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Detection and Signal Processing for Near-Field Nanoscale
Fourier Transform Infrared Spectroscopy

Jonathan M. Larson,* Hans A. Bechtel,* and Robert Kostecki*

Researchers from a broad spectrum of scientific and engineering disciplines are
increasingly using scattering-type near-field infrared spectroscopic techniques
to characterize materials non-destructively with nanoscale spatial resolution.
However, a sub-optimal understanding of a technique’s implementation can
complicate data interpretation and act as a barrier to entering the field. Here
the key detection and processing steps involved in producing scattering-type
near-field nanoscale Fourier transform infrared spectra (nano-FTIR) are
outlined. The self-contained mathematical and experimental work derives and
explains: i) how normalized complex-valued nano-FTIR spectra are generated,
ii) why the real and imaginary components of spectra qualitatively relate to
dispersion and absorption respectively, iii) a new and generally valid equation
for spectra which can be used as a springboard for additional modeling of the
scattering processes, and iv) an algebraic expression that can be used to extract
an approximation to the sample’s local extinction coefficient from nano-FTIR.
The algebraic model for weak oscillators is validated with nano-FTIR
and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra
on samples of polystyrene and Kapton and further provides a pedagogical
pathway to cementing some of the technique’s key qualitative attributes.

1. Introduction

For at least half a century, Fourier transform infrared spec-
troscopy (FTIR) has been regarded as a gold standard for
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nondestructive chemical and structural
fingerprinting.[1] This is due to the rel-
atively low energy of infrared (IR) light,
and the technique’s sensitivity to changing
electric dipole moments, such as those in
molecular and crystal lattice vibrations.
Moreover, the vast majority of materials
are IR active and possess a unique IR
spectrum signature, thus FTIR is ubiq-
uitous in both academia and industry.
Unfortunately, because of the relatively
long wavelengths of infrared light and
related diffraction limit, the spatial res-
olution for FTIR has been limited to ≈

1–1000 μm.[2] Thus, FTIR’s utilization
during the so-called “nano-revolution”[3]

during the last ≈ 35 years has played an
insignificant role in the characterization of
nanostructures and associated nanoscale
phenomena due to its inadequate spatial
resolution. However, over the last decade,
with the coalescence of scattering-type,
scanning near-field optical microscopy
(s-SNOM),[4] high-power broadband IR

sources, IR interferometry, and lock-in amplification techniques,
scattering-type near-field nanoscale Fourier transform IR spec-
troscopy (nano-FTIR) has been realized,[5] commercialized, and
its utilization has grown significantly in recent years.

The broad appeal and impact of nano-FTIR as a tool
for sensing local IR-active physicochemical phenomena has
been demonstrated by a large number of studies that span
the gamut of science, technology, and engineering. A non-
exhaustive subset of the many and diverse focus topics are
nanoconfinement in metal–organic frameworks,[6] probing in-
terphases between hard and soft condensed matter,[7] map-
ping catalytic reactions,[8] antenna assisted characterization of
dielectric anisotropy,[9] phonon polaritons,[10] insulator–metal
transitions,[11] mapping strain in 2D materials,[12] nanoscale di-
electric properties,[13] organic matter contents of meteorites,[14]

spectroscopic nanoimaging,[15] nonequilibrium physics,[16] bat-
tery electrode materials,[17] electrochemical interfaces and
interphases,[17b,18] twisted moire superlattices,[19] nonequilib-
rium polariton switching and control at ultrafast timescales,[20]

and biological studies of biomineralization,[21] proteins,[22]

viruses,[23] linkers for biomolecule targeting,[24] living cells,[25]

and spike proteins on COVID-19 viruses.[26] Additionally, moti-
vated by the technique’s clear success, new developments, imple-
mentations, simulations, and models, are continuing to emerge,
such as ultrafast heterodyne pump-probe,[27] Purcell-enhanced
IR approaches,[28] simulating hyperspectral images of 3D
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Figure 1. Schematic of the experimental setup and processing steps for scattering scanning near-field nanoscale Fourier transform infrared spectroscopy.
The operator notation that is used in the rest of the text matches the diagram: detector time averaging (⟨…⟩Td

), lock-in amplification (𝔏), Fourier
transformation (𝔉), and normalization (𝔑).

heterogeneous surfaces,[29] and modeling near-field microscopy
and spectroscopy.[30]

Unfortunately, the detection scheme that underpins and en-
ables the experimental realization of nano-FTIR is nontrivial.
This methodological complexity, coupled with the diversity in
practitioner-field expertise, creates an environment ripe for the-
oretical and conceptual barriers to robust understanding of i)
the detection and signal processing steps that generate and ex-
plain the complex-valued nano-FTIR spectrum, and ii) the elec-
trodynamic scattering process that takes place within the tip-
sample region. There have been a number of publications treat-
ing the latter,[13a,30c,31] but a need persists for a rigorous and self-
contained work that addresses the former — this is the aim of
the present work.

We note that several photothermal approaches for IR imaging
and nano-spectroscopy have also been recently pioneered[32] (e.g.,
nanoIR, AFM-IR, PTIR, PFIR, and PiFM). These techniques are
distinct in their implementation and working mechanisms from
nano-FTIR. Instead of collecting and analyzing backscattered
light (as is the case for nano-FTIR) these approaches typically
sense changes in AFM probe properties that can be attributed
to thermal expansions or forces associated with local IR absorp-
tion and have been reviewed elsewhere.[32c,33] These are not the
subject of this work.

2. Results and Discussion

2.1. Experimental Setup and Data Acquisition Summary

To provide a qualitative explanation for each of the essential steps
involved with nano-FTIR acquisition, and identify key experi-
mental components along the way; Figure 1 serves as a critical vi-
sual aid and reference throughout the paper. First, a metal-coated
atomic force microscope (AFM) probe oscillating at ≈ 102 kHz
(period Tc = 10 μs and tip-sample distance d(𝜏)) is brought into
tapping mode[34] with a substrate of interest (Figure 1) and posi-
tioned above a location of interest. Broadband IR light is intro-
duced (solid red arrow on the left-hand side of Figure 1) into a
portion of the experimental setup whose combined constituents
function as an asymmetric Michelson interferometer[5f,35] (AMI,

items within the gray box in Figure 1). The asymmetric termi-
nology speaks to the difference with respect to symmetric inter-
ferometers, which are typically used in conventional FTIR. Sym-
metric interferometers situate the sample of interest after the in-
terferometer, while in asymmetric setups the sample is placed
within, and is part of, the interferometer itself. As will be shown
in detail later, a key advantage to the asymmetric setup is that the
mathematical (Fourier) transformation of data collected yields
both optical amplitude and phase (or real and imaginary) infor-
mation that is used to quantify sample properties.

The broadband IR light source is typically produced via dif-
ference frequency generation (DFG) with a fiber–laser[5c] (broad-
band) or a synchrotron[5d,h,i] (ultrabroadband), although other
sources such as high-temperature plasmas are also available.[36]

The typical detectable bandwidths of these two sources are shown
in Figure 2. As a quick aside, we note that when the light
source is a broadband IR laser, nano-FTIR is the commonly used
acronym. However, when the light source is an ultrabroadband
synchrotron, SINS (synchrotron infrared nanospectroscopy) is
the commonly used acronym. In both cases, however, the signal

Figure 2. Raw, unnormalized, nano-FTIR reflection spectra of Au or Si for
selected broadband infrared light sources.
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processing and detection scheme is the same. Herein, we use the
nano-FTIR acronym as encompassing both these approaches. We
also note, while not the subject of this paper, that IR nanoscale
spectroscopy can also be technically accomplished with a sin-
gle frequency light source that is tunable, via pseudoheterodyne
detection.[4a]

As the broadband light enters the AMI (solid red arrow on the
left-hand side of Figure 1), it first passes through a beam splitter
(BS in Figure 1). As the name implies, the BS splits the beam
in two, sending each half in a different direction (see red dashed
arrows in Figure 1). Half the beam is reflected, and travels to-
ward a reference mirror (RM, top middle Figure 1), while the
other half is transmitted and travels toward the AFM tip-sample
region. These unique beam paths are referred to as the “refer-
ence arm” and “sample arm” of the AMI, respectively. Both arms
return light (dotted yellow and blue arrows in Figure 1), which is
recombined and measured at the detector (bottom right of AMI
in Figure 1).

Within the reference arm, as illustrated in Figure 1, the light
travels to (red dashed arrows) and reflects off (yellow dotted ar-
rows) the RM, then transmits through the BS, before combining
with light from the sample arm and being detected. It is impor-
tant to make clear that the RM is movable. In particular, during
nano-FTIR data acquisition, the RM will linearly translate, chang-
ing the path length difference between the sample and reference
arms. During this translation, the sample and reference arm path
lengths should be approximately similar, and exactly similar for
a brief part of the scan; a position known as the zero path differ-
ence, or ZPD. Herein, we assign a generalized coordinate, 𝜁 , to
identify the spatial position of the RM. Any change in the RM po-
sition by some Δ𝜁 (as shown in Figure 1) will change the distance
the reference light will need to travel in the reference arm before
detection. Specifically, the change in reference beam travel dis-
tance before detection will be 2Δ𝜁 , where the factor of two arises
from light traveling both to, and from, the RM. Thus, translating
the RM amounts to shifting the reference beam in space by an
amount 2Δ𝜁 , say 𝜉, and therefore the total signal detected will be
a function of 𝜉.

