
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
In Pursuit of Privacy on a Public Internet

Permalink
https://escholarship.org/uc/item/4k69t6pr

Author
Mendonca, Marc

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4k69t6pr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

In Pursuit of Privacy on a Public Internet

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Marc Mendonca

March 2012

The Thesis of Marc Mendonca
is approved:

————————————————–
Professor Katia Obraczka, Chair

————————————————–
Professor J.J. Garcia-Luna-Aceves

————————————————–
Srini Seetharaman

————————————————–
Thierry Turletti

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c©

by

Marc Mendonca

2011

Table of Contents

List of Figures iv

List of Tables v

Abstract vi

Acknowledgments vii

1 Introduction 1

2 Background 4

2.1 Network Privacy . 4

2.2 Software-Defined Networking . 6

3 Model and Goals 10

3.1 Web Usability . 10

3.2 Threat Model . 10

3.3 Design Goals . 11

4 Approaches to Web Privacy 13

4.1 Traditional . 13

4.2 AnonyFlow . 14

4.2.1 Architecture . 14

4.2.2 Implementation . 17

5 Evaluation 18

5.1 Performance . 18

5.1.1 Web Measurements . 18

5.1.2 Testbed Measurements . 20

5.2 Security . 22

6 Concluding Remarks 27

References 28

iii

List of Figures

1 The SDN architecture decouples control logic from the forwarding

hardware, and enables the consolidation of middleboxes, simpler pol-

icy management, and new functionalities. 6

2 The separated control logic can be viewed as a network operating sys-

tem, upon which applications can be built to “program” the network.

. 8

3 Example of AnonyFlow ’s Operation. 16

4 Webpage load time using common privacy tools. 18

5 File download time using common privacy tools. 19

6 TCP throughput using common privacy tools. 19

7 Lab network used to emulate a wide-area OpenFlow-enabled network.

The NetFPGA-based OpenFlow switches at the edge take care of the

required header rewriting actions. 20

8 TCP Throughput (iperf) between two hosts in our testbed. 21

9 TCP Throughput (iperf) between two hosts with emulated 100ms

delay. 21

iv

List of Tables

1 Identifiers of host A as observed by other agents. 17

2 Feature comparision of 3 anonymization techniques. 26

v

Abstract

In Pursuit of Privacy on a Public Internet

by

Marc Mendonca

User privacy on the Internet has been an increasing concern in recent years. With

the proliferation and sophistication of information services, data mining, and search

engines, a simple network address may be used to reveal a great deal of information

about a user, including location, identity, and behavior.

A new network architecture paradigm known as “Software-Defined Networking”

(SDN) has recently garnered attention in both industry and academia. Defined by a

separation of data and control planes, it offloads routing decisions from the switch-

ing hardware and provides an innovative framework upon which new protocols and

services can be deployed.

In this thesis, we examine how SDN can be employed by service providers to offer

endpoint privacy. We identify existing approaches to privacy and determine that

they make unacceptable tradeoffs between performance and anonymity. We argue

an acceptable level of privacy can be provided to most users, with noticeably lower

latency and throughput impact, by working with the network provider; to that end,

we introduce AnonyFlow , an in-network anonymization service designed to efficiently

and seamlessly provide privacy to users as they communicate with other endpoints

and services. We design, implement, and evaluate a prototype of AnonyFlow , based

on an OpenFlow SDN deployment, that achieves endpoint anonymity without com-

promising on throughput or latency.

vi

Acknowledgments

This thesis would not have been written without the advice and support offered by

a number of people, and I would like to express my gratitude and acknowledge their

contributions here.

I thank my supervisors, Katia Obraczka (UCSC), Thierry Turletti (INRIA), and

Srini Seetharaman (Deutsche Telekom), for their guidance and invaluable feedback

on my work.

I am grateful to the numerous colleagues that I have worked with over the past

couple of years at Deutsche Telekom R&D Lab USA, the Planète team at INRIA

Sophia Antipolis, and the Inter-Networking Research Group at UCSC. In addition

to helping me refine my ideas, they have provided an unforgettable environment in

which I have grown as a researcher.

I would also like to acknowledge the School of Engineering staff for their friendly

assistance. Many thanks to Carol Mullane for helping me navigate the administrivia

related to graduate school.

Finally, I would like to thank my parents for their years of endless love and support.

vii

1 Introduction

As data mining, geolocation services, targeted advertising, and data brokers become

more pervasive, it is possible to learn a large amount from information flowing

through the network, in particular network addresses stamped on each packet. This

coupled with considerable increase in privacy and security breaches have sparked

renewed interest in services and tools that provide user anonymity. However, as

will become clear in Section 3, current anonymization approaches typically incur

prohibitive performance penalties.

It can be argued that the bigger threat to privacy for everyday Internet users is

unscrupulous or overzealous endpoints and Web services, and not network infras-

tructure providers, who are typically restricted from disclosing data. In fact, our

claim is that infrastructure providers would be quite willing to protect their users

against any potential attacks and/or threats as they may be held accountable and

liable for security breaches, such as identity theft and other intrusions of user privacy.

While there have been some previous attempts to enlist providers to offer privacy

services[39], they required the deployment of specialized gateways and faced chal-

lenges arising from having multiple ingress/egress points in the network. While the

previous work was flow-based, it used a cryptographic approach that relied on key

rotations to prevent certain attacks. This caused outages on long-lived flows as gate-

ways were unable to keep track of the per-flow state when keys rotate on a fixed-time

period.

Recently, a new paradigm of network architecture known as “Software-Defined Net-

working” (SDN) has emerged. Defined by a separation of data and control planes,

it offloads routing decisions from the switching hardware and provides an innovative

framework upon which new protocols and services can be deployed. Approach-

ing issues raised by the previous attempt listed above, such as handling multiple

ingress/egress points, from a SDN viewpoint vastly simplifies the problem. The de-

ployment is expedited as the service can be defined completely in software without

the addition of specialized gateways. Furthermore, when using a controller to han-

dle new flows, the issue of replicating flow-table state across routers becomes trivial.

1

Many of the problems facing earlier distributed solutions are solved by maintaining

a centralized view.

