
UC Davis
IDAV Publications

Title
Fast Clifford Fourier transformation for unstructured vector field data

Permalink
https://escholarship.org/uc/item/4kd4d20g

Authors
Schlemmer, Michael
Hotz, Ingrid
Natarajan, Vijay
et al.

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kd4d20g
https://escholarship.org/uc/item/4kd4d20g#author
https://escholarship.org
http://www.cdlib.org/


Fast Clifford Fourier Transformation for  
Unstructured Vector Field Data 
 
Michael Schlemmer 1  
Ingrid Hotz 2 
Vijay Natarajan 2 
Bernd Hamann 2 
Hans Hagen 1 
 
1 Computer Graphics and Visualization 
 Department of Computer Science 
 University of Kaiserslautern 
 D – 67653 Kaiserslautern 
 
2 Institute for Data Analysis and Visualization (IDAV) 
 Department of Computer Science 
 University of California, Davis 
 Davis, Ca 95616 
 
schlemmer@informatik.uni-kl.de 
 
 
Abstract 
 
Vector fields play an important role in many areas of computational physics and 
engineering. For effective visualization of vector fields it is necessary to identify and 
extract important features inherent in the data, defined by filters that characterize certain 
“patterns”. Our prior approach for vector field analysis used the Clifford Fourier 
transform for efficient pattern recognition for vector field data defined on regular grids 
[1,2]. Using the frequency domain, correlation and convolution of vectors can be 
computed as a Clifford multiplication, enabling us to determine similarity between a 
vector field and a pre-defined pattern mask (e.g., for critical points). Moreover, 
compression and spectral analysis of vector fields is possible using this method. Our 
current approach only applies to rectilinear grids. We combine this approach with a fast 
Fourier transform to handle unstructured scalar data [6]. Our extension enables us to 
provide a feature-based visualization of vector field data defined on unstructured grids, or 
completely scattered data. Besides providing the theory of Clifford Fourier transform for 
unstructured vector data, we explain how efficient pattern matching and visualization of 
various selectable features can be performed efficiently. We have tested our method for 
various vector data sets. 
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Introduction 
The analysis and visualization of unstructured vector field data is a challenging task.  
Basically, two different approaches exist to visualize vector fields: visualization of an 
entire dataset, or reduction of the dataset by extracting features. The first class of 
visualization methods provides an overview of a dataset; the second class allows one to 
concentrate on certain features being of special interest. With increasing size of data sets, 
feature extraction becomes more and more important. Features of interest in vector fields 
include vortices and shock waves. Feature extraction as from scalar data, e.g. edge 
detection, is a well studied branch in image processing. Pattern recognition is performed 
by convolution of images with specially defined filter masks. For fast detection of such 
patterns the Fourier transformation plays an important role, since it enhances the 
convolution operation. A recently presented method for the application of Fourier 
transformation to vector fields is using the properties of Clifford algebra [1,2]. For a fast 
calculation, the Clifford fast Fourier transformation (FFT) has been developed, operating 
on uniformly distributed data [1]. Our main contribution is the combination of this 
Clifford FFT for vector fields with methods for a non-uniform FFT, operating on 
arbitrarily distributed scalar data, as proposed by Fourmont [6] and Kunis/Potts [14]. 
In the following sections, we present the theory for the non-uniform fast Clifford Fourier 
transformation (NFCFT) and show its application to unstructured vector data.  
 
Related work  
Besides direct visualization of vector fields using hedgehogs, for example, a feature- 
based approach is divided into two steps. The first step is to find patterns of interest, the 
second visualizes this preprocessed and simplified data. An example for a feature- 
oriented method is the algorithm of Sujudi and Haimes [18], which extracts vortex core 
lines by analyzing the eigenvalues and eigenvectors of the velocity gradient tensor. More 
feature-based visualization methods are discussed by Post et al. [19]. 
Another possibility for feature-based visualization of vector fields uses signal and image 
processing techniques for pattern recognition. Prior work introduced a convolution 
operator for pattern recognition applied to uniform vector field data, see Heiberg et al. 
[17], Granlund/Knutson [16], and Ebling/Scheuermann [3]. The latter method is based on 
Clifford algebra and was also applied to non-uniform data [4]. Expensive convolution in 
spatial domain is reduced to a multiplication in frequency domain. In signal processing it 
is common to filter the data in frequency domain. To devise a similar method for vector 
fields we adapted a continuous and discrete Fourier transformation for multi-vector field 
data by using a Clifford algebra approach [1,2].  We implemented the discrete CFT using 
the FFT for regular grids. Unfortunately, this method is based on a regular grid structure 
and cannot be used for arbitrary meshes. 
There has been some work concerning the development of fast algorithms for the Fourier 
transformation on irregular grids (NFFT).  We extended this work to CFT. Our work is 
mainly based on a method by Fourmont [6] and Kunis/Potts [14] for calculating a fast 
and accurate FFT for non-uniformly spaced data. Our implementation of the fast Clifford 
Fourier transformation uses a NFFT library developed by Potts et al. [13].  
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Basics  
We start with a brief review of the basics and motivate our work. After an introduction of 
the CFT we discuss existing methods for NFFTs. 
 
