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Dynamic SEIR (Susceptible, Exposed, Infectious, Removed) compartmental

models provide a tool for predicting the size and duration of both unfettered

and managed outbreaks—the latter in the context of interventions such as case

detection, patient isolation, vaccination and treatment. The reliability of this

tool depends on the validity of key assumptions that include homogeneity

of individuals and spatio-temporal homogeneity. Although the SEIR compart-

mental framework can easily be extended to include demographic (e.g. age)

and additional disease (e.g. healthcare workers) classes, dependence of trans-

mission rates on time, and metapopulation structure, fitting such extended

models is hampered by both a proliferation of free parameters and insufficient

or inappropriate data. This raises the question of how effective a tool the basic

SEIR framework may actually be. We go some way here to answering this

question in the context of the 2014–2015 outbreak of Ebola in West Africa

by comparing fits of an SEIR time-dependent transmission model to both

country- and district-level weekly incidence data. Our novel approach in esti-

mating the effective-size-of-the-populations-at-risk (Neff ) and initial number of

exposed individuals (E0) at both district and country levels, as well as the trans-

mission function parameters, including a time-to-halving-the-force-of-

infection (tf/2) parameter, provides new insights into this Ebola outbreak. It

reveals that the estimate R0 � 1.7 from country-level data appears to seriously

underestimate R0 � 3.3 2 4.3 obtained from more spatially homogeneous dis-

trict-level data. Country-level data also overestimate tf/2 � 22 weeks,

compared with 8–10 weeks from district-level data. Additionally, estimates

for the duration of individual infectiousness is around two weeks from

spatially inhomogeneous country-level data compared with 2.4–4.5 weeks

from spatially more homogeneous district-level data, which estimates are

rather high compared with most values reported in the literature.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
Systems of ordinary differential equations in the disease-class variables S
(susceptibles), E (exposed), I (infected) and R (removed) have been the mainstay

of modelling the dynamics of disease outbreaks for the past 100 years [1,2]. These

models have also been discretized with respect to time (systems of discrete-time

difference equations) and, in stochastic settings, with respect to state (i.e. integer

numbers of individuals in disease classes; for a recent review, see [3]). Although

SEIR models assume homogeneity with respect to both disease class and spatial

structure, these models have been greatly elaborated to take into account age [4],

sex [5], the genetic structure of hosts, and pathogens [6,7]. They have also been
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extended to include notions of distributed-delay of individuals

within disease classes over time [8], while integral projection

methods are used to incorporate continuous traits that may

be relevant to disease dynamics [9,10].

Spatial structure has been incorporated into epidemiolo-

gical models using metapopulation formulations [11–16].

All these extensions lead to the proliferation of model

parameters, however, and thus require orders of magnitude

more data to fit the model than does the basic three-

parameter SEIR disease process formulation with its latent

period (PE: unit time), infectious period (PI: unit time) and

per capita susceptible transmission rate parameters (b: units

vary, depending on how the transmission function is

assumed to depend on I and N—see [17,18] for further dis-

cussion). If demography is added—as formulated below in

terms of recruitment (l: numbers per unit time) and natural

(m: per capita per unit time) and disease-induced mortality

(a: per capita per unit time)—at least six parameters must

be estimated. Also, spatial structure can be accounted for

using individual-based models, in which individuals are

tagged with their current location on a landscape. However,

minimally such models require a movement rate parameter

[19] and, perhaps, additional parameters to codify the rules

that individuals use to move and encounter other individuals

on the landscape [20].

Individual-based (or so-called agent-based) models

have the advantage of being able to incorporate the histories

of individuals with respect to ‘time since a particular

disease class transmission event occurred’ or the ‘genealogy

of infection chains’ [21–24], with implications for the epide-

miological field of phylodynamics [25]. Again, for a

comprehensive description of such models, additional par-

ameters are needed that can account for mutation rates and

other relevant genetic processes.

