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A genome-wide association study of marginal zone
lymphoma shows association to the HLA region
Joseph Vijai1,*, Zhaoming Wang2,*, Sonja I. Berndt3,*, Christine F. Skibola4,5,*, Susan L. Slager6, Silvia de Sanjose7,8, Mads Melbye9,10, Bengt Glimelius11,12,

Paige M. Bracci13, Lucia Conde4,5, Brenda M. Birmann14, Sophia S. Wang15, Angela R. Brooks-Wilson16,17, Qing Lan3, Paul I.W. de Bakker18,19, Roel C.H.

Vermeulen19,20, Carol Portlock1, Stephen M. Ansell21, Brian K. Link22, Jacques Riby4,5, Kari E. North23,24, Jian Gu25, Henrik Hjalgrim9, Wendy Cozen26,27,

Nikolaus Becker28, Lauren R. Teras29, John J. Spinelli30,31, Jenny Turner32,33, Yawei Zhang34, Mark P. Purdue3, Graham G. Giles35,36, Rachel S. Kelly37,
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Meredith Yeager2, Charles C. Chung3, Laurie Burdett2, Amy Hutchinson2, Charles Lawrence46, Rebecca Montalvan46, Liming Liang44,47, Jinyan Huang44,

Baoshan Ma44,48, Danylo J. Villano1, Ann Maria1, Marina Corines1, Tinu Thomas1, Anne J. Novak21, Ahmet Dogan49, Mark Liebow21, Carrie A. Thompson21,

Thomas E. Witzig21, Thomas M. Habermann21, George J. Weiner22, Martyn T. Smith5, Elizabeth A. Holly13, Rebecca D. Jackson50, Lesley F. Tinker51,

Yuanqing Ye25, Hans-Olov Adami44,52, Karin E. Smedby53, Anneclaire J. De Roos51,54, Patricia Hartge3, Lindsay M. Morton3, Richard K. Severson55,

Yolanda Benavente7,8, Paolo Boffetta56, Paul Brennan57, Lenka Foretova58, Marc Maynadie59, James McKay60, Anthony Staines61, W. Ryan Diver29,
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Eleanor Kane45, Eve Roman45, Brian C.H. Chiu71, Joseph F. Fraumeni3, Xifeng Wu25,w, James R. Cerhan6,w, Kenneth Offit1,w, Stephen J. Chanock3,w,

Nathaniel Rothman3,w & Alexandra Nieters72,w

Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we

perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent

loci near BTNL2 (rs9461741, P¼ 3.95� 10� 15) and HLA-B (rs2922994, P¼ 2.43� 10� 9) in the HLA region sig-

nificantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility

complex influences MZL susceptibility.
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M
arginal zone lymphoma (MZL) encompasses a group of
lymphomas that originate from marginal zone B cells
present in extranodal tissue and lymph nodes. Three

subtypes of MZL have been defined, extranodal MZL of mucosa-
associated lymphoid tissue (MALT), splenic MZL and nodal
MZL, which together account for 7–12% of all non-Hodgkin
lymphoma (NHL) cases. Geographic differences in incidence
have been observed1, and inflammation, immune system
dysregulation and infectious agents, such as Helicobacter pylori,
have been implicated particularly for the gastric MALT subtype2,
but little else is known of MZL aetiology.

Here we perform the first two-stage, subtype-specific genome-
wide association study (GWAS) of MZL and identify two
independent single-nucleotide polymorphisms (SNPs) within
the HLA region associated with MZL risk. Together with recent
studies on other common subtypes of NHL, these results point to
shared susceptibility loci for lymphoma in the HLA region.

