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The wide utility of rabbits as models of
human diseases
Pedro J. Esteves1,2,3, Joana Abrantes1, Hanna-Mari Baldauf4, Lbachir BenMohamed5,6,7, Yuxing Chen8, Neil Christensen9,
Javier González-Gallego10, Lorenzo Giacani11, Jiafen Hu9, Gilla Kaplan12, Oliver T. Keppler4, Katherine L. Knight13,
Xiang-Peng Kong14, Dennis K. Lanning13, Jacques Le Pendu15, Ana Lemos de Matos16, Jia Liu17, Shuying Liu8,
Ana M. Lopes1,18, Shan Lu8, Sheila Lukehart11, Yukari C. Manabe19, Fabiana Neves1, Grant McFadden16, Ruimin Pan14,
Xuwen Peng9, Patricia de Sousa-Pereira1,2,4, Ana Pinheiro1,13, Masmudur Rahman16, Natalie Ruvoën-Clouet15,
Selvakumar Subbian20, Maria Jesús Tuñón10, Wessel van der Loo1, Michael Vaine8, Laura E. Via21,22,
Shixia Wang8 and Rose Mage23

Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of
antibody structure and diversification mechanisms and continue to be valuable for the development and testing
of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of
the European rabbit as an animal model has been increasingly extended to many human diseases. This review
documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and
vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include
syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and
papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine
in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS.
Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit
and provide unique models to understand co-evolution between a vertebrate host and viral pathogens.

Introduction
Small laboratory animals, such as mice, rats, guinea pigs,

and European rabbits, have long been used as models to
improve our understanding of several human maladies.
The primary goal of developing animal models for
research is to create an experimental system in which the
conditions occurring in humans are phenocopied as

accurately as possible in the laboratory animal. The rabbit
was the first animal model used in several immunological
studies and was crucial, for example, for the development
of the rabies vaccine by Louis Pasteur in 18811. The
pioneering studies of rabies and syphilis conducted in
rabbits continued to advance our understanding of these
and other infectious diseases. Furthermore, the study of
rabbit immunoglobulins established much of what is
known about the structure, function and regulated
expression of antibodies [reviewed in refs.2–4]. Although,
rabbit was a major animal model used for the study of
molecular immunology in the late 1980s, rabbits were
increasingly replaced by rodents in the subsequent years5.
Among the reasons for the increasing use of rodents, such
as mice, instead of rabbits are reduced maintenance costs,
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small size, availability of inbred strains, ease of breeding,
short reproductive cycle, high numbers of progeny, wide
availability of commercial immunological reagents, and
availability of many knockout (KO) and transgenic mod-
els6,7. However, rabbits have the advantage of an inter-
mediate size between rodents and larger, more costly
animal models, such as primates. The size of rabbits
permits the ready sampling of blood and greater access to
many cells and tissues from a single animal. Additionally,
rabbits have a longer life span than that of rodents, and
the immune system genes of rabbits are apparently more
similar to those of the human immune system than are
rodent genes8–10. Rabbits are also carriers or reservoirs of
several pathogens that can cause zoonotic diseases. Some
studies in mice found a lack of disease symptoms
mimicking those of human infection. Additionally, the
low-success rates in the translation of findings from
some mouse studies to human diseases suggest that
other animal models, such as rabbit, may often be
more appropriate11,12. The rabbit is actively used as a
laboratory model for several non-infectious conditions,
including atherosclerosis13,14, intestinal immunity15,
reproduction16, lupus17, arthritis18, cancer19, and Alzhei-
mer’s disease20.
The rabbit has also been increasingly used during the

last two decades as a reliable animal model for many
infectious diseases. In this essay, several examples,
including viral, bacterial, and parasitic infectious diseases,
are described in which rabbits provide a more reliable
model for host-pathogen interactions than rodents for
their human disease counterparts.

Overview of the rabbit immune system,
therapeutics, and co-evolution between host and
viral pathogens
The pre-immune antibody repertoire in young rabbits

develops in two stages: first, with antibody heavy
chain-encoding gene segments V (variable), D (diversity),
and J (joining) rearrangements in bone marrow and, second,
with immunoglobulin (Ig) gene diversification in gut-
associated lymphoid tissue (GALT)21,22. In the bone mar-
row, one VH gene segment, VH1, is preferentially used for
V(D)J gene rearrangements, whereas numerous kappa or
lambda variable gene segments are used in VJ gene rear-
rangements of the light chain. After leaving the bone
marrow and migrating to GALT, the B cells undergo
proliferation and diversify their Ig genes by somatic
hypermutation and gene conversion. Specific commensal
microbes drive this B-cell expansion and Ig gene diversifi-
cation through a mechanism that is not yet fully elucidated.
Understanding how commensal bacteria drive these pro-
cesses will provide insight into the host-microbial interac-
tions that shape the pre-immune antibody repertoire.