To avoid the proliferation of parameters in models, math-

ematical descriptions of biological populations, by necessity,

focus on one or a couple of processes. The challenge is to ident-

ify only those processes that are relevant to answering the

question at hand about a system that is otherwise a complex

concatenation of hierarchically interacting layers of objects

and processes [26]. The central question in building models is

whether or not they are adequate to address the questions at

hand. Adequate models require that we include an appropriate

level of structural complexity with regard to the questions

being asked and the extent of the empirical data that can sup-

port the models [26]. A need for data, of course, is obviated in

theoretical studies that explore questions of relevance to classes

of systems, such as the properties of epidemics occurring on

particular types of contact networks [27–31].

In this paper, we evaluate the adequacy of using SEIVD

models—a variant of SEIR models where R is divided into

recovered (V: ‘naturally vaccinated’, i.e. immune) and dead

(D)—to forecast and manage epidemiological outbreaks in

the context of how robust estimation of epidemic process par-

ameters are, if we ignore obvious inhomogeneities in

incidence data. We do so in the context of the Ebola viral

disease (EVD) outbreak in West Africa in 2014–2015

[13,21,22,32–34]. Specifically, we compare the fit of a dis-

crete-time SEIVD model with time-varying transmission

parameter b(t) [3] to weekly incidence data among the

(i) combined Freetown and Waterloo (F&W) districts in

Sierra Leone, (ii) the Port Loko (PL) district in Sierra Leone

and (iii) Sierra Leone (SL) as a whole. In some cases,
we allow the initial number of exposed individuals E(0) to

be a fitted parameter, as a way of dealing with the fact that

we do not know when the first infection actually occurred

within a particular district. Further, we allow for the fact

that the actual size of the susceptible group underlying a

particular set of incidence data is not known by fitting an

effective-population size Neff, a term borrowed from genetics,

but used here in a different context. Specifically, Neff answers

the question: what would the best estimate of the size of

the underlying population be if the epidemic were taking

place in a homogeneous population (i.e. homogeneous

individual hosts from, inter alia, a spatial, behavioural, phys-

iological and immunological point of view; as well as a single

homogeneous strain of pathogen)?
2. Model construction
The model we fit is a discrete-time deterministic version of the

SEIVD model presented in Getz et al. [3]. SEIR epidemic

models are typically formulated as systems of ordinary differ-

ential equations (ODEs; see [2]) in the variables S (susceptible),

E (infected but not yet infectious), I (infectious) and R
(removed: further divided into immune V and dead D). Dis-

crete-time equivalents of these models are particularly useful

when fitting models to data collected at a fixed rate (e.g.

daily, weekly or monthly rates) or evaluating interventions

(treatment regimens, isolation of patients) that are themselves

discrete (e.g. daily rates) [3,18,35,36]. Further, these discrete for-

mulations are more easily extended than continuous time

formulations to stochastic settings, where the latter require

implementation of event-driven formulations [3,8,18,37–39].

In the development of our model, as mentioned above,

we break R into V (recovered with temporary immunity)

and D (dead) [3,18] (electronic supplementary material,

figure S1). Also, we use the roman fonts X ¼ S, E, I, V and

D to name classes and the italic fonts X ¼ S, E, I, V and D
to represent the values of the corresponding variables. An

additional value that appears in most epidemic models is

the total population alive at time t: i.e. N(t) ¼ S(t) þ E(t) þ
I(t) þ V(t).

Our model has four epidemiological flow rates: gX, X ¼ S,

E, I or V. The latter three are the reciprocals of the average

time an individual spends in class X: i.e. the latent period

PE ¼ 1/gE is the mean time spent in state E, the infectious

period PI ¼ 1/gI is the mean time spent in state I, and the

refractory immune period PV ¼ 1/gV is the mean time

spent in state V (where the designation ‘mean’ is strictly

only meaningful in a stochastic version of this model—see

[3]). For Ebola, lifelong immunity implies that the rate gV is

0. The per capita-S transmission rate gS, however, is not a par-

ameter, but a transmission rate function that either scales

with I (mass-action transmission), with I/N (frequency-

dependent transmission function—see [40]) or is a more

general function of I and N [17,41]. As epidemics unfold, gS

may explicitly depend on time t if individuals adjust their

behaviour to reduce contact with infected individuals (avoid-

ing crowds) or the probability of disease transmission when

contact is made (e.g. healthcare workers wearing masks

and using gloves).