Other popular approaches to privacy, as described in Section 2, offer unacceptable

delays (as we will demonstrate in Section 5) or reduced flexibility in terms of routing

or user control. This decreased performance, coupled with new opportunities pre-

sented by SDN deployments, motivated our use of the SDN framework to achieve

flexible privacy without compromising performance.

In this thesis, we present the issue of network privacy with this viewpoint in mind.

We present AnonyFlow [30], an in-network anonymization service designed to ef-

ficiently and seamlessly provide privacy to users as they communicate with other

endpoints and services. As an anonymization tool, AnonyFlow can also be used as

a building block for a variety of services, such as PO Box [38], anonymization of

network traces [37], as well as a way to provide separation between location and

identification [31].

By enlisting cooperation from infrastructure providers and thus adopting an “in-

network” approach to anonymization, endpoint privacy is provided in a seamless,

user-transparent way. Unlike approaches such as Onion Routing [22], AnonyFlow

incurs negligible overhead; for example, as shown by our performance evaluation

experiments in Section 5, AnonyFlow ’s impact on user-perceived latency is close to

zero. Additionally, AnonyFlow requires no changes to endpoints which facilitates

its deployment considerably. AnonyFlow is able to provide intra-domain anonymity,

as well as dynamic, on-demand addresses. This ability to provide disposable, flow-

based identifiers prevents malicious endpoints from tracking behavior and launching

attacks on users.

To evaluate AnonyFlow ’s functionality and performance in managed networks, we

implemented a simple prototype using the OpenFlow platform [29]. OpenFlow en-

ables execution of network-level services through a controller, which dictates the

behavior and actions of switches under its jurisdiction. This enables the implemen-

tation of in-network, on-the-fly, packet morphing actions. Our evaluation over the

hardware-based testbed showed that AnonyFlow provides higher flexibility in IP

2

anonymization with no impact on the end-to-end latency and a minor deterioration

in TCP throughput in wide-area networks. By design, AnonyFlow places a degree of

trust in the network infrastructure provider who operates the OpenFlow controller.

As discussed above, we contend that network infrastructure providers have all the

incentives to provide anonymity to its users in a transparent fashion, with minimal

impact on performance.

The remainder of this thesis is organized as follows: We examine the background of

web privacy and software-defined networking in Section 2, followed by a definition of

our anonymity model and goals in Section 3. Section 4 presents the basic architecture

and operation of several common approaches to privacy; we also provide a detailed

overview of our solution, AnonyFlow [30]. Finally, we present a performance and

security evaluation of the approaches in Section 5, and conclude the thesis in Section

6.

3

2 Background

In this section, we will canvass the background of areas related to our study. First,

we will examine related work in network privacy. Then, we will survey the state of

the emerging field of software-defined networking.

2.1 Network Privacy

First, we briefly review other solutions to endpoint privacy, as well as different

approaches to network addressing and identification.

Traditional network address translation (NAT)[44] provides a certain degree of pri-

vacy, but the public IP address can still typically be traced back to a single household,

organization, or ISP. Additionally, it provides no privacy benefit to intranetwork

communication between users behind the NAT box.

Simple anonymizing proxies, such as the Anonymizer[9], provide endpoint privacy

but require trust in the proxy. Also, there is additional overhead of working at a

higher layer or through tunneling, as well as the delay of routing traffic through the

proxy rather than following the most efficient route to the destination.

Virtual Private Networks[4] are another popular solution used to hide network iden-

tity from the opposite endpoint. While widely supported and deployed, it has similar

drawbacks as an anonymizing proxy - the user must trust the VPN service provider

and traffic must flow through the provider network, which may not be the most

efficient route to the destination.

Stronger overlay-based anonymity approaches include Onion routing[22], e.g., Tor[18],

and Web mixes, e.g., JAP[6] and Tarzan[20]. While such solutions are still con-

sidered “low-latency” connection-oriented approaches compared to slower message-

based anonymity systems[42], they still exhibit non-trivial overhead and noticeable

delay (as we will discuss in later sections).

There also exist several privacy-preserving peer-to-peer networks. Freenet[14] is a

distributed data store providing strong degree of anonymity and censorship-resistance,

albeit with noticeable overhead. OneSwarm[28] leverages social networking and flex-

ible permissions to offer a low-cost privacy option for P2P file sharing.

4

The BLIND framework[49] provides location privacy in IP networks through the use

of public key endpoint identifiers and NAT-based forwarding agents.

There are several approaches that use the idea of a location-independent identifier.

Mobile IP[38] was designed to allow users to communicate with a global identifier

when changing network locations, through the use of “home” and “foreign” agents

that store information about location-based addresses and redirect packets through

IP tunnels. The Host Identity Protocol[34] was designed to separate the end-point

identifier and location roles of IP addresses. Existing between the internetworking

and transport layers, the HIP architecture is intended to decouple internetworking

from the higher layers and replace all references to IP addresses within applications.

Similarly, the Locator Identifier Separation Protocol (LISP)[31] separates endpoint

identifies (EIDs) from routing locators (RLOCs). Endpoints address destinations

via their EID, while the LISP border routers handle the network lookup and either

encapsulate or rewrite the packet destination to the corresponding RLOC. While

HIP approaches the issue by modifying the endstation, LISP uses a network-based

location/identity split that we integrate into our design.

Molina-Jiménez and Marshall[32] proposed an approach that assigned temporary,

random, IP and MAC addresses to users requiring anonymity on the Internet. Simi-

larly in wireless LANs, Gruteser et al.[24] presented a mechanism to enhance location

privacy through the use of disposable interface identifiers. We expand on these ideas

in our system to provide clients with temporary identifiers that are linked to specific

flows.

Just as traditional telephone companies are able to provide “caller-ID blocking” as

an additional service to their customers, ISP’s should be able to offer a service that

automatically hides the IPs of their users without modification at the client-side.

The Address Hiding Protocol (AHP)[39] by Raghavan et al attempts to do this.

