
UC Riverside
UC Riverside Previously Published Works

Title
Dynamic Radial Placement and Routing in Paper Microfluidics

Permalink
https://escholarship.org/uc/item/4kc0z2zg

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 40(10)

ISSN
0278-0070

Authors
Potter, Joshua
Grover, William H
Brisk, Philip

Publication Date
2021-10-01

DOI
10.1109/tcad.2020.3036836
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4kc0z2zg
https://escholarship.org
http://www.cdlib.org/


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dynamic Radial Placement and Routing
in Paper Microfluidics

Joshua Potter1, William H. Grover2, and Philip Brisk1

Abstract—The low cost, simplicity, and ease of use of paper
microfluidic devices have made them valuable medical diagnostics
for applications from pregnancy testing to COVID-19 screening.
Meanwhile, the increasing complexity of paper-based microfluidic
devices is driving the need to produce new tools and methodolo-
gies that enable more robust biological diagnostics and potential
therapeutic applications. A new design framework is being used
to facilitate both research and fabrication of paper-based mi-
crofluidic biological devices to accelerate the investigative process
and reduce material utilization and manpower. In this work we
present a methodology for this framework to dynamically place
and route microfluidic components in a non-discrete design space
where fluid volume usage, surface area utilization, and the timing
required to perform specified biological assays are accounted
for and optimized while also accelerating the development of
potentially lifesaving new devices.

Index Terms—Paper Microfluidics, Placement and Routing,
Continuous Placement

I. INTRODUCTION

THE THREAT of a global pandemic on the scale of tens
of millions of people infected and deceased like the 1918

Spanish flu [1] or a strain of influenza like H1N1 [2] has been
of concern for nearly 100 years. Additionally, viral and non-
viral diseases such as AIDS and tuberculosis also kill around
5 million people per year, 4.3 million die from respiratory
infections, 2.9 million die from enteric infections, and 1
million die from malaria. The current COVID-19 pandemic
has now underscored the need for rapid, inexpensive, and
widely-available medical diagnostics.

Although such diseases are a threat to everyone, popula-
tions of lower socio-economic status – such as many third
world countries – have an elevated risk of exposure and less
diagnostic and therapeutic resources to treat such conditions
[3]. Even in more prosperous countries there can be a po-
tentially fatal gap in healthcare among those who have a
dysfunctional political system, or predatory economic entities
that have developed extensive governmental agency influence
that can restrict needed resources from the general population.
Meanwhile, efforts to identify and mitigate global threats of
diseases [4], [5] are continually being developed and deployed
wherever resources are limited and needs are greatest.

Low-cost and easy-to-use diagnostic technologies have the
potential to positively impact healthcare outcomes in critical

1 Department of Computer Science and Engineering, University of Cali-
fornia, Riverside, CA 92521 USA

2 Department of Bioengineering, University of California, Riverside, CA
92521 USA; E-mail: wgrover@engr.ucr.edu

Manuscript received ; revised.

situations, and many researchers look to microfluidic tech-
nologies for its potential to achieve that impact. Microfluidic
devices can reduce costs of materials through reducing their
size in construction as well as lowering the volumes of
reagents and fluids needed for testing. Moreover, they have
the potential to enable doctors and researchers to perform
diagnostic and treatments while in the field and reducing the
need for time-consuming formal laboratory work as well as
cutting the time to treatment and recovery of patients.

In 2004, the WORLD HEALTH ORGANIZATION (WHO)
specified the seven ASSURED criteria that it determines to
be essential for point-of-care diagnostics in resource-limited
settings [3] (Fig. 1). Paper Microfluidic Devices may come
the closest to satisfying these criteria; they are versatile,
inexpensive to produce, and easy to use. These advantages are
why paper microfluidic devices are currently being used to
detect COVID-19 antibodies in blood to determine if a patient
was previously infected by the novel coronavirus SARS-CoV-
2 [6].

A. Contribution

This paper introduces a design framework for paper mi-
crofluidic devices that will facilitate both research on design
automation and subsequent fabrication studies. Similar to
semiconductors, paper microfluidic devices feature compo-
nents (akin to standard cells or IP blocks) connected by fluid
transport channels (akin to wires). Placement and routing prob-
lems clearly exist, although at present, design rules have not
been standardized, formal problem descriptions are lacking,
and no heuristics have been published to date. The physical
design of a paper microfluidic device must account for the
underlying physics of passive fluid transport (e.g., wicking)
[7], [8] and the physical properties of the paper substrate [9].
Lack of standardization suggests that design constraints akin
to standard cells for paper microfluidic devices are unlikely to
emerge in the foreseeable future.

Fig. 1. The WHO’s “ASSURED” criteria for point-of-care diagnostics in
resource-limited settings.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Fig. 2. A mixing operation using various platforms a) On paper, fluid and reagents are delivered via pipette and fluid travels using capillary action bounded
by printed wax barriers (in pink). Fluid channels are non-discrete so travel can occur in any planar direction. b) Electro-wetting utilizes an electric power
source that controls electrostatic pads below a hydrophobic surface material to induce droplet travel. Consequently, droplets may only mode orthogonally from
pad to pad. c) Pressurized channels and valves (represented by orange blocks) force fluid through embedded channels in a block of material that may either
be machined with the channels, or 3-D printed.

B. Technology Overview

The vast majority of papers published on design automation
for microfluidics over the past 15-20 years have targeted two
specific microfluidic technologies: electrowetting on dielec-
tric (EWoD – often called “Digital Microfluidics”) [10] and
channel-based microfluidics featuring integrated microvalves
which are controlled via external solenoid valves [11]. From
the technological perspective, paper is fundamentally different.

Fig. 2 depicts fluid transport and mixing in these three
technologies. In paper microfluidics (Fig. 2a) liquid expands
in a radial pattern from the application point, in accordance
with the theory of capillary action; the underlying physics is
no different than using a commodity paper towel to mop up a
fluid spill. Transport and routing of fluids within the paper is
handled through various printed hydrophobic barriers, such as
wax-based inks [12], [13], [14], [15]. The wax barrier impedes
radial flow, but there is no external source beyond the substrate
itself which pumps the fluid. This is significantly different than
either the actuation mechanisms employed in other popular
microfluidic technologies or the transport of electrical current
in semiconductors, as the forces that are applied to fluids
(or electrical currents) in the aforementioned technologies are
inherently directional. In electrowetting microfluidics (Fig.
2b), the hydrophobic surface coupled with the pattern of
electrodes that are actuated by an externally supplied voltage
controls the direction of wetting (transport). In channel-based
microfluidics (Fig. 2c), an external syringe pump creates a
force which becomes directional due to channel geometry; the
same is true of peristaltic pumping, which is internal to the
chip, but is controlled by external solenoid valves.

The geometry of a paper microfluidic device determines
the volume of the liquids and reagents that are required to
successfully complete an assay. The time required for fluid to
travel through a (portion of) the substrate can be constrained
by both upper and lower bounds, depending on the assay: the
upper bound may be due to evaporation, the rate of chemical
interactions, and ultimately the amount of time that a person
may be willing to wait for results or possible sample spoilage,
while the lower bound is typically determined by the minimum
time for chemical processes to complete. Further, the materials
used in the device (substrates, inks, fluids, reagents, etc.) need
to be limited to avoid waste in order to maintain low cost
while still delivering efficient, effective, and accurate results.

C. Related Work

Many channel-based continuous fluid flow microfluidic
systems have a linear layout in which fluid enters on one
side of the chip and travels, under a pressurized flow, to
the opposite side [16], [17]; in turn, many physical design
algorithms targeting these technologies are based on a similar
assumption [18], [19], [20]. We argue that physical design
algorithms for paper microfluidics should work with, rather
than against, the natural radial flow of fluid in a porous
medium; conversely, linear layouts, while simple to generate,
are poor choices for paper microfluidic devices; we confirm
this argument experimentally.

