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I. Introduction

Extensive empirical investigation has established that the Black-Scholes
[1973] option pricing model yields values which differ systematically from
market prices with respect to the volatility of the underlying common stock
(Black and Scholes [1972], Geske and Roll [1984]), time until expiration
(Black [1975], Rubinstein [1985]) and exercise price (Black [1975], MacBeth
and Merville [1979], Rubinstein [1985]). Other research has established that
stock returns are not perfectly normally distributed [Fama (1965)]. However,
the Black-Scholes model assumes that stock returns are (instantaneously)
normally distributed. Given this systematic option mispricing and the
observed deviations of stock returns from normality, alternative option
pricing models have been developed by relaxing Black-Scholes' assumption that
stock returns are normally distributed (Cox [1975], Cox and Ross [1976],
Merton [1976], Geske [1979], Rubinstein [1983]).

The observed deviations from normality exhibited by stock returns may be
due to measurement error in stock prices, or may reflect the fact that the
true underlying distribution of stock returns is nonnormal. Even if the true
distribution is nonnormal, the issue is whether these deviations are "large"
enough so that an option pricing model based on an alternative distributional
assumption can be consistently more accurate than the Black-Scholes model.
Extant empirical evidence [Ball and Torous (1985)] suggests that observed
statistically significant deviations from normality exhibited by common stock
returns are not large enough to result in economically significant differences
between Black-Scholes model prices and prices from currently available models

based on alternative stock return specifications.



However, if common stock returns are not normally distributed, the sample
standard deviation is no longer an efficient estimator of volatility.
Lengthening the tails of the underlying distribution explodes the variability
of the sample standard deviation (Tukey [1960]). Hence, even slight
deviations from normality exhibited by actual common stock returns will
systematically affect volatility estimates, possibly contributing to the
observed mispricing with respect to these volatility estimates. By contrast,
robust estimators of volatility are insensitive to slight deviations from
normality (Huber [1977]). Robust techniques ensure that the deviations from
normality exhibited by common stock returns will have a minimal impact on the
performance of the resultant estimator of common stock volatility, and thereby
possibly improving the model’s pricing properties.

The purpose of this paper is to (1) empirically investigate the impact of
common stock returns’ deviations from normality upon the observed mispricing
of the Black-Scholes call option model, and (2) re-examine the model’s pricing
properties when robust statistical procedures are used to estimate the
volatility of common stock returns. As noted by Geske and Roll [1984], and
others, investigations of variance-related mispricing cannot rely on implied
variances which vary across options with the same expiration date written on
the same underlying common stock and, furthermore, explicitly assume the
validity of the Black-Scholes model.

Using robust estimates of volatility, we eliminate the mispricing of the
Black-Scholes model with respect to the skewness and the kurtosis of the
distribution of underlying common stock returns. Concomitantly, we reduce the

model’s systematic mispricing with respect to both volatility and time until

expiration. However, robust statistical procedures do not alter significantly



the systematic mispricing of the Black-Scholes model with respect to exercise
price.

The plan of this paper is as follows. In Section II robust estimation is
discussed. Section III details the data employed in this study. In Section
IV, estimating volatility by the sample standard deviation of the underlying
common stock returns, we empirically examine the mispricing of the Black-
Scholes model with respect to volatility, time until expiration, and exercise
price. We also empirically document that the model systematically misprices
options with respect to the skewness and kurtosis of the distribution of
underlying daily common stock returns. Furthermore, the mispricing of the
Black-Scholes model with respect to these deviations from normality
contributes to the model’s observed mispricing with respect to volatility,
time until expiration, and to a lesser extent, exercise price. Section V
presents our robust estimator of the volatility of daily common stock returns.
In deriving this alternative estimator, we take into account the fact that the
distribution of daily common stock returns is not only leptokurtic relative to
the normal distribution, but also, in general, skewed. In Section VI, we re-
examine the pricing properties of the Black-Scholes option pricing model when
robust estimates of the volatility of underlying daily common stock returns

are employed. Section VII presents our summary and conclusions.

II. Robust Estimation

"Everyone believed in the normal distribution, the
mathematicians because they thought it was experimental
fact, the experimenters because they thought it was
a mathematical theorem." Poincare’

Robust statistics has as its primary goal improved estimation and

inference when the observed distribution is not exactly equivalent to the
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assumed distribution. A model and its tests are based on an assumed
distribution which may differ from the observed distribution. While the
normal distribution is the most frequent assumption, many models are based on
alternative distributions. Robust statistical techniques offer methods for
dealing with observed deviations from any parametric assumption.