The light entering the sample arm of the AMI is focused with
a parabolic mirror (PM in Figure 1) toward the tip-sample re-
gion. A fraction of this incident light is backscattered along the
same beam path from where it came (see blue dotted arrows
in Figure 1). Eventually, it recombines with the reference light
and is subsequently detected. The light backscattered from the
region around the sample and vertically oscillating (Figure 3a)
metallic AFM probe can be considered a linear combination of
two distinct fields, classified by the “kind” of light that drives the
scattering. The first kind, and most intuitive, is the conventional
diffraction-limited incident IR that bathes the entire tip-sample
region in “far-field” light (red arrows and shading in Figure 3d,e).
The second kind is the diffraction-limit-breaking “near-field” —
induced by the incident IR in combination with probe conductiv-
ity and geometry — which is both enhanced and spatially con-
fined in comparison to the incident IR[13a,30c,31e,h,i] (darker red
shading in Figure 3f,g). The former drives “far-field scattering”
from the sample and AFM probe shank (Figure 3d,e) which dom-
inates the total backscattered signal, while the latter drives “near-
field scattering” from a nanoscopic volume around the probe tip
end (Figure 3f,g). Because of this, as will be discussed in more

detail later, the relevant electric field component of light backscat-
tered from the tip-sample region will be described as a linear
combination of these two contributors: ESA = EFF + ENF, where
SA, FF, and NF refer to sample arm, far-field, and near-field, re-
spectively. We note here that the specific details of probe shape,
size, and composition play a crucial role in how the scattering
occurs and others have made important progress in identifying
ideal probe tips.[37] Our work, as will be seen later, derives gen-
eral expressions that can accommodate any probe geometry and
composition.

As the AFM cantilever oscillates, far-field scattering from
the sample and probe shank, EFF , is only modestly altered
(Figure 3b,d,e), while near-field scattering, ENF , dramatically
changes with the tip-sample separation distance (Figure 3c,f,g).
In particular, the enhanced near-field strongly interacts with
the sample at the points in time of least tip-sample distance
(Figure 3a,c,f,g)), causing photons to be periodically scattered
from the local region at and under the probe tip’s end. This
small portion of the total backscattered light is attributable to scat-
tering processes occurring within nanoscopic volumes around
the probe tip end and carries local materials properties encoded
within it. Therefore, the entire aim/goal of the detection and sig-
nal processing scheme is to extract this localized information.

In the following section, we present physics-based continuum
mathematical models for the detection and signal processing
steps, which ultimately extract meaningful information from the
signal sensed by the detector, as a function of time and refer-
ence mirror position. We first provide the order-of-magnitude
timescales at play (the periods) in the experimental system:
IR field oscillations (TIR = 10−14 s), detector time resolution
(Td = 10−6 s), cantilever oscillation (Tc = 10−5 s), and the lock-in
time averaging period (TL = 10−4 s). Second, we mention how
variable independence between t and 𝜉 is practically attained.
There are two ways that ensure such independence: collecting
time-dependent data at a fixed mirror position, or by moving
the mirror significantly slower than any other relevant timescale.
Regardless of how this is technically implemented, t and 𝜉 are
treated as independent variables in this work.

2.2. Detector Time-Averaging ⟨…⟩Td
and Mathematical

Framework

The infrared detector, usually a liquid nitrogen-cooled mercury
cadmium telluride (MCT) (or another, e.g., a liquid helium cooled
copper doped germanium (GeCu) detector[5h]), measures irra-
diance (the time-averaged electromagnetic energy per area per
time) over some photodetector area a. More specifically, it mea-
sures time-averaged electromagnetic energy transferred from the
Poynting vector, S, (Figure 4). The time-averaging period is dic-
tated by hardware, and as mentioned above, is typically Td =
10−6 s = 1 μs. Thus, the magnitude of the detector signal de-
pends on a time average, over Td, of the Poynting vector at the
detector surface: 𝕤(t, 𝜉) = ⟨𝜂 ∫ S(xd, 𝜏, 𝜉) ⋅ x̂da⟩Td

. Here, 𝕤(t, 𝜉) is
the real-valued signal output from the detector, 𝜂 is some constant
for energy conversion between the field energy and the photode-
tector (at x = 0), S(xd, 𝜏, 𝜉) is the Poynting vector at the detector
surface, x̂ is the unit vector inward and normal to the detector
surface, the brackets ⟨⋅ ⋅ ⋅⟩Td

indicate a time-average over Td, the
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Figure 3. Representative semi-quantitative plots of the typical a) tip-sample separation distance,[30c] b) far-field scattering intensity, and c) near-field
scattering intensity as a function of time, over one cantilever period, Tc . Key points in time associated with the greatest (𝜏 = 𝜏1) and least (𝜏 = 𝜏1 + Tc∕2)
tip-sample separation is highlighted with purple and gold circles. d) Microscale illustration of the tip-sample system, bathed in incident IR light, at the
point in time of greatest, 𝜏 = 𝜏1, ((e) least, 𝜏 = 𝜏1 + Tc∕2) tip-sample separation. Note that the far-field scattering is only slightly modified by the
nanoscale geometrical perturbations associated with cantilever oscillation. Panels (f) and (g) provide nanoscale Zoom-in illustrations of the previous
two panels and emphasize how near-field scattering events from nanoscopic volumes below the probe tip end are highly dependent on the nanoscale
geometrical perturbations associated with cantilever oscillation.

d subscript on xd is used to emphasize that the integral is over
the surface area of the detector, and the time variables are related
by t = 𝜏 − Td∕2. Figure 4 schematically aids in visualizing the co-
ordinate system and described processes.

While not pictured in Figure 1, light from the reference and
sample arms of the AMI (dotted yellow and blue arrows in
Figure 1) is focused onto the detector with optics including an-
other parabolic mirror. This results in the light beam incident
on the detector surface having a cone-like geometry, as illus-

trated in Figure 4. In this work, we approximate the Poynting flux
directionality at the detector surface as being solely normally in-
cident (x̂ direction) to the detector surface — akin to consider-
ing the spatial average of the Poynting flux about its azimuthally
symmetric beam path. Thus, we rewrite S(xd, 𝜏, 𝜉) as S(𝜏, 𝜉)x̂,
and the surface integral simplifies to the product of the detec-
tor area, a and the Poynting flux evaluated at any point on the
surface of the detector: 𝕤(t, 𝜉) = ⟨𝜂aS(𝜏, 𝜉)⟩Td

. Furthermore, be-
cause S = |S| = |E × B| = (1∕𝜇0)|E||B|, and |E| = c|B| in source
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Figure 4. Schematic zoom-in of the detector surface with incident IR light.

free regions, like the region directly adjacent to the detector, the
expression for the detector signal becomes

𝕤 (t, 𝜉) = 𝜂a
c𝜇0Td

t+ Td
2

∫
t− Td

2

|E (𝜏, 𝜉)|2 d𝜏 + n (t) (1)

In Equation (1), c and 𝜇0 are the speed of light and perme-
ability of free space, respectively. Furthermore, E is the real-
valued total vector electric field at the detector surface, gener-
ally broadband, and depends on time (𝜏) and effective reference
mirror position (𝜉): E(𝜏, 𝜉) ∈ ℝ. We have additionally introduced
a term, n(t), which serves to represent randomized noise im-
plicit to detection or from ambient light. As described above,
the electric field is comprised of a sum of nontrivial broad-
band fields, one from the sample arm of the AMI, ESA, and
one from the reference arm of the AMI, ERA. The square of
the real-valued field is |E|2 = E ⋅ E = (ESA + ERA) ⋅ (ESA + ERA) =
ESA ⋅ ESA + 2ESA ⋅ ERA + ERA ⋅ ERA. Moreover, because we are de-
tecting light far from the sources of radiation, ESA and ERA are
considered plane waves with polarization orthogonal to S.[38] In
addition, for modeling simplicity, we treat all fields incident on
the detector as being similarly polarized, say in the ŷ direction.
Thus, at the detector surface, we can write, ESA = ESA,y ŷ and
ERA = ERA,y ŷ (see Figure 4). Utilizing all these in Equation (1)
for the detector signal yields

𝕤 (t, 𝜉) = 𝜂a
c𝜇0Td

t+ Td
2

∫
t− Td

2

[
ESA,y

2 (𝜏)

+2ESA,y (𝜏) ERA,y (𝜏, 𝜉) + ERA,y
2 (𝜏, 𝜉)

]
d𝜏 + n (t) (2)

We point out that the time dependence of the fields enters in
two ways: field oscillations and periodic changes in the backscat-
tered light from the sample arm (due to geometric changes at
the tip-sample region from cantilever oscillations). Thus, the later
time dependence arises only in ESA,y, while the time dependence
in ERA,y terms come solely from field oscillations. This difference
is relevant and will be exploited later.

