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Abstract of the Dissertation

Pattern Formation via Eigenstructure Assignment

by

Andy Wu

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2016

Professor Tetsuya Iwasaki, Chair

Complex dynamical systems often exhibit formation of a pattern in observed variables in the

steady state. These patterns can range from the synchronization of multiple agents to the

coordinated oscillation of the observed variables. The research in this dissertation formulates

a general pattern formation problem as the design of a feedback controller such that selected

outputs of a linear plant exponentially converge to ReΛtηo for some vector ηo, with prescribed

matrices R and Λ. We show that the problem reduces equivalently to an eigenstructure

assignment problem, and provide a necessary and sufficient condition for existence of a

feasible controller as well as a parameterization of all such controllers. An important special

case is when the system consists of multiple subsystems (or “agents”) subjected to local

interactions to reach consensus or an arbitrary pattern specified by their relative positioning

in the state space. This general theory is further specialized to give a complete solution

to a heterogeneous multi-agent synchronization problem. Three numerical examples are

provided to demonstrate the efficacy of the proposed design method: the first emphasizes

the importance of the desired pattern in reducing the complexity of the controller, the second

illustrates the significance of adaptive pattern formation through sensory feedback, and the

third suggests an extension for achieving stable limit cycles by additional nonlinearities.

The theory for controller design to achieve stable limit cycles is further explored with the

consideration of the nonlinear central pattern generator (CPG)-based controller. Through

a linear approximation of the CPG-based controller using a describing function, it is shown

that the limit cycle design reduces to an eigenstructure assignment problem. Two examples
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are provided which demonstrate the application of this theory in limit cycle design: one in

which a single limit cycle is designed using the eigenstructure assignment method for a three

link mechanical arm and a second in which a single CPG-based controller is designed to

achieve different limit cycles for two different plants in order to replicate the gait change of

a leech moving in different fluid environments.
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CHAPTER 1

Introduction

In linear systems, controllers are commonly designed in order to achieve a specified asymp-

totic behavior. Eigenstructure assignment is a classical design methodology used to specify

(a subset of) closed-loop eigenvalues and associated eigenvectors to achieve a desired behav-

ior for a linear system. It was originally motivated by the exploitation of the extra freedom

offered by multiple control inputs beyond assigning the full set of closed-loop eigenvalues

by static state feedback [2–5]. The extra eigenvector specification allows for multi-mode

decoupling/shaping, and was used extensively for flight control [6–10] and later for fault

detection [11–15].

As a theoretical basis, exact characterizations of assignable eigenvectors using the freedom

beyond the pole placement were given in [16, 17] for the state feedback case. Later works,

[18–20], saw the use of static output feedback controllers and provided insights into assignable

eigenstructures. However, the use of static gains in the absence of full state information

considerably restricts the freedom in assigning eigenstructures. This motivated approximate

eigenstructure assignment through projection [21–23]. More recently, [24] suggested the

use of dynamic feedback with partial pole placement to leave more freedom for eigenvector

assignment. However, the focus of the paper was not solely on the eigenstructure assignment

and the issue was not addressed in depth. To date, a complete theory for eigenstructure

assignment has yet to be established.

Pattern formation problems have recently gained much attention in multiple contexts

[1,25–28], and their connections to eigenstructure assignment have been gradually recognized.

Various dynamical properties for pattern formation, including consensus, synchronization,

and coordinated oscillations, turned out to be related to eigenstructure assignment as we will
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briefly review in the following two paragraphs. Individual problems have been formulated and

approached independently, but complete solutions are not yet available. A general theory of

eigenstructure assignment, if developed, would shed new light on pattern formation problems.

