UC Davis
UC Davis Previously Published Works

Title
Do novel insecticides pose a threat to beneficial insects?

Permalink

bttgs:ggescholarshiQ.orgéucgitem44kf1r9t§

Journal
Proceedings of the Royal Society B: Biological Sciences, 287(1935)

ISSN
0962-8452

Authors
Siviter, Harry
Muth, Felicity

Publication Date
2020-09-01

DOI
10.1098/rspb.2020.1265

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/4kf1r9t8
https://escholarship.org
http://www.cdlib.org/

PROCEEDINGS B

royalsocietypublishing.org/journal/rspb

l.)

ReView Check for

updates

Cite this article: Siviter H, Muth F. 2020 Do
novel insecticides pose a threat to beneficial
insects? Proc. R. Soc. B 287: 20201265.
http://dx.doi.org/10.1098/rspb.2020.1265

Received: 2 June 2020
Accepted: 8 September 2020

Subject Category:
Ecology

Subject Areas:
ecology, environmental science, behaviour

Keywords:

flupyradifurone, sulfoxaflor, sulfoximine,
butanolide insecticide, neonicotinoid,
pollinators

Author for correspondence:
Harry Siviter
e-mail: harry.siviter.2016@live.rhul.ac.uk

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
€.5127026.

THE ROYAL SOCIETY

PUBLISHING

Do novel insecticides pose a threat to
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Systemic insecticides, such as neonicotinoids, are a major contributor
towards beneficial insect declines. This has led to bans and restrictions on
neonicotinoid use globally, most noticeably in the European Union, where
four commonly used neonicotinoids (imidacloprid, thiamethoxam, clothia-
nidin and thiacloprid) are banned from outside agricultural use. While
this might seem like a victory for conservation, restrictions on neonicotinoid
use will only benefit insect populations if newly emerging insecticides do
not have similar negative impacts on beneficial insects. Flupyradifurone
and sulfoxaflor are two novel insecticides that have been registered for use
globally, including within the European Union. These novel insecticides
differ in their chemical class, but share the same mode of action as neonico-
tinoids, raising the question as to whether they have similar sub-lethal
impacts on beneficial insects. Here, we conducted a systematic literature
search of the potential sub-lethal impacts of these novel insecticides on
beneficial insects, quantifying these effects with a meta-analysis. We demon-
strate that both flupyradifurone and sulfoxaflor have significant sub-lethal
impacts on beneficial insects at field-realistic levels of exposure. These results
confirm that bans on neonicotinoid use will only protect beneficial insects if
paired with significant changes to the agrochemical regulatory process.
A failure to modify the regulatory process will result in a continued decline
of beneficial insects and the ecosystem services on which global food
production relies.

1. Introduction

Beneficial insects, such as bees, wasps and lacewings, provide ecosystem services
to both native ecosystems and agriculture. An estimated 35% of global food pro-
duced is dependent on pollinators [1] and beneficial insects also aid in biological
control, reducing crop pests such as aphids [2]. As such, documented insect
declines [3—6] will not only result in a loss of biodiversity, but also threaten agri-
culture and food security [7-9]. While insect population declines are caused by
numerous anthropogenic stressors, agrochemical use is clearly an important
driver of these declines [10,11].

Neonicotinoid insecticides are the most commonly used insecticides in the
world [12] and are effective at controlling a broad range of unwanted pest
species [12]. Neonicotinoids work by targeting the insect nervous system,
acting as agonists of nicotinic acetylcholine receptors (NAChRs) and, owing
to differences in the binding sites of NAChRs in vertebrates and invertebrates
[13], have a reduced risk to humans and vertebrate wildlife [12]. However, as
both highly persistent and systemic insecticides, neonicotinoids can contami-
nate freshwater sources and the nectar and pollen of both treated crops and
nearby wildflowers [14-17]. Given their lack of specificity within insects,
field-realistic applications of neonicotinoids can have significant sub-lethal
impacts on beneficial insects [18-25] with knock-on effects on ecosystem ser-
vices [26,27]. This has resulted in bans and restriction on neonicotinoid use
globally, most notably in the European Union. Importantly, these sub-lethal
effects were identified post-licencing and not during the regulatory process.
The process by which insecticides are licenced for use is a tiered system,
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where the first tier involves testing the toxicity of an insecticide
(i.e. through LDs; experiments). Because this is the only part of
the regulatory process that is mandatory [28,29], the sub-lethal
impacts of novel insecticides can go undetected [28-30]. Fur-
thermore, toxicity testing is conducted with model species
which are not always representative of insect groups more
broadly (i.e. Apis mellifera representing all pollinators) [31].
Consequently, neonicotinoids could be replaced with other
insecticides that are equally as harmful to beneficial insects
[32-34].

