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4.6 SOSRA Efficiency Tests. The error was taken as the average of 10,000 tra-
jectories for Equation 4.65 and 100 trajectories for the Lokta-Volterra Equa-
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Stochastic models of biochemical interactions elucidate essential properties of the network

which are not accessible to deterministic modeling. In this thesis it is described how a network

motif, the proportional-reversibility interaction with active intermediate states, gives rise to

the ability for the variance of biochemical signals to be controlled without changing the

mean, a property designated as mean-independent noise control (MINC). This noise control

is demonstrated to be essential for macro-scale biological processes via spatial models of the

zebrafish hindbrain boundary sharpening. Additionally, the ability to deduce noise origin

from the aggregate noise properties is shown.

However, these large-scale stochastic models of developmental processes required signifi-

cant advances in the methodology and tooling for solving stochastic differential equations.

Two improvements to stochastic integration methods, an efficient method for time stepping

adaptivity on high order stochastic Runge-Kutta methods termed Rejection Sampling with

Memory (RSwM) and optimal-stability stochastic Runge-Kutta methods, are combined to

give over 1000 times speedups on biological models over previously used methodologies. In

addition, a new software for solving differential equations in the Julia programming language

is detailed. Its unique features for handling complex biological models, along with its high

performance (routinely benchmarking as faster than classic C++ and Fortran integrators of

xx



similar implementations) and new methods, give rise to an accessible tool for simulation of

large-scale stochastic biological models.
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Chapter 1

Introduction

Biochemical signals are inherently noisy. The process of diffusion and every binding/unbind-

ing event is the product of billions of molecular interactions which give rise to stochastic

phenomenon. While it may seem at face value that information is lost when modeling or

observing the aggregate stochastic system, the resulting stochastic observations contain clues

indicative of the generating processes. This relationship between the biochemical interaction

network and the collective observations can in turn be utilized to both identify the network

and control its properties.

In Chapter 2, the relationship between the observed variance in zebrafish retinoic acid mea-

surements and the underlying gene regulatory network is elucidated. By analyzing the prop-

erties of the core parts of the interaction network, we identify how proportional-reversibility

and active intermediate states naturally give rise to a mechanism for mean-independent vari-

ance control (MINC). It is shown how this motif can give rise to the noise control property

in many different network architectures, thus giving a robust relation between an aggregate

stochastic property and the network structure. Three key properties of this relationship are

demonstrated:
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1. The ability for the MINC mechanism to control macroscale phonotypes is shown by

demonstrating its ability to stabilize the boundary sharpening mechanism in the ze-

brafish hindbrain rhombomeres 4/5.

2. The relation between noise properties and aggregate developmental processes is re-

vealed by identifying a region of noise quantity for which proper hindbrain develop-

ment can occur. It is shown and explained how substantial decreases or increases in

the amount of noise break down the ability for cell switching mechanisms to accurately

detect signaling boundaries.

3. The ability for stochastic measurements to identify the network properties and noise

origin are demonstrated.

Together, these identified features show that details in the stochastic nature of biochemical

interactions are essential for understanding macro-scale biological processes.

However, this study uncovered the inadequacy of current stochastic modeling methods and

software. Fully discrete modeling tools like Gillespie SSA and tau-leaping are designed

for small-scale simulation and are not computationally sufficient to handle the long time

concentration-scale spatial models. While the approach of using continuous approximations

via stochastic differential equations (such as the Chemical Langevin Equation) and stochas-

tic partial differential equations gives rise to a simplified mathematical structure which can

be exploited for efficient computation while retaining the key properties of the stochastic

system, major developments in the methodology and tooling were required in order to han-

dle the size and unique features of these biochemical models. In Chapter 3 a method for

efficient adaptive time stepping in high order stochastic Runge-Kutta methods, termed Re-

jection Sampling with Memory (RSwM), is developed. In Chapter 4, new adaptive high

order Runge-Kutta methods with optimal stability are derived. It is demonstrated that

these new methods are able to solve equations modeling biochemical networks over 1,000
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times faster than the traditional methods built into Problem Solving Environments (PSEs)

like MATLAB or toolboxes like SDETools. Lastly, Chapter 5 describes a software suite,

DifferentialEquations.jl, for solving a large array of differential equation types using the Ju-

lia programming language. The structure of this software is shown to uniquely be able to

handle complex biological models by allowing abstract number and array handling, dynamic

resizing, and mixing of Poisson processes with the differential equations. Benchmarks of this

software suite routinely demonstrate an order of magnitude speedup against standard C++

and Fortran ODE solvers on stiff and non-stiff test problems, and over two orders of magni-

tude against comparable software suites in PSEs like R, MATLAB, and Python. Together,

these new methodologies in the new software suite aggregate to several orders of magnitude

speedup which brings previously incomputable models of biological properties to the realm

of computability.
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Chapter 2

Mean-Independent Noise Control of

Cell Fates via Intermediate States

This chapter was published as [93]. It details the mean-independent noise control (MINC)

property of the proportional-reversibility motif with active intermediate states and shows

the downstream effects of noise control on macro-scale biological processes. The computa-

tional requirements imposed by the spatial simulations in this chapter were the impetus for

the creation of software for efficient stability-optimized high order adaptive integrators for

stochastic differential equations, which are the focus of Chapter 3, 4, and 5.

2.1 Summary

Stochasticity affects accurate signal detection and robust generation of correct cell fates.

While many known regulatory mechanisms may reduce fluctuations in signals, most simul-

taneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis

and computation, we demonstrate that a reversible signaling mechanism acting through in-

4



termediate states can reduce noise while maintaining the mean. This mean-independent

noise control (MINC) mechanism is investigated in the context of an intracellular binding

protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development.

By comparing our models with experimental data, we find that a MINC mechanism allows

for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition,

this MINC mechanism can modulate noise to levels that we show are beneficial to spatial pat-

terning through noise-induced cell fate switching. These results reveal a design principle that

may be important for noise regulation in many systems that control cell fate determination.

2.2 Introduction

Stochasticity is prevalent in cell signaling networks, yet organisms manage to determine

cell fates and coordinate their development in response to signals robustly in spite of this

noise. Stochasticity has been directly observed in gene expression [29, 108] and identified

as a cause of cell-to-cell variation [77, 94]. The amount of stochasticity in gene expression

can change qualitative features of the system, such as introducing bistability in a deter-

ministically monostable system and vice versa [60], or by allowing switching between stable

states [84, 66, 129, 128]. Noise can have adverse effects by distorting downstream signals

[33] and by disrupting entrainment of biochemical oscillators [39], suggesting the existence

of noise control mechanisms to ensure robustness. However, these mechanisms are not well

understood.

There is increasing evidence that such systems of noise control exist in signaling pathways.

Differences in regulatory network architecture correlate with both the amplification and

attenuation of expression noise [22, 85], and increased complexity of a biochemical network

has been shown to correlate with reduced noise [18]. For one autoregulatory protein it has

been suggested that negative feedback decreases system noise [115]. In addition, increased
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growth rates in a single- celled organism (yeast) can increase noise in gene expression [57],

and studies in Drosophila suggest that these principles apply to noise in spatial signals in a

multicellular (albeit syncytial) context [38]. Multiple binding sites for the Bicoid morphogen

in the Hunchback promotor buffer spatial noise in the Bicoid morphogen gradient [47]. In

addition, specific noise levels are advantageous for establishing population heterogeneity

[57], and noise can facilitate sharp segmental boundaries of gene expression in the zebrafish

hindbrain, but only within a limited range of levels of signaling noise [131]. It has become

increasingly clear that noise not only needs to be attenuated but also that the appropriate

levels of noise are critical for accurate cellular responses to a signal.

One example of noise regulation occurs in the developing vertebrate hindbrain, which is pat-

terned by a retinoic acid (RA) morphogen gradient. RA is a well-known signaling molecule

[80] that controls the formation of hindbrain segments [109], as well as patterning and differ-

entiation of many other cell types and tissues. Models of morphogen gradients suggest that

they can cause all-or-none regulatory responses [78, 124], even in the presence of stochas-

ticity, and consistent with this RA signaling specifies segmental patterns of hindbrain gene

expression despite substantial levels of noise [101]. We used fluorescence lifetime imaging

microscopy (FLIM) to measure stochasticity in the RA gradient and directly demonstrated

the existence of large fluctuations in the gradient [111]. One of the four cellular RA-binding

proteins (Crabp2a) in zebrafish is essential for robust patterning in the developing hindbrain

[16]. Experiments increasing or decreasing Crabp2a levels show that it acts to attenuate noise

in RA while leaving the mean unchanged [111], pointing to the existence of a mechanism

that allows for the desired noise levels to be achieved without shifting the gradient.

Using the RA signaling network in zebrafish hindbrain development as an example, we in-

vestigate design principles for controlling noise in the signal without affecting mean levels.

We find that a coupling of reversible reactions gives rise to mean-independent noise con-

trol (MINC), and this coupling naturally arises in complex systems through the presence
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of an intermediate state. In the example of spatial patterning of hindbrain segments, a

MINC mechanism involving Crabp2a enables mean-independent sharpening of gene expres-

sion boundaries in the correct locations in response to RA. In addition, we find that the

degree to which mean and variance are coupled distinguishes between different noise origins,

and when analyzed with the FLIM data obtained from zebrafish embryos, our results suggest

that the dominant noise source is endogenous to the RA signaling pathway.

2.3 Results

2.3.1 Proportional-Reversibility Enables Mean-Independent

Noise Control

First, we considered a simplification of the differential equation model [101] to capture the

essential qualitative features. In the retinoic acid (RA) signaling pathway, extracellular RA

enters the cell and binds to an intermediate (CRABP) which shuttles it to the nucleus to

bind to a receptor (RAR) and form a compound (RA-RAR) which binds to the DNA to

both signal downstream targets and produce a protein (CYP) which in turn inactivates RA

(depicted in Figure 2.1A). The basic interaction (denoted as the Simple Model, SM) can be

modeled as a two-state stochastic differential equation (SDE):

d [RA] = (β + δ [RAR]− (γ + η) [RA]) dt+ σdWt, (2.1)

d [RAR] = (γ [RA]− δ [RAR]) dt,

where the deterministic portion of the equation is due to mass-action laws and the additional
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Figure 2.1: The Proportional-Reversibility Strategy for Noise Attenuation. (A)
A diagram of the retinoic acid (RA) signaling network. RA (shown in red) enters the cell
to bind with the cellular retinoic acid binding proteins (CRABP, shown in green), which
shuttles RA into the nucleus. There the RA binds with its receptor (RAR, shown in purple)
to produce Cyp26 (shown in pink). The Cyp26 proteins in turn deactivate the RA signal-
ing proteins. (B) A schematic depiction of the two-state simplified model (SM) of the RA
network. The red node in the graph is the concentration of RA, and the blue node is RA
bound to its receptor (RA-RAR). Birth and death of RA is allowed, along with reversible
binding/unbinding with RAR. (C) Representative time-series solutions to SM. These were
obtained using the Euler-Maruyama method. (I) shows the solution using parameters from
Table 2.1 while (II) uses the same parameters with γ and δ decreased by a factor of 0.005.
Both trajectories start from the expected value of 10. Notice that in (I) the blue line is
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of RA, which binds with the binding protein (BP, shown in teal) to form the RA-BP inter-
mediate complex (shown in green). From there, the RA binds to its receptor RAR (shown
in pink) to form RA-RAR (shown in purple). This causes the transcription of Cyp26a1,
which degrades RA. (F,G,H) Representative time-series solutions to RM. The parameters
for the model were chosen randomly according to the method described in Section 2.5.9. The
resulting stochastic differential equations were solved using the Euler-Maruyama method for
100 seconds to give the blue line for the wild-type value. The value γ was reduced by 90%
and the simulation was re-solved to give the orange line. The value for γ was reset, and the
value for α was reduced by 90% , and the simulation was re-solved to give the green line.
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term (σdWt) describes stochasticity in the production and degradation of RA (schematized

in Figure 2.1B). The steady-state mean values are

E [RA] =
β

η
, (2.2)

E [RAR] =
βγ

δη
,

and the steady-state variances are

V ar [RA] =
(δ + η)σ2

2η (γ + δ + η)
, (2.3)

V ar [RAR] =
γ2σ2

2δη (γ + δ + η)
.

(see Section 2.5.1 for details of the derivation). Assume that the rates for the reversible

binding and unbinding of the morphogen to its receptor are coupled via a constant C :

δ = Cγ. (2.4)

Under this coupling assumption, the steady-state values become proportional,

9



E [RA] =
β

η
, (2.5)

E [RAR] =
β

Cη
=
E [RA]

C
,

with the mean concentrations determined solely by the production rate β and decay rate η

of RA. However, under the same conditions,

V ar [RA] =
(Cγ + η)σ2

2(1 + C)γη + 2η2
(2.6)

the variance directly depends on γ , the rate of conversion from RA to RA-RAR. Note that

increasing γ attenuates noise in the RA concentration (derived in Section 2.5.1). Thus, with

this coupling assumption, changing the reaction rates of RA binding and dissociation from its

receptor has no effect on steady-state mean concentrations but has a direct and directional

effect on their variances. Comparing the temporal dynamics of the system to a setup with

reduced binding rates suggests that this mean-independent variance effect is due to changes

in the binding rates (Figure 2.1C).

The mean amounts of the proteins are left unchanged by the coupled reaction rates since

the amount of RA that leaves its unbound state increases by the same amount that leaves

its bound state due to the coupling assumption. To intuit why the variance decreases, we

compute

Cov ([RA] , [RAR]) =
γσ2

2η ((1 + C) γ + η)
, (2.7)
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which is an increasing function in γ . Thus when the binding and unbinding rates are higher,

the concentrations of RA and RA-RAR tend to be in sync (Figure 2.1D). Therefore if [RA] is

above its steady state and the binding/unbinding rates are high, then it is highly likely that

[RA−RAR] will also be above its steady state levels. One can heuristically understand

that when random fluctuations cause an excess of morphogen, the natural force towards

steady state will drive the excess morphogen toward degradation. If [RA] is below its steady

state levels but [RA−RAR] is even lower, the system could push some of the morphogen

to its receptor-bound state even if the total morphogen in the system is lower than its

equilibrium value, thus decreasing the total pull towards steady state. Therefore the total

pull towards equilibrium is greatest when the correlation is highest, which explains why the

variance decreases and saturates to a constant as γ → ∞ leads to near perfect correlation.

This intuition suggests that this feature is a property of the coupling of the reversibility.

To see if this extends to more complex systems, we note that [RA−RAR] enhances the

production of a protein Cyp26a1, which in turn degrades [RA] [125, 126]. We show that

when incorporating this nonlinearity into the previous model, the essential feature of mean-

independence from the reversible reaction rates holds under the same coupling assumptions

(see Section 2.5.3). Additionally, the mean-independence, along with the noise attenuating

and increase in covariance due to γ, holds for the general master equation formulation of the

model (see Section 2.5.2).

The previous results rely on the assumption that the binding and unbinding rates are propor-

tional. However, next we asked if this coupling naturally occurs in the presence of an inter-

mediate state. The RA signaling network includes an intermediate state RA-BP where RA is

bound to its binding protein Crabp2a (BP) which shuttles RA to the nucleus where it binds

to its receptor to form RA-RAR [16]. Adding this interaction to the previous model gives

the Intermediate Model (IM). Notice that in this model the flux into [RA−RAR] at steady

state is ν [RA−BP ]ss while the internal flux back to [RA] is δ [RA−BP ]ss .Therefore, near

steady state, [RA−BP ] is a natural coupling constant between the influx of RA and the
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influx of RA-RAR, suggesting a generalization of the proportional-reversibility mechanism.

The heuristic derivation is confirmed since one can show that a proportional coupling of the

rate from [RA] to [RA−BP ] and the rate from [RA−RAR] to [RA−BP ] produces the

same mean-independence and variance-dependence on the coupled reaction rates behavior

as in the previous model, and that E [RA−BP ] is proportional to the proportionality con-

stant (see 2.5.4 for details). Additionally, we can extend the signaling pathway by adding an

intermediate unbinding in the nucleus step or model Crabp2as shuttling of RA to Cyp26a1

as a separate pool of RA and in this extended model the MINC property still holds (see

Section 2.5.5).

We build upon this initial analysis to generate a more mechanistic model that fully incorpo-

rates the BP and receptor concentrations, which we refer to as the Retinoic Acid Model (RM)

(Figure 2.1E). In this model we derive the same natural coupling via E [RA−BP ] , but also

show that E [RA−BP ] is proportional to E [BP ] , which in turn are directly determined by

the production and degradation rates of BP (see Section 2.5.6 for details of the derivation).

Therefore production and degradation rates of BP have no effect on the mean amounts of

[RA] and [RA−RAR] while directly affecting variance. Comparisons of the concentration

of [RA] , [RA−BP ] and [RA−RAR] , respectively, for two separate trajectories of the

system show that the means of [RA] and [RAR] are unchanged by perturbations in [BP ]

but variance changes (Figures 1F-H). Perturbations in [Cyp] change the mean as well as the

variance, but the latter to a much lesser extent.

Lastly, we note the experimental evidence that RA-RAR upregulates the production of

Crabp2a but no other Crabps [16, 101]. To simulate the effect of RA-RAR signaling on

Crabp production, along with other possibly indirect downstream effects such as Eph and

Ephrins on the RA signaling pathway [122], we introduce the Retinoic Acid Model with

Feedback (RMF) by adding upregulation of BP by [RA−RAR] to RM. We derive that the

mean-independent variance control via a coupling related to E [BP ] still holds in the RMF

12



model (see Section 2.5.7). This shows that by incorporating the dynamics of an intermediate

state in the model we find a natural and controllable coupling of mean reaction rates that

allows for the amount of intermediate to attenuate the system noise without changing mean

levels of the signal.

2.3.2 Active Intermediate States Naturally Lead to Proportional-

Reversibility Control

The previous results were determined by linearizations of stochastic models around steady-

state values. In order to establish the mean-independent noise attenuation property directly

on nonlinear complex models, we performed simulations. First, we introduced a Mean-

Variance Dependence Index (MVDI),

ζ =
%∆V ariance

%∆Mean+ %∆V ariance
, (2.8)

to encapsulate the relation of mean and variance changes into a single non-dimensionalized

value. If the variance changes but the mean does not, ζ is exactly 1. If the mean changes

but the variance does not, then ζ is 0. Thus the MVDI ζ offers a measure of the degree

of isolation of the mean relative to variance changes with respect to a perturbation. Four

separate models of the RA signaling pathway (SM, IM, RM, and RMF) were simulated in

order to determine the robustness of the mean-independent noise attenuation property to

the network topology for RA alone (Figure 2.2A-D) or bound to RAR (Figure 2.2E-H).

Each model was simulated using random reaction rates 100,000 times and ζ s calculated

from reductions in BP and Cyp (Table 2.1). Over 85% of the simulations resulted in a

ζ > 0.9 with a decrease in BP, indicating that for most parameter sets the relative change
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Figure 2.2: Mean and Variance Knockdown Distributions. (A)-(H) Histograms
depicting the ζ distribution due to additive noise. The models were solved using the Euler-
Maruyama method on the timespan of t = [0, 200] , and re-solved with a 90% knockdown
to the associated parameter. The value ζ was calculated from these two series, and this was
repeated 100,000 times. More details outlining the experiments are found in Section 2.5.9.
(A)-(D) ζ ’s calculated for [RA] on the respective models. (E)-(H) ζ ’s calculated for
[RA−RAR] on the respective models.

in variance was much larger than the relative change in mean. In addition, when the same

computational experiment was applied with multiplicative noise, over 90% of the simulations

resulted in a ζ > 0.9 with BP knockdown (Figure 2.3). We note that from the experimental

data [111] we estimate that the true ζ after depleting BP is ζ = 0.97 . This shows that in

almost all of the trajectories in each model, the variance changes with only minor changes

in the mean, confirming that proportional-reversibility and intermediate states naturally

give rise to mean-independent noise control. Additionally, over 90% of simulations result in

ζ < 0.6 with reductions of Cyp under both additive and multiplicative noise, showing that

this property is specific to manipulation of BP levels.
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Parameter baseExpp

β 2
a 0
b 1
α 2
u 1
ζ 0
η 1
r 1

All others 3

Table 2.1: Numerical Knockdown Experiment Base Exponents. Each parameter was
chosen by taking xp uniformly from [-2,2] and calculating p = 10−xp−baseExpp . On the left is
the parameter and on the right is the corresponding baseExpp value. All values not listed
in the table had the value baseExpp = 3 .
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Figure 2.3: Mean and Variance Knockdown Distributions with Multiplicative.
(A)-(H) Histograms depicting the ζ distribution due to multiplicative noise. The models
were solved using the Euler-Maruyama method on the timespan of t = [0, 200] , and re-solved
with a 90% knockdown to the associated parameter. The value ζ was calculated from these
two series, and this was repeated 100,000 times. More details outlining the experiments
are found in Section 2.5.9. (A)-(D) ζ ’s calculated for [RA] with the respective models.
(E)-(H) ζ ’s calculated for [RA−RAR] with the respective models.
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2.3.3 Spatial MINC Enables Accurate Specification of Landmark

Locations

We hypothesize that the mean-independent variance attenuation property of BP should

locally smooth spatial gradients. To study the MINC property in spatial signaling, we first

extended RMF to a two-dimensional stochastic reaction-diffusion system with space-time

white noise where the extracellular RA, RAout , diffuses throughout space. This model,

RMFS, is thus given by a stochastic partial differential equation (SPDE) (defined in Section

2.5.8). As counterparts to the mean and variance in space, we measured the mean and

variance of the location where the gradient hits specific values. To determine if the same

mean/variance relationship is associated with these properties of the morphogen gradient, we

simulated BP depletion experiments on the RMFS model with random parameters (Figure

2.5 and detailed in Section 2.5.10). Gradients of [RA]in and [RA−RAR] exhibit less noise

in wildtype than after BP depletion (Figure 2.4A-D). Given that the average size of cells

in the zebrafish hindbrain is around 10µm , our simulations suggest that changes in the

amount of BP change the sharpness of the RA signaling boundary without changing its

mean location by more than one cell diameter over 90% of the tested parameters (Figure

2.4E-F). In addition, the mean shift in the RA-RAR gradient with decreased Cyp shifts the

threshold approximately 4 cell diameters, showing that spatial MINC is a special feature

that does not extend to other interactions (Figure 2.7B).

The receptor-bound RA signal induces expression of Hoxb1a and Krox20 which mutually

repress each other [131], which we include downstream in the RMFS model (depicted in

Figure 2.7A). By preferentially upregulating Krox20, the boundary between rhombomeres 4

and 5 (r4/5) is established at a threshold where the RA gradient is sufficiently high enough

for the initial Hoxb1a expression to be replaced by Krox20. Stochasticity in the Hox-Krox

interaction allows for the initial r4/5 boundary to sharpen in the wildtype organism (Figures

4A-D). In addition, reducing BP disrupts the sharpening of the r4/5 boundary without
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Figure 2.4: Location-Independent Boundary Sharpening. (A)-(D) Representative
solution of RMFS. Shown are the two-dimensional gradients of intracellular [RAin] (plots A
and C) and [RA−RAR] (plots B and D). Random parameters were chosen according to
Section 2.5.10. The x-axis runs from the anterior to the posterior of the zebrafish hindbrain.
The simulations were run to determine the steady-state gradients, and then were run for
100 more seconds to give a snapshot of the spatial stochasticity. The top row depicts
the wild-type results for a given parameter set, and the bottom row depicts the results
when simulated again but with the parameter for binding protein (BP) reduced by 90% .
The color levels are fixed between the wild-type and BP-deficient plots to provide accurate
comparisons. (E) Scatter plot of the percent change in variance versus the change in the
average boundary location ( µm ). 100 parameter sets were chosen and for each one the
threshold concentration was taken to be 60% of the maximum value. The mean and the
variance of the boundary location was calculated, the simulation was solved once more using
the BP-deficient value, and the mean and variance of the boundary location were calculated
using the same threshold. (F) Histogram of the number of simulations with a given change
in mean boundary location ( µm ).
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Figure 2.5: Location-Independent Boundary Sharpening Experimental Diagram.
A diagram of the numerical scheme for the ζ histogram experiments for spatial location
versus threshold sharpness. The SPDE model is solved and the 50% concentration point at
each location along the x-axis is found. Then the mean and the variance of these x locations
are saved. This process is then repeated with reduced binding protein and the resulting
mean and variance values are compared with the previous to get a value for ζ.

moving its location, while reducing Cyp causes a shift in the segmental boundary position.

Over time the number of predominantly Hox-expressing cells displaced in the wild-type

saturates to approximately 3, while with depletion of BP the number of displaced cells

saturates to approximately 10 (Figure 2.6E). On average a stochastic trajectory of the wild-

type has a maximal displacement of predominantly Hox-expressing cells by 1-2 cell diameters,

whereas with reduced BP there is a maximal displacement of predominantly Hox-expressing

cells of around 4 cell diameters. Segmental sharpening in terms of a previously-defined

sharpening index (SI) from [131] reveals a similar disruption of the sharpening mechanism

under this measurement (Figure 2.7C). Together these results show that the loss of BP

disrupts downstream segmental sharpening, consistent with the previous in vivo experimental

observations in zebrafish [111].
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Figure 2.6: Disruption of Downstream Boundary Sharpening Due to Perturba-
tions in Binding Protein (BP) and Cyp26 Concentration. (A)-(D) Representations
of the rhombomere 4/5 segmental boundary at 10 hours post-fertilization (hpf), 10.5 hpf, 11
hpf, and 12 hpf respectively. The trajectories were calculated according to the RMFS model
with the Hox-Krox extension (described in 2.5.11). The color corresponds to the concen-
tration of Hox at a particular region in the Anterior-Posterior versus the Left-Right plane.
The top panels correspond to the wild-type model, the middle panels are the models with
reduced BP, and the bottom panels are the models with reduced Cyp26. (E) Number of
displaced cells over time. The y-axis corresponds to the number of displaced cells, calculated
as a predominantly Hox-expressing cell lying one cell length posterior to a predominantly
Krox-expressing cell. The x-axis shows time in terms of hpf. Each condition was run 10
times and the results were averaged. (F) Maximum displacement over time. The y-axis
corresponds to the maximum displacement, calculated as the maximum distance between a
predominantly Hox-expressing cell that is posterior to a predominantly Krox-expressing cell.
The axis is in cell diameters which correspond to 10 µm . The x-axis shows time in terms
of hpf. Each condition was run 10 times and the results were averaged.
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Figure 2.7: Boundary Sharpening Disruption Extended Figures. (A) Diagram of
the extended retinoic acid (RA) model with downstream Hox-Krox signaling. The model
starts with diffusive RAout entering the cell to become RAin and binding to BP to become
RA−BP , which then binds RAR to produce RA−RAR. This induces Cyp which deactivates
(and thus degrades) the intracellular RA. Additionally, RA − RAR acts as a signal to the
downstream and transcription factors, which are mutually antagonistic. (B) Mean shift of
the RAR signal due to Cyp knockdown. For the wildtype and Cyp setups in the extended
RA model with Hox-Krox, the mean of the gradient was calculated between each of the 10
runs at the ending timepoint. (C) Sharpness Index. The y-axis corresponds to the sharpness
index defined in [131]. The x-axis shows time in terms of hours postfertilization (hpf) in
zebrafish. Each condition was repeated 10 times and the results were averaged.
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Parameter Value

σRAin ,σRA−RAR,σRAout 0.03µm/s
b 0.017µm/s
α 10,000µm/s
β0 1µm/s
c 0.1µm/s
ω 100µm
γ 3.0µm/s
δ 0.0013µm/s
η 0.0001µm/s
r 0.0001µm/s
ν 0.85µm/s
λ 0.85µm/s
u 0.01µm/s
d 0.1µm/s
e 1µm
a 1µm/s
ζ 0.02µm/s
ch 7.5µm/s
ck 3.0µm/s
kh 0.4µm/s
kk 4.0µm/s

dh, dk 0.4µm/s
ah, ak 0.2µm/s
D 250.46µm/s

Table 2.2: Disruption of Downstream Boundary Sharpening Parameters. Parame-
ters correspond to RMFS with Hox-Krox interactions.
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2.3.4 Noise Levels are Regulators for Patterning and Indicative of

the Sources of Stochasticity

To further investigate the significance of noise levels in RA signaling, we next investigated

requirements for an optimal range of noise levels in gene expressions, and we explored the

relationship between the noise level and the origins of the stochasticity. To establish a direct

relationship between the noise levels controlled via BP and successful segmentation of the

zebrafish hindbrain, we defined the effective noise in the [RA−RAR] signal as a measure of

the variance of the gradient (described in Section 2.5.11). We simulated the full spatial model

RMFS with varied [BP] and Hox-Krox signaling noise to determine if noise levels affected the

ability to sharpen the r4/5 boundary. A successful sharpening event was defined as having

less than or equal to 3 cells displaced by more than one cell diameter. All of the successful

sharpening events had Hox-Krox noise levels in the range (0.175− 0.275) with an upper limit

on the effective [RA−RAR] signaling noise of approximately 10−3 (Figure 2.8A). Similar

qualitative results were obtained when successful sharpening events were defined instead in

terms of a threshold on mean displacement and maximal displacement (Figure 2.9). This

shows that an optimal range for the effective noise is required for segmental patterning to oc-

cur, indicating the necessity of noise control mechanisms for properly regulating downstream

signals.

ζ calculations for changes in BP do not distinguish between common noise types such as

multiplicative or additive noise, but the probability distribution of ζ with respect to changes

in the amount of Cyp strongly depends on the choice of the noise term (compare Figure

2.2 with Figure 2.3). Therefore, we investigated the validity of particular noise terms by

comparing these probability distributions to experimental data. We examined data collected

from free intracellular RA in the zebrafish hindbrain morphogen gradients with a morpholino

knockdown of Cyp26a1 [111]. The methodology for the analysis (see Section 2.5.12) estimates

the average experimental value as ζ ≈ 0.62 .
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Figure 2.8: Noise Levels Distinguish Between Models and Developmental Pheno-
types. (A) Scatter plot of the successful and unsuccessful sharpening events. BP production
was taken as 5, 15, . . . , 105 and Hox-Krox regulatory noise was taken as 0.1, 0.125, . . . , 0.3
and each pairing in the grid was solved once. The effective RA noise was calculated according
to the measure from Section 2.5.11 and a sharpening event was declared successful if after 2
hours less than 3 cells were displaced by more than a one cell diameter. (B) Depiction of the
probability distribution for ζ according to the parameter search scheme from the parameter
search scheme on RMF. The simulations which produced these distributions are discussed in
Section 2.5.9. Shown are the kernel density estimates from the ζ values from the stochastic
simulations. The different colored lines show the distributions for different noise types. The
red circles depict experimental values for ζ computed pairwise.

