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Abstract: A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a
Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc
underground laboratory in Spain. The dual-readout detector is a prototype of the technology that
will be used in the next-generation 0𝜈2𝛽 experiment CUPID. The measurements were performed
at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same
technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation
of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV
FWHM at the 2615 keV 𝛾 line. The detection of scintillation light for each event triggered by the
Li2100MoO4 bolometer allowed for a full separation (∼8𝜎) between 𝛾(𝛽) and 𝛼 events above 2 MeV.
The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of
less than 3 and 8 𝜇Bq/kg, respectively. Taking also into account the advantage of a more compact
and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical
ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for
high-sensitivity searches for the 100Mo 0𝜈2𝛽 decay in CROSS and CUPID projects.

Keywords: Double-beta decay, Cryogenic detector, Bolometer, Crystal scintillator, Lithium molyb-
date, Particle identification, Radiopurity
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1 Introduction

Neutrinoless double-beta (0𝜈2𝛽) decay is a unique probe of new physics beyond the Standard Model
[1, 2] and the observation of this process, suggested about 80 years ago but not yet detected (in
contrast to two-neutrino double-beta (2𝜈2𝛽) decay [3]), would conclusively demonstrate lepton
number violation and the Majorana nature of neutrinos (i.e. a particle that is equal to its own
anti-particle).

The bolometric technology, which relies on the use of low-temperature calorimeters acting
simultaneously as a 2𝛽 source and a detector, is among the few experimental approaches providing
world-leading sensitivity to 0𝜈2𝛽 decay to-date [2]. In addition to high detection efficiency of the
“2𝛽 source = detector” technique, bolometers offer high energy resolution, scalability to a large
detector mass via arrays of modules, and the possibility to use different and radiopure materials
containing the most promising 2𝛽 isotopes (e.g. see [4–6]). Additionally, recent technological
advances have demonstrated the ability to do particle identification [4–6], allowing for a reduction
of backgrounds in the signal region of interest by multiple orders of magnitude.

Bolometric techniques for 0𝜈2𝛽 decay searches have been developed for about 30 years and
have resulted in the first tonne-scale bolometric experiment CUORE (Cryogenic Underground
Observatory of Rare Events) [7]. CUORE has been in operation at the Gran Sasso underground
laboratory (Italy) since 2017, searching for 0𝜈2𝛽 decay of 130Te (𝑄-value of the 2𝛽 transition,
𝑄2𝛽 , is 2528 keV [8]). In spite of this extraordinary achievement, the CUORE 0𝜈2𝛽 sensitivity is
limited by a background (∼10−2 counts/yr/kg/keV) coming from alpha decays at surfaces despite
the highly radiopure materials used for the detector construction. This is due to the use of pure
thermal detectors based on tellurium dioxide crystals (TeO2; 34% of 130Te in natural tellurium [9])
which have the same bolometric response irrespective of the type of the particle interaction [10].
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CUPID (CUORE Upgrade with Particle IDentification) is a proposed next-generation 0𝜈2𝛽
bolometric experiment [11], which will reuse the CUORE infrastructure for the operation of a
similar-scale isotopically enriched detector with a background∼10−4 counts/yr/kg/keV in the region
of interest, thus probing 0𝜈2𝛽 decay in so-called “zero-background” conditions. The suppression
of the alpha-induced background to a negligible level (i.e. 99.9% of alpha events rejection), while
keeping almost 100% of the signal efficiency, is required for particle identification technology. The
detector performance is expected to be similar to CUORE and predecessors, with a 5 keV FWHM
at 𝑄2𝛽 as a goal. The activities of 226Ra, 228Th, and 232Th in the enriched bolometers are required
to be less than 10 𝜇Bq/kg, making the contribution of the U/Th crystal bulk activity to be below
∼10−4 counts/yr/kg/keV. The total bulk radioactivity of the crystals should not exceed the mBq/kg
level to avoid impacting the detector operation and background with pile-ups [5, 12–14].