Feature-based Visualization of Vector Fields 
Convolution was modified to be applicable for vector valued data. Scientists have defined 
convolution for vector fields, e.g., Heiberg et al. [17] or Granlund and Knutson [16] using 
component-wise convolution. A very elegant approach using Clifford algebra was 
provided by Ebling and Scheuermann [3], introducing the Clifford convolution (CFT). In 
contrast to other methods, Clifford multiplication and Clifford convolution preserve the 
full information, magnitudes as well as directions of a vector dataset. 
Clifford algebra operates on multi-vectors. These can be regarded as an extension of the 
complex numbers to vector fields, completed by a complex scalar part. Regarding vectors 
in three-dimensional Euclidian vector space, we obtain an eight-dimensional algebra G3 
with the basis {1, e1, e2, e3, e2e3, e1e3, e1e2, e1e2e3} using the rules of the 3D-Clifford 
algebra, i.e., 

 
the Hodge-duality can be derived: 
 

 
where  
 
 
Further information regarding Clifford algebra can be found in Scheuermann [5]. 
  
The Clifford product of two vectors is a combination of the inner and outer product and 
therefore contains angular information as well as the relation of vector lengths. Thus, the 
so-called Clifford convolution is a suitable approach for pattern matching in vector field 
data. According to [2] it is defined as 
 

 
 

for a multi-vector field P and filter mask U in direction n. Since the Clifford product is 
only commutative for odd dimensions, one has to consider that there is a difference when 
applying a filter from the left or the right side for even dimensions. 
 
Clifford Fourier Transformation 
Clifford convolution can be enhanced by a transformation into frequency space. We have 
developed the Clifford Fourier transformation as an extension of the common Fourier 
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transformation for vector fields. It can be defined continuously for a three-dimensional 
multi-vector valued function  f: E3 → G3 as 

, 
 where i3 is an extension of the imaginary number i in the Clifford algebra [1,2]. The 
vectors x and u indicate position in spatial and frequency domain, respectively. It can be 
generally defined for any dimension d. This definition varies from the original one only 
in the fact that we use multi-vectors instead of scalars and that it is defined to be 
multidimensional.  
Especially important for our application is the linearity property of the Fourier 
transformation. Using the Hodge duality, any three-dimensional multi-vector field          
f: E3 → G3 can be written as four complex signals, i.e. 
 

             . 
 

Considering linearity of the Fourier transformation, one obtains 

 

. 
 

This separation applies to multi-vector fields of arbitrary dimension d, thus Clifford 
Fourier transformations can be computed by calculating several common Fourier 
transformations. In our context, we require two transformations for a two-dimensional 
and four transformations for a three-dimensional Clifford transformation.  
We have implemented a fast discrete Clifford Fourier transformation. It is applicable to 
uniform grids [1], providing a possibility for fast convolution in frequency domain. It 
also provides insight into the structure of the frequency domain of a vector field. We have 
used this approach to apply a variety of different filters, e.g., low pass, high pass, band 
pass, and vector valued filters (i.e. rotations, divergences) and have obtained satisfying 
results. Unfortunately, this technique is limited to uniform grids. An example for a 
Clifford Fourier transformed vector data set is presented in Figure 1, whereas examples 
for vector valued filters and their frequency representation are illustrated in Figure 2.  
The two most obvious ways to treat data on irregular grids is either resampling or 
defining the filter mask according to the local grid structure, compare Ebling and 
Scheuermann [4]. We present the NFCFT, to enhance these spatial domain approaches by 
transforming unstructured vector data into frequency domain.  



 

 
Figure 1:                                                  [1] 
Top: Magnitude representation of swirling 
jet entering a liquid at rest (vector data, 
rectilinear, resampled to uniform grid) 
Bottom: Magnitude frequency 
representation (transformed by a CFT) 

 Figure 2:                                         [2]
Left: examples for vector valued 
filters in spatial domain, two- and 
three-dimensional. 
Right: The corresponding Clifford 
frequency domain representation. 

