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Abstract 10 

Cloud base height (CBH) is an important parameter for physics-based high resolution solar 11 

radiation modeling. In sky imager-based forecasts, a ceilometer or stereographic setup is needed 12 

to derive the CBH; otherwise erroneous CBHs lead to incorrect physical cloud velocity and 13 

incorrect projection of cloud shadows, causing solar power forecast errors due to incorrect 14 

shadow positions and timing of shadowing events. In this paper, two methods to estimate cloud 15 

base height from a single sky imager and distributed ground solar irradiance measurements are 16 

proposed. The first method (Time Series Correlation, denoted as “TSC”) is based upon the 17 

correlation between ground-observed global horizontal irradiance (GHI) time series and a 18 

modeled GHI time series generated from a sequence of sky images geo-rectified to a candidate 19 

set of CBH. The estimated CBH is taken as the candidate that produces the highest correlation 20 

coefficient. The second method (Geometric Cloud Shadow Edge, denoted as “GCSE”) integrates 21 

a numerical ramp detection method for ground-observed GHI time series with solar and cloud 22 

geometry applied to cloud edges in a sky image. CBH are benchmarked against a collocated 23 

ceilometer and stereographically estimated CBH from two sky imagers for 15 minute median-24 

filtered CBHs. Over 30 days covering all seasons, the TSC method performs similarly to the GCSE 25 

method with nRMSD of 18.9% versus 20.8%. A key limitation of both proposed methods is the 26 

requirement of sufficient variation in GHI to enable reliable correlation and ramp detection. The 27 

advantage of the two proposed methods is that they can be applied when measurements from 28 

only a single sky imager and pyranometers are available. 29 

 30 

Keywords: Cloud base height; Sky imager; Irradiance ramp detection; Short-term solar forecasting 31 

 32 
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 33 

Nomenclature 34 

GHI$(𝑡; 𝐻) 
GHI simulated using USI imagery at a 
given CBH  𝑡* Current time 

GHI$+,-(𝑡) GHI from the pyranometer at station 𝑖 𝐮0 Cloud pixel speed [pixel s-1] 
GHI$1-2(𝑡) GHI from clear sky model 𝐮 Cloud speed [m s-1] 

𝐻 Cloud base height (CBH) 𝐱4 
Intersection of cloud motion line and cloud 
boundary [m] 

𝐻1567 CBH measured by ceilometer 𝐱84 
Intersection of cloud motion line and cloud 
boundary [pixels] 

𝐻9 CBH candidate 𝐱: Vector describing ground station location 
[m] 

𝐻;+<57 
CBH estimate from Time Series 
Correlation and Geometric Cloud 
Shadow Edge methods  

𝐱8: Vector describing ground station location 
[pixels] 

ℎ Sky imager elevation 𝐱> Intersection of solar beam and cloud map 

𝐾 
Number of samples in 20 minutes at 30 
second intervals Δ𝐻 Cloud base height error [m] 

kt	 Clear sky index ∆𝑡 
Cloud travel time, a time difference between 
given initial timestamp 𝑡$ and start of next 
down ramp 

M	 Number of modeled CBH values ∆𝑡F Forecast time step 

MBE Mean bias error  ∆𝐱 
Cloud shadow horizontal shift 
corresponding to cloud base height vertical 
shift Δ𝐻 [m] 

𝑛J	
Number of cloud map pixels in one 
dimension ∆𝐱8 Cloud displacement in the sky image 

[pixels] 
N Total number of available ground sites Δ𝐱4 Cloud projection error 

nMBE Normalized mean bias error 𝜃 
Zenith coordinates of a pixel in the sky 
image 

nRMSD Normalized root mean square 
difference 𝜃Q Sky imager field of view in degrees from the 

vertical 
𝑂 Sky imager position 𝜃> Solar zenith angle 
𝑅 Length of cloud map in one dimension 𝜆 Distance along a ray from observation point  

𝑅$9 
Correlation coefficient between 
GHI6U𝑡; 𝐻9V and GHI$+,-(𝑡) at site 𝑖 for 
CBH 𝐻9 

𝜇 Cloud velocity scaling factor 

𝑅9 
Correlation coefficient averaged over all 
sites at CBH 𝐻9  

𝜇$+,- Mean of GHI$+,-(𝑡) 

RMSD Root mean square difference 𝜇$9 Mean of GHI$U𝑡; 𝐻9V 

𝑡 Time 𝜙 Azimuth coordinates of a pixel in the sky 
image 

𝑡$ Initial timestamp used to compute	∆𝑡 𝜙> Solar azimuth angle 
  35 
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1. Introduction 36 

1.1 Impact of CBH on Intra-hour Solar Power Forecasting with a Sky Imager 37 

CBH plays a vital role in intra-hour solar power forecasting. For typical mid-latitude solar zenith 38 

angles of 45°, a difference of 100 m in CBH causes a 100 m translation of the cloud shadow on 39 

the ground (Eq. (1). In addition, since opaque clouds typically have a clear sky index of 0.4, local 40 

power output forecast errors of 60% of clear sky production levels (Martinez-Anido et al., 2016) 41 

are common if a CBH error causes the wrong sky condition (clear or cloudy) to be forecast. Thus, 42 

accurate CBH estimation is critical for predicting local power ramps over short time scales. 43 

For sky imager solar forecasts that are based on the geometry between the sun, clouds, and 44 

ground, CBH is required for mapping the cloud field from sky images to the atmosphere and then 45 

projecting to the ground. Specifically, the mapping process consists of three geometry steps: 1) 46 

projection of the clouds in the sky image into a plane in the sky (termed “cloud map”, see Section 47 

2.3) at the CBH; 2) forward motion of the cloud map in time; 3) projection of cloud map onto the 48 

ground. Thus, an erroneous CBH leads to three different scaling errors listed below (see the 49 

nomenclature for variable definitions and Section 3.2. for derivations: 50 

 51 

1) The cloud projection error is:  52 

Δ𝐱1 = 𝛥𝐻 ∙ (𝑡𝑎𝑛 𝜃 𝑠𝑖𝑛𝜙 , 𝑡𝑎𝑛 𝜃 𝑐𝑜𝑠𝜙 , 1)b (1) 

      where Δ𝐱1 is a 3D-vector describing position error for a given CBH error ΔH, and (𝜃, 𝜙) 53 

are respectively the zenith and azimuth pointing angles corresponding to a pixel obtained 54 

using pixel coordinates (refer to Figure 4 later) and the camera geometric calibration (e.g. 55 

Urquhart et al. 2016). ΔH linearly scales cloud horizontal position in the radial direction 56 

and stretches or shrinks the cloud about a center point at the sky imager, and the scaling 57 

error is more sensitive to ΔH  at farther spatial distance (outer pixels) caused by the 58 

nonlinear effect of 𝑡𝑎𝑛 𝜃. 59 

 60 

2) Physical cloud velocity error. Because the cloud velocity derived from sky image is in units 61 

of pixels, a conversion to actual cloud velocity in units of m/s requires scaling the pixel 62 

velocity with CBH, resulting in a linear scaling error by 𝛥𝐻. 63 

 64 

3) Cloud shadow projection error. When the cloud map is advected and projected onto the 65 

ground, the vertical shift ∆𝐻 causes a uniform horizontal shift |∆𝐱| in shadow position 66 

following the expression: 67 
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|∆𝐱| = ∆𝐻 𝑡𝑎𝑛𝜃>, (2) 

which is exaggerated at larger solar zenith angles 𝜃> . Thus, CBH errors also cause 68 

shadows or sunlight to be predicted at locations that are shifted further as the distance 69 

from the sky imager increases. 70 

 71 

1.2 CBH Measurement Techniques 72 

CBH can be measured directly using in-situ and remote sensing instruments such as 73 

radiosondes (Wang & Rossow, 1995), ceilometers (Gaumet et al., 1998; Martucci et al., 2010), 74 

and satellites (Hutchison et al., 2006). A radiosonde is a battery-powered telemetry instrument 75 

package that vertically profiles the atmosphere as the balloon ascends, yielding CBH estimates. 76 

Although the CBH measurements from a radiosonde are accurate, the observations are usually 77 

taken at most twice daily and at discrete and sparse locations, making them unsuitable for use in 78 

intra-hour solar energy forecasting. Ceilometers are the most common CBH observational tool 79 

and are regularly installed at airports and meteorological aerodrome reports (METAR) stations. It 80 

emits a pulsed near-infrared vertical laser beam and measures a vertical profile of atmospheric 81 

backscatter from which CBH is derived. Since ceilometers can be expensive, they have limited 82 

application outside of airports in most countries except in the UK, where ceilometer is a standard 83 

component of weather stations. 84 

Indirect CBH measurements using ground based thermal infrared cameras (Shaw and Nugent, 85 

2013; Liu et al., 2015) and derived data from remote-sensing techniques such as 86 

spectroradiometers (Hutchison et al., 2006) are also feasible. The assumption that clouds are 87 

blackbodies usually leads to an overestimation of CBH derived by infrared cloud imagers (Liu et 88 

al., 2015). Satellite-measured cloud top near-infrared radiance (Dessler et al., 2006) or measured 89 

cloud top temperature with an atmospheric temperature profile (Prata & Turner, 1997) can be 90 

used to obtain cloud top height with wide spatial coverage, but CBH is difficult to detect from 91 

satellites and time delays in data dissemination limit its application in short-term solar power 92 

forecasting. Numerical weather prediction offers another alternative to obtain CBH (Killius et al., 93 