Both pressure-driven flow through channels and capillary-
force-driven flow through paper are convective flows. In the
absence of any external force, such as gravity, fluid will flow
equally in all directions (i.e., in a spherical direction in 3D
or a radial direction in 2D). Channel barriers, which can be
realized for paper microfluidic devices via wax printing, may
constrain the otherwise uninhibited travel of fluid, but also
introduce additional resistance to fluid flow [21]. Furthermore,
evaporation, surface tension, and backpressure [22] place
limits on the distance fluid can travel in a paper substrate.

Fig. 3 provides empirical evidence that linear layouts, i.e.,
those that might be generated by the algorithms described
in Refs. [18], [19], [20] appropriately adapted for paper
microfluidics, do not generate workable devices. We fabricated
two linear paper microfluidic devices, as depicted in the top
portion of Fig. 3.

Both devices are simple branching routes where fluid is
delivered to a large source reservoir so that it will flow toward
a control sink at the opposite end. In both devices, twenty-four
channels branch off from the main artery to divert the fluid to
twenty-four sinks. In one of the two devices, the branches lie
at a 90◦ angle to the main artery; in the other, the design was
modified to reduce the angle of fluid diversion when entering
the channels. In both of these tests, fluid only reached six of
the twenty-four sinks, despite the fact that the fluid delivered to
the source exceeded the calculated volume for the device and
consequently encountered barrier failure. The second device,
with less extreme fluid diversion, offered at best a marginal
improvement in the volume of fluid delivered to the sinks, and
likewise experienced overflow.

The second set of paper microfluidic devices, which serve to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 3. Linear vs. Radial Layouts (Top): A linear paper microfluidic device
layout with 24 test reservoirs (blue), one control reservoir (red), a large source
reservoir, all with 2 mm barrier widths. The device had a calculated volume of
117.4 µL therefore 140 µL fluid was delivered to the source reservoir. After
8 min 50 secs, only four reservoirs were filled, two additional reservoirs were
partially filled, and the 2mm barriers ultimately failed. (Middle): A second
linear device was fabricated but the channels were angled to aid in fluid flow.
The change in channels increased the device’s calculated volume to 137.5 µL,
and therefore 160 µL fluid was delivered to the second device. After 9 min
32 secs, four reservoirs were again filled, two more reservoirs partially filled,
and the device barriers failed. (Bottom): Two radial device layouts were made
with 12 reservoirs (blue) plus 1 control reservoir (magenta), and only 1 mm
barrier width. Using radial channels to aid in fluid flow, this device had only
a 54.9 µL calculated volume, and consequently 54 µL fluid delivered to the
left device and 50 µL to the right device. After 3 min 36 secs all 24 reservoirs
filled completely and fluid reached both control reservoirs thereby successfully
running to completion. The total fluid delivered to both bottom devices is less
than the amount of fluid delivered to the top and middle devices, allowing two
sets of tests to be performed using less fluid than the single test and without
failure, demonstrating the advantage of a radial layout.

motivate this paper, are shown in the bottom portion of Fig. 3.
In these “radial layouts,” the source reservoir is placed at the
center, and twelve sink reservoirs and one control reservoir
were placed equidistant from the source. The radial layouts
exploit tendency of fluid to flow in an expanding circle from
the point of delivery, while the two linear devices shown on top
aim to counteract the fluid’s flow. In this experiment, the two
radial layouts’ twenty-four reservoirs were able to successfully
fill, with less fluid, less paper area, and in less time than the
two linear devices shown at the top of the figure.

The two devices shown on the bottom of Fig. 3 are smaller
and have shorter channel lengths than the two shown on the
top. As a matter of principle, similar device geometries could
be laid out by appropriately adapting optimal or near-optimal
physical design algorithms for continuous flow microfluidic
chips that optimize these metrics [23], [24], [25], [26]. Fig. 4
illustrates one key difference between these algorithms and the
approach presented here: existing physical design algorithms
abstract away each component with a rectangular bounding
box, and impose physical layout constraints that bounding
boxes cannot overlap, and that fluid channels cannot intersect
bounding boxes unless they connect directly to an I/O port

Fig. 4. Using actual geometry versus abstract bounding boxes can significantly
reduce fluid area and consequently materials and sample usage. Layout a)
using bounding boxes for placement of components has a calculated volume
of 284mm2 while b) has a calculated volume of 268mm2 yielding a 6%
improvement over the bounds dominated version. Layout c) has a calculated
volume of 618mm2, d) has a calculated volume of 482mm2 resulting in a
22% reduction of fluid area versus the bounds dominated layout.

of the corresponding component. In contrast, the physical
layout algorithm presented here detects component overlap
based on component geometry, which is more accurate than
the conservative bounding-box approach. As shown in Fig. 4
this yields tighter layouts and shorter routing channels.

The radial layout method presented here takes inspiration
from the field of graph drawing. A radial tree (also called
a radial map) draws a rooted tree by placing the root at the
center of a circle and expanding the tree such that the levels are
drawn on concentric circles [27], [28], [29]. We have observed
that the layouts produced by our algorithms for tree-shaped
netlists do not resemble radial trees, but instead shares some
principle similarities to H-trees [30], which were used in early
multiprocessor interconnection networks [31] as well as VLSI
clock tree routing [32], [33]. Radial tree drawing generalizes to
radial graph drawing [34], in which the vertices of a graph are
drawn on a set of concentric circles; while our approach can
place and route a netlist corresponding to any graph, we do not
impose any constraints comparable to radial graph drawing.
Additionally, our approach to channel route employs probes,
taking inspiration from grid-based maze routers developed in
the late 1960s [35], [36].

II. BACKGROUND

A. Design Automation Challenges

In principle, automated design of paper microfluidic devices
– and the individual components that are used to construct
them – takes inspiration from semiconductor design automa-
tion; however, there are also many important differences.
Along with the aforementioned physical limitations of passive-
flow fluid delivery, Paper microfluidic device design automa-
tion must account for non-discrete and non-linear geometries.
Components can be located anywhere within the device,
unlike traditional circuit placement which is restricted by grid-
oriented standard cells. Components may have non-polygonal
geometries, such as Bézier curves (Fig. 6) which complicates



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

the validation of placement legality. Moreover, components
may consume 2D space across multiple device layers, while
fluid transport, in many cases, crosses substrate boundaries.
Thus, straightforward adaptations of existing semiconductor
physical design algorithms are inappropriate for paper mi-
crofluidic devices, and design tools and methodologies to
address these challenges are needed.

B. Paper Microfluidic Design Practice

Paper microfluidic devices are presently designed by hand
using software such as AutoCAD R© or Adobe Illustrator R©.
Each design is essentially a “hard-coded” device (analogous to
an application-specific integrated circuit). During the develop-
ment phase, the designer must create multiple device variations
to compare performance and accuracy and to ensure that the
device remains usable under varying environmental conditions.
Under the current paradigm, each variation must be designed
by hand, which is time-consuming, labor-intensive, and prone
to inaccuracy. These issues also limit the complexity of the
biochemical reactions for which a realistic paper microfluidic
device can be designed.

III. DESIGN AUTOMATION FRAMEWORK

This paper utilizes a design framework [37] that paper
microfluidic device developers can use to prototype, dynam-
ically generate, and test new designs (Fig. 5); at the time
of publication, this framework did not feature algorithms
for automatic placement and routing, we introduce, for this
first time, here. The framework provides the capability to
reliably reproduce devices streamlined for in-situ fabrication.
Moreover, the framework is designed to integrate with tools
to test and analyze each design in order to enable auto-
mated or semi-automated paper microfluidic device design
space exploration in the future. Different device variations
may be designed to account for the effects of environmental
conditions, impact on physical substrates, and dynamic fluid

Fig. 5. Paper microfluidic device design framework overview.