 
 
Non-uniform FFT for scalar data: 
Starting in the mid 90s with investigations by Dutt and Rohklin [7,8], it is still an active 
research area. There are basically two types of non-uniform Fourier transforms. The non-
uniform discrete Fourier transform (NDFT) is defined as transformation from N evenly 
distributed data points evaluated at M arbitrary positions in frequency domain [6], i.e., 
 

             
 

Since one only has to recalculate the Fourier basis location, there is no need for an 
approximation of the data. The approximate inverse transformation is defined similarly, 
using interpolation to calculate the correct Fourier modes: 

                
Kunis and Potts presented an adjustable algorithm for a high-accuracy approximation to 
this problem [16]. 
Typical implementations of the non-uniform fast Fourier transformations (NFFT) use a 
windowing function to approximate the Fourier modes for fast calculation. Various 
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authors proposed different possibilities for these windowing functions. While Beylkin [9] 
uses a B-spline window, Dutt and Rohklin [7,8] use a Gaussian window, which was 
further optimized and by Steidl [12]. Ware [10] compared these methods. Further 
improvements and windowing approaches were also proposed by Duijndam and 
Schonewille [11]. Our work is based on the ideas of Fourmont [6], using Kaiser-Bessel 
windowing. He showed the effectiveness for these window approximations resulting in 
very small errors. Using Shannon’s theorem for band-limited functions, it can be shown 
[6] that 

          
 

for an interpolation function                           , with support in            . Thus, the NFFT 
with non-uniform result is given by inserting this equation into the transformation [6]: 
 

  
 

Considering non-uniformly spaced data, the (simple) transformation is defined as  
 

  
 

The quality of the windowing function   depends on its concentration in spatial and 
frequency domain. It is impossible to find a function for exact reconstruction, since any 
band-limited function has to be infinite in the spatial domain and vice versa. The 
Gaussian window seems to be the best choice, since it is similar, or even equal, in spatial 
as well as in frequency domain and minimizes error in both domains. Fourmont’s Kaiser-
Bessel window turns out to be a better choice. It provides compact support over the 
window span in the spatial domain, contributing no error, and minimizes the error when 
limiting the infinite frequency representation. For more information on Kaiser Bessel 
windows, we refer to Kaiser [15], for their application to the NFFT algorithm, we refer to 
Fourmont [6]. 
 
Non-uniform fast Clifford Fourier Transformation 
Our main contribution is the combination of our discrete fast Clifford Fourier 
transformation [1] developed for uniformly distributed data with an approach for non-
uniform fast Fourier transformation, following the ideas of Fourmont [6]. We define the 
NFCFT transformation as a transformation of non-uniformly distributed data in the 
spatial domain to evenly spaced data in frequency domain: 
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for                :                                                                                                  . 
            
The inverse transformation (INFCFT) is an extension of the NFFT: 
 

 
 

By considering the results of Ebling and Scheuermann [2], we can split up the calculation 
into four scalar-valued NFFTs for three-dimensional and into two for two-dimensional 
multi-vector fields. 
Thus, we can use the NFFT library of Potts et al. [13] to calculate the scalar NFFTs. 
Moreover, for our NFCFT we used the simple inversion by Fourmont and the more 
accurate iterative approach developed by Potts and Kunis [16]. Both algorithms for the 
NFCFT have been compared, considering time and accuracy. We have applied the 
methods to several data sets, performing the transformation and its inverse. Comparing 
directions and magnitudes of the resulting vectors to the original ones, we have computed 
accuracy measurements for vector-valued data. A full reconstruction of a field is only 
possible when satisfying the Nyquist theorem, i.e., for an appropriate reconstruction at 
positions lying very closely to each other, we need to use a high over-sampling rate.  
 
An important application of this Fourier approach is the convolution of vector-valued 
filters and non-uniformly distributed vector-valued data by performing a Clifford 
multiplication in frequency domain. We first transform a vector field onto a uniform grid 
in frequency domain, using the simple NFCFT, similar to Fourmont’s definition of the 
INFFT [6], and the high accuracy method of Kunis and Potts [16]. Since our frequency 
representation is based on a uniform grid, we are able to use the frequency representation 
of non-interpolated convolution masks. Multi-vector field and filter mask are multiplied 
in frequency domain. INFCFT of the resulting multi-vector finally produces the filtered 
multi-vector field. In case of a vector-valued filter mask, we obtain a scalar-valued field, 
indicating the similarity of the field to the used filter mask at each position.  
 