Moving forward with the calculation, we replace the real-
valued field components in Equation (2) (ESA,y and ERA,y) with
their equivalent inverse Fourier transforms, which satisfy the

Maxwell equations in free space. Such an expression, as de-
scribed elsewhere,[39] takes the form

f (t, x) = 1√
2𝜋

∞

∫
−∞

f̃ (𝜔) ei𝜔( x
c
−t)d𝜔 (3)

where f̃ (𝜔) ei𝜔x∕c = f̃ (𝜔, x) = 𝔉t→𝜔 f (t, x) is the Fourier transform
in time of f(t, x), and f̃ (𝜔) = f̃ (𝜔, 0) = 𝔉t→𝜔 f (t, 0) is the Fourier
transform in time of f(t, x) evaluated at the detector surface, and
is generally complex: f̃ (𝜔) = f̃ (𝜔, 0) ∈ ℂ. Using this functional
form and the fact that the detector is located at x = 0, without
loss of generality, ESA,y becomes

ESA,y (𝜏) = 1√
2𝜋

∞

∫
−∞

ẼSA,y (𝜔) e−i𝜔𝜏d𝜔 (4)

As for the field from the reference arm, ERA,y, we account for
spatial shifts arising from various RM positions, with the follow-
ing replacement in Equation (3), x → x + 𝜉 = 0 + 𝜉, giving

ERA,y (𝜏, 𝜉) = 1√
2𝜋

∞

∫
−∞

ẼRA,y (𝜔) ei𝜔( 𝜉

c
−𝜏)d𝜔 (5)

Inserting the above relations for ESA,y(𝜏) and ERA,y(𝜏, 𝜉) into
Equation (2), and switching the order of integration gives

𝕤 (t, 𝜉) = 𝜂a
2𝜋c𝜇0

⎡⎢⎢⎣
∞

∫
−∞

∞

∫
−∞

ẼSA,y

(
𝜔1

)
ẼSA,y

(
𝜔2

)

×
⎧⎪⎨⎪⎩

1
Td

t+ Td
2

∫
t− Td

2

e−i𝜏(𝜔1+𝜔2)d𝜏

⎫⎪⎬⎪⎭ d𝜔1 d𝜔2 + 2

∞

∫
−∞

∞

∫
−∞

ẼSA,y

(
𝜔3

)

× ẼRA,y

(
𝜔4

)
ei𝜉

𝜔4
c

⎧⎪⎨⎪⎩
1
Td

t+ Td
2

∫
t− Td

2

e−i𝜏(𝜔3+𝜔4)d𝜏

⎫⎪⎬⎪⎭ d𝜔3d𝜔4

+

∞

∫
−∞

∞

∫
−∞

ẼRA,y

(
𝜔5

)
ẼRA,y

(
𝜔6

)
ei𝜉( 𝜔5

c
+ 𝜔6

c )

×
⎧⎪⎨⎪⎩

1
Td

t+ Td
2

∫
t− Td

2

e−i𝜏(𝜔5+𝜔6)d𝜏

⎫⎪⎬⎪⎭ d𝜔5d𝜔6

⎤⎥⎥⎦ + n (t) (6)

where the numeric subscripts on the 𝜔′s serve to indicate they
are simply integration variables. The time average integrals
enclosed within curly brackets in Equation (6) have an ana-
lytic solution of a product of exponential and sinc functions:
exp(−itΩlm)sinc(TdΩlm2), where Ωlm = 𝜔l + 𝜔m and sinc(x) =
sin(x)∕x. In the case of the time average integral in the third
term, it further reduces to an effective Dirac delta distribution, as
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described in Section SI.1 (Supporting Information). Incorporat-
ing these results into the above yields,

𝕤(t, 𝜉) = SS (t) + SR (t, 𝜉) + RR + n (t) (7)

where,

SS (t) = 𝜂a
2𝜋c𝜇0

∞

∫
−∞

∞

∫
−∞

ẼSA,y

(
𝜔1

)
ẼSA,y

(
𝜔2

)
× sinc

(
TdΩ12

2

)
e−iΩ12td𝜔1 d𝜔2, (8)

SR (t, 𝜉) = 𝜂a
𝜋c𝜇0

∞

∫
−∞

∞

∫
−∞

ẼSA,y

(
𝜔3

)
ẼRA,y

(
𝜔4

)
ei𝜉

𝜔4
c

× sinc
(

TdΩ34

2

)
e−iΩ34td𝜔3d𝜔4 (9)

and

RR = 𝜂a
2𝜋c𝜇0

∞

∫
−∞

|||ẼRA,y

(
𝜔6

)|||2d𝜔6, (10)

and SS, SR, and RR, are terms for the time-averaged elec-
tromagnetic energy detected and associated with various com-
binations of ESA,y and ERA,y, as denoted by the two sub-
scripts. The so-called “self-homodyne” signal associated with
coupling/interference between far-field (EFF) and near-field (ENF)
backscattered light is contained within SS(t) (because ESA =
EFF + ENF). The so-called “heterodyne” signal associated with
coupling/interference between near-field backscattered light and
light from the reference arm of the AMI is contained in SR(t, 𝜉).

2.3. Expressing Detector Signal Terms as Fourier Series in Time

This section does not cover any formal step in the detection and
signal process scheme. As shown in Figure 1, the next step af-
ter detector time-averaging, ⟨⋅ ⋅ ⋅⟩Td

, is lock-in amplification, 𝔏,
which will be covered in Section 2.4. Rather, this section is fo-
cused on recasting some of the terms in Equation (7) into a form
more amenable to simplification once acted on by the lock-in op-
erator. As described in detail in Section SI.2 (Supporting Infor-
mation), if the lock-in acts upon a signal that can be represented
as a Fourier series in time, then calculating the result of the lock-
in operation on that signal becomes straightforward. Currently,
Equations (7)–(10) are decidedly not cast in terms of a Fourier se-
ries in time, and while barreling on to the lock-in operation with
brute force is technically an option, it is certainly not the path
of least resistance. With this knowledge, we can use the time-
translation symmetry of our physical system (its known periodic-
ity in time) to reformulate certain terms in Equation (7) as Fourier
series in time and simplify the steps for the lock-in in Section 2.4.

The third term in Equation (7), RR (see Equation (10)), is time-
independent as a result of detector time-averaging. However, the

first and second terms, SS(t) and SR(t, 𝜉), maintain time depen-
dence because geometrical changes associated with the oscillat-
ing AFM probe occur at order of magnitude longer time scales
than the detector time averaging (Td ≈ 1 μs whilst Tc ≈ 10 μs).
Under the reasonable assumption that the sample’s local mate-
rials properties are constant — because the AFM is not in con-
tact mode, and the IR photon energy is low — the geometrical
changes are the only cause for detectible temporal changes in the
electric field back-scattered from the IR-illuminated cantilever-
sample system. Because the AFM cantilever is driven to oscil-
late with a known period, Tc, the geometrical configuration of the
tip-sample system possesses the following temporal periodicity:
G(t) = G(t + Tc), where G(t) is the set of parameters that define
a unique geometrical configuration. It follows that all remain-
ing time-dependent signals will possess the same temporal peri-
odicity: SS(t) = SS(t + Tc) and SR(t, 𝜉) = SR(t + Tc, 𝜉). Because
SS(t) and SR(t, 𝜉) are real-valued and periodic in time, they can
be represented as a series of orthonormal basis functions. Here
we choose the cosine function with a phase, generally giving

SS (t) =
∞∑
𝛽=0

V𝛽 cos
(
𝛽𝜔ct + 𝜑𝛽

)
(11)

and

SR (t, 𝜉) =
∞∑

n=0

Un (𝜉) cos
(
n𝜔ct + 𝜃n (𝜉)

)
(12)

As mentioned at the top of this section, the motivation for cast-
ing SS(t) and SR(t, 𝜉) in such a series expansion is due to the
forthcoming lock-in operation. Once cast as a Fourier series in
time, the lock-in will transform such series into known combi-
nations of expansion coefficients and/or phases (cf. the next sec-
tion, Section SI.2, Supporting Information). Of particular interest
will be the product of an expansion coefficient with the cosine of
the corresponding phase, as will be shown soon. Before moving
on to deriving how the expansion coefficients in the above two
equations relate to the fields in Equations (8) and (9), we first ex-
plain how describing the backscattered light as a sum of far-field
driven excitations (EFF

y ) and near-field-driven excitations (ENF
y ) in-

fluences the above equations.
The light backscattered from the tip-sample region (and mea-

sured at the IR detector) can be described as a sum of fields:
ESA,y(t) = EFF

y (t) + ENF
y (t). Thus, occurrences of ẼSA,y(𝜔) can be re-

placed with ẼNF
y (𝜔) + ẼFF

y (𝜔). If we make use of this additional
fact for SR(t, 𝜉) in Equation (9), algebra reveals it is actually
the sum of two terms. Each of these terms still possesses the
same aforementioned temporal periodicity, and thus can each
also be represented with a series expansion as described before.
So, Equation (12) becomes SR(t, 𝜉) = NF

SR (t, 𝜉) + FF
SR (t, 𝜉), and in

series form is

SR (t, 𝜉) =
∞∑

n=0

uNF
n

(𝜉) cos
(
n𝜔ct + 𝜃NF

n
(𝜉)
)
+

∞∑
n=0

uFF
n

(𝜉)

× cos
(
n𝜔ct + 𝜃FF

n
(𝜉)
)

(13)

With this notation, the first series in Equation (13) is NF
SR (t, 𝜉),

and the second series is notated as FF
SR (t, 𝜉). Note that we did
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not apply the same algebra to SS(t) in Equation (11). This
is because, with the benefit of foresight, contributions from
SS(t) to the final spectra will vanish, as we will describe in
Section 2.5.