2015). 94 

CBH can also be obtained from sky imagery. The application of stereogrammetric techniques 95 

using two sky imagers was investigated by Allmen and Kegelmeyer (1996) and Kassianov et al. 96 

(2005). Nguyen and Kleissl (2014, referred to as NK14) further generalized and improved 97 

accuracy and computational efficiency of the approach introduced by Kassianov et al. (2005) for 98 

(binocular) stereographic CBH estimation: a two-dimensional (2D) georeferenced projection is 99 
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used to overlay images from each camera. The CBH is the cloud height associated with the 100 

minimum normalized matching error, which implicitly assumes a single cloud layer. More 101 

sophisticated stereo-vision techniques can offer cloud base height estimate in 3D coordinates 102 

using the standard technique of matching image patches along epipolar curves (Allmen and 103 

Kegelmyer, 1996; NK14; Kleissl et al., 2016). These methods are computationally intensive and 104 

provide high spatial resolution CBH within a pair of images. The stereographic method requires 105 

at least two sky imagers and accurate geometric calibration of the imaging system (e.g. Urquhart 106 

et al., 2016). Wang et al. (2016) and Kuhn et al. (2018a; 2018b) demonstrated that CBH can be 107 

obtained from a single sky imager and an independent measurement of cloud speed. Because 108 

angular cloud speed determined from sky images is proportional to cloud speed and CBH, CBH 109 

can be derived from a collocated cloud speed sensor (Fung et al., 2014) and sky imager. In Wang 110 

et al. (2016) and for the same location as in this paper, typical daily root mean square differences 111 

were 126 m or 17% of the observed CBH. But the raw (instantaneous) CBH measurements need 112 

to be filtered to derive a robust CBH, which makes CBH outputs infrequent (one CBH output every 113 

50 sec for 27 partly cloudy days and every 250 sec for 21 overcast days, on average). 114 

1.3 Objectives and Structure of the Paper 115 

CBH is a required input for some sky imager-based short-term solar power forecasting 116 

variants (Chow et al., 2011; Schmidt et al., 2016). The variety of methods presented in Section 117 

1.2 can produce accurate CBH information at different temporal and spatial scales, however either 118 

equipment or operating costs are prohibitive, or computational requirements are high, or the 119 

temporal resolution is insufficient for intra-hour solar power forecasting.  120 

Cameras are ubiquitous and low cost, and nearly every solar power installation has 121 

pyranometers and PV energy meters. Therefore, existing and low cost infrastructure provides an 122 

opportunity to estimate cloud height as an ancillary product if the irradiance distribution on the 123 

ground is measured in space and time. Thus, the objective of this work is to provide a low-cost 124 

alternative to estimate CBH using such irradiance measurements and a single sky-pointing 125 

camera. CBH is estimated using two related methods requiring a single sky imager and irradiance 126 

sensors distributed within the footprint of the sky imager, i.e. within the camera’s field of view. 127 

Both methods are new and have not been been presented before. In the first method, CBH is 128 

estimated by correlating ground-observed GHI measured using a set of pyranometers with GHI 129 

modeled using a sky imager irradiance forecast (Chow et al., 2011). Modeled GHI time series are 130 

generated from a sequence of sky images geo-rectified to a candidate set of CBH. The second 131 

method estimates CBH by matching ramp event timings from pyranometer-measured GHI to 132 
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cloud shadow arrival times derived from cloud geometry and sun triangularization adapted to sky 133 

imagery. The presentation of the latter method provides a new mathematical description of the 134 

forecast approach used in Chow et al. (2011). 135 

This paper is organized as follows. The measurement equipment, including the sky imaging 136 

system and forecasting procedure, is briefly described in Section 2. Section 3 introduces the CBH 137 

estimation methods. Section 4 presents the overall performance in a set of 30 days, and then 138 

validates CBH from both methods against ceilometer data and the NK14 stereographic method 139 

in a case study. Section 5 provides detailed discussion regarding the performance and limitation 140 

of the proposed methods. Finally Section 6 provides conclusions and future work. 141 

2. Experimental Data and Sky Imager Forecast Procedure 142 

2.1 Ground Measurements 143 

The University of California, San Diego (UCSD) designed and developed a sky imager system 144 

specifically for short-term solar power forecasting applications (Fig. 1, Urquhart et al., 2013). The 145 

UCSD Sky Imager (USI) features a high-quality image sensor and lens contained in a thermally 146 

controlled, compact environmental housing, and capture software employing a high dynamic 147 

range (HDR) imaging technique. The USI uses an Allied Vision GE-2040C camera which has a 148 

15.15 × 15.15 mm ON Semiconductor KAI-04022 CCD sensor (originally developed by Kodak). 149 

The Sigma 4.5 mm focal length fisheye lens provides a 180 degree field of view with 1748 × 1748 150 

pixels covering the sky hemisphere. Thermal stability of the camera is achieved using two 151 

thermoelectric coolers for the entire enclosure, a copper heat sink, and a fan attached to the 152 

camera to keep it at the ambient enclosure temperature. The dome on the USI is a 1.6 mm thick, 153 

neutral density (ND2) acrylic hemisphere with a UV protective coating. Additional information can 154 

be found in Urquhart et al. (2015). The USI used in this analysis is installed next to one of the six 155 

pyranometers shown in Figure 2 and Table 1. 156 

 157 
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(a) (b) 

Figure 1: The University of California, San Diego Sky Imager (USI). (a) Outer view showing the enclosure 
with dome and white radiation shields for the coolers; (b) a top view of the open system showing the 

components inside the enclosure. 

 158 

GHI data sampled at 1 Hz is obtained from six weather stations with Li-COR 200SZ 159 

pyranometers installed at the locations shown in Figure 2 and Table 1. In addition, a Vaisala 160 

CT25K ceilometer located on EBU2 computes CBH every 20 seconds from backscatter returns. 161 

Due to the small sampling area (a small <0.1° cone above the ceilometer), the heterogeneity of 162 

cloud field, as well as cloud formation and movement, the 20-second ceilometer output is not 163 

always representative of the CBH in the field of view of the sky imager. Therefore, consistent with 164 

NK14, a 15-minute median filter is applied to ceilometer measurements prior to comparison with 165 

the proposed methods. 166 

 167 

 168 
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Figure 2: Locations of the six pyranometers and the USI on the UCSD campus. The ceilometer is 

located on EBU2. Reprinted with permission from Yang et al. 2014. © Google Maps. 

 169 
Table 1: Locations of USI and pyranometers used for CBH estimation and their respective 

distances to the USI. (re-tabulated with permission from Yang et al. 2014) 
Station Name Latitude Longitude Altitude (m MSL) Distance to USI (m) 

USI 32.8722 -117.2410 140 - 

BMSB 32.8758 -117.2362 111 603 

CMRR 32.8806 -117.2353 111 1074 

EBU2 32.8813 -117.2330 101 1257 

HUBB 32.8672 -117.2534 24 1288 

MOCC 32.8784 -117.2225 103 1857 

POSL 32.8807 -117.2350 110 1103 
 170 

2.2 Evaluation Dataset 171 

The CBH estimation methods are evaluated using two different sets of CBH measurements: 172 

(1) an on-site ceilometer on 33 days and (2) the NK14 2D stereography method on 3 days. Thirty-173 
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three cloudy days from 2012 to 2016 were selected based on the following criteria: 174 

1) Data availability from sky imager, ceilometer and pyranometers.  175 

2) Cloudy conditions: clear and rainy days were excluded. 176 

3) Cloud type: opaque clouds such as stratocumulus, cumulus, and stratus, since they are 177 

most relevant to solar forecasting of GHI that is the subject of this paper. 178 

4) Cloud height predominantly less than 1000 m. Four days were chosen with cloud heights 179 

greater than 1000 m 180 

5) Lack of rain: less than 2 hours of rain 181 

Finally, only time periods with solar zenith angles less than 75° are considered. Moreover, 182 

during an intensive operating period in 2012, two sky imagers were installed, which allowed 2D 183 

stereography to be applied to four days, as reported in NK14. December 14, 2012 was 184 

characterized by broken stratocumulus clouds above a few cumulus clouds. On December 26, a 185 

single layer of low scattered cumulus clouds was observed. December 29 was overcast with 186 

stratus clouds. Jan 1, 2013 analyzed in NK14, was not included in this paper because several 187 

station outages limited GHI measurements to only two stations. 188 

2.3 Sky Imager Forecast Procedure 189 

The USI can be used to geolocate clouds, to measure cloud angular velocity, and to track 190 

cloud motion (Chow et al., 2011; Chow et al., 2015). These measurements are then used to 191 

forecast future cloud locations up to 15 minutes ahead. The forecast procedure is outlined in the 192 

flow chart of Figure 3. A brief overview of the USI forecast procedure is given in the remainder of 193 

this section. For more information, the reader is referred to Chow et al. (2011), Ghonima et al. 194 