The observed deviations from any assumed parametric model may be
attributable to measurement error, or the true distribution may actually
differ from the distribution assumed. In either case robust statistics are
relevant for improving the quality of both estimation and inference.

Consider the following example. An experienced option market maker
observing that returns of some optioned stocks are not normally distributed
could attribute the deviations from normality to measurement error. This
market maker could know from experience that the true stock return
distribution is normal, and could condition the observed distribution with a
priori knowledge. Alternatively, another less experienced market maker
without knowledge of the true distribution but cognizant of the observed
deviations from normality could still improve the estimate of stock return
volatility by using robust statistics.!

To motivate robust statistical methods in option pricing, we appeal to
Huber’s [1977] approach based on the formalism of a two-person, zero-sum
game.2 Let G denote the true distribution of stock returns assumed to underly
observed option prices. For example, Black-Scholes assume that G is a normal
distribution. However, if the observed distribution of stock returns, F,
differs from the assumed distribution, G, then F may lie in a neighborhood of
G. More formally, the observed distribution, F, may be regarded as a mixture

of the assumed distribution, G, and an alternate distribution, H, such that



F=(1-¢€)G+ ¢H (1)

where ¢ > 0 is a known fraction and H is an unknown distribution which
modifies the assumed distribution. The unknown distribution H can have many
interpretations. For stock returns, H may reflect the fact that deviations
from the assumed normality in stock returns may be due to violations of
independence, nonstationarity, approximations to the central limit theorem,
gross data errors from recording, rounding or grouping errors since stock
prices are recorded in 1/8’'s or 1/16's or since trades occur at the bid or the
ask.

he two-person zero-sum game involves the statistician and Nature, which
generates the observed data. In particular, Nature chooses a distribution F
in the neighborhood of the assumed distribution G, the statistician chooses a
variance estimator ¥, and the gain to Nature and the loss to the statistician
is the estimator’s asymptotic variance, V(F, ¥). Huber establishes that there
exists a saddle point to this game where Nature chooses the least favorable
distribution and the statistician uses a minimax strategy to select an
estimator which minimizes asymptotic variance for this least favorable
distribution. For observed data {x1, %9, ..., X}, Huber's robust variance

2

estimator is that value s¢ which satigfies

n
1T gy o T - E[$5(2) |2-N(0,1) ] (2)
n'l i=1 JSZ
-b u < -b
where Yp(uw) = { u -b<u=<b
b u>b

for some b > 0, where T is a location estimate of the sample. Notice that

when ¥y(u) uand T = §, the sample mean, the solution to the preceding

expression is given by the sample variance. Deviations from normality have
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minimal effect on the performance of Huber’'s minimax estimator since the

influence of observations far from the center of the sample is limited.
By contrast, the performance of the sample standard deviation

deteriorates in the presence of slight deviations from normality. For

3

example,” compare the sample standard deviation, S, with the mean absolute

deviation, dp, given in formulas (3) and (4) below:

sp=[n13 (x5 - x)2 ]1/2 (3)
i
and _
dy = nl = [xi - % |. (4)
i

When the data are normal, as n get large, s, converges to the population
standard deviation o, while d, converges to J2/r o =0.80. In this case
the asymptotic relative efficiency of sn to dp, [Var (sn)/E(sn)2 + Var (d,)/E
(dn)z], is approximately .876. However, for just slight deviation from
normality, which are common in even the best samples, the efficiency of the

sample standard deviation is significantly reduced. For example, with

i

reference to expression (1), if G N(u,az) and H = N(p,902), and if the
observed data is characterized by e equal to 0.2% or 5%, the asymptotic
relative efficiency is 1.016 and 2.035, respectively. Thus, the relative
efficiency of robust volatility estimates given slight deviations from
normality will improve the pricing properties of the Black-Scholes option
pricing model.

In the next section we examine the data and report the observed

deviations from the assumed normality.



III. Data

To investigate the Black-Scholes model’s pricing properties, data on the
various inputs to the model must be measured accurately. Otherwise, resultant
measurement error, not attributable to the model, will lead to the apparent
mispricing of options.

In this study, transactions data for call options listed on the Chicago
Board Options Exchange (CBOE) are compiled from the Berkeley Options Data
Base. By employing transactions data, we minimize simultaneity problems
between option prices and underlying stock prices. Call options are sampled
for one date per month, the date randomly chosen from amongst the dates
following that month’s expiration date, over the period August 1976 to October
1977. We include only options that traded closest to but after 12:00 pm and
traded no later than 2:30 pm to minimize problems associated with opening and
closing prices. Furthermore, to better focus on the pricing properties of the
Black-Scholes model, we restrict our attention to that subsample of call
options written on non-dividend paying stocks. To that end, the CRSP daily
return file is employed to identify those underlying common stocks which did
not pay dividends during their options’ remaining time until expiration. As a
result, we have a sample of 2323 call options written on non-dividend paying
common stock spanning fifteen calendar months.