One additional refinement is now needed to modify Equa-
tion (13). As already mentioned in Section 2.1, the dominant
contributor to the total backscattered light is far-field scatter-
ing from microscale regions in-and-around the tip-sample re-
gion (Figure 3b,d,e); represented mathematically by the sum-
mation on the right-hand side of Equation (13) and abbreviated
by FF

SR (t, 𝜉). This far-field scattering only very modestly changes
in time with the cantilever oscillation because the nanoscopic
changes in probe position are only weakly perturbative to the
microscale geometry from which such scattering is occurring
(Figure 3d,e). Therefore, in Equation (13), the zeroth and first
harmonic terms in the Fourier expansion for the far-field signal,
which constitute a constant-in-time background and simple pe-
riodic change, should be necessary and (mostly) sufficient to de-
scribe FF

SR (t, 𝜉) — that is, the detector time-averaged product of
the reference light and far-field scattering from the tip-sample
region, assuming that the cantilever is oscillating harmonically.
With this, Equation (13) becomes

SR (t, 𝜉) = NF
SR

(t, 𝜉) + FF
SR

(t, 𝜉)

≅
∞∑

n=0

uNF
n

(𝜉) cos
(
n𝜔ct + 𝜃NF

n
(𝜉)
)

+
1∑

n=0

uFF
n

(𝜉) cos
(
n𝜔ct + 𝜃FF

n
(𝜉)
)

(14)

Now having finished incorporating the near- and far-field con-
tributions explicitly, the last step in this section is to derive ex-
pressions that relate the expansion coefficients and phases in
Equation (14) to the fields in Equation (9). Again, this is because
of the upcoming lock-in amplification on SR(t, 𝜉) will produce
terms that are a product between expansion coefficient and the
cosine of the corresponding phase (see Section SI.2, Supporting
Information). Analytically solving for such expressions is done
by utilizing cosine orthogonality relations, and limiting cases of
the sinc function, and is explicitly derived in Section SI.3 (Sup-
porting Information). The results are

uNF
n

(𝜉) cos
(
𝜃NF

n
(𝜉)
)

= 𝒿

∞

∫
−∞

[
ẼNF∗

y

(
𝜔 − n𝜔c

)
+ ẼNF∗

y

(
𝜔 + n𝜔c

)]
× ẼRA,y (𝜔) ei𝜉 𝜔

c d𝜔 (15)

uFF
n≤1

(𝜉) cos
(
𝜃FF

n≤1
(𝜉)
)
= 𝒿

∞

∫
−∞

[
ẼFF∗

y

(
𝜔 − n𝜔c

)
+ ẼFF∗

y

(
𝜔 + n𝜔c

)]
× ẼRA,y (𝜔) ei𝜉 𝜔

c d𝜔 (16)

uFF
n>1

(𝜉) cos
(
𝜃FF

n>1
(𝜉)
)
≅ 0 (17)

and where 𝒿 = 𝜂a sinc(Tdn𝜔c∕2)∕(𝜋c𝜇0),

and, now being armed with a signal whose terms of interest are
cast as Fourier series in time, and with knowledge of how the
generalized fields relate to the expansion coefficients in those se-
ries, we are prepared to move to the lock-in amplification step of
the detection and signal processing scheme.

2.4. Lock-In Amplification 𝔏: Removal of Constant Terms and
Time Dependence, Suppression of Noise, Isolation of Fourier
Expansion Coefficients, and Formation of the Interferogram

Lock-in amplification is a process of performing two real-valued
transformations on a polluted signal to extract information of in-
terest. The polluted signal is typically a sum of a perfectly peri-
odic function of interest, unwanted information, and noise. By
time-averaging the product of the polluted signal and a cosine or
sine function (with an integer multiple of the frequency of inter-
est), Fourier expansion coefficients that describe the embedded
and obscured periodic function of interest can be isolated. This
process typically also removes time dependence. It is common
to think of the two real-valued transformations as one complex
transformation that maps the single real signal to a complex sig-
nal whose real (imaginary) part is defined as the time average of
the signal multiplied by cosine (sine). Because of this, it is com-
mon for lock-in amplifiers to output this defined complex signal.
Following this convention, we herein denote the linear operator
of the single complex lock-in operation as 𝔏m, where m is a pos-
itive integer that defines the “harmonic” being considered. A de-
tailed accounting of all the essential mathematical steps that the
lock-in effectively performs is provided in Section SI.2 (Support-
ing Information).

The next step is to calculate 𝔏m𝕤(t, 𝜉). As the reference mir-
ror translates, data is output from the lock-in and recorded as a
function of effective mirror position 𝜉. The 𝜉-dependent real and
imaginary outputs of the lock-in constitute the complex-valued
interferogram: 𝔏m𝕤(t, 𝜉) ≡ Im(𝜉) = I′m(𝜉) + iI′′m(𝜉). In passing, we
caution the reader not to confuse the real and imaginary (or am-
plitude and phase) lock-in outputs, which define the complex-
valued interferogram, with the real and imaginary components
(or the amplitude and phase) of the complex-valued normalized
nano-FTIR spectrum, which is still yet to be constructed.

As described in detail in Section SI.2 (Supporting Informa-
tion), the lock-in operation will cause two kinds of terms to
vanish: those that are constant-in-time, and those that are ran-
domized noise and non-monotonically increasing or decreasing.
Therefore, as 𝔏m is applied to Equation (7), 𝔏mRR = 𝔏mn(t) =
0, leaving 𝔏m𝕤(t, 𝜉) = 𝔏mSS(t) + 𝔏mSR(t, 𝜉). Because SS(t) and
SR(t, 𝜉) can be expressed as sums of cosines (Equations 11
and 14), and for details outlined in Section SI.2 (Supporting In-
formation), 𝔏m𝕤(t, 𝜉) reduces to the following (where we have al-
lowed the general index m → n):

In (𝜉) =
Vn cos

(
𝜑n

)
2

+
uNF

n
(𝜉) cos

(
𝜃NF

n
(𝜉)
)

2

+
uFF

n
(𝜉) cos

(
𝜃FF

n
(𝜉)
)

2
+ i

{
Vn sin

(
𝜑n

)
2

+
uNF

n
(𝜉) sin

(
𝜃NF

n
(𝜉)
)

2
+

uFF
n

(𝜉) sin
(
𝜃FF

n
(𝜉)
)

2

}
(18)

Adv. Funct. Mater. 2024, 34, 2406643 © 2024 Lawrence Berkeley National Laboratory. Advanced Functional
Materials published by Wiley-VCH GmbH

2406643 (7 of 16)

 16163028, 2024, 46, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202406643, W
iley O

nline L
ibrary on [03/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Figure 5. Representative key data sets in the generation of a normalized complex valued nano-FTIR spectrum. Panels (a) and (b) are second harmonic
nano-FTIR interferograms for Si and PS respectively. Panels (c) and (d) are plots of the real and imaginary parts of the Fourier transform of the inter-
ferograms (z2 = 𝔉𝜉→𝜈I′2) for Si and PS respectively. Panels (e) and (f) are, respectively, the real and imaginary parts of the second harmonic of the
complex-valued nano-FTIR spectrum of PS referenced to Si: z̄2 = 𝔑zPS

2 = zPS
2 ∕zSi

2 . Note that the former possesses dispersion-like features, while the
latter possesses absorption-like features.

Here, In(𝜉) is the time-independent complex valued interfero-
gram of the nth harmonic. The real part of this quantity, I′n(𝜉), is
coined the interferogram of the nth harmonic and is the critical
𝜉-dependent signal that is passed onto a computer for further pro-
cessing (Figure 1). As an example, interferograms of the second
harmonic for Si and polystyrene (PS) are provided in Figure 5a,b
respectively. Before moving further along, we note in passing that
the time-averaging period for the lock-in, TL = 10−4 s = 100 μs, is

an order of magnitude larger than the cantilever period; and so,
each lock-in data point output is a time average over roughly ten
cantilever oscillations.