(2012), Urquhart et al. (2013), and Yang et al. (2014). Similar sky imager systems and forecast 195 

procedures can be found in Cazorla et al. (2010); Marquez and Coimbra (2013), and Schmidt et 196 

al. (2016).  197 

 198 
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Figure 3: Flowchart of USI forecast procedure. Sky image processing (left) is combined with the clear 
sky index (kt) from local ground observations (right) to produce spatial irradiance forecasts. (reprinted 

with permission from Yang et al. (2014)) 

 199 

Based on images taken every 30 seconds, cloudy pixels are detected and using lens-camera 200 

geometry, images are transformed to a rectified planar grid (Allmen and Kegelmeyer, 1997). CBH 201 

is then used to register each pixel to a latitude, longitude, and altitude (geo-rectification, Chow et 202 

al., 2011). The resulting geo-referenced map of clouds is termed the “cloud map”, which is a 203 

planar mapping of cloud position at a specified altitude above the forecast site. The cloud map at 204 

the current time 𝑡	 = 	𝑡* yields the real time solar irradiance forecast (which would be sensibly 205 

called “nowcast” even though commonly the word “nowcast” is associated with minutes-ahead 206 

forecast), while future cloud positions (𝑡	 > 𝑡*) are determined through cloud advection at discrete 207 

time steps delivering the short-term solar irradiance forecast. The ability to resolve the horizontal 208 

cloud structure near the horizon is limited due to perspective effects (look vectors are nearly 209 

parallel to horizontal cloud base) and due to the longer distance to the clouds, causing a single 210 

pixel to subtend a much larger projected area. Both of these factors introduce errors when using 211 

the perimeter of the cloud map (more discussion in Section 5.3). 212 
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Cloud pixel velocity is obtained by applying a cross-correlation method to the red-blue ratio of 213 

two consecutive sky images. The cloud speed 𝐮 [m s-1] is then calculated from cloud pixel velocity 214 

𝐮0 [pixel s-1] using a scaling factor 𝜇, which is a function of CBH as: 215 

 216 

𝐮 =
1

𝜇(𝐻)
𝐮0 =

1
𝜇
∆𝐱8
∆𝑡F

	, (3) 

 217 

where ∆𝐱8 is the cloud displacement in the image, ∆𝑡F  is the image capture interval (here also 218 

equal to the forecast time step), and the ^ indicates units of pixels. Equation (9Error! Reference 219 

source not found. in Section 3.2 gives the expression for 𝜇(𝐻). The cloud velocity is then used 220 

to advect the planar cloud map to generate cloud position forecasts for each forecast horizon. 221 

Since the distance from the sun to the Earth is much larger than the distance from the clouds to 222 

the Earth (i.e. the direct solar beam for locations on Earth is essentially parallel), cloud shadow 223 

speed is essentially identical to cloud speed. 224 

The forecast procedure used in this work is developed for a single sky imager. The default 225 

CBH source for a single sky imager is METAR. METAR stations, which use a ceilometer, report 226 

high quality CBH data but are limited in temporal resolution (typically hourly reports) and are 227 

spatially sparse. Therefore, spatial variability in cloud cover causes differences between CBH at 228 

the sky imager location and the nearest METAR station. These limitations are the main 229 

movtivation for this work. 230 

3. Methods for CBH Estimation 231 

A Time Series Correlation (TSC) method and a Geometric Cloud Shadow Edge (GCSE) 232 

method will be introduced in this section. Both methods only require a single sky imager and time-233 

synchronized measurements of GHI or solar power output at surrounding stations. For TSC, at 234 

each ground station GHI is simulated for a set of CBHs and cross-correlated with GHI 235 

measurements at the corresponding ground sites. For GCSE, cloud arrival and departure times 236 

are determined from the GHI time series using ramp detection. CBH is then derived by matching 237 

these detected cloud arrival times with cloud arrival times simulated using USI cloud imagery and 238 

cloud position forecasts.  239 

3.1 TSC Method 240 

Most of the large-magnitude variability in GHI time series is introduced by cloud shadows 241 
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approaching or departing a location. In fact, as described in Wang et al. (2016), cloud shading 242 

events implicitly contain CBH information: the duration of the shading event is proportional to the 243 

length of cloud (and cloud shadow) in the direction of cloud motion (cloud velocity assumed to be 244 

constant). Using an independent cloud speed measurement (e.g. Bosch and Kleissl, 2013; Bosch 245 

et al., 2013) along with cloud pixel speed estimated in the USI forecast procedure (Section 2.3), 246 

CBH can be derived based on Eq. Error! Reference source not found..  247 

TSC estimates CBH using a grid search performed over a set of candidate CBH values 𝐻9. 248 

For each ground measurement station (indexed by 𝑖 = 1…𝑁), GHI is modeled over the last 20 249 

minutes for each 𝐻9 (𝑗 = 1…𝑀) using USI nowcasts from a 20 min sequence of geo-rectified sky 250 

images captured at sampling rate of 30 sec (i.e. a total of 𝐾 = 41 image samples). For each 251 

station, the correlation coefficient 𝑅$9  is computed between each modeled GHI time series 252 

GHI$U𝑡; 𝐻9V and the observed GHI time series GHI$+,-(𝑡): 253 

 254 

𝑅$9 =
k

lmn
opqmnr

∑ tGHI$+,-U𝑡* + 𝑘∆𝑡FV − 𝜇$+,-xtGHI$U𝑡* + 𝑘∆𝑡F;𝐻9V − 𝜇$9xl
yzk 	, (4) 

 255 

where 𝜇$+,- and 𝜇$9 are the means of GHI$+,-(𝑡) and GHI$U𝑡; 𝐻9V over the 𝐾 samples, respectively, 256 

and 𝜎$+,- and 𝜎$9 are the corresponding standard deviations. For each of the 𝑁 stations, this yields 257 

𝑀 correlation coefficients. The coefficients are then averaged across stations for each value of 𝐻9 258 

to generate a correlation score for each CBH candidate: 259 

 260 

𝑅9 =
1
𝑁
|𝑅$9	
}

$zk

. (5) 

 261 

Initially, a weighting scheme using the inverse sky imager to weather station distance was applied, 262 

however performance was similar, and thus only a simple average is used here. After 𝑅9 has been 263 

computed for all CBH candidates 𝐻9, the CBH candidate corresponding to the largest correlation 264 

score 𝑅9 is selected as the CBH estimate. 265 

Theoretically, TSC can yield a CBH every 30 seconds (i.e. sampling rate of sky images) 266 

because a correlation can always be established. However, since CBH in clear or rainy conditions 267 

is irrelevant to solar forecasting, TSC results with correlation coefficients below 0.5 are excluded. 268 

Moreover, the performance of TSC degrades in homogenous cloud cover or clear conditions 269 

because the variations in the time series are small and correlation between modeled and 270 
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measured GHI is expected to be similar for all CBH candidates. As further discussed in Section 271 

5, under these conditions, using the maximum correlation is not a reliable way to estimate CBH. 272 

Fortunately, for solar power forecasting applications, in cases of uniform sky cover, the impact of 273 

CBH error is mitigated. 274 

3.2 GCSE Method 275 

3.2.1 Cloud Shadow Geometry 276 

The coordinate system origin is the sky imager position. The coordinate axes are aligned such 277 

that 𝑥 is positive east, 𝑦 is positive north, and 𝑧 is positive up, and earth curvature effects are 278 

ignored. The location of a ground station in this coordinate system is then 𝐱: = U𝑥:, 𝑦:, 𝑧:V
b, 279 

where ⊤ indicates transpose. The ray pointing to the sun from point 𝐱: can be parameterized as: 280 

 281 

𝐱>(𝜆) = 𝐱: + 𝜆 �
sin 𝜃> sin𝜙>
sin 𝜃> cos 𝜙>

cos 𝜃>
�	, (6) 

 282 

where 𝜃> is the solar zenith angle, 𝜙> is the solar azimuth angle, and 𝜆 is the distance from 𝐱: 283 

towards 𝐱> in meters. Assuming a planar layer of clouds, we can compute the intersection of 𝐱>(𝜆) 284 

with the clouds by setting the z-coordinate to the CBH above the sky imager: 𝑥>,�(𝜆) = 𝑥:,� +285 

	𝜆 cos 𝜃> = 𝐻 − ℎ, where 𝐻 is the cloud base height and ℎ is the height of the sky imager (both 286 

heights referenced above ground level [AGL]). This gives 𝜆 = U𝐻 − ℎ − 𝑥:,�V sec 𝜃>; the point 𝐱> in 287 

the cloud layer is then:  288 

 289 

𝐱> = 𝐱: + U𝐻 − ℎ − 𝑥:,�V �
tan 𝜃> sin𝜙>
tan 𝜃> cos𝜙>

1
� = 𝐱: + U𝐻 − ℎ − 𝑥:,�V𝐬	, (7) 