Though the dependence of gS on t is most often assumed

to be exponential decay (e.g. [32]), we prefer an expres-

sion of time that has slope 0 at the origin because of its
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obvious greater realism [42]: e.g. the generalized three-

parameter (b . 0, tf/2 . 0 and 1 . 1) reverse S-shaped

hyperbolic expression [3,21]

gS(I, N, t) ¼ bI
(1þ (t=tf=2)1)N

: (2:1)

Specifically, the value of gS(I, N, t) as a function of time t falls

off in value for a give ratio I/N from gS(I, N, 0) ¼ bI/N
to limt!1g

S(I, N, t) ¼ 0, passing through the half-way

mark bI/(2N ) at the critical time tf/2, with a steepness

(also known as the abruptness parameter—see [42]) that

increases with the value of 1 (electronic supplementary

material, figure S2). Of course, in practice, additional depen-

dence on time enters through the fact that I and N are

themselves functions of t.
Demography is added to the model by including natural

and disease-induced per capita death rates parameters, m and

a respectively, as illustrated in electronic supplementary

material, figure S1, while recruitment is included through

the parameter L. This recruitment could be generated

through births or actual recruitment from younger cohorts

(as in models that consider sexually transmitted diseases) or

from migration (as in metapopulation models). The equations

for this discrete SEIVD model are provided in electronic sup-

plementary material, equations S.1–S.8, and also in Getz et al.
[3], where the expression for R0—the expected number of sus-

ceptibles to be infected by the index case—is provided by

the expression

R0 ¼
bgE

(gE þ m)(gI þ mþ a)
: (2:2)

(a) Fitting our model to data
We introduce several novelties in our approach to fitting our

SEIVD model to weekly incidence data. First, besides the

usual approach of fitting the parameters b (transmission),

PE ¼ 1/gE (latent period) and PI ¼ 1/gI (infectious period),

we also fit tf/2 (time to halving the force of infection),

Neff ¼ N(0) (the effective size of the population at risk) and

E(0) ¼ E0, (the unknown number of exposed individuals at

the start of the infection), where the outbreak starts with

the first recorded infectious case (and the index case and

others if there is more than one infectious case).

For certain types of outbreaks—those where the number

of infectious individuals over the course of the epidemic

remains small compared with the total population size—the

best model fit may be rather insensitive to the selection of a

value for N(0) ¼ Neff. The reason is that the transmission

rate (as derived by multiplying the per capita susceptible

transmission rate, expressed in equation (2.1), by S), in situ-

ations when I(t)� N(t)) S(t) � N(t), is approximately

given by

gS((I(t), N(t), t)S(t) ¼ bI(t)
(1þ (t=tf=2)1)N(t)

S(t)

� bI(t)
1þ (t=tf=2)1

(2:3)

which is independent of N(t) and hence Neff ¼ N(0). Only in

outbreaks where I(t) rises above some significant fraction of

N(t) (say, I(t) . 0.05N(t)) will our approach to estimating

the size of Neff begin to yield reliable insights into the size

of the population at risk.
Parameter estimation is implemented on the Numerus

Model Builder platform [3] using a Nelder–Mead optimiz-

ation procedure. We fitted our model to the data using a

maximum-likelihood procedure described in Getz et al. [3].

Initial runs revealed the presence of several local optima.