At this point, it is reasonable to pause and address a likely
question: what is the difference between the complex interfer-
ograms of various harmonics (different values for n)? For rea-
sons recently described above Equation (14), for the zeroth and
fundamental harmonics, n ≤ 1, backscattering will be dominated

Adv. Funct. Mater. 2024, 34, 2406643 © 2024 Lawrence Berkeley National Laboratory. Advanced Functional
Materials published by Wiley-VCH GmbH
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by contributions from far-field scattering. Thus, In≤1(𝜉) is a com-
plex interferogram with predominantly far-field scattering infor-
mation encoded in it. On the other hand, when n > 1, far-field
contributions diminish, especially those from the heterodyne
term (Equations 14 and 17), and the complex interferogram
In>1(𝜉) has a significantly greater proportion of near-field scatter-
ing information encoded in it relative to n ≤ 1:

In>1 (𝜉) =
Vn cos

(
𝜑n

)
2

+
uNF

n
(𝜉) cos

(
𝜃NF

n
(𝜉)
)

2

+i

{
Vn sin

(
𝜑n

)
2

+
uNF

n
(𝜉) sin

(
𝜃NF

n
(𝜉)
)

2

}
(19)

For these reasons, nano-FTIR experiments focus on lock-in
harmonics two and higher, to isolate near-field contributions. In
the following expressions, we will do the same.

2.5. Fourier Transformation 𝔉: Removal of Self-Homodyne
Background and Generation of the Unnormalized
Complex-Valued Spectrum

As shown in Figure 1 and described above, the interferogram
I′n>1(𝜉) (the real part of the complex valued interferogram) is
passed along to a computer for further processing where Fourier
transformation (FT) and normalization occur. Thus, the next
computation step is to conduct the relevant FT: 𝔉𝜉→𝜈I

′
n>1(𝜉),

where 𝔉𝜉→𝜈 is the operator for FT and for some function of 𝜉,
say p(𝜉), the FT is here defined as

𝔉𝜉→𝜈p (𝜉) =

∞

∫
−∞

{
p
(
𝜉1

)
ei2𝜋𝜈𝜉1

}
d𝜉1 (20)

Note that the choice of passing on the I′n>1(𝜉) for FT is not the
only way to proceed, as the desired information is ultimately cap-
tured in uNF

n (𝜉)cos(𝜃NF
n (𝜉)) and uNF

n (𝜉)sin(𝜃NF
n (𝜉)), which are con-

tained in the real and imaginary parts of the complex-valued in-
terferogram respectively. We chose the real part herein for the
convention.

Ultimately, the FT operation will i) remove the self-homodyne
background signal (terms proportional to expansion coefficients
Vn that contain interference/coupling between EFF and ENF), ii)
change the independent variable from 𝜉 to wavenumber “𝜈,” and
iii) generate the unnormalized complex valued nano-FTIR spec-
trum. Because the FT operation on a constant is known to pro-
duce a Dirac delta distribution, and because the first term in the
real part of complex interferogram (Equation 19) is independent
of 𝜉, that term vanishes for non-zero wavenumbers; and so, the
self-homodyne background vanishes. This leaves behind the FT
of the second term in I′n>1(𝜉):

zn>1 (𝜈) ≡ 𝔉𝜉→𝜈I
′
n>1

(𝜉) = 𝔉𝜉→𝜈

uNF
n

(𝜉) cos
(
𝜃NF

n
(𝜉)
)

2
(21)

where zn>1(𝜈) is here defined as the raw, unnormalized, and
complex-valued nano-FTIR spectrum. Examples of the real and
imaginary parts of the raw, unnormalized, and complex-valued

nano-FTIR spectrum (second harmonic) for Si and PS are plot-
ted in Figure 5c and 5d respectively. We note that while in this
work we focus on an analytical/continuum model for the detec-
tion and signal processing, which for FT is a straightforward in-
tegral as in Equation (20), in practice, some additional numeri-
cal data processing of the interferogram is usually involved, as
is common with conventional FTIR, including the likes of zero
filling, apodization, etc.; the interested reader can look to the lit-
erature to learn more about these numerical steps.[1b,5f,40]

Now, we can move to compute the complex nano-FTIR spec-
trum in terms of the fields by introducing Equation (15) into (21);
and a change of integration order yields

zn>1(𝜈) =
𝜂asinc

(
Tdn𝜔c

2

)
2𝜋c𝜇0

∞

∫
−∞

[
ẼNF

y
∗ (

𝜔 − n𝜔c

)
+ ẼNF

y
∗ (

𝜔 + n𝜔c

)]

× ẼRA,y (𝜔)

∞

∫
−∞

ei𝜉1( 𝜔

c
+2𝜋𝜈)d𝜉1d𝜔, (22)

which simplifies to

zn>1 (𝜈) = Γn

[
ẼNF

y

(
2𝜋𝜈c + n𝜔c

)
+ ẼNF

y

(
2𝜋𝜈c − n𝜔c

)]
× Ẽ∗

RA,y
(2𝜋𝜈c) (23)

where Γn = 2𝜂a sinc(Tdn𝜔c∕2)∕(c𝜇0). The simplification process
to arrive at Equation (23) included i) the integral over 𝜉1 reducing
to a Dirac delta distribution which demanded 𝜔 → −2𝜋𝜈c, and ii)
the use of the reality condition that if f (t) is real-valued, f̃ ∗(−𝜔) =
f̃ (𝜔).

2.6. Normalization 𝔑: Removal of Scaled Reference Arm Light
and Arrival at the Normalized Complex-Valued Spectrum

The last processing step is normalization. As can be seen in
Equation (23), an unnormalized nano-FTIR spectrum is linearly
proportional to ΓnẼ∗

RA,y(2𝜋𝜈c). To remove these, a normalization
strategy is employed. Two nano-FTIR spectra are collected, one of
the sample material of interest, and another of a reference mate-
rial with constant-in-𝜈 (or smoothly varying) dielectric properties.
Then, a ratio of the two spectra is taken, and the ΓnẼ∗

RA,y(2𝜋𝜈c)
terms in the numerator and denominator cancel as both ref-
erence field and prefactor Γn do not change between measure-
ments. Thus, in general, a normalized complex valued nano-
FTIR spectrum, 𝔑zn>1(𝜈) = z̄n>1(𝜈), will take the form,

z̄n>1 (𝜈) ≡ zt&sm
n>1

(𝜈)

zt&rm
n>1

(𝜈)
=

ẼNF,t&sm
y

(
𝜔+

n
(𝜈)
)
+ ẼNF,t&sm

y

(
𝜔−

n
(𝜈)
)

ẼNF,t&rm
y

(
𝜔+

n
(𝜈)
)
+ ẼNF,t&rm

y

(
𝜔−

n
(𝜈)
) (24)

where superscripts “t&sm” and “t&rm” stand for “tip and sam-
ple material” and “tip and reference material,” respectively, and
𝜔±

n (𝜈) = 2𝜋𝜈c ± n𝜔c. Also, as mentioned earlier, a “good” refer-
ence material has known dielectric properties and is spectrally
flat, having no absorption resonances within the wavenumber re-
gion of interest. Common reference materials are gold or silicon
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— though, because of the importance of references, recent work
has been aimed at developing standardized reference samples.[41]

So, to provide a concrete example, if the material of interest was
PS, the reference material was Si, and n was two, a thorough
way to refer to such a case would be “the second harmonic of
the complex-valued nano-FTIR spectrum of PS referenced to Si.”
The real and imaginary parts of this spectrum, z̄′

2(𝜈) and z̄′′
2 (𝜈),

are plotted in Figure 5e and 5f respectively.
Equation (24) can also be cast in terms of the FT of the product

of ENF
y (t) and cos(n𝜔ct):

z̄n>1 (𝜈) =
zt&sm

n>1
(𝜈)

zt&rm
n>1

(𝜈)
=

𝔉t→𝜔(𝜈)

[
ENF,t&sm

y
(t) cos

(
n𝜔ct

)]
𝔉t→𝜔(𝜈)

[
ENF,t&rm

y (t) cos
(
n𝜔ct

)] (25)

In principle, the right-hand side of either Equation (24) or (25)
can be used as a springboard for inputting one’s favorite near-
field scattering model. This would be done, of course, with the
aim to establish relationships between the sample material’s lo-
cal properties, and the real and imaginary parts of z̄n>1(𝜈), which
are measured. Here, in their current forms, they lack explicit
dependence on physical quantities that are associated with, or
reside in, the tip-sample region. We address this in the follow-
ing section. However, before we do so, we would like to draw a
clear connection to past works. If the sums of frequency-shifted
FT fields appearing in the numerator and denominator of Equa-
tion (24) can be approximated as two times the FT field itself,
ẼNF

y (𝜔+
n ) + ẼNF

y (𝜔−
n ) ≈ 2ẼNF

y (𝜔; n), one retrieves a similar model-
ing starting point used in other works. In particular, a ratio
of FT fields backscattered from the tip-sample region: z̄n>1 =
En,s ∕ En,ref = 𝜎n,s ∕𝜎n,ref .[5c,13a] We note that, to our knowledge, this
work is the first that explicitly highlights these frequency shifts
(Equation 24) within the context of nano-FTIR detection and sig-
nal processing, and that they are likely relevant when attempting
to extract quantitative materials property information out of z̄n>1
with modeling.

2.7. Casting the Normalized Complex-Valued Spectrum in Terms
of Radiation from a Generalized Dipole with Nanoscale Volume

Now that the detection and signal processing steps for scattering-
type near-field infrared nanospectroscopy have been fully mod-
eled, we aim to move toward interpretation. This requires cast-
ing ẼNF

y (𝜔) = ẼNF
y (𝜔, x = 0), a quantity physically located at the

detector surface, in terms of quantities within the tip-sample re-
gion. For this reason, we first define new cartesian and polar co-
ordinate systems that more directly relate to the scattering prob-
lem, and whose origin is the center of the tip-sample region at
minimum tip-sample separation, as shown in Figure 6.