The market price of a call option written on a non-dividend paying common
stock is taken to be the average of the lowest bid or transaction price and
the highest ask or transaction price quoted during a constant common stock
price interval. The corresponding risk-free interest rate is compiled from
the CRSP bond file and is measured by the yield of a Treasury bill with

maturity date closest to the option’'s expiration date.



For each of the underlying common stocks, we collect daily return data
from the CRSP daily return file for 30 days, 60 days, 120 days, and 240 days
prior to the dates for which options data are available. Estimating
volatility on the basis of varying sample sizes allows us to empirically
investigate the effect of non-stationarity in the underlying security return
process upon the pricing properties of the Black-Scholes model. From Tables 1
and 2, we conclude that these underlying daily common stock returns, on
average, exhibit significant deviations from normality. Notice in Table 1
that as the sample size increases from 30 days to 240 days, the proportion of
the sampled common stock returns exhibiting statistically significant
leptokurtosis increases. This is consistent with non-stationarity in the
return distribution or with more power in the test statistic due to a larger
sample size. The results of Table 2 are consistent with both statistically
significant positive and negative skewness in the sampled common stock
returns. We investigate the effects of these types of deviations from

normality upon the mispricing of the Black-Scholes model in the next section.

IV. Pricing Properties of the Black Scholes Model:
Volatility Estimated by Sample Standard Deviation

Given our sample of call options written on non-dividend paying common
stocks, we now examine empirically the pricing properties of the Black-
Scholes model when volatility is estimated by the underlying common stock
returns’ sample standard deviation. We also examine empirically the model’s
mispricing with respect to the deviations from normality exhibited by the
underlying common stock returns. The effects of these deviations from
normality upon the model’s mispricing with respect to volatility, time until
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expiration, and exercise price are also investigated.

In Table 3 we document the mispricing of the Black-Scholes model with
respect to the sample standard deviation, sample skewness, and the sample
kurtosis of the underlying common stock returns. Here and throughout,
mispricing is defined as the dollar difference between the Black-Scholes model
price and the corresponding market price. Following Rubinstein [1985], we
employ a nonparametric procedure, the Spearman rank correlation coefficient,
to assess the degree of association between the model’s mispricing and the
characteristics of the distribution of underlying common stock returns.
Nonparametric procedures assume nothing about the population from which the
observed sample is drawn, all observations are weighted equally.

When volatility is estimated by the underling common stock returns’
sample standard deviation, the Black-Scholes model not only systematically
misprices calls with respect to volatility, but also systematically misprices
calls with respect to skewness and kurtosis. As previously documented by
others, the larger (smaller) the sample standard deviation, on average, the
larger the model’s overvaluing (undervaluing). This result holds for all
sample sizes and is highly significant throughout. In addition, the more
negatively skewed the distribution of underlying common stock returns, on
average, the greater the model’s overpricing. This result holds for all
sample sizes, except the 30 day sample. Also, the more leptokurtic the
distribution of underlying common stock returns, on average, the greater the
model’'s overpricing. This result is highly significant across all sample
sizes.

The magnitude of the model’s mispricing with respect to volatility and

the effect of deviations from normality upon this mispricing are presented in



Table 4. We classify the sampled call options as to whether they are written
on common stock with sample standard deviation, s, of s <.20, .20 < s <.30,
or, s>.30, and provide the resultant number of options, the corresponding mean
mispricing, the standard error of the mean mispricing, as well as the mean
sample skewness and mean sample kurtosis of the underlying common stock
returns. As expected, the model underprices options written on low volatility
stocks, and overprices options written on high volatility stocks. The
magnitude of the underpricing of options written on low volatility stocks
diminishes with increasing sample size. However, the magnitude of the
overpricing of options written on high volatility stocks does not diminish
with increasing sample size.