Four isotopes, 82Se (𝑄2𝛽 = 2998 keV [8]), 100Mo (3034 keV [8]), 116Cd (2813 keV [8]) and
130Te, were considered in the CUPID R&D program [15] as isotopes of interest to be embedded in
the CUPID detector for the following reasons:

• The 0𝜈2𝛽 decay energy of these isotopes (except for 130Te) is greater than 2.6 MeV, the
end-point of the most energetic intense natural 𝛾-ray radiation;

• Enrichment is available at a large amount and reasonable cost;

• Compounds containing these isotopes can be grown into single crystals usable for cryogenic
applications;

• Some of Se-, Mo-, or Cd-containing crystals are also reasonably efficient low-temperature
scintillators. The detection of scintillation light using an auxiliary optical bolometer in
coincidences with the measurement of particle-induced energy release in the scintillating
absorber is a viable tool for particle identification. This technique can also be applied for
poorly or non-scintillating crystals, as TeO2, to detect Cherenkov radiation allowing particle
identification (however, more performing light detectors are demanded to detect a tiny signal).

Efficient alpha background rejection has been demonstrated with detectors containing each of these
isotopes [15–19]. This paves the way for a future study of 0𝜈2𝛽 across multiple isotopes [20] in
case a discovery is made. Based on performance and cost, CUPID selected 100Mo embedded in
lithium molybdate (Li2MoO4) scintillating crystals [21].

The technology of 100Mo-enriched lithium molybdate (Li2100MoO4) scintillating bolometers
has been recently developed within the LUMINEU project and it provides [18, 22]:

• A know-how for the mass production of high-quality large radiopure crystals with only few
% losses of the enriched material;

• The fabrication of a detector module (which can be easily put into array) with energy resolution
comparable to that of TeO2 bolometers, but with a significantly higher 𝛼 rejection efficiency
(e.g. see in [5]).

Excellent performances of Li2100MoO4 scintillating bolometers based on cylindrical crystals (�44×45
mm, ∼0.21 kg, ∼97% enrichment in 100Mo) have been demonstrated in single-module and 4-crystal-
array tests of LUMINEU [5, 18, 23] at the Gran Sasso and Modane (LSM; France) underground
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laboratories. These results have been recently confirmed by the CUPID-Mo experiment [24–26] on
the scale of a 20-detector array operated at the LSM. Furthermore, the crystal production protocol,
adopted by LUMINEU and CUPID-Mo, has been used for the fabrication of 32 Li2100MoO4 crystals
0.28 kg each (the average enrichment in 100Mo is 97.7(3)%) for the CROSS (Cryogenic Rare-event
Observatory with Surface Sensitivity) 0𝜈2𝛽 experiment [27].

CROSS, considered as a part of CUPID R&D, is a project aiming at the development of
Li2100MoO4 and 130TeO2 surface-coated bolometers capable of identifying a near surface particle
interaction via pulse-shape analysis [27]. A key ingredient of the CROSS technology is crystal-
surface coating with a superconducting material to modify the signal pulse-shape for an event
occurring at its proximity. The CROSS detector performance and radiopurity should be in compli-
ance with CUPID requirements. The feasibility of a highly-efficient identification of near-surface
𝛼 interactions has recently been demonstrated in multiple tests of the CROSS prototypes [27–30].
A final validation of the technology is planned to be realized as a 0𝜈2𝛽 experiment with at least
32 Li2100MoO4 bolometers (the addition of the 20 crystals from CUPID-Mo are now also in con-
sideration), hosted in a dedicated cryostat at the Canfranc underground laboratory (Spain). The
sensitivity of this medium-scale demonstrator [27] is expected to be on the level of the leading 0𝜈2𝛽
experiments, which have masses larger by a factor 10–100.

In contrast to LUMINEU and CUPID-Mo, CROSS is going to use cubic Li2100MoO4 elements
with a 45 mm side. The choice of a cubic shape is driven by the possibility to realize a more
compact array structure, which allows to deploy a ∼ 30% higher isotope mass in the available
experimental volume, and yields an enhanced efficiency in rejecting background-like events that
release energy in neighboring crystals (coincidences). Indeed, a volume (i.e. mass) of a cylindrical
crystal with a diameter and height equal to the side of the cubic one is almost 30% less (similar
to CUPID-Mo vs. CROSS crystals). It is also evident that the efficiency of coincidences between
larger, particularly neighbor, detectors would be increased too. The CROSS development of an array
of cubic Li2100MoO4 bolometers is also an important benchmark for the design of the final CUPID
structure, initially considered to be based on cylindrical (�50 × 50 mm) Li2100MoO4 scintillating
bolometers [21]. Before using the crystals in the CROSS and CUPID 0𝜈2𝛽 experiments, it is
necessary to perform low-temperature test(s) to demonstrate that:

• Bolometric and spectrometric performances of cubic-shaped Li2100MoO4 scintillating bolome-
ters, operated in modern pulse-tube cryostats with possible vibration disturbances, are similar
to those of cylindrical Li2100MoO4 detectors tested in dry and/or wet dilution refrigerators;

• Scintillation light yield of the cubic-shaped and cylindrical crystals is similar, thus providing
a highly efficient particle identification;

• Radioactive contamination of cubic Li2100MoO4 crystals is compatible to that of cylindrical
ones.

With these goals in mind, we realized a first investigation of a scintillating bolometer based on a
large-volume (∼90 cm3) cubic-shaped Li2100MoO4 crystal, described in the present paper. This
study is undertaken as part of both the CROSS and CUPID R&D programs.
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2 Detector construction and operation

2.1 Li2100MoO4 scintillating bolometer fabrication

We construct a dual-readout cryogenic particle detector from a primary scintillating absorber and
a light detector. The Li2100MoO4 absorber consists of a 45×45×45 mm crystal (∼98% enrichment
in 100Mo) of mass 279.42 g. We randomly chose the sample from the batch of 32 identical crystals.
The crystals were grown starting from purified 100Mo powder and using the low-temperature-
gradient technique at the Nikolaev Institute of Inorganic Chemistry (Novosibirsk, Russia). The
Li2100MoO4 samples are not perfectly cubic-shaped1 due to not optimal growing conditions (in
particular, the platinum crucible size was not large enough), adapted for the growth of up to
�50 mm crystal boules [18, 22, 24]. A Neutron Transmutation Doped (NTD) Ge thermistor [31]
with a size of 3×3×1 mm and a P-doped Si chip [32] were epoxy-glued on the crystal top. The
dependency of the NTD Ge resistance on temperature can be approximated as 𝑅(𝑇) = 𝑅0 · 𝑒 (𝑇0/𝑇 )0.5

with the parameters 𝑇0 ∼ 3.8 K and 𝑅0 ∼ 1.5 Ω. The Si chip is used as a resistive element to
periodically inject constant energy pulses used for off-line stabilization of the bolometric response
[33]. The crystal holder is made from copper to host cubic crystals of up to 5 cm side and optical
bolometers at their top and/or bottom [34–36]. As for the light detector (LD) we use a SiO-coated
Ge wafer of 44 mm diameter and 0.175 mm thickness, instrumented with a 3×1×1 mm NTD. The
LD was mounted in the copper holder near the Li2100MoO4 detector (LMO).

Figure 1. A photograph of the partially assembled Li2100MoO4 scintillating bolometer; the construction
elements (see text) are labeled. A �45 mm hole at the bottom of the holder, visible in transparency, acts as
an entrance window for the Li2100MoO4 scintillation light to be registered by a bolometric Ge light detector.

The crystal is fixed inside the copper holder by PTFE (polytetrafluoroethylene) pieces, as
seen in Fig. 1. The PTFE supports act also as thermal contacts to the heat sink of the cryostat.

1There are edge chamfers on the crystals, see Fig. 1.
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The Cu holder of the detector is coated with Au to avoid oxidation, while the internal part of the
holder is also coated with Ag to improve light reflection. The Li2100MoO4 crystal inside the Cu
housing is surrounded with a Vikuiti™ reflecting film, which is the same used in LUMINEU and
CUPID-Mo. The NTD Ge is wire-bonded with Au wires, while the heater is bonded with Al wires.
A 238U/234U source is placed on the holder’s top cap. The source was obtained by depositing
an uranium-containing liquid drop on a thin copper substrate that was then dried by evaporation.
Part of the alpha particles (as well as nuclear recoils) emitted are degraded in energy. The LD is
fabricated in the same way using a dedicated Cu holder, three PTFE elements, and an NTD Ge
sensor glued. A 55Fe X-ray source is placed close to the LD to irradiate the Ge surface opposite to
the Li2100MoO4 absorber.