Results
Stage 1 MZL GWAS. As part of a larger NHL GWAS, 890 MZL
cases and 2,854 controls from 22 studies in the United States and
Europe (Supplementary Table 1) were genotyped using the
Illumina OmniExpress array. Genotype data from the Illumina
Omni2.5 was also available for 3,536 controls from three of the 22
studies3. After applying rigorous quality control filters
(Supplementary Table 2, Methods), data for 611,856 SNPs with
minor allele frequency (MAF)41% in 825 cases and 6,221
controls of European ancestry (Supplementary Fig. 1) remained
for the stage 1 analysis (Supplementary Table 3). To discover
variants associated with risk, logistic regression analysis was
performed on these SNPs adjusting for age, gender and three
significant eigenvectors computed using principal components
analysis (Supplementary Fig. 2, Methods). Examination of the
quantile–quantile (Q–Q) plot (Supplementary Fig. 3) showed
minimal detectable evidence for population substructure
(l¼ 1.01) with some excess of small P values. A Manhattan
plot revealed association signals at the HLA region
(Supplementary Fig. 4; 6p21.33:31,061,211–32,620,572) on
chromosome 6 reaching genome-wide significance. Removal of
all SNPs in the HLA region resulted in an attenuation of the
excess of small P values observed in the Q–Q plot, although some
excess still remained. To further explore associations within the
HLA region and identify other regions potentially associated with
risk, common SNPs available in the 1000 Genomes project data
release 3 were imputed (Methods).

Stage 2 genotyping. Ten SNPs in promising loci with
Pr7.5� 10� 6 in the stage 1 discovery were selected for repli-
cation (stage 2) in an additional 456 cases and 906 controls of
European ancestry (Supplementary Tables 1 and 3). Of the SNPs
selected for replication, two SNPs were directly genotyped on the
OmniExpress, while the remaining eight were imputed with high
accuracy (median info score¼ 0.99) in stage 1 (Supplementary
Table 4). Replication was carried out using Taqman genotyping.
In the combined meta-analysis of 1,281 cases and 7,127 controls,
we identified two distinct loci (Table 1, Fig. 1, Supplementary
Table 4) at chromosomes 6p21.32 and 6p21.33 that reached the
threshold of genome-wide statistical significance (Po5� 10� 8).
These are rs9461741 in the butyrophilin-like 2 (MHC
class II associated) (BTNL2) gene at 6p21.32 in HLA class II
(P¼ 3.95� 10� 15, odds ratio (OR)¼ 2.66, confidence interval
(CI)¼ 2.08–3.39) and rs2922994 at 6p21.33 in HLA class I
(P¼ 2.43� 10� 9, OR¼ 1.64, CI¼ 1.39–1.92). These two SNPs
were weakly correlated (r2¼ 0.008 in 1000 Genomes CEU
population), and when both were included in the same statistical

model, both SNPs remained strongly associated with MZL risk
(rs9461741, P¼ 2.09� 10� 15; rs2922994, P¼ 6.03� 10� 10),
suggesting that the two SNPs are independent. Both SNPs were
weakly correlated with other SNPs in the HLA region previously
reported to be associated with other NHL subtypes or
Hodgkin lymphoma (r2o0.14 for all pairwise comparisons).
None of the previously reported SNPs were significantly
associated with MZL risk after adjustment for multiple testing
(Po0.0025) in our study, suggesting the associations are subtype-
specific (Supplementary Table 5). Another SNP rs7750641
(P¼ 3.34� 10� 8; Supplementary Table 4) in strong linkage
disequilibrium (LD) with rs2922994 (r2¼ 0.85) also showed
promising association with MZL risk. rs7750641 is a missense
variant in transcription factor 19 (TCF19), which encodes a
DNA-binding protein implicated in the transcription of genes
during the G1–S transition in the cell cycle4. The non-HLA SNPs
genotyped in stage 2 were not associated with MZL risk
(Supplementary Table 4).

HLA alleles. To obtain additional insight into plausible functional
variants, we imputed the classical HLA alleles and amino acid
residues using SNP2HLA5 (Methods). No imputed HLA alleles or
amino acid positions reached genome-wide significance
(Supplementary Table 6). However, for HLA class I, the most
promising associations were observed with HLA-B*08
(P¼ 7.94� 10� 8), HLA-B*08:01 (P¼ 7.79� 10� 8) and the
HLA-B allele encoding an aspartic acid residue at position 9
(Asp9) (P¼ 7.94� 10� 8), located in the peptide binding groove
of the protein. HLA-B*08:01 and Asp9 are highly correlated
(r2