The mechanism is similar to the design of CPP[48], a system that encrypts IPv6

address to provide location privacy. AHP requires specially designed gateways that

use time-based keys to keep in sync. This can cause collisions in cases of long-lived

flows, and requires a somewhat involved design for handling multiple ingress/egress

5

Software

 Control

 Traditional Network

(with distributed control and middleboxes)

 Software-Defined Network

 (with decoupled control)

Figure 1: The SDN architecture decouples control logic from the forwarding hard-
ware, and enables the consolidation of middleboxes, simpler policy management,
and new functionalities.

points. We agree with the high-level goals of AHP, and hope to show how they

can be more easily implemented and deployed using a software-defined networking

approach.

2.2 Software-Defined Networking

An important enabling technology for our work is the emerging field of Software-

Defined Networking (SDN). In this section, we will describe SDN and the problem

it attempts to solve. We look at the history of SDN, from early ideas through

recent developments, with a large focus on the OpenFlow[29] standard. We examine

implications to other fields, and attempt to look at the future.

Software-Defined Networking was developed to facilitate rapid innovation and enable

simple programmatic control of the network datapath. As visualized in Figure 1,

the separation of the forwarding hardware from the control logic allows easier de-

ployment of new protocols and applications, straightforward network visualization

and management, and consolidation of various middleboxes into software control.

Instead of enforcing policies and running protocols on a convolution of scattered

devices, the network is reduced to “simple” forwarding hardware and the decision-

making network controller(s). The forwarding hardware consists of (1) a flow table

containing an entry and an action to take on active flows; and (2) an abstraction

layer that securely communicates with a controller about new entries that are not

6

currently on the flow table.

The decoupled system has been compared to an operating system[25], in which the

controller provides a programmatic interface to the network, where applications can

be written to perform management tasks and offer new functionalities. A layered

view of this model can be viewed in Figure 2. This view assumes the control is

centralized and applications are written as if the network is a single system. While

this simplifies policy enforcement and management tasks, the bindings must be

closely maintained between the control and the network forwarding elements.

One concern with the reactive centralized control model proposed by OpenFlow is

scalability. Preliminary results by the OpenFlow developers show that a “controller

based on a low-cost desktop PC could process over 10,000 new flows per second

enough for a large college campus”[29]. Furthermore, any delay is only incurred

by new flows - existing connections in the flow table are processed at line rate in

the forwarding hardware. Nevertheless, the above model still exhibits scalability

limitations and motivated proactive approaches, such as DIFANE[50], that push

rules from the controller to a hierarchy of switches, such that the controller rarely

needs to be consulted about new flows and traffic is kept in the data-plane. In their

experiments, the DIFANE model reduces the added delay of the first packet from

10ms to under 1ms, while increasing the throughput a switch was able to handle

from 20k flows/sec to 75k flows/sec[50].

SDN has been a recent focus of academia and industry, especially the recently formed

Open Networking Foundation (ONF), the standardization body behind the Open-

Flow protocol [29]. While the current efforts behind ONF have received the greatest

attention, it is worth noting that the idea of programmable switches and decoupled

control logic has been around for many years.

Some of the earliest ideas of programmable networks came out of the active networking[45,

46] research of the 1990s. The two main approaches involved (1) user-programmable

switches, with in-band data transfer and out-of-band management channels; (2) cap-

sules, in which every message sent by a user contained a program fragment which was

interpreted by the routers. Despite a large amount of research attention, the active

7

Network OS

Applications

Secure

Channel

Decoupled

Control Logic

SWITCH

Flow Table

Abstraction Layer

Figure 2: The separated control logic can be viewed as a network operating system,
upon which applications can be built to “program” the network.

networking approach never transferred to widespread industry deployment, possibly

due to practicality concerns over the security and performance of early protocols[33].

In contrast, the SDN approach taken by the Open Networking Foundation has not

focused on user control of the network and has had industry involvement from the

start.

A more recent idea of giving control mechanisms a global view of the network was

proposed by the 4D project[40, 23, 11], which separated decision logic from protocols

governing interaction between network elements.

The immediate predecessor to OpenFlow was Ethane[13], a network-policy con-

troller. The idea of using a single, centralized controller to manage policy and

security evolved into the broader concept of software-defined networking. To put

Ethane in the context of OpenFlow today, the policy and security rules would likely

be implemented as an application on top of a controller/“network operating system”

such as NOX[25], Maestro[12], Beacon[5], SNAC, Helios, BigSwitch, etc.

An interesting type of proxy controller, called Flowvisor[43], can be used to add a

level of network virtualization to OpenFlow networks and allow multiple controllers

to manage the same set of physical switches. Initially developed to allow experi-

mental research to be conducted on deployed networks alongside production traffic,

8

it also facilitates and demonstrates the easy of deploying new services in SDN envi-

ronments.

The applications of software-defined networks are quite broad, ranging everywhere

from high performance data-centers[15, 26], to improving wireless mesh network

hand-offs[16]. An area of future research we have been exploring is the use of SDN

techniques in multi-hop wireless and infrastructure-less networks. To-date, current

solutions have targeted infrastructure networks and are unsuited to disruption due

to their centralized nature. We hope to adapt the flexibility, programmability, and

control offered by SDN to environments that are inherently prone to delay and

disruption. For the remainder of this thesis, we will focus on how the SDN paradigm

can be applied to solve the issue of network privacy.

9

3 Model and Goals

In this section, we define the usability and threat model that is addressed in this

thesis, and set design goals that we believe a privacy service should meet. We start

by briefly surveying web usability work to determine user-tolerance for delay.

3.1 Web Usability

Web usability studies[7, 21, 35, 41] have generally agreed that the tolerable waiting

time for a page load peaks at roughly 5-8 seconds without feedback. Addition-

ally, long page loads negatively affect user satisfaction and perceived service quality.

When using an anonymity system, a user’s conceptual model[8], which affects QoS

tolerance, may allow for a higher page load times and delay if the user expects an

overhead for the secure environment. Nevertheless, a recent usability study[19] of

Tor found that the expected Web user cancellation rate was 6 times greater, indi-

cating high degree of user dissatisfaction and frustration. DNS requests in Tor were

40 times slower than direct connections. Although anonymity solutions such as Tor

still have their applications, we argue that lower-latency approaches may have an

important role both as stand-alone services as well as building blocks for applications

that require endpoint anonymity.