In this review we: (i) introduce two novel insecticides
(flupyradifurone and sulfoxaflor) that could replace neonicoti-
noids over broad geographical regions and outline the
potential risk of exposure for beneficial insects, (i) review,
with a systematic literature search, the potential sub-lethal
impacts of these insecticides on beneficial insects, (iii) quantify
these effects with a meta-analysis, and (iv) use these insecticides
and neonicotinoids as case studies for how the regulatory
process could be improved to better safeguard beneficial insects.

2. Flupyradifurone and sulfoxaflor mode of
action and routes of exposure

Flupyradifurone and sulfoxaflor are the first butanolide and
sulfoximine-based insecticides, respectively, that have been
registered for agricultural use [35,36]. Both share the same
mode of action as neonicotinoids, targeting NAChRs, but
differ in their chemical structure, and specifically in their
structural activity relations [13,35-39]. Therefore, despite
their similar modes of action, each chemical is classified
into a distinct group by the Insecticide Resistance Action
Committee (IRAC) (neonicotinoids = group 4A, sulfoxaflor =
group 4C, flupyradifurone = group 4D [35,36]). Because flu-
pyradifurone and sulfoxaflor are both effective at targeting
pest species that are resistant to neonicotinoids
[35,37,40,41], they are likely candidates to replace neonicoti-
noids in areas where the latter is restricted [42] and in areas
with high levels of pest resistance [35,36,43].
Flupyradifurone and sulfoxaflor have both been regis-
tered for use globally including in the European Union,
where neonicotinoid use is heavily restricted. Both can be
applied as spray or seed treatments [35,36], and as systemic
insecticides, are expressed throughout the tissue of the
treated plant, as well as in the flower’s nectar and pollen.
Beneficial insects can either be directly exposed during
spray treatment, or indirectly exposed via feeding on plant
tissue, nectar or pollen. Neonicotinoids are highly persistent
in soil and plants, lasting for months and in some cases,
years [15]. Similarly, flupyradifurone appears to be relatively
persistent in the environment, lasting in the soil for several
months [44]. Sulfoxaflor is less persistent, with its half-life
in the soil estimated to be between 2 and 3 days [45]. Despite
this, beneficial insects appear to be exposed to both flupyra-
difurone and sulfoxaflor in agricultural environments. For
example, nectar and pollen collected by honeybees (Apis mel-
lifera) foraging on buckwheat fields that had been sprayed
with a recommended concentration of flupyradifurone con-
tained on average 259 and 565 ppb of flupyradifurone,
respectively [46], and honeybees foraging on winter-sown
oilseed rape treated with both seed and spray applications
of flupyradifurone contained up to 4 ppm in the collected
nectar [44]. Similarly, honeybees foraging on a cotton crop

treated with label recommendations of sulfoxaflor had up
to 510 ppb in their collected pollen [47], and other studies
have found that concentrations collected by foragers can
be much higher (e.g. strawberry pollen=12700 ppm to
110 ppb, pumpkin pollen = 162 ppb to 9 ppb) [45]. Sulfoxaflor
appears to degrade more quickly in the nectar and pollen of
treated crops than neonicotinoids, but still persists for at least
11 days (the longest period that has been tested) [45,47].
Therefore, while we do not have a complete understanding
of the residue persistence of flupyradifurone and sulfoxaflor,
the existing data suggest that beneficial insects will be
exposed to them at relatively high concentrations [44,45,48].

3. The sub-lethal impacts of flupyradifurone and
sulfoxaflor on beneficial insects

We conducted a systematic literature search of the potential
impacts of flupyradifurone and sulfoxaflor on beneficial
insects (methods in the electronic supplementary material).
We first reviewed and summarized the literature on bees
because they made up the majority of the published research
(8§§3a—c). We then reviewed the literature on predatory insects
(83d), including wasps, lacewings and beetles. Finally, we
extracted and quantified the available data with a meta-
analysis (§3e; see the electronic supplementary material for
methods and analysis).