Because i) the detector is physically located at a much larger
distance (R) than the characteristic size (l) of the charges ac-
celerating due to near-field excitations (they are confined to
nanoscopic volumes in the tip-sample region), ii) the wavelength
of the incident IR light is also much larger then l, and iii) R ≫

𝜆 ≫ l, dipole radiation[38,39,42] from the tip-sample region is what
constitutes ẼNF

y (𝜔, x = 0). Thus, we draw (as a blue arrow in
Figure 6) an effective net dipole moment, of the whole tip-sample
region as would be “seen” a far distance away. From symmetry,

Figure 6. Schematic of the tip-sample region.

we infer the dipole moment should be confined to the 𝕩∕𝕫 plane
because the incident polarization is primarily in the 𝕩∕𝕫 plane.
The mathematical relationship between the coordinate systems
can be expressed as

ẼNF
y

(𝜔, x = 0) = ẼNF
𝜃

(
𝜔, r = R, 𝜃 = 𝜃0,𝜙 = 0

)
g (𝜔) (26)

where R is the fixed distance between the tip-sample region and
the detector, 𝜃0 is the fixed angle between the polar axis (�̂� in
Figure 6) and the fixed backscattering direction n̂ = r̂ (𝜃0, 0) (see
Figure 6), and g(𝜔) is a correction factor which accounts for influ-
ences that the optics of the sample arm of the AMI may have on
the backscattered light as it travels toward the detector. Further-
more, generalized dipole radiation fields are well-known in terms
of the FTs in time.[39,42] For the case outlined above, this vector
expression is (−𝜔2𝜇0Exp[i𝜔r∕c](p̃ × n̂) × n̂))∕(4𝜋R), it reduces to
a vector expression having only a �̂� component. In particular,

ẼNF
𝜃

(
𝜔, r = R, 𝜃 = 𝜃0,𝜙 = 0

)
=

−𝜔2𝜇0e
i𝜔R

c

4𝜋R

×
(
−p̃𝕩(𝜔) cos

[
𝜃0

]
+ p̃𝕫(𝜔) sin

[
𝜃0

])
(27)

where p̃𝕩 and p̃𝕫 are the vector components of p̃.
With Equation (26) and (27) input into (24), and with reason-

able algebraic simplifications outlined in Section SI.4 (Support-
ing Information), the normalized complex-valued spectrum be-
comes

z̄n>1 (𝜈) =

(n𝜔c

𝜔

)0
Δt&sm

+ +
(n𝜔c

𝜔

)1
2Δt&sm

− +
(n𝜔c

𝜔

)2
Δt&sm

+(n𝜔c

𝜔

)0
Δt&rm

+ +
(n𝜔c

𝜔

)1
2Δt&rm

− +
(n𝜔c

𝜔

)2
Δt&rm

+

(28)

where,

Δ j
± =

 j
(
𝜔 + n𝜔c

)
± j

(
𝜔 − n𝜔c

)
2n𝜔c

, (29)

and

 j (𝜔) = e
i𝜔R

c g (𝜔)
(
−p̃ j

𝕩 (𝜔) cot
[
𝜃0

]
+ p̃ j

𝕫 (𝜔)
)

(30)
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or,

 j (𝜔) = e
i𝜔R

c g (𝜔) 𝜀0

⎛⎜⎜⎝−∫V
(
𝜀r (𝜔) − 1

)
Ẽ j
𝕩 (𝜔, r) dV cot

[
𝜃0

]

+∫
V

(
𝜀r (𝜔) − 1

)
Ẽ j
𝕫 (𝜔, r) dV

⎞⎟⎟⎠ (31)

The derivation of Equation (31) makes use of a relation de-
rived and supplied in Section SI.5 (Supporting Information),
p̃ (𝜔) = 𝜀0 ∫

V
(𝜀r(𝜔) − 1)Ẽ d3V , which relates the FT of the dipole

moment of an arbitrary charge distribution to the charge distri-
bution’s relative dielectric permittivity and the integral of the FT
of the field over the volume of the distribution. Thus, as integrals
are taken over either tip or sample volumes, the dielectric func-
tion will change accordingly. Furthermore, if the dielectric prop-
erties are not isotropic, 𝜀r can be readily replaced with either 𝜀𝕩 or
𝜀𝕫. Superscripts on  j and Δj

± take one of the two already defined
notations of j = t&sm or t&rm and we stop explicitly notating the
functional dependence of 𝜔 on 𝜈 (treating this as understood).

With this, we have finally cast the normalized spectrum in
terms of clear-cut (though yet undetermined) physical quan-
tities associated with the tip-sample region, p̃𝕩 and p̃𝕫, or 𝜀r
with Ẽ𝕩 and Ẽ𝕫, which can be modeled as one sees fit. As cur-
rently expressed, each of the three terms in the numerator (and
denominator) of the normalized complex-valued spectrum are
scaled by a small dimensionless multiplicative prefactor, raised
to various powers (say of q): (n𝜔c/𝜔IR)q. For the system at hand,
10−9 ≲ (n𝜔c∕𝜔) ≲ 10−8. Therefore, the power q of the prefactor
defines each term’s relative degree of smallness: zeroth order in
smallness (q = 0), first order in smallness (q = 1), and second
order in smallness (q = 2). We additionally mention that each
of the Δ j

± terms in Equations (28) and (29), with a judicious use
of Taylor series expansions, can be approximated as a series that
contains various orders of derivatives involving the dipole mo-
ments. That said, such pursuits toward ultimate numerical pre-
cision are beyond the scope of this present work but are highly
likely to be relevant in situations attempting to quantify materials’
dielectric properties in a rigorous way, especially when consider-
ing strong resonances.

Equation (28), supported by Equations (29)–(31), should be
considered a robust springboard/starting point for quantitative
modeling of normalized spectra empirically collected. We em-
phasize that at this stage we have made no assumptions of any
kind as to functional forms of the dipole or field terms in , they
are strictly general expressions and can accommodate any num-
ber of models. To extract specific information about the sample
material’s local properties, “all” that needs to be done is the fol-
lowing. First, choose by order of smallness which terms in Equa-
tion (28) to keep. Second, for the terms that remain, generate
and input models for the quantities on the right-hand side of
Equation (28). These models will generally be complex-valued,
as expressions on the right-hand side of Equation (28) depend
on frequency-dependent FTs and complex exponentials. Third,
equate the real and imaginary parts of the model to the corre-
sponding empirical data on the left-hand side of Equation (28)

(symbolized by z̄n>1(𝜈)). Lastly, choose an appropriate method,
for each frequency value, to solve the system of two equations
for two unknown model parameters of interest (taking care to
implement complex division where necessary); these parameters
are usually the real and imaginary parts of the sample’s dielectric
function, 𝜀sm

r = 𝜀sm′

r + i𝜀sm′′

r .

2.8. Considering Detected Radiation as Originating Primarily
from a Net Dipole Radiator Oriented Parallel to the Probe Axis

Usually, contributions from dipoles oriented parallel to the sam-
ple surface (p̃𝕩) are excluded in literature analyses, as their con-
tributions to the detected radiation, though non-zero, can be
small in comparison to those originating from p̃𝕫.[43] In light of
this, and in keeping with our move toward gaining a qualita-
tive interpretation of z̄n>1, we drop dipoles with 𝕩 dependence
from consideration. In such a case, the FT of the dipole mo-
ment shown in Figure 6 will align with the polar axis �̂�, and 𝕩-
dependent terms vanish in  j(𝜔) occurrences in Equations (28)
– (31). Additionally, we will consider two more simplifications.
First, we point out that n𝜔cR/c ≈10−2 for the system at hand, and
so the complex exponential prefactors of each term in the nu-
merator and denominator of Equation (28) will cancel because
exp[i𝜔±

n R∕c]≈ exp[i𝜔R∕c]. Second, we consider that optical com-
ponent influences on the backscattered light only weakly change
with 𝜔, and so g(𝜔±

n ) → g(𝜔). Application of these lead to Equa-
tion (28) – (31) simplifying to

z̄n>1 (𝜈) =

(n𝜔c

𝜔

)0
𝛿t&sm
+ +

(n𝜔c

𝜔

)1
2 𝛿t&sm

− +
(n𝜔c

𝜔

)2
𝛿t&sm
+(n𝜔c

𝜔

)0
𝛿t&rm
+ +

(n𝜔c

𝜔

)1
2 𝛿t&rm

− +
(n𝜔c

𝜔

)2
𝛿t&rm
+

(32)

with,

𝛿
j
± =

p̃ j
𝕫
(
𝜔 + n𝜔c

)
± p̃ j

𝕫
(
𝜔 − n𝜔c

)
2n𝜔c

(33)

or,

𝛿
j
± (𝜔) =

𝜀0

2n𝜔c ∫V

[
𝜀r

(
𝜔+

n

)
− 1

]
Ẽ j
𝕫

(
𝜔+

n , r
)

dV

±
𝜀0

2n𝜔c ∫V

[
𝜀r

(
𝜔−

n

)
− 1

]
Ẽ j
𝕫

(
𝜔−

n , r
)

dV (34)

Equation (32) is as fully applicable as (28), so long as only a 𝕫-
component radiator needs to be considered, and the optical com-
ponents influence the backscattered light weakly: g(𝜔±

n ) → g(𝜔).
Note also in Equation (34) that we made use of 𝜔±

n = 𝜔 ± n𝜔c

again, as a space saver in the definition of 𝛿 j
±.