Beyond the performance aspect, we are motivated by the observations of Dingledine

and Mathewson[17]. The privacy service must be usable, even by users who are

less familiar with technology. Futhermore, a larger anonymity set has the potential

to provide better privacy. Expanding on this idea, as AHP[39] did, we believe a

network-centric service enabled by network providers would reduce client misconfig-

urations and user confusion while increasing endpoint privacy.

3.2 Threat Model

Before describing our design goals, we briefly overview the threat model we employ.

Unlike systems that wish to offer full anonymity, we place a measure of trust in

the managed network provider and the network privacy service. In our work, the

main “adversary” is the other endpoint. To a lesser extent, we also wish to hide

10

information from third-party switches outside the managed network when traffic

crosses the Internet.

In the network today, an intrusive endpoint may attempt to track user behavior

based on the IP address of the connection. By correlating network logs with user

actions, the “anonymity” that many users believe is implicit on the Internet is de-

stroyed as usage patterns such as when the user connects, how often, to what services,

etc. can be extracted. Furthermore, the proliferation of services such as WHOIS and

IP geolocation allows third-party providers to learn a great deal about the location

and possibly the real identity of the user. Besides passively monitoring user activity,

active attacks may take place based on the information gleaned from IP address,

where user experience may be altered or user access may even be blocked. While it

is possible that user profiling may be used for a benign purpose, they can also lead

to censorship or gross violations of user privacy. Our ideal privacy service attempts

to decouple network identifiers from location and identity in order to provide users

with truly free and universal Internet experience.

One final threat that should be noted is the “adversary within”. As with any promise

of privacy, it is possible that some users may abuse the service to attack others or

perform illegal actions. While the managed nature of a service may easily allow

privileges to be revoked, care must be taken lest the service itself becomes the main

adversary to privacy.

3.3 Design Goals

We believe privacy services should protect users from endpoint logging at the least,

while minimizing performance impact. Below, we list the main design goals for a

lightweight privacy service:

• Endpoint privacy – the other endpoints should not be able to track source

endpoint behavior or location based on the address they receive.

• Minimal performance impact – the privacy service should have minimal impact

on the user’s perceived latency when accessing Internet-based services.

• Network-based design – the privacy service should require minimal change to

11

the endpoints, and strive to eliminate user confusion and misconfiguration.

• Disposable identifiers – the privacy service should be able to provide dynamic,

on-demand identifiers and therefore prevent the other endpoint from tracking

behavior or launching attacks on the host’s network address.

We should also point out that we do not try to address the following issues:

• Data security – in an orthogonal approach, applications are allowed to enforce

their desired level of protection from eavesdropping and tampering through

data encryption at the application layer. Likewise, we leave it to the users to

select applications that are privacy-aware and will not leak identity information

to the other endpoint.

• Steganography – a high-performance, lightweight service cannot attempt to

achieve unobservability, such that a third-party is unable to tell that a message

exists. A user may attempt to do so in parallel, perhaps by hiding messages

within other data, such as digital media[27, 10].

• Complete anonymity – as previously highlighted, we assume that network

providers are trusted entities and require their cooperation in concealing end-

user identity. If a user intends to access restricted content or perform illicit

actions in their jursidiction, a stronger level of anonymity should be pursued.

12

4 Approaches to Web Privacy

In this section, we will examine the architecture and operation of several web privacy

approaches, including our own AnonyFlow [30].

4.1 Traditional

We first look at several “common” privacy services that apply to the threat model

listed above and are familiar to one of ordinary skill in computer networks. Although

some of the services were not originally designed to address the concern of user

privacy, they have been deployed and used for those purposes today.

Network Address Translation (NAT)

Network Address Translation (NAT)[44] simply refers to the process of modifying

the address information of in-transit packets based on pre-defined rules, usually to go

from one address space to another, e.g., when interconnecting networks. There are

many different variations on NAT, some of which are more suited to endpoint privacy

and security than others, e.g., port address translation (PAT) dynamically allocates

a network and port address to a flow, whereas static NAT allows the permanent

allocation of a one-to-one address assignment for a host. As a tool, NAT has long

been used to “masquerade” a private network behind a limited pool of global IP

addresses, for the purposes of preserving the limited address space and providing

some measure of privacy and security.

Anonymizing Web Proxy

Proxy servers have long been used for many purposes, including anonymization[9].

An anonymizing proxy will simply send a request on behalf of a client to a server

and return the response; most importantly, it will allow the server to believe that

the request originated at the proxy. Beyond the performance associated with using a

proxy, the user must trust the proxy server to not eavesdrop or modify unencrypted

application data.

13

Tor Onion Routing

Onion routing[22, 18], takes the ideas of anonymizing proxy servers to the next level,

and attempts to hide the client from even the proxy. Basically, proxies are chained

together and packets are encrypted such that each proxy only has knowledge about

the next and previous hop; therefore, no single proxy is aware if the previous hop was

the true message source. While this provides a high level of security, the overhead

associated with encrypting/decrypting the data multiple times and visiting multiple

proxies can slow down performance significantly. Additionally, full data encryption

is not provided unless supported at the application layer, as traffic that exits the

Tor network is unencrypted, leaving the exit proxy aware of the message contents

and the ultimate destination.

Virtual Private Network (VPN)

VPNs[4] have long been used to provide a user remote access to an organizational

network, but have been increasingly used to bypass censorship and act as secure

proxies in recent years. There are many implementations of secure VPNs, but they

all typically require authentication and will encrypt traffic between the remote host

and the private provider network; traffic within the provider network or destined

for outside endpoints may not be encrypted. Although VPNs may obfuscate traffic

details from the network provider of the remote endpoint, the user shifts his trust

to the VPN provider.

4.2 AnonyFlow

We designed our service to reflect the goals defined in Section 3. We will explain

the architecture and operation of AnonyFlow , and introduce our implementation.

4.2.1 Architecture

AnonyFlow is designed to provide endpoint privacy by concealing the source iden-

tifier from the other side of the connection. Additionally, the in-network based ap-

proach allows a level of accountability that can be used to revoke access to malicious

14

users.

Identifiers

Before presenting AnonyFlow ’s architectural components and operation, we describe

the different identifiers AnonyFlow employs to represent users. Note that we discuss

our work in the context of a global deployment, but our work is equally applicable

if we operate on Layer 2 identifiers within a local network.