Fig. 6. A Bézier curve is defined by 4 points in space: start and end points
and 2 control points that define a parametric curve. The control points may
or may not be on the curve itself. The curve may contain 2-5 critical points
where it potentially changes direction, and possibly an inflection point where
the curve changes direction. a) When the start and end points are also control
points, the Bézier curve degenerates to a straight line. b) A curve defined by
two control points, indicated by lines connecting them to the start and end
point, and one maximum point (indicated by a red arrow. c) A curve with one
maximum and one minimum point, along with inflection point between them
where the curve changes direction (all three points indicated by red arrows.
d) A series of Bézier curves defines a path; when the path starts and ends at
the same point, a closed path creates a shape. e) Simple shapes can be joined
to create more complex shapes.

conditions, providing the designer with a greater understanding
of how these physical factors influence accuracy under test.

The framework includes a library of paper microfluidic
device components, which are reusable objects that can be
rapidly assembled into netlists to form new diagnostic devices.
Components are abstract elements that must reside in one
and only one device, but may connect to multiple devices.
A component definition may include functionality in terms
of fluidic actions and abstract dynamics, such as mixing,
transport, timing, etc. Each component c = 〈ρ1, ρ2, . . . , ρn〉
is physically defined by one or more geometric primitives. A
primitive ρi is constructed from one or more paths Pi, each of
which using one or more Bézier curves (Fig. 6). Bézier curves
are parametric arcs defined with start and end points and
“handle” points that constrain the curve. The curves may have
2-5 critical points: 1) the start, 2) the end, 3) local maximum,
4) local minimum, and 5) an inflection point where the curve
can change from concave to convex. The placement phase
of our algorithm processes the critical points, as opposed to
enumerating all sides, angles, and curves, in order to measure
how close objects are placed to one another and to determine
whether or not overlap occurs.

A device D = 〈c1, c2, . . . , cn〉 consists of at least one
component, and encapsulates the desired actions and param-
eters needed to characterize its behavior. To create a device,
individual components may be scaled or rotated as needed.
Large devices may be specified hierarchically in terms of
smaller devices, facilitating the concatenation of multiple
assays in sequence or in parallel.

A netlist N = 〈c1, c2, . . . , cn〉 is a queue of components
(Fig. 7) which determines the order in which components will
be placed. Both components and devices may contain ports,
which define an interface for fluid transport. For example, a
port on device D1 may connect to a port on component c1
{PD1

← Pc1}; similarly, a port on device D2 may connect
to two ports on components c2 and c3 respectively {PD2

←
Pc2,c3}. The physical location of a port within a component is
defined as part of the component’s specification. The physical
location of a port within a larger device is not known until the
physical location of the component containing that port has
been placed within the device.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE I
VARIABLES USED IN THE ALGORITHMS

Vars Description

c Component to be placed
cf The cost factor of Component c placed in relation to one or

more previously-placed Devices D
Chs A set of Channel Components
ch A Channel Component
D A Device that contains one or more Components that have

been been placed and possibly routed
∆δ The set of minima and maxima for each dimension
I A set of intersections
L A Layout containing one or more fully laid-out Devices
N The netlist; a set of Components to be placed ordered as

collections of sources to sinks
O The path that serves as an outline to a Device or Component
p A point (x, y)
P A Path object consisting of one or more Segments s
PD A sub-path of the outline of D which consists of all its critical

points and the angle about the center each are located
Pc Similar to Pσ but for a component c
Page Contains the finished Layout L along with information about

substrate properties
Φ Port variable that describes the input (xi, yi) and output

locations (xo, yo) between Components and/or Devices
Qρ A priority queue consisting of the x, y coordinates and rotation

θ of Component c to be placed that is sorted on cost factor cf
s A Segment object defined by a Bézier curve
Θ The aperture 〈θα, θω〉 of exposure between a component c

that is the starting angle θα and the ending angle θω about its
center point

θα,ω The start and stop angles of an object that defines an arc angle
α the starting value
ω the ending value

A layout L = 〈D1, D2, ...Dn〉 (Fig. 7) contains all devices
residing on one or more pages and also defines environmental
variables such as substrate type, composition, and size, tem-
perature, humidity, and other variables as defined by the end
user. Once a layout is completed, the framework renders the
device using established file formats, such as PDF, DXF, and
SVG.

IV. PHYSICAL DESIGN ALGORITHM

Our approach to paper microfluidic physical design is to
work radially outward from source fluid reservoirs to sink
reservoirs while seeking to maintain the minimum distance
that fluid must travel. Components are placed one-at-a-time.
Potential locations for each new component are enumerated
by a 360◦ sweep, motivated by the way that a radar screen
displays information. At each potential location, the compo-
nent may also be rotated 360◦ to best fit the component into
the subset of the device layout that has been generated thus
far.

In this manner, a listing of potential placement locations
is sorted by how closely they abut the existing layout, while
minimizing any desired parameters such as shortest critical
path, fluid volume, time to complete, etc., as secondary
criteria. A route is computed for each potential location,
based on the premise that the closest positions are likely
to have the shortest routes, although no such claim can be
guaranteed in the general case. If a suitable route is found,
the component is permanently placed and connected to the

Fig. 7. The RADAR algorithm generates a layout of one or more devices
constructed from a netlist of components. Components are selected one-
by-one for placement; after each component is placed, it is connected to the
existing layout by channels that route fluid throughout the layout.

layout. The algorithm terminates preemptively if all other
candidate placement locations are not routable; it terminates
successfully when successful placement locations are found
for all components.

Algorithm 1 The RADAR Place and Route Algorithm
1: function RADAR(N )
2: D ← new Device()
3: L← new Layout(D)
4: while c← N .pop()
5: Qρ ←RADARPLACE(D ∈ L, c)
6: if Qρ.empty()
7: return L
8: else
9: while !Qρ.empty()

10: c.(x, y, r)← Qρ.pop()
11: if !RADARROUTE(D, c)
12: return L
13: MERGE(L, c, Chs)
14: L.center ← Page.center
15: if L.w > Page.width || L.h > Page.height
16: return L
17: return L

A. The RADAR Algorithm

The RADAR algorithm (Alg. 1, Fig. 7) takes as input a
netlist of components and, optionally, a buffer value, which is
the minimum allowable distance between components after
placement. At the onset of the algorithm, the layout L is
initialized with the environmental parameters determined by
the user and an empty device to be constructed from the
netlist. Table I lists and briefly describes all variables and data
structures used.

The algorithm does not concern itself with the viability or
the nature of the component during placement, but does check
for whether or not the component is a source, sink, or internal,
to determine whether or not routing needs to be performed. A
source is a component with no input channels, and a sink is a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

component with no output channels; the netlist can have any
number of source and sinks.

At the start of each pass, the next component c ∈ N is
popped from the netlist and attempted to be placed and routed.
A priority queue Qρ (Table I) is initialized to hold the set of
potential locations and orientations for c that RADARPLACE
will attempt to generate when called. Qρ is ordered by increas-
ing cost factor, a value calculated for each candidate position
that is calculated using a user-defined method. The default
approach is to only consider total surface area or fluid volume
but more complex methods can be considered, depending on
the user’s choice of optimization criteria. Should the list be
empty, no suitable placement was found and the algorithm
terminates. Otherwise, c is set to the calculated values of each
candidate placement in Qρ until either a valid routing for c is
discovered, or Qρ is emptied, resulting in a failed routing. The
final placement and route of each component is then merged
into L using the MERGE function for the next pass. The
device layout is then centered in the page layout and evaluated
to determine if extending beyond the page dimensions and
returned if exceeded with an error. If failure occurs at any
point (Fig. 13), or N is emptied and the algorithm completed,
the finished or currently constructed layout L is returned and
flagged with any appropriate errors.

Fig. 8. A component c whose placement and orientation will be determined
relative to a device D comprising one or more previously-placed components.
The objective is to minimize the sum of the distances between each pair of
critical points in c and D, which also aligning with either the center points
or the registration points of each object as chosen by the user. The two
center points ccenter and Dcenter are defined as the mid-point vertically
and horizontally of the minimum bounding rectangles, cmbr and Dmbr ,
respectively. The registration points creg and Dreg are defined as local origin
points (0, 0) for which all measurements within D are calculated and also
where the location of D in L is determined. In this example, c and D have
29 and 44 critical points, respectively, resulting in 1276 distance measures for
each candidate location.