The design of nonlinear oscillators for coordinated oscillations was considered in [28],

using the biological structure of central pattern generators (CPGs). The problem was for-

mulated as the search for a matrix that specifies the interconnections between agents (i.e.

neurons) so that a stable limit cycle is achieved with a prescribed oscillation profile. It was

shown that the problem reduces approximately to an eigenstructure assignment through mul-

tivariable harmonic balance, with eigenvalue and eigenvector specifying the frequency and

relative amplitudes/phases, respectively. The idea was extended for feedback control design

to generate coordinated oscillations for a linear plant [29], however, the resulting eigenstruc-

ture assignment problem was formulated as a static output feedback stabilization problem

which is difficult to solve in general and their solution was found through the use of heuristic

algorithms. Because is no theory to determine the feasiblility and parameterization of con-

trollers to assign a specified eigenstructure, a systematic method for designing controllers to

achieve limit cycles in a nonlinear closed-loop could not be established. A complete theory

on eigenstructure assignment would allow for a systematic method for designing controllers

for limit cycles and bypass the need to rely on heuristic algoritms.

Another pattern formation problem of recent popularity in the controls community is the

consensus of multiple agents. Earlier researches [25,30–33] have noted the importance of the

communication or graph structure in reaching consensus between agents. A fundamental

observation is that the inter-agent coupling is designed so that the target state of consensus

is achieved in the eigenspace of the corresponding graph Laplacian associated with the zero

eigenvalue. Building on those developments, a linear homogeneous consensus problem was

solved in [34], and later extended to the case of heterogeneous agents [1]. This reference

showed an internal model principle in terms of a regulator equation, clearly indicating a

strong connection to eigenstructure assignment [35]. However, the structure of the controller

given by [1] is potentially restrictive as the control input to each agent is independent of

sensory feedback from any other agent. This drawback has been overcome for some classes

2



of heterogeneous agents, including integrators [36], minimum-phase agents [37], and right-

invertible agents [38], but a general theory without restrictions on agent dynamics has yet

to be established.

This dissertation formulates a general pattern formation problem of designing a linear

static or dynamic output feedback controller for a linear time-invariant plant to achieve

the following specifications for the autonomous closed-loop system: Given a matrix R and

matrix with non-negative eigenvalues Λ and starting with an arbitrary initial state, selected

plant outputs exponentially converge to a trajectory ReΛtηo for some vector ηo dependent

on the initial state. The spatial shape (relative positioning of output variables) is specified

by R, and its time evolution (constancy, growth, or oscillation) is specified by Λ. Thus

ReΛtηo can be viewed as a spatio-temporal pattern exhibited by the dynamical system. In

the literature, pattern formations have often been considered for networks of multiple agents

(e.g. vehicle formations [25–27], lattice and interconnected systems [39, 40]), but here we

broaden the scope to include general unstructured and structured systems. Due to the

linearity and autonomy of the system, the size of the pattern varies depending on the initial

conditions through ηo. The dependence is inevitable within the linear framework, but we

discuss possible extensions through additional nonlinear frameworks.

In Chapter 2, the linear pattern formation problem is shown to be equivalent to an

eigenstructure assignment problem in which a subset of eigenvectors and eigenvalues are

assigned to the closed-loop system, while unassigned eigenvalues are placed in the open left-

half plane; examples of different types of linear pattern formations and their specifications

are provided. We provide nececessary and sufficient condition for solvability of the eigen-

structure assignment problem in terms of a regulator equation, and a parameterization of

all feasible controllers which embeds an internal model of the desired dynamics explicitly

or implicitly is given. Moreover, we prove separation principles, reducing the output feed-

back natural eigenstructure assignment to a double observer design plus full control, state

feedback eigenstructure assignment.

In Chapter 3, the general eigenstructure theory is extended to the case in which structured

controllers are designed for multi-agent systems. Using the results from Chapter 2, we

3



propose a systematic method for structured controller synthesis in which heterogeneous

agents have a subset of their dynamics homogenized to achieve common asymptotic behavior.