The rabbit mucosal IgA system is highly unusual.
Thirteen IgA Cα genes are found in rabbits23, in contrast
to most mammals, which have only one (e.g., mice) or two
(e.g., hominoids) IgA subclasses. Of the 13 Cα genes, most
have allelic forms, and 11 are expressed as different IgA
subclasses in mucosal tissues. Concomitantly, rabbits have
lost the IgA-specific FcR and FcalphaRI24, and the IgA
rabbit genes have been evolving under strong positive
selection24,25. How the rabbit mucosal immune system
has adapted to the many IgA subclasses and which FcRs
bind these IgA subclasses remain a mystery; studies of this
system may open new therapeutic possibilities.
In addition to the diversification of rearranged heavy

and light chain genes that occurs in the GALT of young
rabbits during pre-immune repertoire development, rab-
bits respond to infections or experimental immunizations
in peripheral sites, including the spleen and lymph nodes,
by producing highly specific antibodies of high affinity
through diversification of rearranged heavy and light
chain genes via both gene conversion and somatic
hypermutation. For this reason, rabbits are a major source
of polyclonal and monoclonal antibodies (mAbs) used for
research and therapeutics.
A fully rabbit polyclonal anti-thymocyte globulin,

approved by the FDA in 1998, remains in use in immu-
nosuppressed patients to arrest acute rejection of kidney
transplants26. For non-immunosuppressed patients,
human polyclonals produced in rabbits with humanized
immunoglobulin genes are under development27.
Humanized rabbit mAbs that are currently being devel-
oped and tested include anti-human CD40, anti-vascular
endothelial growth factor (VEGF), and a smaller single-
chain fragment anti-VEGF (Fv) mAb (Brolucizumab)28.
Strategies for humanization of rabbit mAbs are reviewed
in refs. 28,29.
Additionally, rabbits have been used for studies of

therapeutics destined for treatment of human inhalational
anthrax. Tests of the human mAb Raxibacumab30 and the
chimeric mouse/human mAb Obiltoxaximab were
conducted in many rabbits and fewer monkeys before
approval for treatment of inhalational anthrax under the
United States Food and Drug Administration (FDA)
animal efficacy rule. Animal-to-human dose translation
for Obiltoxaximab was also investigated in rabbits
[reviewed in ref. 31].
Chemokines and their receptors play a crucial role

during immune responses. Because of gene conversion
with the CCR2 gene32,33, the CCR5 gene of the European
rabbit underwent a change at the region corresponding to
the CCL8 docking site in humans34,35. The evolutionary
study of this CCR5 ligand in Lagomorphs indicated an
adaptive pseudogenization process of the CCL8 gene36,37.
This makes the European rabbit a suitable model for
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studies of the pathways of receptor and ligand interaction
during inflammation-driven pathogenicity.
The European rabbit is also a good model to understand

the co-evolution between vertebrate hosts and viral
pathogens. In the last 60 years, wild and domestic rabbit
populations suffered a sharp decline due to hunting,
habitat destruction and the emergence of two viral dis-
eases, namely, myxomatosis in the 1950s and rabbit
hemorrhagic disease (RHD) in the 1980s. These diseases
led to a contraction of rabbit populations with serious
economic and ecological consequences [reviewed in ref.
38]. In Australia, the dynamic observed between the
genetic resistance of natural European rabbit populations
against myxomatosis and the virulence grades of its
causative agent, the myxoma virus (MYXV), is one of the
best textbook examples of virus/host co-evolution
[reviewed in refs. 39,40]. RHD, caused by the rabbit
hemorrhagic disease virus (RHDV), was responsible for a
dramatic decline in natural rabbit populations at the end
of the 1980s. Although the populations subsequently
recovered, the emergence, in 2010, of a new RHDV var-
iant, genetically and antigenically highly distinct from the
previously described strains, led to increased mortalities41.
The new variant remains highly lethal and has high levels
of recombination42, which provides an opportunity to
understand how the vertebrate host and the virus will
mutually co-evolve.