To determine the likelihood that this system uses one type of noise versus another, we

utilized the same parameter search scheme as previously described to calculate probability

distribution for ζ with different noise types and depletion of Cyp on the model RMF (Figure

2.8B). An experimental ζ was calculated pairwise between each wild-type and Cyp-deficient

embryo since there does not exist a canonical pairing, thus giving a distribution of 27 exper-

imental ζ values which center around ζ = 0.6 with a tail towards zero. ζ was less than the

mean experimental ζ for > 90% of the parameters when the noise was additive for [RA]in

or multiplicative for [RA−RAR] . In contrast, the ζ distributions with multiplicative noise

for [RA]in , [RA−BP ] , and [RA]out all peak around the mean ζ value. Similar results

were obtained for the cumulative distribution of ζ (Figure 2.10). Because of this reliance

of the noise on the levels of [RA]in itself (all of these concentrations are directly linked),

this strongly suggests that the dominant form of noise in the zebrafish hindbrain signaling

network is intrinsic to stochastic processes related to [RA]in and establishes that exogenous
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Figure 2.9: Characterization of Successful Sharpening via Additional Measures.
Binding protein production taken as 5, 15, . . . , 105 and Hox-Krox regulatory noise was
taken as 0.1, 0.125, . . . , 0.3 and each pairing in the grid was solved once. The effective
RA noise was calculated according to the measure from Section 2.5.11. In (A) a successful
sharpening event was characterized by having the maximum displacement between Hox and
Krox dominated cells of less than 3 cell diameters. In (B) a successful sharpening event was
characterized by having the mean displacement between Hox and Krox dominated cells as
less than half of a cell diameter.
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Figure 2.10: Characterization of ζ applied to FLIM Data. (A) Scatter plot of the data
points from [111]. (B) Pairwise Differences. The percent change in mean and variance was
calculated pairwise between each pair of higher and lower data points. A scatter plot of the
results is shown. (C) Estimated CDF. Depiction of the commutative probability distribution
for ζ according to the parameter search scheme from the parameter search scheme on RMF.
The simulations that produced these distributions are discussed in Section 2.5.12. Shown
are the kernel density estimates from the ζ values from the stochastic simulations. The
different colored lines show the distributions for different noise types. The red line depicts
experimental CDF for ζ computed using the pairwise data points.
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noise is not likely to fit the data.

2.4 Discussion

Stochasticity in gene regulatory networks naturally exists [29], and noise attenuation or con-

trol is needed to enable proper biological functions. For example, in the zebrafish hindbrain,

noise regulation is required for subsequent boundary sharpening processes to occur prop-

erly [131]. Here we uncover a mean-independent noise control (MINC) mechanism that can

tune the level of noise in the downstream components of a gene regulatory network (GRN),

without affecting the mean of the signal. In the zebrafish hindbrain system, this MINC

mechanism provides a way (through Crabp2a) to achieve the required noise levels in the

RA morphogen without disturbing other aspects of its spatial gradient. Together, we di-

rectly link the preservation of a stochastic spatial phenotype to a noise control mechanism,

demonstrating a potential path through which developmental processes could have evolved

to overcome inherent biochemical stochasticity in order to achieve robust spatial patterning.

The robustness in the choice of biologically-reasonable parameters needed to achieve such a

mechanism indicate that it is an intrinsic property of the GRN topology. The core feature

underlying this is a coupling assumption that arises naturally with the existence of interme-

diate states under mass action assumptions. Furthermore, we obtain similar results with five

separate models, all with this same coupling. This suggests that MINC may be a general phe-

nomenon related to the existence of intermediate states and probably exists in other GRNs.

Computational simulations of epithelial-mesenchymal transitions (EMT) recently has shown

that increased numbers of intermediate states attenuates noise in cellular fate decisions [114],

which is analogous to our predictions of how pooling in the intermediate state reduces noise.

Primed lineages in hematopoietic stem cells can be represented as an intermediate state with

reversible changes, which could explain data showing mean-independent noise attenuation
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due to a lineage commitment factor [118]. However, we note that the spatial control results

were only tested in the areas of the RA gradient where the concentration is sufficiently high.

There may be other factors required for robust noise control and boundary sharpening in

anterior rhombomeres (r1-3) where the RA concentration is low and the gradient is shallow.

Additionally, our models do not take into account the effects of cell proliferation. While the

cell cycle rapidly increases to 4 hours around the time of boundary sharpening [61] which

is a much slower time scale than the noise processes, further research could better quantify

the effects of cell divisions on the spatial noise.

Furthermore, our methods uncover a novel relationship between the noise source, the net-

work topology, and the relationship between the mean and the variance using the pertur-

bation data in experiments. Our analysis suggests intrinsic noise due to RA as the most

likely dominant noise source in the zebrafish hindbrain given the known GRN topology and

mean-variance relationship. With the increasing precision in experimental quantification

of variance changes, this methodology could be used to identify noise sources and provide

further evidence for/against GRN topologies. For example, microfluidic measurements have

accurately measured noise dynamics in individual aging yeast cells [73] and a similar dynamic

analysis to the one shown here could restrain the possible GRNs by requiring that not only

the mean but also the noise dynamics match the data. Most importantly, this approach may

be used to distinguish between models that have similar qualitative behavior with respect

to the mean, thereby providing a new way to uncover details of biochemical networks from

the noise in gene knockdown experiments.
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Software and Algorithms Source

MATLAB 2015b The MathWorks Inc. 2015
Simulations made in MATLAB Github: ChrisRackauckas/MINC

Julia Github: Julialang/julia
DifferentialEquations.jl JuliaDiffEq/DifferentialEquations.jl

Simulations made in Julia
with DifferentialEquations.jl Github: ChrisRackauckas/MINC

Plots.jl Github: JuliaPlots/Plots.jl

Table 2.3: Associated Software. Software used for the numerical simulations.

2.5 Extended Information

2.5.1 Method Details

Associated Software

The associated software is described in Table 2.3.

Steady State Analysis

For the SODE dXt = f (Xt) dt+g (Xt) dWt , we calculated the mean of Xt using a lineariza-

tion of the drift term ( f ) and solving for the unique positive steady state. To calculate

the variance, we used the linearization of the Fluctuation-Dissipation Theorem where for the

Jacobian of the drift at the steady-state J (Xss) , we have that

J (Xss) Σ (Xss) + Σ (Xss) J
T (XSS) = −g2 (Xss) , (2.9)

where Σ (XSS) is the covariance matrix at the steady state Xss , and thus its diagonal value

in column i gives the variance of the ith component when near the steady state. These
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computations were performed using Mathematica.

Monotonicity of Variance

Take the variance equation

V ar [RA] =
(Cγ + η)σ2

2 (1 + C) γη + 2η2
. (2.10)

Notice that

dV ar [RA]

dγ
=

Cσ2

2η (γ + γC + η)
− (C + 1)σ2(γC+η)

2η (γ + γC + η)2 . (2.11)

From Mathematica we see that dV ar[RA]
dγ

= 0 if and only if σ = 0 . Therefore V ar [RA]

is monotonic in γ . To see that it increases, we used the Mathematica Solve function to

attempt to find values for which the derivative was negative. Mathematica could find no

parameter regime where this was the case. As verification, we used the Mathematica Solve

function to find the values for which the derivative was positive. The function returned no

constraints, indicating that this always holds.
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2.5.2 Mathematical Models and Steady-State Results

General Master Equation (SM)

The SM model can be written in the general master equation framework as:

∂p

∂t
= (E1 − 1) ηnp+

(
E−1

1 E2 − 1
)
mδp+

(
E1E

−1
2 − 1

)
nγp+

(
E−1

1 − 1
)
βp, (2.12)

where p = p (n,m; t) with n being the number of RA particles and m being the number of

RA-RAR particles, and Ei being the step operators ( Ef (n) = f (n+ 1) , implying (E1 − 1)

is the annihilation of RA) for RA and RA-RAR respectively. Following [123, 1], we write

the general master equation in the form:

∂p

∂t
=
∑
l1,l2

(
El1

1 E
l2
2 − 1

)
[Ωn→n−l1,m→m−l2p] , (2.13)

where Ωn→n−l1,m→m−l2 is a reaction rate for the operation of losing l1 RA and l2 RA-RAR,

and calculate the identities via algebraic manipulation:
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d〈n〉
dt

= −
∑
l1,l2

〈l1Ωn→n−l1,m→m−l2〉, (2.14)

d〈m〉
dt

= −
∑
l1,l2

〈l2Ωn→n−l1,m→m−l2〉, (2.15)

d〈n2〉
dt

= −
∑
l1,l2

〈l1 (l1 − 2n) Ωn→n−l1,m→m−l2〉, (2.16)

d〈m2〉
dt

= −
∑
l1,l2

〈l2 (l2 − 2m) Ωn→n−l1,m→m−l2〉, (2.17)

d〈nm〉
dt

= −
∑
l1,l2

〈(l1n+ l2m− l1l2) Ωn→n−l1,m→m−l2〉. (2.18)

(For example: multiply by n , then re-define n to be shifted by l1 and simplify. The others

follow from similar manipulations). This gives the system of ODEs:

d〈n〉
dt

= − (η + γ) 〈n〉+ δ〈m〉, (2.19)

d〈m〉
dt

= γ〈n〉 − δ〈m〉, (2.20)

d〈n2〉
dt

= − (η + γ) 〈n (1− 2n)〉 − δ〈m (1 + 2n)〉 − β〈1 + 2n〉, (2.21)

d〈m2〉
dt

= −δ〈m (1− 2m)〉 − γ〈n (1 + 2m)〉, (2.22)

d〈nm〉
dt

= −η〈n2〉+ δ〈m (−n+m− 1)〉+ γ〈n (n−m− 1)〉+ β〈n〉. (2.23)

Setting the derivatives to zero, we receive the steady-state values (calculations in the Math-

ematica notebooks):
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E [RA] =
β

η
, (2.24)

V ar [RA] =
β (γ + η + cη)

η (γ + η + 2cη)
, (2.25)

Cov ([RA] , [RA−RAR]) = − β (γ + η)

γ (γ + η + 2ηc)
. (2.26)

We note that the derivatives of the variance and covariance equations by γ are non-zero for

all positive parameter values. Thus both equations are increasing functions of γ .

2.5.3 Simple Model with Feedback (SMF)

d [RA] =

(
β + δ [RA−RAR]−

(
γ + η +

α [RA−RAR]

ω + [RA−RAR]

)
[RA]

)
dt

(2.27)

+ σdWt, (2.28)

d [RA−RAR] = (γ [RA]− δ [RA−RAR]) dt, (2.29)

E [RA] =

√
2βCω (2α + η) + β2 + C2η2ω2 + β − Cηω

2 (α + η)
, (2.30)

E [RA−RAR] =

√
4βcω (α + η) + (β − cηω)2 + β − cηω

2c (α + η)
, (2.31)

V ar [RA] :
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σ2 (E [RA] + Cω)
(
E [RA]2 (α+ η) + 2E [RA]Cω (α+ η) + Cγ (E [RA] + Cω)2 + C2ηω2

)
2
(
E [RA]2 (α+ η) + 2E [RA]Cω (α+ η) + C2ηω2

)
(E [RA] (α+ η) + (C + 1) γ (E [RA] + Cω) + Cηω)

, (2.32)

V ar [RA−RAR] :

γσ2 (E [RA− RAR] + ω)3

2
(
E [RA− RAR]2 C (α + η) + E [RA− RAR]Cω (α + 2η) + ω (α + Cηω)

)
(E [RA− RAR] (α + η) + (C + 1) γ (E [RA− RAR] + ω) + ηω)

.

(2.33)

where δ = Cγ. Importantly we note that E [RA] and E [RA−RAR] are independent of δ

and γ .
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2.5.4 Intermediate Model (IM)

d [RA] =

(
β + δ [RA−BP ]−

(
α [RA−RAR]

ω + [RA−RAR]
+ γ + η

)
[RA]

)
dt (2.34)

+ σdWt (2.35)

d [RA−BP ] = (γ [RA] + λ [RA−RAR]− (δ + ν) [RA−BP ]) dt, (2.36)

d [RA−RAR] = (ν [RA−BP ]− λ [RA−RAR]) dt, (2.37)

E [RA] =

√
4βγδλνω (α + η) + (βγν − δηλω)2 + βγν − δηλω

2γν (α + η)
, (2.38)

E [RA−BP ] =

√
4βγδλνω (α + η) + (βγν − δηλω)2 + βγν − δηλω

2δν (α + η)
, (2.39)

E [RA−RAR] =

√
4βγδλνω (α + η) + (βγν − δηλω)2 + βγν − δηλω

2δγ (α + η)
. (2.40)

The variance equations are too large to fit in normal text and are thus contained in the

respective Mathematica notebooks. Notice that when λ = Cγ or ν = Cδ , the respective

terms cancel out of E [RA] and E [RA−RAR]
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2.5.5 Intermediate Model (IM) with More Signaling Steps and a

Separate Pool for Cyp Degradation

d [RA] = (β + δ [RA−BP ]− (γ + η) [RA]) dt+ σdWt (2.41)

d [RA2] =

(
δ2 [RA−BP ]−

(
α [RA−RAR]

ω + [RA−RAR]
+ γ2

)
[RA]

)
dt (2.42)

d [RA−BP ] = (γ [RA] + γ2 [RA2] + λ [RAN ]− (δ + δ2 + ν) [RA−BP ]) dt, (2.43)

d [RAN ] = (ν [RA−BP ] + Λ [RA−RAR]− (λ+ Γ) [RAN ]) dt, (2.44)

d [RA−RAR] = (Γ [RAN ]− Λ [RA−RAR]) dt, (2.45)

The mean and variance equations are too large to fit in normal text and are thus contained in

the respective Mathematica notebooks. Notice that when λ = Cγ = C2γ2 or ν = Cδ = C2δ2

, the respective terms cancel out of E [RA] and E [RA−RAR].
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2.5.6 Retinoic Acid Model (RM)

d [RAout] = (β − b [RAout] + c [RAin]) dt, (2.46)

d [RAin] =

(
b [RAout] + δ [RA−BP ]−

(
γ [BP ] + η +

α [RA−RAR]

ω + [RA−RAR]
− c
)

[RAin]

)
dt

(2.47)

+ σdWt, (2.48)

d [RA−BP ] = (γ [BP ] [RAin] + λ [BP ] [RA−RAR]− (δ + ν [RAR]) [RA−BP ]) dt, (2.49)

d [RA−RAR] = (ν [RA−BP ] [RAR]− λ [BP ] [RA−RAR]) dt, (2.50)

d [RAR] = (ζ − ν [RA−BP ] [RAR] + λ [BP ] [RA−RAR]− r [RAR]) dt, (2.51)

d [BP ] = (a− λ [BP ] [RA−RAR]− γ [BP ] [RAin] + (δ + ν [RAR]) [RA−BP ]− u [BP ]) dt,

(2.52)

E [RAout] =
βγζν (2 (α+ η) + c) + c

√
4βγδζλνrω (α+ η) + (βγζν − δηλrω)

2
+ cδηλ (−r)ω

2bγζν (α+ η)
,

(2.53)

E [RAin] =
βγζν +

√
4βγδζλνrω (α+ η) + (βγζν − δηλrω)

2 − δηλrω
2γζν (α+ η)

, (2.54)

E [RA−BP ] =

a

(
βγζν +

√
4βγδζλνrω (α+ η) + (βγζν − δηλrω)

2 − δηλrω
)

2δζνu (α+ η)
, (2.55)

E [RA−RAR] =
βγζν +

√
4βγδζλνrω (α+ η) + (βγζν − δηλrω)

2 − δηλrω
2δλr (α+ η)

, (2.56)

E [RAR] =
ζ

r
, (2.57)

E [BP ] =
a

u
. (2.58)

The variance equations are too large to fit in normal text and are thus contained in the

respective Mathematica notebooks. Notice E [RAin] and E [RA−RAR] are independent of
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a . By substitution we have that:

E [RA−BP ] =
βγζν +

√
4βγδζλνrω (α + η) + (βγζν − δηλrω)2 − δηλrω

2δζν (α + η)
E [BP ] . (2.59)

2.5.7 Retinoic Acid Model with Binding Protein Feedback (RMF)

The equations are the same as RM except for:

d [BP ] =

(
a− λ [BP ] [RA−RAR]− γ [BP ] [RAin] + (δ + ν [RAR]) [RA−BP ]− u [BP ] +

d [RA−RAR]

e+ [RA−RAR]

)
dt. (2.60)

The steady-state analysis results are too large to fit in normal text and are thus contained

in the Mathematica notebooks.

2.5.8 Spatial Retinoic Acid Model

The equations are the same as RM with BP feedback except

d [RAout] = (β (x) +D∆ [RAout]− b [RAout] + c [RAin]) dt+σRAout [RAout] dW
out
t , (2.61)

where β (x) = β0H (x− 40) where H is the Heaviside step function denoting x0 = 40µm is

the edge of production,
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d [RAin] =

(
b [RAout] + δ [BP ] [RA−RAR]−

(
γ [BP ] + η +

α [RA−RAR]

ω + [RA−RAR]
− c
)

[RAin]

)
dt

(2.62)

+ σRA [RAin] dW in
t , (2.63)

and

d [RA−RAR] = (ν [RA−BP ] [RAR]− λ [BP ] [RA−RAR]) dt (2.64)

+ σRA−RAR [RA−RAR] dWRA−RAR
t , (2.65)

where each dWt is an uncorrelated Gaussian white noise. The spatial domain was a two-

dimensional box with the x-domain [-100,400] and the y-domain [0,50] with units of µm . The

problem was discretized to ODEs via the method of lines with a second-order discretization

of the Laplacian and dx = dy = 5µm . For all sections, we fixed D = 25.46 µm2/s .

The boundary was reflective on all ends except the right boundary, which was leaky with

parameter 0.002.

When the Hox-Krox interactions are included, those portions of the system are defined by:

dgh =
chg

2
h + (κh [RA−RAR])2

1 + chg2
h + ckg2

k + (κh [RA−RAR])2 − dhgh + ahghdW
h
t , (2.66)

dgk =
ckg

2
k + (κk [RA−RAR])2

1 + chg2
h + ckg2

k + (κh [RA−RAR])2 − dkgk + akgkdW
h
t . (2.67)
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2.5.9 Numerical Parameter Search in Knockdown Experiments

The scheme is:

1. For every parameter p , take xp ∈ [−5, 5] uniformly, and let p = 10−xp−baseExpp .

2. Solve the model for 200 seconds with the initial condition at the steady-state value.

Calculate the mean and variance.

3. Knock down the associated parameter by 90% and redo step 2.

4. Calculate the value ζ.

The baseExpp values are given in Table 2.1. 100,000 simulations were run per model. The

simulation was solved using the Euler-Maruyama method with a dt = 10−4 and the mean/-

variance was calculated. For models without the explicit binding protein, the parameter γ

was the one affected. For models with the explicit binding protein, the production parame-

ter was the one affected. The simulation was solved using the same solver settings and the

same Brownian path (the same Brownian path was used to simulate the embryo with the

same conditions but with a different epigenetic makeup). Cyp was knocked down (from the

parameter set that did not include the BP knockdown) by a 90% decrease to α . The same

solver settings and the same Brownian path were used and the mean/variance was calcu-

lated. Using the mean/variance calculations for these three runs, a ζ was calculated for the

BP-knockdown and a ζ was calculated for the Cyp-knockdown. Note that the percentages

were calculated relative to the larger quantity, e.g.

%∆Mean =
abs (Mean1 −Mean2)

max (Mean1,Mean2)
(2.68)

39



to ensure a value between 0 and 1.

2.5.10 Numerical Parameter Search in Spatial Knockdown Exper-

iments

100 simulations were run, with random parameter sets chosen by taking xp uniformly from

[-2,2] and letting p = 10−xp−baseExpp . baseExpp was chosen so that the parameter range

covers all of the most likely parameters, but slightly biased in order to decrease the amount

of time to steady state to make the problem computationally feasible (boosting degradation,

and increasing production so as to keep the total concentrations at reasonable levels). The

simulations were accelerated using NVIDIA GTX 970 and GTX 980Ti GPUs via MATLAB’s

CUDA interface. The base values are given in Table 2.1.

The simulation was first solved to steady-state without noise at the highest possible dt ,

and then the model was solved using a more stable variant of a second order Runge-Kutta

method via a method of lines discretization with dt = 5 × 10−5s for 100 seconds, roughly

matching the experimental setup of [111]. We note that the results are robust to the choice

of final time point being an order magnitude less or greater, indicating convergence of the

stochastic model to a quasi-steady distribution. The model was first solved using xp and

then with a 90% knockdown of a . At the end of each run, the 60% threshold from the

non-knockdown control was used to set the boundary location. For each y, the lowest x

above the threshold was chosen as the boundary location. The mean and the variance of

these x values was used as the boundary mean and variance. This scheme is diagrammed in

Figure 2.5.
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2.5.11 Spatial Boundary Sharpening Experiments

The boundary sharpening experiments were solved using a method of lines approach. The

steady-state gradient was first established by turning off the noise and solving the discretized

PDE using an adaptive second order Rosenbrock method from DifferentialEquations.jl. Then

the SPDE was solved for 500 seconds using the adaptive SRIW1[90]. After that, the Hox-

Krox interactions were initiated, starting with a random steady state where Krox was zero

and Hox started with each point in space having 0.1605+0.2X where X is a uniform random

number. This was solved to steady state using the Tsit5 algorithm from DifferentialEqua-

tions.jl and then solved with noise for 10,000 seconds using the adaptive SRIW1 method.

For the boundary sharpening experiments, parameters were chosen to conform to regimes

specified in previous models. The parameters were chosen as detailed in Table 2.1. From the

results, the effective RA noise was calculated as the variance of RA at x = 125µm, which

was the Hox-Krox boundary in the absence of noise.

2.5.12 ζ Determination From Data

To determine ζ from the data of Sosnik et al., 2016, the relative concentration values for

free intracellular RA had to be converted to a sensible absolute concentration value in some

arbitrary units by determining a 0. This background was discarded by subtracting out the

mean relative abundance of the control experiment, which was .3132. The 0-adjusted values

are given in in the accompanying MATLAB script. Since the embryos have no preferred

pairing, a separate ζ was estimated from each pairwise interaction between knockdowns.
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Chapter 3

Adaptive Methods for Stochastic

Differential Equations via Natural

Embeddings and Rejection Sampling

with Memory

This chapter was published as [91]. It derives two algorithms: error estimators for high or-

der Stochastic Runge-Kutta methods and a method for adaptive time stepping for stochas-

tic equations termed Rejection Sampling with Memory (RSwM). These two methods to-

gether give rise to high order adaptive integrators for stochastic differential equations which

are shown to give substantial speedups on models of biological processes like Epithelial-

Mesnchymal Transitions (EMT).
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3.1 Summary

Adaptive time-stepping with high-order embedded Runge-Kutta pairs and rejection sampling

provides efficient approaches for solving differential equations. While many such methods

exist for solving deterministic systems, little progress has been made for stochastic variants.

One challenge in developing adaptive methods for stochastic differential equations (SDEs) is

the construction of embedded schemes with direct error estimates. We present a new class

of embedded stochastic Runge-Kutta (SRK) methods with strong order 1.5 which have a

natural embedding of strong order 1.0 methods. This allows for the derivation of an error

estimate which requires no additional function evaluations. Next we derive a general method

to reject the time steps without losing information about the future Brownian path termed

Rejection Sampling with Memory (RSwM). This method utilizes a stack data structure to

do rejection sampling, costing only a few floating point calculations. We show numerically

that the methods generate statistically-correct and tolerance-controlled solutions. Lastly, we

show that this form of adaptivity can be applied to systems of equations, and demonstrate

that it solves a stiff biological model 12.28x faster than common fixed timestep algorithms.

Our approach only requires the solution to a bridging problem and thus lends itself to natural

generalizations beyond SDEs.

3.2 Introduction

Explicit methods for solving Ordinary Differential Equations (ODEs) with adaptive time-

stepping algorithms, such as the Dormand-Prince and Cash-Karp algorithms, have become

efficient and popular solvers for numerical simulations of ODEs due to their ease of use and

accuracy [26, 103, 20]. These algorithms consist of two major components: an embedded

higher-order and lower-order pair of temporal integrators to allow for estimating the local
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error (i.e. the error indicator), and an adaptive time-stepping algorithm for choosing the

next stepsize and performing the update [88, 8]. Together, the algorithm is able to effectively

solve most equations by automatically adapting to the solutions by adjusting the timestep.

To derive adaptive algorithms for stochastic ordinary differential equations (SODEs) of the

form

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (3.1)

where f is the drift coefficient and g is the diffusion coefficient, a natural choice is to use

embedded Stochastic Runge-Kutta (SRK) methods. Kloeden and Platen developed a set of

stochastic Taylor expansions which allowed for the derivation of higher order (greater than

order 1.0) SRK methods [63, 50]. One interesting feature of this class of algorithms is that,

since no analytical solution exists for iterated stochastic integrals, they are usually replaced

by sufficiently exact approximations due to Wiktorsson [127, 97]. While strong order 2.0

SRK methods have been studied [10, 63], existing works mainly focus on strong order 1.5

Stochastic Runge-Kutta methods, such as a series of methods for Stratanovich SDEs [12, 9]

and for Ito SDEs [58].

One recent advance in SRK methods is Rößler’s methods for Ito SDEs [95]. This class of

methods was shown to be efficient by reducing the number of function evaluations required

per step. Their format via extended Butcher tableaus allows them to be easily amendable.

However, these methods have not been used for adaptive algorithms. Here, we will show

that for certain Rößler-SRK methods, there exists a naturally embedded order 1.0 method

such that no extra function evaluations are needed in order to evaluate its difference from

the order 1.5 method, presenting an efficient way to both perform the steps and approximate

the error.

With the embedded SRK methods, the next challenge is to deal with the choice of time
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steps. For ODEs, one usually performs a trial step in order to calculate an error estimate

and, using this estimate, either choose to step or reject the step and try again with a smaller

timestep. The problem with such an approach for SODEs is that when performing the

trial step, one takes a random number to simulate the future Brownian path, and if one

rejects the timestep, this will change the sample properties of the Brownian path [13]. This

is particularly an issue because larger variations in the Brownian path are correlated with

more numerical error and thus such an algorithm would have a strong tendency to reduce the

variance of the noise process. Lastly, it’s not clear how to effectively sub-sample a solution

along a Brownian path after one decides it’s too coarse.

Most of the current approaches for adaptive time steps attempt to perform error calculations

before stepping in order circumvent rejection sampling. One approach [34] utilizes an order

1.0 algorithm with a Brownian path stored at the h, h
2
, h

4
timepoints, etc. stored as a tree.

The algorithm solves for an error equation using a stochastic Taylor series and then utilizes

this new equation to solve a linearization backwards in time in order to produce an error

estimate for a future timestep without having to do rejection sampling. This method requires

using halving/doubling of stepsizes and, since it’s not able to account for which timesteps

the Brownian path has the largest future jumps, has to be conservative in order to achieve

its chosen error estimate. It also requires the user to provide many derivatives of the drift

and diffusion functions f and g, or alternatively perform a numerical estimation of these

derivatives at each timestep. Lastly, in their paper they proved that any variable stepsize

implementation must use a numerical method which has strong order of at least 1, meaning

that any variable stepsize method must go beyond Euler-type methods.

Another algorithm may be limited to low-order methods due to its requirement of having

a small “fixed number of observations”, and requires the calculation of derivatives of both

f and g [81]. Lamba [67] presented an order 1.0 algorithm which used properties of the

Brownian bridge restricted to a grid of multiples of 1
3
. It included the novel property of
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having separate error estimators for deterministic and noise induced error for finer control

of the solution. There is one adaptive stepping algorithm which does not have restrictions

on the stepsize and utilizes embedded strong order 1.0/1.5 SRK methods for Stratanovich

SDEs [13] . Their embedded method requires two additional function evaluations in order

to derive an error estimate, and requires solving for a dense matrix and performing a matrix

multiplication each time an interval is subdivided. Their results show that general time-

stepping tends to be vastly more efficient than grid-based methods from before.

The main results of the paper are the development of strong order 1.0/1.5 embedded Runge-

Kutta pairs for error estimation and a new adaptive time-stepping algorithm termed Rejec-

tion Sampling with Memory (RSwM). This extension to the rejection sampling algorithm

is diagrammed in Figure 3.1 and gives an overview of how the various developments come

together to form one complete algorithm.

Compute a step of
size h using two

di�erent integration
methods (e.g.  Eq 2)

Estimate the error 
E using the di�erence 
between the methods

(Sections 2 and 3)

Use E to
calculate 
q (Eq 21)

Accept if q≥1

Reject if q<1

Update h:=q*h

Update h:=q*h

Use the future information 
to determine W(t+qh)

Save the information for
the change of W over 
the interval (t+qh,t+h)

Use the Brownian Bridge
to determine a value
for W(t+qh) (Eq 22)

Update t:=t+h

Figure 3.1: Outline of the adaptive SODE algorithm based on Rejection Sampling
with Memory. This depicts the general schema for the Rejection Sampling with Memory
algorithm (RSwM). The green arrow depicts the path taken when the step is rejected, whereas
the red arrow depicts the path that is taken when the step is accepted. The blue text
denotes steps which are specific to the stochastic systems in order to ensure correct sampling
properties which are developed in section 3.5.

In section 3.3 we construct the method ESRK1 which is a strong order 1.0/1.5 embedded

pair of algorithms which allows for high-order solving and error estimation. In section 3.4 we

prove the existence of a natural order 1.0/1.5 embedded pair of Rößler SRK algorithms that
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allows for the efficient calculation of an error estimate for high-order SRK methods with

no additional function evaluations. Using this error estimate, we construct the rejection

sampling methods for SDEs which allows for efficient general adaptive time-stepping with

almost no extra floating point operations. In section 3.5 we first elucidate a simple solution

to general adaptive time-stepping, discuss how one could attempt to improve the efficiency

of the algorithms, and then develop more efficient adaptive stepping algorithms.

Lastly, we perform numerical experiments to show the effectiveness of the algorithms. In

section 3.6, we show that our methods are able to reproduce the proper sample statistics

for the stochastic differential equations and the user chosen local error parameter ε is able

to control the global error. Then in section 3.7, we demonstrate the ability for the adaptive

parameters to control for the coarseness of the solution to nonlinear systems of equations,

and show that when applied to a large stiff system derived from biology, our method is able

to stability solve a Monte Carlo experiment of 10000 simulations without diverging 12.28x

faster than a few popular fixed timestep methods. We conclude by discussing how these

algorithms can be generalized to other problems like Stratanovich SDEs, jump diffusions,

and SPDEs.