We also note that the magnitude of the overpricing of options written on
high volatility stocks exceeds the magnitude of the underpricing of options
written on low volatility stocks. This result is consistent with sampling
error in the sample standard deviation contributing to the observed volatility
mispricing of the Black-Scholes model. High sample standard deviations tend
to reflect positive sampling error, which is unbounded from above, while low
sample standard deviations tend to reflect negative sampling error, which is
bounded from below by zero. Furthermore, the high volatility stocks exhibit,
on average, significant deviations from normality whereas the low volatility
stocks, on average, do not. This suggests that the overpricing of options
written on high volatility stocks may simply reflect the mispricing of the
Black-Scholes model with respect to deviations from normality.

The Black-Scholes model also systematically misprices the sampled call
options with respect to their time until expiration. From Table 5 we conclude

that, on average, the longer an option's time until expiration, the greater
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the model’s overpricing. This result holds for all sample sizes except the 30
day sample where the time until expiration mispricing does not appear to be
economically significant.a Concurrently, for each sample size, as the time
until expiration increases, on average, the mean sample skewness of the
underlying common stock returns becomes more negative, while the mean sample
kurtosis increases. Notice that the deviations from normality do not appear
to be as dramatic for the 30 day sample. Observing greater deviations from
normality with increasing time until expiration is consistent with common
stock returns to firms which do not as a policy pay dividends exhibiting
greater deviations from normality than common stock returns to firms which
temporarily suspend dividend payments. It is also consistent with non-
stationarity. Again these results suggest that the mispricing of options with
respect to their time until expiration may simply reflect the mispricing of
the Black-Scholes model with respect to deviations from normality.

It is important to recognize that the overpricing, on average, of options
which are written on common stock which exhibit significant deviations from
normality is consistent with increased sampling error in the sample standard
deviation due to the non-normality of common stock returns. Increased
sampling error in the sample standard deviation also implies that the
distribution of the sample standard deviation becomes more positively skewed.
As a result, there is a probability of a large positive sampling error and, as
such, large overpricing by the Black-Scholes model. By contrast, there is a
lesser probability of a correspondingly large negative sampling error and, as
such, large underpricing by the Black-Scholes model since the distribution of
the sample standard deviation is bounded from below by zero. On average,

then, the Black-Scholes model will overprice options written on common stock
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which exhibit significant deviations from normality.

In Table 6 we examine the mispricing of the Black-Scholes option pricing
model with respect to exercise price. As previously documented by others, we
find that for this sample period the model tends to overprice deep in-the-
money (S/X > 1.15) calls. However, this overpricing of deep in-the-money
calls does not appear to be economically significant. Furthermore, contrary
to previous results, we find that across all sample sizes the mispricing of
deep out-of-the-money (5/X < .85) calls is not statistically significant. For
these deep out-of-the-money calls, notice that for all sample sizes except the
30 day sample, the underlying common stock returns exhibit significant
deviations from normality. That is, on average, the deep out-of-the-money
calls are written on common stock which have experienced sizeable price
declines. The fact that we do not, on average, misprice these calls requires
the Black-Scholes model, on average, to underprice deep out-of-the-money calls
written on common stock which do not exhibit deviations from normality. This
then would offset the model’s overpricing of deep out-of-the-money calls
written on common stock which do exhibit significant deviations from
normality. Finally, for all sample sizes except the 240 day sample, the model
tends to underprice at-the-money (.85 < S/X < 1.15) calls, the magnitude of
the underpricing increasing with decreases in the sample size.

To further investigate the effect of common stock returns’ deviations
from normality upon mispricing of the Black-Scholes model, we now turn our
attention to the subsample of calls written on common stock which do not
exhibit statistically significant deviations from normality. Comparing the
pricing properties of the Black-Scholes model in a sample that includes

options written on common stock which exhibit deviations from normality with a
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subsample which does not, allows us to isolate the pricing effects of these
deviations from normality.

Table 7 summarizes our results. In Panel A we document the model’s
mispricing with respect to sample standard deviation. While, as before, the
model still underprices options written on common stock with low volatility,
notice that the model’s overpricing of options written on common stock with
high volatility is reduced significantly. In other words, the fact that in
the entire sample we observe the Black-Scholes model, on average, overpricing
options written on common stock with high volatility simply reflects the
model’s overpricing, on average, of options written on common stock which
exhibit significant deviations from normality.

From Panel B, we conclude that the Black-Scholes model no longer
overprices long-term options. In fact, it appears that for options written on
common stock which do not exhibit significant deviations from normality, the
model tends to underprice long-term options, especially in the 30 day sample.
Again, the overpricing of long-term options that we observe in the entire
sample is simply a consequence of the Black-Scholes model's overpricing of
options written on common stock which exhibit significant deviations from
normality.