Myxomatosis and oncolytic activity
The natural history and biomedical relevance of the

European rabbit cannot be dissociated from one of the
most preponderant infectious agents of the species,
the myxoma virus (MYXV). MYXV is a rabbit-specific
poxvirus (family Poxviridae, genus Leporipoxvirus), and
similar to many other poxviruses, its genes can be divided
into two classes: “essential” genes (i.e., required for virus
propagation in culture) encoding proteins involved in
viral replication, gene expression and virion assembly and
“non-essential” genes (i.e., those that can be deleted with
continued virus propagation in culture) encoding factors
required for host-range, immunomodulation, and
virulence39,40. The host-range genes evolved in the natural
Sylvilagus hosts of MYXV, the South American tapeti and
the North American brush rabbit, in which the virus
causes a localized cutaneous fibroma. However, when
MYXV infected the naive European rabbit as a new
host, the virus caused an outbreak of the novel and lethal
systemic disease myxomatosis39,40.
The study of MYXV and European rabbit interaction

makes an important contribution to the field of emerging
infectious diseases. It provides an outstanding model to
study dynamic host-pathogen interactions and makes
myxomatosis in the European rabbit an exceptional
example of host-virus co-evolution. The selective tropism

of MYXV toward the European rabbit was fundamental to
studies of the MYXV host-range and immunomodulatory
genes and their encoded proteins, which continue to
evolve in the new host. Targeted knockouts of these viral
genes frequently resulted in virus attenuation in the rabbit
host and consequently allowed a deeper understanding of
the molecular basis for MYXV pathogenesis in the Eur-
opean rabbit39. Such knowledge has also been important
for the ongoing development of MYXV as a potential
oncolytic virotherapeutic for the treatment of a variety of
human cancers by exploiting the ability of the virus to
productively infect a wide diversity of non-rabbit cancer
cells43,44. For example, the M135R-knockout MYXV
cannot induce myxomatosis in European rabbits and is
non-pathogenic for all known vertebrate hosts; however,
this knockout is fully oncolytic in human cancer cells and
is currently being developed as a clinical candidate for
oncolytic immunotherapy to treat human hematological
malignancies44,45.

Rabbit hemorrhagic disease virus as a model of
human noroviruses and hepatic fulminant
diseases
Initial studies on RHDV showed that it attached to

glycans of the histo-blood group antigens (HBGAs)46.
Because this virus belongs to the family Caliciviridae,
these results provided the impetus to search for glycans
potentially used by human caliciviruses, such as nor-
oviruses, which constitute a major cause of gastroenteritis
worldwide47. Unlike mouse strains, human strains of
noroviruses, although also attaching to HBGAs, do not all
present the same pattern of recognition48. Because of the
genetic polymorphism of HBGAs, not all humans are
equally susceptible to individual strains of noroviruses,
suggesting a past and possibly ongoing co-evolution
between humans and noroviruses49. Using the European
rabbit as a model, a survey of the frequency of their
HBGA polymorphisms in wild populations affected by the
virus conducted in parallel with a survey of the evolution
of the specificity for HBGA recognition of the virus itself
allowed documentation of the co-evolution between host
and pathogen at a molecular level, underscoring the
importance of the rabbit as a model for relevant human
gastrointestinal pathogens50,51.
Acute hepatic failure (AHF) is a severe liver injury

accompanied by encephalopathy that causes multi-organ
failure with an extremely high-mortality rate. Severe AHF
continues to be one of the most challenging problems in
clinical medicine. Treatment has been limited by the lack
of satisfactory animal models, particularly for acute viral
hepatitis, a frequent cause of this condition. RHDV
inoculation in rabbits is an excellent model for AHF
of viral origin, displaying biochemical/histological
characteristics, presence of encephalopathy, and clinical
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features that resemble those in humans52. Additional
advantages in comparison with rodent models are the
larger size of rabbits and the sufficient time window
before death, which renders testing of new liver support
systems possible and permits sufficient samples of blood
and tissue to be taken during treatments. Increased
insight was gained into the physiologic derangements of
virus-induced AHF53 using the RHDV model, and bene-
ficial effects of experimental treatment with different
drugs54,55 and antioxidants56–58 were identified. The
emerging new RHDV2 variant, which differs from RHDV
in terms of duration of induced disease, mortality rates
and higher occurrence of subacute/chronic forms59,
opens the possibility to establish rabbit models for chronic
liver diseases.