3.3 Construction of an order 1.0/1.5 embedded pair

Using a colored root tree analysis, Rößler developed a set of strong order 1.5 stochastic

Runge-Kutta schemes [95]. This multi-step method resulted in less computational steps

than the KPS schemes, and the number of steps grows much slower as the Ito dimension

increases than in the KPS schemes [63]. The structure of Rößler methods are relatively

simple, making the method both easy to implement and fast in runtime. For simplicity, we

describe the equations for a single Ito dimension, though the results generalize to the case

of multiple Ito dimensions.
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The Runge-Kutta methods are strong order 1.5 if they satisfy a set of order conditions in

subsection 3.10.1, taking the following form:

Un+1 = Un +
s∑
i=1

αif
(
tn + c

(0)
i ∆t,H

(0)
i

)
∆t+ (3.2)

s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,1)√
∆t

+ β
(3)
i

I(1,0)

∆t
+ β

(4)
i

I(1,1,1)

∆t

)
g
(
tn + c

(1)
i ∆t,H

(1)
i

)
,

with stages

H
(0)
i = Un +

s∑
j=1

A
(0)
ij f

(
tn + c

(0)
j ∆t,H

(0)
j

)
∆t (3.3)

+
s∑
j=1

B
(0)
ij g

(
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(1)
j ∆t,H

(1)
j

) I(1,0)

∆t
,

H
(1)
i = Un +

s∑
j=1

A
(1)
ij f

(
tn + c

(0)
j ∆t,H

(0)
j

)
∆t (3.4)

+
s∑
j=1

B
(1)
ij g

(
tn + c

(1)
j ∆t,H

(1)
j

)√
∆t.

The iterated stochastic integrals I(1,1), I(1,0), and I(1,1,1) are evaluated via the approximations

due to Wiktorsson as noted in subsection 3.10.3. These methods are referred to as the SRI

algorithms and are indicated by the tuple of 44 coefficients
(
A(i), B(i), β(i), α

)
. Similarly,

for additive noise the Runge-Kutta methods are strong order 1.5 if they satisfy the order
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conditions contained subsection 3.10.2, taking the form

Un+1 = Un +
s∑
i=1

αif
(
tn + c

(0)
i ∆t,H

(0)
i

)
∆t+ (3.5)
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. (3.6)

Given the efficiency of order 1.5 SRK methods for stochastic problems, we will develop

Runge-Kutta-Fehlburg-like embedded algorithms [8], which step along an order 1.5 path

using error estimates from an order 1.0 path.

We start with the order 1.5 method SRIW1 [95] denoted by coefficients
(
A(i), B(i),

β(i), α
)
. Notice that the order 1.0 conditions from subsection 3.10.1 only enforce β(3)TB(1)e =

0 and β(4)TB(1)e = 0 on β(3) and β(4). Thus let β̃(3) = β̃(4) = 0. This gives an order 1.0

method
(
A(i), B(i), β̃(i), α

)
.

Let X̄ be the numerical solution of SRIW1 on the general SODE Equation 3.1, and X̃ be the

numerical solution from the algorithm with coefficients
(
A(i), B(i), β̃(i), α

)
. By Equation 3.2,

the difference between the numerical solutions on the next step is

X̄ − X̃ =
s∑
i=1

(
β

(3)
i

I(1,0)

∆t
+ β

(4)
i

I(1,1,1)

∆t

)
g
(
tn + c

(1)
i ∆t,H

(1)
i

)
. (3.7)

Note that we could keep β(3) not equal to zero and still have an order 1.0 method, but zeroing

β(3) gives an estimate for the size of ∆Z (the second Brownian path used to estimate I(1,0)

as noted in subsection 3.10.3) which may need to be controlled as well.
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However, this error estimate does not take into account stiffness in the drift coefficient f .

Notice that the only condition on the coefficients α is
∑
αi = 1. Thus let α̃ =

(
1
2
, 1

2
, 0, 0

)
.

This gives another order 1.0 Method (A0, B0, βi, α̃). If we let X̂ be the numerical solution

to Equation 3.1 using the coefficients (A0, B0, βi, α̃), then by Equation 3.2 notice

X̄ − X̂ = −∆t

6
f
(
tn + c

(0)
1 ∆t,H

(0)
1

)
+

∆t

6
f
(
tn + c

(0)
2 ∆t,H

(0)
2

)
. (3.8)

Notice that for this algorithm the difference is only due to the stiffness of the drift coefficient.

Using both the β and the α changes together gives a pair of strong order 1.0 / order 1.5

methods which is robust to errors in both coefficients. We designate this algorithm Embedded

SRK 1 (ESRK1) as the set of coefficients defined in Table 3.1 for which steps are taken

according to Equation 3.2, Equation 3.3, Equation 3.4.

Adding the two previous error equations Equation 3.7 and Equation 3.8, gives E, the error

estimation via the difference between the order 1.5 and order 1.0 method, as

E = −∆t

6
f
(
tn + c

(0)
1 ∆t,H

(0)
1

)
+

∆t

6
f
(
tn + c

(0)
2 ∆t,H

(0)
2

)
(3.9)

+
s∑
i=1

(
β

(3)
i

I(1,0)

∆t
+ β

(4)
i

I(1,1,1)

∆t

)
g
(
tn + c

(1)
i ∆t,H

(1)
i

)
.

Thus ESRK1 is a pair of order 1.0/order 1.5 embedded algorithms. Notice that every term

in the error calculation Equation 3.9 is also part of the calculation for the order 1.5 timestep

from Equation 3.2 and thus no additional function evaluations are required for this error

estimate. Thus ESRK1 is an extension to the order 1.5 algorithm which allows for an

efficient error estimation.
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c(0) A(0) B(0)

c(1) A(1) B(1)

αT β(1)T β(2)T

β(3)T β(4)T

α̃T β̃(3)T β̃(4)T

(a) Legend Table

0

3
4

3
4

3
2

0 0 0 0 0

0 0 0 0 0 0 0

0

1
4

1
4

1
2

1 1 0 -1 0

1
4 0 0 1

4 -5 3 1
2

1
3

2
3 0 0 -1 4

3
2
3 0 -1 4

3 −1
3 0

2 −4
3 −2

3 0 −2 5
3 −2

3 1

1
2

1
2

0 0 0 0 0 0 0 0 0 0

(b) Coefficients Table

Table 3.1: ESRK1. Table (a) shows the legend for how the numbers in in Table (b)

correspond to the coefficient arrays/matrices c(i), A(i), B(i), α, β(i), α̃, and ˜β(i). For example,
these tables show that αT = (1

3
, 2

3
, 0, 0). Note that the matrices A(i) and B(i) are lower

triangular since the method is explicit.
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3.4 Error estimation via natural embeddings

The construction from section 3.3 is part of a more general construction which we call natural

embeddings in Rößler SRK methods. Take a Rößler SRK method determined by coefficients(
A(i), B(i), β(i), α

)
. For this method, we can generate an embedded order 1.0 method via a

parameter δ by changing α to α̃ where we subtract δ from two coefficients and add δ to two

coefficients. Thus by Equation 3.2, this gives the deterministic error estimate

ED = ∆t
(
f
(
tn + c

(0)
k1

∆t,H
(0)
k1

)
+ f

(
tn + c

(0)
k2

∆t,H
(0)
k2

))
(3.10)

−
(
f
(
tn + c

(0)
k3

∆t,H
(0)
k3

)
+ f

(
tn + c

(0)
k4

∆t,H
(0)
k4

))
,

If we then change β(3) and β(4) to zero on the indices in the index set I2, then this gives the

noise error estimate

EN =

∣∣∣∣∣∑
i∈I2

(
β

(3)
i

I(1,0)

∆t
+ β

(4)
i

I(1,1,1)
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)
g
(
tn + c

(1)
i ∆t,H

(1)
i

)∣∣∣∣∣ . (3.11)

By the order conditions of subsection 3.10.1, these coefficient changes together give an order

1.0 method whose difference from the order 1.5 method
(
A(i), B(i), β(i), α

)
is a bounded error

estimate which is calculated directly from the coefficients of the order 1.5 method. This

result is summarized in the following theorem:

Theorem 3.1. Natural Embedding For any order 1.5 SRK method with coefficients(
A(i), B(i), βi, α

)
, there exists a δ ∈ R such that

(
A(i), B(i), β̃(i), α̃

)
defines a natural order

1.0 embedded SRK method, where β̃(3) and β̃(4) are equivalent to β(3) and β(4) respectively

except the indices in I2 are zeroed, and α̃ differs from α by δ at each coefficient in I1 by a

sign difference of (−1)σ(i) (σ(i) = 1 for at least one i and σ(i) = 2 for at least one i), and |I1|
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even. The one-step difference between the methods
(
A(i), B(i), β(i), α

)
and

(
A(i), B(i), β̃(i), α̃

)
is bounded by

E = δED + EN , (3.12)

where

ED =
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Notice that from this theorem if we take the coefficients from the SRIW1 method and let

δ = 1
6

then we arrive at the ESRK1 method from section 3.3. Also, note that this theorem

be extended to the case where |I1| = 3 by letting α̃ differ from α by δ in one coefficient and

δ
2

in the two others. However, in order to satisfy the Order 0.5 constraint
∑
αi = 1, we

cannot simply modify a single component.

This implies that there is no need to specifically derive embedded pairs of methods. Instead,

for any order 1.5 Rößler SRK method that one constructs, there exists a naturally embedded

order 1.0 method such that E is an error estimate, and thus the error estimator can be utilized

without ever explicitly constructing the order 1.0 method. In addition, the calculation of

E only uses values found in the order 1.5 timestep from Equation 3.2. As a result, the

error estimate is naturally obtained without any additional function evaluations. Lastly, the

equation Equation 3.12 also has a adjustable parameter δ, which allows the user to scale the

relative contributions of the deterministic and noise terms to the overall error estimate.

We note that all of these equations generalize to systems by considering the variables and
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functions as vectors and vector functions respectively, with the absolute value generalizing

to an appropriate norm. This result also generalizes to multiple Ito dimensions, i.e., SODEs

of the form

dXt = f(Xt, t)dt+
d∑
k

gk(Xt, t)dWt, (3.15)

in the case where the noise function g is diagonal by a similar construction on the Rößler

SRID, giving the error estimates

ED =
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Note that in the case of SRA-type methods (additive noise), a similar theorem also holds. By

Equation 3.5 on the multiple Ito dimension SDE Equation 3.15 we utilize the same construc-

tion and receive a natural embedding with the error estimation Equation 3.12 containing the

same deterministic error estimation Equation 3.13, with a new noise-error estimation:

EN =

∣∣∣∣∣
d∑
k

s∑
i=1

β
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i

I(1,0)

∆t
gk(tn + c
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i ∆t)

∣∣∣∣∣ . (3.18)
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3.5 Three algorithms for rejection sampling with mem-

ory

3.5.1 Rejection sampling for stochastic differential equations

As in deterministic rejection sampling algorithms [8, 88, 40], define

e =

√√√√ 1

n

n∑
i

(
Ei
sci

)
, (3.19)

where

sci = εabs +X
(i)
t εrel, (3.20)

is the absolute/relative mixed error with ε is the user-chosen error absolute and relative

tolerances respectively, Ei is the error estimation of the ith element computed with the

methods from section 3.4, and n is the size of the system. Using this measure of the system

error with respect to tolerance, it is common in deterministic systems to define

q =

(
1

γe

)1/(O+1)

, (3.21)

where γ is a penalty factor (in deterministic methods it is often taken as γ = 2) and O

is the minimum order of the numerical methods used in the error estimators. For solving

deterministic equations, the rejection sampling method for adaptive time-stepping can be

summarized as:

1. If q < 1, reject the initial choice of h and repeat the calculation with qh

2. If q ≥ 1, then accept the computed step and change h to min (hmax, qh) where hmax is
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chosen by the user.

For solving SODEs, this approach needs to be modified since rejection of future steps involves

throwing away information about the future Wiener process which biases the sample statistics

for the path. Our solution is to change rejection sampling so that all information about the

future path is kept, and adapt the sampling of the Brownian path to accommodate for this

information. This is summarized as follows:

1. If q < 1, reject the initial choice of h, store the values for the future steps of the Wiener

process ∆Wt, and repeat the calculation with qh.

2. If q ≥ 1, then accept the computed step and change h to min (hmax, qh) where hmax is

chosen by the user. Use future information to determine the next step.

The algorithm for adapting the random number sampling to account for future information

is as follows. As noted in subsection 3.10.3, due to the term I(1,0) in the SRK algorithm, we

must consider two Brownian paths: Wt, the path from the SODE, and Zt, an independent

Brownian path for the approximation. First, propose a step with ∆W P and ∆ZP for a

timestep h. If these are rejected, change the step size to qh. Thus we need to sample a new

value at W (tn + qh) using the known values of W (tn) and W (tn + h). By the properties of

the Brownian Bridge [83, 71], if W (0) = 0, W (h) = L, and q ∈ (0, 1), then

W (qh) ∼ N (qL, (1− q)qh) . (3.22)

Thus propose a step of size qh and take the random numbers ∆W = W (qh) and ∆Z = Z(qh)

from the distribution Equation 3.22.

Notice that by the Markov property of Brownian motion, the immediate future and current

timestep values fully characterize the distribution of the Brownian Bridge, and using the
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Brownian Bridge we can interpolate the Brownian process to whatever time-point we deem

necessary. Thus if the every time we take a sample of the future Brownian process (i.e. take a

random number) we save the random number (even if rejecting the step), we can recover the

correct distribution for interpolations of the Brownian process using Equation 3.22, giving

all of the necessary information for computing a step of size qh.

3.5.2 Computational issues

First we deduce the proper form to save the future information upon rejection and the

necessary details to save. Assume that we are at a time t and the Brownian process changed

by an amount ∆W P in the timestep of size h. If there was no future information, this would

be the value given by a random number generator with the distribution N(0, h). When a

step is rejected, a new stepsize is chosen as qh where q < 1. Knowing the Brownian process’

value at t and t+ h, we can determine a value for W (t+ qh) using Equation 3.22. Labeling

∆W as the change in W over our new step of size qh, we have future knowledge that the

Brownian path changes over the interval (t + qh, t + h) by ∆W = ∆W P −∆W (note that

for the same reasons, we have that the secondary Brownian motion Z used as part of the

high-order integrator must also satisfy ∆Z = ∆ZP −∆Z). To store this future information,

we save the 3-tuple (∆W,∆Z, (1−q)h). The first two values denote how much the Brownian

motions changed and the last denotes the length of the time interval over which the changes

occurred. From these values we have the information necessary for to use Equation 3.22 in

order to interpolate the change in Brownian motion from t+qh to any value in [t+qh, t+h].

Since we know the value of the Brownian motions at t+ qh, we can perform rejections using

this algorithm recursively to see that we can re-reject to any value in [t, t + qh] and still

accurately re-create the Brownian motions at any point in the full [t, t+h]. Therefore saving

this 3-tuple at each rejection suffices for the full reconstruction of the Brownian processes.

Since this algorithm requires very few floating point operations, this algorithm has a good
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potential for efficiency.

At this point a naive implementation runs into many practical computational issues. The

first implementation which comes to mind is to store this 3-tuple of future information into

an array. The storage must be a mutable multi-valued data structure because it is possible

for consecutive rejections to occur, meaning that we may have to store many pieces of future

information. However, when using general stepsizes, it is possible for a step to go past some

values of future information, and if this step is then rejected and the future information

is added to the end of the array, the array is no longer necessarily in time order. The

naive approach to solve this problem is to expand to saving a 4-tuple which also includes

the timepoint, and at every timestep either search the array or re-sort the array given new

inputs. While the search can be made O(log n) by using bisection (where n is the number

of future information points), insertion into an arbitrary point in an array still constitutes

O(n) operations since the other elements in the array must be moved. Since this is the cost

per insertion and many insertions can required before accepting a timestep, it is essential to

the efficiency of the algorithm to make this process more performant.

Knowing that we will need to insert arbitrary values into the middle of the array, one may

then propose using a linked list data structure. However, if the search is done on a linked

list data structure, then the bisection still constitutes O(n) operations due to the traversal

structure. To alleviate these problems, we propose an algorithm using stacks. Stacks are

computationally efficient data structures which allow for O(1) insertion and retrieval, but

with the restriction that only the value at the top of the stack is readily available. By

achieving this complexity, we minimize the computational cost of rejections, allowing for one

to not have to be overly conservative with the choice of stepsize. In the following subsection

we will show how to achieve general timestepping with O(1) information insertions and

retrievals while only requiring the necessary floating point operations and ordering the data

in a manner which is efficient for caching.
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3.5.3 The RSwM algorithms

Due to the LIFO (last in, first out) structure of the stack data structure, if the algorithm

iteratively adds the future portions to the stack, then the tuple at the top of the stack always

denotes the values for the time interval of the immediate future. Thus, after a successful

step, if the stack is non-empty, we use the values from the top of the stack to propose our

next step. If the stack is ever empty, then this indicates that the algorithm currently has

no future information. In this case, take new random numbers and propose a new step in

the same manner as the non-adaptive algorithm. By using the stack in such a manner, we

are able to perform all of the memory operations in O(1) with the only additional floating

point operations due to adaptation being the few operations to calculate the Li, resulting in

a computationally efficient algorithm.

A psudocode version of the algorithm is given as Algorithm 1. While intuitive, RSwM1 is

not the most efficient since it does not always use the estimated “best stepsize” qh. If the

stack is non-empty, then the step size is taken to be the first component from the tuple

on the top of the stack (L1) which may be significantly less than qh. This constrains the

algorithm to step to any timepoint t which was the value of a previously rejected timestep.

Thus, RSwM1 is not an entirely general stepping algorithm.

To extend the previous algorithm, we wish to change the stepping algorithm when the stack

is not empty to allow for unraveling the stack multiple times per step. To do so, let the

algorithm take enough items off the stack so that the total length is close to the proposed

timestep qh, and adjust for the difference.

A psudocode version of the algorithm is given as Algorithm 4 in subsection 3.10.4. The

resulting algorithm, RSwM2, is more complex than RSwM1. However, the advantage of this

algorithm is that if we propose a step of size hnew = qh, we will always step with a size hnew

regardless of the number of items on the stack. In the example simulations in section 3.6,
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Algorithm 1 RSwM1

1: Set the values ε, hmax, T
2: Set t = 0, W = 0, Z = 0, X = X0

3: Take an initial h, ∆Z,∆W ∼ N(0, h)
4: while t < T do
5: Attempt a step with h, ∆W , ∆Z to calculate Xtemp according to (2)
6: Calculate E according to (9)
7: Update q using (21)
8: if (q < 1) then . % Reject the Step
9: Take ∆W̃ ∼ N (q∆W, (1− q)qh) and ∆Z̃ ∼ N (q∆Z, (1− q)qh)

10: Calculate ∆W = ∆W −∆W̃ and ∆Z = ∆Z −∆Z̃
11: Push

(
(1− q)h,∆W,∆Z

)
into stack S

12: Update h := qh
13: Update ∆W := ∆W̃ , ∆Z := ∆Z̃
14: else . % Accept the Step
15: Update t := t+ h, W := W + ∆W , Z := Z + ∆Z, X = X +Xtemp

16: if (S is empty) then
17: Update c := min(hmax, qh), h := min(c, T − t)
18: Take ∆W,∆Z ∼ N(0, h)
19: else
20: Pop the top of S as L
21: Update h := L1, ∆W := L2, ∆Z := L3

22: end if
23: end if
24: end while
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this algorithm is shown to be more efficient.

However, RSwM2 is not correct. The problem comes from “re-rejections”. If the algorithm

pops a more than one item off the stack and then rejects the step, these elements are lost.

Thus when it tries to re-step with the proposed qh, it does not properly recreate our Brownian

path since we will have lost some of the future information. In section 3.6 we see that this

case is rare enough that the results are usually statistically correct, though we wish to extend

this algorithm to a truly correct algorithm.

To ensure correctness we need to save the popped elements until an accepted step passes

the point which they encode. The idea is to use a deque where future information is added

to the back and re-popped information is added to the front. However, whenever a step is

accepted, we will wish to drop all of the elements added from the front. This means that

the most natural algorithm would be similar to the common decomposition of the deque

into two stacks. Instead of utilizing a deque directly, we will use one stack S1 for the future

information and another S2 for the re-popped information. Whenever a value is popped

from the future information stack S1, it will be placed into S2. If the step is rejected, those

values will be popped back over to S1, and if the step is accepted they will be discarded.

The algorithm RSwM3 is explained in more detail by example. Assume we reject a timestep

which uses the first n elements from the stack, and that the new proposed timestep qh uses

what would have only been the first k. The fix would be to add the last n − k − 1 tuples

of future information back to the stack (in reverse time order), solve the Brownian bridge

problem with the k and k + 1st items straddling the proposed step qh, and add the future

information from qh to the k + 1st items to the stack. The algorithm should then only

“discard” items after they have been passed by a successful step.

If we saved the n tuples as they popped from the stack S1 into a different stack S2, then

we can think of S2 as the stack which contains all future information that is currently being
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used in a proposed timestep. Since this will add the elements to S2 in chronological order,

the elements of stack S2 will pop out in reverse time order. Thus after rejecting the timestep,

the n−k elements we wish to save will be the first n−k elements of the stack S2. Therefore,

after a rejection, the algorithm should pop off the first n − k − 1 elements of S2, re-add

them to S1, and pop one more element to solve a Brownian Bridge problem. Then after any

successful timestep, the algorithm can simply discard all of the information in S2.

A psudocode version of the algorithm is given as Algorithm 2. The resulting algorithm,

RSwM3, is an extension to RSwM2 which keeps the property of always using the estimated

“best timestep” qh but is now able to ensure correctness.

3.6 Numerical verification of correctness and efficiency

In order to evaluate the efficiency of the adaptive methods, we implemented ESRK1 with

the three rejection sampling with memory algorithms RSwM1, RSwM2, and RSwM3. We

chose the three example equations Equation 3.31, Equation 3.33, and Equation 3.35 defined

in subsection 3.10.5.

These three examples cover a variety of behaviors seen in SODEs. Example 1 is a linear

stochastic differential equation. Since α > 0, the solution tends to infinity and thus presents

a case where the algorithms must decrease the timesteps in order to ensure the accuracy.

Example 2 has a periodic solution and will be used to show that the error of our method

decreases even in cases where the process is stable. Example 3 will be used to test the

algorithm’s ability to handle additive noise. For all of the tests, the relative tolerance was

set to 0 and the absolute tolerance was adjusted in order to test various algorithm behaviors.
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Algorithm 2 RSwM3

1: Set the values ε, hmax, T
2: Set t = 0, W = 0, Z = 0, X = X0

3: Take an initial h, ∆Z,∆W ∼ N(0, h)
4: while t < T do
5: Attempt a step with h, ∆W , ∆Z to calculate Xtemp according to (2)
6: Calculate E according to (9)
7: Update q using (21)
8: if (q < 1) then . % Reject the Step
9: Set hs = 0, ∆W = 0, ∆Z = 0

10: while S2 is not empty do
11: Pop the top of S2 as L
12: if hs + L1 < (1− q)h then
13: Update hs := hs + L1

14: Update ∆Wtmp := ∆Wtmp + L2, ∆Ztmp := ∆Ztmp + L3

15: else
16: Push L onto S2 and break
17: end if
18: end while
19: Set hK = h− hs, K2 = ∆W −∆Wtmp, K3 = ∆Z −∆Ztmp

20: Set qK = qh
hK

21: Take ∆W̃ ∼ N(qKK2, (1− qK)qKL1)
22: Take ∆Z̃ ∼ N(qKK3, (1− qK)qKL1)
23: Pop ((1− qK)hK ,K2 −∆W̃ ,K3 −∆Z̃) onto S1

24: Pop (qKL1,∆W̃ ,∆Z̃) onto S2

25: Update ∆W = ∆W̃ , ∆Z = ∆Z̃, h = qh
26: else . % Accept the Step
27: Update t := t+ h, W := W + ∆W , Z := Z + ∆Z, X = X +Xtemp

28: Empty S2

29: Update c := min(hmax, qh), h := min(c, T − t)
30: Set hs = 0, ∆W = 0, ∆Z = 0
31: while S is not empty do
32: Pop the top of S1 as L
33: if (hs + L1 < h) then . % Temporary not far enough
34: Update hs := hs + L1, ∆W := ∆W + L2, ∆Z := ∆Z + L3

35: Push a copy of L onto S2

36: else . % Final part of step from stack
37: Set qtmp = h−hs

L1

38: Let ∆W̃ ∼ N(qtmpL2, (1− qtmp)qtmpL1)

39: Let ∆Z̃ ∼ N(qtmpL3, (1− qtmp)qtmpL1)

40: Push ((1− qtmp)L1, L2 −∆W̃ , L3 −∆Z̃) onto S1

41: Update ∆W := ∆W + ∆W̃ , ∆Z := ∆Z + ∆Z̃, hs := hs + qtmpL1

42: end if
43: end while

. % Update for last portion to step. Note zero if final part is from stack
44: if (h− hs is not zero) then
45: Let ηW , ηZ ∼ N(0, h− hs)
46: Update ∆W = ∆W + ηW , ∆Z = ∆Z + ηZ
47: Push (h− hs, ηW , ηZ) onto S2

48: end if
49: end if
50: end while
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3.6.1 Correctness

We first checked for the correctness of the algorithm. In order to study the correctness of

each implementation, we ran RSwM1, RSwM2, and RSwM3 200 times on Equation 3.31, and

tested the distribution of W2. For Brownian motion, Wt ∼ N(0, t) and thus W2√
2
∼ N(0, 1)

should be a standard normal random variable. In order to test that our rejection sampling

algorithms did not change the distributions for the underlying Brownian processes, we used

the Kolmogorov-Smirnov Test. The 1-Sample Kolmogorov-Smirnov test is a standard non-

parametric test of distributions which is known for being very sensitive and easily rejecting

the null-hypothesis of standard normality [35]. A plot of the p-values for the Kolmogorov-

Smirnov test on 20 trials tolerances of 10−1, 10−3, 10−5 is shown in Figure 3.2. We note

that due to multiple sampling issues, one would expect 1/20 tests to fail at a p-value of .05.

Indeed, for the RSwM1 and RSwM3 algorithms our results have around the expected number

of failures. We see that RSwM2 has 6 failures, which shows that it also generally passes the

tests even though there is no guarantee for its correctness. However, it is clear that the issue

magnifies at lower tolerances. These results indicate that the normalized Brownian process’s

distribution was standard normal and thus were not significantly altered by the RSwM

sampling algorithms. Therefore RSwM algorithms generate statistically correct results.

As an additional verification, we included a Quantile-Quantile Plot (QQplot) of W2√
2

against

10,000 standard normal random variables generated via MATLAB’s randn command. The

simulation results are shown in Figure 3.3. The estimated quantiles for W2√
2

as generated by

RSwM 1 through 3 line up on the x = y axis, indicating that W2√
2

follows a standard normal

distribution. To test for edge effects, we ran the same calculation with higher/lower numbers

of paths. This shows that as the number of paths increases, the number of quantiles which

align also increases. These results show that although we cannot guarantee the correctness

of the RSwM2, its sample statistics cannot be distinguished from the correct algorithms.

This indicates that the edge case that the algorithm omits is a rare occurrence.
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Figure 3.2: Adaptive algorithm Kolmogorov-Smirnov Tests. Equation 3.31 was solved
from t = 0 to t = 2. Scatter plots of the p-values from Kolmogorov-Smirnov tests against
the normal distribution. At the end of each run, a Kolmogorov-Smirnov test was performed
on the values at end of the Brownian path for 200 simulations. The x-axis is the absolute
tolerance (with relative tolerance set to zero) and the y-axis is the p-value of the Kolmogorov
Smirnov tests.

3.6.2 Accuracy and efficiency

Next we tested the accuracy and efficiency of the three algorithms RSwM1, RSwM2, RSwM3

on the three example SDEs Equation 3.31, Equation 3.33, and Equation 3.35. The results,

as summarized in Figure 3.4 and Figure 3.5, show that in almost every case, the improved

algorithms RSwM2 and RSwM3 tend to have lower runtimes and better convergence of the

error at the final timepoint. Notice that the RSwM2 and RSwM3 algorithms tend to have

error convergences much closer to log-linear, whereas RSwM1 tends to flatten out at lower

tolerances. Also notice how in all cases, the RSwM2 and RSwM3 algorithms have comparable

runtimes which are much smaller than those of RSwM1. This suggests that, while RSwM1

is vastly simpler to implement, the more complex RSwM2 and RSwM3 are more efficient.
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Figure 3.3: Adaptive algorithm correctness checks. QQplots of the distribution of the
Brownian path at the end time T = 2 over 10,000 paths. The x-axis is the quantiles of the
standard normal distribution while the y-axis is the estimated quantiles for the distribution
of W2/

√
2. Each row is for a example equation for Examples 1-3 respectively, and each

column is for the algorithm RSwM1-3 respectively. ε = 10−4. The red dashed line represents
x = y, meaning the quantiles of a 10,000 standard normal random variables equate with
the quantiles of the sample. The blue circles represent the quantile estimates for W (2)/

√
2

which should be distributed as a standard normal.

3.6.3 Summary of numerical correctness and efficiency

The results of the numerical experiments can be summarized as follows. From subsec-

tion 3.6.1 we see that by simulating Equation 3.31 Equation 3.33, and Equation 3.35 by

ESRK1 with the time-stepping algorithms RSwM1, RSwM2, and RSwM3, the resulting

Brownain paths have the appropriate sample statistics. This indicates that in all of these
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Figure 3.4: Adaptive Algorithm Error Comparison on Equation 3.31, Equa-
tion 3.33, and Equation 3.35. Comparison of the rejection sampling with memory
algorithms on examples 1-3. Along the x-axis is ε which is the user chosen local error
tolerance. The y-axis is the average l2 error along the path. These values are taken as the
mean for 100 runs. Both axes are log-scaled.

cases the algorithms produce the correct results. Notably, this shows that RSwM2, whose

correctness we could not guarantee from its derivation, generates results which are can be

statistically correct at low tolerances. Given that the Kolmogorov-Smirnov test is a stringent

test for normality, this indicates that the edge case not appropriately dealt with in RSwM2

is a rare enough occurrence that the algorithm can likely be statistically indistinguishable

from being correct in non demanding circumstances.

From subsection 3.6.2 we see that the RSwM2 and RSwM3 algorithms are the most efficient

on the test equations Equation 3.31 and Equation 3.33 in terms of runtime and accuracy.