Next, we point out that the FT of the net dipole of the tip-
sample region, p̃ = p̃t&sm

𝕫 �̂�, can generally be found with a vol-
ume integral of the 𝕫-component of the polarization density:
p̃t&sm
𝕫 = ∫

V
P̃𝕫dV (see Figure 7a). We note that a rigid definition

of the exact integration volume is not needed for our purposes
here, though, of course, strict boundary definitions would be re-
quired for rigorous modeling of the scattering. We here sketch a
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Figure 7. Equivalent schematics/representations of the tip-sample region
as perceived by an observer far away from the accelerating charges. Dielec-
tric permittivity is appropriately labeled. a) The net dipole moment induced
within the volume V by the enclosed charge distributions being subjugated
to near-field excitations. b) Two dipole moments induced within distinct
volumes, tV and smV, arising from the enclosed charge distributions being
subjugated to near-field excitations (and dipole–dipole coupling).

qualitative representative outline of a boundary for such a vol-
ume and the related net dipole along the 𝕫 axis, as shown in
Figure 7a.

Without loss of generality, the single integral over V can
be replaced by three volume integrals. One for each material:
p̃t&sm
𝕫 = ∫

V
P̃𝕫dV = ∫

tV
P̃𝕫dV + ∫

air
P̃𝕫dV + ∫

smV
P̃𝕫dV , where tV stands

for the tip volume, air stands for the air gap between the probe
tip and sample, and smV stands for sample material volume. Be-
cause the air in the tip-sample gap does not polarize, that integral
vanishes, leaving p̃t&sm

𝕫 = ∫
tV

P̃𝕫dV + ∫
smV

P̃𝕫dV = p̃t∕sm
𝕫 + p̃sm

𝕫 , and

each remaining integral result, respectively, constitutes p̃t∕sm =
p̃t∕sm
𝕫 �̂� and p̃sm = p̃sm

𝕫 �̂� (as shown in Figure 7b). Thus, p̃ = p̃t∕sm +
p̃sm, and p̃t&sm

𝕫 = p̃t∕sm
𝕫 + p̃sm

𝕫 . Being able to separate out these two
contributors to the net dipole moment is important for a holis-
tic understanding, but also for developing detailed models which
aim to account for dipole–dipole coupling through the electric
field. Since the detection and signal processing theory at this
stage is now complete, and with Equations (28)–(31) describing
the normalized spectrum allowing for dipoles oriented both in
and out of the sample surface’s plane, and Equations (32)–(34)
specializing to the case of net dipole/dipoles oriented out of the
sample surface’s plane, and parallel to the probe axis, we move
toward the last goal of this work: deriving a basic, yet practically
useful, interpretation of z̄n>1.

2.9. Approximating the Complex-Valued Nano-FTIR Spectrum of
Weak Molecular Vibrations in a Nonmetal Sample Normalized
with a Nonmetal Reference

Perhaps the most common application of nano-FTIR is to con-
duct vibrational spectroscopy of insulating or semiconducting
materials (nonmetals). This common class of measurements,
aimed at identifying chemistry and other physicochemical prop-
erties, benefits from being able to compare nano-FTIR spec-
tra with other conventional FTIR measurements for data inter-
pretation. This process hinges on having a basic understand-
ing of what z̄n>1(𝜈) physically represents. In this section, we

provide a semiquantitative description of what z̄n>1(𝜈) approx-
imately represents in the case of bulk nonmetal samples and
references.

We treat the net dipole as being oriented parallel to the probe
axis (𝕫 axis in Figure 6), as was the case in the last section. Fur-
thermore, we consider an ideal case in which the sample mate-
rial, reference material, and probe tip are optically isotropic; that
is, we assume the dielectric function of all materials only depends
on scalar frequency (𝜈 or 𝜔). With this in mind, we now move to
approximate Equation (32) by i) only keeping terms to zeroth or-
der in smalless (q = 0), ii) allowing p̃ j

𝕫(𝜔 + n𝜔c) + p̃ j
𝕫(𝜔 − n𝜔c) ≅

2p̃ j
𝕫(𝜔) (strictly valid only when the second derivate is small), and

iii) replacing the single net dipole with two distinct dipoles (as
described in the previous section and pictorially represented in
Figure 7b); which yields

z̄n>1 ≅
p̃t∕sm
𝕫 + p̃sm

𝕫

p̃t∕rm
𝕫 + p̃rm

𝕫

(35)

The superscript notation t/sm serves to indicate “tip adja-
cent to sample material” and similarly, t/rm indicates “tip ad-
jacent to reference material.” Equation (35) shows that the
normalized complex valued nano-FTIR spectrum is dominated
by a ratio (generally complex division) of the FT of the
net dipole moment of the tip-sample region to that of the
FT of the net dipole moment of the tip-reference material
region.

Next, we again use the general relation for the FT of an arbi-
trary dipole moment (derived in Section SI.5, Supporting Infor-
mation). This yields

z̄n>1 ≅
∫tV

Ẽt∕sm
𝕫,in dV +

(
𝜀sm

r − 1

𝜀t
r − 1

)
Qsm

V

∫tV
Ẽt∕rm
𝕫,in dV +

(
𝜀rm

r − 1

𝜀t
r − 1

)
Qrm

V

(36)

however, since the probe tip is considered a very good conduc-
tor, and if we treat cases where the sample and reference ma-
terials are both nonmetallic, then the ratio in front of the sec-
ond term in both the numerator and denominator is very small.
Thus, we only need treat the first term in the numerator and
denominator in (36): z̄n>1 ≅ Qt∕sm

tV ∕Qt∕rm
tV where Q is an integral

of the FT of the electric field component parallel to the probe
axis, over the region and material referred to by the sub- and
superscripts (the mathematical form is a manifestation of the
fact that a metallic tip will generally backscatter much more light
than a nonmetallic sample, and so radiation originating from the
tip’s dipole dominates the detected signal). Still, a more advan-
tageous form can be found. To do so, we treat the tip end as
a sphere being polarized by both the incident IR light and the
near electric field arising from the induced dipole moment in the
sample. Additionally, the volume integral of the 𝕫 component of
the FT of the electric field inside the sample and reference ma-
terials are approximated as smoothly varying in energy so that
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Figure 8. ATR-FTIR, nano-FTIR, and 𝜅2(z̄′2, z̄′′2 ) extracted from the real and imaginary parts of the nano-FTIR spectrum for (a) polystyrene and (b) Kapton.

Qsm
V ∕Qrm

V ≈ constant. While all the details are clearly outlined in
Section SI.6 (Supporting Information), the procedure results in

z̄n>1 ≅
(
𝜀sm

r − 1
)

Qsm
V(

𝜀rm
r − 1

)
Qrm

V

≈
𝜀sm

r − 1

𝜀rm
r − 1

(37)

Equation (37) is surprisingly simple, and naturally lends itself
to an algebraically straightforward way of explaining why z̄′

n>1
closely relates to dispersion, and z̄′′

n>1 closely relates to absorp-
tion. Furthermore, as we will show, the algebraic inversion of
Equation (37), z̄n>1(𝜀sm

r , 𝜀rm
r ) → 𝜀sm

r (z̄n>1, 𝜀rm
r ), provides a simple

pathway to transform nano-FTIR data into a model extinction
coeffect that closely matches empirical results measured via at-
tenuated total reflection Fourier transform infrared spectroscopy
(ATR-FTIR).

