuclear force, there would be no agreement on the value 

of r among the partial waves.it  

For a data fit completely consistent with a given model, we 

compute D2  for all partial waves as a function of pion radius, and 

using the empirical values of S 2  from TableI, plot X 2  vs. r (Fig. 7).
it 

The values of X 2 
and r at the minima, with the deviation 	r

Ir 

that cause a 10% increase in Y, 	 for the various models, are listed 

in Table V. Some of these values of r are also shown in Fig. 6. TheIr 

minimum values of X 	are larger than for the model independent fit 

of Table I because of the additional constraint: the P wave is well 

determined by the precise data. in the minimum, and it disagrees slightly 

with the calculated value for each model. The following remarks may be 

made about Fig. 6 and TableV: 

The 142.3 MeV/c data again has the highest X 2  (around 

60 for 15 data points), but has the sharpest minima, reflected in the 

size of the Ar 

The modified Kisslinger model gives pion radii about 

.4 - .6 F larger than the local model with the same pion form. Since 

the wavefunctions generated by these two models are about as different 
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as possible within the constraints imposed by the boundary conditions 

at r = 0 and r = R, we may estimate that the uncertainty in r due
.

Tf  

to the nuclear model dependence is < 0.6 F. 

In the 2 to 3 F range, with a given nuclear model, the 

exponential pion model indicates an r about 0.2 - 0.5 F bigger
Ir  

than the Gaussian pion model. This is a measure of the uncertanity in 

r due to choice of pion shape.it  

All four energies are consistent, with perhaps a slight 

tendency for the higher energies to require a bigger r 
Tr 

to fit. 

Figure 11 shows that data and calculated values of i(e) at each 

enerr for the best model independent fits (Table I). The curves for 

the best model dependent fits (Tables III, IV, V) are very similar, 

although they give somewhat higher X25. The curved for r = 0 

calculated with the fitted Kisslinger model wave functions are shown for 

comparison. These gave the highest calculated X 2 s (cf. Fig. 7). All 

this shows that (e) is too small in the forward direction, or 

correspondingly, that o
+

( e) is too close to c(6) to permit a small 

value of r jr 
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VI. CONCLUSION 

Within our basic assumption that the Coulomb potential Eq. (15) 

is the only charge dependent interaction in the generalized Klein Gordon 

Eq. (21), data analysis indicates a surprisingly large r of 2 to 3 F.
it 

The boundary condition method effectively reduces the uncertainty in 

due to nuclear model dependence to about the level of the uncertainty due 

to experimental statistics. The use of the exact external (r > R) 

solution of the radial wave equation avoids the long range Coulomb 

divergence difficulties. Evidently then, the large pion radius result 

is inherent in the data and our basic theoretical assumption (Eqs. 15, 21), 

and is not due to either calculational difficulties or the detailed choice 

of nuclear interaction model. In view of the disagreement with the simple 

vector dominance model prediction of r = 0.63 F, some comments on 

possible alternatives are in order: 

(i) We have taken relativity explictly into account only in 

the kinematics used to cal'culate k and i. Only the instantaneous 

(Coulomb gauge) electrostatic potential is included in the equation of 

motion. The magnetic field seen in the center of mass (CM) system due 

to the recoil motion of the nucleus is neglected. Bix and Thaler 19 

suggest that k and r be chosen for the relativistic two body problem 

so that the pure Coulomb amplitude Eq. (7) agrees to first order with 

the covariant Feynman Born amplitude for the electromagnetic interaction 

of two spinless hosons. This leads to 2kr = 2Ze 2(E1E2  + k2)/E1  + 

where E1, E2  are the CM energies of the two particles, and k is 

the CM momentum. Our formula differs only in the absence of the 

0 
term from the numerator. (This k term presumably represents the 
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magnetic contribution.) Another alternative would be to neglect nuclear 

recoil motion, and use the Lab momentum and velocity of the pion to 

compute (k, ri). Magnetic interaction would then be strictly zero, 

and the Klein Gordon equation in a Coulomb field would govern the long 

range motion of the pion. Both these alternatives give a value of 

about 2 to 3% larger than ours, and lead ultimately to a small increase 

in the measured value of r 

(ii) The assumption of exact charge independence of the nuclear 

interaction operator is crucial to this whole approach to the measurement 

of r. If the nuclear interaction of Tr differed slightly from that 

of ir, there would be a direct strong interaction contribution to the 

logarithmic derivative difference D 2  (Eq. 25). Let 	be the 

nuclear interaction operator for rr , and assume that the difference 

- 	is a local operator. Then, by the derivation leading 

to Eq. (5), we have 	-+. D2  r) + D , where D (rn ) is the 

S pion radius dependent Coulomb contribution given by Eq. (35), and 

is an additional strong charge asymmetry contribution given by 

R 	
fo 

AUN(r) Y 0(r)] dr 	. 	( 53) 