B. The RADARPLACE Algorithm

RADARPLACE (Alg. 2) generates an ordered positional and
orientation queue Qρ for evaluation of potential placements for
component c in layout L sorted on COSTFUNCTION results.
The sets PD and Pc contain tuples of critical points of the
Bézier paths for D ∈ L and c respectively. The aperture
Θ〈θα, θω〉 is defined to be the start and end angles to be

checked for either D or c and is initialized to a full 360◦

sweep. PD obtains the results of scanning D performing a full
sweep of its border using an algorithm called CURVESCAN
(Alg. 3 and Section IV-B1). CURVESCAN returns the set of
critical points that c will be compared against during the for
loop spanning lines 7-25 of Alg. 2 and depicted in Fig. 8.

Algorithm 2 The RADAR Place Algorithm
1: function RADARPLACE(D, c)
2: Qρ ← ∅
3: Θ〈θα, θω〉 ← (0◦, 360◦)
4: PD ← CURVESCAN(Doutline,Θ)
5: for pi ∈ PD
6: c.(x, y)← pi.(x, y)
7: c.moveby(COLLIDE(D, c))
8: if c.connected
9: ΦD ← D.ports.at(dD.ports.size/2e)

10: Φc ← c.ports.at(dc.ports.size/2e)
11: c.rotate(GETPORTANGLE(ΦD,Φc))
12: c.moveby(COLLIDE(D, c))
13: Θ〈θα, θω〉 ← VIEWWINDOW(D, c)
14: else
15: Θ〈θα, θω〉 ← VIEWWINDOW(D, c)

16: Pc ← CURVESCAN(coutline,Θ)
17: for pj ∈ Pc
18: θτ ← GETANGLE(D.center, c.center)
19: θσ ← GETANGLE(pi.(x, y), c.center)
20: c.rotate((θσ − θτ ), c.center)
21: c.moveby(COLLIDE(D, c))
22: if COLLIDE(D, c) == 0
23: Qρ.add(〈c.(x, y), c.rotation,COST(D,c)〉

)
24: return Qρ

Fig. 9. When there are no ports to be connected, RADARPLACE rotates the
component c up to 360◦ for each candidate location to compare all critical
points of c to all critical points of placed devices D ∈ L.

1) CURVESCAN: The CURVESCAN algorithm (Alg. 3)
generates a sub-curve comprising a set of points contained in a
Bézier path O bounded radially by a start/ending angle Θ, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 10. When there are ports to be routed, RADARPLACE restricts the rotation
of c to ensure that the ports are oriented toward the points in D to which
they connect.

returns the sub-path outline of the object bounded by those
angles for analysis, as illustrated in Fig. 11. Each segment
s within the sub-path is examined to determine if it falls
within the aperture Θ, which is defined as the angle formed
between the edges that are reachable from the source object
to destination object, similar to the visible face of the moon
when viewed from earth. If so, the curve and any connecting
curves are added to sub-path P if not already present in P .
CURVESCAN increments the angle by the radianInterval
formed by the last curve added minus the current angle and
terminates after examining all segments in O and returns P
within the aperture Θ.

Algorithm 3 The CURVESCAN Algorithm
1: function CURVESCAN(O,Θα,ω)
2: P ← ∅
3: if Θα undefined
4: Θα ← 0

5: if Θω undefined
6: Θω ← 360

7: while Θα < Θω

8: line← (O.center(x, y),Θα)
9: I ← GETINTERSECTIONS(O, line)

10: for i ∈ I
11: stemp ← si intersected farthest from O.center
12: if ( !stemp ∈ P )
13: P .add(stemp)
14: if ( !( (s ∈ Oi−1) ∈ P ) )
15: P .add(s ∈ Oi−1 to stemp )
16: Θα ← Θα + radianInterval

17: return P

2) Placing Components: At the start of each iteration (Line
7 of Alg. 2), c is initialized so that it is placed such that the
center point of c is set to the same coordinates as critical point
pi to initialize the location of c to have some overlap with the
already placed items in L. The COLLIDE function computes
the amount of overlap between c and D. If the amount of

Fig. 11. CURVESCAN retrieves a sub-path PD from a device’s outline or
Pc from a component’s outline based on a start and end angle (θα, θω),
which were determined by VIEWWINDOW (Alg. 3 and Fig. 12). The start and
end points are calculated in standard polar orientation in a counter-clockwise
manner with the rotational origin at the center point of the outline and 0◦

aligning with the standard x-axis orientation. The right component’s sub-curve
is determined by the furthest point intersecting with the start angle Pc(x1, y1)
(e.g. 110◦) and end angle Pc(x2, y2) (e.g. 270◦). The left sub-curve begins
earlier in the rotation (e.g. 290◦) but is internally converted to a negative
value (e.g. −70◦) to return the proper sub-curve from points PD(x1, y1) to
PD(x2, y2).

overlap is non-zero, then this information is used to move
c to eliminate overlap currently in L. For example, should
COLLIDE return {15.0,−5.0}, c would be moved 15 units to
the right along the x-axis, and 5 units down the y-axis.

Depending on whether c is connected to the current layout
or not – meaning a new source – the algorithm then calculates
the aperture of points to be considered from D and c when
calculating the distance between each candidate location to
place c to the closest non-overlapping object in L. If c has no
ports to connect (Fig. 9), all points of c are compared against
all points of all devices in L. The base case assumes c is
connected and therefore retrieves the middle connecting port
pair(s) from D and c based on their indexed location in an
internal ports array in c. Port specification is determined by
the user prior to algorithm execution and therefore the order
of indexing is fixed. The component c is rotated to align the
source in D to the sink in c for the purpose of minimizing
channel crossing in the routing phase, as shown in Fig. 10
By aligning the middle ports, the most direct ports would be
connected initially and then connected to each side in turn.
In each case, VIEWWINDOW is called to obtain the rotational
angle of arc aperture (Table I) for both D and c and is assigned
to Θ for passing into CURVESCAN (Alg. 3). CURVESCAN then
returns the points Pc on c that are to be considered in the inner
for loop.

3) Determining Aperture with VIEWWINDOW: It is nec-
essary to calculate the viewing aperture from the bounds of
one component to the bounds of another component deter-
mined from their respective centers as shown in Fig. 12.
VIEWWINDOW takes in two objects – devices or components
– and begins by identifying the angle θτ between their centers
cσ.(x.y) and cτ .(x.y). θλ and θρ are the perpendicular angles
to that angle which are used to find the outermost intersections
points to find the start and end points pσ.(x, y) and pτ .(x, y)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

of the profile on each component. The angle formed between
those points for each component Θ.α and Θ.ω is then returned
in the aperture Θ.

Algorithm 4 The VIEWWINDOW Algorithm
1: function VIEWWINDOW(cσ, cτ )
2: Θ.(α, ω)← (0, 0)
3: θτ ← GETANGLE(cσ.(x, y), cτ .(x, y))
4: θλ ← θτ + 90◦

5: θρ ← θτ − 90◦

6: pσ.(x1, y1)← INTERSECT(cσ , θλ)
7: pτ .(x1, y1)← INTERSECT(cCτ , θλ)
8: Θ.α← GETANGLE(pσ.(x1, y1),pτ .(x1, y1))
9: pσ.(x2, y2)← INTERSECT(cσ , θρ)

10: pτ .(x2, y2)← INTERSECT(cτ , θρ)
11: Θ.ω ← GETANGLE(pσ.(x2, y2),pτ .(x2, y2))
12: return Θ

Fig. 12. VIEWWINDOW identifies the profiles of the devices D in layout L
that would face component c when drawing lines from the outer extrema of
each device. This determines the portion of the objects’ profiles that need to
be considered when calculating the closeness of the objects to one another.
Devices and components do not have to be connected to anything currently
in the layout.