 290 

where 𝐬 = (tan𝜃> sin𝜙> , tan 𝜃> cos 𝜙> , 1)b. Figure 4a illustrates this geometric relation when sky 291 

imager position 𝑂, 𝐱:, and 𝐱> are coplanar in azimuth (although in general they are not coplanar) 292 

and Fig. 4b shows a top-down-view of the geometric configuration. 293 

 294 
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(a) (b) 
Figure 4: (a) Cross-section and (b) plan view of the geometric relationship between sky imager position 

𝑂, a ground station 𝐱: and the cloud intersection point 𝐱>. (Note: to improve the illustration clarity, 𝐱: and 

𝐱> are shown in different relative locations in each subfigure) 

 295 

Depending on the spatial configuration of the cloud field, at any given time clouds may or may 296 

not be present at point 𝐱>, which is the point at which clouds must be present to shade the station 297 

located at 𝐱: (To shade a sensor at 𝐱:, clouds may actually be anywhere along 𝐱>(𝜆), but again 298 

we are assuming a planar cloud field at height 𝐻). Assuming a constant cloud velocity 𝐮 =299 

U𝑢�, 𝑢�, 0V
b, we estimate the current position of a cloud 𝐱4 that will move to point 𝐱> in ∆𝑡 seconds: 300 

 301 

𝐱4(𝐻, ∆𝑡) = 𝐱>(𝐻) − ∆𝑡𝐮	, (8) 

 302 

where the meaning of the input argument to 𝐱> has been changed from slant distance 𝜆 to CBH 303 

𝐻 following Eq. Error! Reference source not found.. Hereinafter, ∆𝑡 is referred to as the cloud 304 

travel time (Eq. 11Error! Reference source not found.). 305 

To search the image for clouds that could potentially cause shadowing of the sensor, we 306 

search the surface 𝐱4(𝐻, ∆𝑡) parameterized by 𝐻 and ∆𝑡. This requires the following conversion 307 

from space coordinates to image coordinates. The usable field of view of the sky imager for cloud 308 

imaging is 2𝜃Q , and the corresponding width of the cloud map is 2𝑅 = 2(𝐻 − ℎ) tan𝜃Q . The 309 

number of pixels spanning the cloud map diameter is set to 𝑛J (The cloud map is an 'undistorted' 310 

𝑂 𝑥 

𝑦 𝑧 𝐱𝑔  

𝐱𝑠 

𝜃𝑚  𝜃𝑠 

𝐻 − ℎ	

𝐿 = (𝐻 − ℎ) tan 𝜃𝑚  
2R

R

𝑂 𝑥 

𝑦 
𝐱𝑔  

𝐱𝑠 

N

𝜙𝑠 
𝐱𝑐  

𝐮 

cloud movement direction
line

sun direction line

cloud map boundary / sky imager usable field of view

cloud boundary R



 15 

plane-projected version of the original distorted image, taking into account the camera calibration). 311 

The projection requires interpolation of the image and 𝑛J can be set to a suitable value based on 312 

the footprint of the sky image. In this paper, 𝑛J = 1251 is the default value used in our sky imager 313 

forecast algorithm. The conversion from units of meters to pixels is then: 314 

 315 

𝜇(𝐻) =
𝑛J

2(𝐻 − ℎ) tan𝜃Q
	�
pixels
meter

�. (9)  

 316 

Combining Eqs. Error! Reference source not found. and Error! Reference source not found. 317 

and multiplying by 𝜇 gives: 318 

 319 

𝐱84(𝐻, ∆𝑡) = 𝐱8: +
𝑛J
2
U𝐻 − ℎ − 𝑥:,�V
(𝐻 − ℎ) tan𝜃Q

𝐬 − ∆𝑡𝐮0	, (10)  

 320 

where the ^ indicates coordinates have been converted to units of pixels. When |𝐱84(𝐻, ∆𝑡)| >321 

𝑛J 2⁄ , the cloud point is outside of the cloud map and the cloud state cannot be retrieved (i.e. it is 322 

outside of the sky imager’s usable field of view). Additionally, we only consider cases where �𝐱8:� ≤323 

𝑛J 2⁄ , as �𝐱8:� > 𝑛J 2⁄  occurs if the station is outside the cloud map because 𝐻 is too low, shrinking 324 

the cloud map (i.e. 𝑅 is small). When the latter criterion is not met, it is possible that the shadow 325 

projection of the cloud map may still encompass the station, however for �𝐱8:� > 𝑛J 2⁄  the station 326 

is “far” and the reliability of the results is questionable. Interestingly, setting 𝐱8: to the sky imager 327 

location (0,0,0)b shows that forecasts at the sky imager location do not depend on CBH. Using 328 

Eq. (10, we can solve for the cloud travel time: 329 

∆𝑡 =
1
|𝐮0|

�𝐱8: − 𝐱84(𝐻, 𝑡) +
𝑛J
2
U𝐻 − ℎ − 𝑥:,�V
(𝐻 − ℎ) tan𝜃Q

𝐬�	. (11)  

 330 

3.2.2 Ramp Detection 331 

A ramp detection procedure is used to determine the start of down ramps in the ground-332 

observed GHI data. Down ramps are associated with cloud edge arrival times, and thus locating 333 

down ramps by an edge detection method allows timing the expected passage of a cloud edge 334 

over the station. Note that there are many edge detection methods available for 1D data such as 335 

canny edge detection and sobel operator. Because GCSE depends on finding significant cloud-336 

edge induced fluctuations in the irradiance timeseries, we believe that large ramp events could 337 
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be found by any edge detection method. Thus, to remove the dependence on external algorithms, 338 

we choose to develop our own edge detection method. 339 

 Figure 5 presents a case study where our own detection process described below is applied 340 

to a GHI time series. Precise ramp timings require a high sampling rate, and in this analysis a 1 341 

Hz dataset is used. Ground-observed GHI, sampled at 1 Hz at each station, is converted to clear 342 

sky index using the Kasten clear sky model (improved and described by Ineichen and Perez, 343 

2002). A Gaussian filter is then applied to smooth the data (top subplot). The size of the filtering 344 

window is selected as 10 min, an empirical tradeoff value between effective noise reduction and 345 

signal shape preservation. Consistent with convention, the filter width is set to 3 standard 346 

deviation which comes out to 100 seconds. At each time step in the smoothed series, we compute 347 

the maximum difference in clear sky index between the current data point and any subsequent 348 

point within 90 seconds yielding a time series of maximum ramp magnitudes (blue and green 349 

curve in the bottom subplot). All such ramp points with a clear sky index change in magnitude of 350 

greater than 0.3 (30% clear sky index ramp) are collected (red). Then local extrema are located 351 

with the MATLAB implementation of Findpeaks1 , which usually gives a single time instant 352 

corresponding to the start time of each large ramp (black lines). When more than one ramp 353 

extremum is found per ramp, the point with greater associated ramp magnitude is selected. Finally, 354 

because sometime large ramps exhibit non-monotonic characteristics, causing the detected start 355 

time to deviate, the ramp event start time is corrected if there is a local maximum in the clear sky 356 

index within 5 seconds from the detected time instant (refer to Section 5.2.1 for more details). 357 

                                                
1 https://www.mathworks.com/help/signal/ref/findpeaks.html, accessed March, 2019. 
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  358 
Figure 5: Illustration of the procedure to detect ramps in the normalized time series GHI (kt). Top: The time 359 
series kt is smoothed by a Gaussian filter with filter width of 10 min and standard deviation of 100 sec. 360 
Bottom: The maximum difference in kt between within time window of 90 sec is computed, resulting in time 361 
series ramp points of ∆𝑘𝑡 (blue and green). The points with an associated ramp magnitude of less than 0.3 362 
are excluded and the remaining points are kept (red). The local extrema are located by MATLAB 363 
implementation of Findpeaks (black and dashed black line). 364 

 365 

Figure 6 illustrates the outcome of a real execution of the procedure in Figure 5 to both BMSB 366 

and EBU2 stations (refer to Figure 2 for station name and location). At the current time 𝑡*  = 367 

13:06:00 LST, the prior 10 minute GHI data is collected, and 𝑡* − 10	min is defined as the initial 368 

time	𝑡$ = 12:56:00 LST. Since more than one large down ramp occurred in the ten minute window, 369 

the down ramps closest in time to 𝑡$ are selected and the ramp start time instants are determined. 370 

The detected down ramp start times are 𝑡 = 12:59:46 LST for BMSB and 𝑡 = 13:01:19 LST for 371 

EBU2 (red dots) yielding cloud travel times defined in Eq. (11Error! Reference source not found. 372 

of ∆𝑡 = |𝑡 − 𝑡$| = 226 s for BMSB and 319 s for EBU2, respectively. 373 

 374 
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Figure 6:  Illustration of the proposed ramp detection procedure to determine the start time of the down ramp for 

the BMSB and EBU2 station at initial time 𝑡$ = 12:56:00 LST on May 19, 2014. The start time of the final selected 

down ramp closest to 𝑡$ is marked as a red dot.  