Panel C presents the Black-Scholes model’s pricing properties with
respect to exercise price. The model’s exercise price bias does not appear to
be economically significant. However, even in the absence of deviations from
normality, the model still tends to overprice deep in-the-money options and
underprice at-the-money options. Furthermore, for options written on common
stock which do not exhibit deviations from normality, we now detect a

statistically significant underpricing of deep out-of-the-money options. The
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overpricing of deep out-of-the-money options written on common stock which do
exhibit deviations from normality offset this underpricing so that for the
entire sample we observe no mispricing of deep out-of-the-money options.
Deviations from normality exhibited by common stock returns do contribute
to the observed pricing properties of the Black-Scholes model. 1In particular,
these deviations from normality contribute to the model’s observed overpricing
of options written on high volatility stocks and the model’s observed
overpricing of long-term options. Furthermore, these deviations from
normality contribute to the observed lack of mispricing of deep out-of-the-
money options. If deviations from normality effect the Black-Scholes model by
increasing the sampling error of the sample standard deviation, robust
estimation of the volatility of common stock returns will improve the model’s
pricing properties since the performance of robust statistical procedures is

much less affected by these deviations,

V. A Robust Estimator of Common Stock Return Volatility

The sample standard deviation is notably nonrobust to slight deviations
from normality. By contrast, these slight deviations from normality will
cause only a slight change in the performance of a robust estimator of common
stock return volatility. Our robust estimator of volatility is based upon
Lax's {1985] A estimators of volatility. His Monte Carlo analysis establishes
that across a variety of long-tailed symmetric distributions, the minimum
efficiency of this class of estimators is highest amongst more than 150
alternative volatility estimators. However, we must modify Lax’s A estimators

of volatility to take into account the fact that the distribution of daily
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common stock returns is not only long-tailed but also, in general, skewed.
The intuition underlying this class of volatility estimators is that the
variance of a location estimator can serve as a volatility estimator.

n
For example, if xi~iid N(O,a2 ) and x = n-l 2 xi, then as n -+ «,

i=1

n Var(;) - 02. (4)
However, the sample mean is also notably nonrobust to slight deviations from
normality (Tukey [1960]). Consequently, an A estimator of volatility is
defined, analogously to expression (4), from the asymptotic variance of a
robust estimator of location. Given a robust estimator of location, T, under
appropriate regularity conditions, as n - o,

n var(T) » A(T), (5)
where A(T) represents the asymptotic variance of the location estimator T. A
finite sample approximation to the asymptotic variance of the robust location
estimator gives an A estimator of volatility.

Lax’'s A estimators of volatility assume the underlying distribution is
long-tailed but symmetric. If the underlying distribution is skewed, then
A(T), which is appropriate if the distribution is symmetric, will
underestimate the variance of T (see Carroll [1979], Theorem 1, page 625).
The bias increases as the degree of asymmetry increases. Since T is a smooth
function of the underlying distribution, T being a robust estimator of
location, implies that jackknifing (Miller [1974]) will be effective in
estimating the variance of T. As the variance of a robust location estimator
serves as a robust volatility estimator, we modify Lax’'s A estimators to take
into account possible asymmetry in the distribution of common stock returns by
employing jackknifed variance estimates of a robust location estimator as
robust volatility estimates.

15



In order to calculate the jackknifed variance of a robust location
estimator T, we split our sample of size n into g groups of size h each, n=gh.
Letting Tj be the robust location estimate based on the sample of size (g-1)h,

where the jth group of size h has been deleted, we define

— 1 &
T =g z Tj. (6)
j=1
The jackknifed estimate of the variance of T is then given by
1 & -
(6 - =T (13- D?. (7

j=1
Our robust common stock return volatility estimator is based on the
biweight estimator of location. That is, given data (xq, X9, . . .,%Xpn}, the

robust location estimate is calculated as the solution, T, of the equation
n
TP (ug) =0 (8)
i=1
where uj = (x5 - T)/cMAD, with ¢ = 9 and MAD = median {|x{ - median{x{}|}, and

the bisquare function % is defined by

{ui(l-ui2)2 for |uj| <1
Y(ui) = 0 for |uj| = 1.

(9
Lax’s Monte Carlo analysis confirms that across a variety of long-tailed and
symmetric distributions, the minimum efficiency of the A estimator of
volatility based on this particular specification is higher than that of any
other A estimator. A Newton-Raphson iterative procedure is employed to solve
equation (8). Using the sample median as the initial estimate of location, in
each case convergence was achieved in no more than five iterations.