2.2 Low-temperature underground measurements

We tested the detector in the CROSS Cryogenic Underground (C2U) facility [37], in operation at
the Canfranc laboratory (Spain) since April 2019. The cryostat is placed inside a Faraday cage with
acoustic isolation, formerly used by the ROSEBUD dark matter experiment [38]. The set-up operates
a pulse-tube (Cryomech PT415) based dilution refrigerator, developed by CryoConcept (France),
which is also assisted by Ultra Quiet Technology™ (UQT) to mitigate vibrations [39]. During
the cryostat commissioning, it was found the UQT to efficiently reduce vibrations in the vertical
direction, but not as much horizontally [37] resulting in a noise excess affecting the bolometric
performance [19]. Thus, the hybrid bolometer was spring-suspended from the detector plate. In
order to reduce the environmental background, the cryostat is surrounded externally by a 25 cm
thick low-radioactivity lead shield. Moreover, the detector volume inside the cryostat is shielded
from the dilution unit and cryostat upper parts with a 13 cm thick disk made of sandwiched lead and
copper (120 kg total mass). The shielding of the set-up has not been completed yet, in particular
an anti-radon Plexiglas box (to be flushed with a deradonized air) and a muon veto will be installed
soon.

The signal readout is based on a low-noise room-temperature DC front-end electronics [40]
tracing back to the Cuoricino experiment. The data acquisition (DAQ) is a new design candidate for
CUPID [41] and consists of two 12-channel boards with a programmable 6-pole Bessel-Thomson
anti-aliasing filter and integrated 24-bit ADC. A cut-off frequency of the low-pass filter can be set
from 24 Hz up to 2.5 kHz. With the 24 bit ADC resolution, the input noise is not limited by the
ADC even with the lowest gain value set at a programmable-gain amplifier (PGA). An additional
advantage of such ADC resolution is that the PGA stage can be made much simpler or removed,
with less power consumption, cost, and space. The sampling rate up to 25 kS/s can be set (250 kS/s
with half of channels). The ADC-digitized continuous data are readout by an external FPGA (field-
programmable gate array) module and then transferred to a personal computer via Ethernet. The
DAQ control is done with the help of a MATLAB-based graphical user interface program. The
monitoring on-line of the data quality is realized as a LabVIEW application.

We collected data from the end of December 2019 until the beginning of April 2020. The
measurements were performed at temperatures 18 and 12 mK. We periodically calibrated the LMO
by inserting a thoriated tungsten wire inside the lead shield. We chose the working points for
both operational temperatures to be a few nA current on the NTD sensor resulting in a few MΩ

resistance. The data are sampled continuously at a 2 kS/s sampling rate, and the full data stream is
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Table 1. Performance of a scintillating bolometer based on the �44 mm Ge light detector coupled to the
45 mm side Li2100MoO4 cubic-shaped scintillator. We report the detectors rise and decay times, the signal
amplitude per unit of deposited energy, the energy resolution (FWHM) of the baseline after the optimum
filter, at 5.9 keV X-ray of 55Mn (LD), and at 2615 keV 𝛾 quanta of 208Tl (LMO). We skip the computation
of FWHM at 2615 keV for the 18 mK dataset due to poor statistics of the 𝛾 peak. Particle identification
parameters (defined in Sec. 3.2) as light yield for 𝛾(𝛽)s 𝐿𝑌𝛾 (𝛽) and a quenching factor for 𝛼 particles 𝑄𝐹𝛼,
as well as the discrimination power between 𝛼 and 𝛾(𝛽) distributions 𝐷𝑃𝛼/𝛾 (𝛽) for events selected in the
2.0–5.1 MeV energy range are also quoted.

Channel Parameter 18 mK 12 mK
LD Rise time (ms) 1.7 2.8

Decay time (ms) 9.2 8.6

Signal (𝜇V/keV) 1.20 1.44

FWHM (keV) at baseline 0.300(1) 0.210(1)
FWHM (keV) at 5.9 keV X-ray 0.282(5) 0.315(4)

LMO Rise time (ms) 18 25
Decay time (ms) 150 160

Signal (𝜇V/keV) 0.017 0.036

FWHM (keV) at baseline 4.2(2) 2.5(1)
FWHM (keV) at 2615 keV 𝛾 – 6.0(5)

LMO 𝐿𝑌𝛾 (𝛽) (keV/MeV) 0.635(2) 0.638(1)
& LD 𝑄𝐹𝛼 (210Po) 0.192(1) 0.199(4)

𝐷𝑃𝛼/𝛾 (𝛽) 7.4(4) 7.9(1)

written to disk for offline analysis. The Bessel-Thomson cut-off frequency was set at 300 Hz, as a
compromise between the bandwidth of the LMO (slow) and LD (relatively fast).