• Machine IP address – the address assigned to the machine, and what would

normally be seen by the other endpoint if AnonyFlow is disabled. When

using AnonyFlow , it is rewritten as soon as possible to another form, and only

changed back when delivering messages back to the machine.

• AnonID – the identifier that the other endpoint receives as it provides no

information of the location or identity of the machine. They may be used on a

temporary basis and discarded at the end of a flow; alternatively, it can be used

as a more permanent identifier for a service that wishes to remain anonymous.

• Network IP address – this address is routable back to the managed network of

the machine, and is necessary for traversing the Internet. It is associated with

a given AnonID and can be changed on demand.

Components

Each managed network participating in the AnonyFlow service can be thought of as a

local domain. The AnonyFlow service itself consists of a local and global component.

At the border of each local domain, AnonIDs must be translated to an identifier (e.g.,

IP address) that would allow flows to traverse intermediate routers.

• AnonyFlow conduit – consults with the local AnonyFlow service, rewrites IP

addresses to/from AnonIDs, and forwards resulting packets towards destina-

tion.

• Local AnonyFlow service – handles user join/leave and local mappings, and

communicates with global service.

15

• Global AnonyFlow service – handles network lookup for AnonIDs outside local

managed network.

Example Operation

InternetManaged Network N1 Managed Network N2
A

B

C

D

AnonID <-> Machine IP Address
AnonID <-> Internet Routable Address

N1 Local AnonyFlow Service

AnonID <-> Machine IP Address
AnonID <-> Internet Routable Address

N2 Local AnonyFlow Service

AnonID <-> Internet Routable Address
Global AnonyFlow Service

Entity AnonID Network IP Machine IP

A 1 11.11.X.X 11.11.0.1

B 2 11.11.X.X 11.11.0.2

C - 12.12.0.1 12.12.0.1

D 3 13.13.X.X 13.13.0.1

Figure 3: Example of AnonyFlow ’s Operation.

We use the scenario depicted in Figure 3 to illustrate AnonyFlow ’s operation and

examine the series of events that occur when host A opens a connection to the hidden

service on host B. First, A sends a packet with source ‘11.11.0.1’ and destination

‘2’ that will pass through the AnonyFlow conduit on network N1. The conduit will

consult with the AnonyFlow ’s local service of N1 for the first packet of the flow.

The local service determines that the source address is associated with AnonID ‘1’,

and the destination AnonID ‘2’ is within the same network. The conduit will then

rewrite the source address to ‘1’ and the destination to ‘11.11.0.2’ and set up rules

to forward the flow to the destination.

If the destination AnonID is in another network, for instance, when host A com-

municates with host D, there are a few more steps. The local service must do a

global lookup of the destination AnonID to determine an address routable to the

destination network. It must also assign a routable address to the source, in a man-

ner similar to NAT. Finally, when the flow arrives at a conduit in the destination

network, it will rewrite the source address to AnonID ‘1’ and the destination to the

16

Entity AnonID Network IP Machine IP

B X

C X

D X

N1 Service X X X

N2 Service X X

Global Service X X

Table 1: Identifiers of host A as observed by other agents.

machine address of D.

In the final case of the destination being outside the AnonyFlow namespace, such

as when host A communicates with host C, our system resembles a traditional yet

more flexible NAT service. The conduit rewrites the source address with an address

routable to the source network so that the destination is able to trace the message

directly back to the source network.

In Table 1, we summarize the identifiers of host A that each network entity is able

to observe when host A communicates with host B, C, and D.

4.2.2 Implementation

Although there are a number of ways to enable AnonyFlow in a managed network, we

use the OpenFlow platform in our reference implementation. OpenFlow provides the

means for rapid deployment and execution of network services by enabling a remote

controller to modify the behavior of switches and routers. By providing direct access

to the switch flow table, the OpenFlow API allows services to achieve custom routing

and packet processing.

In our OpenFlow implementation, each local AnonyFlow domain consists of a net-

work managed by a single OpenFlow controller. AnonyFlow conduits correspond to

OpenFlow-enabled switches, while the local AnonyFlow service is integrated with

the OpenFlow controller. AnonyFlow ’s global service exists outside of the OpenFlow

infrastructure as a directory service.

17

5 Evaluation

5.1 Performance

First, we demonstrate the performance of existing privacy approaches identified in

the previous section in a series of web measurements; we believe the results illustrate

the opportunity that can be addressed by a lightweight approach such as AnonyFlow .

We then evaluate the performance of AnonyFlow along with several of the common

approaches on a network testbed with OpenFlow switches.

5.1.1 Web Measurements

We measured the performance of existing privacy options, including web proxies and

Tor onion routing, and found most to exhibit a significant performance overhead,

which caused response times to stress or exceed recommendations from the web

usability studies. We conducted these measurements over a period of several weeks

in the Deutsche Telekom Los Altos Laboratory, comparing to a base;ome of non-

anonymized networking. The proxy measurements use a list of commercial web

proxies, while the VPN measurements use the UC Santa Cruz VPN. When setting

up Tor circuits, we picked 3 random relays from around the world for each new

connection.

0

2

4

6

8

10

12

14

16

18

BASE-Los Altos PROXY TOR

Se
co

nd
s

Web Request - wikipedia.org

Figure 4: Webpage load time using common privacy tools.

In Figure 4, we measure the time it takes to load the front page of wikipedia.org.

As may be expected, the actual performance of the privacy options depended on the

18

Figure 5: File download time using common privacy tools.

Figure 6: TCP throughput using common privacy tools.

load and location of the relays in relation to the endpoints. On average, proxies had

a response time more than 4 times slower than a direct connection, while Tor circuits

were more than 10 times slower. Furthermore, the Tor results fell outside what would

commonly be considered tolerable waiting times for a regular web service.

In Figure 5, we looked at the download time of a 6330 Kilobyte file from UCSC to

the Los Altos laboratory with Tor and the UCSC VPN. As expected, Tor was about

10 times slower on average. Despite the fact that the VPN provider was located on

the same network as the file server, the VPN connection was 10% slower on average

than the direct connection. Although the difference is small when compared to Tor,

it is not insignificant; performance would be expected to degrade further depending

on the distance from the endpoints to the VPN provider.