Syphilis
Since, the identification and isolation of Treponema

pallidum subsp. pallidum (T. pallidum) as the causative
agent of syphilis60, the rabbit has been the model of choice
for the study of the infection and for propagation of this
uncultivable bacterium. Rabbits can be readily infected
with T. pallidum61, which is perhaps related to their
susceptibility in nature to a very closely related bacterium,
Treponema paraluiscuniculi, which is sexually trans-
mitted. The clinical, histological, and immunological
similarities between syphilis infection in rabbit and
human hosts are striking. Intradermal inoculation of
rabbits with T. pallidum results in the development of
lesions that strongly resemble human primary chancres
both clinically and histologically62,63, with CD4+ and
CD8+ T lymphocytes and macrophage infiltration. As
observed in humans, the primary chancres in rabbits
resolve spontaneously, with subsequent development of a
disseminated secondary stage rash and early invasion of
the central nervous system. Rabbits mount an immune
response similar to that developed by humans during
natural infection63, with recognition of the same subset of
antigens and the same mechanisms of bacterial clearance.
As in humans, following long-term infection, rabbits
develop immunity to reinfection62. Rabbit size facilitates
the study of dissemination of the bacteria to distant tissue
sites64, and rabbits provide models of congenital and
neurosyphilis65–67. Because T. pallidum cannot be
cultured, rabbits are also critical for the isolation of new
T. pallidum strains from clinical samples. Although some
other animal species can be infected with T. pallidum
(non-human primates [NHP], hamsters, guinea pigs, and
mice62,68–70), only rabbits and NHP develop clinical dis-
ease similar to that in humans. Despite the lack of inbred
rabbit strains and the dearth of immunological reagents,
the rabbit model continues to be the most widely used by
syphilis investigators to deepen our understanding of
syphilis pathogenesis71, evaluate the efficacy of new

therapies72, and test the protective ability of novel vaccine
candidates73.

Tuberculosis
Rabbits were used in Robert Koch’s original experi-

ments to establish Mycobacterium tuberculosis (MTB) as
the causative agent of human tuberculosis (TB)74 and
extensively utilized thereafter. Experiments of both MTB
infection, to which rabbits are relatively resistant, and
Mycobacterium bovis (MBO) infection, which is much
more virulent in rabbits, were pursued in great detail by
Lurie in a cohort of ‘resistant’ and ‘susceptible’ rabbits75.
These seminal studies laid the foundation for future
research on the host genetic predisposition to myco-
bacterial infections. The New Zealand White (NZW)
partially inbred European rabbit strain developed by J.
Thorbecke was also susceptible to MTB infection76; this
breed was used for the rabbit genome sequencing project
(OryCun2.0). After the unexpected extinction of these
rabbits, outbred New Zealand White rabbits were the
most commonly used breed for TB research to model the
human pathology of pulmonary active/cavitary TB (PTB),
non-progressive latent MTB infection (LTBI), spinal TB
and tuberculous meningitis (TBM)77–81. Intrathecal or
intracisternal infections of rabbits with virulent MTB or
MBO cause progressive disease pathology in the brain,
ultimately resulting in encephalopathy and paralysis
characteristic of TBM78,82.
The primary advantage of rabbit models over the mouse

model of TB is the maturation of inflammatory leukocytic
foci into organized granulomas following aerosol infec-
tion. These lesions often undergo caseating necrosis, the
pathologic hallmark of TB, and can develop fibrosis and/
or cavitation, in addition to mineralization depending on
the bacterial strain used for infection77,81,83,84. In contrast
to most mouse models, necrotic granulomas in rabbits
also develop hypoxic microenvironments85, which can
serve as models for drug exposure studies.
The outcome of pulmonary infection in outbred NZW

rabbits is also dependent on the nature of the infecting
MTB strain. Whereas infection with hypervirulent MTB
strains of the W-Beijing lineage cause cavitary TB, other
strains, such as the hyperimmunogenic CDC1551, cause a
range of disease presentation, including LTBI, which can
reactivate upon immune suppression treatment81,86.
The ability of rabbits to control MTB infection, establish
LTBI and reactivate to active disease upon immunosup-
pression provides a unique model for studies of the
regulation of latency, reactivation, and immune recon-
stitution syndromes similar to those observed in human
immunodeficiency virus infection77,79,81.
The rabbit model has helped to elucidate the pharma-