The proposed method is used to design a structured controller that has no restrictions

on individual agent dynamics, for multi-agent synchronization. The performance of this

controller is juxtaposed to the one proposed by [1], emphasizing the importance of sensory

feedback to the controller for adaptive synchronization. Furthermore, we provide conditions

for which the dynamics for the heterogeneous multi-agent pattern formation controller can be

simplified and substantiate this with an example of synchronization using a static controller.

Lastly, we touch on the design of structured controllers to achieve limit cycles for a set of

agents through the addition of a nonlinear damping term in the control input to a root agent;

an example illustrates the possibility of the proposed method.

In Chapter 4, the problem of designing nonlinear controller with a central pattern gen-

erator (CPG) architecture to achieve closed-loop limit cycles is considered. The nonlinear

controller is linearized via a describing function and the resulting problem is reduced to

an eigenstructure assignment problem using an output feedback controller. An example is

provided to show the reliability of the eigenstructure method for limit cycle design for a

three link mechanical arm actuated at each joint. This problem is further extended to the

design of multiple limit cycles with a single CPG-based controller. The multiple limit cycle

problem essentially reduces to a simultaneous stabilization problem for which we provide

formulations that can be practically solved using heuristic algorithms. A numerical simula-

tion is provided showing a single controller that achieves different specified limit cycles when

placed in a closed-loop with two different plants. Moreover, we demonstrate an effect where

changing the plant results in switching between the two limit cycles similar to the manner

in which animals change gaits in different environments.

Finally, in Chapter 5, we summarize the contributions of this research, potential appli-

cations to the community, and future avenues for which this research can be expanded.

Notation: Let R, C−, and In denote the sets of real numbers, complex numbers with

negative real parts, and integers {1, . . . , n}, respectively. For a matrix M , the notations

MT, M †, and eig(M) denote the transpose, the Moore-Penrose inverse, and the set of eigen-
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values respectively. The symbol diag(A1, . . . , An) denotes the block-diagonal matrix with

A1, . . . , An on the diagonal, and col(B1, . . . , Bn) denotes the matrix obtained by stacking

B1, . . . , Bn in a column. For a state-space system ẋ = Ax+Bu, y = Cx+Du, the mapping

from u to y is denoted by y = P̊ u with P := [D C
B A ]. The same notation y = P̊ u is used for

the static case where y = Du and P := D. For signals x and y, the notation x(t) → y(t)

means that ‖x(t)− y(t)‖ → 0 as t→ ∞.
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CHAPTER 2

Pattern Formation as Eigenstructure Assignment

We first consider the general setting where the pattern ReΛtηo is to be formed through

feedback interactions of dynamical elements, which may be completely unstructured. To this

end, let a linear time-invariant plant be given by a state-space realization

ẋ = Ax+Bu, y = Cx, z = Hx, (2.1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, y(t) ∈ R
p is the measured

output, and z(t) ∈ Rh is the performance output. We assume that (A,B) is stabilizable,

and (H,A) and (C,A) are detectable. Consider a static controller or a dynamic controller

with state xc,

u = Ky or ẋc = Acxc +Bcy, (2.2)

u = Ccxc +Dcy,

and let the closed-loop system be denoted by

ẋ = Ax, z = Hx, (2.3)

where x = x or col(x, xc) is the state vector.

Problem 1. Let a system with desired dynamics

η̇ = Λη, ζ = Rη, (2.4)

be given, where η(t) ∈ Rr, ζ(t) ∈ Rh, (R,Λ) is observable, and all the eigenvalues of Λ have

nonnegative real-parts. Given the plant (2.1), find a necessary and sufficient condition for

the existence of a controller (2.2) such that the closed-loop system (2.3) satisfies the following

properties:

6



(a) For each x(0), there exists η(0) such that z(t) → ζ(t).

(b) For each η(0), there exists x(0) such that z(t) → ζ(t).

(c) (H,A) is detectable.

Parametrize the set of all such controllers.