(a) Bee mortality
The purpose of this review was to highlight the potential
sub-lethal consequences of novel insecticides on beneficial
insects, but when reviewing the literature, it quickly became
apparent that flupyradifurone can have lethal consequences
at field-realistic levels [49-52]. For example, flupyradifurone
exposure increased larval mortality at high dosages
(033 pgbee ' d™! for 6 days) in the Asiatic honeybee (Apis
cerana), although no effects were found at a lower dosage
(0.033 ug bee™ d™! for 6 days) [50]. However, in a follow-up
experiment that used a similar design with western honeybees
(A. mellifera), larvae fed a lower dosage (an estimated
0.025 ug adult bee™ d™' over 3 days) had higher larval mor-
tality [51], suggesting that A. mellifera larvae are more
vulnerable to flupyradifurone exposure than A. cerana. Further-
more, flupyradifurone exposure, as with other insecticides [53],
is more likely to be detrimental when combined with other
environmental stressors such as poor nutrition [54], pathogens
[53] or other agrochemicals [49,55]. Honeybees (A. mellifera)
exposed to field-realistic concentrations of flupyradifurone
had higher levels of mortality when simultaneously exposed
to the fungicide propiconazole [49]. Similarly, exposure to
both flupyradifurone and the common fungal parasite
Nosema ceranae can alter detoxification and immune genes in
honeybees and also increase mortality [51]. Therefore, despite
flupyradifurone been labelled ‘bee safe’, field-realistic exposure
can increase the risk of honeybee mortality [49,50].
Sulfoxaflor is toxic to bees at high concentrations [56-60], yet
the effects on mortality at lower doses may depend on inter-
actions with other environmental variables. Honeybees
Bumblebees (B. terrestris) and honeybees (A. mellifera) fed a
sucrose solution containing sulfoxaflor (1 ppm or 3 ppm) over
14 days had mortality rates of 90% and 88%, respectively
[56,58]. However, while bees can be exposed to these
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concentrations in the short-term (acute exposure), the existing
data suggest that these concentrations are unlikely to persist
over a two-week period [46-48] (see §2). For example, in two
semi-field experiments, honeybee (A. mellifera) colonies foraging
on cucumber and buckwheat flowers sprayed with sulfoxaflor
had an initial rise in mortality compared with control colonies,
but this dropped as the chemical started to degrade [57,59]. As
with flupyradifurone, exposure to sulfoxaflor with other
environmental stressors appears to increase bee mortality at
field-realistic applications [61]. Bumblebee (B. ferrestris) larvae
reared in vitro and chronically exposed to a field-realistic concen-
tration of sulfoxaflor (5 ppb) or inoculated with the common
bumblebee parasite Nosema bombi did not differ in mortality
compared to unexposed controls, but when larvae were simul-
taneously exposed to both stressors, mortality increased [61].
Given the prevalence of N. bombi in some bumblebee popu-
lations [62], field-realistic concentrations of sulfoxaflor could
significantly increase bumblebee larval mortality.