4) Comparing Critical Points: For each point pair, c is
rotated to align pj and pi and their centers of rotation (Fig. 8).
The rotation angle is the difference between the angles formed
from the line connecting the centers of the place devices in L
and c, as well as the line connecting pi and the center of c. c
is then moved so that its center point is equal to the current
critical point pi, which ensures that overlap will occur. Next,
c is shifted by the amount of overlap to a location expected
to be outside the bounds of all devices in L. Should the new
location also result in an overlap as shown in Fig. 13, then
the location is discarded and the loop continues. If there is
no overlap, the location, orientation, and cost factor of the
location is added to the priority queue. Once all desired points
have been evaluated, Qρ is returned.

5) Evaluating the Cost of Potential Locations: The place-
ment phase of the algorithm requires a method of determining
what is “best” when identifying potential placements for com-
ponents. The COST function in Alg. 2 is an abstracted method
call that returns a numeric value which determines its rank in

Fig. 13. In this example, RADARPLACE is unable to place c without colliding
with already placed components in L and the candidate location is discarded
from consideration.

the priority queue which sorts the candidate placements by
that rank. Paper microfluidic devices have several mitigating
factors that affect performance of the fluid in the substrate and
depending on the specific application the end user is targeting,
the relative importance of each of these factor may alter what
constitutes an optimal and/or effective device. Several math-
ematical models exist [38] that characterize various physical
properties that an end user may want to employ in determining
a cost factor for a component location. The Lucas-Washburn
model (eq. 1) applies to one-dimensional flow and calculates
length of travel of a fluid over a particular time – which is
useful when seeking a method to minimize channel lengths

l = k

√
σ

µ
t (1)

where “k is a proportional constant, σ the surface tension
and µ the viscosity of liquid, and t time. The proportional
constant k depends on the material properties of the porous
medium including the pore diameter, contact angle between
the liquid and porous medium, and tortuosity of the porous
medium.” [39] Alternatively, another useful model [7] that
accounts for capillary action and the fluid interaction with
channel boundaries might be

l(t) = α

√√√√(1 + β
d

φ
1
3w

cos θb
cos θ

)
σ

µ
t (2)

where α is an empirical co-efficient based on experimental
results, β is a correction co-efficient, W is the channel width,
θb is the contact angle with the barriers, θ is the contact
angle with the substrate, φ represents the porosity value of
the substrate, σ the vapor-liquid interfacial tension, and d the
diameter of the capillary tubes in the medium. The dynamics
of modelling and optimizing cost factors in a paper microflu-
idic setting can greatly increase the algorithmic complexity
and computational overhead. While, the cost functions can be
determined by the paper microfluidic device designer based
on the desired metrics for optimization, the default approach,
which is presented here, utilizes the paper area, and, by
extension fluid volume, as the primary objective. Specifically,
our approach tries to minimize the distance between placed



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

components, and calculates how close they are to one another,
as discussed in the following subsection.

Algorithm 5 The HOWSNUG Algorithm
1: function HOWSNUG(D, c)
2: Θ← VIEWWINDOW(D, c)
3: PD ← CURVESCAN(D,Θ)
4: Pc ← CURVESCAN(c,Θ)
5: (x2, y2) = MAX(PD.p1, PD.pn, Pc.p1, Pc.pn)
6: (x1, y1) = MIN(PD.p1, PD.pn, Pc.p1, Pc.pn)
7: Box.area = (x2 − x1) ∗ (y2 − y1)
8: PD.area← BÉZIERAREA(PD, box.(x1, y1))
9: Pc.area← BÉZIERAREA(Pc, box.(x2, y2))

10: SnugFactor ← (Box.area− PD.area− Pc.area)
11: return SnugFactor

Fig. 14. The snugness factor of two curves, as computed by HOWSNUG.
The snugness factor is defined to be the area between the two curves within a
bounding box. The path orientation (in red) cannot be vertical; if this occurs,
both paths are rotated 90◦ prior to computing the snugness factor.

6) Quantifying “Closeness” with the SNUGNESS FACTOR:
The concept of snugness when evaluating relative placement
of components is defined as the minimal amount of space
between 2 objects. The HOWSNUG algorithm (Alg. 5 takes in
two Bézier paths and calculates the area between them which
represents the concept of snugness between components. Us-
ing the components passed in, VIEWWINDOW is called to
determine the aperture of exposure between the components
which is then passed into CURVESCAN which returns the sub-
path from the outline of each component which forms the paths
where the area between is calculated.

Figure 14 illustrates computation of the snugness factor. The
first step is to generate the smallest bounding box that contains
both curves. The start and end points of both sub-curves PD
and Pc are compared to find the maximum and minimum
points of the bounding box and the Box.area is calculated
using these points. Second, the orientation of the curves is
determined; if the orientation is vertical, the bounding box
and curves are rotated 90◦. Third, the area under both curves,
but within the bounding box, is calculated using a standard
polygon decomposition method [40]; let PD.area and Pc.area
denote these areas. Then the snugness factor is computed as
Box.area− PD.area− Pc.area.

7) MINMAXDELTA: Designers of real-world paper mi-
crofluidic devices often need to minimize some values while
maximizing others. For example, consider a home pregnancy
test, probably the most common example of paper microflu-
idics. These tests consist of a strip of paper; urine is applied to
one end, and capillary action transports the urine past two or
more test lines to an absorbent pad on the other end of the strip.
The test lines change color when exposed to human chorionic
gonadotropin (HCG), a protein present in the urine of pregnant
women. It is advantageous to maximize the amount of urine
that passes through the test lines, because more urine means
more HCG detected (and therefore a more-pronounced color
change and an easier-to-read test result). Designers accomplish
this by maximizing the size of the absorbent pad, which
functions as a pump to drive urine flow past the test lines.
It is also advantageous to maximize (up to a practical limit)
the run time of the assay (the amount of time spent flowing
urine past the lines). Simultaneously, it is advantageous to
minimize the size of the paper strip, since it only serves to
conduct urine through the test lines, and minimizing overall
device size reduces costs associated with device fabrication,
packaging, and shipping.

The function MINMAXDELTA supports maximization and
minimization optimizations like these. The function computes
a running tally of the minimum and maximum differences in
value for each dimension among a set of dimensions passed
in as a parameter. It returns the appropriate minimum or
maximum value in either the positive or negative directions
along each dimension. For example, assume we have a running
tally of surface area (that we want to minimize) and runtime
(that we want to maximize) S∆ = {10.0min, 15max}. The
algorithm has determined there is a potential placement with
a value of T∆ = {9.0min, 10max} and when fed into MIN-
MAXDELTA the resulting values are S∆ = {9.0min, 15max}.
Alternatively if T∆ = {21min, 10max}, then S∆ would not
change; or if T∆ = {5min, 20max} then we would have
S∆ = {5min, 20max}.

C. RADAR Route

RADARROUTE (Alg. 6) is invoked when a candidate loca-
tion has been identified for a component c and at least one
of c’s ports has been matched with corresponding port on the
device D in the current layout L. RADARROUTE attempts to
route one or more channels to deliver fluid from D to c. The
number of port pairs between c and D determines the number
of routes required.

The algorithm initializes sets to hold Channels Chs con-
structed during the algorithm and the intersections of the
probes I (Line 2). The buff er value is set to 1/2 the resultant
width of the channel to be constructed (Line 3). In Line 4,
the number of port pairs is determined to be odd or even and
then the middle index value of the port pairs is chosen (Line
5) and is used as the initial iterative values for i and j (Line
6). Finally, if the port pair count is even, j is incremented to
the next port pair index value (Line 7). The example in Fig.
15 shows three port pairs {Φ1,Φ2,Φ3} to be connected by
three channels. The port pairs are ordered for routing from



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

the middle toward the two perimeter of the device. As shown
in Fig. 16, the routing order is {Φ2,Φ1,Φ3}.

Fig. 15. RADARROUTE starts with component c already placed and 3 port
pairs to be connected: Φ1, Φ2, and Φ3. Connections are routing starting with
the middle port pair Φ2, followed by Φ1 and Φ3 to reduce the likelihood that
routes cross.

Fig. 16. The probe generated for port pair Φ2 is unobstructed, so the
corresponding channel is routed. Port pair Φ3’s probe collides with the outline
at two distinct collision points.