Properties (a) and (b) ensure that the closed-loop behavior of z(t) matches the desired

dynamics ζ(t) in the steady state, regardless of the initial conditions. It is reasonable to

require Property (c) for the control design since otherwise there is an unstable mode that

makes an internal variable diverge while the output specifications (a) and (b) are satisfied.

Problem 1 can be viewed as a pattern formation problem. In particular, the signal z(t) is

required to converge to the pattern specified by ζ(t) =ReΛtη(0) for some η(0). A pattern is

defined as relative behaviors of the entries of ζ(t). There are two primary types of patterns

captured by the linear framework depending on the eigenvalues of Λ; oscillation (complex)

and constant (real). The relative amplitudes (and phases) of the entries of ζ(t) are specified

by R, and the absolute amplitudes can be constant or growing over time, as specified by

the real part of the eigenvalues and their multiplicity. The actual values at particular time

instants depend on the initial state η(0). Below, we demonstrate how the specifications on R

and Λ can be chosen to achieve different patterns with each of the patterns generated using

the design method that will be presented later in the dissertation.

An oscillation pattern

ζk(t) = αk sin(ωt+ βk), k ∈ Ih, (2.5)

can be specified by

Λ =




0 ω

−ω 0



 , Rk =
[

ak cos(bk) ak sin(bk)
]

(2.6)

where αk = γaak and βk = bk + γb with (γa, γb) dependent on the initial condition, and Rk

is the kth row of R. Note that ak and bk, respectively, determine the relative amplitude and

phase between the outputs, ζk. The absolute amplitudes and phases depend on the initial

7



states because the closed-loop system is linear. For example, consider an oscillation pattern

defined by

ω = 3, ak = k, bk = (π/2)(k − 1), k ∈ I3.

For this pattern, we can anticipate that starting from different initial conditions will result in

different steady-state amplitudes. In the figure on the left, the outputs start with an initial

0 5 10 15 20
−3

−2

−1

0

1

2

3

 

 

Output 1
Output 2
Output 3
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Figure 2.1: Linear oscillation patterns with initial conditions starting at 1 (L) and random

initial conditions(R).

condition of 1. By contrast, the figure on the right starts with random initial conditions.

The relative amplitudes and phase relationships are kept, but the absolute amplitudes scale

depending on the initial condition and the phases are offset by a constant phase. We will later

show in an example that the amplitude can be locked with the addition of a nonlinearity.

The pattern ζk = αke
λt is given by the specification

Λ = λ ≥ 0, Rk = ak, k ∈ Ih,

where αk = γaak with γa dependent on the initial condition. This is a trajectory that either

exponentially diverges (λ > 0) or converges to a constant value (λ = 0). As with the previous

oscillation case, ak can only specify the steady-state values of an output relative to other

outputs. For example, consider a pattern defined by

λ = 0, ak = k, k ∈ I3.
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In this case, the steady-state pattern obtained by the outputs will be constants as shown in

the following figure. Both figures in Fig. 2.2 start with zero initial conditions except for a

0 5 10 15 20
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Figure 2.2: Zero initial state except for initial condition of 1 (L) and 2 (R) for output 1.

displacement of 1 and 2, respectively, for the state corresponding to output 1. Thus, we see

that the three outputs reach steady-state constants that have the same relative magnitude,

but with absolute value dependent on the initial condition. By essentially scaling the initial

condition by two, the steady-state value for each output doubled.

It is also possible to combine the basic specifications to obtain different steady-state

behaviors. For example, assigning two zero eigenvalues as a double integrator with specifi-

cations

Λ =




0 1

0 0



 , R =




1 0

0 1



 , (2.7)

achieves ζ1 = γvt + γp and ζ2 = γv for some scalars col(γp, γv) := η(0), specifying the

(initial) position and velocity. Other variations include cases where some outputs converge

to constants with prescribed relative magnitudes, while other outputs converge to oscillations

with prescribed frequency and relative phases and amplitudes.