(b) Bee fitness and reproductive output
A healthy bumblebee or honeybee colony will grow and
produce sexuals (gynes and males). Reproductive output is
arguably the best measure of colony fitness [32,63,64] but
other proxies such as colony growth or larval production are
also useful fitness measures [64,65]. As described in §3a, lab-
oratory experiments have demonstrated that flupyradifurone
exposure can increase honeybee larval mortality [50,51] and
can also reduce adult emergence [51], which could have
knock-on effects on colony growth. In one of the first
experiments to examine the colony-level impacts of flupyradi-
furone on beneficial insects, Campbell et al. [46] monitored the
‘colony strength’ (growth) of honeybees (A. mellifera) foraging
on buckwheat crops, that had either been treated with a
label-recommended foliar spray of flupyradifurone or
untreated control fields. The experimental treatment did not
affect any of the measures of colony fitness addressed, includ-
ing the number of bees, eggs, brood or colony weight.
However, this study also highlights the difficulties in conduct-
ing these types of field experiments as honeybees returning to
the control colonies were also found to be carrying nectar and
pollen containing flupyradifurone, suggesting that fields
neighbouring the control fields had been treated with it.
Chronic sulfoxaflor exposure appears to have comparable
negative impacts on the reproductive output of bumblebee
colonies to those observed with neonicotinoids [64,65]. For
example, Siviter et al. [32] chronically exposed bumblebee (B.
terrestris audax) colonies to a field-realistic concentration
(5 ppb) of sulfoxaflor in sucrose over two weeks, before they
were placed in parkland and allowed to forage naturally.
The colonies were monitored until the end of their life cycle
and compared to unexposed colonies. Sulfoxaflor exposure
reduced the number of sexuals produced by 54% and treated
colonies also contained fewer workers than control colonies.
Interestingly, the drop in worker production did not occur
until week 5 of the experiment, when larvae that had been
exposed to sulfoxaflor for the longest period of time would
be emerging. This implies that sulfoxaflor exposure may
impair larval development, resulting in a drop in worker pro-
duction, and downstream consequences on reproductive
output [32]. In a follow-up experiment, chronic sulfoxaflor
exposure (5 ppb over 10 days in a sucrose/pollen mixture)
did not increase bumblebee larval mortality (B. terrestris)

although larval growth was impaired [61]. As sulfoxaflor resi-
due levels are generally higher in pollen than nectar [45,48,57],
bumblebee larvae could be exposed at higher concentrations
of sulfoxaflor than adults [32,61,66]. Microcolonies chronically
exposed to 5 ppb of sulfoxaflor showed a 31% and 40%
reduction in egg laying and larval production respectively
[66], offering a possible mechanism for the fall in reproductive
output observed in [32]. Taken together, these results suggest
that sulfoxaflor exposure will have significant, sub-lethal
impacts on bumblebee colony fitness.

(c) Bee behaviour

While mortality and reproductive output are direct measures
of beneficial insect fitness, many of the upstream effects of
insecticide exposure could be behavioural as foraging bees
need to identify floral resources and learn which offer the
highest rewards to maximize their nutritional input [67].
This requires both the physiological mechanisms involved in
flight and motor control, but also the cognitive mechanisms
involved in perceiving and learning about floral stimuli (e.g.
colour, scent) and rewards (e.g. nectar, pollen). After foraging,
bees also need to navigate from flower patches back to their
natal colony, requiring the use of spatial and olfactory cues.
Disruption to behaviours such as these could have knock-on
consequences for colony fitness [68]. Flupyradifurone
exposure can impair honeybee (A. mellifera) sucrose respon-
siveness and motor function, but only at high dosages
[69,70], and honeybee olfactory learning is impaired at field-
realistic dosages both when individuals are exposed as
larvae or as adults [50,71]. In the first large-scale field study
to monitor the impact of flupyradifurone exposure on honey-
bee foraging, honeybees (A. mellifera) were chronically
exposed to flupyradifurone for 7 days and foraging was mon-
itored for 40 days with radio frequency identification tags [72].
Honeybees exposed to flupyradifurone began foraging at an
earlier age compared to unexposed controls and performed
more foraging bouts, that took longer to complete. Neonicoti-
noid exposure can have a similar effect on bumblebees,
increasing the frequency and/or duration of foraging trips
[19,73] possibly caused by bees being less efficent at foraging
[19,23,73,74]. While effects on foraging efficiency have not
been directly tested, acute, field-realistic flupyradifurone
exposure (approximately 4 ppm) can impair honeybee
(A. mellifera) flight: honeybees exposed to flupyradifurone
and tested in a flight mill were less likely to complete a success-
ful flight [54]. Interestingly, flight velocity was greater in the
flupyradifurone-treated bees, which could be as a result of
hyperactivity [49,54], akin to effects observed with neonicoti-
noid exposure [75]. Thoracic temperature was also lower in
exposed bees, suggesting that flupyradifurone may also
impair thermoregulation [54].