Thus, we selected the best solution in each case (we had

three sets of data and allowed from three to seven parameters

to vary, as described in the next section) for 100 to 400 runs

starting from random initial selections of parameter values

(the Nelder–Mead requires two initial estimates to get started).
(b) Ebola viral disease in Sierra Leone
At a coarse spatial level, Sierra Leone can be divided into

four geographical regions, one of which is centred around

the only major city in Sierra Leone, Freetown, which has a

million plus individuals. The other three regions each contain

at most two towns with between 0.1 and 0.2 million individ-

uals (electronic supplementary material, figure S4). Without

more refined spatial population data than this, as well as

some information on how individuals move among the

major population centres (i.e. towns with ten thousand or

more individuals apiece) or from adjoining rural areas to

these centres, a reliable analysis of the spatial aspects of an

Ebola outbreak in Sierra Leone cannot be undertaken. In

addition, an integrated spatial analysis would require infor-

mation on individuals moving from the neighbouring states

of Liberia and Guinea to account for the across-border trans-

mission of the Ebola virus.

Although the 2014–2015 West African EVD outbreak has

received considerable attention from the modelling and simu-

lation community [13,21,32,33,43], many questions relating to

the impact of spatio-temporal inhomogeneity on the epi-

demic parameters remain unanswered. Here we use a

deterministic, discrete-time, SEIVD model (electronic sup-

plementary material, appendix; also see [3]) to separately fit

different Sierra Leone districts, as well as country-level

weekly incidence data to explore the question of how the epi-

demic varied among regions. The regional weekly incidence

data we fitted are reported in Fang et al. [33], and for pur-

poses of illustration plotted in electronic supplementary

material, figure S3. From these plots, we see that outbreaks

peaked at different times in different districts of Sierra

Leone. The outbreak started in the eastern-most town and

district of Kailahun (electronic supplementary material,

figure S4) and peaked last in the western-most region contain-

ing the capital Freetown and the neighbouring city of

Waterloo (Western district). A relatively large outbreak

peaked in Port Loko half-way through the 52-week epidemic.

The outbreaks in Freetown–Waterloo (F&W) and Port Loko

(PL) are much more typical of those seen in homogeneous

populations than is the wider incidence peak observed in

Sierra Leone (SL) as a whole: wide peaks suggest spatial

heterogeneity in the data or a different set of epidemiological

parameters—as is demonstrated by our analysis below. Thus,

we decided to compare how well our SEIVD model could be

fitted to F&W, PL and SL data, ignoring the smaller out-

breaks in other districts as generally too noisy to provide

good fits to a deterministic model. For a discussion on this

latter point in the context of the Liberian EVD outbreak, see

Getz et al. [36], which contains empirical data showing that

small Liberian towns and villages were susceptible to

repeated small outbreaks. These latter phenomena are likely
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Figure 1. Best three-parameter fits of a homogeneous SEIR model to selected relatively spatially cohesive district data (F&W, Western Area; PL, Northern Area) and
clearly spatially structured country-level data (SL) plotted against weeks since the beginning of the specific local (rather than country-wide) outbreak (see table 1 for
parameter, maximum-likelihood and AIC values).

Table 1. AIC [44,45] fits of models to incidence data treated for purposes of the fits as closed homogeneous districts within the country of Sierra Leone.
Italicized values denote fixed parameter values, while the remaining are varied using an NMB implementation of the Nelder Mead algorithm (NMA, [46]) to
maximize the log-likelihood (LL), and hence the AIC, of the fit. For the three and four free parameter cases, the fixed parameter values are set close to those
estimated in the seven parameter case to allow us to evaluate the robustness of our fitting procedures in estimating the remaining free parameter values. NMA
starting values are selected at random from the bottom and top half of the indicated parameter ranges. The reported maximum is the best of 100 runs in each
case (except for the seven parameter country case where 400 runs were compared), using lower and upper starting values from each parameter, respectively,
randomly selected from the lower and upper halves of the indicated search range. F&W is the combined Freetown and Waterloo districts; PL is the Port Loko
district and SL is the whole of Sierra Leone. See electronic supplementary material, figure S4 for sources on setting local population size.

data # free Neff E0 PE PI

b
1þ(t=t f=2 )1 R0

a LL

AIC

(units) params. (millions) (#) (weeks) (weeks) *best

F&W range [0.05, 1.5] [1, 20] [0.1,2] [2,6] b [ [1, 3], tf/2 [ [3, 11], 1 [ [1, 3]