Z0.99), and thus their effect sizes were identical (OR¼ 1.67,
95% CI: 1.38–2.01). They are both also in strong LD with
rs2922994 (r2¼ 0.97). Due to the fact that they are collinear, the
effects of the SNPs and alleles were indistinguishable from one
another in conditional modelling. For HLA class II, a suggestive
association was observed with HLA-DRB1*01:02 (OR¼ 2.24, 95%
CI: 1.64–3.07, P¼ 5.08� 10� 7; Supplementary Table 6), which is
moderately correlated with rs9461741 (r2¼ 0.69). Conditional
analysis revealed that the effects of rs9461741 (the intragenic
SNP in BTNL2) and HLA-DRB1*01:02 were indistinguishable
statistically (stage 1: rs9461741, Padjusted¼ 0.064 and HLA-
DRB1*01:02, Padjusted¼ 0.29). A model containing both HLA-
B*08:01 and HLA-DRB1*01:02 showed that the two alleles
were independent (HLA-B*08:01: Padjusted¼ 4.65� 10� 8 and
HLA-DRB1*01:02: Padjusted¼ 2.97� 10� 7), further supporting
independent associations in HLA class I and II loci.

MALT versus non-MALT. Heterogeneity between the largest
subtype of MZL, namely MALT and other subtypes grouped as
non-MALT, was evaluated for the MZL associated SNPs
(Supplementary Table 7). The effects were slightly stronger for
MALT, but no evidence for substantial heterogeneity was
observed (PheterogeneityZ0.05). Studies have suggested that
H. pylori infection is a risk factor for gastric MZL2. An
examination of SNPs previously suggested to be associated with
H. pylori infection in independent studies6 did not reveal any
significant association with the combined MZL or the
MALT subtype in this study (Supplementary Table 8). Toll-like
receptors (TLR) are considered strong candidates in mediating
inflammatory immune response to pathogenic insults. A previous
study reported7 a nominally significant association with
rs4833103 in the TLR10–TLR1–TLR6 region with MZL risk.
After excluding the cases and controls in the previous report7, we
found little additional support for this locus (MZL: P¼ 0.006,
OR¼ 1.18 and MALT: P¼ 0.38, OR¼ 1.08).
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Secondary functional analyses. To gain additional insight into
potential biological mechanisms, expression quantitative trait loci
(eQTL) analyses were performed in two datasets consisting of
lymphoblastoid cell lines (Methods). Significant associations were
seen for rs2922994 and rs7750641with HLA-B and HLA-C
(Supplementary Table 9) while suggestive associations (false
discovery rate, FDRr0.05) for correlated SNPs of rs2922994

(r240.8) in HLA class I and RNF5 (Supplementary Table 10)
were observed. No significant eQTL association was observed for
rs9461741 or other correlated HLA class II SNPs. Chromatin state
analysis (Methods) using ENCODE data revealed correlated SNPs
of rs2922994 showed a chromatin state consistent with the pre-
diction for an active promoter (rs3094005) or satisfied the state of
a weak promoter (rs2844577) in the lymphoblastoid cell line

Table 1 | Association results for two new independent SNPs with MZL in a two-stage GWAS.

Chr Nearest
gene(s)

SNP Position* Risk
allelew

Other
allele

RAFz Stage No. of cases/
no. of controls

OR 95% CI P valuey Pheterogeneity I2

6p21.32 BTNL2 rs9461741 32370587 C G 0.018 Stage 1 824/6,220 2.40 (1.74–3.31) 9.11E-08
0.030 Stage 2 453/877 3.06 (2.10–4.46) 5.24E-09

Combined 1,277/7,097 2.66 (2.08–3.39) 3.95E-15 0.216 34.69
6p21.33 HLA-B rs2922994 31335901 G A 0.113 Stage 1 825/6,221 1.74 (1.43–2.12) 2.89E-08

0.094 Stage 2 405/832 1.43 (1.08–1.90) 0.01
Combined 1,230/7,053 1.64 (1.39–1.92) 2.43E-09 0.507 0

CI, confidence interval; GWAS, genome-wide association study; MZL, marginal zone lymphoma; OR, odds ratio; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
*Position according to human reference NCBI37/hg19.
wAllele associated with an increased risk of MZL.
zRisk allele frequency in controls.
yFor stage 1 and 2, P values were generated by using logistic regression. For the combined stage, the odds ratio and P values were generated using a fixed effects model. Heterogeneity in the effect
estimates was assessed using Cochran’s Q statistic and estimating the I2 statistic.
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Figure 1 | Regional plot showing the HLA associations with MZL. The figure shows the association log10 P values from the log-additive genetic model

for all SNPs in the region from stage 1 (dots) (n¼ 825 cases, n¼ 6,221 controls) and the log10 P values from the log-additive genetic model for both

stage 1 and 2 combined (purple diamonds) for rs2922994 (n¼ 1,230 cases, n¼ 7,053 controls) and rs9461741 (n¼ 1,277 cases, n¼ 7,097 controls).