We used around-3-week-long stable periods of data for the analysis at each regulated temper-
ature, not affected by external events (e.g. power cuts). We select 314 h of physics data at each
temperature and 65 and 220 h of the 232Th calibration data at 18 and 12 mK, respectively.

The acquired data are triggered offline to tag discrete energy depositions. The triggered pulses
are then processed by the optimum filter technique [42] to evaluate the signal amplitude (i.e. energy)
and several pulse-shape parameters. In the reconstruction of the coincidences between the LMO
and LD, we account for the LD faster response and correct for its constant time shift with respect to
the LMO signal, similarly to the method described in [43].

3 Results

3.1 Detector performance

The performance parameters achieved by the LMO and LD in the 18 and 12 mK tests are listed in
Table 1. The rise and decay time constants, defined respectively as time intervals of the (10–90)%
rising edge and (90–30)% trailing edge relative to the signal maximum, of the LMO are ∼0.02 and
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∼0.15 s, respectively. We expect the LD response to be faster by an order of magnitude because
of the smaller heat capacity of both the Ge absorber and the NTD thermistor. The time constants
obtained are in agreement with the results of previous investigations of similar size LMOs and
LDs [18, 23]. It is worth noting that the time response of the bolometric detectors depend on the
operation temperature and the sensor polarization (see, e.g., [44]). However, optimization of the
detector time response2 was out of the scope of the present study.
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Figure 2. The energy spectrum of the 55Fe X-ray source measured by a 1.4 g Ge bolometric light detector over
913 h (12 and 18 mK data) in the CROSS pulse tube based cryogenic facility at the Canfranc underground
laboratory (Spain). A fit to the data by a model assuming a double-Gaussian function and a flat background
component is shown by solid (red) line. The energy resolution (FWHM) is quoted for the 5.9 keV X-ray peak
of Mn K𝛼.

The LD signal amplitude per unit of deposited energy is 1.2 𝜇V/keV at 18 mK and 1.4 𝜇V/keV
at 12 mK. The LMO signal amplitude is of course inferior, 17 nV/keV at 18 mK and doubles at
12 mK. Since the working points were not optimized to get the highest sensitivity, these results are
good but not extraordinary among similar devices [18, 23].

The LD is calibrated with the 5.9 and 6.5 keV X-rays emitted by the 55Fe source. The energy
spectrum of the 55Fe source gathered over 913 h of physics and thorium calibration runs is shown
in Fig. 2. The almost fully resolved Mn K𝛼/K𝛽 doublet is visible thanks to the high LD energy
resolution: ≈0.3 keV FWHM at 5.9 keV. The baseline noise is 0.2–0.3 keV FWHM, demonstrating
a reasonably low threshold. It is worth noting that such devices do not always show a high energy
resolution even if characterized by ten(s) eV RMS noise3, due to the position-dependent response

2In particular, to get the fastest response in view of the rejection of random coincidence events induced background
in the 100Mo 0𝜈2𝛽 region of interest [12–14].

3For example, the Mn doublet resolution of 0.3–0.5 keV FWHM was measured with LDs made of 30–45 𝜇m thick
Ge wafers [18], while the 0.08 keV FWHM resolution was achieved by a 33 g Ge bolometer (�20×20 mm) characterized
by a similar noise level [45].
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of thin bolometers.

1

10

10 2

10 3

500 1000 1500 2000 2500

208Tl
212Bi

228Ac

208Tl

208Tl

Energy (keV)

C
ou

nt
s 

/ 3
 k

eV

1

10

10 2

10 3

500 1000 1500 2000 2500

214Pb
214Bi

214Bi

214Bi

208Tl

Energy (keV)

C
ou

nt
s 

/ 3
 k

eV

6.0(5) keV

Energy (keV)

C
ou

nt
s 

/ k
eV

0

20

40

60

2600 2620 2640

Figure 3. The energy spectra of 𝛾(𝛽) events accumulated by the LMO over the calibration (285 h; top
panel) and physics data (628 h; bottom panel) measurements in the C2U facility at the Canfranc underground
laboratory. The most prominent 𝛾 peaks are labeled. The contribution of 𝛼 events to the physics data has been
removed with the scintillation light based particle identification (see text). The inset shows the 𝛾 peak with
energy of 2615 keV in the calibration data together with a fit and the calculated energy resolution (FWHM).