7 0.645 10.4 1.07 4.23 2:10
1þ(t=8:23)2:04 4.8 2284.8 584

4 0.581 12.8 1 4 1:94
1þ(t=8:59)2 4.3 2284.8 578

3 1.1 11.7 1 4 1:96
1þ(t=8:58)2 4.3 2284.6 575*

PL range [0.05, 0.8] [1, 20] [0.1, 2] [2, 6] b [ [1, 3], tf/2 [ [3, 11], 1 [ [1, 3]

7 0.227 7.5 0.71 2.61 2:00
1þ(t=7:62)1:69 3.4 2170.6 355

4 0.331 11.2 1 3 1:67
1þ(t=9:60)2 3.1 2173.6 354*

3 0.55 9.0 1 3 1:79
1þ(t=9:20)2 3.3 2174.4 354*

SL range [4, 12] [5, 25] [0.1, 2] [1, 4] b [ [0.5, 2], tf/2 [ [10, 25], 1 [ [1, 3]

7 10.903 18.4 1.06 1.78 1:29
1þ(t=22:07)2:50 1.7 2471.6 957

4 11.569 20.0 1 2 1:21
1þ(t=22:27)2:5 1.7 2465.0 938

3 7 20.0 1 2 1:21
1þ(t=22:28)2:5 1.7 2465.0 936*

aUsing equation (2.2) for the case m ¼ 0.001 and a ¼ 0.2.
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due to individuals moving among population concentrations

reinvigorating outbreaks in areas where epidemics may have

been waning.

The results of our SEIVD model fits are illustrated in

figure 1 and reported in table 1. Due to the lack of appropriate

movement data on the sweep of the Sierra Leone 2014–2015

EVD across the country from east to west [33], we did not try

to fit a metapopulation version of our SEIR model, using the
approach discussed in Getz et al. [3] to extending a continuous

time SEIVD model to a metapopulation setting.
3. Discussion
The results we obtain indicate very clearly that when an epi-

demic has a clear spatial structure—for example, indicated
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outbreaks starting earlier in one region and taking off later in

another—then incidence has a broader distribution (e.g.

around 50 weeks long in SL versus 40 weeks each in F&W

and PL, as can be seen in figure 1) resulting in larger esti-

mates for time-to-halving-the-force-of-infection (e.g. tf/2 is

around nine weeks in the two districts versus 22 weeks for

Sierra Leone as a whole). The broadening of the outbreak dis-

tribution for a given maximum incidence peak implies that

estimates for the transmission parameter are lower (e.g. b is

around 2 in the districts versus around 1.25 in SL) which,

in turn, influences the estimate of R0 (equation (2.2)).

Our analysis of district-level data suggests that R0 is some-

where in the range of 3–5, while analysis of country-level data

suggests that R0 � 1.7. Estimates of R0 in Guinea, Sierra Leone

and Liberia around four months into epidemics in the latter

two countries (i.e. around mid to late August of 2014) [32],

yield the respective values 1.52, 2.42 and 1.65, using an

exponential decay model for b (electronic supplementary

material, figure S2). The Guinea and Liberia estimates are in

line with what we get here for Sierra Leone as a whole,

although the estimate for Sierra Leone is somewhat higher

than what we obtain here (2.42 versus 1.7). The estimate we

obtain here for Sierra Leone is very similar to the estimates

we obtained using an individual-based stochastic process

model, which produced a value of R0 � 1.6 [21]. Values for

R0 around 4 are more in line with the values we recently

obtained in fitting an SEIVD distributed-delay (Erlang or

boxcar—see [8]) model to the Liberian incidence data, where

R0 � 4.5 was obtained.