The experimental values of D from Table I are now to be interpreted 

according to 

Expt. 	c, 	S = 	kr ,, + D 	 . 
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Any combination of r andUN that satisfies Eq. (5)[via Eqs. (513) and 

55) will agree with the data. The values of r given in Table V are
TI 

based on the assumption that D = 0. Since D 	 is a decreasing 

function of r (Fig. 6), we require in general D < 0 (UN < U 1 ) to 

fit the data with smaller values of r. For example, using the local 

model wave functions, it would require ReD0S 	-1.15 to bring the 

1-+2.3 MeV/c S wave data into agreement with r = o.63 F. Evaluation 

of Eq. (55) on the assumption that UN±(r) = (b ± 	b)p(a;r), where 

h = 1.1 F from Table IV, and p(a;r) is given by Eq. (52), then leads 

to a fractional strength difference tb/b = +.075 D = - .o8. 

Similiarly, if UN (r) = bp(aN ± 	a ; r), 	we have to, lowest 

order a fractional range difference 	a/a\f 	- .10 D = + . 115. At 

least for these simple models then, roughly a 10% violation of strong 

interaction charge independence is required to bring our fit into 

agreement with the vector dominance model prediction for r. 

(iii) Finally, although the simple p pole term of the vector 

dominance model Eq. (19a) may well represent the pion form factor for 

the large timelike four momentum transfers near the pole, it is not 

necessarily sufficient for the small spacelike q2  considered here. 

See, e.g. Ref. 19 for an estimate that inclusion of the contribution of 

the A1(1) meson leads to r - 1.4 F. 
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APPENDIX 

A. Simple Relativistic Reduced Mas Formalism 

The Klein Gordon equation describing the motion of a particle of 

mass in and total enerr E in à fixed electrostatic potential V(r) 

may be written 

2EV(r) +V2(r)]r) , (Al) 

where 	i2 = E2  - in2 . 	This is used, for example, to calculate wave- 

functions of a pion in the Coulomb field of a heavy nucleus. The assumption 

of fixed potential then corresponds to neglect of nuclear recoil motion. 

To include this recoil motion requires in principle the solution of a 

two body problem. This is easily accomplished in the non-relativistic limit 

where the introduction of center of mass and relative coordinates reduces 

it to a pair of one body problems. In the center of mass (CM) system, 

the relative coordinate r = r - 2 of the two particles (masses 
l  

in2 ) varies as if it were the coordinate of a single particle having 

the reduced mass 

= mm2/(rn1  + in2) 	, 	 (A2) 

and moving with the actual available energy E, in the fixed interaction 

potential V(r). The fully covariant two body problem however is in 

principle much more difficult, and is not attempted here. Nevertheless, 

for many applications a simple generalization to reiativistic kinematics 

of the familiar reduced mass formalism outlined above would be useful. 

One such generalization is suggested in the following. 
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We begin by reviewing the nonrelativistic case in a form that has 

an easy relativistic analog. In the center of mass system where both 

particles have momentum of maitude p, the total kinetic energy is 

	

TCM = 
	2m1 	+ 2rn: 	

= E 1  - V(r) 	. 	 (A) 

The reduced mass 	is, by definition, the mass a single particle mustITR 

have if its momentum is p and its kinetic energy T014, i.e. 

p/2T 1 . Its role in the equation of motion is to give a single 

particle like appearence to the actual relation of p to E 011  and V(r): 

	

p2  = 	(ECM - V(r) 	. 	 (A)) 

On quantization in the coordinate basis, p 2  is represented by - 

and Eq. (A)) becomes the time independent Schrdinger equation for a 

particle of mass 	and energy E 	in a fixed potential 11(r).CM  

	

2*( r) = 2 	(E C14  - 	r ))*( r) 	. 	 () 

The wave function r(r) satisfying Eq. (A5) is interpreted as the 

probability amplitude for the interparticle seperation r. Now for a 

relativistic analog of Eq. (A3) we assume that in the C14 system, the 

momentum p of either particle satisfies 

1/2 1/2 
+ m12 	+ ç2 +.m22 	+ V(r)  

where W is the total•nerj, including rest energy rn1  + m2. 
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Equation (A6) may be solved for the classical momentum p as a 

function of r, yielding 

2 
p = F(r) 	

(Ala) 

- 	IN - V(r)2 - (m1  + m2 )] {(w - V(r) 2 in2 ) 2] 

- V(r)) 

(A7b) 