We measured the LMO energy scale and resolution with the most intense gamma peaks in the
thorium spectrum, illustrated in Fig. 3 (top panel). Because of the incomplete shielding, the physics
data (Fig. 3, bottom panel) also exhibit several 𝛾 peaks from residual environmental radioactivity
(daughters of 226Ra and 228Th sub-chains). The 238U/234U alpha source also emits 𝛽 particles
from 234𝑚Pa decays (𝑄𝛽 = 2.27 MeV [46]), which, together with the 100Mo 2𝜈2𝛽 decays [23], are
responsible for the most part of the continuum background above 0.5 MeV, seen in Fig. 3 (bottom
panel).

The energy dependence of the LMO energy resolution is presented in Fig. 4. The results
extracted from physics data are limited by the poor statistics. The detector demonstrates a good
energy resolution in a wide energy interval exhibiting a peak width slightly increasing with energy,
in agreement with early findings [18, 25]. In particular, we achieved a 6 keV energy resolution
(FWHM) for 𝛾-ray quanta of 208Tl with energy 2615 keV, and a 2.5 keV FWHM baseline noise.
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The resolution at the 𝑄2𝛽 of 100Mo is expected to be very similar (Fig. 4). These results are
in agreement with prior measurements for cylindrical LMOs [5, 18, 24], confirming an excellent
bolometric performance independent of the crystal shape. It is also evident that a low baseline noise
is crucial in obtaining a high energy resolution with a Li2100MoO4 bolometer. It is worth noting,
the lowest noise achieved with the LMO is a factor 2–4 worse than the best reported values for
large-volume lithium molybdate bolometers [18, 24]. Thus, taking into account sub-optimal noise
level of the present study, there is still room for improvement.
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Figure 4. Energy dependence of the 279 g Li2100MoO4 bolometer energy resolution (FWHM) measured in
the calibration (filled circles; 12 mK) and physics (open circles; 18 and 12 mK) runs. The fitting curve is
shown by the dashed line, while the solid line indicates the 100Mo 𝑄2𝛽 .

3.2 Particle identification capability

Coincidences between the LMO and LD have been used to probe the scintillation based particle
identification (PID). For each event triggered by the LMO we calculated a PID parameter, the so-
called light yield (𝐿𝑌 ), defined as the ratio of the LD to LMO measured energy. The 𝐿𝑌 dependence
on particle energy is shown in Fig. 5, where the population of 𝛾(𝛽) events is clearly separated from
𝛼’s. Such a powerful separation is achieved thanks to the quenching of the scintillation light for 𝛼
particles with respect to 𝛾(𝛽)’s of the same energy and low noise of the LD. Different ionization
properties lead also to a different amplitude measured by the LMO. Figure 5 shows a ∼7% increase
of an 𝛼 event energy with respect to the gamma energy scale, in agreement with previous studies
of LMO bolometers [18, 24]. This difference, called thermal quenching, hints at a possibility of
PID by pulse-shape analysis of the heat channel itself [18], but it is by far less reproducible due to
a strong dependence on the noise conditions4.

4Since the present detector does not have the CROSS technology of the surface coating for PID purpose, we skip an
analysis of pulse-shape discrimination of 𝛼 events.
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Figure 5. Light yield as a function of energy deposited in the LMO and measured in a 125 h long 232Th
calibration at 12 mK. The energy scale is calibrated with 𝛾 quanta. The population of 𝛾(𝛽) events is clearly
separated from the 𝛼 events, mainly originated by the 238U/234U smeared 𝛼 source. The 𝛼 events shown in
red were selected above 1 MeV with a 𝐿𝑌 cut below 0.25 keV/MeV.
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each distribution is shown by a solid line. The discrimination power between the two populations is ∼8.
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In order to investigate a 𝐿𝑌 -based 𝛼/𝛾(𝛽) separation close to the 100Mo 0𝜈2𝛽 region of interest
(ROI), we selected events within the 2.0–5.1 MeV energy range and a 𝐿𝑌 interval of 0.4–1.0
keV/MeV for 𝛾(𝛽)’s and 0–0.25 keV/MeV for 𝛼’s; both are shown in Fig. 6. A Gaussian fit to each
distribution provides a 𝐿𝑌 mean value (𝜇) and standard deviation (𝜎), which we used to calculate the
so-called discrimination power defined as 𝐷𝑃𝛼/𝛾 (𝛽) =