 

3.2.3 Using the 𝑯-∆𝒕 Map to Estimate CBH 375 

Equation (10 provides an expression for cloud map pixel location as a function of cloud base 376 

height 𝐻, cloud travel time ∆𝑡, and cloud velocity 𝐮. The cloud state of the cloud map at location 377 

𝐱84(𝐻, ∆𝑡) can be clear sky, thin cloud, or thick cloud. The range of 𝐻 considered in our analysis is 378 

300 m to 2500 m in 50 m increments based on the common CBH range for coastal Southern 379 

California. CBHs are limited to 2,500 m as 5 years of CBH measurements from 12 METAR 380 

stations in southern California showed that 93% of CBHs are below 2500 m (not shown). ∆𝑡 is 381 

varied from 0 to 10 min in 5 sec increments. Using the grid of 𝐻 and ∆𝑡 (velocity is assumed 382 

constant during ∆𝑡), the pixel position in the cloud map is computed (Eq. (10), and the cloud state 383 

is extracted. This results in a transformation of the cloud map which we call 𝐻-∆𝑡 map.  384 

 385 

Figure 7 visualizes the 𝐻-∆𝑡 map for the time window and GHI data corresponding to Figure 386 

6. For illustration purposes, the CBH range is set to 500 m to 1800 m in 10 m increments and ∆𝑡 387 

varies from 0 to 350 sec in 5 sec increments. The vertical yellow lines are placed at ∆𝑡 ¡¢  and 388 

∆𝑡£ ¤¥ , indicating the respective station cloud travel times (as determined in Fig. 6). CBH 389 

candidates are obtained from the 𝐻-∆𝑡 map by searching for cloud condition transitions around 390 
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lines of constant ∆𝑡$. The most commonly occurring CBH candidate across all stations is selected 391 

as the CBH estimate. If two or more CBH candidates are equally common then they are averaged. 392 

If none of the stations returns a CBH candidate, no CBH estimate is generated. Red crosses in 393 

Fig. 7 indicate the CBH candidates are 620 m for BMSB, and 540 m and 660 m for EBU2. Thus, 394 

the CBH candidates from the two stations are averaged to be 606 m. The concurrent ceilometer 395 

reading at 12: 59: 00 LST indicates a single cloud layer at 610 m. 396 

 
(a) 



 20 

 
(b) 

Figure 7:  CBH versus arrival time (or 𝐻-∆𝑡 map) for the initial time 𝑡$ = 	12: 56: 00 LST on May 19, 2014. 

Ramp events, indicated by the vertical yellow lines, were detected at ∆𝑡 = 226 s and ∆𝑡 = 319 s for the 

(a) BMSB and (b) EBU2 ground stations, respectively (see Figure 2 for locations and Figure 6 for ramp 

detection). Left-to-right transitions from clear to cloudy (i.e. down ramps) along the yellow line indicate 

CBH candidates (red cross). Blue, white, and grey colors represent clear sky, thin clouds, and thick 
clouds, respectively. 

 

Note that the ∆𝑡 axis scales linearly with the cloud velocity, so uncertainty in 𝐮 contributes 397 

directly to uncertainty in ∆𝑡. This and other potential errors in down ramp timing estimates (see 398 

discussion in Section 5.2) justify extending the cloud condition transition search to a search 399 

window of 60 seconds around lines of constant ∆𝑡$ . While this process induces more CBH 400 

candidates, it reduces the times when no CBH estimate is output.  401 

 402 

An alternate, more intuitive presentation of the 𝐻-∆𝑡 map is the cloud shadow distribution plan 403 

view in Fig. 8, generated using the 𝑡$ cloud map advected at cloud velocity 𝐮 to time 𝑡$ + ∆𝑡. In 404 

each subplot of Fig. 8, a shadow is just about to pass over the stations (note the shadow adjacent 405 

to each red dot and the direction of cloud movement). The plan view gives the cloud shadow 406 

distribution for all stations at a single (𝐻, ∆𝑡) pair, whereas the 𝐻-∆𝑡 map gives the possible cloud 407 
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condition for a single station at a range of (𝐻, ∆𝑡). 408 

 409 

 
(a) 

 
(b) 

Figure 8:  Advected cloud shadow map generated from the sky image taken at 𝑡$ = 12: 56: 00 LST on 

May 19, 2014 using arrival time of the down ramp of (a) ∆𝑡 ¡¢  = 226 s and (b) ∆𝑡£ ¤¥ = 319 s and a 
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CBH of 606 m determined in Fig. 7. BMSB (a) and EBU2 (b) ground stations are shown as red filled 

squares. Empty squares represent the five other ground stations. The arrow indicates the cloud motion 

vector, showing the cloud shadows moving towards northeast. The arrow magnitude indicates the 

distance traveled by a cloud in 30 s. Blue, white, and grey colors represent clear sky, thin cloud, and 
thick cloud, respectively. 

4. Results 410 

4.1 Median Filtering and Error Metrics 411 

The non-uniform ceilometer measurements are first resampled to the TSC and GCSE time 412 

steps through nearest neighbor interpolation. A sliding 15 minute median filter is then applied to 413 

the raw output of TSC, GCSE, and the resampled ceilometer measurements. To quantify the 414 

differences between the proposed methods and the ceilometer output, the mean bias difference 415 

(MBD) and the root mean square difference (RMSD) were used: 416 

 417 

MBD = 	
1
𝑵
| (𝐻𝒏;+<57 − 𝐻𝒏1567)

𝑵

𝒏zk
, (12) 

 418 

RMSD =	
1
𝑵
| (𝐻𝒏;+<57 − 𝐻𝒏1567)¥

𝑵

𝒏zk
, (13) 

 419 

where 𝑵 is the total number of data points, 𝐻𝒏;+<57 is the CBH from the TSC and GCSE methods, 420 

and 𝐻𝒏1567  is the corresponding ceilometer measurement at time index 𝒏. MBD and RMSD are 421 

divided by the daily average CBH measurement from ceilometer to obtain a normalized MBD 422 

(nMBD) and normalized RMSD (nRMSD). Normalization provides a better comparison across days 423 

(RMSD is expected to be proportional to the true cloud height), whereas the un-normalized metrics 424 

give a better characterization of CBH accuracy for solar power forecasting. Periods with rain, 425 

either falling or droplets remaining on the sky imager, were excluded from the evaluation since 426 

neither ceilometer nor sky imager methods perform reliably under those conditions. Rainy periods 427 

are shaded in yellow. 428 

 429 

4.2 Evaluation over 30 Cloudy Days 430 

The performance for 30 days, spanning all seasons and multiple cloud types is given in Figure 431 
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9 and summarized in Table 2 (see Table A-1 in Appendix for complete comparison). 432 

Stratocumulus and cumulus clouds were most common on the selected days. Only four of the 30 433 

days had CBHs exceeding 1000 m, so the evaluation provided is predominantly for low cloud 434 

conditions consistent with the dominant climatology of coastal Southern California. Overall, TSC 435 

outperformed GCSE for this extended data set, with TSC achieving an average RMSD of 133 m 436 

versus 163 m for GCSE. The standard deviation of daily RMSD for TSC was 72.3 m versus 92.9 437 

m for GCSE, indicating the performance of TSC is more consistent across days. TSC had a small 438 

positive bias, versus a small negative bias for GCSE. 439 

The number of CBH values reported per day varies markedly between TSC and GCSE. GCSE 440 

yields no result if there are no clouds detected that will shade the station. This will occur during 441 

periods with sufficiently homogenous cloud conditions and specifically periods with clear or 442 

overcast conditions along the cloud motion vector such that no CBH candidates are generated 443 

for the available ground stations, i.e. there are no clouds within ∆𝑡$ ± 𝜎¯ for each station	𝑖 in the 444 

𝐻-∆𝑡  map. Additionally, GCSE cannot generate CBH if no down ramps are located. These 445 

limitations cause GCSE to issue 34% less CBH than TSC averaged over 30 days. 446 

 447 

 448 
Figure 9: Validation of cloud base height estimates for 30 days. Line styles distinguish error metrics, and line colors 449 
differentiate TSC and GCSE methods, respectively. The number of raw measurements are displayed in black dots 450 
(right y axis). 451 
 452 

Table 2:  The monthly average (Avg.) and standard deviation (Std.) of the daily error metrics weighted 
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according to the number of data points. Ceilometer daily averages are reported as ‘Mean CBH’. Refer to Table 
A-1 in the Appendix for error metrics by day. 

 

Mean 
CBH 
[m] 

TSC method GCSE method 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

No. 
Points 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

No. 
Points 

Avg. 715 2.2 1.3 132.8 18.9 581 -33.9 -3.1 162.6 20.8 382 
Std. 217 72.0 - 72.3 - 160 101 - 92.9 - 176 

 453 

4.3 Comparison to NK14 on Select Days 454 

Table 3 and Figure 10 present further validation against NK14 on three days. While it produces 455 

scattered raw results, TSC captures the major CBH transition on all three days. In contrast, the 456 

CBH estimates from GCSE are not as scattered likely because of the internal quality control that 457 

requires CBH output consensus between stations. RMSD errors for TSC and NK14 are less than 458 

300 m (RMSD) and 20% (nRMSD) averaged over the three days. GCSE, however, has RMSD and 459 

nRMSD of over 400 m and 27%, respectively, performing consistently worse than the other two 460 

methods. The MBD and nMBD show that the bias of GCSE is almost twice that of TSC for these 461 

three days. Note that nRMSD seems higher for Dec 26 on both methods; however, the absolute 462 

error on Dec 26 is not unusual and the large error can be attributed to the normalization by a 463 

smaller CBH. NK14 beats both TSC and GCSE on all three days, though the performance of TSC 464 

is close to that of NK14.  465 

 466 
Table 3: Comparison of cloud base height estimates. Ceilometer daily averages are reported as ‘Mean 
CBH’. The average for each column (‘Avg.’) is weighted according to the number of data points in each 

day. Rainy periods are excluded. 