Together, the results show that the three algorithms are correct and that there exists a

tradeoff between them. The simplest algorithm to implement is RSwM1, but on some classes

of problems it can perform slower than the other algorithms. RSwM2 is by a slight margin
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Figure 3.5: Adaptive Algorithm Timing Comparison. Comparison of the rejection
sampling with memory algorithms. Along the x-axis is ε which is the user chosen local
error tolerance. In the y-axis time is plotted (in seconds). The values are the elapsed time
for a 1000 Both axes are log-scaled.
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the fastest algorithm but is only psudo-correct. RSwM3 is an extension of RSwM2 which,

at the cost of adding correctness, adds complexity in the implementation and runs with only

slightly decreased efficiency.

3.7 Numerical experiments with systems of SDEs

Next we wished to show the applicability of the adaptive algorithms for solving large systems

of nonlinear equations. These examples better match user cases, though no analytical solu-

tion exists for the error analysis. Instead, we wish to show how the error tolerance parameters

allow for specifying the granularity of the numerical approximation, and demonstrate that

this algorithm can be used to solve problem which would be computationally intractable

without the adaptivity.

3.7.1 Control of numerical granularity

To test the ability for the error tolerance parameters to control the granularity of the solu-

tion, the ESRK1 algorithm with RSwM3 was used to solve the well-known Lorenz system

with additive noise. The parameters were chosen so the deterministic solution is chaotic

and generates the well-known Lorenz attractor. The relative tolerance was fixed at zero

and equation was solved at a variety of absolute tolerances. The solution was plotted as

Figure 3.6. One can see that as the tolerance is decreased, the solution becomes more exact.

Thus the RSwM tolerance parameters allow the users to adjust the trade-off between the

exactness of the numerical approximation and computational time on nonlinear systems of

equations.
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Figure 3.6: Solution to the Lorenz system Equation 3.39. Solved on t ∈ [0, 10] with
additive noise and parameters α = 10, ρ = 28, σ = 3, and β = 8/3 at varying tolerances.
The system was solved using ESRK+RSwM3 with the relative tolerance fixed at zero and
varying absolute tolerances.

3.7.2 Large nonlinear system on cell differentiation

Next we demonstrated the ability of the ESRK+RSwM algorithms to allow for solving large

systems of nonlinear equations. As a test, we chose a model of stochastic cell differentiation

in the epithelial-to-mesenchymal transitions of somatic cells. The system of 19 equations is

given in subsection 3.10.6. This system serves as an ideal test case for adaptive algorithms

since the stochastic switches give large intervals of relative stability with small intervals of

extreme stiffness. Thus the ability to be able to automatically adjust the timestep depend-

ing on whether a stochastic transition is occurring is fundamental for making the system

computationally tractable. In Figure 3.7 we show the solution on a time interval from 0

to 500 for two indicators of the cell states, Ecad and Vim, and the corresponding stepsizes

the ESRK+RSwM algorithm used to solve the equations throughout the simulation. This

figure shows that the ESRK+RSwM algorithm is able to reproduce the scientific results, and

that the adaptive algorithm is able to adjust the timestep between 10−4 and 10−11 to ensure
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accuracy and stability.

Unlike the deterministic case, whether a given solution is numerically stable for a given

stepsize is dependent on the random Brownian trajectory and thus one cannot as easily

classify the methods as stable for a given stepsize on a given problem. Instead, we define a

method as sufficiently stable at a stepsize h if the method has no unstable trajectories in a

sufficiently large ensemble. The reason for this choice is because it gives a measure for how

fast a Monte Carlo simulation can correctly be computed. The condition that no trajectories

can fail is because if the noisiest (and thus most unstable) trajectories are always discarded

from the ensemble, the resulting Monte Carlo solution would be biased. This is a major

concern for many models in practice. For example, the chosen epithelial-to-mesenchymal

transition model has the most numerical instability during the stochastic switching events,

but these events are the quality of interest and thus must be accurate in the resulting

simulations.

Therefore, to test how efficiently the algorithms could produce statistically correct results

on a stiff system, we solved cell model from subsection 3.10.6 10,000 times via the Euler-

Maruyama, Runge-Kutta Milstein (RK-Mil) [63], and Rößler SRI methods using increments

of h = 2−i and calculated the number of runs which diverged (failed) and the elapsed time

for the 10,000 runs (note that the algorithm exited and denoted a run as diverged when

encountering a NaN). These results are compared to the adaptive algorithm in Table 3.2.

The adaptive algorithm solved 10,000 simulations with no failures in 187 seconds. The

comparable value for fixed timestep methods, the shortest time for which there were no

failures, was the Euler-Maruyama algorithm with h = 2−20 which took 2286 seconds. This

shows that the adaptive algorithm performed 12.28x as fast as the fastest fixed time-stepping

algorithm, indicating that the advantages of adaptive time-stepping far out-weighted the

overheads of the adaptive algorithm. Note that this testing method also far underestimates

the advantages of the adaptive method: from Figure 3.7 we see that the most stiff portions
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Figure 3.7: Stochastic cell differentiation model solutions. (A) Timeseries of the
concentration of [Ecad]. The solution is plotted once every 100 accepted steps due to memory
limitations. (B) Timeseries of the concentration of [V im]. The solution is plotted once every
100 accepted steps due to memory limitations. (C) Accepted h over time. The h values were
taken every 100 accepted steps due to memory limitations. (D) Elapsed time of the Euler-
Maruyama and ESRK+RSwM3 algorithms on the stochastic cell model. Each algorithm was
used to solve the model on t ∈ [0, 1] 10,000 times. The elapsed time for the fixed timestep
methods for given h’s are shown as the filled lines, while the dashed line is the elapsed time
for the adaptive method. The red circles denote the minimal h and times for which the
method did not show numerical instability in the ensemble.

are during the middle of stochastic transition events which would not happen during 1 second

simulations. However, testing multiple solutions of the non-adaptive algorithms at such a low

h in order to converge on the full t ∈ [0, 500] was not computationally feasible. Indeed, one

large advantage of the adaptive method is that the tests to determine the appropriate h are

computationally expensive themselves. Also note that the tolerance for the adaptivity had to

be set low in order to ensure stability. The advantage of the adaptive method could be made

even larger by using a numerical method with a larger stability region. The application of

the RSwM algorithms to more stable solvers for stiff systems and higher weak order solvers

is a subject for future research.
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Euler-Maruyama Runge-Kutta Milstein Rößler SRI
∆t Fails (/10,000) Time (s) Fails (/10,000) Time (s) Fails (/10,000) Time (s)

2−16 137 133.35 131 211.92 78 609.27
2−17 39 269.09 26 428.28 17 1244.06
2−18 3 580.14 6 861.01 0 2491.37
2−19 1 1138.41 1 1727.91 0 4932.70
2−20 0 2286.35 0 3439.90 0 9827.16
2−21 0 4562.20 0 6891.35 0 19564.16

Table 3.2: Fixed timestep method fails and runtimes. The fixed timestep algorithms
and ESRK+RSwM3 algorithms were used to solve the stochastic cell model on t ∈ [0, 1]
10,000 times. Failures were detected by checking if the solution contained any NaN values.
During a run, if any NaNs were detected, the solver would instantly end the simulations
and declare a failure. The runtime for the adaptive algorithm (with no failures) was 186.81
seconds.

3.8 Implementation issues

For deploying these algorithms, there are a few extra implementation issues that should be

addressed. First of all, the choice of q is due to calculations for the optimal stepsize for

deterministic equations [21] and thus does not directly apply to stochastic systems. We

instead use the deterministic q as a guideline. We heuristically modify it by noting that due

to the extra overhead of the stack implementations, it may be wise to over-accelerate the

stepsize changes and thus choose a higher power. In practice, we found

q =

(
1

γe

)2

, (3.23)

to be an efficient choice. Future research should investigate this issue in more detail.

In addition, it is wise in practice to ensure that q takes acceptable values [40]. We found

that the following tends to work well in practice:

q = min(qmax,max(q, qmin)), (3.24)

where qmax and qmin are parameters set by the user. While for deterministic systems it’s
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Example 1 Example 2 Example 3 Cell Model
qmax Time (s) Error Time (s) Error Time (s) Error Time (s)

1 + 2−5 37.00 2.57e-8 60.87 2.27e-7 67.71 3.42e-9 229.83
1 + 2−4 34.73 2.82e-8 32.40 3.10e-7 66.68 3.43e-9 196.36
1 + 2−3 49.14 3.14e-8 132.33 8.85e-7 65.94 3.44e-9 186.81
1 + 2−2 39.33 3.59e-8 33.90 1.73e-6 66.33 3.44e-9 205.57
1 + 2−1 38.22 3.82e-8 159.94 2.58e-6 68.16 3.44e-9 249.77
1 + 20 82.76 4.41e-8 34.41 3.58e-6 568.22 3.44e-9 337.99
1 + 21 68.16 9.63e-8 33.98 6.06e-6 87.50 3.22e-9 418.78
1 + 22 48.23 1.01e-7 33.97 9.74e-6 69.78 3.44e-9 571.59

Table 3.3: qmax determination tests. Equation 3.31, Equation 3.33, and Equation 3.35
were solved using the ESRK+RSwM3 algorithm with a relative tolerance of 0 and absolute
tolerance of 2−14. The elapsed time to solve a Monte Carlo simulation of 100,000 simula-
tions to T = 1 was saved and the mean error at T = 1 was calculated. The final column
shows timing results for using ESRK+RSwM3 on the stochastic cell model from subsec-
tion 3.10.6 solved with the same tolerance settings as in subsection 3.7.2 to solve a Monte
Carlo simulation of 10,000 simulations.

suggested that qmax is between 4 and 10 [40], we note that our algorithm has a higher

overhead than in the deterministic case, and thus further restricting q to reduce the number

of rejections had the potential to increase the efficiency to of the algorithm. This was tested

in Table 3.3 where we found a suitable value qmax = 1.125 which we used as the default

throughout this paper (except in subsection 3.6.2 where qmax = 10 was used in order to

better evaluate the ability to accurately unravel the stack). Further research should look

into the usage of PI-controlled stepsize choices to further reduce the number of rejections.

Also, one should note that elements entering the stack should be sanitized in order to elim-

inate issues due to round-off error. In some cases the mathematical algorithm may specify

very small intervals to go on the stack. This is particularly the case when q,qtmp, or qK are

close to 1 when the step size is very small. When this item from the stack is eventually used

to calculate qtmp, there is the possibility of overflow which can lead to NaNs and stall the

algorithm. To avoid this issue, it is wise to discard any interval smaller than some size. We

found 10−14 to be a good cutoff.

Lastly, it is common for many adaptive implementations to give a heuristic determination
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of an initial stepsize. Using the simple approximation that with 99% probability a N(0, σ)

random variable is in the interval (−3
√
σ, 3
√
σ), we adapt the scheme from [40] to take in

account this a priori estimate, adjust due to the symmetry of the normal distribution, assume

the next error power is 1
2

larger, and arrive at the following 3.

Algorithm 3 Initial h Determination

1: Let d0 = ‖X0‖
2: Calculate f0 = f(X0, t) and σ0 = 3g(X0, t)
3: Let d1 = ‖max(|f0 + σ0|, |f0 − σ0|)‖
4: if d0 < 10−5 or d1 < 10−5 then
5: Let h0 = 10−6

6: else
7: Let h0 = 0.01(d0/d1)
8: end if
9: Calculate an Euler step: X1 = X0 + h0f0

10: Calculate new estimates: f1 = f(X1, t) and σ0 = 3g(X1, t)
11: Determine σM1 = max(|σ0 + σ1|), |σ0 − σ1|)
12: Let d2 = ‖max(|f1 − f0 + σM1 |, |f1 − f0 − σM1 |)‖/h0

13: if max(d1, d2) < 10−15 then
14: Let h1 = max(10−6, 10−3h0)
15: else
16: Let h1 = 10−(2+log10(max(d1,d2))/(order+0.5)

17: end if
18: Let h = min(100h0, h1)

Note that ‖ · ‖ is the norm as defined in Equation 3.19 with Equation 3.20. In practice

we found this to be a conservative estimate which would “converge” to some approximate

stepsize in < 10 steps, making it useful in practice.

3.9 Conclusion and discussion

In this paper we have developed a class of adaptive time-stepping methods for solving stochas-

tic differential equations. The approach is based on a natural creation of high Strong-order

embedded algorithms (with implicit error calculations) and generalized rejection sampling

techniques. These algorithms are highly efficient: the error estimators require no extra
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evaluations of the drift and diffusion terms, while the rejection sampling with memory al-

gorithms are O(1) for rejecting and interpolating the Brownian motion, with RSwM2 and

RSwM3 allowing for an unconstrained choice of timestep. Through numerical testing, we

demonstrated the algorithm’s ability to adapt the error to the user-chosen parameter ε, the

prescribed local error threshold. We also have shown the efficiency of the algorithms and

their ability to scale to efficiently solve large stiff systems of equations.

Our results show that rejection sampling with memory can be used to speed up the solution

of large systems of equations, particularly those coming from biological models. Many of

these models are created to show interesting behavior which is dependent on the stochas-

ticity, such as stochastic switching, but can be difficult to simulate due to the stiffness

associated with these properties. Using such an adaptive algorithm allows the simulation to

focus its computational time to accurately capture the rare but important events. Further

research into the application of these methods with stiff solvers could further improve the ef-

fectiveness. Also, the adaptive methods reduce the practical amount of time to conduct such

experiments since one major time-consuming activity can be finding a small enough stepsize

so that large Monte Carlo simulations can run without any path diverging and biasing the

result. Further research should look into using rejection sampling with memory combined

with higher order weak convergence methods to improve the computational efficiency when

investigating moment properties from Monte Carlo experiments.

One of the unique features of the adaptive methods is that the embedded algorithm does

not require an explicit construction of the order 1.0 method. It also does not have any extra

requirements on the order 1.5 algorithm. This allows one to use any order 1.5 Rößler SRK

algorithm, and thus as new coefficients for these algorithms are found to have “better” prop-

erties, such as improved stability or lower highest-order truncation error, our construction

shows the existence of embedded versions for adaptive algorithms by default.

There are many implementation details that can be examined in order to more efficiency
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utilize these algorithms. For example, in the algorithm RSwM3, one could simulate discard-

ing the second stack S2 by explicitly controlling the pointer on an array and thus not have

to deallocate memory every accepted timestep. Further research can investigate such imple-

mentation details for even more computationally efficient versions. Note that the calculation

of the tuple for the stack requires only 3 floating point calculations and the generation of

the new random numbers requires only 3x2 floating point calculations. Thus in total the

algorithm requires only ≈ 10 floating point operations per rejection. Therefore the adaptive

time-stepping algorithms require a minimal number of floating point operations, making

them have a theoretically small impact on the computational effort.

The time-stepping method can be easily extended to other types of equations. Notice that

as stated this algorithm controls the strong or pathwise error. There are many cases where

one may be interested in the weak or average error of a Monte Carlo simulation. Our

algorithm can be used to create a weak error estimate as well. To do so, instead of solving

N independent size n systems, combine the systems into an equivalent system of size nN .

Notice that by the definition of e, the error estimate obtained by this algorithm will be an

average error over all simulations, and thus give a weak estimate. Using this weak estimate

along with the RSwM algorithms on high weak order methods could be a path of future

research.

At its core, the time-stepping algorithms are methods to sub-sample a continuous-time

stochastic process as needed and effectively reproduce the sample properties at every point.

Thus for any continuous-time martingale which defines a type of differential equation, this

method can be applied by simply knowing the sample statistics of a bridge-type problem.

Thus no part of the derivation required that the underlying process was an Ito process.

Therefore, if one uses an embedded pair of methods for Stratonovich SODEs, the adaptive

time-stepping algorithms still apply. Also, this includes problems like stochastic partial dif-

ferential equations (SPDEs). For example, for SPDEs with space-time white noise, if one
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imposes a space-discretization then one arrives at a system of SODEs for which the Brownian

bridge statistics are the same as any standard system of SODEs and thus our methods apply.

If one needs to adapt the spatial discretization, then this also follows the sample properties

of the Brownian bridge and thus one can upsample the process along space until the de-

sired error is met. For a Hilbert space valued Brownian motion like a Q-Wiener process, a

Brownian bridge-like problem will need to be solved but the same general algorithm holds.

Notice that since the stepping algorithms only require the values on the stack, the RSwM

form of adaptivity allows one to solve an equation while only storing the current values and

the Brownian stack values. This is important for solving large systems of SPDEs which

become memory-bound if one attempts to store the solution of the Brownain path at every

timepoint. During our study of the implementation we saw the stack reaching maximum

sizes of 20, and thus only used a modest amount of memory. For problems which are more

memory bound, one can effectively decrease the maximum stack size by changing around

some of the parameters, for example lowering the q exponent or decreasing qmax.

This method also provides an effective way to develop adaptive algorithms for variable-rate

Markovian switching and jumps [76]. These problems are usually difficult to numerically

simulate because one must effectively estimate the times for switching or else incur a large

penalty due to the discontinuity. One can normally estimate whether a jump has occurred

in an interval to a certain degree of accuracy, and using our adaptive algorithm one can

hone in on the time at which the jump occurred, effectively solve the continuous problem to

that time, and apply the jump. Therefore, the embedded time-stepping method along with

the new rejection sampling algorithm developed in this work provides a general framework

which one could build on for adaptive algorithms in solving many other stochastic problems.

Lastly, we wish to note that implementations of these algorithms are being released as part

of a package DifferentialEquations.jl. DifferentialEquations.jl is a Julia library for solving

ODEs, SDEs, DDEs, DAEs, and certain classes of PDEs and SPDEs, using efficient solvers in
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an easy-to-use scripting language. This package, developed by the authors, is freely available

and includes additional functionalities such as parallelizing Monte Carlo experiments using

the discussed methods on HPCs.

3.10 Extended Information

3.10.1 Order conditions for Rößler-SRI methods

The coefficients
(
A(i), B(i), β(i), α

)
must satisfy the following order conditions to achieve order

.5:

1. αT e = 1

2. β(1)T e = 1

3. β(2)T e = 0

4. β(3)T e = 0

5. β(4)T e = 0

additionally, for order 1:

1. β(1)TB(1)e = 0

2. β(2)TB(1)e = 1

3. β(3)TB(1)e = 0

4. β(4)TB(1)e = 0

and lastly for order 1.5:

1. αTA(0)e = 1
2

2. αTB(0)e = 1

3. αT
(
B(0)e

)2
= 3

2

4. β(1)TA(1)e = 1

5. β(2)TA(1)e = 0

6. β(3)TA(1)e = −1

7. β(4)TA(1)e = 0

8. β(1)T
(
B(1)e

)2
= 1

9. β(2)T
(
B(1)e

)2
= 0

10. β(3)T
(
B(1)e

)2
= −1
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11. β(4)T
(
B(1)e

)2
= 2

12. β(1)T
(
B(1)

(
B(1)e

))
= 0

13. β(2)T
(
B(1)

(
B(1)e

))
= 0

14. β(3)T
(
B(1)

(
B(1)e

))
= 0

15. β(4)T
(
B(1)

(
B(1)e

))
= 1

16.
1

2
β(1)T

(
A(1)

(
B(0)e

))
+

1

3
β(3)T

(
A(1)

(
B(0)e

))
= 0

where f, g ∈ C1,2(I × Rd,Rd), c(i) = A(i)e, e = (1, 1, 1, 1)T [95].

3.10.2 Order conditions for Rößler-SRA methods

The coefficients(
A(i), B(i), β(i), α

)
must satisfy the conditions for order 1:

1. αT e = 1 2. β(1)T e = 1 3. β(2)T e = 0

and the additional conditions for order 1.5:

1. αTB(0)e = 1

2. αTA(0)e = 1
2

3. αT
(
B(0)e

)2
= 3

2

4. β(1)T c(1) = 1

5. β(2)T c(1) = −1

where c(0) = A(0)e with f ∈ C1,3(I × Rd,Rd) and g ∈ C1(I,Rd) [95]. From these conditions

he proposed the following strong order 1.5 scheme found in Table 3.4 known as SRA1.
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c(0) A(0) B(0)

αT β(1)T β(2)T

(a) Legend Table

0

3
4

3
4

1
2

1
3

2
3 1 0 -1 1

(b) Coefficients Table

Table 3.4: SRA1. Table (a) shows the legend for how the numbers in in Table (b) correspond
to the coefficient arrays/matrices c(i), A(i), B(i), α, and β(i). Note that the matrices A(i) and
B(i) are lower triangular since the method is explicit.

3.10.3 Wiktorsson iterated stochastic integral approximations

In the Ito expansions for the derivation of SRK methods of order greater than 1.0, iterated

stochastic integrals appear. We denote these as:

I(1) =

∫ tn+1

tn

dWs, (3.25)

I(1,1) =

∫ tn+1

tn

∫ s

tn

dWudWs, (3.26)

I(1,1,...,1k) =

∫ tn+1

tn

∫
. . .

∫ s

tn

dWu1 . . . dWs. (3.27)

Note that for our purposes we are using a single Brownian path, though this extends to

multiple Ito dimensions. For a timestep h = tn+1− tn, the approximation due to Wiktorsson

[127, 95] is as follows:
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I(1,1) =
1

2
(I2

(1) − h), (3.28)

I(1,1,1) =
1

6
(I3

(1) − 3hI(1)), (3.29)

I(1,0) =
1

2
h

(
I(1) +

1√
3
ζ

)
. (3.30)

I(1) is one timestep of the Brownian path Wt, which is referred to as ∆W ∼ N(0, h). ζ ∼

N(0, h) is a standard normal random variable which is independent of ∆W . If we collect all

of the ζ from [0, T ], then its cumulative sum is itself an approximation to a Brownian path

which we denote Zt with discrete steps ∆Z = ζ. Zt is independent of Wt and is the second

Brownian path considered in the RSwM algorithms.
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3.10.4 RSwM2 algorithm specification

The algorithm for RSwM2 is specified as Algorithm 4.
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Algorithm 4 RSwM2

1: Set the values ε, hmax, T
2: Set t = 0, W = 0, Z = 0, X = X0

3: Take an initial h, ∆Z,∆W ∼ N(0, h)
4: while t < T do
5: Attempt a step with h, ∆W , ∆Z to calculate Xtemp according to (2)
6: Calculate E according to (9)
7: Update q using (21)
8: if (q < 1) then . % Reject the Step
9: Take ∆W̃ ∼ N (q∆W, (1− q)qh) and ∆Z̃ ∼ N (q∆Z, (1− q)qh)

10: Calculate ∆W = ∆W −∆W̃ and ∆Z = ∆Z −∆Z̃
11: Push

(
(1− q)h,∆W,∆Z

)
into stack S

12: Update h := qh
13: Update ∆W := ∆W̃ , ∆Z := ∆Z̃
14: else . % Accept the Step
15: Update t := t+ h, W := W + ∆W , Z := Z + ∆Z, X = X +Xtemp

16: Update c := min(hmax, qh), h := min(c, T − tn)
17: Set hs = 0, ∆W = 0, ∆Z = 0
18: while S is not empty do
19: Pop the top of S as L
20: if (hs + L1 < h) then . % Temporary not far enough
21: Update hs := hs + L1, ∆W := ∆W + L2, ∆Z := ∆Z + L3

22: else . % Final part of step from stack
23: Set qtmp = h−hs

L1

24: Let ∆W̃ ∼ N(qtmpL2, (1− qtmp)qtmpL1)
25: Let ∆Z̃ ∼ N(qtmpL3, (1− qtmp)qtmpL1)
26: Push ((1− qtmp)L1, L2 −∆W̃ , L3 −∆Z̃) onto S
27: Update ∆W := ∆W + ∆W̃ , ∆Z := ∆Z̃ , hs := hs + qtmpL1

28: end if
29: end while

. % Update for last portion to step. Note zero if final part is from stack
30: if (h− hs is not zero) then
31: Let ηW , ηZ ∼ N(0, h− hs)
32: Update ∆W = ∆W + ηW , ∆Z = ∆Z + ηZ
33: end if
34: end if
35: end while
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3.10.5 Example equations

The three example equations are:

Example 1.

dXt = αXtdt+ βXtdWt, X0 =
1

2
, (3.31)

where α = 1
10

and β = 1
20

. Actual Solution:

Xt = X0e

(
β−α

2

2

)
t+αWt . (3.32)

Example 2.

dXt = −
(

1

10

)2

sin (Xt) cos3 (Xt) dt+
1

10
cos2 (Xt) dWt, X0 =

1

2
, (3.33)

Actual Solution:

Xt = arctan

(
1

10
Wt + tan (X0)

)
. (3.34)

Example 3.

dXt =

(
β√

1 + t
− 1

2 (1 + t)
Xt

)
dt+

αβ√
1 + t

dWt, X0 =
1

2
, (3.35)
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where α = 1
10

and β = 1
20

. Actual Solution:

Xt =
1√

1 + t
X0 +

β√
1 + t

(t+ αWt) . (3.36)

Example 4.

dXt = α(Yt −Xt) + σdWt, (3.37)

dYt = Xt(ρ− Zt)− Yt + σdWt, (3.38)

dZt = XtYt − βZt + σdWt, (3.39)

where X0 = Y0 = Z0 = 0, α = 10, ρ = 28, σ = 3, and β = 8/3.

3.10.6 Stochastic cell differentiation model

The stochastic cell differentiation model is given by the following system of SDEs which cor-

respond to a chemical reaction network modeled via mass-action kinetics with Hill functions

for the feedbacks. This model was introduced in [48] to model stochastic transitions between

Epithelial and Mesenchymal states.

A = (([TGF ] + [TGF0]) /J0snail)
n0snail + ([OV OL2] /J1snail)

n1snail

d [snail1]t
dt

= k0snail + ksnail
(([TGF ] + [TGF0]) /J0snail)

n0snail

(1 +A) (1 + [SNAIL] /J2snail)

− kdsnail ([snail1]− [SR])− kdSR [SR]
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d [SNAIL]

dt
= kSNAIL ([snail1]− [SR])− kdSNAIL [SNAIL]

d [miR34]

dt
= kO34 +

k34

1 + ([SNAIL] /J134)
n134 + ([ZEB] /J234)

n234

− kd34 ([miR34]− [SR])− (1− λSR) kdSR [SR]

d [SR]

dt
= Tk (KSR ([snail1]− [SR]) ([miR34]− [SR])− [SR])

d [zeb]

dt
= k0zeb + kzeb

([SNAIL] /J1zeb)
n1zeb

1 + ([SNAIL] /J1zeb)
n1zeb + ([OV OL2] /J2zeb)

n2zeb

− kdzeb

(
[zeb]−

5∑
i=1

Ci
5 [ZR]

)
−

5∑
i=1

kdZRiC
i
5 [ZRi]

d [ZEB]

dt
= kZEB

(
[zeb]−

5∑
i=1

Ci
5 [ZRi]

)
− kdZEB [ZEB]

d [miR200]

dt
= k0200 +

k200

1 + ([SNAIL] /J1200)
n1200 + ([ZEB] /J2200)

n2200

− kd200

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)

−
5∑

i=1

(1− λi) kdZRiC
i
5i [ZRi]− (1− λTR) kdTR [TR]

d [ZR1]

dt
= Tk

(
K1

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
(

[zeb]−
5∑

i=1

Ci
5 [ZRi]

)
− [ZR1]

)
d [ZR2]

dt
= Tk

(
K2

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR2]

)
d [ZR3]

dt
= Tk

(
K3

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR3]

)
d [ZR4]

dt
= Tk

(
K4

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR4]

)
d [ZR5]

dt
= Tk

(
K5

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR5]

)
d [tgf ]

dt
= ktgf − kdtgf ([tgf ]− [TR])− kdTR [TR]

d [TGF ]

dt
= k0TGF + kTGF ([tgf ]− [TR])− kdTGF [TGF ]

d [TR]

dt
= Tk

(
KTR

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
([tgf ]− [TR])− [TR]

)
d [Ecad]

dt
= k0E +

kE1

1 + ([SNAIL] /J1E)
n1E

+
kE2

1 + ([ZEB] /J2E)
n2E
− kdE [Ecad]

B = kV 1
([SNAIL] /J1V )

n1V

1 + ([SNAIL] /J1V )
n1V

+ kV 2
([ZEB] /J2V )

n2V

1 + ([ZEB] /J2V )
n2V
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Parameter Value Parameter Value Parameter Value Parameter Value

J1200 3 J1E 0.1 K2 1 k0O 0.35
J2200 0.2 J2E 0.3 K3 1 kO200 0.0002
J134 0.15 J1V 0.4 K4 1 kO34 0.001
J234 0.35 J2V 0.4 K5 1 kdsnail 0.09
JO 0.9 J3V 2 KTR 20 kdtgf 0.1

J0snail 0.6 J1zeb 3.5 KSR 100 kdzeb 0.1
J1snail 0.5 J2zeb 0.9 TGF0 0 kdTGF 0.9
J2snail 1.8 K1 1 Tk 1000 kdZEB 1.66
k0snail 0.0005 k0zeb 0.003 λ1 0.5 k0TGF 1.1
n1200 3 n1snail 2 λ2 0.5 k0E 5
n2200 2 n1E 2 λ3 0.5 k0V 5
n134 2 n2E 2 λ4 0.5 kE1 15
n234 2 n1V 2 λ5 0.5 kE2 5
nO 2 n2V 2 λSR 0.5 kV 1 2

n0snail 2 n2zeb 6 λTR 0.5 kV 2 5
kO 1.2 k200 0.02 k34 0.01 ktgf 0.05
kzeb 0.06 kTGF 1.5 kSNAIL 16 kZEB 16
kdZR1

0.5 kdZR2
0.5 kdZR3

0.5 kdZR4
0.5

kdZR5 0.5 kdO 1.0 kd200 0.035 kd34 0.035
kdSR 0.9 kdE 0.05 kdV 0.05

Table 3.5: Table of Parameter Values for the Stochastic Cell Model.

d [V im]

dt
= k0V +

B

(1 + [OV OL2] /J3V )
− kdV [V im]

d [OV OL2]

dt
= k00 + k0

1

1 + ([ZEB] /J0)
n0
− kdO [OV OL2]

where

5∑
i=1

iCi
5 [ZRi] = 5 [ZR1] + 20 [ZR2] + +30 [ZR3] + 20 [ZR4] + 5 [ZR5] ,

5∑
i=1

Ci
5 [ZRi] = 5 [ZR1] + 10 [ZR2] + 10 [ZR3] + 5 [ZR4] + [ZR5] .