��𝜇𝛾 (𝛽) − 𝜇𝛼

�� /√︃𝜎2
𝛾 (𝛽) + 𝜎2

𝛼. The 𝐷𝑃𝛼/𝛾 (𝛽)
based on the present data is around 8 (Table 1), meaning about 8𝜎𝛼 of alpha event rejection while
keeping almost 100% of 𝛾(𝛽)’s. This rejection power fully satisfies the CUPID goal of identifying
99.9% of alpha particles (corresponding to 𝐷𝑃𝛼/𝛾 (𝛽) ∼ 3.1).

The LMO light yield for 𝛾(𝛽) events (𝐿𝑌𝛾 (𝛽) ) was found to be 0.64 keV/MeV, similar to one
measured with cylindrical shaped LMOs of �44×45 mm size [18, 24, 26]. However, in the present
study the light collection efficiency was affected by the smaller area of the LD (15 cm2) with respect
to the LMO surface facing it (20 cm2) and by the entrance window of the Cu holder (�45 mm).
Thus, considering only the direct light, the 𝐿𝑌𝛾 (𝛽) is expected to be ∼ 0.85 keV/MeV, once a 45 mm
side square LD is coupled to the LMO. In case of the use of two LDs, the 𝐿𝑌 should be roughly
doubled, as demonstrated by CUPID-Mo [24, 26]. The quenching factor (𝑄𝐹𝛼) for 𝛼 particles
of 210Po observed in the data (see the next section) is 0.2 5, in agreement with the previous data
[18, 24, 26].

3.3 Li2100MoO4 crystal radiopurity

A highly-efficient PID together with a good energy resolution of the LMO operated over four
weeks of background measurements allow us to quantify the Li2100MoO4 radiopurity with a high
sensitivity. The spectrum of alpha events selected from the physics data (and recalibrated to 𝛼

energy) is presented in Fig. 7; the energy interval covers most 𝑄𝛼-values of radionuclides from the
U/Th chains. As it is seen in Fig. 7, the use of the 238U/234U smeared 𝛼 source prevents estimation
of the alpha activity of 232Th, 238U and some of the daughters with𝑄𝛼 ≤ 4.8 MeV. However, we can
investigate a possible contamination by 226Ra and 228Th, which are the most harmful contaminants
for 0𝜈2𝛽 searches.

The energy region above 4.8 MeV contains only two peak-like structures both ascribed to 210Po
𝛼 events, and originated by the 210Pb contamination [47]. A clear peak at 5.4 MeV is induced by the
210Po decays in the Li2100MoO4 crystal bulk with the activity of 80(12) 𝜇Bq/kg. A 210Po (210Pb)
bulk contamination on the level of ten(s)–hundred(s) 𝜇Bq/kg is typical for Li2100MoO4 crystals
[5, 18, 24, 26]. A broad distribution peaked at 5.3 MeV is caused by the 210Po decay on the surface of
materials facing the LMO (a 0.1 MeV energy is taken away by the 206Pb nuclear recoil). The decays
of 210Po at surfaces of the detector materials can populate the 100Mo 0𝜈2𝛽 ROI as energy-degraded
alpha events, but they can be easily rejected thanks to the efficient PID of Li2100MoO4 scintillating
bolometers. Also, the total rate of 210Po events (∼0.06 mHz) is rather low to be a notable source of
pile-ups, which are of certain concern for slow response thermal detectors [16].

The spectrum shows no other structures, so we can only set limits on other radionuclide
contaminations. In order to be conservative, we considered all events within 25 keV of each
expected peak location. The background (1 count per 50 keV) was estimated in the 5.65–5.75 and

5Such a parameter is typically quoted without the correction from the thermal quenching and we follow that convention
here.
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Figure 7. A part of the 𝛼 energy spectrum accumulated by the LMO operated over 628 h in the CROSS
underground cryostat in Canfranc. The energy interval covers the 𝑄𝛼-values of the most 𝛼-active radionu-
clides from U/Th decay chains. In addition to a dominant contribution from the used 238U/234U source,
the spectrum exhibits only two populations of 210Po originated by external (surface of nearby materials) or
internal (crystal bulk) contaminations of the detector.