This is the relativistic analog of Eq.(). The corresponding wave 

equation is 

(AS) 

In order to compare Eq. (A7) and (A8) with the relativistic single 

particle Eq. (Al), we expand F(r) in powers of the potential V(r): 

	

F F0  + F 
1 
V + F 2 V 2 + R(V) 	 (A9a) 

where 

F0 = 
	w2 - (m + 
	] [ 	- (m - rn2)] 	

, 	 (A9b) 

2 	22 

F 	-2 r w - ( m 	- 2 	I 	
(A9c) 

= 	 , 1 	L 

2 	2)2 W + 3(m1  - m2   

2 	
(A9d) 

F = 
	 _________ 
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and 

(m1 	- m, ) 	(! w - 311) 
R(V) 

 
w(wv) 2  

Equation (A9) is easily verified to be an exact algebraic identity. 

Comparison with Eq. (Al) indicates that the asymptotic 22  momentum of 

the equivalent single particle is given by k = F0  = urn F(r). This 
v-O 

is the usual relativistic formula for the harycentric momentum of two 

free particles with total energy W. Of course it also follows directly 

from W = E1  + E2  where the asymptotic single part±cle energies E. 

are given by 

'1 
(
k2. +m12 ) 2 	= 

2 	2 	2 W+m 

(AlGa) 

E2 = (k2 + 	2) 	
= + 	2 

- m12 
(iuob) 

The terms linear in V define the equivalent particle energy as 

2 	22 
1 	W -(m, -in2 ) 

E 	- 	F = 	
. 	 (All) 21 

4W3

With use .of Eq. (Alo this may be rewritten as a "reduced energy" 

EE 
12 	

• 	 i 	 (Al2) E +E 
1 	2 
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The terms higher than 2nd order in V are collected in the explicit 

remainder 

R(V) 	

- 	 V) 2 	• 

(A13) 

For potentials V <<W (the usual case), this remainder maybe treated 

as a small perturbation, or neglected entirely. Then Eq. (A8) may be 

approximated by 

[k2 - 2E V(r) + 
	

) V(r)] 	) 	, 	( iu) ) 

where the definition, of E has been used to simplify the V 2  term. 

Equation (All!.) is the relativistic analog of Eq. (A5): both represent 

the reduction of relative motion in a two body system to an equivalent 

one body system. The reduction is exact in the nonrelativistic case, but 

only approximate in the relativistic case. In particular, the V term 

in Eq. (Al!!.) is somewhat smaller than in Eq. (Al), and terms of order 

V3 
 

have been omitted. 

In the nonrelativistic case, the introduction of center of mass 

and relative coordinates may be done with equal result either before or 

after quantization. The same may not be said for the relativistic case. 

See 3o1dberger and Watson23  for a discussion of the conditions on V 

under which the Schr6dinger equation for the scattering of a relativistic 

beam particle on a massive ( nonrelativistic) target may be reduced 
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to an equivalent one body equation similar to Eq. (Ali). 

The definition Eq. (Al2) of the equivalent energyalso has the 

reasonable conscuence that the as3optotic.veiocity 	= k/E of the 

equivalent particle is just the asmiptotiO relative velocity of the two 

actual particles: 

=2 ihere 	= k/E.  

If a single free particle were to have momentum 	and total energy E, 

its mass would have to be 

	

/ 	\i/2 
(k2)= (E2_k2 	= 	 (A16) 

With the E and k given above, Eq. 016) defifles a relativistic analog 

of the reduced mass. It has in general a rather complicated mornentuni 

dependence, but obviously approaches p (Eq. (A2))for k << m,, ni 2  

Note however that only E and k appear in the wave Eq. (A14); t itself 

is not needed. 

Equation (Al)-) is eased entirely on the assumption that Eq. (A6) 

holds in the barycentric system. No comment on the Lorentz transformation 

properties of V is intended beyond the remark that the other terms in 

Eq. (A6) are the time components of four- vectors, as is the V in Eq. (Al). 

Although its derivation is rather heuristic, Eq. (A14) has the following 

desirable properties: 

(a) It is s3nnmetric in the masses m1 , ni2  . 

() For 	> k, \r, it becomes the Schrdinger Eq. (A5) 

with reduced 1iias 	. 
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For m2  >> m1, k,V; it becomes the Klein Gordon 

Eq. (Al) for a particle of mass m in a fixed potential V(r). 

As V 0, it reproduces the standard barycentric 

relativistic kinematics of two free particles of any enerr. 