The parameter values are given in Table 3.5.
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Chapter 4

Stability-Optimized High Order

Methods and Stiffness Detection for

Pathwise Stiff Stochastic Differential

Equations

This chapter was submitted to SIAM Scientific Computing. It details the derivation of

stochastic Runge-Kutta methods with optimal stability. This chapter extends the results

of Chapter 3 and thus utilizes the same adaptivity scheme and error estimates but with

increased efficiency due to enhanced stability. The focus is on optimal stability methods

for additive noise, affine noise, and diagonal noise. Explicit, implicit, and IMEX (implicit-

explicit) integrators are derived and evaluated on various biological models, including the

discretized stochastic partial differential equations of Chapter 2.
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4.1 Summary

Stochastic differential equations (SDE) often exhibit large random transitions. This prop-

erty, which we denote as pathwise stiffness, causes transient bursts of stiffness which limit

the allowed step size for common fixed time step explicit and drift-implicit integrators. We

present four separate methods to efficiently handle this stiffness. First, we utilize a com-

putational technique to derive stability-optimized adaptive methods of strong order 1.5 for

SDEs. The resulting explicit methods are shown to exhibit substantially enlarged stability

regions which allows for them to solve pathwise stiff biological models orders of magnitude

more efficiently than previous methods like SRIW1 and Euler-Maruyama. Secondly, these

integrators include a stiffness estimator which allows for automatically switching between

implicit and explicit schemes based on the current stiffness. In addition, adaptive L-stable

strong order 1.5 implicit integrators for SDEs and stochastic differential algebraic equa-

tions (SDAEs) in mass-matrix form with additive noise are derived and are demonstrated

as more efficient than the explicit methods on stiff chemical reaction networks by nearly 8x.

Lastly, we developed an adaptive implicit-explicit (IMEX) integration method based off of

a common method for diffusion-reaction-convection PDEs and show numerically that it can

achieve strong order 1.5. These methods are benchmarked on a range of problems varying

from non-stiff to extreme pathwise stiff and demonstrate speedups between 5x-6000x while

showing computationally infeasibility of fixed time step integrators on many of these test

equations.

4.2 Introduction

Stochastic differential equations (SDEs) are dynamic equations of the form

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (4.1)
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where Xt is a d-dimensional vector, f : Rd → Rd is the drift coefficient, and g : Rd → Rd×m

is the diffusion coefficient which describes the amount and mixtures of the noise process

Wt which is a m-dimensional Brownian motion. SDEs are of interest in scientific disciplines

because they can exhibit behaviors which are not found in deterministic models. For example,

An ODE model of a chemical reaction network may stay at a constant steady state, but

in the presence of randomness the trajectories may be switching between various steady

states [93, 120, 48]. In many cases, these unique features of stochastic models are pathwise-

dependent and are thus not a property of the evolution of the mean trajectory. However,

these same effects cause random events of high numerical stiffness, which we denote as

pathwise stiffness, which can cause difficulties for numerical integration methods.

A minimal example of pathwise stiffness is demonstrated in the equation

dXt = [−1000Xt (1−Xt) (2−Xt)] dt+ g(t,Xt)dWt, X0 = 2, t ∈ [0, 5] . (4.2)

with additive noise g(t,Xt) = 10 where a sample trajectory is shown in Figure 4.1. This

equation has two stable steady states, one at X = 0 and another at X = 2, which the

solution switches between when the noise is sufficiently large. While near a steady state the

derivative is approximately zero making the problem non-stiff, during these transitions the

derivative of the drift term reaches a maximum of ≈ 400. This means that in order to be

stable, explicit Stochastic Runge-Kutta (SRK) must have a small ∆t. This display of large,

transient, and random switching behavior in a given trajectory causes stochastic bursts of

numerical stiffness, a phenomena which we will denote pathwise stiffness. The fixed time

step Euler-Maruyama method would require dt < 4×10−3 to be stable for most trajectories,

thus requiring greater than 2 × 104 steps to solve this 1-dimensional SDE. In many cases

the switching behavior can be rare (due to smaller amounts of noise) or can happen finitely

many times like in the multiplicative noise version with g(t,Xt) = 10Xt. Yet even if these

switches are only a small portion of the total time, the stability requirement imposed by their
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Pathwise Stiffness Example

Figure 4.1: Example of a Pathwise Stiff Solution. Depicted is a sample trajectory of
Equation 4.2 solved using the SOSRI methods developed in this manuscript with reltol =
abstol = 10−2.

existence determines the possible stepsizes and thus has a large contribution to the overall

computational cost. While implicit methods can be used to increase the stability range, this

can vastly increase the overall computational cost of each step, especially in the case large

systems of SDEs like discretizations of stochastic reaction-diffusion equations. In addition,

implicit solvers have in practice a smaller stability region due to requiring convergence of the

quasi-Newton solvers for the implicit steps. This problem is mitigated in ODE software by

high-quality stage predictors given by extrapolation algorithms for good initial conditions for

the Newton steps [42]. However, there are no known algorithms for stage predictors in the

presence of large noise bursts and thus we will demonstrate that classic implicit solvers have

a form of instability. Thus both fixed time step explicit and implicit solvers are inadequate

for efficiently handling this common class of SDEs.

Since these features exist in the single trajectories of the random processes, methods which

attempt to account for the presence of such bursts must do so on each individual trajectory in

order to be efficient. In previous work, the authors have shown that by using adaptive time-

stepping, a stochastic reaction network of 19 reactants is able to be solved with an average

time step 100,000 times larger than the value that was found necessary for stability during

the random stiff events for a high order SRK method [90]. This demonstrated that the key to

solving these equations efficiently required controlling the time steps in a pathwise manner.
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However, the methods were still largely stability-bound, meaning the chosen tolerances to

solve the model were determined by what was necessary for stability and was far below the

error necessary for the application. The purpose of this investigation is to develop numerical

methods with the ability to better handle pathwise stiffness and allow for efficient solving of

large Monte Carlo experiments.

We approach this problem through four means. First, we develop adaptive stability-

optimized SRK methods with enlarged stability regions. This builds off of similar work

for ODE integrators which optimize the coefficients of a Butcher tableau to give enhanced

stability [69, 3, 117]. Similar to the Runge-Kutta Chebyschev methods [42] (and the S-ROCK

extension to the stochastic case [65, 2, 64]), these methods are designed to be efficient for

equations which display stiffness without fully committing to implicit solvers. Given the

complexity of the stochastic stability equations and order conditions, we develop a novel

and scalable mechanism for the derivation of “optimal” Runge-Kutta methods. We use this

method to design stability-optimized methods for additive noise and diagonal noise SDEs.

We show through computational experiments that these adaptive stability-optimized SRK

methods can adequately solve transiently stiff equations without losing efficiency in non-stiff

problems.

On the other hand, to handle extreme stiffness we develop implicit RK methods for SDEs and

stochastic differential algebraic equations (SDAEs) in mass matrix form with additive noise.

We extend the definition of L-stability to additive noise SDEs and develop two strong order

1.5 methods: a fully implicit 2-stage L-stable method and an extension of the a well-known

L-stable explicit first stage singly diagonally implicit RK (ESDIRK) method due to Kennedy

and Carpenter which is commonly used for convection-diffusion-reaction equations [59]. To

the author’s knowledge, these are the first high order adaptive L-stable methods for SDEs

and the first adaptive proposed SDAE integrators. In addition, to extend the utility of these

additive noise methods, we derive an extension of the methods for additive SDEs to affine
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SDEs (mixed multiplicative and additive noise terms) through a Lamperti transformation

[79]. Lastly, in order to handle extreme transient stiffness, for each of these types of methods

we derive computationally cheap methods for detecting stiffness and switching between im-

plicit and explicit integrators in the presence of stiffness. We show that these methods can

robustly detect pathwise stiff transients and thus can serve as the basis for automatic switch-

ing methods for SDEs. Together we test on non-stiff, semi-stiff, and stiff equations with 2

to 6× 20× 100 SDEs from biological literature and show speedups between 6x-60x over the

previous adaptive SRIW1 algorithm, and demonstrate the infeasibility of common explicit

and implicit methods (Euler-Maruyama, Runge-Kutta Milstein, Drift-Implicit Stochastic θ-

Method, and Drift-Implicit θ Runge-Kutta Milstein) found as the basis of many SDE solver

packages [100, 37, 52].

4.3 Adaptive Strong Order 1.0/1.5 SRK Methods for

Additive and Diagonal Noise SDEs

The class of methods we wish to study are the adaptive strong order 1.5 SRK methods for

diagonal noise [95, 90]. Diagonal noise is the case where the diffusion term g is diagonal

matrix (σiX
i
t) and includes phenomenological noise models like multiplicative and affine

noise. The diagonal noise methods utilize the same general form and order conditions as

the methods for scalar noise so we use their notation for simplicity. The strong order 1.5

methods for scalar noise are of the form
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Xn+1 = Xn +
s∑
i=1

αif
(
tn + c

(0)
i h,H

(0)
i

)
+ (4.3)

s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,1)√
h

+ β
(3)
i

I(1,0)

h
+ β

(4)
i

I(1,1,1)

h

)
g
(
tn + c

(1)
i h
)

(4.4)

with stages

H
(0)
i = Xn +

s∑
j=1

A
(0)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(0)
ij g

(
tn + c

(1)
j h,H

(1)
j

) I(1,0)

h
(4.5)

H
(1)
i = Xn +

s∑
j=1

A
(1)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(1)
ij g

(
tn + c

(1)
j h,H

(1)
j

)√
h

where the Ij are the Wiktorsson approximations to the iterated stochastic integrals [127]. In

the case of additive noise, defined as having the diffusion coefficient satisfy g(t,Xt) ≡ g(t) ,

reduces to the form

Xn+1 = Xn +
s∑
i=1

αif
(
tn + c

(0)
i h,H

(0)
i

)
+

s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,0)

h

)
g
(
tn + c

(1)
i h
)

(4.6)

with stages

H
(0)
i = Xn +

s∑
j=1

A
(0)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(0)
ij g

(
tn + c

(1)
j h
) I(1,0)

h
. (4.7)

The tuple of coefficients
(
A(j), B(j), β(j), α

)
thus fully determines the SRK method. These

coefficients must satisfy the constraint equations described in 4.9.4 in order to receive strong

order 1.5. These methods are appended with error estimates
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ED =

∣∣∣∣∣∆t∑
i∈I1

(−1)σ(i)f
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tn + c

(0)
i ∆t,H
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i
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(0)
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∆t
+ β

(4)
i

I(1,1,1)
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)
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(1)
i ∆t,H

(1)
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)∣∣∣∣∣

and the rejection sampling with memory (RSwM) algorithm to give it fully adaptive time-

stepping [90]. Thus unlike in the theory of ordinary differential equations [68, 27, 15, 116,

107], the choice of coefficients for SRK methods does not require explicitly finding an em-

bedded method when developing an adaptive SRK method and we will therefore take for

granted that each of the derived methods is adaptive.

4.4 Optimized-Stability High Order SRK Methods

with Additive Noise

We use a previous definition of a discrete approximation as numerically stable if for any

finite time interval [t0, T ], there exists a positive constant ∆0 such that for each ε > 0 and

each δ ∈ (0,∆0)

lim
|Xδ

0−X̄δ
0 |→0

sup
t0≤t≤T

P
(∣∣Xδ

t − X̄δ
t

∣∣ ≥ ε
)

= 0 (4.8)

where Xδ
n is a discrete time approximation with maximum step size δ > 0 starting at Xδ

0

and X̄δ
n respectively starting at X̄δ

n [63]. For additive noise, we consider the complex-valued
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linear test equations

dXt = µXtdt+ dWt (4.9)

where µ is a complex number. In this framework, a scheme which can be written in the form

Xh
n+1 = Xh

nG (µh) + Zδ
n (4.10)

with a constant step size δ ≡ h and Zδ
n are random variables which do not depend on the

Y δ
n , then the region of absolute stability is the set where for z = µh, |G(z)| < 1.

The additive SRK method can be written as

Xh
n+1 = Xh

n + z
(
α ·H(0)

)
+ β(1)σI(1) + σβ(2) I(1,0)

h
(4.11)

where

H(0) =
(
I − zA(0)

)−1
(
X̂h
n +B(0)eσ

I(1,0)

h

)
(4.12)

where X̂h
n is the size s constant vector of elements Xh

n and e = (1, 1, 1, 1)T . By substitution

we receive

Xh
n+1 = Xh

n

(
1 + z

(
α ·
(
I − zA(0)

)−1
))

+ (4.13)(
I − zA(0)

)−1
B(0)eσ

I(1,0)

h
+ β(1)σI(1) + σβ(2) I(1,0)

h
(4.14)

This set of equations decouples since the iterated stochastic integral approximation Ij are

random numbers and are independent of the Xh
n . Thus the stability condition is determined
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by the equation

G(z) = 1 + zα ·
(
I − zA(0)

)−1
(4.15)

which one may notice is the stability equation of the drift tableau applied to a deterministic

ODE [14]. Thus the stability properties of the deterministic Runge-Kutta methods carry

over to the additive noise SRA methods on this test equation. However, most two-stage

tableaus from ODE research were developed to satisfy higher order ODE order constraints

which do not apply. Thus we will instead look to maximize stability while satisfying the

stochastic order constraints.

4.4.1 Explicit Methods for Non-Stiff SDEs with Additive Noise

Stability-Optimal 2-Stage Explicit SRA Methods

For explicit

methods, A(0) and B(0) are lower diagonal and we receive the simplified stability function

G(z) = 1 + A21z
2α2 + z (α1 + α2) (4.16)

for a two-stage additive noise SRK method. For this method we will find the method which

optimizes the stability in the real part of z. Thus we wish to find A(0) and α s.t. the

negative real roots of |G(z)| = 1 are minimized. By the quadratic equation we see that

there exists only a single negative root: z = 1−
√

1+8α2

2α2
. Using Mathematica’s minimum

function, we determine that the minimum value for this root subject to the order constraints

is z = 3
4

(
1−

√
19
3

)
≈ −1.13746. This is achieved when α = 2

3
, meaning that the SRA1

method due to Rossler achieves the maximum stability criteria. However, given extra degrees

of freedom, we attempted to impose that c
(0)
1 = c

(1)
1 = 0 and c

(0)
2 = c

(1)
2 = 1 so that the error
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estimator spans the whole interval. This can lead to improved robustness of the adaptive

error estimator. In fact, when trying to optimize the error estimator’s span we find that

there is no error estimator which satisfies c
(0)
2 > 3

4
which is the span of the SRA1 method

[95]. Thus SRA1 is the stability-optimized 2-stage explicit method which achieves the most

robust error estimator.

A(0) =

 0 0

3
4

0

 , B(0) =

 0 0

3
2

0

 , α =

 1
3

2
3


β(1) =

 1

0

 , β(2) =

 −1

1

 , c(0) =

 0

3
4

 , c(1) =

 1

0

 (4.17)

Stability-Optimal 3-Stage Explicit SRA Methods

For the 3-stage SRA method, we receive the simplified stability function

G(z) = A21A31α3z
3 + A21α2z

2 + A31α3z
2 + A32α3z

2 + α1z + α2z + α3z + 1 (4.18)

To optimize this method, we attempted to use the same techniques as before and optimize

the real values of the negative roots. However, in this case we have a cubic polynomial and

the root equations are more difficult. Instead, we turn to a more general technique to handle

the stability optimization which will be employed in later sections as well. To do so, we

generate an optimization problem which we can numerically solve for the coefficients. To

simplify the problem, we let z ∈ R and define the function:

f (z, w;N,M) =

∫
D

χG(z)≤1(z)dz (4.19)
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Notice that f is the area of the stability region when D is sufficiently large. Thus we define

the stability-optimized SRK method for additive noise SDEs as the set of coefficients which

achieves

max
A(i),B(i),β(i),α

f(z) (4.20)

subject to: Order Constraints

In all cases we impose 0 < c
(0)
i , c

(1)
i < 1. We use the order constraints to simplify the

problem to a nonlinear optimization problem on 14 variables with 3 equality constraints and

4 inequality constraints (with bound constraints on the 10 variables). However, we found

that simplifying the problem even more to require c
(0)
1 = c

(1)
1 = 0 and c

(0)
3 = c

(1)
3 = 1 did not

significantly impact the stability regions but helps the error estimator and thus we reduced

the problem to 10 variables, 3 equality constraints, and 2 inequality constraints. This was

optimized using the COBYLA local optimization algorithm [55, 87] with randomized initial

conditions 100 times and all gave similar results. In the Mathematica notebook we show

the effect of changing the numerical integration region D on the results, but conclude that a

D which does not bias the result for better/worse real/complex handling does not improve

the result. The resulting algorithm, SOSRA, we given by the coefficients in table in Section

4.9.3. Lastly, we used the condition that c
(0)
2 = c

(0)
3 = c

(1)
2 = c

(1)
3 = 1 to allow for free stability

detection (discussed in Section 4.6.4). The method generated with this extra constraint is

SOSRA2 whose coefficients are in the table in Section 4.9.3. These methods have their

stability regions compared to SRA1 and SRA3 in Figure 4.2 where it is shown that the

SOSRA methods more than doubles the allowed time steps when the eigenvalues of the

Jacobian are dominated by the real part.

100



- 6 - 5 - 4 - 3 - 2 - 1
x

- 4

- 2

2

4
y

SRA1

- 6 - 5 - 4 - 3 - 2 - 1
x

- 4

- 2

2

4
y

SRA3

- 6 - 5 - 4 - 3 - 2 - 1
x

- 4

- 2

2

4
y

SOSRA

- 6 - 5 - 4 - 3 - 2 - 1
x

- 4

- 2

2

4
y

SOSRA2

(A) (B)

(C) (D)

Figure 4.2: SOSRA Stability Regions. The stability regions (|G(z)| < 1) are plotted in
the (x, y)-plane for z = x+ iy. (A) SRA1. (B) SRA3. (C) SOSRA. (D) SOSRA2
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4.4.2 Drift Implicit Methods for Stiff SDEs with Additive Noise

An L-Stable 2-Stage (Semi-)Implicit SRA Method

It’s clear that, as in the case for deterministic equations, the explicit methods cannot be

made A-stable. However, the implicit two-stage additive noise SRK method is determined

by

G(z) =
z(A11(A22z − α2z − 1) + A12z(α1 − A21) + A21α2z − A22(α1z + 1) + α1 + α2) + 1

A11z(A22z − 1)− z(A12A21z + A22) + 1

(4.21)

which is A-stable if

A11z(A22z − 1)− z(A12A21z + A22) + 1 > z(A11(A22z − α2z − 1) + A12z(α1 − A21)

(4.22)

+ A21α2z − A22(α1z + 1) + α1 + α2) + 1.

(4.23)

Notice that the numerator equals the denominator if and only if z = 0 or

z =
α1 + α2

(A22 − A12)α1 + (A11 − A21)α2

. (4.24)

From the order conditions we know that α1 + α2 = 1 which means that no root exists

with Re(z) < 0 if (A22 − A12)α1 + (A11 − A21)α2 > 0. Thus under these no roots con-

ditions, we can determine A-stability by checking the inequality at z = 1, which gives

1 > (A22 − A12)α1 + (A11 − A21)α2. Using the order condition, we have a total of four

constraints on the A(0) and α:
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(A11 + A12)α1 + (A21 + A22)α2 =
1

2
(4.25)

α1 + α2 = 1

0 < (A22 − A12)α1 + (A11 − A21)α2 < 1

However, A-stability is not sufficient for most ODE integrators to properly handle stiff equa-

tions and thus extra properties generally imposed [42]. One important property we wish to

extend to stochastic integrators is L-stability. The straightforward extension of L-stability

is the condition

lim
z→∞

G(z) = 0. (4.26)

This implies that

−A11A22 + A11α2 + A12A21 − A12α1 − A21α2 + A22α2α1

A12A21 − A11A22

= 0 (4.27)

The denominator is − det(A(0)) which implies A(0) must be non-singular. Next, we attempt

to impose B-stability on the drift portion of the method. We use the condition due to

Burrage and Butcher that for B = diag (α1, α2) M = BA(0) + A(0)B − ααT (for ODEs)

[11], we require both B and M to be non-negative definite. However, in the supplemental

Mathematica notebooks we show computationally that there is no 2-stage SRK method of

this form which satisfies all three of these stability conditions. Thus we settle for A-stability

and L-stability.

Recalling that c(0) and c(1) are the locations in time where f and g are approximated respec-
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tively, we wish to impose

c
(0)
1 = 0 (4.28)

c
(0)
2 = 1

c
(1)
1 = 0

c
(1)
2 = 1

so that the error estimator covers the entire interval of integration. Since c(0) = A(0)e, this

leads to the condition A21 + A22 = 1. Using the constraint-satisfaction algorithm FindIn-

stance in Mathematica, we look for tableaus which satisfy the previous conditions with the

added constraint of semi-implicitness, i.e. B(0) is lower triangular. This assumption is added

because the inverse of the normal distribution has unbounded moments, and thus in many

cases it mathematically simpler to consider the diffusion term as explicit (though there are

recent methods which drop this requirement via truncation or extra assumptions on the

solution [75]). However, we find that there is no coefficient set which meets all of these

requirements. However, if we relax the interval estimate condition to allow 0 ≤ c
(0)
2 ≤ 1, we

find an A-L stable method:

A(0) =

 1 −41
64

32
41

9
41

 , B(0) =

 5
8

0

0 7
3

 , α =

 32
41

9
41

 (4.29)

β(1) =

 0

1

 , β(2) =

 1

−1

 , c(0) =

 23
64

1

 , c(1) =

 0

1


which we denote LSRA. If we attempt to look for a 2-stage SDIRK-like method to reduce

the complexity of the implicit equation, i.e. A
(0)
12 = 0, using FindInstance we find the

constraints unsatisfiable. Note that if we drop the semi-implicit assumption we find that the

full constraints cannot be satisfied there (we still cannot satisfy c
(0)
1 = 0 and c

(0)
2 = 1), and

there does not exist a 2-stage A-L stable SDIRK method in that case.
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Figure 4.3: Implicit SRA Stability Regions. The stability regions (|G(z)| < 1) are
plotted in the (x, y)-plane for z = x+ iy. (A) LSRA. (B) SKenCarp

Extensions of ODE Implicit Runge-Kutta Methods to Implicit SRA Methods

Since the stability region of the SRA methods is completely determined by the deterministic

portion A(0), in some cases there may exist a sensible extension of implicit Runge-Kutta

methods for ordinary differential equations to high order adaptive methods stochastic dif-

ferential equations with additive noise which keep the same stability properties. Since the

order constraints which only involve the deterministic portions A(0), c(0), and α match the

conditions required for ODE integrators, existence is dependent on finding β(1), β(2), c(1),

and B(0) that satisfy the full order constraints. In this case, an adaptive error estimator can

be added by using the same estimator as the ODE method (which we call ED) but adding

the absolute size of the stochastic portions

EN =

∣∣∣∣∣
s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,0)

h

)∣∣∣∣∣ (4.30)

leading to the error estimator

E = δED + EN . (4.31)
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This can be shown similarly to the construction in [90]. Given the large literature on implicit

RK methods for ODEs, this presents a large pool of possibly good methods and heuristically

one may believe that these would do very well in the case of small noise.

However, we note that there does not always exist such an extension. Using the constraint-

satisfaction algorithm FindInstance in Mathematica, we looked for extensions of the explicit

first stage singly-diagonally implicit RK (ESDIRK) method TRBDF2 [49] and could not

find values satisfying the constraints. In addition, we could not find values for an extension

of the 5th order Radau IIA method [43, 42] which satisfies the constraints. In fact, our

computational search could not find any extension of a 3-stage L-stable implicit RK method

which satisfies the constraints.

But, the 4-stage 3rd order ODE method due to Kennedy and Carpenter [59] can be extended

to the following:
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A(0) =



0 0 0 0

1767732205903
4055673282236

1767732205903
4055673282236

0 0

2746238789719
10658868560708

− 640167445237
6845629431997

1767732205903
4055673282236

0

1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236


, (4.32)

α =



1471266399579
7840856788654

−4482444167858
7529755066697

11266239266428
11593286722821

1767732205903
4055673282236



β(1) =



0

0

0

1


, β(2) =



1

0

0

−1


, c(0) =



0

1767732205903
4055673282236

3
5

1


, c(1) =



0

0

0

1



B
(0)
2,1 ≈ −12.246764387585055918338744103409192607986567514699471403397969732723452087723101

B
(0)
4,3 ≈ −14.432096958608752822047165680776748797565142459789556194474191884258734697161106

The exact values for B2,1 and B4,3 are shown in 4.9.3. (E)SDIRK methods are particularly

interesting because these methods can be solved using a single factorization of the function

of the Jacobian I−γdtJ where J is the Jacobian. Additionally, explicit handling of the noise

term is similar to the Implicit-Explicit (IMEX) form for additive Runge-Kutta methods in

that it occurs by adding a single constant term to the Newton iterations in each stage, mean-

ing it does not significantly increase the computational cost. The chosen ESDIRK method

has a complimentary explicit tableau to form an IMEX additive Runge-Kutta method, and

the chosen values for the stochastic portions are simultaneously compatible with the order
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conditions for this tableau. In Section 4.7.1 we numerically investigate the order of the IMEX

extension of the method and show that it matches the convergence of the other SRA meth-

ods on the test equation. One thing to note is that since the problem is additive noise the

method is never implicit in the dependent variables in the noise part, so in theory this can

also be extended with B(1) implicit as well (with convergence concerns due to the non-finite

inverse moments of the Normal distribution [63]).

Note on Implementation and Stage Prediction

One has to be careful with the implementation to avoid accumulation of floating point error

for highly stiff equations. For our implementation, we used a method similar to that described

in [49]. The implicit stages were defined in terms of

zi = hf
(
t+ c

(0)
i , H

(0)
j

)
(4.33)

where X0 is the previous step, and thus the iterations become

H
(0)
j = γzi+

i−1∑
j=1

A
(0)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

i−1∑
j=1

B
(0)
ij g

(
tn + c

(1)
j h
) I(1,0)

h
= γzi+αi. (4.34)

This gives the implicit system for the residual:

G(zi) = zi − hf
(
tn + c

(0)
i h, γzi + αi

)

which has a Jacobian I − γhJ where J is the Jacobian of f and thus is the same for each

stage. For choosing the values to start the Newton iterations, also known as stage prediction,

we tested two methods. The first is the trivial stage predictor which is zi = zj for the j

s.t. j < i and cj < ci, i.e. using the closest derivative estimate. The other method that

was tested is what we denote the stochastic minimal residual estimate given by H
(0)
j = αi
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or zi = 0. This method takes into account the stochastic bursts at a given step and thus

demonstrated much better stability.

Note on Mass Matrices

We note that these methods also apply to solving ODEs with mass-matrices of the form:

MdXt = f(t,Xt)dt+Mg(t,Xt)dWt.

The derivation of the method is the same, except in this case we receive the implicit system

G(zi) = Mzi − hf
(
tn + c

(0)
i h, γzi + αi

)

which has a Jacobian M − γhJ . Like in the ODE case, these implicit methods can thus

solve DAEs in mass-matrix form (the case where M is singular), though we leave discussion

of convergence for future research. One interesting property to note is that a zero row

in the mass matrix corresponds to a constraint equation which is only dependent on the

output of f since the multiplication of g by M is zero in that same corresponding row. Thus

when a singular mass matrix is applied to the noise equation, the corresponding constraints

are purely deterministic relations. Thus while this is a constrained form, properties like

conservation of energy in physical models can still be placed on the solution using this

mass-matrix formulation.
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4.5 Optimized-Stability Methods for Affine Noise via

Transformation

Given the efficiency of the methods for additive noise, one method for developing efficient

methods for more general noise processes is to use a transform of diagonal noise processes

to additive noise. This transform is due to Lamperti [79], which states that the SDE of the

form

dXt = f(t,Xt)dt+ σ(t,Xt)R(t)dWt (4.35)

where σ > 0 is a diagonal matrix with diagonal elements σi(t,Xi,t) has the transformation

Zi,t = ψi(t,Xi,t) =

∫
1

σi(x, t)
dx |x=Xi,t (4.36)

which will result in an Ito process with the ith element given by

dZi,t =

(
∂

∂t
ψi(t, x) |x=ψ−1(t,Zi,t) +

fi(t, ψ
−1(t, Zt))

σi
(
t, ψ−1

i (t, Zi,t)
) − 1

2

∂

∂x
σi
(
t, ψ−1

i (t, Zi,t)
))

dt

(4.37)

+
n∑
j=1

rij(t)dwj,t (4.38)

with

Xt = ψ−1 (t, Zt) . (4.39)
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This is easily verified using Ito’s Lemma. In the case of mixed multiplicative and additive

noise (affine noise), the vector equation:

dXt = f(t,Xt)dt+ (σMXt + σA) dWt (4.40)

with σM > 0 and σA > 0, the transform becomes element-wise in the system. Thus we can

consider the one-dimensional case. Since ψ(t,Xt) =
∫ (

1
σMXt+σA

)
dx |x=Xt=

log(σMXt+σA)
σM

,

then Xt = exp(σMZt)−σA
σM

and

dZt = f̃(t,Xt)dt+ dWt (4.41)

f̃(t,Xt) =
f(t,Xt)

σMXt + σA
− 1

2
σM

provided σMXt is guaranteed to be sufficiently different from σA to not cause definitional

issues. It is common in biological models like chemical reaction networks that Xt ≥ 0, in

which case this is well-defined for any σA > 0 when σM > 0.

For numerical problem solving environments (PSEs), one can make use of this transformation

in two ways. Source transformations could transform affine noise SDEs element-wise to solve

for the vector Zt which is the same as Xt if σM 6= 0 and is the transformed Xt otherwise

(assuming parameters must be positive). When doing so, references of Xi,t must be changed

into
exp(σMZi,t)−σA

σM
. For example, the affine noise Lotka-Volterra SDE:

dx = (ax− bxy) dt+ (σMx+ σA) dW 1
t

dy = (−cy + dxy) dt+ σÃdW
2
t
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only has noise on the first term, so this transforms to

x =
exp(σMz)− σA

σM

dz =

(
ax− bxy
σMx+ σA

− 1

2
σM

)
dt+ dW 1

t

dy = (−cy + dxy) dt+ σÃdW
2
t

along with the change to the initial condition and can thus be solved with the SRA methods.

We note a word of caution that the above transformation only holds when σA > 0 and when

σA = 0, the transformation is different, with Xt = exp(Zt)
σM

(instead of exp(σMZt)
σM

which one

would get by taking σA = 0).

Instead of performing the transformations directly on the functions themselves, we can mod-

ify the SRA algorithm to handle this case as:

Xn+1 = ψ−1

(
ψ (Xn) +

s∑
i=1

αif̃
(
tn + c

(0)
i h,H

(0)
i

)
+

s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,0)

h

)
g̃
(
tn + c

(1)
i h

))
(4.42)

with stages

H
(0)
i = ψ (Xn) +

s∑
j=1

A
(0)
ij f̃

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(0)
ij g̃

(
tn + c

(1)
j h
) I(1,0)

h
(4.43)

where ψ is the element-wise function:

ψi(x) =



log(σi,Mx+σi,A)

σi,M
σi,M > 0, σi,A > 0

log(x)
σi,M

σi,M > 0, σi,A = 0

x o.w.