cologic properties of standard and new/novel anti-MTB
compounds, demonstrating a similar drug distribution
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and pharmacokinetic/pharmacodynamic properties as in
studies in humans undergoing lung resection surgery87–91.
Immune-modulating host-directed adjunctive therapy has
emerged as a novel approach to improve TB treatment.
Several proof-of-concept studies conducted in rabbit
models of PTB and TBM demonstrated that these drugs
not only improve bacterial killing but also minimize the
disease pathology and restore organ and vasculature
function92,93. Rabbit models have also been used to test
the efficacy of TB vaccines, including BCG, M. vaccae,
M. microti and MTB fusion proteins in protecting against
MTB challenge82,94,95.
In summary, the rabbit model of TB has great

histopathologic similarity to human disease.
Therefore, this model will continue to play a vital
role in deciphering the intricate pathogenesis of various
forms of human TB and in devising better intervention
strategies.

Human papillomaviruses (HPV)
HPV are important viral pathogens that cause a variety

of mucosal infections of the anogenital and oral mucosa.
These infections can lead to epithelial cancers at these
mucosal sites. Papillomaviruses (PVs) are species-
restricted such that HPVs cannot be directly studied in
pre-clinical laboratory animal models. Two rabbit papil-
lomavirus models have been used extensively to study
various aspects of papillomavirus biology, including vac-
cine testing96, anti-viral treatments97, papillomavirus
biology98, and latent viral infections99. The viruses include
cottontail rabbit papillomavirus (CRPV), which is a
cutaneous-tropic virus whose lesions spontaneously
progress to cancer, and rabbit oral papillomavirus
(ROPV), which is a mucosa-tropic virus that induces oral
infections. Numerous viral mutant genomes98 and a
unique HLA.A2.1 transgenic rabbit line100 have been
developed to study host immune responses to viral
infection, therapeutic T-cell-based vaccines and host
anti-CD8 immunity to viral proteins.

Human immunodeficiency virus (HIV)
Human immunodeficiency virus (HIV-1) is the causa-

tive agent of AIDS. The development of a permissive,
readily available, immunocompetent small animal model
for the study of HIV-1 transmission and pathogenesis and
the testing of antiviral strategies has been hampered by
the inability of HIV-1 to infect non-human cells pro-
ductively. Over the last 20 years, multiple species-specific
barriers to HIV-1 replication have been identified in
mouse, rat, and rabbit cells101–107, with some caused by
non-functional cellular cofactors or potent antiviral
restriction factors that directly target the incoming virus
(e.g., HIV-1 capsid by rabbit TRIM5-alpha106) or cannot
be antagonized by the accessory proteins of HIV-1 (e.g.,

rat and mouse CD317/tetherin by HIV-1 Vpu108 or rabbit
APOBEC1 by HIV-1 Vif109). This knowledge has fueled
strategies to generate genetically modified small animals
in which transgenesis, knock-in, and knockout
approaches combined with limited modifications to
HIV-1 may allow the virus to overcome species-specific
limitations and render the rodent or lagomorph host fully
permissive to infection by this pathogenic human lenti-
virus. In contrast to several thus far unresolved replication
defects in the late phase in mice110 and, to a lesser extent,
in rats104, primary T cells and macrophages from rabbits
impose only three apparent barriers to HIV-1 replication:
virion entry, which can be overcome by coexpression of
the HIV-1 receptor complex composed of human CD4
and CCR5107,111; reverse transcription, which can be
ameliorated by depletion of TRIM5-alpha or modifica-
tions of HIV-1 gag; and a cell type-specific infectivity
defect of HIV-1 virions released from macrophages, the
cause of which is still unclear107. This knowledge
combined with recent advances in knock-in and knockout
technologies112,113 and the overall suitability for vaccine
and drug studies makes the rabbit species an attractive
candidate for the generation of a fully permissive animal
model of HIV-1 infection.
Additionally, the rabbit model has been used extensively