We therefore adopt Eq. (A14) as a generalization of the Klein Gordon 

equation to include the kinematic effects of the recoil motion of the 

target nucleus. For our problem (150 MeV/c pions on He) neglect of 

this nuclear recoil motion leads to about a 5; increase in k, and a 

2.5, increase in the Coulomb parameter Tj =Za/3. We have 

= m = 1 9.6 I1eV, m 
= 	= 727.6 MeV and V(r) < 2 MeV. Therefore 

the remainder term R < 4 x 10 	
0  
V and V< 2 x 10 )i 2 k , so both are 

neglected in Eq. (1) of the text. 
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• 	 APPENDIX 

B. Some Computational Techniques for the Kisslinger Model 

In this appendix, we list some fox]uias useful in the practical 

problem of inegrating the Kisslinger model radial equation and adjusting 

the nuclear interaction parameters to make the resulting wave function 

satisfy assigned boundary conditions at some radius B just outside 

the nucleus. Local potential models are of course included as the 

special case where the gradient interaction function a(r) is 

identically zero. It is convenient for the following derivations to 

split the Kisslinger model radial equation Eq. (50) of the text into a 

pair of coupled linear first order differential equations: 

+ a(r)') 	, 	 • 	(Bla) 

and 

=Q(r)X(r) 	
, 	 (Blb) 

where 

Q( r) a r2(U(. r) - k2) + 2( £ + l)(l + a( r) . 	(Bic) 

This form was also necessary for the numerical integration routine 

(Berkeley ZA1i) that was available. Given 2, i2, IJ(r), and cz(r), this 

routine was set up to generate the solution with the form 

X(r) 	const. x r 2  near the origin (r Q. The logarithmic derivative 

of this wave function )  defined as (Cf. Eq. (51) of text) 
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i + 	+ 	
r= 	

= 1 + (R)/Rx(p) , 	(B2) 

depends implicitly on the choice of U(r) and a(r). To investigate the 

changes in 2'. due to changes in (U,a), we compare the Solution 
Af 

(X,r) of Eq. (Bi) with the solution (X,ilr) generated by an alternate 
AA 

choice (u,cr): 

A 	2 	AA 	A,AA 
ifr=cx 	etc. (B3) 

By usual multiplication of Eq. (Bib) by X, Eq. (B3b) by X, and 

subtraction we have 

A 	A 	AA 
X '- Xr' = (Q - Q) XX 	. 	 (B)a) 

Use of Eqs. (Bia) and (B3a) allows this to be reitten as 

d AA 	 AA2 	AA 
= (Q - Q)XX+r(aa)x'xv  

Integration from 0 to R, and division by RX(R) X(R) then results in 

an exact formula for the logarithmic derivative shift due to the change 
AA 

(U,a) - (U,a): 

A 
(IU (R)  + Ia(R)) / ( 

/
RX(R) X(R) , 	 (B5a) 

where 

f [(r) (r)] r  

o

2(r) X(r) dr , 
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(r)] 
['0('C 

+ j)(r)X(r)±r2 	() X'(r)] dr 

(B5c) 

This general formula has several interesting special cases: 

If (r) = a(r), (r) = UN(r) + t t 2lkv(r) and U(r) = 

UN(r) + t 21kv(r), then Eq. (E5) reduce to Eq. (30) of the text, leading 

directly for this model to the formula(Eq. 55) for the Coulomb difference 

With the same (U,a), but â = U = 0, the comparison 

solution is just the spherical bessel function: 2(r) = j 2(kr). Then, 

after a partial integration on 'a (utilizing Eq. (B3b) and assuming 

U(R) = 0, Eq. (B5) yield an integ-a1 representation for the neutral 

(t = 0) logarithmjc, derivative in terms of the normalized internal 

wave function y(r) = rX(r) / RX(R) 

B 	r 
ij '(i) 	 I rj(kr)(U (r) + k2a(r) - krj (kr)a'(r) 

X = 1 + 
	

fr y(r) L_2 	N 	 £ 

(B6) 

Of course if X(r) were known, X would be given by Eq. (B2). But 

conversly if X were the known quantity(e.g. Table I), y(r) would 

be st.rorgly constrained (cf. Eq. (36) of text) and Eq. (B6) could be used 

to disp1av the contribution to X of the various terms in the wave 

elut.ion. Similar formulas for the other charges(t = ± 1) may be 
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derived using 	(r) = 2kt/r. 	Then (kr)j 2(lcr) is replaced by the 

regular Coulomb function 	F2(t1;kr), and Eq. (B6) has an additional 

Coulomb term. 