Date 

Mean 
CBH 
[m] 

TSC method GCSE method NK14: Stereographic 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

Dec 14 1814 88 4.9 291 16.0 -223 -12.3 394 21.7 262 14.3 

Dec 26 1164 -128 -11.0 288 24.8 -323 -27.8 399 34.3 206 17.7 

Dec 29 1625 -103 -6.3 299 18.4 169 10.4 440 27.1 272 16.8 

Avg. 1534 -47.8 -4.0 293 19.5% -104.3 -8.3 413 27.4 246 16.3 

 467 

 468 
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(a) 

 

(b) 
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(c) 

Figure 10: Cloud base height comparison between the TSC (black dot), GCSE (green dot), and 2D 
stereographic method (red, Nguyen and Kleissl, 2014), and ceilometer measurements (green dashed) 

for (a) Dec 14, (b) Dec 26, (c) Dec 29, 2012. Yellow highlights show periods of rain that are ignored in 

the error calculation in Section 4.1. 

 469 

 470 

5. Discussion 471 

5.1 TSC Performance 472 

TSC computes the average correlation coefficient between 20 minutes of measured and 473 

modeled GHI across several ground stations. Correlation coefficients are computed for a range 474 

of CBH values, and the CBH corresponding to the maximum correlation is output. While the bias 475 

of the method over 30 days is small at 1.3% nMBD, the random error is significant at 18.9% 476 

nRMSD. Although this may seem high, it is within 3 percentage points of the stereographic method. 477 

The following subsections highlight different factors affecting the performance of TSC method. 478 

5.1.1 GHI Sampling and Correlation 479 

Forty-one (41) samples are used to compute the correlation coefficients which are 480 

subsequently averaged across stations. The 20 minute sample duration may be insufficient to 481 
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yield a reliable CBH estimate, but is chosen empirically to allow the method to be sufficiently 482 

dynamic to track intra-hour changes in CBH. Increasing the time window may reduce the 483 

estimator variance at the expense of being unable to react to rapid CBH changes. An alternative 484 

to increasing the sample duration is to decrease the sampling (image capture) time step (i.e. 30 485 

seconds) in this work. Beyond increasing the number of samples, treating the sensor network as 486 

an array and applying array signal processing methods may provide a lower variance CBH 487 

estimator. 488 

5.1.2 Sensitivity of CBH to Correlation Coefficient 489 

During certain periods, the variation of the correlation coefficients 𝑅9 over all CBH candidates 490 

was found to be small. For example, Figure 11 gives the mean correlation 𝑅9  (Eq. Error! 491 

Reference source not found.) at different 𝐻9  for a selected period. The maximum 𝑅9  is very 492 

similar to the minimum with 𝑅9 ranging from 0.9 to 1. While the changes in 𝑅9 are small relative to 493 

its range, the relative changes in 𝐻9 are considerable at 1050 m to 1700 m. In this case, due to 494 

the small difference between the minimum and maximum correlation coefficient, the selected 𝐻9 495 

may be determined by small and somewhat random fluctuations in 𝑅9  which is not desirable 496 

behavior for an accurate and robust CBH estimation algorithm. Small variations in the correlations 497 

are caused by homogenous cloud cover (e.g. overcast condition) or a cloud projection that is 498 

insensitive to CBH changes (e.g. collocated sky imagery and pyranometer).  499 

 500 
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Figure 11:  Example of CBH estimates for the TSC method versus the ceilometer for a 45 minute period 

on Dec 29, 2012. The color of each symbol indicates the average correlation coefficient 𝑅9 (Eqs. Error! 

Reference source not found. and Error! Reference source not found.) between the observed and 

simulated nowcast GHI from the set of stations. For each time step the CBH (y-axis) and its associated 

maximum 𝑅9 (filled circles) and minimum 𝑅9 (open hexagrams) are shown.  

 

Moreover, larger imager to station distance can promote errors in the GHI time series from 

the sky imager. As indicated in Eq. (9 a larger pixel zenith angle (more distant station) results 

in cloud projection being more sensitive to CBH changes because the cloud projection error 

scales with	𝑡𝑎𝑛𝜃. In addition, the lower pixel resolution for the outer part of the sky image at 

larger pixel zenith angle can cause larger random errors in shadow projection at the ground 

station. 

 501 

5.2 GCSE Performance 502 

GCSE combines ramp detection with an analytic-geometric component derived from the sky 503 

imager forecast. Down ramp events are detected for each ground station and associated cloud 504 

edges are matched in each station's 𝐻-∆𝑡 map. Since the construction of 𝐻-∆𝑡 map is a matrix 505 

indexing operation for an image, it takes less than a second to construct 𝐻-∆𝑡 map on a typical 506 

i5-powered workstation, making operational use feasible. 507 

In terms of nRMSD, GCSE performed over 10 percentage points worse than the NK14 method 508 

over the three days studied. In the more extensive 30 day comparison, GCSE improved 509 

substantially with an nRMSD of 20.8%. For all error metrics, the GCSE performed worse than 510 

TSC. This is in large part due to the modeling complexity and assumptions involved (see Section 511 

5.3). 512 

 513 

5.2.1 Down Ramp Start Time 514 

An accurate down ramp start time from GHI observations is required for the GCSE to work 515 

correctly. The method described in Section 3.2.2 is a reasonable approach if the ramp is 516 

monotonically up or down.  But in some cases ramps exhibit local extrema, causing the proposed 517 

approach to misidentify the start time. 518 

Figure 12 provides an example on Dec 26 with scattered cumulus clouds. Fig. 12a shows a 519 

large down ramp with a complex kt time series: two local extrema are identified in the time series 520 
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maximum ramp points difference (Figure 5) at 12:23:21 LST (black dashed line) and 12:23:52 521 

LST (green dashed line). The associated ramp event start times are determined at 12:23:26 LST 522 

(black dot) and 12:23:47 LST (green dot), respectively, by searching within 5 second for a local 523 

maximum in kt. While visual inspection suggests that the black dot is a reasonable ramp start 524 

time, the kt variation around the two original local extrema is small, making identifying the start 525 

time somewhat random. These small “pre-ramp” events are likely caused by the multiscale nature 526 

of clouds and associated deformations around the cloud boundary. 527 

The impact of this ambiguity in the local extremum is illustrated in Fig. 12b. The black dot in 528 

(a) corresponds to black line (𝐻, ∆𝑡) = (775 m, 86 s) and the green dot in (a) corresponds to green 529 

line (𝐻, ∆𝑡) = (625 m, 107 s) with ∆𝑡 = 0 at 12:22:00 LST. The two local extrema that are spaced 530 

by 31 s cause a 150 m difference in CBH. In this case, the local extremum #1 is slightly greater 531 

than #2, so it is selected per the procedure in Section 3.2.2 and the associated local maximum 532 

(i.e. black dot) is used to determine the CBH candidate in Figure 12b. While in this case the final 533 

selected CBH is closer to the ceilometer measurement of 866 m than the alternate, similar 534 

ambiguities in local extremum and subsequent CBH variation were common in the analysis. 535 

 

 

                                        (a)                                                                             (b) 

Figure 12:  Sensitivity of CBH to ramp start time and ambiguity in ramp start time estimation. (a) Two 

local extrema (dashed lines) are identified due to a non-monotic time series of kt (the dots show how 

following ramp detection each ramp start time is adjusted to the local maximum in kt within 5 sec). (b)  

𝐻-∆𝑡 map corresponding to (a) with ∆t = 0 sec at 12:22:00 LST. The vertical lines in (b) correspond to 
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the colored dots in (a). The actual CBH measurement from ceilometer is 866 m. 