While there are channels to be routed, the algorithm pulls
the port coordinates pairs (Fig. 15: {Φ1,Φ2,Φ3}) that will
serve as the abstraction that will attempt to connect the two
locations on D and c (Lines 9-12). A Bézier path for each
connection is instantiated to serve as the “probe” connecting
the source and sink locations (Lines 13-14). If the probe
intersects with c (Fig. 16) (Line 16), the intersection points
are added to a set along with the points that make up the sub-
curve of c between them (Lines 17-19). The precurve (Line
20) is sub-curve of the start of the probe to the point where
it intersects c and is used to determine if the probe intersects
with itself.

The points in the set curve are then each evaluated by
creating a new node in the probe (Line 22) corresponding
to the original node in c and moved away from c by half of
the width of the channel component that will be generated
(Fig. 17, Line 23). In this way, the probe will produce a
curve running parallel to the previously intersected sub-curve
of c. Based on the current position of c with respect to L, c
may be moved to a distance away from L to allow for the
width of the channel to be routed (Fig. 18) if c collides with
any already-placed components. The sub-curve is also tested
for intersection with the precurve (Lines 24-25); a positive

Algorithm 6 The RADAR Route Algorithm
1: function RADARROUTE(D, c)
2: Chs← ∅, I ← ∅
3: buff er ← channel.width/2
4: odd←ISODD(c.inputs.size)
5: midpoint← dc.inputs.size/2e
6: i, j ← midpoint
7: (odd) ? j ← i : j ← i+ 1
8: while i >= 0 || j < c.inputs.size
9: pDi

.(x, y)← D.Φi.(x, y)
10: pDj .(x, y)← D.Φj .(x, y)
11: pci .(x, y)← c.Φi.(x, y)
12: pcj .(x, y)← c.Φj .(x, y)
13: probei ← new Path(pDi

(x, y), pci(x, y))
14: probej ← new Path(pDj

(x, y), pcj (x, y))
15: for each probei,j
16: if I ←INTERSECT(c, probe)
17: probe.addNode(I.nodeα)
18: probe.addNode(I.nodeω)
19: curve← GETSUBCURVE(c, I)
20: precurve← GETSUBCURVE(probe, Iα)
21: for each node ∈ curve
22: probe.addNode(node)
23: MOVE(probe.node, buff er)
24: if INTERSECT(curve, precurve)
25: return Chs
26: if HOWSNUG(D, c) < channel.width
27: c.moveby(channel.width)

28: if odd && i == midpoint
29: if probei.length < probej .length
30: Chs.add( new Channel(probei) )
31: else
32: Chs.add( new Channel(probej) )
33: j ← i
34: else
35: Chs.add( new Channel(probei) )
36: Chs.add( new Channel(probej) )
37: MERGE(c.outline, Chs)
38: i← i− 1
39: j ← j + 1

40: return Chs

Fig. 17. A sub-path is routed around the collision ports arising from port pair
Φ3’s probe. The sub-path follows the contour of the new component that is
added to the layout.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

answer here would indicate that the probe under construction
intersects with itself (Fig. 19); if this occurs, the probe cannot
complete the route and the algorithm terminates. On Line 26, a
quick check of the placement of c’s snug factor will determine
if c needs to be moved away from D by the width of the
channel before channel construction begins.

Fig. 18. The routed probe is adjusted to an offset equal to half of the width
of the channel being routed, plus any desired buffer distance between barriers
of distinct channels. This routes the channel to connect port pair Φ3. Port
pair Φ1 is also routed trivially.

The algorithm then handles the initial case of routing: where
the starting channel is either the middle value of an odd
number of channels or if there is an even number. The concern
only occurs on the first route as all subsequent routings are
performed as left /right pairs. Therefore in the initial case
where the number of channels is odd, 2 probes are run with
the same source and sink but are deflected each to the left
and right (Lines 28-36). At completion of probe generation,
the probe length is evaluated and the shorter probe is used to
generate the Channel.

Fig. 19. Example of a probe failure. In this case, in attempting to connect
port pair Φ4, the probe loops back and collides with itself indicating the probe
is trapped by already placed components.

Once the probe is generated, a Channel component is
instantiated for the probe and merged (Lines 37) into c
using standard Bézier intersection and merging algorithms [41]
where it will become part of the outline for the next probes
to avoid. If the probe cannot be deflected around a routed
channel, the routing fails and what was successfully routed is
returned along with an error (Fig. 20). The iterating values of
i and j are incremented (Lines 38-39) and the next pairs are

Fig. 20. Example of a routing failure. In this case, it is not possible to find a
route that connects port pair Φ3 that doesn’t cross the routes for at least one
of port pairs Φ1 and Φ2.

evaluate If the ports are all successfully routed, then Chs is
returned without error (Fig. 21, Lines 40).

Fig. 21. A successfully routed layout. The newly introduced component and
routed channels are integrated into the device. The algorithm is ready to place-
and-route the next component.

V. EXPERIMENTAL RESULTS

A. Methodology

As the microfluidic space is non-discrete, the DICE[18]
algorithm was chosen as an appropriate benchmark to compare
the RADAR approach. Although DICE is built to a grid, the
units are based on the physical dimensions of the components
with a user-specified buffer between them. Components are
placed down and to the right of placed components yielding a
diagonal placement that allows for routing to be performed in
a mostly-linear fashion. Once routed, the layout is then rotated
45◦ to reduce it’s footprint for fabrication

Testing harnesses were built to generate tests for area
utilization. Three test cases were developed for comparing
DiCE (Fig. 22a,c,e) and RADAR (Fig. 22b,d,f): a “chain”
of components (Fig. 22a,b) that are directly connected one
time from source to sink for each component, an “orbital”
approach (Fig. 25c,d) where a single source is connected to
any number of sinks surrounding it, and a “tree” (Fig. 26e,f)
where each component is connected to 2 sinks. All tests
utilize a directed acyclic graph for maintaining connections
thus protecting against loops, however both DICE and RADAR



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE II
RUNTIMES FOR EACH DICE AND RADAR FOR EACH LAYOUT TEST,

ALONG WITH THE NUMBER OF COMPONENTS PLACED AND ROUTED. ∆
INDICATES THE DIFFERENCE IN RUNTIME. RADAR WAS SIGNIFICANTLY

SLOWER IN ALL CASES; THIS IS TO BE EXPECTED AS RADAR IS
EXHAUSTIVE WHILE DICE IS A HEURISTIC.

Test Algorithm # Time ∆
Chain DiCE 4 0:00:04

RADAR 4 0:05:48 0:05:44
DiCE 8 0:00:10
RADAR 8 1:25:54 1:25:44

Orbit DiCE 5 0:00:05
RADAR 5 0:14:55 0:14:50
DiCE 9 0:00:11
RADAR 9 1:16:11 1:16:00

Tree DiCE 7 0:00:09
RADAR 7 0:39:39 0:39:30
DiCE 15 0:00:27
RADAR 15 1:46:49 1:46:22

can handle cycles without indefinite loops. Several sets of
component counts were chosen as initial tests to illustrate
potential trends due to layout growth.

Fig. 22. Three test cases were developed to evaluate the quality of layouts
produced by DICE [18] (left column) vs. RADAR (right column): a,b) depict
the ”Chain” test that connects each source to the next sink sequentially; c,d)
shows the ”Orbit” layout where several sinks are connected to a central source;
and e,f) the ”Tree” structure where each component is connected to two sinks.

Each layout was then output onto LabNerd R© paper stock,
reheated to sublimate the wax ink into the paper, and a
PCR backing tape applied to isolate the layout from the
work surface. Filtered water with several drops of green food
coloring was pipetted into the source region of each layout.
Initially 40 µL of fluid was delivered with additional fluid
delivered in 20 µL steps if the device showed signs of drying
out until the fluid movement reached all sinks in the layout, or
the fluid ceased to travel any further due to the leading edge
drying out forming a barrier to additional flow.