(iii) Suppose Uand a depend on a set of parameters 

= 	......... Sn): U 	•U(s;r) and a = a(s;i). Then the logarithmic 

derivative X(s) will also depend on these paramétérs, and Eq. (B5) 

may be used to construct the derivatives 	X/S. from a single 

calculation of the wave function X(s;r). This permits the use of 

efficient gradient type iteration methods to adjust the parameters to 

match an assigned valueof 
?.. Taking 	= U;r) and = a(';r) where 

= (s 1)  S2  .....• , i + As i  ......, s) , in the limit As. 	o 
we have 

A 
X = X(s;r) - X(s;r) 

and 

=RX(R)2 f

o

dr{[rx(r)1 2 u:r 	2 
s2 	

+ l)X(r 
;: 	
L) 

+ (rX'(r)2] 	kz 	 (B7) 

In Sec. IV we used U(r) =(b1  + ib2 ) p(r) and a(r) = (c 1  + ic2)p(r). The 

parameter set is s = (b 1, b2
, 0

1, c2 ), and Eq. (37) was used with 

= p(r), etc., to fit the calculated 7's to the empirical ones. 

Note that if U and a are analytic functions of a complex variable 
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z = s1  + is2, and so satisfy the Cauchy-Riemann conditions 

= iUs 1, etc.), then X(z) is aYo anal3rtic in z because 

it also satisfies these conditions. The one restriction to be observed 

is that if the parameters are such that X(s;r) has a branch cut 

(cf. Appendix C), 	and s must be chosen on the same side of the 

cut to achieve 2 X in the limit 	s. In this connection, note 

that substituting the complex conjugates of U and a into Eq. (Bi) does 

not necessarily generate the complex conjugate of X. Therefore use of 

* 
Eq. () to construct ). - 	= 2i Im . must be done with caution. 

These restrictions are not necessary if a(r) > -1, every -where, as in 

the special case of local potential models where a(r) = 0. 
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APPENDIX 

C. Analysis of the Kisslinger Model Singular Point for Real c(r). 

The radial Schrdinger Equation for the Kisslinger model of pion-

nucleus interactions has the general form 

[,2(l + a(r) 	+ [r2(k2 U(r) - (1 + a(r) 2( + 1)] X =0 

(Cl) 
The complex non-local interaction coefficient a(r) is in general 

proportional to the nuclear density p(r), and vanishes outside the 

nucleus. We take for simplicity a(r) = cp(r) where c = c 1  + ic2  is 

a complex constant. The essential features of the following argument 

remain valid, however, for more complicated forms of a(r) such as those 

given in Ref. 17. Equation (i) has a singular point r where 

1 + a(r) = 0. If C2  = 0, and a(o) = c 1p(0) < -1, this singular 

point will be in the nuclear surface where the density has fallen to the 

value p(r) = -1/c1 .' If c2  L , the singular point will be at the 

complex value of r0  where p(r) 	( -c1 + ic2 )/1c1 2 . For the 
Gaussian density distribution, -  and presumably in general, Im r has 

the opposite sigu from C2 : for c2  < 0, r lies above the real r 

axis, and comes down onto the axis as c 2  -, 0. 

To investigate the effect of this singular point on the 

Kisslinger radial wave function, we apply the classical analysis of 

second order linear differential equations as given in Ref. 24. Writing 

the radial equation in the form 

X" + p(r) xt + q(r) x = 0 	. 	 (c2) 
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we find that both 

2____ 	 2 
p(r) a 	+ 	

1. + a(r) and q(r) a 	
- 	r2  

(c) 

have first order poles at r = r. Substitution of power series 

expansions about r for ( r - r) p(r) and (r _ 	2 q(r) 	and the 

form 

00 

y(r),= (r - r) [1+ 	a(r - r]  

for X into Eq. (c2) then yields a set of recursion formulas for the 

a . The first of these is the indicial equation which turns out to be 

= 0. Therefore y(r) is analytic at r0 : 

r 
y(r) = 1 + a1(r - r) + a2( r - r) + ... , 	( c) 

and, since the indicial equation has equal roots, the second independent 

solution must be sought by variation of parameters. Writing it in the 

form w(r) = (r)y(r), we find on substitution in Eq. (c2) that 

1 
2f 	\ 2 	 (c6) 

r i + a(r))y (r) 

This means' that since 1 + a(r) has a simple zero at r 0 , 	 '( r) Is 

a simple pole there, and (r) has a logarithaic branch point. The 

general solution of Eq. (C2) 
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X(r) = (A +B(r)(r) 	, 	 (C7) 

where A and B are arbitarary constants, then also has a logarithmic 

branch point at r (unless B =o). Now the physical solution of the 

radial equation must start at the origin as X(r) 	const. x r 2 . We 

want to propagate this solution outward along the real r axis to the 

boundary r = B, using the form (c7) to cross the singular point. The 

constants (A,B) are determined by the continuity of X(r) and 

(r) 	r2(i + a)X'(r) at r = r1  a r0  -& 

y(r1 ) 	r1) - r12(i + a(r 1)y(r1 ) X(r1 ) 