In Table 8, we contrast the properties of our robust estimates of common
stock return volatility with the corresponding volatility estimates provided

by the sample standard deviation. For the sample of all common stock returns

across all days which do not exhibit statistically significant deviations from
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normality, the robust estimates of volatility are not biased relative to the
sample standard deviation estimates. There is little or no difference between
the average robust estimates of volatility and the average volatility
estimates provided by the sample standard deviation.

Furthermore, in this case the sampling variance of the robust estimates
is slightly larger than the sampling variance of the sample standard deviation
estimates. This follows since for normally distributed data the sample
standard deviation is the optimal estimate of volatility. However, for the
sample of all common stock returns across all days which do exhibit
statistically significant deviations from normality, the sampling variance of
the robust estimates is significantly smaller than the sampling variance of
the sample standard deviation estimates. The efficiency gains of our robust
procedures tend to increase with decreasing sampling size. Also, the average
sample standard deviation estimates exceed the average robust estimates of
volatility across all sample sizes reflecting the relative inefficiency of the

sample standard deviation in the presence of non-normal data.

VI. Pricing Properties of the Black Scholes Model:
Volatility Estimated by Robust Techniqgues

Robust statistical techniques provide more efficient estimates of
volatility given deviations from normality in common stock returns. We now
examine empirically the pricing properties of the Black-Scholes model when
robust estimates of common stock return volatility are employed.

From Table 9, notice that across all sample sizes we eliminate the
mispricing of the Black-Scholes model with respect to the sample kurtosis of
the distribution of underlying common stock returns. Furthermore, except for

17



the 240 day sample, the model’s mispricing with respect to the sample skewness
of the distribution of underlying common stock returns is no longer
statistically significant. 1In addition, with robust estimates of common stock
return volatility, we reduce but do not eliminate the Black-Scholes model’s
systematic mispricing with respect to volatility. Robust procedures are least
effective in reducing systematic volatility mispricing in the 30 day sample
since for this sample size a majority of common stock returns do not exhibit
statistically significant deviations from normality.

We further investigate this volatility mispricing in Table 10. As in the
sample of options written on common stock which do not exhibit statistically
significant deviations from normality, the model’s systematic mispricing with
respect to robust volatility estimates is due primarily to the underpricing of
options written on low volatility stocks. By contrast, we reduce
significantly the model’s overpricing of options written on high volatility
stocks. Only for the 30 day sample does the overpricing of these options
appear to be economically significant. This reduction in the overpricing of
options written on high volatility stocks follows since the robust estimation
of common stock return volatility eliminates the Black-Scholes model's
mispricing with respect to sample skewness and sample kurtosis.

The robust estimation of the Black-Scholes model minimizes the model'’s
systematic overpricing of options with long terms until expiration. In Table
11 we document the model’s resultant mispricing of options with respect to
time until expiration. Only for the 240 day sample is the overpricing of the
long term options statistically significant. For all other sample sizes, the
mispricing of these options is not statistically significant. Again, the

reduction in the overpricing of these options reflects the elimination of the
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model’s mispricing with respect to sample skewness and sample kurtosis.
Finally, Table 12 presents the Black-Scholes model'’s mispricing with
respect to exercise price when we employ robust estimates of common stock
return volatility. As in the sample of options written on common stock which
do not exhibit statistically significant deviations from normality, the
model’s overpricing of deep in-the-money options, and underpricing of at-the-
money and deep out-of-the-money options is statistically significant
throughout. However, as before, this exercise price bias does not appear to

be economically significant.

VII. Summary and Conclusions

This study uses option transactions data to investigate the relation
between volatility estimation and call option mispricing using the Black-
Scholes formula. Estimating volatility by the sample standard deviation, the
Black-Scholes model systematically misprices our large sample of call options
written on non-dividend paying common stock with respect to the sample
skewness and the sample kurtosis of the underlying distribution of common
stock returns. This systematic mispricing with respect to sample skewness and
sample kurtosis contributes to the model’s observed mispricing with respect to
volatility, time until expiration, and, to a lesser extent, exercise price.
Robust estimation of common stock return volatility eliminates the model’'s
systematic mispricing with respect to sample skewness and sample kurtosis. As
a result, robust estimation of common stock return volatility minimizes the
Black-Scholes model’s mispricing with respect to time until expiration and
reduces the model’s mispricing with respect to volatility. However, even in

the absence of deviations from normality, the Black-Scholes model still
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undervalues options written on low volatility stocks and systematically
misvalues options with respect to exercise price. However, the exercise price

bias does not appear to be economically significant.
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Table 1

total number number of underlying common stock
of underlying exhibiting positive kurtosis at 5%