 

 536 

5.3 Other Modeling Errors Affecting CBH Estimation 537 

Both TSC and GCSE rely on derived products generated in the USI forecast procedure that 538 

apply simplifying assumptions and inject additional uncertainty into CBH estimation. Naturally, 539 

since sky images are the key input to both methods, TSC and GCSE are not operational at night. 540 

Cloud edges derived from sky imagery rely on the cloud decision process determining where 541 

clouds "begin". The methods to detect cloud presence are generally accurate, but there is some 542 

inherent uncertainty in a binary pixel classification as being-cloudy or cloud-free (Ghonima et al., 543 

2012), particularly near cloud edges which may have a diffuse and blurred transition. This affects 544 

both TSC and GCSE.  545 

Another issue is that extensive cloud evaporation and formation can cause GCSE to fail 546 

because the “frozen” cloud advection assumption is violated. Consider the case where a cloud 547 

forms between time 𝑡* when a sky image is taken, and the time when that cloud’s edge causes a 548 

down ramp at time 𝑡k. Another stable cloud that was present in the sky image at 𝑡* causes a down 549 

ramp at time 𝑡¥ where 𝑡¥ > 𝑡k. Although the down ramp occurring at 𝑡k is detectable in GHI data, 550 

the cloud map generated from data at 𝑡* only has the information of the cloud which passes at 𝑡¥. 551 

For TSC, this increases the separation between the measured and modeled GHI time series, 552 

affecting correlation coefficients across the CBH grid search. The GCSE ramp detection algorithm 553 

will return a ramp occurrence time of ∆𝑡k = 𝑡k − 𝑡* which does not have a matching cloud edge in 554 

the 𝐻-∆𝑡 map. The 𝐻-∆𝑡 map search process will yield the best available clear-cloudy transition 555 

at ∆𝑡k which is likely to be incorrect. 556 

Besides, both methods are affected by overcast conditions with homogenous cloud cover. 557 

The TSC method identifies concurrent cloud edge events using the correlation coefficient. If the 558 

20 minute sample window does not contain any significant cloud-edge induced fluctuations, the 559 

correlation coefficients are small and likely no CBH will be output. The GCSE method does not 560 

provide CBH in overcast conditions either; while ramp detection may still be feasible due to 561 

variability of cloud optical depth in overcast conditions, the cloud travel time cannot be estimated 562 

from the binary 𝐻-∆𝑡 map. Fortunately, in overcast or clear conditions the solar irradiance can be 563 

predicted accurately without CBH because all stations are likely covered by the same sky 564 

condition and receive similar irradiance. 565 

Additionally, the pixel resolution for the outer part of the sky image at larger pixel zenith angle 566 
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is degraded, making the estimated cloud cover more uniform over the 20-minute comparison 567 

interval. Any station whose shadow projection comes from these perimeter image sections will 568 

lack detailed cloud structure. This less detailed cloud structure yields lower correlation for the 569 

TSC, and larger errors in identifying the timing of sky condition changes for the GCSE. 570 

Interestingly, for the GCSE, the forecast at the sky imager position is unaffected by CBH and thus 571 

the forecast GHI does not suffer from CBH errors. 572 

The temporal resolutions for TSC and GCSE differ: the TSC output rate is one sample per 30 573 

seconds as set by the image capture frequency, but data availability may be less frequent due to 574 

low correlation coefficients. The GCSE’s output rate depends on the existence of sufficient 575 

variability in cloud cover, and the ability to find a consensus CBH candidate. For the dataset 576 

presented here, GCSE outputs 34% less CBH samples than TSC, for an average of one GCSE 577 

sample every 75 seconds. While this lower output rate is sufficient for short-term solar power 578 

forecasting, it may be a limiting factor for other applications or in other sky conditions with less 579 

cloud cover. The valid time of the CBH estimates also differs between methods: Since TSC 580 

correlates the last 20 minutes of GHI data, the estimated CBH applies to those 20 minutes. While 581 

GCSE utilizes only a single dominant down ramp in the GHI time series the CBH strictly applies 582 

to that time instant only. 583 

The cloud velocity estimation of the sky imager is actually an apparent cloud edge velocity, 584 

which is a combination of cloud speeds due to advection along with cloud formation or evaporation 585 

occurring from image to image. These cloud dynamics introduce real or apparent fluctuations in 586 

cloud speed which negatively affects the performance of GCSE because construction of the 𝐻-∆𝑡 587 

map assumes that the cloud velocity remains constant over the CBH estimation interval (typically 588 

10 minutes). TSC is insensitive to cloud speed variability as it does not employ a cloud advection 589 

scheme.  590 

Last, multiple cloud layers and cloud three-dimensionality (Mejia et al., 2018) can degrade the 591 

performance because both methods operate under assumption of single-layered planar cloud 592 

cover. 593 

5.4 Number of Stations and Spatial Diversity 594 

Geographic variations at the individual sites may affect both TSC and GCSE. For TSC, 595 

averaging correlation coefficients at each CBH blurs potential station-to-station differences in 596 

correlation coefficient due to real differences in CBH. For GCSE, station-to-station ramp timing 597 

errors may cause inconsistent CBH candidates, preventing an accurate CBH estimate. The 598 

current limitation of our setup was the availability of only six stations, four of which were located 599 
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within 600 m of each other resulting in more correlated GHI data and little diversity in perspectives. 600 

A logical extension to this work is to examine the impact of adding additional ground stations. At 601 

large solar installations, weather stations, reference cells, and individually metered inverters can 602 

all be used to improve spatial distribution of stations. 603 

6. Conclusions and Future Work 604 

The objective of this paper was to propose two methods for CBH estimation requiring a single 605 

sky imager together with spatially distributed irradiance or power output measurements, providing 606 

an alternative CBH estimation technique to direct, in-situ, or multi-camera approaches. These 607 

new methods can serve as a low-cost alternative to ceilometers for sky imager based short-term 608 

solar power forecasting in which the cloud height information is required (Chow et al., 2011; 609 

Schmidt et al., 2016). 610 

The TSC method, is comparatively simple and the more reliable of the two proposed methods. 611 

The GCSE method relies on a complex stack of models: cloud detection, cloud velocity estimation, 612 

cloud shadow forecasting, and down ramp detection. The construction of the 𝐻-∆𝑡 map is a novel 613 

feature of this work, and its utility is demonstrated for the purposes of cloud edge matching and 614 

CBH estimation. Overall, the GCSE method performed slightly worse (1 percentage point larger 615 

nRMSD) than the TSC method. For both methods, the nRMSD remained below 21% for all 30 616 

days. On the other hand, the CBH estimate derived from a sky imager coupled with a cloud speed 617 

sensor in our previous work (Wang et al., 2016) yielded better accuracy (17% nRMSD) on a 618 

different set of 30 days, owing partially to the strict filtering of the raw cloud speed measurement. 619 

Future efforts will involve improving both sky imager cloud detection and cloud velocity 620 

estimation, which will also benefit solar power forecasting with a sky imager. Chow et al. (2015) 621 

proposed optical flow to enable detection of multiple cloud layers as well as their respective cloud 622 

pixel speeds, which is an improvement to the cross-correlation velocity estimation method used 623 

in this work. Adding more and more distributed ground stations will also help improve the 624 

robustness of the methods. Finally, validation under different meteorological conditions more 625 

relevant to continental climates would further substantiate the general applicability of the methods. 626 

 627 

  628 
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Appendix 629 

Table A-1:  Comparison of cloud base height estimates between TSC and GCSE methods for 30 days. 
Ceilometer daily averages are reported as ‘Mean CBH’.  

Date 

Mean 
CBH 
[m] 

TSC method GCSE method 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

No. 
Points 

MBD 
[m] 

nMBD 
[%] 

RMSD 
[m] 

nRMSD 
[%] 

No. 
Points 

09/20/13  613 -90.5 -14.8 123.6 20.2 616 -104.7 -17.1 129.9 21.2 157 
09/21/13 695 40.6 5.8 109.9 15.8 752 45.3 6.5 124.4 17.9 362 
09/22/13 618 137.0 22.2 144.5 23.4 750 129.0 20.9 138.9 22.5 217 
10/02/13 598 -14.5 -2.4 66.7 11.2 337 -109.9 -18.4 161.1 26.9 408 
02/04/14 1110 -41.5 -3.7 294.4 26.5 410 -161.6 -14.6 296.0 26.7 712 
02/09/14 747 32.7 4.4 118.9 15.9 606 -51.1 -6.8 156.8 21.0 473 
02/10/14 648 88.3 13.6 135.0 20.8 822 76.5 11.8 118.2 18.2 291 
03/22/14 1116 -241.4 -21.6 365.9 32.8 424 -389.6 -34.9 444.7 39.9 416 
03/23/14 657 -27.7 -4.2 122.3 18.6 696 -40.8 -6.2 118.6 18.1 219 
03/25/14 651 -40.0 -6.1 282.6 43.4 750 -33.7 -5.2 258.7 39.7 141 
03/27/14 971 43.5 4.5 268.0 27.6 504 94.9 9.8 315.7 32.5 646 
05/20/14 783 33.1 4.2 162.7 20.8 460 -98.3 -12.5 197.7 25.2 679 
06/10/14 633 -18.6 -3.0 101.7 16.6 552 -81.6 -12.9 120.8 19.1 283 
04/20/15 662 -65.9 -10.0 107.2 16.2 531 -85.1 -12.9 110.2 16.6 209 
05/21/15 1263 -65.6 -5.2 288.8 22.9 285 -73.8 -5.8 324.0 25.6 213 
04/12/16 460 58.6 12.7 89.4 19.4 471 62.1 13.5 108.9 23.7 389 
04/22/16 485 42.7 8.8 89.4 18.4 563 -0.9 -0.2 87.6 18.1 404 
04/25/16 998 -2.8 -0.3 147.4 14.8 760 -11.1 -1.1 145.7 14.6 847 
05/21/16 1004 51.9 5.2 97.1 9.7 525 -23.5 -2.3 148.4 14.8 507 
05/23/16 916 61.9 6.8 124.4 13.6 361 69.7 7.6 128.4 14.0 411 
05/26/16 771 99.2 12.9 124.3 16.1 309 31.3 4.1 212.4 27.5 342 
07/17/16 409 73.5 18.0 97.1 23.7 672 70.9 17.3 93.3 22.8 266 
08/11/16 555 17.4 3.1 93.4 16.8 374 -15.7 -2.8 82.9 14.9 610 
08/26/16 725 -49.0 -6.8 82.5 11.4 773 -60.0 -8.3 85.3 11.8 323 
08/28/16 376 52.8 14.0 64.5 17.2 744 38.4 10.2 56.0 14.9 520 
09/02/16 514 -46.6 -9.1 62.9 12.2 614 -59.3 -11.5 68.4 13.3 280 
09/08/16 603 -42.5 -7.0 80.6 13.4 605 -53.5 -8.9 83.4 13.8 253 
09/09/16 469 18.1 3.9 41.2 8.8 654 19.5 4.2 40.0 8.5 278 
09/12/16 714 27.3 3.8 102.7 14.4 699 26.3 3.7 93.2 13.1 237 
10/12/16 689 -118.9 -17.3 156.4 22.7 805 -134.4 -19.5 171.5 24.9 377 