(ce) 

A = X(r1)/y(r1) - B(r1 ) 

Since y(r) and X(r) both satisfy Eq. (C2), B is actually indeende±it 

of r1 . The same continuity conditions are used again at r = r 2  r + nr 

to obtain the values of X(r 2 ) 	*(r2 ) needed to continue the integration: 

/  yr2 )  
X(r2) = 
	

X(r1) + y(r2)B((r2 ) 

- 	 (c9) 

r2) = y(r2J [B + r22(l + a(r2 )y'(r2 ) X(r2)] 
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We therefore must somehow evaluate the singular integral 

dr (r ) 	 j 

	

J 	r (1 + a(r)) y(r) 
r -r 

0 

• 	 (do) 

The pole at r r may be elicit1y separated by a partial fraction 
expansion of the integrand. Writing the denominator in the form 

(with z = r - r) 

r2 1 + a(r) y(r) 2  a zg + z h(z) 	, 	 (Cu) 

we have g = r 2 a'(r), and h(z) 	h + h 1 	z z + h 2 2 	+ •.•, , where 

	

[a'(r) 	 1 
, 

h = 2r 2 	 o 	
+ U(r ) - 1 2  + 	a" ' )J 	etc. a 	a 	I 	r 	'a 	 a L ° 

(c12) 
Then 
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The second integral, I(r), is adull, ill behaved function of 

&. To lowest order in ir .. it is 

I2(r) 	 & ± 	 ( cl) ) 

To evaluate I however, we must detour around the pole in the integrand. 

For a continuation: of the solution when the pole is above the axis 

(c2  < 0), we use the z-plane contour 

-Lr 

Then I = +it/g. Similarly, for a continuation of the solution when 

c2  > 0, we must go above the pole. This yields I = -ilr/g. 

Substituting all this back into Eq. (c9),  and expanding everything to 

lowest order in r, we have 

X(r2 ) = X(r1 ) ± 	.(r) + 	r[al(1 ± i.) 	(r) + 	(r)] + 

(c15) 

(r2 ) = r(r1) +2a1 r [(_i ± i ) *(r1 ) + X(r1 )]. + 

where the upper sign corresponds to continuation from negative c 2 , and 

a1  = (U(r) - k2)/a'() 

Thus even if the radial wave function X(r) started off real for 
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small r, as it cbuld if the opticalpotentials 63(r), a(r) were 

real, it would.develop . an  imaginary part on Propagation through the 

singular point r. Consequen - lythe logarithmic derivative at the 

boundary R > r, defined by - 

x(R) 	1 + 

will be complex even in the limit of a real optical potential. And since 

the sign of its imaginary part depends on whether c 2  approaches zero from 

above or below, Im X(R) will have a discontinuity at c2  = 0. If we 

let U(r) = b p(r), and consider (R) as a function of the two complex 

variables h = b1  + ih2  and c = c1  + ic2 , we have in general 

c ) = 	(b,c). This implies that when the local potential is 

complex (b2  b), Re X(R) also develops a discontinuity at c2  = 0. 

The conclusion is then that the Kisslinger model wave function 

X(r) and its logarithmic derivative X(R) are in general not continuous 

functions of the interaction parameters h and a, there being in particular 

a discontinuity in X(R) as c2  Im c pases through zero. Since 

2 	 2 = ± i /g, where g 	r a'(r) = - r p'(r)/p(r), this dis- 

continuity depends inversly on the gradient of the nuclear density at 

the singular point. These wave function branch point effects will 

evidently be absent in only 3 cases: 

If a(0) = c 1p(0) > -1, there is no singular point nea± 

physical values of r. 

If •B = 	r) = 0, (Eqs. (cv) and (c8)) the singular component 

is absentfrom the .physical solution. 

In the limit of a unifo 	square well nuclear öensity 

d:LstrihutioTl; g 	and Il 	0. 



UCEL- 19216 

REFERENCES MID FOOTNOTES 

* 	Work done under auspices of the U. S. Atomic Energy Commission 

K. K. Sternheim and F. Hofstadter, Nuovo Cimento 38, 185k  

B. H. Auerhach, D. K. Fleming and K. M. Sternheim, Phys. Rev. 162, 

1683 (1967). 

K. N. Crowe, A. Fainberg, J. Miller and A. S. L. Parsons, Measurement 
-I- 

of It.  - He Scattering and its Relation to the Pion Form Factor, 

UCRL-18k73, Sept. 1968, submitted to Physical Review. 

k. 	14. Eriéson, Nuovo Cimento 47, 49 (1967). 