Since transmission is a function of both pathogen and host

biology, as well as environmental factors related to host

location and behaviour, we should expect R0 to vary across

communities with different cultural practices and economic

circumstances. Our results suggest, however, in using a

spatially homogeneous model to fit data from the spatially

structured outbreak, that R0 is greatly underestimated, with

consequences for managing epidemics including assessment

of vaccination coverage levels needed to obtain ‘herd immu-

nity’ conditions within a vulnerable population [2]. On the

other hand, if R0 levels are relatively high, then the obvious

question is why have so many Ebola outbreaks been relatively

small or exhibited the kind of stuttering behaviour that is

associated with values of R0 not much larger than 1 [47]. The

answer may lie in the fact that many of the Ebola outbreaks

in various parts of central and east Africa, from the 1970s

until recently, have occurred in low density, relatively isolated

locations. Here epidemic fade-out occurs because of small loca-

lized population sizes [48], unlike in towns and cities where

populations of several hundred thousand or more are able to

fuel epidemics involving hundreds or thousands of cases.

Our analysis also reveals that, although the fitting pro-

cedures are insensitive to assumptions regarding the initial

size (Neff ) of the population at risk, estimates obtained are

still within a factor of 2 of the listed population densities

within the districts themselves. This insensitivity, as discussed

in the context of equation (2.3), is not unexpected; and the

results we obtained suggest that for the transmission process

that has a greater density-dependent component, as is likely

for epizootic compared with epidemic processes [41], fitting

this parameter could prove to be useful in data-rich situations.

Our analysis indicates that beyond individual variation in

transmission (e.g. superspreaders [49]) or resistance to infec-

tion, accurate assessment of R0 requires that we are cognizant
of the degree to which the data come from a well-mixed,

spatially homogeneous population. To get an assessment of

spatial heterogeneity requires data on variation in population

density or the movement of individuals. The model we for-

mulated can be extended to include additional disease

states (e.g. symptomatic but uninfectious [50]). In the context

of Ebola, this includes transmission from individuals being

prepared for burial [51].

The model we present here can be extended to a metapopu-

lation setting, as has been done in the context of continuous

SEIR models [3]. The drawback, however, is that appropriate

data are often not available to adequately support these

additional structures. Many wildlife populations have a meta-

population structure [52], and diseases in such populations,

including rinderpest in artiodactyls and canine distemper in

carnivores [53], has important species conservation impli-

cations [54]. Metapopulation models have also been used to

study the spread of disease in plant populations, with the

anther-smut disease in Lychnis alpina being a case in point

[55]. Metapopulation structures naturally arise through

husbandry practices in domestic animals, likely involving

many more subpopulations than in the wild: each subpopu-

lation corresponds to a common ranching area, a group of

contiguous farms, large individual farms themselves or indi-

vidual poultry rearing facilities. For example, individual

farms were treated as separate subpopulations in modelling

the outbreak of foot-and-mouth disease in England in 2001

[27]. The application of metapopulation models to disease out-

breaks in domesticated animals is facilitated by the fact that

transfers of individuals among subpopulations may be well

documented, and the limitation of such transfers used to

control outbreaks [56]. Crop production mosaics may also

take on a metapopulation structure in the context of epidemic

outbreaks, where the disease is vectored among different

parts of the mosaic by insects or other types of vectors, includ-

ing wind and water [57]. Gilligan [58], for example, proposed

that each field should be considered as a ‘natural unit

for infection’.

Finally, our analysis suggests that fitting models with more

than a half-dozen parameters is exceptionally challenging

because of both the ‘curse of dimensionality’ [59] and the

impacts of multi-collinearity. Fitting such models would

likely require that different parts of the model be fitted inde-

pendently to different datasets. For example, a movement

component, when employed, could first be fitted to a move-

ment model, or in the case of EVD the infectious period

could be set using the consensus level of around 9.5 days

[60] (our high estimate of this quantity might be explained by

our neglect of transmission during the preparation of bodies

for burial [51]). Then epidemiological parameters could be

obtained by fitting an SEIVD model to subsets of incidence

data for which the assumption of well-mixed subpopulations

is reasonable. Once these components of a larger model have

been fitted, then the larger model itself can be used to make

a logistical decision on how best to manage epidemics that

threaten large regions around the globe.
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