Consider, for example, the case in which Rk and Λ are defined by (2.7) for k ∈ I3. In

this situation, we are setting Rk to be the same for every pair of outputs. We can interpret
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this to mean that each output corresponding to position will reach the same value and each

output corresponding to velocity to reach the same value. Fig. 2.3 shows the position and

velocity for one set of random initial conditions. For comparison, Fig. 2.4 shows the position
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Figure 2.3: Position (L) and Velocity (R) for one set of random initial conditions.

and velocity for a different set of random initial conditions. One should note that because
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Figure 2.4: Position (L) and Velocity (R) for a different set of random initial conditions.

we set Rk to be the same for every output, the sets of outputs synchronize regardless of

their initial conditions. This property is of interest because it will be integral to the design

of structured controllers to achieve synchronization in multi-agent systems. This will be

10



revisted in Chapter 3.

Problem 1 is a less restrictive version of the concept of system intersection proposed

by [41] in that it requires only steady-state convergence. Regardless, Problem 1 results in

similar conditions that can be characterized by the closed-loop eigenvalues and eigenvectors

as follows.

Lemma 1 Consider Problem 1. For a given controller, the closed-loop system (2.3) satisfies

the design specifications (a)–(c) if and only if the following statements hold.

(i) There exists a full column-rank matrix V such that

AV = VΛ, HV = R. (2.8)

(ii) eig(A) \ eig(Λ) ⊂ C−.

Proof. See Appendix B.

Condition (i) requires that the spectrum of the closed-loop matrix A contains the eigenvalues

of Λ, and the associated eigenvectors V give the prescribed output eigenstructure R. Thus,

the desired trajectory ζ(t) generated by (2.4) can be reproduced by the closed-loop system.

Condition (ii) constrains the closed-loop eigenvalues not associated with Λ to the open left-

half plane. This ensures that the output z(t) coincides with ζ(t) in the steady state since all

the other modes decay to zero. Problem 1 is now formulated as an eigenstructure assignment

where the controller parameters are sought to satisfy conditions (i) and (ii).

Definition 1 A controller is said to solve Problem 1 with eigenmatrix V if the closed-loop

system satisfies conditions (i) and (ii) in Lemma 1.

When the controller is dynamic with nc dimensional state space, the eigenmatrix can be

partitioned as V = col(X,Ξ), where X ∈ Rn×r and Ξ ∈ Rnc×r specify the eigenstructures

for the plant and controller states, respectively. For brevity, we may use the same notation

for the case of static controller (nc = 0), with the understanding that Ξ is an empty (0× r)

matrix and any terms containing Ξ are considered absent.
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2.1 Controller Equivalence

We aim to parametrize the set of all controllers solving Problem 1. However, some con-

trollers may be considered equivalent for the purpose of achieving the design specifications.

It turns out that removal of such redundancy simplifies the controller parametrization. The

purpose of this section is to formally define the notion of equivalence and identify a subset

of feasible controllers such that all feasible controllers can be covered by those equivalent to

members of this subset.

In many linear control designs, specifications are given in terms of the closed-loop transfer

function with internal stability. In this case, controllers are equivalent if they are stabilizable

and detectable realizations of the same transfer function. However, this notion of equivalence

does not apply to feasible controllers for Problem 1. For example, a solution to Problem

1 may be given as an open-loop controller with uncontrollable and unstable modes that

comprise an internal model for the desired dynamics; this controller transfer function is

identically zero (this will be discussed later). The key is to preserve unstable uncontrollable

modes and define equivalence within the state space framework as follows.

Definition 2 Two controllers are said to be equivalent if they are related by a combination

of state coordinate transformations and addition/removal of stable unobservable or uncon-

trollable modes that are decoupled from unstable modes.