in developing an HIV vaccine. In contrast to other small
animal models, such as mouse or rat, the rabbit model
provides several advantages that include ease of induction
of high-titer, high-affinity antigen-specific antibody
responses to almost any type of antigen and very low
non-specific responses. Consequently, rabbit immune sera
can be used for a wide range of assays, including ELISA,
western blots, and tests for functional antibody
responses such as neutralizing antibodies114–120. The
rabbit model was used first to study polyclonal antibody
responses and established the immunogenicity of DNA
immunization as a novel immunization method121. Sub-
sequently, a DNA prime-protein boost approach was
developed122, and it was established that this approach
elicited neutralizing antibodies against a difficult virus123,
improved induction of antibodies against key neutralizing
epitopes, and improved activity and avidity124–126. More
recently, a panel of novel rabbit monoclonal antibodies
(mAbs) against HIV-1 Env antigen was produced, and the
crystal structures for some of these rabbit mAbs were
obtained (Fig. 1)127–129. These studies also demonstrated
that the overall structures of rabbit mAbs are very similar
to those of human mAbs against the same epitopes. This
is highly significant considering that the mechanisms to
diversify these two types of mAbs are very different.
Overall, rabbits have been an excellent animal model to
study the immunogenicity of HIV-1 DNA vaccines,
including the production and analysis of HIV-1 specific
mAbs130.
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Ocular herpes infection and immunity
Most of the potentially blinding, recurrent herpes

stromal keratitis (rHSK) in latently infected humans
occurs following spontaneous reactivation of HSV-1 from
latently infected sensory neurons and virus shedding in
tear film131–135. However, unlike in latently infected
humans, spontaneous HSV-1 reactivation and virus
shedding in tears occurs at very low levels or not at all in
latently infected mice132,135,136. Despite this fact, most
pre-clinical animal studies investigating the cellular and
molecular mechanisms that orchestrate rHSK have used a
mouse model of primary acute infection136. To avoid
inherent drawbacks in the mouse model of primary acute
infection, an alternative HLA transgenic rabbit (HLA Tg
rabbit) model in which HSV-1 reactivation and virus
shedding in tear film occur spontaneously was devel-
oped137. One major component of the immune system in
these HLA Tg rabbits is replaced by the identical

component taken from a human counterpart (i.e., HLA-
A*0201 class I molecules)137–143. This HLA Tg rabbit
model is capable of mounting “human-like” CD8+ T-cell
responses specific to human HLA-A*0201-restricted epi-
topes. The immunopathology of rHSK in the HLA Tg
rabbit mimics the immunopathology of human rHSK that
occurs after episodes of spontaneous HSV-1 reactivation
(Fig. 2). Moreover, this HLA Tg rabbit model allows pre-
clinical investigation of the role of HLA-restricted CD8+

T-cell responses specific to human epitopes in reducing
spontaneous reactivation of HSV-1, and assessment of the
immunotherapeutic efficacy of human CD8+ T-cell
epitope-based vaccines against rHSK137–143. Recently
developed immunological reagents (e.g., mAbs specific
for immune molecules and human tetramers) have
allowed analysis of rabbit HSV-specific CD8+ T cells’
phenotype, function, and the localization of CD8+ T-cell
infiltrates in infected cornea and trigeminal ganglia

Fig. 1 Structural characteristics of rabbit antibodies. a Crystal structure of rabbit anti-HIV-1 gp120 V3 monoclonal antibody R56 (PDB ID 4JO1)121.
R56 is used here as an example of typical rabbit antibodies. Rabbit kappa chain often has a disulfide bond linking its VL and CL1 regions, limiting the
flexibility of the Fab elbow. This disulfide bond may contribute to the stability of rabbit antibodies in general. Additionally, non-canonical disulfide
bonds are often observed in CDR loops of rabbit antibodies. R56 has two disulfide bonds in its antigen bonding site. b Details of the elbow kappa
chain disulfide bond. c Details of the R56 antigen-binding site, with its V3 epitope shown in magenta
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(the site of latency/reactivation cycles) of infected HLA Tg
rabbits130. The striking similarities between the HSV-1-
infected HLA Tg rabbit model and HSV-1 seropositive
humans in terms of ocular herpes infection and immunity
make the HLA Tg rabbit a preferred model to study the
role of CD8+ T cells in controlling spontaneous HSV-1
reactivation and recurrent HSK130–137.

Conclusions
Studies using the European rabbit contributed

to elucidating numerous fundamental aspects of
antibody structure and diversification mechanisms and
continue to be valuable for the development and testing of
therapeutics. Rabbits have also served as important,
reliable models for the understanding of human
infectious and non-infectious diseases, including
tuberculosis, syphilis, and papilloma-, herpes-, pox-, and
norovirus infections, and have been adapted to advance
the understanding of the immune response to HSV-1 and
HIV-1 to inform immunotherapy and vaccine
development.
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