Finally, we compared TCP throughput between UCSC and Los Altos using iperf in

Figure 6. Much like the file download, the VPN throughput was about 10% less

than a direct connection on average, while the Tor throughput was much lower.

19

5.1.2 Testbed Measurements

To evaluate the performance of AnonyFlow ’s OpenFlow-based implementation, we

deploy it in a real network testbed with OpenFlow switches. We focus on IP identifier

anonymization through header rewriting. This section describes our deployment and

compares the performance of AnonyFlow with other related approaches.

Testbed

Figure 7: Lab network used to emulate a wide-area OpenFlow-enabled network. The
NetFPGA-based OpenFlow switches at the edge take care of the required header
rewriting actions.

As shown in Figure 7, the testbed has two logical sub-networks interconnected by a

Linux bridge that runs the netem toolkit so as to emulate a wide-area network [2].

Each subnetwork consists of two commercial OpenFlow-enabled switches and two

NetFPGA[36]-based OpenFlow switches, all of which are controlled by a remote

NOX[25]-based AnonyFlow controller. This testbed provides two main features:

• Header re-writing capability, which allows re-writing the IP fields (i.e., src

IP or dst IP or both) of all packets at line-rate, in the edge switches (i.e.,

NetFPGA-based one).

• TCP file transfer time characterization over a wide-area network with varying

end-to-end round trip times.

20

Results

In Figure 4 we presented the latency characterization of common privacy-preserving

tools. AnonyFlow ’s performance is almost the same as the base case because the

anonymization is done by an en-route switch. This happens at line speed and does

not incur additional delays.

0.31

67.50 67.80

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Tor AnonyFlow Base - No Privacy

M
eg

ab
its

/S
ec

TCP Throughput (LAN) AVG

Figure 8: TCP Throughput (iperf) between two hosts in our testbed.

0.31

57.30
64.20

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Tor AnonyFlow Base - No Privacy

M
eg

ab
its

/S
ec

TCP Throughput (100ms)

Figure 9: TCP Throughput (iperf) between two hosts with emulated 100ms delay.

In Figures 8 and 9 we present the TCP throughput characterization performed over

the testbed shown in Figure 7. In this characterization, we ran iperf[1] between

the two hosts (Host 1 and 2 in Figure 7) multiple times, with each run lasting 25

seconds. The mean, min and max values are shown in the two figures; the mean is

denoted by a ’x’ marker, and the vertical line around the mean value represents the

min to max range. In Figure 8, we observe that AnonyFlow does not experience

21

a throughput deterioration, while Tor achieves throughput that is a few orders of

magnitude lower than the direct route. This is because Tor uses additional relay

hops in the Internet without much guarantees on performance. We, then, add a

100ms delay, so as to emulate a wide-area network, between the 2 hosts and plot the

performance in Figure 9, the same Tor results were used in Figure 9 because Tor

traffic already goes over the real Internet. AnonyFlow experienced a 10.75% decrease

in throughput. Thus, in the wide-area case, AnonyFlow provides a good tradeoff

between performance (as measured by latency and throughput) and flexibility.

5.2 Security

In this section, we examine possible attacks on users and on the privacy service itself.

In general, as specified in our design goals, we expect the privacy service to protect

against a single passive adversary and not more exhaustive global attacks.

Passive attacks

• Network address tracking – a static IP address allows users to be tracked, and

may also leak information about identity and location.

NAT may hide your identity if the other user is on a different network, but

will usually disclose enough information to locate the user’s home network

and does not typically offer control over the length of time a particular

address is used or for which flows it would be used.

An anonymizing proxy may obsfuscate your activity from the opposite user,

but it requires trust in an additional third-party. When using a partic-

ular proxy, a user will also always be associated with the proxy address;

therefore, traffic is easily traced back to the proxy, and the user may be

blocked by the other endpoint due to the behavior of other proxy users.

On the other hand, if the user is the only proxy user to regularly com-

municate with the other endpoint, then the adversary would still be able

to track user behavior based on the proxy address.

VPN services have similar drawbacks to proxies and NAT.

22

Tor offers a good amount of anonymity, provided the user correctly configures

the system and avoids applications that send unencrypted identifying

information. Third-party adversaries have been known to act as Tor exit

routers and either sniff the unencrypted traffic or inject malicious scripts

aimed at disclosing identity. In addition, just as with proxies, traffic from

Tor exit routers have been known to be blocked by endpoints due to

unregulated behavior by other Tor users.

AnonyFlow makes it difficult to track behavior by using disposable, on-

demand, flow-based identifiers when talking to endpoints within domains;

otherwise, temporary IP addresses are assigned when communicating with

traditional Web servers.

• Timing correlation – in some cases, the adversary can learn information by ob-

serving packet inter-arrival times. Unlike high-latency anonymity systems that

introduce delays or alter the timing characteristics of a connection, none of the

systems we examine try to hide timing information. Additionally, AnonyFlow

attempts to maximize performance by sending messages using the most effi-

cient routing path which is provided by the underlying network routing service.

• Content analysis – packet payloads may contain identifying information. We

leave it to the user to select applications that provide data privacy. None of

the services we examine provide full end-to-end encryption, with the exception

of Tor in the case that the other endpoint is a hidden service.

Active attacks

• Direct attacks on identifiers – adversaries may attempt to launch a denial of

service attack on the provided address or port scan for vulnerabilities on the

user machine.

NAT - depending on the type and setup, NAT may or may not prevent other

hosts from attacking the host machine using the global address provided

by NAT.

23

An anonymizing proxy will usually prevent the opposite endpoint from

contacting you.

VPN services are usually not designed to prevent communication, and may

not stop an adversary.

Tor offers a good level of protection, provided the user correctly configures

the system. A potential downside is that your real network address is

disclosed to other Tor routers, which may be third-party adversaries.

AnonyFlow - the use of temporary, flow-based “AnonIDs” offers a good

level of protection and indirection to endpoints as it is not possible to

communicate with an identifier after it has been released or expired.

• Denial of service on service – an adversary may attempt to overwhelm a pri-

vacy service with false requests.

NAT - depending on the type and setup, NAT may or may not prevent other

hosts from attacking the host machine using the global address provided

by NAT.