B. Algorithm Results

Results are plotted such that the vertical axis plots area
usage measured in mm2 on a logarithmic scale (Fig. 23). The
horizontal axis shows the individual test results with the first
letter being the algorithm (D)ICE or (R)adar; the second letter
the test performed: (C)hain, (O)rbit, or (T)ree; and lastly, the
number of components placed and routed.

In each test and for nearly every metric, RADAR out-
performed DICE in area utilization. In terms of fluid area,

RADAR would outperform DICE due to being able to more
compactly place components thereby shortening the channel
and therefore the fluid travel. The chain test allowed for a
more level playing field due to reducing the amount of channel
deflection occurring.

Notable however, both DICE and RADAR initially failed
routing of all 15 components during the tree test which
indicated a weakness in their approaches when the “greedy”
criteria of lowest snugnessfactor produces a layout to
compact to route past the second level of the tree. It was
determined that presenting the tree netlist in a breadth-first
manner resulted in the algorithms’ inability to place and route
and when the netlists were traversed in a depth-first manner,
both algorithms were able to successfully place and route the
netlists.

RADAR is intended to explore the paper microfluidic device
layout space as completely as possible. High execution times
are expected, and this will inevitably limit scalability. As
shown in Table II, RADAR runs several orders of magnitude
slower than DiCE (a heuristic), due to the ever-expanding
set of critical points that it enumerates. RADAR examines
Θ(m× n) critical points, per pass, as candidate locations for
routing. While the routing phase can terminate in Ω(1) time
if the first candidate is routed successfully, it is also possible
that routing may fail for all candidates. Consequently, runtimes
can become extremely large, for example, as RADAR took
nearly 2 hours to complete route the 15-component “Tree”
benchmark. Even the smaller case, a 4-component “Chain,”
required nearly six minutes to complete. Future work may ex-
amines strategies to reduce the runtime of RADAR, including
techniques that limit the portion of the search space explored,
as well as a parallel implementations of key bottlenecks.

C. Physical Device Performance Results

The physical devices output from generated layouts were
tested for real-world performance by delivering fluid to each
device’s source region and monitored for either failure to com-
plete or time to completion. Although DICE did successfully
generate placed and routed layouts, not all devices were able to
run to completion. Devices featuring long channels and distant
sinks would fail due to the leading edge of the fluid drying
out and forming a barrier to any further fluid travel – even
when additional fluid delivered to the device. As noted in Table
III, only two versions of the DICE layouts ran to completion
even though additional fluid (amounts listed) was dispensed.
By comparison each RADAR device was not only able to run
to completion with only 20 µL of additional fluid required for
the eight component chain and tree versions (Figs. 24 and 26
respectively). As indicated by the ∆ column, devices laid out
by RADAR devices have factors of improvement in the range
of 3.5−113× over those laid out by DiCE, while successfully
running to completion in all cases.

VI. CONCLUSION AND FUTURE WORK

The RADAR approach to placement and routing demon-
strates that layouts that can be generated and optimized for
metrics such as fluid travel and usage, device area, and total



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

DC4 RC4 DC8 RC8 DO5 RO5 DO9 RO9 DT7 RT7 DT15 RT15

102

103

104

Fluid Area Device Area Footprint

Fig. 23. Area utilization in terms of fluid space, device occupancy, and total area required for fabrication (in mm2).

Fig. 24. The “Chain” layout consisting of a number of components connected
in a series. DiCE layouts of a) 4 components and b) 8 components, RADAR
versions are c) 4 and d) 8 components. Times listed refer to completion of
devices for the RADAR versions and the state of the DiCE versions. Table
III lists the completion and/or failure times for the DiCE versions.

Fig. 25. The “Orbit” layout consisting of a single source feeding multiple
sinks shows the importance of compact layouts. Layouts a-b) use DICE, c-d)
use RADAR.

materials required – all desirable goals to help meet the
World Health Organization’s ASSURED criteria for medical
diagnostics. In the future, other placement selection criteria
will be looked at, as well as comparing several successful
routings that may help avoid fluid routing failures and further
optimize paper microfluidic devices.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion Division of Computing and Communication Foundations
under grants 1423414 and 1536026, and the National Science
Foundation Division of Industrial Innovation and Partnerships
under grant 1640757.

REFERENCES

[1] C. E. Mills, J. M. Robins, and M. Lipsitch, “Transmissibility of 1918
pandemic influenza,” Nature, vol. 432, no. 7019, pp. 904–906, 2004.

Fig. 26. The “Tree” layout consisting of each node feeding 2 nodes. a,c)
DiCE, b,d) RADAR

TABLE III
EXPERIMENTAL RESULTS LISTING THE WHICH TEST, ALGORITHM USED,
THE NUMBER OF COMPONENTS PLACED AND ROUTED, THE VOLUME OF

FLUID DELIVERED, AND THE TIME FOR THE DEVICE TO COMPLETE OR THE
TIME OF FAILURE (IN BOLD) DUE TO THE LEADING EDGE OF THE FLUID
DRYING OUT AND BLOCKING ANY FURTHER FLOW. ∆ LISTS IN RED THE
ADDITIONAL TIME REQUIRED FOR THE DEVICES LAID OUT BY DICE TO

RUN TO COMPLETION, COMPARED TO THE DEVICES LAID OUT BY
RADAR.

Test Algorithm # µL Time (h:m:s) ∆
Chain DiCE 4 40.0 00:12:16 8:46

RADAR 4 40.0 00:03:30 3.5x
DiCE 8 120.0 01:11:40 54:18
RADAR 8 60.0 00:17:22 4x

Orbit DiCE 5 100.0 00:43:48 43:12
RADAR 5 40.0 00:00:36 73x
DiCE 9 200.0 00:52:38 52:10
RADAR 9 40.0 00:00:28 113x

Tree DiCE 7 120.0 00:45:48 40:04
RADAR 7 40.0 00:0544 8x
DiCE 15 140.0 00:45:30 39:22
RADAR 15 60.0 00:06:08 7x

[2] C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D.
Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E.
Jenkins, E. J. Lyons et al., “Pandemic potential of a strain of influenza
a (h1n1): early findings,” science, vol. 324, no. 5934, pp. 1557–1561,
2009.

[3] D. Mabey, R. W. Peeling, A. Ustianowski, and M. D. Perkins, “Tropical
infectious diseases - diagnostics for the developing world,” Nature
Reviews Microbiology, vol. 2, no. 3, pp. 231–240, 2004.

[4] M. T. Osterholm, “Preparing for the next pandemic,” New England
Journal of Medicine, vol. 352, no. 18, pp. 1839–1842, 2005.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[5] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley,
and D. S. Burke, “Strategies for mitigating an influenza pandemic,”
Nature, vol. 442, no. 7101, pp. 448–452, 2006.

[6] E. Bendavid, B. Mulaney, N. Sood, S. Shah, E. Ling, R. Bromley-
Dulfano, C. Lai, Z. Weissberg, R. Saavedra-Walker, J. Tedrow,
D. Tversky, A. Bogan, T. Kupiec, D. Eichner, R. Gupta,
J. Ioannidis, and J. Bhattacharya, “Covid-19 antibody seroprevalence
in santa clara county, california,” medRxiv, 2020. [Online]. Available:
https://www.medrxiv.org/content/early/2020/04/30/2020.04.14.20062463

[7] S. Hong and W. Kim, “Dynamics of water imbibition through paper
channels with wax boundaries,” Microfluidics and Nanofluidics, vol. 19,
no. 4, pp. 845–853, 2015.

[8] E. Elizalde, R. Urteaga, and C. L. Berli, “Precise capillary flow for
paper-based viscometry,” Microfluidics and Nanofluidics, vol. 20, no. 10,
p. 135, 2016.

[9] B. M. Cummins, R. Chinthapatla, F. S. Ligler, and G. M. Walker, “Time-
dependent model for fluid flow in porous materials with multiple pore
sizes,” Analytical Chemistry, vol. 89, no. 8, pp. 4377–4381, 2017.