The purple dots show the log10 P values of these SNPs in stage 1. Top panel (a) shows the region encompassing both SNPs. Bottom panel (b) regional

plot of the most significant SNP rs2922994 at 6p21.33 (c) and rs9461741 at 6p21.32. The colours of the dots reflect the LD (as measured by r2) with

the most significant SNP as shown in the legend box.
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GM12878 (Supplementary Fig. 5). GM12878 is the only lym-
phoblastoid cell line from which high-quality whole-genome
annotation data for chromatin state is readily available. Analyses
were also performed with HaploReg (Supplementary Table 11)
and RegulomeDB (Supplementary Table 12) that showed overlap
of the SNPs with functional motifs, suggesting plausible roles in
gene regulatory processes.

Discussion
The most statistically significant SNP associated with MZL,
rs9461741, is located in HLA class II in the intron between exons
3 and 4 of the BTNL2 gene. BTNL2 is highly expressed in
lymphoid tissues8 and has close homology to the B7 co-
stimulatory molecules, which initiate lymphocyte activation as
part of antigen presentation. Evidence is consistent with BTNL2
acting as a negative regulator of T-cell proliferation and cytokine
production8,9 and attenuating T-cell-mediated responses in the
gut10. We were unable to statistically differentiate the effects of
rs9461741 from HLA-DRB1*01:02 and, thus, our observed
association could be due to HLA-DRB1. HLA-DRB1 has been
shown to be associated with other autoimmune diseases,
including rheumatoid arthritis11 and selective IgA deficiency12.
Similarly, rs2922994 is located 11 kb upstream of HLA-B, which is
known to play a critical role in the immune system by presenting
peptides derived from the endoplasmic reticulum lumen.
rs7750641, a missense variant in TCF19, was previously
associated with pleiotropic effects on blood-based phenotypes13

and is highly expressed in germinal center cells and up-regulated
in human pro-B and pre-B cells14. Autoimmune diseases, such as
Sjögren’s syndrome and systemic lupus erythematosus, are
established risk factors for developing MZL, with the strongest
associations seen between Sjögren’s syndrome and the MALT
subtype15. Of note, SNPs in HLA-B and the classical alleles
HLA-DRB1*01:02 are strongly associated with Sjögren’s
syndrome16, while HLA-DRB1*03 has been associated with
rheumatoid arthritis17. The multiple independent associations
in the HLA region and their localization to known functional
autoimmune and B-cell genes suggest possible shared genetic
effects that span both lymphoid cancers and autoimmune
diseases. Chronic autoimmune stimulation leading to over-
activity and defective apoptosis of B cells, and secondary
inflammation events triggered by genetic and environmental
factors are biological mechanisms that may contribute to the
pathogenesis of MZL.

We have performed the largest GWAS of MZL to date and
identified two independent SNPs within the HLA region that are
robustly associated with the risk of MZL. In addition to the
known diversity in etiology and pathology, there is mounting
evidence of genetic heterogeneity across the NHL subtypes of
lymphoma. However, the HLA region appears to be commonly
associated with multiple major subtypes, such as MZL, CLL18,
DLBCL19 and FL20–23. Further studies are needed to identify
biological mechanisms underlying these relationships and
advance our knowledge regarding their interactions with
associated environmental factors that may modulate disease risks.