Assuming that the reference material being used is nonmetal-
lic, spectrally flat in the IR wavenumber region of interest, and
also realizes negligible absorption in the IR wavenumber region
of interest, the real (imaginary) part of the reference material’s
dielectric function remains constant-in-energy, d𝜀rm′

r ∕d𝜈 ≈ 0
(vanishes, 𝜀rm′′

r ≈ 0). This is the case for the commonly used refer-
ence material of crystalline Si (cSi): 𝜀rm

r = 𝜀cSi
r ≅ 11.7 + i 8.48 ∗

10−4 ≈ 11.7.[44] So, assuming this kind/class of reference mate-
rial with vanishingly small 𝜀rm′′

r , the real and imaginary parts of
z̄n>1 are, approximately,

z̄′
n>1 ≈

𝜀sm′

r − 1

𝜀rm′
r − 1

, z̄′′
n>1 ≈

𝜀sm′′

r

𝜀rm′
r − 1

(38)

Apparently the real and imaginary parts of z̄n>1 directly relate
to 𝜀sm

r , the sample material’s relative complex dielectric permittiv-
ity (i.e., dielectric function): z̄′

n>1 ∝ 𝜀sm′

r − 1 and z̄′′
n>1 ∝ 𝜀sm′′

r . Be-
cause the real part of the dielectric function is closely related to
dispersion via the refractive index, n,[39,45] Equation (38) qualita-
tively explains why the real part of z̄n>1 has a similar line shape
and why it is common to report the real part of z̄n>1 as relating to
dispersion. Similarly, because the imaginary part of the dielectric
function is closely related to absorption via the extinction coeffi-
cient, 𝜅,[39,45] Equation (38) qualitatively explains why the imagi-
nary part of z̄n>1 has a similar line shape and why it is common to
report the imaginary part of z̄n>1 as relating to absorption. These
relationships are easily observed in Figure 5e,f, and become even
more acute in the weak oscillator limit (n ≫ 𝜅), where n ≈

√
𝜀′r

and 𝜅 ≈ 𝜀′′r ∕(2
√
𝜀′r);

[45,46] as others have also shown by different
means.[5c,13a] However, even in the weak oscillator limit, 𝜅 still
depends on both the real and imaginary parts of the dielectric
function, and since far-field transmission-type FTIR absorbance
spectra measure 𝜅,[46,47] it stands to reason that z̄′′

n>1 ∝ 𝜀sm′′

r alone
may not be the best near-field quantity to report as absorption,
and compare with other FTIR spectral databases.

The level of connection between z̄′′
2 and 𝜅 for a PS sample is

compared in Figure 8a by plotting z̄′′
2 (referenced with respect

to cSi) in red alongside ATR-FTIR absorbance data of the same
sample in black (spectra are normalized to unity). While the z̄′′

2
peak at 692 cm−1 is red-shifted ≈ 2.4 cm−1 in comparison to
ATR-FTIR absorbance, the similarity is still quite striking and
gives credence to the use of z̄′′

2 as a proxy for absorption, as ex-
pected. However, a better agreement can be found with a sim-
ple algebraic manipulation of the near-field data. By solving the
two equations in Equation (38) for the two unknowns, we can
establish functions for real and imaginary parts of the sample’s
dielectric function in terms of the real and imaginary parts of z̄n:
𝜀sm′

r (z̄′
n, z̄′′

n ) and 𝜀sm′′

r (z̄′
n, z̄′′

n ). These can be used to compute an ex-
pression for the model extinction coefficient (or refractive index)
in terms of z̄′

n and z̄′′
n ; this is because the extinction coefficient is

generally a function of the real and imaginary parts of the dielec-
tric function:[45] 𝜅(𝜀sm′

r , 𝜀sm′′

r ) → 𝜅(z̄′
n, z̄′′

n ). The normalized result,
when considering a cSi reference material as given above, is

�̄�n>1

(
z̄′2, z̄′′2

)
≅ b

[√
114.5 z̄′′2n +

(
1 + 10.7 z̄′n

)2 −
(
1 + 10.7 z̄′n

)]1∕2

(39)

where b serves as the constant scaling/normalization parameter;
and we note that the 10.7 prefactor to z̄′

n in (38) will be differ-
ent for different reference materials. As can be seen in Equa-
tion (39), �̄�n>1 depends on both the real and imaginary parts of
z̄n>1. Inputting the nano-FTIR data for PS (Figure 5e,f) into Equa-
tion (39) yields a result that is plotted in blue in Figure 8a. The
red-shift relative to the ATR-FTIR data has essentially vanished
(≈0.1 cm−1). We note in passing that the higher frequency oscil-
lations in the near-field data are likely from noise, while the com-
paratively narrower full-width half maximum of the band near
≈695 cm−1 arises from sampling a nanoscale volume.

The validity and utility of Equation (39) was further tested by
conducting ATR-FTIR and nano-FTIR of a Kapton sample. The
results are plotted in Figure 8b. As in the PS case, �̄�2(z̄′

2, z̄′′
2 ) is

a good approximation of the ATR-FTIR absorbance spectrum
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which measures 𝜅, and while perhaps more challenging to see on
a broader scale, �̄�2(z̄′

2, z̄′′
2 ) is again a better estimate of ATR-FTIR

peak centers than z̄′′
2 alone. In particular, the average �̄�2(z̄′

2, z̄′′
2 )

peak center is 17% closer to ATR-FTIR peak centers than z̄′′
2 peak

centers (based on an analysis of eight peaks fitted with Lorenz
models — see Section SI.7 and Figure S1, Supporting Informa-
tion). Moreover, a comparison of the �̄�2(z̄′

2, z̄′′
2 ) semiquantitative

model, Equation (39), with the ratio of reflection coefficients,
z̄n>1 ≈ 𝛽sm∕𝛽rm, where 𝛽 j = (𝜀 j

r − 1)∕(𝜀 j
r + 1), another commonly

used first-order approximation,[5c,13a] was also conducted for the
Kapton data displayed in Figure 8b. As can be seen in Section
SI.7 and Figure S1 (Supporting Information), �̄�2(z̄′

2, z̄′′
2 ) matched

ATR-FTIR peak centers more closely than 𝜅𝛽sm∕𝛽rm (z̄′
2, z̄′′

2 ) for
all eight peaks in the Kapton data. This increased peak center
accuracy of Equation (39), combined with its algebraic simplicity,
suggests that it may be a better means of assigning spectral fea-
tures of nano-FTIR spectra to weak molecular oscillations. As one
final note, we stress that this approximation (Equation 39) is most
applicable for nano-FTIR in the limit of weak and local molecular
oscillations in nonmetal materials (like polymers) referenced to
spectrally flat cSi when the second derivative of p̃ j

𝕫(𝜔) is small,
and that retrieval of rigorously quantitative values of 𝜀sm

r for
a general system would require a more thorough handling of
Equations (28)–(31) for dipoles in and out of the sample plane,
or Equations (32)–(34) for dipoles strictly out of plane and coaxial
with the probe.

3. Conclusion

At an increasing rate, scattering-type nano-FTIR is being utilized
to conduct nanoscale infrared characterization over an impres-
sive breadth of fields, including meteoritics, chemistry, physics,
energy storage, and biology. The broad potential applicability of
the method is hard to overstate. In this work, we have provided
holistic and quantitative derivations of how nano-FTIR spectra
are realized, presenting a self-contained pedagogical work that
benefits both beginning and seasoned practitioners. We intro-
duced the technique and rigorously stepped through the detec-
tion and signal-processing steps. Along the way, common ques-
tions are naturally answered, and connections to past works are
highlighted. A new and completely general relation for normal-
ized complex valued nano-FTIR spectra, z̄n>1(𝜈), is presented:
Equations (28)–(31), which is cast in two forms. In one, z̄n>1(𝜈) is
written in terms of generalized FTs of local dipole moments ori-
ented both in and out of the sample surface plane. In the other,
z̄n>1(𝜈) is written in terms of volume integrals of generalized FTs
of local electric field components oriented both in and out of the
sample surface plane, accompanied by corresponding dielectric
functions. This formalism can be used as a springboard for ad-
ditional rigorous modeling endeavors. Moreover, we developed a
new, surprisingly simple yet insightful model, useful in the weak
oscillator limit when using a cSi reference. It rationalizes why
the real and imaginary parts of complex-valued nano-FTIR spec-
tra relate to dispersion and absorption respectively, Equation (38),
and facilitates an approximation to the samples’ local extinction
coefficient that more closely matches ATR-FTIR data than the
imaginary part alone, Equation (39). The extinction coefficient
model herein takes as inputs both the real and imaginary parts

of normalized complex valued nano-FTIR spectra and can be ap-
plied straightforwardly with algebra, without the need for com-
plex computations.

4. Experimental Section
Nano-FTIR: The nano-FTIR spectra displayed in Figure 2 (top-most

traces), Figure 5, and Figure 8 were collected with 8 cm−1 spectral
resolution on a commercial Neaspec system equipped with the broad-
band nano-FTIR laser option (a DFG mid-IR laser source tunable across
five output ranges). As for other hardware options, an MCT infrared detec-
tor, a ZnSe beamsplitter, and nano-FTIR AFM probes (Neaspec) were all
used for these data sets. Moreover, the collections occurred while the AFM
was in a tapping mode with a nominal tapping amplitude of 85 nm. The
nano-FTIR/SINS data displayed in Figure 2 (bottom two traces) were col-
lected at Lawerence Berkeley National Laboratory’s Advanced Light Source
at Beamlines 2.4 and 5.4, as indicated in Figure 2. The data collected at BL
2.4 (red trace, Figure 2) used GeCu detector and a KRS-5 beamsplitter. The
data collected at BL 5.4 (dark blue trace, Figure 2) used an MCT detector
and KBr beamsplitter. As with the other nano-FTIR measurements, tap-
ping mode was also utilized, and with a nominal tapping mode amplitude
of ≈ 90 nm. Finally, in all cases, each of the devices were contained within
an enclosure purged with Nitrogen.

ATR-FTIR: The ATR-FTIR measurements of PS and Kapton in this
work were collected at 4 cm−1 resolution and conducted on a Shimadzu
IRTracer-100 system with a Ge crystal. The spectroscopy system was con-
tained within a nitrogen-purged enclosure.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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