Sulfoxaflor exposure does not appear to impair bee be-
haviour, although the available data are currently limited
[32,76]. Foraging bees learn about floral scents and use their
working memory to remember flowers that they have already
visited [18,77]. Neonicotinoid exposure can impair both olfac-
tory learning and working memory [18,77] but acute
sulfoxaflor exposure at doses directly comparable to those
used with neonicotinoids (5 and 10 ppb) [77,78], did not
influence (i) honeybee (A. mellifera) or bumblebee (B. terres-
tris) olfactory learning or (ii) bumblebee (B. terrestris)
working memory [76]. Siviter et al. [32] found no long-term
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impact of chronic sulfoxaflor exposure (5 ppb) on bumblebee
foraging performance, although foraging observations were
not made during the exposure period [32], so the results are
not directly comparable to research with neonicotinoids
[19,23]. More recent experiments similarly found no effect of
acute sulfoxaflor exposure on locust (Locusta migratoria) behav-
iour [79], suggesting that the lack of behavioural impairment
may hold across insects more broadly.

(d) Effect on predatory insects

Most research on flupyradifurone and sulfoxaflor to date has
been conducted on the potential impact of these novel insecti-
cides on insect pollinators and specifically bees. However,
both flupyradifurone and sulfoxaflor have been suggested for
use within an integrated pest management (IPM) approach
[35,36]. As such, the impact on predatory insects that aid in
pest control, such as wasps and lacewings, needs to be low.
To assess the potential impact of insecticides on predatory
insects, researchers have conducted bioassays that expose
insects at various stages of their life cycle to label-recommended
applications of insecticides. Topical flupyradifurone exposure
resulted in a 40-60% dose-dependent increase in the mortality
of rove beetles (Dalotia coriaria) and 100% mortality of insidious
flower bugs (Orius insidiosus) [80]. Taken together, these
studies suggest that the effects of flupyradifurone exposure
occur more broadly across insects. However, given the limited
number of studies available in beneficial insects, more research
is required to determine the breadth of sub-lethal effects
of flupyradifurone exposure.

Sulfoxaflor appears to have detrimental effects on broad
insect taxa, including in the Hymenoptera, Coleoptera
and Hemiptera. For example, sulfoxaflor is toxic to wasps
(Tamarixia radiata) and ants (Solenopsis invicta) at high dosages
[81,82]. At field-realistic levels of exposure, sulfoxaflor has also
been found to reduce the parasitism capacity of parasitoid
wasps (Trichogramma dendrolimi, Trichogramma ostriniae and
Trichogramma confusum) and can also increase mortality [83].
Lacewings (Chrysoperla carnea) topically exposed to sulfoxaflor
at the maximum label recommendations had a significant
reduction in fertility when exposed as larvae and an increase
in mortality when exposed as adults (56% compared with no
mortality in the control treatment) [84]. Ladybird (Adalia
bipunctata) larvae exposed to the same concentrations had
100% mortality (compared to no mortality in the control
group) [84]. Field-realistic applications of sulfoxaflor also has
detrimental effects on beetles, including reducing pupation
and adult emergence of the harlequin ladybird (Harmonia axyr-
idis) [85], increasing adult mortality in Hippodamia convergens
[86] and reducing the number of predatory beetles (Coccinelli-
dae) found in treated crops [86]. Finally, sulfoxaflor exposure
at label recommendations caused 96% mortality of the
Hemipteran Orius insidiosus within 24 h after exposure [86].

(e) Quantifying the impact of flupyradifurone and

sulfoxaflor on beneficial insects: a meta-analysis
Of the 26 papers on flupyradifurone and sulfoxaflor that we
discuss above, we were able to extract data from 19 (effect
sizes: flupyradifurone, n = 38, sulfoxaflor 1 = 60, see the elec-
tronic supplementary material, table S1 for a full list). We
found an overall negative impact of both flupyradifurone
and sulfoxaflor on beneficial insects (flupyradifurone,

figure 1a, Hedges d (d)=-0.53, 95% confidence intervals
(CD=-0.74 to —0.32; sulfoxaflor, figure 1b, d=-1.61 CI=
—2.16 to —1.07).