day common stocks significance level
sample 240 120 60 30
size : days days days days
1 26 18 17 11 9
2 59 44 32 24 14
3 23 20 14 10 6
4 48 37 32 17 9
5 59 44 33 22 16
6 68 54 39 27 17
7 37 31 22 17 14
8 64 55 37 23 17
9 25 21 16 8 7
10 31 24 18 8 10
11 63 50 35 21 14
12 24 19 13 9 6
13 29 25 20 17 11
14 58 47 36 25 13
15 65 53 43 29 15
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Table 2

total number number of underlying common number of underlying common
of underlying stock exhibiting positive stock exhibiting negative

common stocks skewness at 5% significance skewness at 5% significance

day level level

sample 240 120 60 30 sample 240 120 60 30

size : days days days days size : days days days days
1 26 9 10 3 4 1 3 5 6
2 59 28 19 11 7 4 6 6 5
3 23 9 8 7 6 2 4 4 1
4 48 17 9 7 5 4 10 11 5
5 59 26 9 12 13 4 12 6 8
6 68 20 10 14 9 7 12 11 10
7 37 6 5 5 5 4 9 9 11
8 64 14 9 10 6 7 13 12 6
9 25 5 4 1 4 7 6 4 4
10 31 3 5 3 3 9 8 4 4
11 63 4 8 6 4 12 20 14 7
12 24 3 2 3 0 7 6 7 1
13 29 6 3 7 4 4 6 6 5
14 58 10 10 14 5 14 12 8 7
15 65 18 12 15 7 17 15 11 7
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Table 3

correlation correlation correlation
sample between mispricing between mispricing between mispricing
size and volatility and sample kurtosis and sample skewness
%% *% %%
240 days .192 .187 -.128
*% x% %%
120 days .190 .164 -.106
*% *% K%
60 days .242 .170 -.154
Sk *%
30 days .188 .096 -.020

%

indicates significance at the 1% level
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Table 4

sample
size volatility s < .20 .20 < s < .30 s > .30
240 days number of options 579 1146 598
mpr -.024 .022 117
se (mpr) .012 .006 .010
sk .04 .00 -.21
kr 1.44 1.83 4,28
120 days number of options 668 1156 499
mpr -.062 .003 .063
se(mpr) .012 .006 .008
sk -.03 -.09 -.31
kr 1.07 1.88 4.18
60 days number of options 781 1097 445
mpr -.081 -.018 .132
se (mpr) .012 .007 .013
sk -.02 .04 -.53
kr .86 1.28 3.64
30 days number of options 906 978 439
mpr -.091 -.053 .140
se (mpr) .012 .008 .020
sk -.04 .04 -.22
kr .34 64 1.55
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Table 5

sample time until
size expiration r < 20 20 < £ <70 70 < r <120 120 < r <170 r > 170
240 days number of 386 1498 189 107 143
options
mpr -.003 .005 .055 .186 .337
se (mpr) .004 .005 .020 .031 .034
sk .04 .01 -.24 .41 -.42
kr 2.15 2.12 3.28 3.43 4,27
120 days number of 386 1498 189 107 143
options
mpr -.007 -.022 -.025 .095 .187
se (mpr) .005 .005 .022 .026 .027
sk -.07 -.07 .34 A -.32
kr 2.08 1.97 2.86 2.67 2.86
60 days  number of 386 1498 189 107 143
options
mpr -.007 -.036 -.003 .099 .157
se (mpr) .005 .006 .025 .045 044
sk -.09 -.08 -.25 - .47 -.35
kr 1.59 1.38 2.33 2.42 2.39
30 days number of 386 1498 189 107 143
options
mpr -.014 -.045 -.009 -.052 .050
se(mpr) .005 .006 .025 .070 .058
sk -.01 -.01 -.16 -.22 -.12
kr 49 .63 1.05 1.19 1.15

25



Table 6

sample
size S/X S/X < .85 .85 < S/X < 1.15 S/X > 1.15
240 days number of 537 1355 431
options
mpr -.006 .038 .075
se(mpr) .005 .016 .009
sk .21 .00 -.02
kr 3,15 2.09 2.31
120 days number of 537 1355 431
options
mpr -.007 -.023 .064
se (mpr) .005 .007 .008
sk -.33 -.06 -.06
kr 3.12 1.80 2.00
60 days number of 537 1355 431
options
mpr .014 -.042 .055
se (mpr) .008 .008 .009
sk -.36 -.07 -.01
kr 2.38 1.36 1.33
30 days number of 537 1355 431
options
mpr .009 -.074 .050
se(mpr) .010 .010 .010
sk -.16 -.01 .02
kr .93 .63 61
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Table 7