Methods
Stage 1 MZL GWAS study subjects and ethics. As part of a larger NHL GWAS
initiative, we conducted a GWAS of MZL using 890 cases and 2,854 controls
of European descent from 22 studies of NHL (Supplementary Table 1 and
Supplementary Table 2), including nine prospective cohort studies, eight
population-based case–control studies, and five clinic or hospital-based case–
control studies. All studies were approved by the respective Institutional Review
Boards as listed. These are ATBC:(NCI Special Studies Institutional Review Board),
BCCA: UBC BC Cancer Agency Research Ethics Board, CPS-II: American Cancer
Society, ELCCS: Northern and Yorkshire Research Ethics Committee, ENGELA:
IRB00003888—Comite d’ Evaluation Ethique de l’Inserm IRB # 1, EPIC: Imperial

College London, EpiLymph: International Agency for Research on Cancer, HPFS:
Harvard School of Public Health (HSPH) Institutional Review Board, Iowa-Mayo
SPORE: University of Iowa Institutional Review Board, Italian GxE: Comitato Etico
Azienda Ospedaliero Universitaria di Cagliari, Mayo Clinic Case–Control: Mayo
Clinic Institutional Review Board, MCCS: Cancer Council Victoria’s Human
Research Ethics Committee, MD Anderson: University of Texas MD Anderson
Cancer Center Institutional Review Board, MSKCC: Memorial Sloan-Kettering
Cancer Center Institutional Review Board, NCI-SEER (NCI Special Studies Insti-
tutional Review Board), NHS: Partners Human Research Committee, Brigham and
Women’s Hospital, NSW: NSW Cancer Council Ethics Committee, NYU-WHS:
New York University School of Medicine Institutional Review Board, PLCO: (NCI
Special Studies Institutional Review Board), SCALE: Scientific Ethics Committee
for the Capital Region of Denmark, SCALE: Regional Ethical Review Board in
Stockholm (Section 4) IRB#5, UCSF2: University of California San Francisco
Committee on Human Research, WHI: Fred Hutchinson Cancer Research Center,
Yale: Human Investigation Committee, Yale University School of Medicine.
Informed consent was obtained from all participants.

Cases were ascertained from cancer registries, clinics or hospitals or through
self-report verified by medical and pathology reports. To determine the NHL
subtype, phenotype data for all NHL cases were reviewed centrally at the
International Lymphoma Epidemiology Consortium (InterLymph) Data
Coordinating Center and harmonized using the hierarchical classification proposed
by the InterLymph Pathology Working Group24,25 based on the World Health
Organization (WHO) classification26.

Genotyping and quality control. All MZL cases with sufficient DNA (n¼ 890)
and a subset of controls (n¼ 2,854) frequency matched by age, sex and study to the
entire group of NHL cases, along with 4% quality control duplicates, were geno-
typed on the Illumina OmniExpress at the NCI Core Genotyping Resource (CGR).
Genotypes were called using Illumina GenomeStudio software, and quality control
duplicates showed 499% concordance. Monomorphic SNPs and SNPs with a call
rate of o95% were excluded. Samples with a call rate of r93%, mean hetero-
zygosity o0.25 or 40.33 based on the autosomal SNPs or gender discordance
(45% heterozygosity on the X chromosome for males and o20% heterozygosity
on the X chromosome for females) were excluded. Furthermore, unexpected
duplicates (499.9% concordance) and first-degree relatives based on identity by
descent sharing with Pi-hat 40.40 were excluded. Ancestry was assessed using the
Genotyping Library and Utilities (GLU-http://code.google.com/p/glu-genetics/)
struct.admix module based on the method by Pritchard et al.27 and participants
with o80% European ancestry were excluded (Supplementary Fig. 1). After
exclusions, 825 cases and 2,685 controls remained (Supplementary Table 2).
Genotype data previously generated on the Illumina Omni2.5 from an additional
3,536 controls from three of the 22 studies (ATBC, CPS-II and PLCO) were also
included3, resulting in a total of 825 cases and 6,221 controls for the stage 1 analysis
(Supplementary Table 3). Of these additional 3,536 controls, 703 (B235 from each
study) were selected to be representative of their cohort and cancer free3, while the
remainder were cancer-free controls from an unpublished study of prostate cancer
in the PLCO. SNPs with call rate o95%, with Hardy–Weinberg equilibrium
Po1� 10� 6, or with a MAF o1% were excluded from analysis, leaving 611,856
SNPs for analysis. To evaluate population substructure, a principal components
analysis was performed using the Genotyping Library and Utilities (GLU), version
1.0, struct.pca module, which is similar to EIGENSTRAT28 -http://genepath.
med.harvard.edu/Breich/Software.htm. Plots of the first five principal components
are shown in Supplementary Fig. 2. Genomic inflation factor was computed prior
(l¼ 1.014) and after removal of SNPs in the HLA loci (l¼ 1.010). Association
testing was conducted assuming a log-additive genetic model, adjusting for age, sex
and three significant principal components. All data analyses and management
were conducted using GLU.