Results 
The NFCFT has been implemented and tested, using a 2.6 GHz Pentium 4 processor with 
512 MB RAM. The algorithm was applied to an unstructured vector data set (Figure 3), 
measuring accuracy (Tables 1, 2) and time dependency (Table 3), considering the number 
of iterations and over-sampling factors used for the transformation. The over-sampling 
factor indicates the number of positions in frequency respectively to the number of 
positions in spatial domain. Accuracy was measured by comparing the original data set 
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with its inversely transformed frequency representation. We distinguish between relative 
error in vector magnitude and the angular error.  
The results show that combining over-sampling and the iterative improvement of Kunis 
and Potts [14] leads to high reconstruction quality, whereas Fourmont’s method 
(equivalent to performing just one iteration) does not lead to accurate results. The tables 
show, that the angular error decays faster than the magnitude error. This is of advantage 
for the application of vector pattern recognition, since rotations or divergences are 
defined by directions of vectors. For practical considerations, the performance of the 
inverse transformation is more important, since a data set can be transferred into 
frequency domain once, and can then be filtered with various filters. The results of these 
filtering operations are all transformed with the inverse transformation. The 
transformation into frequency domain can be regarded as preprocessing for an efficient 
filtering in frequency domain. 
 

OF 1 it. 3 it. 5 it. 10 it. 15 it. 20 it. 25 it. 30 it. 
1 37.26 34.23 30.68 26.20 24.30 22.96 22.12 21.46 
4 22.51 15.45 9.79 5.34 3.51 2.58 1.71 1.32 

16 10.92 4.55 2.78 1.21 0.77 0.42 0.32 0.16 
64 4.66 1.68 0.71 0.34 0.09 0.05 0.02 0.0006 

Table 1: Relative medium error in magnitude depending on over-sampling factor and no. 
of iterations [%] for test data set with n=2500 vectors. Formula: 100* n  ( | |v|-|vt| | / n ) 
 

OF 1 it. 3 it. 5 it. 10 it. 15 it. 20 it. 25 it. 30 it. 
1 23.46 18.21 16.18 13.76 12.58 11.81 11.35 11.00 
4 11.72 5.57 3.95 1.90 1.15 0.78 0.52 0.41 

16 4.97 1.42 0.67 0.30 0.22 0.11 0.08 0.05 
64 1.94 0.531 0.227 0.067 0.026 0.011 0.0005 0.0001 

Table 2: Relative medium angular error depending on over-sampling factor and no. of 
iterations [%] for test data set, n=2500. Formula: 100* n cos-1( <v,vt>/ |v|*|vt| ) / (   *n). 
 

 Figure 3: Hedgehog representation 
of completely unstructured test data  

Figure 4: Structured non-
uniform grid and magnitude 
representation of swirling jet 
entering a liquid at rest 
(vector data, rectilinear, non-
uniform spacing)  

Figure 5: Frequency 
representation of swirling 
jet data set, low frequency 
magnitudes stronger 
(center) 
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OF 1 it. 3 it. 5 it. 10 it. 15 it. 20 it. 25 it. 30 it. Inv 
1 0.03 0.3 0.45 0.85 1.25 1.71 2.03 2.48 0.03 
4 0.08 0.75 1.16 2.19 3.26 4.3 5.33 6.41 0.07 

16 0.25 2.81 4.32 7.93 12.1 15.95 19.67 22.57 0.26 
64 1.06 11.31 17.31 32.23 47.15 62.09 77.16 94.5 1.07 

Table 3: Calculation times [sec] depending to over-sampling factor (OF) and number of 
iterations for test data set consisting of 2500 vectors 
 

We applied the algorithm to a real world data set, a two-dimensional slice of a swirling 
jet vector field, entering a fluid at rest (Figure 4). With an over-sampling factor of 
approx. 5, mapping 12524 vectors in spatial domain to 256*256 in frequency domain, the 
computation with 100 iterations took 106 seconds, while inverse transform took 0.35 
seconds. This data set is not unstructured, but it is not defined on a uniform grid. The 
frequency representation of the swirling jet data set shows the expected larger magnitude 
values in the lower frequency spectrum (Figure 5). 
 
Conclusions and Future Work 
 

We have presented a generalization of the fast Clifford Fourier transformation and 
compared the accuracy and efficiency of two different implementations of our approach. 
This method, based on the discrete fast Clifford Fourier transformation for uniform grids 
[1] and the NFFT for scalar data of Fourmont and Kunis/Potts [6,14], was developed to 
provide an alternative to other methods for pattern matching for unstructured vector field 
data [4].  
Our method performs well for most unstructured vector fields, but we need to develop 
approaches to assess uncertainty. Having large numbers of vectors concentrated in 
specific sub-areas, it can happen that outliers cause high similarity values for specific 
filters. There is need for proper uncertainty measures to indicate the significance of 
matches. A possible way for improving errors is to perform some preliminary 
segmentation and compute the transformation on each segment. 
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