5.85–5.95 MeV energy intervals, containing no 𝑄𝛼-value of U/Th radionuclides. The data exhibit
no events of 228Th (𝑄𝛼 = 5520 keV [8]) and two counts of 222Rn (𝑄𝛼 = 5590 keV [8]; a daughter
of 226Ra), thus we place 90 confidence level (C.L.) upper limits of 1.6 and 4.9 counts, respectively
[48]. A selection efficiency of 95.7% was estimated using alpha events of the 238U/234U smeared 𝛼

source, distributed in the 3.5–4.8 MeV energy interval. Therefore, the activity of 228Th and 226Ra
in the Li2100MoO4 crystal bulk is below 3 and 8 𝜇Bq/kg at 90% C.L., respectively. Taking into
account the reasonably short half-lives of 228Ra (5.75 yr [46]) and 228Th (1.91 yr [46]), the limit
on the 228Th activity can also represent the 232Th contamination in the crystals, as e.g. seen in
[18, 25, 26].

The limits on the 228Th and 226Ra activity in the studied Li2100MoO4 crystal are on the same
level as reported by LUMINEU [5, 18], which were obtained by the analysis of a comparable
exposure. A significantly larger exposure of the CUPID-Mo experiment [24–26] shows that the
level of remaining contaminants in Li2100MoO4 scintillators can be even an order of magnitude
lower. As the protocol of the CROSS crystal production was the one adopted by LUMINEU and
CUPID-Mo, it seems natural to assume the radiopurity of the CROSS crystals to be similar to that
of CUPID-Mo ones. It is worth noting that the 228Th (232Th) and 226Ra contamination on the level
of 10 𝜇Bq/kg is compatible with a background contribution below 10−4 counts/yr/kg/keV to the
100Mo 0𝜈2𝛽 ROI, and it is fully acceptable not only for the medium-scale CROSS experiment (with
∼10 kg detector mass), but also for the tonne-scale extension of CUPID.
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4 Conclusions

We report that performance and radiopurity of a scintillating bolometer based on a large cubic-
shaped Li2100MoO4 crystal —randomly taken from 32 identical crystals (with a 45 mm side and
a mass of 0.28 kg each) of the CROSS 0𝜈2𝛽 project— are similar to those of cylindrical 0.2 kg
Li2100MoO4 bolometers, used in LUMINEU and CUPID-Mo 2𝛽 experiments. In particular, the
Li2100MoO4 detector energy resolution at 2615 keV 𝛾 quanta (as well as its approximation to
3034 keV, the 100Mo 2𝛽 decay energy) is 6 keV FWHM. A scintillation light yield of the cubic-
shaped crystal, 0.64 keV/MeV for 𝛾(𝛽)’s, is compatible to that of cylindrical crystals. However,
the measured light yield is affected by about 30% lower detection surface of the optical bolometer
with respect to the nearby Li2100MoO4 crystal face. In spite of sub-optimal light collection, a full
separation (∼8𝜎) between 𝛼 and 𝛾(𝛽) events above 2 MeV has been achieved. A high radiopurity
of the cubic-shaped Li2100MoO4 crystal was also demonstrated by the present study, where only
210Po is detected with the activity of 80(12) 𝜇Bq/kg, while the content of 228Th and 226Ra (the most
harmful radionuclides from U/Th families for 0𝜈2𝛽 searches) is estimated to be less than 3 and
8 𝜇Bq/kg, respectively.

The performed investigation additionally proves the excellent prospects of Li2100MoO4 scin-
tillating bolometers for high-sensitivity 0𝜈2𝛽 decay searches. The cubic shape of large-volume
(∼90 cm3) Li2100MoO4 crystals allows a more compact detector array structure and thus the de-
ployment of a larger isotope mass in the experimental volume, as well as an increased efficiency of
multi-site event detection. In view of these results, large-mass (∼0.3 kg) radiopure cubic-shaped
Li2100MoO4 crystals operated as bolometers satisfy the demands of the CROSS and CUPID projects.
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