Imputation of variants. To more comprehensively evaluate the genome for SNPs
associated with MZL, SNPs in the stage 1 discovery GWAS were imputed using
IMPUTE2 (ref. 29)-http://mathgen.stats.ox.ac.uk/impute/impute_v2.html and the
1000 Genomes Project (1kGP-http://www.1000genomes.org/) version 3 data29,30.
SNPs with a MAF o1% or information quality score (info) o0.3 were excluded
from analysis, leaving 8,478,065 SNPs for association testing. Association testing on
the imputed data was conducted using SNPTEST31—https://mathgen.stats.ox.ac.
uk/genetics_software/snptest/snptest.html version 2, assuming dosages for the
genotypes and adjusting for age, sex and three significant principal components. In
a null model for MZL risk, the three eigenvectors EV1, EV3 and EV8 were
nominally associated with MZL risk and hence were included to account for
potential population stratification. Heterogeneity between MZL subtypes was
assessed using a case–case comparison, adjusting for age, sex and significant
principal components.

Stage 2 replication of SNPs from the GWAS. After ranking the SNPs by P value
and LD filtering (r2o0.05), 10 SNPs from the most promising loci identified from
stage 1 after imputation with Po7.5� 10� 6 were taken forward for de novo
replication in an additional 456 cases and 906 controls (Supplementary Tables 1
and 4). Wherever possible, we selected either the best directly genotyped SNP or
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the most significant imputed SNP for the locus. Only imputed SNPs with an
information score 40.8 were considered for replication. Only SNPs with MAF
41% were selected for replication, and no SNPs were taken forward for replication
in regions where they appeared as singletons or obvious artifacts. For the HLA
region, we selected one additional SNP (rs7750641) that was highly correlated with
rs2922994 for additional confirmation. Genotyping was conducted using custom
TaqMan genotyping assays (Applied Biosystems) validated at the NCI Core
Genotyping Resource. Genotyping was done at four centres. HapMap control
samples genotyped across two centres yielded 100% concordance as did blind
duplicates (B5% of total samples). Due to the small number of samples, the MD
Anderson, Mayo and NCI replication studies were pooled together for association
testing; however, MSKCC samples were analysed separately to account for the
available information on Ashkenazi ancestry. Association results were adjusted for
age and gender and study site in the pooled analysis. The results from the stage 1
and stage 2 studies were then combined using a fixed effect meta-analysis method
with inverse variance weighting based on the estimates and s.e. from each study.
Heterogeneity in the effect estimates across studies was assessed using Cochran’s
Q statistic and estimating the I2 statistic. For all SNPs that reached genome-wide
significance in Table 1, no substantial heterogeneity was observed among the
studies (PheterogeneityZ0.1 for all SNPs, Supplementary Table 4).

Technical validation of imputed SNPs. Genotyping was conducted using custom
TaqMan genotyping assays (Applied Biosystems) at the NCI Cancer Genomics
Research Laboratory on a set of 470 individuals included in the stage 1 MZL
GWAS. The allelic dosage r2 was calculated between the imputed genotypes and
the technical validation done using assayed genotypes which showed that both
SNPs were imputed with high accuracy (INFO Z0.99) and a high correlation
(r2

Z0.99) between dosage imputation and genotypes obtained by Taqman assays.