Flupyradifurone exposure had a significant negative effect
on the mortality, fitness and behaviour of beneficial insects
(figure 1a, mortality, d =—-0.89, CI=-1.28 to —0.51; fitness,
d=-042, CI=-0.77 to -0.06; behaviour, d=-0.20,
CI=-0.38 to —0.02). Importantly, these negative effects held
at field-realistic levels (figure 1a, field realistic, d =-0.29,
CI=-0.44 to —0.14). Effects occurred across both pollinators
(Apis) and predatory insects (Dalotia), although the sample
size was low for the latter (n=3) and so this result should
be treated with caution (figure 1a, pollinators, d=-0.50,
CI=-0.72 to —0.28; predatory insects, d = —1.23, CI=-2.01 to
—0.44). Sulfoxaflor similarly had a negative effect on
beneficial insect mortality and fitness (figure 1b, mortality,
d=-256, CI=4.02 to —1.09; fitness, d=-0.71, CI=-0.92 to
—0.50), while no effect was observed on behaviour (d = —0.14,
CI=-040 to 0.11). Again, the negative effects on beneficial
insects still held at field-realistic concentrations (figure 1b,
field realistic d = —0.54, CI=—-0.69 to —0.40), and these effects
were consistent across pollinators (Apis and Bombus) and pred-
atory insects (Adalia, Chrysoperla, Chrysopidae, Coccinellidae,
Harmonia, Orius, Solenopsis, Trichogramma) (figure 1b, pollina-
tors, d=-1.29, CI=-2.19 to —0.39; predatory insects, d =
-1.27, CI=-1.57 to —0.86).

4. Changing the requlatory process to better
protect beneficial insects

Our review and meta-analysis demonstrate that novel insecti-
cides have significant sub-lethal impacts on beneficial insects,
demonstrating that, in its current form, the regulatory process
does not safeguard beneficial insects from detrimental effects
of agrochemical use. Thus, simply replacing neonicotinoids
with novel chemical insecticides is unlikely to reduce nega-
tive consequences on beneficial insects. Below we outline
three ways in which we believe the agrochemical regulatory
process can be changed to better protect beneficial insects.

(a) Mandatory assessments of sub-lethal effects on wild
bees

The agrochemical regulatory process is a tiered system that is
highly reliant on toxicity assessments in the first tier [28,29].
Toxicity tests are used to determine ‘worst-case’ scenario out-
comes. If these tests demonstrate a high potential risk to bees
(or other organisms), then further higher tier experiments
(tiers 2 and 3) may be conducted [28,29]. Western honeybees
(A. mellifera) are used as a model species for all bees in tier 1,
regardless of their unique biology compared to the approxi-
mately 20000 other species of bee [31,87]. This means that
insecticides can be licenced for use without the sub-lethal
impacts on wild bees, such as bumblebees and solitary
bees, ever being assessed. In this review, we highlighted a
range of complex and species-specific sub-lethal effects of
insecticide exposure on beneficial insects. While it is imprac-
tical to test for every possible sub-lethal effect of novel
insecticides, we believe that a few key sub-lethal effects
should be measured. The most all-encompassing measure
of detrimental effects outside of lethality is fecundity (e.g.
number of eggs, larvae, pupae, workers and/or sexuals
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Figure 1. Hedges d + 95% confidence intervals for the impacts of flupyradifurone (a) and sulfoxaflor (b) on beneficial insects. Negative Hedges d values that do not
overlap the zero line indicate a significant negative effect of the insecticide on beneficial insects. n = the number of effect sizes in each sub-group.

produced during the experimental period). Other sub-lethal
effects, such as those on bee behaviour, will only be conse-
quential if they in turn affect individual or colony fitness.
Furthermore, measuring fecundity offers an endpoint that
can be modelled on a population scale [20,88] from which
acceptable levels of risk can be calculated.

One of the difficulties in assessing the potential impact of
novel insecticides on bumblebees is that reproduction occurs
at the colony level, which both takes a significant period of
time (most bumblebee species have an annual lifecycle) and
requires large numbers of individuals to be used (each colony
can have hundreds of workers). One method, previously
suggested in a European Food Safety Authority (EFSA) report
[29], that can be used to assess bumblebee fecundity, is the use
of ‘microcolonies’ [29,65,66,89,90]. Bumblebee workers have
reproductive plasticity, and when removed from the queen,
will develop their ovaries and start laying eggs [91,92]. This
means that bumblebee workers can be used to assess the sub-
lethal impact of insecticides on colony egg laying, larval pro-
duction and adult mortality, making microcolony-based
experiments a useful tool for assessing the sub-lethal impacts
of chronic insecticide exposure on bumblebee fecundity. Less
research has been conducted on solitary bees, despite them
being both the majority of bee species and more vulnerable to