5. 	L. I. Schiff, Suppi. of Progr. Theoret. Phys. (Kyoto) Extra No., kOO 

(1965). 

 Geoffrey B. West, J. Math. Phys. 8, 942 (1967). 

 Geoffrey B. West, Phys. Rev. 162, 1677 (1967). 

Block, Phys. Letters. 25B, 604 (1967). 

K. K. Block et al., Phys. Rev. 169, 1074 (1968). 

A. Messiah, Quantum Mechanics, translated by G. K. Temmer, (Norti 

Holland Publish±ng Co., Amterdam; John Wiley and Sons, Inc. New York 

1961) Vol. I, Ch. XI. 

H. Frank, B. Haas and H. Prange, Phys. Letters 19, 391, 719 (1965); 

G. F. Burleson and H. W. Kendall, Nuci. Phys. 19, 68 (1960). 

z 

The error function is defined by,  erf(z) 	fe_2dx 1 erfc(z) 

15. Geoffrey F. Chew, S-Matrix Theory of Strong Interactions, (w. A. 

Benjamin, Inc., New York, 1961) Ch. 15; Richard Wilson, Physics 

Today, p. k, Jan. 1969; S. D. Drell and F. Zachariasen, 



...55.. 	 1JCRL.- 19216 

Electromagnetic Structure of Nucleons, (Oxford Univ. Press, 1961). 

l. Equation (20) was derived using foula no. 26, p. 74 of Vol. 1, 

Tables of Intea1 Transfonrs, California Institute of Technology 

Batemann manuscript Project, A. Erdlyi, Ed. (McGrawHh11, 

New York, 1954). 

K. M. Watson, Phys. Rev. 105, 1388 (1957); A. L. Fetter and 

K. M. Watson, The Optical Model, in Advances in Theoretical Physics, 

K. A. Brueckner, Ed. (Academic Press, New York, 19651, p. 115. 

L. S. Kisslinger, Phys. Rev. 98, 761(1955). 

M. Ericson and T. E. 0. Ericson, Ann. Phys. 36, 323 (1966) 

J. V. Lepore and B. J. Riddell (Lawrence Radiation Laboratory) private 

communication. 

J. Rix and B. N. Taler, Phys. Rev. 152, 1357 (1966). 

I would like to thank Dr. Alfred Goidhaber for this suggestion. 

G. Cocho and HarunAr-Rashid, Progr. Theoret. Phys. 36, 1150 (1966). 

tiAsymptoticu is used here to means "In regions where V - 0". 

Typically, this is for r - 

Marvin L. Goldberger and Kenneth M. Watson, Collision Theory, 

(John Wiley and Sons, Inc., New York, 1964), P. 30 

E. T. Whittaker and G. N. Watson, A Course of. Modern Analysis, 

(Cambridge University Press, 1962), Ch X 



-56- 

Table I. 	Mode] l"lependent fit 9arameters for S,P, and 0 waves 

£ Logarithnic derivative avg. and diff. (5 2 ,D 2 ) Nuclear phuse shifts bj 	(deees) 

(MeV/c) Re S 2  In S2  Re D In D Re 5 In 5 Re b' I 

S -1.161±0.007 -o.lio±0.ocb 4.18±0.21 0.40±0.24 -7.3±0.2 2.2±0.2 -9.0±0.2 2.3±0.2 

1-2.3 S -1.923±0.008 -0.125±0.008 6 .07±0 . 18  0.89±0.19 -7.7±0.1 1.6±0.2 -9.5±Q41 2.0±0.1 

153.2 3 -2.9314-'0.021 -0.172±0.021 9.90±0.74 1.45±0.74 -8.2±0.3 1.5±0.3 _9.7±0.3 i.8±0.3 

16.0 S -4.304±0.034. -0.326±0.033 14.67±0.86 2.83±0.88 _8.3±0.3 1.8±0.3 -10.1±0.2 2.1±0.2 

130.2 P 0.520±0.004 _0.067a±0.005 1.61±0.12 0.13±0.16 6.7±0.1 1.8±0.2 8.9±0.1 1.9±0.2 

142.3 P 0.174±0.004 
_0.100*±0.005 2.05±0.07 0.17±0.11 10.9±0.1 2.6±0.1 11.1±0.1 2.8±0.1 

153.2 P -0.1914-0.007 
_0.154*±0.009 2.24±0.22 0.30a±0.32 12.8±0.2 3.8±0.3 12.6±0.2 4.0±0.3 

163.0 P -0.611±0.007 -0.226±0.010 2.80±0.18 0.55±0.28 14.9±0.2 5.0±0.3 14.7±0.2 5.3±0.3 

130.2 0 2,100±0.009 _0.013*±0.012 0.70±0.29 0.02*±0.36 1.0410.1 0.2±0.1 1.0±0.1 0.1±0.1 