HLA imputation and analysis. To determine if specific coding variants within
HLA genes contributed to the diverse association signals, we imputed the classical
HLA alleles (A, B, C, DQA1, DQB1, DRB1) and coding variants across the HLA
region (chr6:20–40 Mb) using SNP2HLA5-http://www.broadinstitute.org/mpg/
snp2hla/. The imputation was based on a reference panel from the Type 1 Diabetes
Genetics Consortium (T1DGC) consisting of genotype data from 5,225 individuals
of European descent who were typed for HLA-A, B, C, DRB1, DQA1, DQB1, DPB1,
DPA1 4-digit alleles. Imputation accuracy of HLA alleles was assessed by
comparing HLA alleles to the HLA sequencing data on a subset of samples from
the NCI32. The concordance rates obtained were 97.32, 98.5, 98.14 and 97.49% for
HLA-A, B, C and DRB1, respectively, in the NCI GWAS suggesting robust
performance of the imputation method. Due to the limited number of SNPs (7,253)
in the T1DGC reference set, imputation of HLA SNPs was conducted with
IMPUTE2 and the 1kGP reference set as described above. A total of 68,488 SNPs,
201 classical HLA alleles (two- and four-digit resolution) and 1,038 AA markers
including 103 AA positions that were ‘multi-allelic’ with three to six different
residues present at each position, were successfully imputed (info score 40.3 for
SNPs or r240.3 for alleles and AAs) and available for downstream analysis. Multi-
allelic markers were analysed as binary markers (for example, allele present or
absent) and a meta-analysis was conducted where we tested SNPs, HLA alleles and
AAs across the HLA region for association with MZL using PLINK33 or
SNPTEST31 as described above.

eQTL analysis. We conducted an eQTL analysis using two independent datasets:
childhood asthma34 and HapMap35. As described previously34 for the childhood
asthma data set35, peripheral blood lymphocytes were transformed into
lymphoblastoid cell lines for 830 parents and offspring from 206 families of
European ancestry. Data from 405 children were used for the analysis as follows:
using extracted RNA, gene expression was assessed with the Affymetrix HG-U133
Plus 2.0 chip. Genotyping was conducted using the Illumina Human-1 Beadchip
and Illumina HumanHap300K Beadchip, and imputation performed using data
from 1kGP. All SNPs selected for replication were tested for cis associations
(defined as gene transcripts within 1 Mb), assuming an additive genetic model,
adjusting for non-genetic effects in the gene expression value. Association testing
was conducted using a variance component-based score test36 in MERLIN37, which
accounts for the correlation between siblings. To gain insight into the relative
importance of associations with our SNPs compared with other SNPs in the region,
we also conducted conditional analyses, in which both the MZL SNP and the most
significant SNP for the particular gene transcript (that is, peak SNP) were included
in the same model. Only cis associations that reached Po6.8� 10� 5, which
corresponds to a FDR of 1% are reported (Supplementary Table 9).

The HapMap data set consisted of a publicly available RNAseq data set35 from
transformed lymphoblastoid cell lines from 41 CEPH Utah residents with ancestry
from northern and western Europe (HapMap-CEU) samples available from the
Gene Expression Omnibus repository (http://www.ncbi.nlm.nih.gov/geo) under
accession number GSE16921. In this data set, we examined the association between
the two reported SNPs in the HLA region, rs2922994 and rs9461741, as well as all
SNPs in LD (r240.8 in HapMap-CEU release 28) and expression levels of probes
within 1 Mb of the SNPs. As rs9461741 was not genotyped in HapMap, we selected
rs7742033 as a proxy as it was the strongest linked SNP available in HapMap

(r2¼ 0.49 in 1kGP-CEU). Genotyping data for these HapMap-CEU individuals
were directly downloaded from HapMap (www.hapmap.org). Correlation between
expression and genotype for each SNP-probe pair was tested using the Spearman’s
rank correlation test with t-distribution approximation and estimated with respect
to the minor allele in HapMap-CEU. P values were adjusted
using the Benjamini–Hochberg FDR correction and eQTLs
were considered significant at an FDRo0.05 (Supplementary Table 10).

Bioinformatics ENCODE and chromatin state dynamics. To assess chromatin
state dynamics, we used Chromos38, which has precomputed data from
ENCODE on nine cell types using Chip-Seq experiments39. These consist of
B-lymphoblastoid cells (GM12878), hepatocellular carcinoma cells (HepG2),
embryonic stem cells, erythrocytic leukaemia cells (hK562), umbilical vein
endothelial cells, skeletal muscle myoblasts, normal lung fibroblasts, normal
epidermal keratinocytes and mammary epithelial cells. These precomputed data
have genome-segmentation performed using a multivariate hidden Markov model
to reduce the combinatorial space to a set of interpretable chromatin states. The
output from Chromos lists data into 15 chromatin states corresponding to
repressed, poised and active promoters, strong and weak enhancers, putative
insulators, transcribed regions and large-scale repressed and inactive domains
(Supplementary Fig. 5).
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