sample 2;ze volatility < .20 .20 < s < .30 s > .30
240 days number of options 110 220 61
mpr .072 011 -.040
se (mpr) 021 013 017
120 days number of options 232 418 86
mpr .048 .021 -.002
se (mpr) 015 .009 019
60 days number of options 428 557 131
mpr .067 .037 .023
se (mpr) 011 .009 012
30 days number of options 612 636 220
mpr .075 .052 -.021
se (mpr) 010 .010 013
B:
sample size time until expiration T < 20 20< 7 <70 70< ¢ <170 7 >170
240 days number of options 69 255 51 16
mpr .000 .011 -.085 -.051
se (mpr) 011 013 .041 027
120 days number of options 121 509 81 25
mpr -.007 .017 -.130 .003
se (mpr) .009 008 039 .088
60 days number of options 180 761 122 53
mpr -.001 .043 -.096 -.037
se (mpr) _007 .008 029 .053
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30 days number of options 266 976 158 68
mpr -.011 -.044 -.165 -.169
se (mpr) .006 .007 029 056
C:
sample size S/X S/X < .85 .85 < 8/X < 1.15 S/X > 1.15
240 days number of options 62 253 76
mpr -.042 -.034 .046
se (mpr) 005 014 022
120 days number of options 133 452 151
mpr -.032 -.053 .054
se (mpr) .005 011 .015
60 days number of options 227 666 223
mpr -.033 -.074 .048
se (mpr) 004 010 013
30 days number of options 326 860 282
mpr -.041 -.096 .042
se (mpr) 004 .010 011
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TABLE 8

normal:

sample size s N var(s) / var(gp)
240 days .24 24 .996

120 days .23 .23 .979

60 days .23 .23 .984

30 days .23 .23 .978
non-normal:

sample size s EN var(s) / var(op)
240 days .27 .25 1.172

120 days .26 .25 1.266

60 days .27 .25 1.417

30 days .27 .25 1.511
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Table 9

sample correlation correlation correlation
size between mispricing between mispricing between mispricing
and volatility and sample kurtosis and sample skewness
*% %
240 days .101 .030 -.070
120 days L0927 .000 -.031
KX
60 days .136 .012 -.037
Sk
30 days .151 -.016 -.028
%ok

indicates significance at the 1% level.
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Table 10

sample

size volatility bp < .20 .20 < 65 < .30 5p > .30

240 days number of options 673 1133 517

mpr -.034 .008 .024

se (mpr) 008 006 _009

120 days number of options 802 1066 455

mpr -.069 -.016 -.005

se (mpr) .008 .006 .009

60 days number of options 824 1083 416

mpr -.068 -.031 .027

se (mpr) .009 .007 009

30 days number of options 913 969 441

mpr -.094 -.059 .077

se (mpr) .009 .009 017
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Table 11

S:?iie time until expiration T < 20 20< 1 <70 70< 7 <120 120< 7 <170 r >170
240 days number of options 386 1498 189 107 143
mpr -.006 -.014 -.008 .037 .120

se (mpr) 004 005 020 028 032

120 days number of options 386 1498 189 107 143
mpr -.011 -.040 -.075 -.029 A .051

se (mpr) 005 005 022 .025 L026

60 days number of options 386 1498 189 107 143
mpr -.012 -.047 -.063 -.029 .014

se (mpr) .005 006 020 .035 033

30 days number of options 386 1498 189 107 143
mpr -.014 -.053 -.032 -.099 -.060

se(mpr) .005 006 021 069 .051
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TABLE 12

sample size S/X S/X < .85 .85 < §/X < 1.15 S/X > 1.15
240 days number of options 537 1355 431
mpr .028 -.010 .043
se(mpr) 004 007 010
120 days number of options 537 1355 431
mpr .032 -.059 .054
se (mpr) 004 ,007 .008
60 days number of options 537 1355 431
mpr .018 -.072 .045
se (mpr) .005 .008 .009
30 days number of options 537 1355 431
mpr .021 -.086 .043
se (mpr) 007 010 .010
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FOOTNOTES
1. The fact that model performance can be improved by robust statistics does
not rule out the existence of a better pricing model.
2. Alternate approaches to robust theory based on likelihood ratio tests or
on influence functions offer additional means of relating this theory to
general statistics.

3. This example is due to Tukey [1960].

4. Market makers have informed us that it is not profitable to attempt to
arbitrage differences which are less than $0.10, on average.
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