An anonymizing proxy is vulnerable to DoS attacks.

VPN services are vulnerable to some extent.

Tor routers, which individually owned and operated PCs with routing soft-

ware, may be as vulnerable to DoS attacks as any other endpoint; with

the exception that their addresses are made publically available when

participating in Tor routing service.

AnonyFlow - This may be dealt with on-the-fly by pushing rules that dump

excessive flows from offenders at the nearest conduit.

• Router subversion – though not part of the threat model we presented, it is

possible that an intermediate router may be subverted into provided some

information to the adversary.

NAT - if the router is behind the NAT, it can disclose the true source of

the message. Of course, a compromised NAT device can fully disclose all

information.

24

An anonymizing proxy - if the router is between the proxy and the source,

then it can disclose the true source to the adversary. As with NAT, a

compromised proxy can fully disclose all information.

Tor is designed to prevent any one router from learning the message source;

however, a compromised exit router may disclose message contents to an

adversary.

AnonyFlow - if an intermediate router is compromised by the adversary,

they may learn information about the hidden endpoint. In the worst case,

the protection offered degenerates to a simple network address transla-

tion (NAT) service. If an Internet router is subverted it can provide

information about the source and destination networks (though not the

actual machines). Likewise, if a local privacy service colludes with the

adversary, it can provide full information about local mappings but only

the source network of other identifiers. To protect against subversion of

switches within domains, we require authentication and use encrypted

communication between switches and the privacy service.

• Man-in-the-middle – if an attacker is able to fully compromise a router, then

they are able to listen and inject into the communication between two end-

points. Most of the approaches we examined do not provide any native data

encryption when transporting flows; Tor and VPN are two exceptions, but

even then the protection does not cover end-to-end if an application uses un-

encrypted data. If an intermediate router is compromised by the adversary,

they may view and/or modify the content of the payload; it is left to the user

to select applications that offer data privacy and integrity.

• Governmental authority – In most cases, endpoint privacy is provided within

the network infrastructure rather than at the endpoints; therefore, it is subject

to disclosure and/or shutdown by entities with authority over that infrastruc-

ture. As such, it is well suited to protecting the identity of users with legitimate

activities but ill-advised for criminals or users living under oppressive regimes.

A notable exception is Tor, which attempts to hide identity information from

25

the routers themselves.

Feature Comparison

In this thesis we presented AnonyFlow , an in-network endpoint anonymization ser-

vice designed to provide privacy to users. Through experiments on a real network

testbed, we show that our proof-of-concept OpenFlow-based prototype of AnonyFlow

significantly outperforms Tor [3], an Onion Routing-based approach, and delivers

similar performance when compared to non-anonymized network access, while pro-

viding more features than the other schemes (as summarized in Table 2).

Features NAT Proxy Tor AnonyFlow

Hide source from opposite endpoint X X X X

Hide source from relays X

Change identifier on-demand X X

L2 or Intra-domain anonymization X X

Provide hidden services X X

Optimal routing X X

Table 2: Feature comparision of 3 anonymization techniques.

26

6 Concluding Remarks

Internet privacy is a growing area of user trepidation, yet for many, a controlled

disclosure of information would suffice over full anonymity. In this case, a service

offered by the network provider would offer a simple and low-impact solution to

maintain privacy while communicating with other endpoints.

The advent of software-defined networking (SDN), which creates a separation be-

tween control decisions and routing hardware, provides an opportunity for network

service providers to rapidly deploy new protocols and services that would previously

have required specialized middle boxes and complex synchronization.

Our solution, AnonyFlow , offers a lightweight endpoint privacy service with minimal

performance impact.

Directions for future work include:

• Scalability – currently, AnonyFlow ’s global mapping service that maps Anon-

IDs to networks is implemented using a centralized architecture. As the num-

ber of users and domains grow, a distributed service would reduce possible

bottlenecks.

• Increased privacy on the existing Internet – the decision to follow the best

routing path also reduces the protection offered when visiting endpoints outside

AnonyFlow domains to the level offered by NAT solutions today. To better

hide information about the “source” network, it may be sensible to route traffic

through additional proxy domain(s).

• Increased access to hidden services from the existing Internet – currently, only

users from within AnonyFlow domains are able to access hidden services offered

by other AnonyFlow users. In the future, a proxy mechanism should be devel-

oped that allows outside users to utilize these services, much like tor2web[47]

enables access to hidden services on the Tor network.

• Placement – it suffices to place OpenFlow switches with header rewriting ca-

pability in only a few strategic locations of the network. We plan to further

investigate this option, which allows incremental deployment.

27

References

[1] iperf tool. http://iperf.sourceforge.net.

[2] Netem tool. http://www.linuxfoundation.org/collaborate/workgroups/

networking/netem.

[3] Tor anonymity network. http://www.torproject.org.

[4] L. Andersson and T. Madsen. Provider Provisioned Virtual Private Network

(VPN) Terminology. RFC 4026 (Informational), March 2005.

[5] Beacon. http://beaconcontroller.net/.

[6] O. Berthold, H. Federrath, and S. Kopsell. Web mixes: A system for anonymous

and unobservable internet access. In Designing Privacy Enhancing Technologies,

pages 115–129. Springer, 2001.

[7] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived quality into

web server design. Computer Networks, 33(1):1–16, 2000.

[8] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in the eye of the beholder:

meeting users’ requirements for internet quality of service. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 297–

304. ACM, 2000.

[9] J. Boyan. The anonymizer. CMC Magazine, 1997.

[10] S. Burnett, N. Feamster, and S. Vempala. Chipping away at censorship fire-

walls with user-generated content. In Proc. 19th USENIX Security Symposium,

Washington, DC, 2010.

[11] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and implementation of a routing control platform. In Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 15–28. USENIX Association, 2005.

28

http://iperf.sourceforge.net
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.torproject.org
http://beaconcontroller.net/

[12] Z. Cai, AL Cox, and TSE Ng. Maestro: A system for scalable openflow control.

Technical Report TR10-08, Rice University, December 2010.

[13] M. Casado, M.J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: Taking control of the enterprise. ACM SIGCOMM Computer Com-

munication Review, 37(4):1–12, 2007.