[10] M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based
actuation of droplets for integrated microfluidics,” Lab Chip, vol. 2, pp.
96–101, 2002. [Online]. Available: http://dx.doi.org/10.1039/B110474H

[11] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake,
“Monolithic microfabricated valves and pumps by multilayer soft
lithography,” Science, vol. 288, no. 5463, pp. 113–116, 2000. [Online].
Available: http://science.sciencemag.org/content/288/5463/113

[12] E. Carrilho, A. W. Martinez, and G. M. Whitesides, “Understanding
wax printing: a simple micropatterning process for paper-based microflu-
idics,” Analytical chemistry, vol. 81, no. 16, pp. 7091–7095, 2009.

[13] C. Renault, J. Koehne, A. J. Ricco, and R. M. Crooks, “Three-
dimensional wax patterning of paper fluidic devices,” Langmuir, vol. 30,
no. 23, pp. 7030–7036, 2014.

[14] W. Dungchai, O. Chailapakul, and C. S. Henry, “A low-cost, simple,
and rapid fabrication method for paper-based microfluidics using wax
screen-printing,” Analyst, vol. 136, no. 1, pp. 77–82, 2011.

[15] J. Potter, P. Brisk, and W. H. Grover, “Using printer ink color to control
the behavior of paper microfluidics,” Lab on a Chip, vol. 19, no. 11,
pp. 2000–2008, 2019.

[16] S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air
analyzer fabricated on a silicon wafer,” IEEE Transactions on Electron
Devices, vol. 26, no. 12, pp. 1880–1886, 1979.

[17] A. Manz, N. Graber, and H. Widmer, “Miniaturized total
chemical analysis systems: A novel concept for chemical
sensing,” Sensors and Actuators B: Chemical, vol. 1,
no. 1, pp. 244 – 248, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/092540059080209I

[18] B. Crites, K. Kong, and P. Brisk, “Diagonal component expansion
for flow-layer placement of flow-based microfluidic biochips,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 5s,
p. 126, 2017.

[19] T. Tseng, M. Li, D. N. Freitas, A. Mongersun, I. E. Araci, T. Ho, and
U. Schlichtmann, “Columba S: a scalable co-layout design automation
tool for microfluidic large-scale integration,” in Proceedings of the 55th
Annual Design Automation Conference, DAC 2018, San Francisco,
CA, USA, June 24-29, 2018. ACM, 2018, pp. 163:1–163:6. [Online].
Available: https://doi.org/10.1145/3195970.3196011

[20] B. Crites, K. Kong, and P. Brisk, “Directed placement for mvlsi
devices,” J. Emerg. Technol. Comput. Syst., vol. 16, no. 2, Dec. 2019.
[Online]. Available: https://doi.org/10.1145/3369585

[21] A. T. Jafry, H. Lim, S. I. Kang, J. W. Suk, and J. Lee, “A comparative
study of paper-based microfluidic devices with respect to channel
geometry,” Colloids and Surfaces A: Physicochemical and Engineering
Aspects, vol. 492, pp. 190–198, 2016.

[22] Z. Liu, J. Hu, Y. Zhao, Z. Qu, and F. Xu, “Experimental and numerical
studies on liquid wicking into filter papers for paper-based diagnostics,”
Applied Thermal Engineering, vol. 88, pp. 280–287, 2015.

[23] T. Tseng, M. Li, B. Li, T. Ho, and U. Schlichtmann, “Columba:
co-layout synthesis for continuous-flow microfluidic biochips,” in
Proceedings of the 53rd Annual Design Automation Conference, DAC
2016, Austin, TX, USA, June 5-9, 2016. ACM, 2016, pp. 147:1–147:6.
[Online]. Available: https://doi.org/10.1145/2897937.2897997

[24] A. Grimmer, Q. Wang, H. Yao, T. Ho, and R. Wille, “Close-to-optimal
placement and routing for continuous-flow microfluidic biochips,” in
22nd Asia and South Pacific Design Automation Conference, ASP-DAC
2017, Chiba, Japan, January 16-19, 2017. IEEE, 2017, pp. 530–535.
[Online]. Available: https://doi.org/10.1109/ASPDAC.2017.7858377

[25] T. Tseng, M. Li, D. N. Freitas, T. McAuley, B. Li, T. Ho, I. E.
Araci, and U. Schlichtmann, “Columba 2.0: A co-layout synthesis tool

for continuous-flow microfluidic biochips,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 37, no. 8, pp. 1588–1601, 2018.
[Online]. Available: https://doi.org/10.1109/TCAD.2017.2760628

[26] K. Yang, H. Yao, T. Ho, K. Xin, and Y. Cai, “AARF: any-angle
routing for flow-based microfluidic biochips,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 37, no. 12, pp. 3042–3055, 2018.
[Online]. Available: https://doi.org/10.1109/TCAD.2018.2789356

[27] P. Eades, “Drawing Free Trees,” International Institute for Advanced
Study of Social Information Science, Fujitsu Limited, Tech. Rep., 1991.

[28] G. Book and N. Keshary, “Radial Tree Graph Drawing Algorithm for
Representing Large Hierarchies,” University of Connecticut, Tech. Rep.,
12 2001.

[29] K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst, “Animated exploration
of dynamic graphs with radial layout,” in Proceedings of the IEEE Sym-
posium on Information Visualization 2001 (INFOVIS’01), ser. INFOVIS
’01. USA: IEEE Computer Society, 2001, p. 43.

[30] C. E. Leiserson, “Area-efficient graph layouts (for VLSI),” in 21st
Annual Symposium on Foundations of Computer Science, Syracuse,
New York, USA, 13-15 October 1980. IEEE Computer Society, 1980,
pp. 270–281. [Online]. Available: https://doi.org/10.1109/SFCS.1980.13

[31] S. A. Browning, “The Tree Machine: A Highly Concurrent Computing
Environment, Computer Science Technical Reports 1980.3760,” Califor-
nia Institute of Technology, Tech. Rep., 1980.

[32] J. D. Ullman, Computational Aspects of VLSI. USA: W. H. Freeman
& Co., 1984.

[33] J. Burkis, “Clock tree synthesis for high performance asics,” in [1991]
Proceedings Fourth Annual IEEE International ASIC Conference and
Exhibit, 1991, pp. P9–8/1.

[34] E. Di Giacomo, W. Didimo, and G. Liotta, “Radial drawings
of graphs: Geometric constraints and trade-offs,” Journal of
Discrete Algorithms, vol. 6, no. 1, pp. 109 – 124, 2008,
selected papers from AWOCA 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570866707000159

[35] K. Mikami, “A computer program for optimal routing of printed circuit
connectors,” IFIPS Proc., 1968, 1968.

[36] D. W. Hightower, “A solution to line-routing problems on the continuous
plane,” in Proceedings of the 6th annual Design Automation Conference.
ACM, 1969, pp. 1–24.

[37] J. Potter, W. H. Grover, and P. Brisk, “Design automation for
paper microfluidics with passive flow substrates,” in Proceedings
of the on Great Lakes Symposium on VLSI 2017, Banff,AB,
Canada, May 10-12, 2017, 2017, pp. 215–220. [Online]. Available:
http://doi.acm.org/10.1145/3060403.3060476

[38] Z. Liu, X. He, J. Han, X. Zhang, F. Li, A. Li, Z. Qu, and F. Xu, “Liquid
wicking behavior in paper-like materials: mathematical models and
their emerging biomedical applications,” Microfluidics and Nanofluidics,
vol. 22, no. 11, p. 132, 2018.

[39] S. Gruener and P. Huber, “Imbibition in mesoporous silica: rheological
concepts and experiments on water and a liquid crystal,” Journal of
Physics: Condensed Matter, vol. 23, no. 18, p. 184109, 2011.

[40] J. M. Keil, “Polygon decomposition,” Handbook of computational
geometry, vol. 2, pp. 491–518, 2000.

[41] T. W. Sederberg and T. Nishita, “Curve intersection using bézier
clipping,” Computer-Aided Design, vol. 22, no. 9, pp. 538–549, 1990.