,
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ψ−1
i (z) =



exp(σi,Mz)
σi,M

σi,M > 0, σi,A > 0

exp(z)
σi,M

σi,M > 0, σi,A = 0

x o.w.

and

g̃i(t) =


1 σi,M > 0

σi,A o.w.

This can be summarized as performing all internal operations in Z-space (where the equation

is additive) but saving each step in X-space.

4.6 Optimized-Stability Order 1.5 SRK Methods with

Diagonal Noise

4.6.1 The Stability Equation for Order 1.5 SRK Methods with

Diagonal Noise

For diagonal noise, we use the mean-square definition of stability [63]. A method is mean-

square stable if limn→∞ E
(
|Xn|2

)
= 0 on the test equation

dXt = µXtdt+ σXtdWt. (4.44)

In matrix form we can re-write our method as given by
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Xn+1 = Xn + µh
(
α ·H(0)

)
+ σI(1)

(
β(1) ·H(1)

)
+ σ

I(1,1)√
h

(
β(2) ·H(1)

)
(4.45)

+ σ
I(1,0)

h

(
β(3) ·H(1)

)
+ σ

I(1,1,1)

h

(
β(4) ·H(1)

)
(4.46)

with stages

H(0) = Xn + µ∆tA(0)H(0) + σ
I(1,0)

h
B(0)H(1), (4.47)

H(1) = Xn + µ∆tA(1)H(0) + σ
√

∆tB(1)H(1)

where X̂n is the size s constant vector of Xn.

H(0) =
(
I − hA(0)

)−1
(
X̂n + σ

I(1,0)

h
B(0)H(1)

)
, (4.48)

H(1) =
(
I − σ

√
hB(1)

)−1 (
X̂n + µhA(1)H(0)

)

By the derivation in the appendix, we receive the equation
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S = E

[
U2

n+1

U2
n

]
= {1 + µht

(
α ·
[(
I − µ∆tA

(0) − µσI(1,0)A
(1)
B

(0)
(
I − σ

√
hB

(1)
)−1

)−1
(
I + σ

I(1,0)

h
B

(0)
(
I − σ

√
hB

(1)
)−1

)])
(4.49)

+σI(1)

(
β
(1) ·

[(
I − σ

√
hB

(1) − µhA(1)
(
I − µhA(0)

)−1
σ
I(1,0)

h
B

(0)

)−1 (
I + µhA

(1)
(
I − µhA(0)

)−1
)])

+σ
I(1,1)√

h

(
β
(2) ·

[(
I − σ

√
hB

(1) − µhA(1)
(
I − µhA(0)

)−1
σ
I(1,0)

h
B

(0)

)−1 (
I + µhA

(1)
(
I − µhA(0)

)−1
)])

+σ
I(1,0)

h

(
β
(3) ·

[(
I − σ

√
hB

(1) − µhA(1)
(
I − µhA(0)

)−1
σ
I(1,0)

h
B

(0)

)−1 (
I + µhA

(1)
(
I − µhA(0)

)−1
)])

+σ
I(1,1,1)

h

(
β
(4) ·

[(
I − σ

√
hB

(1) − µhA(1)
(
I − µhA(0)

)−1
σ
I(1,0)

h
B

(0)

)−1 (
I + µhA

(1)
(
I − µhA(0)

)−1
)])
}2

We apply the substitutions from the Appendix and let

z = µh, (4.50)

w = σ
√
h.

In this space, z is the stability variable for the drift term and w is the stability in the

diffusion term. Under this scaling
(
h,
√
h
)

, the equation becomes independent of h and

thus becomes a function S(z, w) on the coefficients of the SRK method where mean-square

stability is achieved when |S(z, w)| < 1. The equation S(z, w) in terms of its coefficients

for explicit methods (A(i) and B(i) lower diagonal) has millions of terms and is shown in

the supplemental Mathematica notebook. Determination of the stability equation for the

implicit methods was found to be computationally intractable and is an avenue for further

research.
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4.6.2 An Optimization Problem for Determination of Coefficients

We wish to determine the coefficients for the diagonal SRK methods which optimize the

stability. To do so, we generate an optimization problem which we can numerically solve for

the coefficients. To simplify the problem, we let z, w ∈ R. Define the function

f (z, w;N,M) =

∫ M

−M

∫ 1

−N
χS(z,w)≤1(z, w)dzdw. (4.51)

Notice that for N,M →∞, f is the area of the stability region. Thus we define the stability-

optimized diagonal SRK method as the set of coefficients which achieves

max
A(i),B(i),β(i),α

f(z, w) (4.52)

subject to: Order Constraints

However, like with the SRK methods for additive noise, we impose a few extra constraints to

add robustness to the error estimator. In all cases we impose 0 < c
(0)
i , c

(1)
i < 1 . Additionally

we can prescribe c
(0)
4 = c

(1)
4 = 1 which we call the End-C Constraint. Lastly, we can

prescribe the ordering constraint c
(j)
1 < c

(j)
2 < c

(j)
3 < c

(j)
4 which we denote as the Inequality-C

Constraint.

The resulting problem is a nonlinear programming problem with 44 variables and 42-48 con-

straint equations. The objective function is the two-dimensional integral of a discontinuous

function which is determined by a polynomial of in z and w with approximately 3 million

coefficients. To numerically approximate this function, we calculated the characteristic func-

tion on a grid with even spacing dx using a CUDA kernel and found numerical solutions to
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the optimization problem using the JuMP framework [28] with the NLopt backend [55]. A

mixed approach using many solutions of the semi-local optimizer LN AUGLAG EQ [23, 6]

and fewer solutions from the global optimizer GN ISRES [96] were used to approximate the

optimality of solutions. The optimization was run many times in parallel until many results

produced methods with similar optimality, indicating that we likely obtained values near the

true minimum.

The parameters N and M are the bounds on the stability region and also represent a trade-

off between the stability in the drift and the stability in the diffusion. A method which is

optimized when M is small would be highly stable in the case of small noise, but would not

be guaranteed to have good stability properties in the presence of large noise. Thus these

parameters are knobs for tuning the algorithms for specific situations, and thus we solved

the problem for different combinations of N and M to determine different algorithms for the

different cases.

4.6.3 Resulting Approximately-Optimal Methods

The coefficients generated for approximately-optimal methods fall into three categories. In

one category we have the drift-dominated stability methods where large N and small M

was optimized. On the other end we have the diffusion-dominated stability methods where

large M and small N was optimized. Then we have the mixed stability methods which used

some mixed size choices for N and M . As a baseline, we optimized the objective without

constraints on the ci to see what the “best possible method” would be. When this was done

with large N and M , the resulting method, which we name SOSRI, has almost every value

of c satisfy the constraints, but with c
(0)
2 ≈ −0.04 and c

(0)
4 ≈ 3.75. To see if we could produce

methods which were more diffusion-stable, we decreased N to optimize more in w but failed

to produce methods with substantially enlarged diffusion-stability over SOSRI.
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Adding only the inequality constraints on the ci and looking for methods for drift-dominated

stability, we failed to produce methods whose ci estimators adequately covered the interval.

Some of the results did produce stability regions similar to SOSRI but with c
(0)
i < 0.5 which

indicates the method could have problems with error estimation. When placing the equality

constraints on the edge ci, one method, which we label SOSRI2, resulted in similar stability

to SOSRI but satisfy the ci constraints. In addition, this method satisfies c
(0)
3 = c

(0)
4 = 1 and

c
(1)
3 = c

(1)
4 = 1, a property whose use will be explained in Section 4.6.4. The stability regions

for these methods is shown in Figure 4.4.

To look for more diffusion-stable methods, we dropped to N = 6 to encourage the methods

to expand the stability in the w-plane. However, we could not find a method whose stability

region went substantially beyond [−2, 2] in w. This was further decreased to N = 1 where

methods still could not go substantially beyond |2|. Thus we were not able to obtain methods

optimized for the diffusion-dominated case. This hard barrier was hit under many different

constraint and objective setups and under thousands of optimization runs, indicating there

might be a diffusion-stability barrier for explicit methods.

4.6.4 Approximately-Optimal Methods with Stability Detection

and Switching Behaviors

In many real-world cases, one may not be able to clearly identify a model as drift-stability

bound or diffusion-stability bound, or if the equation is stiff or non-stiff. In fact, many

models may switch between such extremes. An example is a model with stochastic switching

between different steady states. In this case, we have that the diffusion term f(t,Xss) ≈ 0

in the area of many stochastic steady states, meaning that while straddling a steady state
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Figure 4.4: SOSRI Stability Regions. The stability regions (S(z, w) ≤ 1)for the previous
and SOSRI methods are plotted in the (z, w)-plane. (A) Euler-Maruyama. (B) SRIW1.
(C) SRIW2. (D) SOSRI. (E) SOSRI2
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the integration is heavily diffusion-stability dominated and usually non-stiff. However, when

switching between steady states, f can be very large and stiff, causing the integration to

be heavily drift-stability dominated. Since these switches are random, the ability to adapt

between these two behaviors could be key to achieving optimal performance. Given the trade-

off, we investigated how our methods allow for switching between methods which optimize

for the different situations.

The basis for our method is an extension of a method proposed for deterministic differential

equations [102, 105, 42]. The idea is to create a cheap approximation to the dominant

eigenvalues of the Jacobians for the drift and diffusion terms. If v is the eigenvector of the

respective Jacobian, then for ‖v‖ sufficiently small,

|λD| ≈
‖f(t, x+ v)− f(t, x)‖

‖v‖
, (4.53)

|λN | ≈
‖g(t, x+ v)− g(t, x)‖

‖v‖
(4.54)

where |λD| and |λN | are the estimates of the dominant eigenvalues for the deterministic and

noise functions respectively. We have in approximation that H
(k)
i is an approximation for

X
t+c

(k)
i h

and thus the difference between two successive approximations at the same time-

point, c
(k)
i = c

(k)
j , then the following serves as a local Jacobian estimate:

|λD| ≈
‖f(t+ c

(0)
i h,H

(0)
i )− f(t+ c

(0)
j h,H

(0)
j )‖

‖H(0)
i −H

(0)
j ‖

, (4.55)

|λN | ≈
‖f(t+ c

(1)
i h,H

(1)
i )− f(t+ c

(1)
j h,H

(1)
j )‖

‖H(1)
i −H

(1)
j ‖

(4.56)

If we had already computed a successful step, we would like to know if in the next calculation

we should switch methods due to stability. Thus it makes sense to approximate the Jacobian

at the end of the interval, meaning i = s and j = s − 1 where s is the number of stages.
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Then if zmin is the minimum z ∈ R such that z is in the stability region for the method,

h|λD|
zmin

> 1 when the steps are outside the stability region. Because the drift and mixed

stability methods do not track the noise axis directly, we instead modify wmin to be 2
3

of the

maximum of the stability region in the noise axis.

Hairer noted that, for ODEs, if a RK method has ci = cj = 1, then it follows that

ρ =
‖ki − kj‖
‖gi − gj‖

(4.57)

where ki = f(t + cih, gi) is an estimate of the eigenvalues for the Jacobian of f . Given the

construction of SOSRI2, a natural extension is

|λD| ≈
‖f
(
tn + c

(0)
4 h,H

(0)
4

)
− f

(
tn + c

(0)
3 h,H

(0)
3

)
‖

‖H(0)
4 −H

(0)
3 ‖

, (4.58)

|λN | ≈
‖g
(
tn + c

(0)
4 h,H

(1)
4

)
− g

(
tn + c

(0)
3 h,H

(1)
3

)
‖

‖H(1)
4 −H

(1)
3 ‖

(4.59)

Given that these values are all part of the actual step calculations, this stiffness estimate

essentially is free. By comparing these values to the stability plot in Figure 4.2, we use the

following heuristic to decide if SOSRI2 is stability-bound in its steps:

1. If 10 > |λD| > 2.5, then we check if h |λN | > ω.

2. If |λD| < 2.5, then we check if h |λN | /2 > ω.

The denominator is chosen as a reasonable box approximation to the edge of the stability

region. ω is a safety factor: in theory ω is 1 since we divided by the edge of the stability

region, but in practice this is only an eigenvalue estimate and thus ω allows for a trade-off

between the false positive and false negative rates. If either of those conditions are satisfied,
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then h is constrained by the stability region. The solver can thus alert the user that the

problem is stiff or use this estimate to switch to a method more suitable for stiff equations. In

addition, the error estimator gives separate error estimates in the drift and diffusion terms.

A scheme could combine these two facts to develop a more robust stiffness detection method,

and label the stiffness as either drift or diffusion dominated.

We end by noting that SOSRA2 has the same property, allowing stiffness detection via

|λD| ≈
‖f
(
tn + c

(0)
3 h,H

(0)
3

)
− f

(
tn + c

(0)
2 h,H

(0)
2

)
‖

‖H(0)
3 −H

(0)
2 ‖

(4.60)

and, employing a similar method as the deterministic case, check for stiffness via the estimate

h |λD| /5 > ω.

In addition, stiff solvers can measure the maximal eigenvalues directly from the Jacobian.

Here we suggest the measure from Shampine [102, 105, 42] of using ‖J‖∞ as a cheap upper

bound. For semi-implicit methods like LSRA we only get a stability bound on the drift term,

but this should be sufficient since for additive noise diffusive noise instability is not an issue.

4.7 Numerical Results

4.7.1 Convergence Tests

In order to test the efficiency and correctness of the SRA algorithms, we chose to use the

additive noise test Equation 4.67. Figure 4.5A demonstrates that the SOSRA and SKenCarp

methods achieve the strong order 2.0 on Equation 4.65. To test the convergence of the SRI

algorithms, we used the linear test Equation 4.67. Figure 4.5B demonstrates that the SOSRI
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Figure 4.5: Additive Noise Convergence Tests. The error is averaged over 1000 trajec-
tories. Shown are the strong l2 error along the time series of the solution. (A) Convergence
results on Equation 4.65. The test used a fixed time step h = 1/2−2 to h = 1/2−10. (B) Con-
vergence results on Equation 4.67. The test used a fixed time step h = 1/2−4 to h = 1/2−7.
(C) Convergence results on the IMEX Equation 4.69. The test used a fixed time step
h = 1/2−2 to h = 1/2−10.

methods achieve the strong order 1.5 on Equation 4.67. Lastly, we tested the convergence

of the IMEX version of the SKenCarp integrator. We defined the split SDE 4.69 as a

modification of Equation 4.65 where the f1 part is solved implicitly and the f2 part is solved

explicitly. Figure 4.5C demonstrates that the IMEX SKenCarp method achieves strong order

2.0 . Note that this does not demonstrate that the method always achieves strong order 1.5

since sufficient conditions for the IMEX pairing are unknown, but it gives numerical evidence

that the method can be high order.
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4.7.2 SOSRA Numerical Efficiency Experiments

Additive Noise Lotka-Volterra (2 Non-Stiff SDEs)

To test the efficiency we first plotted work-precision [41, 110, 42] diagrams for the SOSRA,

SOSRA2, and SKenCarp methods against the SRA1, SRA2, SRA3 [95] methods, and fixed

time step Euler-Maruyama method (Milstein is equivalent to Euler-Maruyama in this case

[63]). We tested the error and timing on Equation 4.65. In addition, we tested using the

Lotka-Volterra equation with additive noise Equation 4.70. Since 4.70 does not have an

analytical solution, a reference solution was computed using a low tolerance solution via

SOSRA for each Brownian trajectory. The plots show that there is a minimal difference

in efficiency between the SRA algorithms for errors in the interval [10−6, 10−2], while these

algorithms are all significantly more efficient than the Euler-Maruyama method when the

required error is < 10−4 (Figure 4.6). The weak error work-precision diagrams show that

when using between 100 to 10,000 trajectories, the weak error is less than the sample error

in the regime where there is no discernible efficiency difference between the SRA methods.

These results show that in the regime of mild accuracy on non-stiff equations, the SOSRA,

SOSRA2, and SKenCarp methods are much more efficient than low order methods yet

achieve the same efficiency as the non-stability optimized SRA variants. Note that these

results also show that the error estimator for adaptivity is highly conservative, generating

solutions with around 2 orders of magnitude less error than the tolerance suggests.

Addtive Noise Van Der Pol (2 Stiff SDEs)

To test how efficiently the algorithms could achieve solve stiff equations, we chose to analyze

the qualitative results of the driven Van der Pol equation. The driven Van der Pol equation
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Figure 4.6: SOSRA Efficiency Tests. The error was taken as the average of 10,000
trajectories for Equation 4.65 and 100 trajectories for the Lokta-Volterra Equation 4.70.
The sample error was determined for the weak error as the normal 95% confidence interval
for the mean using the variance of the true solution Equation 4.66 or the variance of the
estimated true solutions via low tolerance solutions. The time is the average time to compute
a trajectory and is averaged over 1000 runs at the same tolerance or step size. (A) Shown
are the work-precision plots for the methods on Equation 4.65. Each of the adaptive time-
stepping methods solved the problem on the interval using changing values of tolerances,
with tol = abstol = reltol starting at 102 and ending at 10−4 going in increments of 10.
The fixed time-stepping methods used time steps of size h = 1/5−1 to h = 1/54, changing
the value by factors of 5. The error is the strong l2 error computed over the time series.
(B) Same setup as the previous plot but using the weak error at the final time-point. (C)
Shown are the work-precision plots for the methods on the Equation 4.70. Each of the
adaptive time-stepping methods solved the problem on the interval using changing values of
tolerances, with tol = abstol = reltol starting at 4−2 and ending at 4−4 going in increments
of 4. The fixed time-stepping methods used time steps of size h = 1/12−2.5 to h = 1/12−6.5,
changing the value by factors of 12. The error is the strong l2 error computed over the time
series. (D) Same setup as the previous plot but using the weak error at the final time-point.
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is given by Equation 4.71 where µ is the driving factor. As µ increases the equation becomes

more stiff. µ = 106 is a common test for stiff ODE solvers [43], with lower values used to

test the semi-stiff regime for ODEs. For our purposes, we chose µ = 105 as a semi-stiff test

case. The ODE case, solved using the Tsit5 explicit Runge-Kutta algorithm [116, 92], and

demonstrates the mild stiffness which is still well-handled by explicit methods (Figure 4.7A).

We extend this model to the driven Van der Pol model with additive noise Equation 4.72

where ρ = 3.0 is the noise gain and dW (1) and dW (2) are independent Brownian motions.

The solution to this model is interesting because it gives the same qualitative behavior, large

bursts when x(t) crosses zero, but in this case the zero crossings are stochastic. Even at high

tolerances, (abstol = 10,reltol = 1/21), SOSRA is able to reproduce this qualitative behavior

of the low tolerance solutions (Figure 4.7B), and SOSRA2 producing similar results at the

same tolerances a factor of two lower. Given the conservativeness of the error estimators

shown in previous (and other tests), this case corresponds to roughly two decimal places

of accuracy, which is more than sufficient for many phenomenological models. However,

even at tolerances of abstol = 1/23,reltol = 1/23 SRA3 was unable to reproduce the correct

qualitative behavior (Figure 4.7C). Thus we decreased the tolerances by factors of 2 until

it was able to reproduce the correct qualitative results (Figure 4.7D). This shows that the

SOSRA are more reliable on models with transient stiffness. To test the impact on the run

time of the algorithms, each of the algorithms were run 100 times with the tolerance setup

that allows them to most efficiently generate correct qualitative results. The run times are

shown in Table 4.1, which show that SRA1 takes more than 10 times and SRA3 nearly 4

times as long as the SOSRA methods. In this case the implicit method SKenCarp is the

fastest by besting the SOSRA methods by more than 8x while achieving similar qualitative

results. This shows that as stiffness comes into play, the SOSRA methods along with the

implicit SKenCarp method are more robust and efficient. The fixed time step methods were

far less efficient. Adaptive timestepping via rejection sampling was crucial to the success

of the SKenCarp method because it required the ability to pull back to a smaller timestep
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Algorithm Run-time (seconds) Relative Time (vs SKenCarp)

SKenCarp 37.23 1.0x
SOSRA 315.58 8.5x
SOSRA2 394.82 10.6x

SRA3 1385.66 37.2x
SRA1 3397.66 91.3x

Euler-Maruyama 5949.19 159.8x
DISTM

(
θ = 1

2

)
229111.15 6153x

Table 4.1: SRA Run times on Van der Pol with additive noise. The additive noise
Van der Pol equation was solved 100 times using the respective algorithms at the highest
tolerance by powers of two which match the low tolerance solution to plotting accuracy.
The fixed time step methods had their ∆t determined as the largest ∆t in increments of
powers of 2 that produced no unstable trajectories. This resulted in ∆t = 5e − 8 for both
the Euler-Maruyama the Drift-Implicit Stochastic θ-methods. Note that the total time of
the drift-implicit stochastic θ-method and the Euler-Maruyama method were determined by
extrapolating the time from a single stable trajectory on t ∈ [0, 1] due to time constraints.
DISTM is the Drift-Implicit Stochastic θ-Method

when Newton iterations diverged, otherwise it resulted in time estimates around 5x slower

than SOSRA.

Additive Van Der Pol Stiffness Detection

In addition to testing efficiency, we used this to test the stiffness detection in SOSRA2.

Using a safety factor of ω = 5, we added only two lines of code to make the algorithm print

out the timings for which the algorithm predicts stiffness. The results on two trajectories

were computed and are shown in Figure 4.8. The authors note that the stiffness detection

algorithms are surprisingly robust without any tweaking being done and are shown to not

give almost any false positives nor false negatives on this test problem. While this safety

factor is set somewhat high in comparison to traditional ODE stiffness detection, we note
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Figure 4.7: Representative trajectories for solutions to the Van der Pol equations
with additive noise. Each of these trajectories are solved with the same underlying Brow-
nian process. (A) The solution to the ODE with the explicit Runge-Kutta method Tsit5.
(B) The solution to the SDE with tolerance abstol = 1, reltol = 1/21 from SOSRA. (C)
Solution to the SDE with tolerances abstol = 2−3, reltol = 2−3 with SRA3. (D) Solution to
the SDE with tolerances abstol = 2−6, reltol = 2−4 with SRA3.
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Figure 4.8: Stiffness detection in the Van der Pol equations with additive noise
Equation 4.72. Two representative trajectories to Equation 4.7 are plotted. The green
dots indicate time-points where the stiffness detection algorithm detected stiffness.

that these algorithms were designed to efficiently handle mild stiffness and thus we see it as

a benefit that they only declare stiffness when it appears to be in the regime which is more

suitable for implicit methods.

4.7.3 SOSRI Numerical Efficiency Experiments

Multiplicative Noise Lotka-Volterra (2 Non-Stiff SDEs)

To test the efficiency we plotted a work-precision diagram with SRIW1, SOSRI, SOSRI2,

and the fixed time step Euler-Maruyama and a Runge-Kutta Milstein schemes for Equation

4.67 and the multiplicative noise Lotka-Volterra Equation 4.73. As with Equation 4.70,

Equation 4.73 does not have an analytical solution so a reference solution was computed

using a low tolerance solution via SOSRI for each Brownian trajectory. The results show

that there is a minimal difference in efficiency between the SRI algorithms for errors over the

interval [10−6, 10−2], while these algorithms are all significantly more efficient than the lower

order algorithms when the required error is < 10−2 (Figure 4.9A-D). The weak error work-
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precision diagrams show that when using between 100 to 10,000 trajectories, the weak error

is less than the sample error in the regime where there is no discernible efficiency difference

between the SRI methods.These results show that in the regime of mild accuracy on non-stiff

equations, these methods are much more efficient than low order methods yet achieve the

same efficiency as the non-stability optimized SRI variants. Note that these results also show

the conservativeness of the error estimators.

Epithelial-Mesenchymal Transition (EMT) Model (20 Pathwise Stiff SDEs)

To test the real consequences of the enhanced stability, we use the Epithelial-Mesenchymal

Transition (EMT) model of 20 pathwise stiff reaction equations introduced in [48], studied

as a numerical test in [90], and written in Section 4.9.2. In the previous work it was noted

that t ∈ [0, 1] was a less stiff version of this model. Thus we first tested the speed that the

methods could solve for 10,000 trajectories with no failures due to numerical instabilities.

The tolerances were tuned for each method by factors of 2 and finding the largest values that

were stable. Since SOSRI demonstrated that its stability is much higher than even SOSRI2,

we show the effect of tolerance changes on SOSRI as well. The results show that at similar

tolerances the SOSRI method takes nearly 5x less time than SRIW1 (Table 4.2). However,

there is an upper bound on the tolerances before the adaptivity is no longer able to help keep

the method stable. For SRIW1, this bound is much lower, causing it to run more than 15x

slower than the fastest SOSRI setup. Interestingly SOSRI2 required a higher tolerance than

SRIW1 but was 3x faster than SRIW1’s fastest setup. We note that SOSRI’s highest relative

tolerance 2−7 ≈ 7× 10−3 is essentially requiring 4 digits of accuracy (in strong error) when

considering the conservativeness of the error estimator, which is far beyond the accuracy

necessary in many cases. Lastly, we note that the SOSRI method is able to solve for 10,000
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Figure 4.9: SOSRI efficiency on non-stiff test equations. The error was taken as
the average of 10,000 trajectories for the Equation 4.67 and 100 trajectories for the Lokta-
Volterra Equation 4.73. The sample error was determined for the weak error as the normal
95% confidence interval for the mean using the variance of the true solution Equation 4.68
or the variance of the estimated true solutions via low tolerance solutions. The time is the
average time to compute a trajectory and is averaged over 1000 runs at the same tolerance
or step size.(A) Shown are the work-precision plots for the methods on Equation 4.67. Each
of the adaptive time-stepping methods solved the problem on the interval using changing
values of tolerances, with tol = abstol = reltol starting at 10−1 and ending at 10−5 going
in increments of 10. The fixed time-stepping methods used time steps of size h = 5−2 to
h = 5−7, changing the value by factors of 5. The error is the strong l2 error computed over
the time series. (B) Same setup as the previous plot but using the weak error at the final
time-point. (C) Shown are the work-precision plots for the methods on the multiplicative
noise Lotka-Volterra Equation 4.73. Each of the adaptive time-stepping methods solved
the problem on the interval using changing values of tolerances, with tol = abstol = reltol
starting at 4−2 and ending at 4−4 going in increments of 4. The fixed time-stepping methods
used time steps of size h = 1/12−2.5 to h = 1/12−6.5, changing the value by factors of 12. The
error is the strong l2 error computed over the time series. (D) Same setup as the previous
plot but using the weak error at the final time-point.
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Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 2−7 2−4 2.62 1.0x
SOSRI 2−7 2−6 2.75 1.0x
SOSRI 2−12 2−15 8.78 3.3x
SOSRI 2−13 2−7 3.05 1.2x
SOSRI2 2−12 2−15 8.69 3.3x
SOSRI2 2−13 2−11 5.56 2.2x
SRIW1 2−13 2−7 15.16 5.8x

Euler-Maruyama 169.96 64.8x
Runge-Kutta Milstein 182.59 69.6x

Fixed Time-step SRIW1 424.30 161.7x

DISTM
(
θ = 1

2

)
8912.91 3396x

Table 4.2: SRI times for the the EMT model on t ∈ [0, 1]. The equations were solved
10,000 times with the given tolerances to completion and the elapsed time was recorded. The
fixed time step methods had their ∆t determined as the largest ∆t in increments of powers
of 2 that produced no unstable trajectories, as shown in [90]. DISTM is the Drift-Implicit
Stochastic θ-Method

stable trajectories more than 60x faster than any of the tested fixed time step methods.

We then timed the run time to solve 10 trajectories in the t ∈ [0, 500] case (Table 4.3). This

time we found the optimal tolerance in terms of powers of 10. Once again, SRIW1 needed a

lower tolerance than is necessary in order to stay stable. SOSRI is able to solve the problem

only asking for around tol = 10−2, while the others require more (especially in absolute

tolerance as there is a stiff reactant whose values travel close to zero). One interesting point

to note is that at similar tolerances both SOSRI and SOSRI2 receive similar timings and

both over 6 times faster than the fastest SRIW1 tolerance setup. Both are nearly twice

as fast as SRIW1 when matching tolerances as well. Given the conservativeness of the

error estimators generally being around 2 orders of magnitude more precise than the local

error estimate, the low tolerance solutions are accurate enough for many phenomenological

experiments and thus present a good speedup over previous methods. The timings for Euler-

Maruyama and Runge-Kutta Milstein schemes are omitted since the tests were unable to

finish. From the results of [90] we note that the average dt for SRIW1 on the edge of its
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Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 10−2 10−2 22.47 1.0x
SOSRI 10−4 10−4 73.62 3.3x
SOSRI 10−5 10−3 89.19 4.0x
SOSRI2 10−4 10−4 76.12 3.4x
SOSRI2 10−5 10−3 121.75 5.4x
SRIW1 10−5 10−3 147.89 6.6x

DIRKM
(
θ = 1

2

)
7378.55 328.3x

DIEM
(
θ = 1

2

)
8796.47 391.4x

Table 4.3: SRI times for the the EMT model on t ∈ [0, 500]. The equations were solved
10 times with the given tolerances to completion and the elapsed time was recorded. The
fixed timestep methods had their ∆t chosen by incrementing by 10−5 until 10 consecutive
trajectories were stable. Drift-Implicit Euler Maruyama (DIEM) had ∆t = 1

60000
and Drift-

Implicit Runge-Kutta Milstein (DIRKM) had ∆t = 1
50000

.

stability had that the smallest dt was approximately 10−11. The stability region for fixed

step-size Euler-Maruyama is strictly smaller than SRIW1 (Figure 4.4) which suggests that

it would require around 5 × 1012 time steps (with Runge-Kutta Milstein being similar) to

solve to t = 500. Thus, given it takes on our setup extrapolating the time given 170 seconds

for 220 steps, this projects to around 1.6× 108 seconds, or approximately 5 years.