[14] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anony-

mous information storage and retrieval system. In Designing Privacy Enhancing

Technologies, pages 46–66. Springer, 2001.

[15] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee. Devoflow: Scaling flow management for high-performance net-

works. In ACM SIGCOMM, 2011.

[16] P. Dely, A. Kassler, and N. Bayer. Openflow for wireless mesh networks. In

Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th

International Conference on, pages 1–6. IEEE, 2011.

[17] R. Dingledine and N. Mathewson. Anonymity loves company: Usability and

the network effect. In Proceedings of the Fifth Workshop on the Economics of

Information Security (WEIS 2006), Cambridge, UK, June, 2006.

[18] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In Proceedings of the 13th conference on USENIX Security

Symposium-Volume 13, pages 21–21. USENIX Association, 2004.

[19] B. Fabian, F. Goertz, S. Kunz, S. Müller, and M. Nitzsche. Privately waiting–a

usability analysis of the tor anonymity network. Sustainable e-Business Man-

agement, pages 63–75, 2010.

[20] M.J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network

layer. In Proceedings of the 9th ACM Conference on Computer and Communi-

cations Security, pages 193–206. ACM, 2002.

29

[21] D.F. Galletta. Web site delays: How tolerant are users? PhD thesis, Citeseer,

2002.

[22] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Communications of

the ACM, 42(2):39–41, 1999.

[23] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang. A clean slate 4d approach to network con-

trol and management. ACM SIGCOMM Computer Communication Review,

35(5):41–54, 2005.

[24] M. Gruteser and D. Grunwald. Enhancing location privacy in wireless lan

through disposable interface identifiers: a quantitative analysis. Mobile Net-

works and Applications, 10(3):315–325, 2005.

[25] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. Nox: towards an operating system for networks. ACM SIGCOMM

Computer Communication Review, 38(3):105–110, 2008.

[26] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Baner-

jee, and N. McKeown. Elastictree: Saving energy in data center networks. In

Proceedings of the 7th USENIX conference on Networked systems design and

implementation, pages 17–17. USENIX Association, 2010.

[27] T.S. Heydt-Benjamin, A. Serjantov, and B. Defend. Nonesuch: a mix net-

work with sender unobservability. In Proceedings of the 5th ACM workshop on

Privacy in electronic society, pages 1–8. ACM, 2006.

[28] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-preserving

P2P data sharing with OneSwarm. ACM SIGCOMM Computer Communica-

tion Review, 40(4):111–122, 2010.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74,

2008.

30

[30] Marc Mendonca, Srini Seetharaman, and Katia Obraczka. A flexible in-network

ip anonymization service. In the IEEE ICC Workshop on Software Defined

Networks, June 2012.

[31] David Meyer. The locator identifier separation protocol (lisp). The Internet

Protocol Journal, 11(1):23–36, March 2008.

[32] C. Molina-Jiménez and L. Marshall. True anonymity without mixes. In wiapp,

page 32. Published by the IEEE Computer Society, 2001.

[33] J.T. Moore and S.M. Nettles. Towards practical programmable packets. In Pro-

ceedings of the 20th Conference on Computer Communications (INFOCOM).

Citeseer, 2001.

[34] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture.

RFC 4423 (Informational), May 2006.

[35] F.F.H. Nah. A study on tolerable waiting time: how long are web users willing

to wait? Behaviour & Information Technology, 23(3):153–163, 2004.

[36] Netfpga platform. http://netfpga.org.

[37] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and

packet trace anonymization. SIGCOMM Comput. Commun. Rev., 36:29–38,

January 2006.

[38] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed

Standard), November 2010.

[39] B. Raghavan, T. Kohno, A. Snoeren, and D. Wetherall. Enlisting isps to im-

prove online privacy: Ip address mixing by default. In Privacy Enhancing

Technologies, pages 143–163. Springer, 2009.

[40] J. Rexford, A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, G. Xie,

J. Zhan, and H. Zhang. Network-wide decision making: Toward a wafer-thin

control plane. In Proc. HotNets, pages 59–64. Citeseer, 2004.

31

http://netfpga.org

[41] P.R. Selvidge, B.S. Chaparro, and G.T. Bender. The world wide wait: effects

of delays on user performance. International Journal of Industrial Ergonomics,

29(1):15–20, 2002.

[42] A. Serjantov and P. Sewell. Passive attack analysis for connection-based

anonymity systems. Computer Security–ESORICS 2003, pages 116–131, 2003.

[43] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.Y.

Huang, P. Kazemian, M. Kobayashi, J. Naous, et al. Carving research slices

out of your production networks with openflow. ACM SIGCOMM Computer

Communication Review, 40(1):129–130, 2010.

[44] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Tra-

ditional NAT). RFC 3022 (Informational), January 2001.

[45] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and G.J. Min-

den. A survey of active network research. Communications Magazine, IEEE,

35(1):80–86, 1997.

[46] D.L. Tennenhouse and D.J. Wetherall. Towards an active network architecture.

In DARPA Active NEtworks Conference and Exposition, 2002. Proceedings,

pages 2–15. IEEE, 2002.

[47] Tor2Web. http://tor2web.org/.

[48] J. Trostle, H. Matsuoka, M.M.B. Tariq, J. Kempf, T. Kawahara, and R. Jain.

Cryptographically protected prefixes for location privacy in ipv6. In Privacy

Enhancing Technologies, pages 142–166. Springer, 2005.

[49] J. Ylitalo and P. Nikander. Blind: A complete identity protection framework

for end-points. In Security Protocols, pages 163–176. Springer, 2006.

[50] M. Yu, J. Rexford, M.J. Freedman, and J. Wang. Scalable flow-based network-

ing with difane. In Proceedings of the ACM SIGCOMM 2010 conference on

SIGCOMM, pages 351–362. ACM, 2010.

32

http://tor2web.org/

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	Network Privacy
	Software-Defined Networking

	Model and Goals
	Web Usability
	Threat Model
	Design Goals

	Approaches to Web Privacy
	Traditional
	AnonyFlow
	Architecture
	Implementation

	Evaluation
	Performance
	Web Measurements
	Testbed Measurements

	Security

	Concluding Remarks
	References