  630 



 34 

References  631 

Allmen, M. C., & Kegelmeyer Jr, W. P. (1996). The computation of cloud-base height from paired 632 
whole-sky imaging cameras. Journal of Atmospheric and Oceanic Technology, 13(1), 97-113.  633 

Bosch, J.L & Kleissl, J. (2013). Cloud motion vectors from a network of ground sensors in a solar 634 
power plant. Solar Energy, volume 95, pp. 13-20. 635 

Bosch, J.L, Zheng, Y., & Kleissl, J. (2013). Deriving cloud velocity from an array of solar radiation 636 
measurements. Solar Energy, volume 87, pp. 196-203. 637 

Bright, J., Smith, C., Taylor, P., & Crook, R. (2015). Stochastic generation of synthetic minutely 638 
irradiance time series derived from mean hourly weather observation data. Solar Energy, 115, 639 
229-242.  640 

Cazorla Cabrera, A. (2010). Development of a sky imager for cloud classification and aerosol 641 
characterization. Universidad de Granada. Retrieved from http://hdl.handle.net/10481/5533 642 

Chow, C. W., Belongie, S., & Kleissl, J. (2015). Cloud motion and stability estimation for intra-643 
hour solar forecasting. Solar Energy, 115, 645-655.  644 

Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., et al. (2011). Intra-645 
hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar 646 
Energy, 85(11), 2881-2893.  647 

Dessler, A., Palm, S., & Spinhirne, J. (2006). Tropical cloud top height distributions revealed by 648 
the ice, cloud, and land elevation satellite (ICESat)/Geoscience laser altimeter system 649 
(GLAS). Journal of Geophysical Research: Atmospheres (1984–2012), 111(D12).  650 

Fung, V., Bosch, J., Roberts, S., & Kleissl, J. (2014). Cloud shadow speed sensor. Atmospheric 651 
Measurement Techniques, 7(1), 1693-1700.  652 

Gaumet, J., Heinrich, J., Cluzeau, M., Pierrard, P., & Prieur, J. (1998). Cloud-base height 653 
measurements with a single-pulse erbium-glass laser ceilometer. Journal of Atmospheric and 654 
Oceanic Technology, 15(1), 37-45.  655 

Ghonima, M., Urquhart, B., Chow, C., Shields, J., Cazorla, A., & Kleissl, J. (2012). A method for 656 
cloud detection and opacity classification based on ground based sky imagery. Atmospheric 657 
Measurement Techniques, 5(11), 2881-2892.  658 

Hutchison, K., Wong, E., & Ou, S. C. (2006). Cloud base heights retrieved during night-time 659 
conditions with MODIS data. International Journal of Remote Sensing, 27(14), 2847-2862. 660 

Ineichen, P., & Perez, R. (2002). A new airmass independent formulation for the Linke turbidity 661 
coefficient. Solar Energy, 73(3), 151-157. doi: 10.1016/S0038-092X(02)00045-2 662 

Kassianov, E., Long, C. N., & Christy, J. (2005). Cloud-base-height estimation from paired 663 
ground-based hemispherical observations. Journal of Applied Meteorology, 44(8), 1221-1233.  664 

Killius, N., Prahl, C., Hanrieder, N., Wilbert, S., and Schroedter-Homscheidt, M. (2015) On the 665 
use of NWP for Cloud Base Height Estimation in Cloud Camera-Based Solar Irradiance 666 
Nowcasting. ICEM 2015, 23-26. June 2015, Boulder, USA. 667 

Kleissl, J., Urquhart, B., Ghonima, M., Dahlin, E., Nguyen, A., Kurtz, B., Chow C.W., and Mejia, 668 
F.A. (2016). University of California, San Diego (UCSD) Sky Imager Cloud Position Study 669 
Field Campaign Report. United States Department of Energy, Atmospheric Radiation 670 
Measurement Program Report DOE/SC-ARM-15-056. 671 



 35 

Kuhn, P., Wirtz, M., Wilbert, S., Bosch, J. L., Wang, G., Ramirez, L., ... & Pitz-Paal, R. (2018a). 672 
Field validation and benchmarking of a cloud shadow speed sensor. Solar Energy, 173, 229-673 
245. 674 

Kuhn, P., Wirtz, M., Killius, N., Wilbert, S., Bosch, J. L., Hanrieder, N., ... & Heinemann, D. 675 
(2018b). Benchmarking three low-cost, low-maintenance cloud height measurement systems 676 
and ECMWF cloud heights against a ceilometer. Solar Energy. 677 

Liu, L., Sun, X., Liu, X., Gao, T., & Zhao, S. (2015). Comparison of cloud base height derived from 678 
a ground-based infrared cloud measurement and two ceilometers. Advances in Meteorology, 679 
2015.  680 

Martinez-Anido, C. B., Botor, B., Florita, A. R., Draxl, C., Lu, S., Hamann, H. F., & Hodge, B. M. 681 
(2016). The value of day-ahead solar power forecasting improvement. Solar Energy, 129, 682 
192-203. 683 

Martucci, G., Milroy, C., & O'Dowd, C. D. (2010). Detection of cloud-base height using Jenoptik 684 
CHTSC5K and Vaisala CL31 ceilometers. Journal of Atmospheric and Oceanic Technology, 685 
27(2), 305-318.  686 

Marquez, R., & Coimbra, C. F. (2013). Intra-hour DNI forecasting based on cloud tracking image 687 
analysis. Solar Energy, 91, 327-336. 688 

Mejia, F. A., Kurtz, B., Levis, A., de la Parra, Í., & Kleissl, J. (2018). Cloud tomography applied to 689 
sky images: A virtual testbed. Solar Energy, 176, 287-300. 690 

Nguyen, D. A., & Kleissl, J. (2014). Stereographic methods for cloud base height determination 691 
using two sky imagers. Solar Energy, 107, 495-509.  692 

Prata, A., & Turner, P. (1997). Cloud-top height determination using ATSR data. Remote Sensing 693 
of Environment, 59(1), 1-13.  694 

Schmidt, T., Kalisch, J., Lorenz, E., & Heinemann, D. (2016). Evaluating the spatio-temporal 695 
performance of sky-imager-based solar irradiance analysis and forecasts. Atmospheric 696 
Chemistry and Physics, 16(5), 3399-3412.  697 

Shaw, J. A., & Nugent, P. W. (2013). Physics principles in radiometric infrared imaging of clouds 698 
in the atmosphere. European Journal of Physics, 34(6), S111–S121.  699 

Urquhart, B., Ghonima, M., Nguyen, D., Kurtz, B., Chow, C. W., and Kleissl, J. Solar Energy 700 
Forecasting and Resource Assessment. Elsevier, 2013. ISBN: 978-0-12-397177-7, doi: 701 
10.1016/B978-0-12-397177-7.00009-7 702 

Urquhart, B., Kurtz, B., Dahlin, E., Ghonima, M., Shields, J., & Kleissl, J. (2015). Development of 703 
a sky imaging system for short-term solar power forecasting. Atmospheric Measurement 704 
Techniques Discussions, 7, 4859-4907.  705 

Urquhart, B., Kurtz, B., & Kleissl, J. (2016). Sky camera geometric calibration using solar 706 
observations. Atmospheric Measurement Techniques, 9(9), 4279-4294.  707 

Wang, J., & Rossow, W. B. (1995). Determination of cloud vertical structure from upper-air 708 
observations. Journal of Applied Meteorology, 34(10), 2243-2258.  709 

Wang, G., Kurtz, B., & Kleissl, J. (2016). Cloud base height from sky imager and cloud speed 710 
sensor. Solar Energy, 131, 208-221.  711 

Yang, H., Kurtz, B., Nguyen, D., Urquhart, B., Chow, C. W., Ghonima, M., et al. (2014). Solar 712 
irradiance forecasting using a ground-based sky imager developed at UC San Diego. Solar 713 
Energy, 103, 502-524. 714 

 715 