Retinoic Acid Stochastic Partial Differential Equation Model (6x20x100 Semi-

Stiff SDEs)

As another test we applied the methods to a method of lines discretization of a stochastic

partial differential equation (SPDE) describing the spatial regulation of the zebrafish hind-

brain via retinoic acid signaling ( Section 4.9.2) [93]. The discretization results in a system

of 6× 20× 100 SDEs. Starting from an initial zero state, a concentration gradient emerges

over t ∈ [0, 500]. Each of the methods solved the problem at the highest tolerance that was

stable giving the results in Table 4.4. Time stepping for this problem is heavily limited by

the high diffusion constant which results in a strict CFL condition for the 2nd order finite
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Algorithm Abstol Reltol Run-time (seconds) Relative Time (vs SOSRI)

SOSRI 10−1 10−2 700.76 1.0x
SOSRI2 10−3 10−3 1016.61 1.5x

Euler-Maruyama 1758.85 2.5x
SRIW1 10−5 10−3 4205.52 6.0x

Table 4.4: SRI times for the the retinoic acid SPDE model on t ∈ [0, 500]. The
equations were solved twice with the given tolerances to completion and the elapsed time
was recorded. The tolerances were chosen as the highest pair of tolerances which did not
diverge (going up by powers of 10). Note that none of the cases did the two timings vary
by more than 1% of the total run time. Euler-Maruyama used time steps of ∆t = 1/20000
since we note that at ∆t = 1/10000 approximately half of the trajectories (simulating 10)
were unstable.

difference discretization that is used (in the PDE sense), making this problem’s stepping

stability-bound for explicit methods. Because of this stiffness in the real axis, we found that

the previous high order adaptive method SRIW1 did not perform well on this problem in

comparison to Euler-Maruyama because the drift term is expensive and the extra function

calls outweighed the slightly larger timesteps. However, the enhanced stability of the SOSRI

and SOSRI2 methods allowed for much larger time steps while keeping the same number

of f calls per step, resulting in a more efficient solution when high accuracy is not neces-

sary. We note that the drift-implicit stochastic θ-method and drift implicit θRunge-Kutta

Milstein methods were too inefficient to estimate since their time steps were constrained to

be near that of the Euler-Maruyama equation due to divergence of the Newton iterations.

This SPDE could also be solved via SKenCarp by using the transformation of Section 4.5,

but from experiments on the PDE we note that efficient solution of the implicit equations

would require using a preconditioned Krylov method due to the size of the system and thus

it is left for future investigation.
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4.8 Discussion

In this work we derived stability-optimized SRK methods for additive and diagonal noise

equations, and used a transformation to allow the additive noise methods to solve affine

noise problems. Many other equations can be reduced to the additive noise case as well

using the same means. Importantly, our derivation methods utilized heavy computational

tools in order to approximately optimize otherwise intractable equations. This same method

of derivation can easily be scaled up to higher orders, and by incorporating the coefficients

for higher conditions, efficiency can be optimized as well by adding the norm of the principle

error coefficients to the optimization function. The majority of the search was performed

using global optimizers in massive parallel using a hand-optimized CUDA kernel for the

numerical integral of the characteristic function, replacing man-hours with core-hours and

effectively optimizing the method. The clear next steps are to find SRA and SRI methods

with minimal error estimates and sensible stability regions for the cases in which lower

strong error matters, and similar optimizations on SRK methods developed for small noise

problems. We note that high strong order methods were investigated because of their better

trajectory-wise convergence, allowing for a more robust solution and error estimation since

our application to transiently pathwise stiff equations requires such properties.

In this work we also derived L-stable methods for additive (and thus multiplicative and affine)

noise equations, and computationally could not find an A-B-L stable method. While our

method does not prove that no 2-stage A-B-L method exists, we have at least narrowed down

its possibility. Additionally an extension of a well-known ESDIRK method to additive noise

was developed. These ESDIRK methods have an extension which allows for mass-matrices

in the problem formulation. Using singular mass matrices, these methods also present them-

selves as integrators for a form of SDAEs with deterministic constraints. This method has an

implicit-explicit (IMEX) extension and the stochastic extension was compatible with both

tableaus. We showed that this IMEX version of the method could numerically converge
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at order 2.0 on a test problem (matching the other SRA methods), indicating that it may

achieve the sufficient condition. As an adaptive high order IMEX method, the ODE version

of the method is a common choice for large discretizations of PDEs. Thus this method

could present itself as a potentially automatic and efficient option for discretizations of large

affine noise SPDEs by being able to use a low number of time steps while minimizing the

amount of work required to solve the implicit equation. We note that adaptivity along with

efficient stage predictors was required to be more efficient than the common stochastic theta

methods since divergence of quasi-Newton steps can be common if care is not taken. After

engineering the method with all of the components together, the benchmark results showed

large efficiency gains over both the previous drift-implicit and stability-optimized explicit

methods. While previous literature questioned the applicability of L-stable integrators to

stochastic differential equations due to high error in the slow variables [70], our computations

show that this analysis may be mislead by analyzing strong order 0.5 methods. With our

higher strong order methods we see sufficiently accurate results on real stiff problems, and

this is greatly helped by time stepping adaptivity.

The main caveat for our methods is the restrictions on the form of noise. While we have shown

that an enlarged class of problems (affine noise) can handled by the integrators for additive

noise problems, this is still a very special case in the scope of possible SDEs. Diagonal noise is

a much expanded scope but is still constrained, and our implicit methods were only derived

for the additive noise case. Further research should focus on the expansion of this these

techniques to high order adaptive ESDIRK diagonal noise integrators. In addition, when g is

non-zero a “diagonal noise” problem over the complex plane does not have diagonal noise (due

to the mixing of real and complex parts from complex multiplication, and reinterpretation as

a 2n real system). Thus these methods are not applicable to problems defined in the complex

plane with complex Wiener processes. Development of similar integrators for commutative

noise problems could allow for similar performance benefits on such problems and is a topic

for future research.
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Additionally, we were not able to sufficiently improve the stability along the noise axis with

our explicit diagonal noise methods. However, this is likely due to explicitness in the noise

term. Recent research has shown that step splitting which utilize a predicted step in the

diffusion calcuation can significantly improve the stability of a method [62, 121]. Given this,

we conjecture that a form of predictor-correction, such as:

Xn+1 = Xn +
s∑
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αif
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tn + c

(0)
i h,H

(0)
i

)
(4.61)

+
s∑
i=1

(
β

(1)
i I(1) + β

(2)
i

I(1,1)√
h

+ β
(3)
i

I(1,0)

h
+ β

(4)
i

I(1,1,1)

h

)
g
(
tn + c

(1)
i h
)

(4.62)

with stages

H
(1)
i = Xn +

s∑
j=1

A
(1)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(1)
ij g

(
tn + c

(1)
j h,H

(1)
i

)√
h (4.63)

H
(0)
i = Xn +

s∑
j=1

A
(0)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(0)
ij g

(
tn + c

(1)
j h,H

(1)
i

) I(1,0)

h
(4.64)

H
(1)
i = Xn +

s∑
j=1

A
(1)
ij f

(
tn + c

(0)
j h,H

(0)
j

)
h+

s∑
j=1

B
(1)
ij g

(
tn + c

(1)
j h,H

(1)
i

)√
h

could improve the noise stability of the method while keeping explicitness and the same

tableau. However, proper convergence and stability analysis would require significant effort.

Our timings show that the current high order SRK methods are stability-bound and that

when scientific studies are only looking for small amounts of accuracy in stochastic simula-

tions, most of the computational effort is lost to generating more accurate than necessary

solutions in order to satisfy stability constraints. For additive noise problems we were able to

obtain solutions about 5x-30x faster and for diagonal noise approximately 6x than the cur-

rent adaptive methods (SRA1, SRA3, SRIW1), while common methods like Euler-Maruyama

and Drift-Implicit θ Runge-Kutta Milstein were in many cases hundreds of times slower or
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in many cases could not even finish. We have also shown that these methods are very ro-

bust even at high tolerances and have a tendency to produce the correct qualitative results

on semi-stiff equations (via plots) even when the user chosen accuracy is low. Given that

the required user input is minimal and work over a large range of stiffness, we see these as

very strong candidates for default general purpose solvers for problem-solving environments

such as MATLAB and Julia since they can easily and efficiently produce results which are

sufficiently correct. Due to a choice in the optimization, the SOSRA and SOSRA2 methods

are not as efficient at low tolerances as SRA3, so SRA3 should be used when high accuracy

is necessary (on additive or affine noise problems). However, in many cases like integrat-

ing to find steady distributions of bistable parameter regimes or generating trajectories of

phonomenological models, this ability to quickly get a more course estimate is valuable.

The stiffness detection in SDEs is a novel addition which we have demonstrated can act very

robustly. It has a control parameter ω which can be used to control the false positive and

false negative rate as needed. Note that stiff methods can achieve similar largest eigenvalue

estimates directly from the Jacobians of f (and g) given that the methods are implicit (or in

the case of Rosenbrock methods, the Jacobian must still be computed), and thus this can be

paired with a stiff solver to allow for automatic switching between stiff and non-stiff solvers.

Given that the cost for such stiffness checks is minimal and the demonstrated efficiency of

the implicit methods on stiff equations, we are interested in future studies on the efficiency

of such composite method due to the stochastic nature of stiffness in SDEs.
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4.9 Extended Information

4.9.1 Test Equations

Additive Noise Test Equation

dXt =

(
β√

1 + t
− 1

2 (1 + t)
Xt

)
dt+

αβ√
1 + t

dWt, X0 =
1

2
, (4.65)

where α = 1
10

and β = 1
20

with true solution

Xt =
1√

1 + t
X0 +

β√
1 + t

(t+ αWt) . (4.66)

Diagonal Noise Test Equation

dXt = αXtdt+ βXtdWt X0 =
1

2
, (4.67)

where α = 1
10

and β = 1
20

with true solution

Xt = X0e

(
β−α

2

2

)
t+αWt . (4.68)

Split Additive Test Equation

dXt = (f1(t,Xt) + f2(t,Xt)) dt+
αβ√
1 + t

dWt, X0 =
1

2
, (4.69)

where

f1(t,Xt) =
β√

1 + t

f2(t,Xt) = − 1

2 (1 + t)
Xt
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with true solution Equation 4.66.

4.9.2 Additive Noise Lotka-Volterra

dx = (ax− bxy) dt+ σAdW
1
t

dy = (−cy + dxy) dt+ σAdW
2
t (4.70)

where a = 1.5, b = 1, c = 3.0, d = 1.0, σA = 0.01.

Additive Noise Van Der Pol

The driven Van Der Pol equation is

dy = µ((1− x2)y − x)dt

dx = ydt (4.71)

The additive noise variant is

dy = µ((1− x2)y − x)dt+ ρdW
(1)
t

dx = y + ρdW
(2)
t (4.72)

Multiplicative Noise Lotka-Volterra

dx = (ax− bxy) dt+ σAdW
1
t

dy = (−cy + dxy) dt+ σAdW
2
t (4.73)
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where a = 1.5, b = 1, c = 3.0, d = 1.0, σA = 0.01.

Epithelial-Mesenchymal Transition Model

The Epithelial-

Mesenchymal Transition (EMT) model is given by the following system of SDEs which cor-

respond to a chemical reaction network modeled via mass-action kinetics with Hill functions

for the feedbacks. This model was introduced in [48].

A = (([TGF ] + [TGF0] (t)) /J0snail)
n0snail + ([OV OL2] /J1snail)

n1snail

d [snail1]t
dt

= k0snail + ksnail
(([TGF ] + [TGF0] (t)) /J0snail)

n0snail

(1 +A) (1 + [SNAIL] /J2snail)

− kdsnail ([snail1]− [SR])− kdSR [SR]

d [SNAIL]

dt
= kSNAIL ([snail1]− [SR])− kdSNAIL [SNAIL]

d [miR34]

dt
= kO34 +

k34

1 + ([SNAIL] /J134)
n134 + ([ZEB] /J234)

n234

− kd34 ([miR34]− [SR])− (1− λSR) kdSR [SR]

d [SR]

dt
= Tk (KSR ([snail1]− [SR]) ([miR34]− [SR])− [SR])

d [zeb]

dt
= k0zeb + kzeb

([SNAIL] /J1zeb)
n1zeb

1 + ([SNAIL] /J1zeb)
n1zeb + ([OV OL2] /J2zeb)

n2zeb

− kdzeb

(
[zeb]−

5∑
i=1

Ci
5 [ZR]

)
−

5∑
i=1

kdZRi
Ci

5 [ZRi]

d [ZEB]

dt
= kZEB

(
[zeb]−

5∑
i=1

Ci
5 [ZRi]

)
− kdZEB [ZEB]

d [miR200]

dt
= k0200 +

k200

1 + ([SNAIL] /J1200)
n1200 + ([ZEB] /J2200)

n2200

− kd200

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)

−
5∑

i=1

(1− λi) kdZRi
Ci

5i [ZRi]− (1− λTR) kdTR [TR]

d [ZR1]

dt
= Tk

(
K1

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
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(
[zeb]−

5∑
i=1

Ci
5 [ZRi]

)
− [ZR1]

)
d [ZR2]

dt
= Tk

(
K2

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR2]

)
d [ZR3]

dt
= Tk

(
K3

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR3]

)
d [ZR4]

dt
= Tk

(
K4

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR4]

)
d [ZR5]

dt
= Tk

(
K5

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
[ZR1]− [ZR5]

)
d [tgf ]

dt
= ktgf − kdtgf ([tgf ]− [TR])− kdTR [TR]

d [TGF ]

dt
= k0TGF + kTGF ([tgf ]− [TR])− kdTGF [TGF ]

d [TR]

dt
= Tk

(
KTR

(
[miR200]−

5∑
i=1

iCi
5 [ZRi]− [TR]

)
([tgf ]− [TR])− [TR]

)
d [Ecad]

dt
= k0E +

kE1

1 + ([SNAIL] /J1E)
n1E

+
kE2

1 + ([ZEB] /J2E)
n2E
− kdE [Ecad]

B = kV 1
([SNAIL] /J1V )

n1V

1 + ([SNAIL] /J1V )
n1V

+ kV 2
([ZEB] /J2V )

n2V

1 + ([ZEB] /J2V )
n2V

d [V im]

dt
= k0V +

B

(1 + [OV OL2] /J3V )
− kdV [V im]

d [OV OL2]

dt
= k00 + k0

1

1 + ([ZEB] /J0)
n0
− kdO [OV OL2]

d [OV OL2]p
dt

= kOp [OV OL2]− kdOp [OV OL2]p

where

5∑
i=1

iCi
5 [ZRi] = 5 [ZR1] + 20 [ZR2] + +30 [ZR3] + 20 [ZR4] + 5 [ZR5] ,

5∑
i=1

Ci
5 [ZRi] = 5 [ZR1] + 10 [ZR2] + 10 [ZR3] + 5 [ZR4] + [ZR5] ,

[TGF0] (t) =


1
2 t > 100

0 o.w.
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Parameter Value Parameter Value Parameter Value Parameter Value

J1200 3 J1E 0.1 K2 1 k0O 0.35

J2200 0.2 J2E 0.3 K3 1 kO200 0.0002

J134 0.15 J1V 0.4 K4 1 kO34 0.001

J234 0.35 J2V 0.4 K5 1 kdsnail 0.09

JO 0.9 J3V 2 KTR 20 kdtgf 0.1

J0snail 0.6 J1zeb 3.5 KSR 100 kdzeb 0.1

J1snail 0.5 J2zeb 0.9 TGF0 0 kdTGF 0.9

J2snail 1.8 K1 1 Tk 1000 kdZEB 1.66

k0snail 0.0005 k0zeb 0.003 λ1 0.5 k0TGF 1.1

n1200 3 n1snail 2 λ2 0.5 k0E 5

n2200 2 n1E 2 λ3 0.5 k0V 5

n134 2 n2E 2 λ4 0.5 kE1 15

n234 2 n1V 2 λ5 0.5 kE2 5

nO 2 n2V 2 λSR 0.5 kV 1 2

n0snail 2 n2zeb 6 λTR 0.5 kV 2 5

kO 1.2 k200 0.02 k34 0.01 ktgf 0.05

kzeb 0.06 kTGF 1.5 kSNAIL 16 kZEB 16

kdZR1
0.5 kdZR2

0.5 kdZR3
0.5 kdZR4

0.5

kdZR5
0.5 kdO 1.0 kd200 0.035 kd34 0.035

kdSR 0.9 kdE 0.05 kdV 0.05 kOp 10
kdOp 10

Table 4.5: Table of Parameter Values for the EMT Model.

The parameter values are given in Table 4.5.

Retinoic Acid SPDE Model

d [RAout] = (β(x) +D∆ [RAout]− b [RAout] + c [RAin]) dt + σRAout
dW

out
t

d [RAin] =

(
b [RAout] + δ [BP ] [RA− RAR]−

(
γ [BP ] + η +

α [RA− RAR]

ω + [RA− RAR]
− c
)

[RAin]

)
dt

d [RA− BP ] = (γ [BP ] [RAin] + λ [BP ] [RA− RAR]− (δ + ν [RAR]) [RA− BP ]) dt

d [RA− RAR] = (ν [RA− BP ] [RAR]− λ [BP ] [RA− RAR]) dt + σRA−RAR [RA− RAR] dW
RA−RAR
t

d [BP ] =

(
a− λ [BP ] [RA− RAR]− γ [BP ] [RAin] + (δ + ν [RAR]) [RA− BP ]− u [BP ] +

d [RA− RAR]

e + [RA− RAR]

)
dt

d [RAR] = (ζ − ν [RA− BP ] [RAR] + λ [BP ] [RA− RAR]− r [RAR]) dt

where β(x) = β0H(x − 40) with H the Heaviside step function and x = 40 is the edge of
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Parameter Value Parameter Value Parameter Value

σRAin ,σRA−RAR,σRAout 0.1 ω 100 u 0.01
b 0.17 γ 3.0 d 0.1
α 10000 δ 0.0013 e 1
β0 1 η 0.0001 a 1
c 0.1 r 0.0001 ζ 0.02
ν 0.85 λ 0.85 D 250.46

Table 4.6: Table of Parameter Values for the RA SPDE Model.

retinoic acid production [93]. The space was chosen as [−100, 400] × [0, 100] with ∆x =

∆y = 5. The boundary conditions were no-flex on every side except the right side which

had leaky boundary conditions with parameter kA = 0.002, though full no-flux does not

noticably change the results. The parameter values are given in Table 4.6.

4.9.3 SKenCarp, SOSRA, and SOSRI Tableaus

All entries not listed are zero.

SKenCarp Exact Values

K1 = 87294609440832483406992237

K2 = −53983406399371387722712393713535786276

K3 = 26826820
√

6853072660943221216270384658311461343029149665543510113394397

K4 =
K1 (K2 −K3)

4868738516734691891458097

B
(0)
2,1 =

K4 − 354038415192410790619483213666362001932

210758174113231167877981435258781706648
,

B
(0)
4,3 =

K2 −K3

8606625878152317177894269252900546591
,

B
(0)
i,j = 0 o.w.
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SOSRA

Coefficient Value Coefficient Value

α1 0.2889874966892885 β
(1)
3 0.27753845684143835

α2 0.6859880440839937 β
(2)
1 0.4237535769069274

α3 0.025024459226717772 β
(2)
2 0.6010381474428539

c
(0)
1 0 β

(2)
3 -1.0247917243497813

c
(0)
2 0.6923962376159507 A

(0)
2,1 0.6923962376159507

c
(0)
3 1 A

(0)
3,1 -3.1609142252828395

c
(1)
1 0 A

(0)
3,2 4.1609142252828395

c
(1)
2 0.041248171110700504 B

(0)
2,1 1.3371632704399763

c
(1)
3 1 B

(0)
3,1 1.442371048468624

β
(1)
1 -16.792534242221663 B

(0)
3,2 1.8632741501139225

β
(1)
2 17.514995785380226
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SOSRA2

Coefficient Value Coefficient Value

α1 0.4999999999999998 β
(1)
3 0.07561967854316998

α2 -0.9683897375354181 β
(2)
1 1

α3 1.4683897375354185 β
(2)
2 -0.8169981105823436

c
(0)
1 0 β

(2)
3 -0.18300188941765633

c
(0)
2 1 A

(0)
2,1 1

c
(0)
3 1 A

(0)
3,1 0.9511849235504364

c
(1)
1 0 A

(0)
3,2 0.04881507644956362

c
(1)
2 1 B

(0)
2,1 0.7686101171003622

c
(1)
3 1 B

(0)
3,1 0.43886792994934987

β
(1)
1 0 B

(0)
3,2 0.7490415909204886

β
(1)
2 0.92438032145683
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SOSRI

Coefficient Value Coefficient Value

A
(0)
2,1 -0.04199224421316468 α3 0.4736296532772559

A
(0)
3,1 2.842612915017106 α4 0.026404498125060714

A
(0)
3,2 -2.0527723684000727 c

(0)
2 -0.04199224421316468

A
(0)
4,1 4.338237071435815 c

(0)
3 0.7898405466170333

A
(0)
4,2 -2.8895936137439793 c

(0)
4 3.7504010171562823

A
(0)
4,3 2.3017575594644466 c

(1)
1 0

A
(1)
2,1 0.26204282091330466 c

(1)
2 0.26204282091330466

A
(1)
3,1 0.20903646383505375 c

(1)
3 0.05879875232001766

A
(1)
3,2 -0.1502377115150361 c

(1)
4 0.758661169101175

A
(1)
4,1 0.05836595312746999 β

(1)
1 -1.8453464565104432

A
(1)
4,2 0.6149440396332373 β

(1)
2 2.688764531100726

A
(1)
4,3 0.08535117634046772 β

(1)
3 -0.2523866501071323

B
(0)
2,1 -0.21641093549612528 β

(1)
4 0.40896857551684956

B
(0)
3,1 1.5336352863679572 β

(2)
1 0.4969658141589478

B
(0)
3,2 0.26066223492647056 β

(2)
2 -0.5771202869753592

B
(0)
4,1 -1.0536037558179159 β

(2)
3 -0.12919702470322217

B
(0)
4,2 1.7015284721089472 β

(2)
4 0.2093514975196336

B
(0)
4,3 -0.20725685784180017 β

(3)
1 2.8453464565104425

B
(1)
2,1 -0.5119011827621657 β

(3)
2 -2.688764531100725

B
(1)
3,1 2.67767339866713 β

(3)
3 0.2523866501071322

B
(1)
3,2 -4.9395031322250995 β

(3)
4 -0.40896857551684945

B
(1)
4,1 0.15580956238299215 β

(4)
1 0.11522663875443433

B
(1)
4,2 3.2361551006624674 β

(4)
2 -0.57877086147738

B
(1)
4,3 -1.4223118283355949 β

(4)
3 0.2857851028163886

α1 1.140099274172029 β
(4)
4 0.17775911990655704

α2 -0.6401334255743456
147



SOSRI2

Coefficient Value Coefficient Value

A
(0)
2,1 0.13804532298278663 α3 0.686995463807979

A
(0)
3,1 0.5818361298250374 α4 -0.2911544680711602

A
(0)
3,2 0.4181638701749618 c

(0)
2 0.13804532298278663

A
(0)
4,1 0.4670018408674211 c

(0)
3 1

A
(0)
4,2 0.8046204792187386 c

(0)
4 1

A
(0)
4,3 -0.27162232008616016 c

(1)
1 0

A
(1)
2,1 0.45605532163856893 c

(1)
2 0.45605532163856893

A
(1)
3,1 0.7555807846451692 c

(1)
3 1

A
(1)
3,2 0.24441921535482677 c

(1)
4 1

A
(1)
4,1 0.6981181143266059 β

(1)
1 -0.45315689727309133

A
(1)
4,2 0.3453277086024727 β

(1)
2 0.8330937231303951

A
(1)
4,3 -0.04344582292908241 β

(1)
3 0.3792843195533544

B
(0)
2,1 0.08852381537667678 β

(1)
4 0.24077885458934192

B
(0)
3,1 1.0317752458971061 β

(2)
1 -0.4994383733810986

B
(0)
3,2 0.4563552922077882 β

(2)
2 0.9181786186154077

B
(0)
4,1 1.73078280444124 β

(2)
3 -0.25613778661003145

B
(0)
4,2 -0.46089678470929774 β

(2)
4 -0.16260245862427797

B
(0)
4,3 -0.9637509618944188 β

(3)
1 1.4531568972730915

B
(1)
2,1 0.6753186815412179 β

(3)
2 -0.8330937231303933

B
(1)
3,1 -0.07452812525785148 β

(3)
3 -0.3792843195533583

B
(1)
3,2 -0.49783736486149366 β

(3)
4 -0.24077885458934023

B
(1)
4,1 -0.5591906709928903 β

(4)
1 -0.4976090683622265

B
(1)
4,2 0.022696571806569924 β

(4)
2 0.9148155835648892

B
(1)
4,3 -0.8984927888368557 β

(4)
3 -1.4102107084476505

α1 -0.15036858140642623 β
(4)
4 0.9930041932449877

α2 0.7545275856696072
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4.9.4 SRK Order Conditions

Order Conditions for Rler-SRI Methods

The coefficients(
A0, B0, β

(i), α
)

must satisfy the following order conditions to achieve order .5:

1. αT e = 1

2. β(1)T e = 1

3. β(2)T e = 0

4. β(3)T e = 0

5. β(4)T e = 0

additionally, for order 1:

1. β(1)TB(1)e = 0

2. β(2)TB(1)e = 1

3. β(3)TB(1)e = 0

4. β(4)TB(1)e = 0

and lastly for order 1.5:

1. αTA(0)e = 1
2

2. αTB(0)e = 1

3. αT
(
B(0)e

)2
= 3

2

4. β(1)TA(1)e = 1

5. β(2)TA(1)e = 0

6. β(3)TA(1)e = −1

7. β(4)TA(1)e = 0

8. β(1)T
(
B(1)e

)2
= 1

9. β(2)T
(
B(1)e

)2
= 0

10. β(3)T
(
B(1)e

)2
= −1

11. β(4)T
(
B(1)e

)2
= 2

12. β(1)T
(
B(1)

(
B(1)e

))
= 0

13. β(2)T
(
B(1)

(
B(1)e

))
= 0

14. β(3)T
(
B(1)

(
B(1)e

))
= 0

15. β(4)T
(
B(1)

(
B(1)e

))
= 1
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16.
1

2
β(1)T

(
A(1)

(
B(0)e

))
+

1

3
β(3)T

(
A(1)

(
B(0)e

))
= 0

where f, g ∈ C1,2(I × Rd,Rd), c(i) = A(i)e, e = (1, 1, 1, 1)T [95].

Order Conditions for Rler-SRA Methods

The coefficients(
A0, B0, β

(i), α
)

must satisfy the conditions for order 1:

1. αT e = 1 2. β(1)T e = 1 3. β(2)T e = 0

and the additional conditions for order 1.5:

1. αTB(0)e = 1

2. αTA(0)e = 1
2

3. αT
(
B(0)e

)2
= 3

2

4. β(1)T c(1) = 1

5. β(2)T c(1) = −1

where c(0) = A(0)e with f ∈ C1,3(I × Rd,Rd) and g ∈ C1(I,Rd) [95].

4.9.5 Derivation Details

(
I − µ∆tA

(0)
)
H

(0)
= Un + σ

I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1 (

Un + µ∆tA
(1)
H

(0)
)
,

(
I − µ∆tA

(0)
)
H

(0) −
[
σ
I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

]
µ∆tA

(1)
H

(0)
= Un + σ

I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

Un(
I − µ∆tA

(0) − µ∆tA
(1)
σ
I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)
H

(0)
=

(
I + σ

I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)
Un

H
(0)

=

(
I − µ∆tA

(0) − µσI(1,0)A
(1)
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)−1

(
I + σ

I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)
Un
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(
I − σ

√
∆tB

(1)
)
H

(1)
= Un + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

(
Un + σ

I(1,0)

∆t
B

(0)
H

(1)

)
(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)
H

(1)
= Un + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

Un(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)
H

(1)
=

(
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)
Un

H
(1)

=

(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)−1

(
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)
Un

Un+1 = Un + µ∆t

(
α ·
[(
I − µ∆tA

(0) − µσI(1,0)A
(1)
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)−1
(
I + σ

I(1,0)

∆t
B

(0)
(
I − σ

√
∆tB

(1)
)−1

)]
Un

)

+σI(1)

(
β
(1) ·

[(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)−1 (
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)]
Un

)

+σ
I(1,1)√

∆t

(
β
(2) ·

[(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)−1 (
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)]
Un

)

+σ
I(1,0)

∆t

(
β
(3) ·

[(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)−1 (
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)]
Un

)

+σ
I(1,1,1)

∆t

(
β
(4) ·

[(
I − σ

√
∆tB

(1) − µ∆tA
(1)
(
I − µ∆tA

(0)
)−1

σ
I(1,0)

∆t
B

(0)

)−1 (
I + µ∆tA

(1)
(
I − µ∆tA

(0)
)−1

)]
Un

)

Thus we substitute in the Wiktorsson approximations

I(i,i) =
1

2

(
∆W 2 − h

)
I(i,i,i) =

1

6

(
∆W 3 − 3h∆W

)
I(i.0) =

1

2
h

(
∆W +

1√
3

∆Z

)

where ∆Z ∼ N(0, h) is independent of ∆W ∼ N(0, h). By the properties of the normal

distribution, we have that

E [(∆W )n] = 0
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for any odd n and

E
[
(∆W )2] = h

E
[
(∆W )4] = 3h2

E
[
(∆W )6] = 15h3

E
[
(∆W )8] = 105h4,

and similarly for ∆Z.
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Chapter 5

DifferentialEquations.jl - A

Performant and Feature-Rich

Ecosystem for Solving Differential

Equations in Julia

This chapter was published as [92]. It details the software architecture for DifferentialEqua-

tions.jl and highlights the algorithms of 3 as a key novelty of the software. DifferentialEqua-

tions.jl’s performance advantages over previous software are detailed here and were required

to make the spatial results of 2 computable.

5.1 Summary

DifferentialEquations.jl is a package for solving differential equations in Julia. It covers

ordinary differential equations, stochastic differential equations, and (stochastic) partial dif-
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ferential equations. Through extensive use of multiple dispatch, metaprogramming, plot

recipes, foreign function interfaces (FFI), and call-overloading, DifferentialEquations.jl of-

fers a unified user interface to solve and analyze various forms of differential equations while

not sacrificing features or performance. Many modern features are integrated into the solvers,

such as allowing arbitrary user-defined number systems for high-precision and unit-checked

arithmetic, built-in multithreading and parallelism, and symbolic calculation of Jacobians.

Integrated into the package is an algorithm testing and benchmarking suite to both ensure

accuracy and serve as an easy way for researchers to develop and distribute their own meth-

ods. Together, these features build a highly extendable suite which is feature-rich and highly

performant.

5.2 Introduction

Differential equations are fundamental components of many scientific models; they are used

to describe large-scale physical phenomena like planetary systems [45] and the Earth’s climate

[51, 74], all the way to smaller scale biological phenomena like biochemical reactions [130]

and developmental processes [112, 36]. Because of the ubiquity of these equations, standard

sets of solvers have been developed, including Shampine’s ODE suite for MATLAB [106],

Hairer’s Fortran codes [41], and the Sundials CVODE solvers [46].