agrochemical exposure than social bees [93-96]. Experiments
that assess the impact of sub-lethal insecticide exposure on soli-
tary bee adults [97-99] and larvae [100] have been developed
and could be implemented within the regulatory process.
Methods that measure the fecundity of commercially available
solitary bees (e.g. Osmia bicornis) after exposure to novel insecti-
cides are an obvious candidate for the regulatory process owing
to their availability, and importance in agriculture [97,98]. These
suggested changes to the regulatory process are not necessarily
novel (e.g. see [29]), but importantly, we suggest that these sub-
lethal assessments on wild bees should be mandatory in the first
tier of risk-assessment, before an insecticide is licenced for use.

(b) Assessments of novel insecticides on non-bee

beneficial insects
As highlighted in this review, there is a lack of research on the
potential impact of flupyradifurone and sulfoxaflor exposure
on insects aside from bees, despite their important role in
ecosystems and agriculture [101,102]. Furthermore, as with
native bees [3,62,103], insects more broadly are in decline
globally [4-6], with knock-on consequences for wildlife in
general [5,104]. Insect declines are occurring for multiple
reasons [9,105] and our meta-analysis shows that novel
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insecticides could contribute to the decline of beneficial
insects. It is therefore critical that the insecticide regulatory
process considers the wider impact of agrochemical use on
beneficial insects, and develops and implements method-
ologies (as described in §3d) that assess the sub-lethal
impacts of novel insecticides on beneficial insects, particularly
those that can aid with pest control.

(c) Assessment of interactions between agrochemicals
and other anthropogenic stressors

Beneficial insects face many different anthropogenic stressors
such as habitat loss (causing loss of key nutritional resources
and nesting sites), agrochemicals, pathogens and climate
change [9,105]. As highlighted in §3a, interactions between
multiple stressors can exacerbate negative effects on insects
[49,55,106,107]. For example, when used in combination, cer-
tain agrochemicals can lower the LDsy of an insecticide,
increasing mortality [49,55,106]. Insecticide exposure can
also make bees more vulnerable to pathogens and disease
by impairing their immune response [107,108]. Understand-
ing how and to what extent anthropogenic stressors interact
is therefore of utmost importance.

Testing the potential interactions between agrochemicals
and every other anthropogenic stressor that insects may experi-
ence is unfeasible. However, likely stressors, such as nutritional
stress, could easily be introduced to current and proposed
methodologies (see §4a) used within the regulatory process
[54]. Likewise, testing the interactions between insecticides
and other agrochemicals such as fungicides and herbicides,
especially those that are used in the same commercial formula,
can be easily conducted with other commonly used method-
ologies [49,55,97]. Testing the potential interactions between
agrochemicals and pathogens is also important, but the sheer
number of insect pathogens similarly makes it unfeasible to
test all possible interactions. Therefore, understanding how
insecticides interact with the most commonly occurring patho-
gens, such as Varroa destructor in honeybees, or Critihdia bombi
in bumblebees, should be prioritized. More importantly, post-

monitoring licencing, that is currently non-existent, is essential [ 6 |

for understanding the interactions between insecticides and
other anthropogenic stressors in beneficial insects [33]. Only
with such continued monitoring will we gain a thorough
understanding of how novel insecticides will influence
beneficial insects under field conditions [9,105].

5. Conclusion

Intensive agriculture is heavily reliant on insecticides for con-
trolling insect pests [12]. Our analysis demonstrated that
flupyradifurone and sulfoxaflor can have significant negative
sub-lethal impacts on beneficial insects, confirming that (i) in
its current form, the regulatory process is failing to detect the
sub-lethal but significant negative impacts of novel insecti-
cides on beneficial insects, and (ii) bans on commonly used
insecticides will only protect beneficial insects if replacement
insecticides do not have similar sub-lethal impacts. Whether
an insecticide will ever exist that controls pest species while
having no impact on beneficial insects is unknown. However,
a failure to modify the regulatory process and consider the
sub-lethal impacts of novel insecticides will result in the con-
tinuing cycle of insecticides being licenced for use without a
full understanding of their potential impact on beneficial
insects. Moving forward, programmes that incentivize
agrochemical reduction and promote an integrated pest man-
agement approach will better safeguard beneficial insects and
the ecosystem services we rely on for global food production.
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