142.3 0 1.921±0.006 -0.015±0.007 0.78±0.32 0.02±0.16 1.5±0.1 0.1±0.1 1.5±0.1 0.2±0.1 

152.2 0 1.750±0.009 _0.020*±0 .010 0.88*f0.30 0.03±0 . 25 2.0±0.1 0,2±0.2 2.0±0.1 0.3±0.2 
-0.90 

163.0 0 1.568±0.007 _0.022*±0.008 1.00±0.18 0.04±0.20 2.7±0.1 0.5±0.1 2.7±0.1 0.3±0.1 

These varialles arlitrsrily fixed at 'reasonable values" in final fit (see text). 

LIntel errors on (S 2,D2 ) are the deviations that increase X by 10,. They are propagated crudely 

to the phase shifts using Sea. (25) and (26). 
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Table III. Modified Kisslinger model optical araniéters 

data fake c (F3) readjusted local const. b(F) 
set* 1rn5 1  S wave P wave D wave. 

a -0.13 -6.40-0.16i l.240.26 i 1.16+0.41 I 3.15+0.22 1 

•b -0.19 -6.62-6.25 1 1.37-0.15 i 1.87+0.59 I 3.42-f0459 i 

b' -0.19 6.14-0.10 1 1.28-0.17 i 1.82+0.61 i 2.27+0.66 i 

-0.25 -6.61-0.26 1 1.50-0.07 ± 1.98+0.53 1 3.79+0. 1 7 

d -o. -6.78-0.15 i 1.6_0.04 1 2.20+0.50 ± 4.l0+0.41.1 

*Model 	b' 	has density radius parameter a, = 1.27 F. (cf. Eq. (52)). 

The rest have aN = 1.34 F. 
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Table IV. Local model optical pararneters (c = 0) 
data adjusted 	b(F) 
set S wave P wave D wave. 

a 1.06 - 0.341. -6.47 -0.92 -12.31 -0.90 1 

b 1.10 - 0.26 i -6.59 - 1.10 -12.70 - 0.92 i 

b' 1.07 - 0.26 i 6.78 - .i.o8 -1.30 - 0 .99 1 

C 1.12-0.231 -6.58- 1.36 -12.39-1.121 

d 1.13 -0.271 -6.75 -1.56 -12.67- 1.101 
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FIGURE CAPTIONS 

Fig. 1. 	Nuclear, density distribution p(r)/p(o), and effective 

coulomb potentials V(r) (MeV) for Gaussian pion charge 

distribution (Eq. (18)) with r = 0,1,2, and 3 F.;Yukawa 

pion charge distribution (Eq. (20)) with r = 2 F. (dashed 

curve); and pure hr potential of two point charges (curve 

Fig. 2. 	Total absorbtion cross sections (mb) vs. lab momentum 

(MeV/c) for it 	(triangles) and ir 	(circles). Solid 

symbols are data from Ref. 9, open symbols are calculated 

values from fit parameters of Table I. 

Fig. 3. 	Elastic differential cross sections a 
+
(0) (mb/sr) vs. 

± cosO 	for it on He . Theoretical curves are calculatedal 

from the model independent fit parameters of Table I. 

Triangles are it data; circles are t 	data. 

Fig. 4. 	Fractionaldifference data 	(e) vs. coseM . Curve NI 

calculated from model independent fit parameters of Table I; 

Curve for r 	0 calcula- ed using Kisslinger model wave 

functions in Eq. (35). 

Fig. 5. 	Real part of normalized weighting functions 

Ir 	

2 
Y22(r) =X °(r)/ RX °(R) 	for S,P, and D waves a   

l2.3 MeV/c lab momentum. Solid cues for modified 

Kisslinger model, dashed curves for local potential model. 
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Fig..! 6. 	Re D2  vs. r(F) for S.P. and D waves at 11 2.3 11eV/c 

(data set h). Horizontal bands are data values and errors 

from model independent fit (Table I). Solid curves(G) 

alulated from Eq. (35) with Gaussian pion charge distribution 

• 	. 	using wave functions generated by local (L) and Kisslinger 

(K) nuclear interaction models. Curves for free particle 

• wave functions (F) are shown for comparison. Dashed curves 

(y) are for Yukawa pion niodel(Eq. (20)). The "data points" 

are. the fitted pion radii and errors from Table V. 

Fig. 7. 	x 	vs. r(F) for Gaussian pion model and both nuclear 

models. . abIsa,b,c,d refer to the data sets at the four 

beam momenta (cf. Table ii). 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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