However, these software packages contain many limitations which stem from their implemen-

tation and the time when they were developed. Since the time of their inception, many other

forms of differential equations have become commonplace tools not only for mathematicians,

but throughout the sciences. Other forms of differential equations, such as stochastic differ-

ential equations (SDEs), have become more commonplace not only in mathematical finance

[99, 25], but also in biochemical [19, 53] and ecological models. Delay differential equations

have become a ubiquitous tool for modeling phenomena with natural delays as seen in Neu-
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roscience [17, 98] and control theory [104]. However, a user who is familiar with standard

ODE tools has to “leave the box” to find a new specialized package to handle these kinds

of differential equations, or write their own solver scripts [44]. Also, when many of these

methods were implemented the standard computer was limited by the speed of the processor.

These days, most processors are multi-core and many computers contain GPGPU [4] or Xeon

Phi [72, 30] acceleration cards and thus taking advantage of the ever-present parallelism is

key to achieving good performance.

Other design limitations stem from the programming languages used in the implementation.

Many of these algorithms, being developed in early C/Fortran, do not have abstractions for

generalized array formats. In order to use these algorithms, one must provide the solver

with a vector. In cases where a matrix or a higher dimensional tensor are the natural repre-

sentation of the differential equation, the user is required to transform their equation into a

vector equation for use in these solvers. Also, these solvers are limited to using 64-bit floating

point calculations. The numerical precision limits their use in high-precision applications,

requiring specialized codes when precision lower than 10−16 is required. Lastly, many times

these programs are interfaced via a scripting language where looping is not optimized and

where “vectorized” codes provide the most efficient solution. However, vectorized coding

in the style of MATLAB or NumPy results in temporary allocations and can lack compiler

optimizations which require type inference. This increases the computational burden of the

user-defined functions which degrades the efficiency of the solver.

The goal of DifferentialEquations.jl is build off of the foundation created by these previous

differential equation libraries and modernize them using Julia. Julia is a relatively new

programming language which is able to achieve C/Fortran-like speeds with the concise syntax

of a scripting language. The language achieves this goal by extensive utilization of multiple

dispatch and metaprogramming to design a language that is both easy for a compiler to

understand and easy for a programmer to use [5]. DifferentialEquations.jl builds off of these
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design principles to arrive at a fast, feature-rich, and highly extendable differential equations

suite which is easy to use. We start by describing the innovations in usability. In Section 5.3

we show how multiple dispatch is used to consolidate the functions the user needs to into

simple descriptive commands like solve and plot. Since these commands are used for all forms

of differential equations, the user interface is unified in a manner that makes it easy for a user

to explore other types of models. In Section 5.4 we describe the over 100 algorithms currently

available to users of DifferentialEquations.jl to solve ODEs, SDEs, and (S)PDEs. Lastly, in

Section 5.5 we show how metaprogramming is used to further simplify the user API, allowing

the user to define a function in a “mathematical format” which is automatically converted

into the computationally-efficient encoding. After that, we describe how the internals were

designed in order to be both feature-filled and highly performant. In Section 5.6 we describe

how multiple dispatch is used to write a single generic method which compiles into specialized

functions dependent on the number types given to the solver. We show how this allows for

the solvers to both achieve high performance while being compatible with any Julia-defined

number system which implements a few basic mathematical operations, including fast high

and intermediate precision numbers and unit-checked arithmetic. In Section 5.7 we describe

the experimental within-method multi-threading which is being used to further enhance the

performance of the methods, and the multi-node parallelism which is included for performing

Monte Carlo simulations of stochastic models. We then discuss some of the tools which allows

DifferentialEquations.jl to be a good test suite for the fast development and deployment of

new solver algorithms, and the tools provided for performing benchmarks. Lastly, we describe

the current limitations and future development plans.
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5.3 A Unified API Through Multiple Dispatch

DifferentialEquations.jl uses multiple dispatch on specialized types to arrive at a unified

user-API for ODEs, SDEs, and PDEs. To use the package, one follows the steps:

1. Define a problem.

2. Solve the problem.

3. Plot the solution.

This standardization of the API makes complicated solvers accessible to less programming-

inclined individuals, giving a good framework for future development and allows for the

latest research in numerical differential equations to be utilized without complications.

5.3.1 Solving ODEs

To define a problem, a user must call the constructor for the appropriate problem object.

Since ordinary differential equations (ODEs) are represented in the general form as

du

dt
= f(t, u), u(0) = u0, (5.1)

the ODEProblem is defined by specifying a function f and an initial condition u0. For example,

we can define the linear ODE using the commands:

using DifferentialEquations

f(t,y) = 0.5y

u0 = 1.5

prob = ODEProblem(f,u0)
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Many other examples are provided in the documentation and the Jupyter notebook tutorials.

To solve the ODE, the user can simply call the solve command on the problem over a specified

timespan:

timespan = [0,1] # Solve from time = 0 to time = 1

sol = solve(prob ,timespan) # Solves the ODE

By using a dispatch architecture on AbstractArrays and using the array-defined index-

ing functionality provided by Julia (such as eachindex(A)), DifferentialEquations.jl accepts

problems defined on arrays of any size. For example, one can define and solve a system of

equations where the dependent variable u is a matrix as follows:

A = [1. 0 0 -5

4 -2 4 -3

-4 0 0 1

5 -2 2 3]

u0 = rand (4,2)

f(t,u) = A*u

prob = ODEProblem(f,u0)

sol = solve(prob ,timespan)

For most other packages, one would normally have to define u as a vector and rewrite

the system of equations in the vector form. However, by allowing arbitrary problem sizes,

DifferentialEquations.jl allows the user to specify problems in the natural format and solve

directly on any array of numbers. This can be helpful for problems like discretizations

of partial differential equations (PDEs) where the matrix format matches some underlying

structure, and could result in a denser formulation.

The solver returns a solution object which holds all of the information about the solution.

Dispatches to array functions are provided on the sol object, allowing for the solution
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object act like a timeseries array. In addition, high-order efficient interpolations are lazily

constructed throughout the solution (by default, a feature which can be turned off) and the

sol object’s call is overloaded with the interpolating function. Thus the solution object can

both be used as an array of the solution values, and as a continuous approximation given by

the numerical solution. The syntax is as follows:

sol[i] # ith solution value

sol.t[i] # ith timepoint

sol(t) # Interpolated solution at time t

The solution can be plotted using the provided plot recipes through Plots.jl. The plot recipes

use the solver object to build a default plot which is customizable using any of the commands

from the Plots.jl package, and can be plotted to any plotting backend provided by Plots.jl.

For example, we can by default plot to the PyPlot backend (a Julia wrapper for matplotlib)

via the command:

plot(sol)

These defaults are deliberately made so that a standard user does not need to dig further

into the manual and understand the differences between all of the algorithms. However, an

extensive set of functionality is available if the user wishes. All of these functions can be

modified via keyword arguments. For example, to change the solver algorithm to a highly

efficient Order 7 method due to Verner [119], set the line width in the plot to 3 pixels, and

add enlarge the tick labels in the plot, one could instead use the commands:

sol = solve(prob ,alg=: Vern7) # Unrolled Verner 7

plot(sol ,xlabel="t",ylabel="u(t)")
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Figure 5.1: Example of the ODE plot recipe. This plot was created using the PyPlot
backend through Plots.jl. Shown is the solution to the 4x2 ODE with f(t, u) = Au where A
is given in the code. Each line corresponds to one component of the matrix over time.

The output of this command is shown in Figure 5.1. Note that the output is smoothed using

100 equally spaced interpolated values through the timespan.

Lastly, these solvers tie into Julia integrated development environments (IDEs) to further

enhance the ease of use. Users of the Juno IDE [56] are equipped with a progressbar and time

estimates to monitor the progress of the solver. Additionally, all of the DifferentialEqua-

tions.jl functions are thoroughly tested and documented with the Jupyter notebook system

[86], allowing for reproducible exploration.

5.3.2 Solving SDEs

By using multiple-dispatch, the same user API is offered for other types of equations. For

example, if one wishes to solve a stochastic differential equation (SDE):

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (5.2)
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then one builds an SDEProblem object by specifying the initial condition and now the two

functions, f and g. However, the rest of the usage is the same: simply use the solve and plot

functions. To extend the previous example to have multiplicative noise, the code would be:

g(t,u) = 0.3u

prob = SDEProblem(f,g,u0)

sol = solve(prob ,timespan)

plot(sol)

While this user interface is simple, the methods these algorithms can call are efficient high-

order solvers. These methods tie into the plotting functionality and IDEs in the same manner

as the ODE solvers, making it easy for users to explore stochastic modeling without having

to learn learn a new interface.

5.3.3 Solving (Stochastic) PDEs

Again, the same user API is offered for the available stochastic PDE solvers. Instead, one

builds a HeatProblem object which dispatches to algorithms for solving (Stochastic) PDEs.

An example using the previously defined functions is:

T = 5

dx = 1/2^(1)

dt = 1/2^(7)

fem_mesh = parabolic_squaremesh ([0 1 0 1],dx ,dt,T,: neumann)

prob = HeatProblem(f,σ=g)

sol = solve(fem_mesh ::FEMmesh ,prob:: HeatProblem)

Additional keyword arguments can be supplied to HeatProblem to specify boundary data

and initial condtions. Notice that the main difference is now we must specify a space-time
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mesh (and boundary conditions as optional keyword arguments). Again, the same plotting

and analysis commands apply to the solution object sol (where now the plot dispatch is to

a trisurf plot).

5.4 The Current Library of Algorithms

5.4.1 Deterministic ODE Methods

For ODE integrators, DifferentialEquations.jl offers over 80 different Runge-Kutta algorithms

in a tableau form, (what the authors could find as) the largest collection of Runge-Kutta

algorithms available in a ready-to-use format. These are implemented in a generic devector-

ized format which minimizes allocations and allows for optimizations like FSAL and Lund-

stabilized adaptive timestepping to be used [41]. In addition, the top performing and most

well-known algorithms, such as the Dormand-Prince 4/5 pair, the Bogacki-Shampine 2/3 [7]

and 4/5 pairs [103], Verner Efficient pairs [119], Dormand-Prince 8/5/3 [41], and the Feagin

Order 10, 12, and 14 methods [32, 31], have an extra optimized implementation where the

constants have been declared separately to ensure that the pieces are stack allocated, lead-

ing to even better performance. DifferentialEquations.jl also includes Rosenbrock and a few

implicit methods (Implicit Euler, Trapezoid) for stiff equations [106].

The ODE suite is rounded out by providing wrappers to other well known libraries. The

classic “Hairer” Fortran methods [41], such as dopri5, dop853, odex, and radau, are included

via a wrapper to ODEInterface.jl. The installation of these methods only requires two lines

of Julia and is thus accessible to those who are not familiar with Fortran. The Sundials ODE

solvers [46] are also accessible in DifferentialEquations.jl, allowing one to access CVODE’s

BDF and Adams-Moulton methods. These implementations are widely regarded as some of

the most efficient for stiff equations. Lastly, a wrapper to the other popular Julia package,
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ODE.jl [82], is included for completeness. After a quick Julia-only installation, all of these

algorithms are accessed through the alg keyword, meaning that no code has to be changed

in order to use these other libraries. This seamless integration allows for a user to switch

between solver libraries and access the strengths of each: the DifferentialEquations,jl native

solvers allow for extra features like arbitrary Julia-defined numeric types and have well-

developed and highly performant non-stiff solvers, while the radau and CVODE BDF solvers

are tried-and-tested solvers for highly stiff equations.

5.4.2 Stochastic ODE Methods

The SDE solver library is one of the most extensive to date. The standard Euler-Maruyama

method, a Runge-Kutta version of the Milstein method [63], the Strong Order 1.5 Rossler

SRI, and the Strong Order 2.0 Rossler SRA algorithms are provided for efficient solving of

SDEs [95]. While most other libraries provide the Kloden-Platen-Schurz Strong Order 1.5

Taylor method [50], the Rossler methods are a Runge-Kutta method which take a reduced

number of function evaluations and requires no derivative estimations, leading to a more

efficient algorithm. As with the ODE methods, specially optimized versions of the most

used tableaus, such as the SRIW1 and SRA1 methods, are provided for maximum efficiency.

Also included is an efficient algorithm for adaptive timestepping [91], a first among readily

available stochastic differential equation solver libraries. Together these algorithms form a

state-of-the-art library for stochastic differential equations.

5.4.3 (Stochastic) Poisson and Heat Methods

While the ODE and SDE libraries can be used to solve (S)PDEs themselves, DifferentialE-

quations.jl provides PDE solvers for common problems. Currently Finite Element Method

(FEM) solvers exist for the (stochastic) Poisson and Heat equations, and a Finite Differ-

163



ence Method (FDM) solver exists for a Stationary Stokes Equation. The Poisson and Heat

equation solvers include the semilinear variants, given by the equations

ut = ∆u+ f(u) (5.3)

and

−∆u = f(u) (5.4)

which are also known as the Reaction-Diffusion Equation and the stationary Reaction-

Diffusion Equation respectively. Standard methods such as the Semi-Implicit Crank-

Nicholson [24] and Implicit Euler methods can be used to solve the equations. Many solver

options can be given to tailored the method to the specific problem. For example, one can

specify the solving of the linear systems via a decomposition like LU/QR/SVD, which incurs

an upfront cost to cache but allows for faster solving if the decomposed stiffness matrix

can fit in memory, or iterative methods such as conjugate-gradient or GMRES. The implicit

equations can be solved using forward-mode auto-differentiation provided via NLSolve.jl and

ForwardDiff.jl. The finite element tools also include general FEM tools, such as those for

developing and analyzing meshes. In addition to the plot recipes, the HeatSolution object

also includes the ability to animate the solution via the command animate(sol).
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5.5 Enhanced Performance and Readability Through

Macros

5.5.1 A Macro-Based Interface

Most differential equations packages require that the user understands some details about

the implementation of the library. For example, while the famous Lorenz system is mathe-

matically defined as

dx

dt
= σ (y − x) (5.5)

dy

dt
= x (ρ− z)− y (5.6)

dz

dt
= xy − βz (5.7)

a user must re-write this function in a “computer friendly format”, defining u=[x;y;z] as

a vector and writing the equation in terms of this vector. The format for ODE.jl, which is

similar to other scripting languages like SciPy or MATLAB, is as follows:

f = (t,u,du) -> begin

du[1] = 10*(u[2]-u[1])

du[2] = u[1]*(28 -u[3]) - u[2]

du[3] = u[1]*u[2] - 8/3*u[3]

end

While this format is accepted by DifferentialEquations.jl, additional usability macros are

provided which will automatically translate user input from a more mathematical format.

For ODEs, @ode_def is provided which allows the user to define the same ODE as follows:
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f = @ode_def Lorenz begin

dx = σ*(y-x)

dy = x*(ρ-z) - y

dz = x*y - β*z

end σ=>10. ρ=>28. β=(8/3)

Since Julia allows for the use of Unicode within code, this format matches the style one would

expect to see in a TeX’d publication. The macro takes in this definition, finds the values

for the left-hand side of the form “d ”, and uses a dictionary in order to find/replace these

values to write a function which is in the format of the other scripting language libraries.

Thus the translation to a vector system can be done by DifferentialEquations.jl, allowing

the users to have more readable scripts while not sacrificing performance. In addition, the

macro produces a function which updates an input du in-place as the output. This detail

can be hard for non-programmers to understand but is required for achieving fast solutions

since otherwise every function call requires an array allocation.

5.5.2 Explicit Parameters

A unique feature from this form of function definition is that the parameters are built into the

function type itself. The actual implementation involves creating a type Lorenz with fields

for the parameters (inlining parameters defined with = instead of => during compilation).

Then the type is set to have its call overloaded by the standard f(t,u,du) function signature,

effectively acting like the appropriate function. However, the parameters are still accessible

via the type fields, for example f.a or the overloaded f[:a]. This allows for sensitivity

analysis, bifurcation diagrams, and parameter estimations to be computed using the same

function, allowing for this infrastructure to extend far beyond the domain of differential

equations solvers.
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5.5.3 Enhanced Performance Through Symbolic Calculations

Also, since the code is analyzed by the program at the expression level, silent optimizations

are able to be performed. For example, during the construction of the function, the code

is transformed into a symbolic form for use in the high-performance CAS SymEngine [113],

where the Jacobian is calculated and an in-place function for its computation is created. In

addition, the symbolic expression is inverted, allowing for stiff solvers which require inverting

Jacobians to be written as directly computed matrices and matrix multiplications.

5.5.4 Finite Element Extensions

An additional macro is provided for use in the Finite Element Methods (FEM) part of

the library. The internal library is written in a dimension-invariant form, where space is

determined by a variable x with coordinates (x1, x2, . . . , xn). These are encoded as x=x[:,1],

y=x[:,2]. Also, systems of equations internally held as a matrix where each column u[:,i]

denotes the values of ui at each element node. While suitable for the computations, this

format does not allow for readability of function definitions. The @fem_def macro allows a

user to specify a PDE in a mathematical format using space variables x, y, z and a tuple of

variable names, and produces an output which is suitable for DifferentialEquations.jl.

For example, take the Gierer-Meinhardt equations [36] with a linear forcing term:

ut = ∆u+
au

v2
+ ζ − αu+ cos(xy)t2 (5.8)

vt = ∆v + au2 + γ − βv (5.9)

Using the usability macro @fem_def, the user can define the data for an FEMProblem by
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f = @fem_def (t,x,u) GiererMeinhardt begin

du = (a*u/v^2)+ ζ -α*u+cos(x*y)*t^2

dv = a*u^2+γ-β*v

end a=1 α=1 ζ =2 γ=3 β=10

which will translate into

f = (t,x,u) -> begin

[(u[:,1]/u[: ,2]^2)+2 -u[:,1]+ cos(x[:,1]*x[: ,2])*t^2 u[: ,1]^2+3 -10*u[:,2]]

end

To really appreciate the the convenience of the macro, notice that the computer friendly

output is actually a two column vector with two expression separated by a space. Using

characters to concatenate the arrays, such as ;, would cause them to incorrectly concatenate

as one large vector. However, this causes a delicate situation because then this syntax is

spacing sensitive, meaning that the location of spaces determines the output. For an extreme

example, notice that for:

[cos(2*pi.*x[: ,1]).* cos (2*pi.*x[: ,2])./(4* pi) -sin (2.*x[: ,1]).* sin (2.*x[: ,2])./(4)]

[cos(2*pi.*x[: ,1]).* cos (2*pi.*x[: ,2])./(4* pi) - sin (2.*x[: ,1]).* sin (2.*x[: ,2])./(4)]

the first definition is two expressions and thus creates a two column array, whereas the second

incorrectly would parse as a one column vector. However, the user is effectively shielded from

such issues when using the @fem_def macro, making FEM solver more accessible.

5.6 Multiple Dispatch as a tool for Arbitrary Numerics

Julia’s base library defines its standard numeric types, Float64, Int64, etc., as concrete

subtypes of the abstract type Number. The implementation is contained within Julia: using
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the concrete BitsType as a way to store numbers, and defining the operations such as +,-,

etc. for each pair of numbers using dispatch on subtypes of Number. The result is that each

number type receives its own compiled function for each operation, resulting in performance

which is 1x with C (as can be investigated via the @code_llvm and @code_native macros).

This design allows for users to develop packages which are new number systems.

DifferentialEquations.jl utilizes Julia’s multiple dispatch architecture to allow for fast perfor-

mance over these arbitrary numerical types. The design of the integration schemes includes a

wrapper over the integration loops which matches types (to ensure type-stability), choosing

the types for the problem by the user defined u0 (the initial condition) and ∆t (the initial

timestep)(this can be overruled). It then calls a type-dependent integration function which

is optimized via JIT compilation for the numeric types given to the function. Different dis-

patches are given for subtypes of Number and AbstractArray since arrays are mutable and

heap allocated, meaning that when numbers are treated natively instead of as arrays of size

1 a large speedup can occur. This allows for the internal integration algorithms to achieve

C/Fortran speeds, while allowing for the generic numerical types and the readability of being

in Julia itself.

For a current list of number types which are compatible with DifferentialEquations.jl, check

out the “Solving Equations with Julia-Defined Types” notebook. The following subsections

highlight two important examples.

5.6.1 Case 1: Arbitrary Precision Numerics

One advantage of this design beyond speed is that it allows the user of DifferentialEquations.jl

to use any type which is a subclass of Number as the number type for the equations. This

includes not only the basic types like Float64 and Int64, but also Rational and arbitrary

precision BigFloats (based off of GNU MPFR). However, even numeric types defined in
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packages (which implement +,-,/, and for optionally for adaptive timestepping, sqrt) can

be used within DifferentialEquations.jl. Some examples which have been shown to work are

ArbFloats (a library for faster high-precision numbers than MPFR floats between 64 and

512 bits based on the Arb library of Fredrik Johansson [54]) and DecFP (an implementation

of IEEE 754-2008 Decimal Floating-Point Arithmetic).

The combination of high-performance number systems with high order Runge-Kutta methods

such as the Order 14 methods due to Feagin allows for fast solving with high accuracy. For

an example showing this combination, see the “Feagin’s Order 10, 12, and 14 methods”

notebook in the examples folder1.

5.6.2 Case 2: Unitful Numbers

This design also allows DifferentialEquations.jl to be compatible with unit-checked arith-

metic. SIUnits.jl and Unitful.jl are packages which have developed number implementations

which have units. Numbers defined by these packages automatically constrain the equations

to satisfy dimensional constraints. For example, if one tries to add a quantity with units

of seconds with a quantity with units of Newtons, it will throw an error. This is useful in

fields like physics where these dimensional analysis tools are used to check for correctness

in equations. DifferentialEquations.jl was developed such that the internal solvers satisfy

dimensional constraints. Thus one can use unitful numbers like other arbitrary number

systems. The “Unit Checked Arithmetic via SIUnits” notebook in the examples folder2 de-

scribes the usage of this feature. For example, we can solve an ODE where the dependent

variable is in terms of seconds and the independent variable is in terms of Newtons via the

following equation:

1https://github.com/JuliaDiffEq/DifferentialEquations.jl/blob/master/examples/Feagin’s
%20Order%2010%2C%2012%2C%20and%2014%20methods.ipynb

2https://github.com/JuliaDiffEq/DifferentialEquations.jl/blob/master/examples/
Unit%20Checked%20Arithmetic%20via%20SIUnits.ipynb
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using DifferentialEquations , SIUnits , SIUnits.ShortUnits

f = (t,y) -> 0.5*y

u = 1.5N

prob = ODEProblem(f,u)

sol =solve(prob ,[0,1],∆t=(1/2^4)s)

The attentive reader should realize that this will correctly throw an error: the output of the

function in an ODE must be a rate, and therefore must have units of N/s in this example.

DifferentialEquations.jl will thus return an error notifying the user that the dimensions are

off by a unit of seconds. Instead, the pleased physicists would modify the previous code by

a rate constant and use the following code instead:

f = (t,y) -> 0.5*y/3.0s

u = 1.5N

prob = ODEProblem(f,u)

sol =solve(prob ,[0,1],∆t=(1/2^4)s)

This will produce an output whose units are in terms of Newtons, and with time in terms

of seconds.

5.7 Integrated Parallelism

5.7.1 Within-Method Multithreading

DifferentialEquations.jl also includes parallelism whenever possible. One area where par-

allelism is currently being employed is via “within-method” parallelism for Runge-Kutta

methods. Using Julia’s experimental multithreading, DifferentialEquations.jl provides a mul-

tithreaded version of the DP5 solver. Benchmarks using the tools from Section 5.8 show that
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this can give a 30% speedup over the non-multithreaded algorithm for problem sizes ranging

from 75x75 matrices to 200x200 matrices. For larger problems this trails off as more time is

spent within the function evaluations, thus reducing the difference between the methods. See

the “Multithreaded Runge-Kutta Methods” notebook3 in the benchmarks folder for the most

up-to-date results as this may change rapidly along with Julia’s threading implementation.

5.7.2 Multi-Node Monte Carlo Simulations

Also, DifferentialEquations.jl provides methods for performing parallel Monte Carlo simu-

lations for SDEs. Using Julia’s pmap construct, one is able to specify for a problem to be

solved N times, and DifferentialEquations.jl will distribute this automatically across multi-

ple nodes of a cluster. A vector of results along with summary statistics is returned for the

solution. This functionality has been tested on the local UC Irvine cluster (using SGE) and

the XSEDE Comet cluster (using Slurm).

5.8 Development, Testing, and Benchmarking

DifferentialEquations.jl includes a suite specifically designed for researchers interested in de-

veloping new methods for differential equations (like the authors themselves). This includes

functionality for easy integration of new methods, extensive testing, and a benchmarking

suite.

3https://github.com/JuliaDiffEq/DifferentialEquations.jl/blob/master/benchmarks/
Multithreaded%20Runge-Kutta%20Methods.ipynb
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5.8.1 Development

The design of DifferentialEquations.jl allows for users to add new integration methods by

adding new dispatches. Let’s take as an example the ODE suite. The ODE solver first

works by setting up options and fixing types, and then calls the ode_solve function with

the first type parameter being the algorithm. Thus to define a new algorithm, one defines

a new dispatch for ode_solve where the first parameter is the symbol for the algorithm

name. For writing the internal loop, DifferentialEquations.jl provides convenience macros to

inline commonly used functionality. For example, @ode_preamble declares all of the major

arrays and the components for the adaptive timestepping, while @ode_loopheader performs

iteration tests and @ode_numberloopfooter does the adaptive timestepping (if enabled),

saving of the values, and extra features like updating the progressbar. Thus to develop the

algorithm one only needs to specify the inner loop. The following is the inner loop for the

dispatch of the classic Runge-Kutta order 4 algorithm on Numbers:

while t < T

@ode_loopheader

k1 = f(t,u)

ttmp = t+halfdt

k2 = f(ttmp ,u+halft*k1)

k3 = f(ttmp ,u+halft*k2)

k4 = f(t+t,u+t*k3)

u = u + dt*(k1 + 2(k2 + k3) + k4)/6

@ode_numberloopfooter

end

This allows for quick development of new methods with the resulting code being easy to check

against the mathematical formulation. Lastly, due to the dispatch nature of the internal
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solvers, one can add their own algorithms to DifferentialEquations.jl without modifying the

source code by adding their own dispatch to the integrator type, and pushing the symbol

for their algorithm into the algorithm dictionaries. This makes DifferentialEquations.jl an

easily extendable library which allows algorithm developers to take full advantage of the

convenience features provided by DifferentialEquations.jl.

5.8.2 Testing

The DifferentialEquations.jl suite includes a large number of testing functions to ensure

correctness of all of the algorithms. Many premade problems with analytical solutions are

provided and convergence testing functionality is included to be able to test the order of

accuracy and plot the results. All of the DifferentialEquations.jl algorithms are tested using

the Travis and AppVoyer Continuous Integration (CI) testing services to ensure correctness.

5.8.3 Benchmarking

Lastly, a benchmarking suite is included to test the efficiency of different algorithms. Two

forms of benchmarking are included: the Shootout and the WorkPrecision. A Shootout

solves using all of the algorithms in a given setup and calculates an average time (over

a user-chosen number of runs) and error for each algorithm. The WorkPrecision and

WorkPrecisionSet additionally take in vectors of tolerances and draw work-precision di-

agrams to compare algorithms. Up to date benchmarks can be found in the repository’s

benchmarks folder4. These notebooks can be opened to be run locally via the commands

using IJulia

notebook(dir=Pkg.dir("DifferentialEquations")*"/benchmarks")

4https://github.com/JuliaDiffEq/DifferentialEquations.jl/tree/master/benchmarks
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As of this publication, the benchmarks show an order of magnitude speedup on nonstiff prob-

lems when achieving the same error over the classic Hairer Runge-Kutta implementations

and the ODE.jl implementations.

5.9 Limitations and Future Development Plans

While DifferentialEquations.jl already offers many new features and high performance, the

package is still under heavy development and will be for the foreseeable future. Currently,

most of the methods for stiff equations are wrapped methods (only the Rosenbrock with-

/without local extrapolation, and the order 1/2 BDF methods exist in native forms). While

these methods, such as CVODE and radau, are widely regarded standards for stiff ODEs,

by not being native Julia functions these algorithms choices do not allow for the extra func-

tionality such as arbitrary precision and unit-checked arithmetic (these features require a

pure-Julia implementation). Also, DifferentialEquations.jl is currently limited on the types

of PDEs it natively supports, and the mesh generation tools are still in their infancy.

To address these issues and more, planned functionality includes (but is not limited to):

• Native and wrapped solvers for Differential Algebraic Equations (DAEs) and Differen-

tial Delay Equations (DDEs)

• Finite Difference Methods for common elliptic, parabolic, and hyperbolic PDEs, in-

cluding high order methods for SPDEs

• Highly parallel accelerated solvers using GPGPUs and Xeon Phi cards (prototypes

have already been developed [89])

• A web interface to allow for easy numerical solving of differential equations for non-

programmers
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• Parameter sensitivity checking

• High order methods for stiff SDEs

For the greater DifferentialEquations ecosystem, the existence of mutable parameters inside

of functioned declared by the function definition macros allows for bifurcation plotting and

parameter inference to occur on the same functions/types, a convenience which will be

exploited within DifferentialEquations or by other packages in the Julia ecosystem. Check

the repository issues for the most up to date roadmap.

5.10 Quality Control

Continuous Integration testing with the latest versions of Julia on Mac, Linux, and Windows

are provided via Travis and AppVoyer. These tests check most of the features of Differen-

tialEquations.jl, including the convergence of each algorithm, the ability to plot, the number

types used in the computations, and more. Coveralls and Coverage badges are provided on

the repository for test coverage analysis, and currently these show a 91% test coverage. As

with other Julia packages, a user can check to see if these functionalities are working on their

local machine via the command Pkg.test(“DifferentialEquations”). Benchmarks in Jupyter

notebooks are provided to test the differences between the integrator implementations.

5.11 Reuse Potential

Ordinary differential equations, stochastic differential equations, and partial differential

equations form the bedrock of many scientific fields. Therefore, there is no question as

to whether numerical differential equation solvers will be used, rather which ones will be

used. Julia is a relatively young language which is seeing rapid adoption in the fields of
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data science and scientific computing due to the performance and productivity that it offers.

Because of this, many scientists using Julia will need these tools either as a means to ana-

lyze models themselves, or as intermediate tools in more complex methods. With its ease of

extendability, its already vast capabilities, and the rapid pace at which this software is being

developed, DifferentialEquations.jl looks to be a viable choice for many Julians looking for

a differential equations library.
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