The crucial property of controller equivalence is that the state variables being added or

removed do not contribute to u(t) in the steady state regardless of y(t). With this property,

a controller equivalent to a feasible controller also solves Problem 1. Moreover, they share

the same plant eigenmatrix.

Lemma 2 Suppose a dynamic controller K̊ with state xc ∈ Rnc solves Problem 1 with V :=

col(X,Ξ). Let T ∈ R
nc×nc be an arbitrary nonsingular matrix. Define the controller K̊o by

the coordinate transformation of K̊ so that xo := Txc is the state vector of K̊o. Then K̊o

solves Problem 1 with Vo := col(X, TΞ).
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Proof. Let K :=
[
Dc Cc

Bc Ac

]
solve Problem 1 and A = A + BKC be the closed-loop system

with state vector col(x, xc). Define Tc = diag(I, T ). Applying the coordinate transformation,

Tc, to the closed-loop system, we obtain Ao = Tc(A + BKC)T−1
c . The eigenvalues of the

closed-loop system are unchanged under a coordinate transformation so condition (ii) is

satisfied. Additionally, because of the structures of A, B, and C, Ao can also be rewritten

as Ao = A+BKoC, with Ko :=
[

Dc CcT
−1

TBc TAcT
−1

]

. Condition (i) of Lemma 1 is thereby satisfied

for Ko and Vo. Thus, K̊o solves Problem 1 with Vo := col(X, TΞ).

Lemma 2 implies that given a controller that solves Problem 1, then there exists an

infinite number of controllers that also solve Problem 1 as long as they are related by a

coordinate transformation. This property will be useful in showing the next property of

controllers that solve Problem 1.

Lemma 3 Let K̊a be a controller that solves Problem 1 with eigenmatrix Va := col(X,Ξa).

Let K̊b be a controller obtained by adding and/or removing arbitrary stable modes that are

unobservable or uncontrollable. Then K̊b solves Problem 1 with eigenmatrix Vb := col(X,Ξb)

for some Ξb.

Proof. Let us first consider the case where K̊b is obtained by removing stable unob-

servable/uncontrollable modes. Suppose K̊a has stable modes that are uncontrollable or

unobservable. Without loss of generality due to Lemma 2, let K̊a be given in a Kalman

canonical form:











u

ẋ1

ẋ2

ẋ3











=











D1 C1 C2 0

B1 A1 ∗ 0

0 0 A2 0

B3 ∗ ∗ A3





















y

x1

x2

x3











(2.9)

where A2 and A3 contain some of the stable modes that are uncontrollable and unobservable,

respectively, and A1 contains all the other modes. Let K̊b be the controller obtained by
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removing the states x2 and x3 from K̊a. Condition (i) of Lemma 1 gives HX = R and











A+BD1C BC1 BC2 0

B1C A1 ∗ 0

0 0 A2 0

B3C ∗ ∗ A3





















X

Ξ1

Ξ2

Ξ3











=











X

Ξ1

Ξ2

Ξ3











Λ, (2.10)

where Ξa = col(Ξ1,Ξ2,Ξ3). We can immediately see that Ξ2 = 0 because A2 shares no

common eigenvalues with Λ. It then follows from the first two row blocks of (2.10) that K̊b

satisfies condition (i) with V := col(X,Ξ1). To show that (ii) is satisfied, let Aa and Ab be

the closed-loop A matrices for controllers K̊a and K̊b, respectively. Then Aa is the coefficient

matrix in the left hand side of (2.10), and Ab is the 2 × 2 block matrix in the upper left

corner of Aa. Due to the structure of Aa, we have

eig(Aa) = eig(Ab) ∪ eig(A2) ∪ eig(A3).

Since A2 and A3 are Hurwitz, satisfaction of (ii) by Aa implies satisfaction of (ii) by Ab.

Next we consider the case where K̊b is obtained by adding stable unobservable/uncontrollable

modes to K̊a. Let (A1, B1, C1, D1) be the state space matrices of K̊a. Define K̊b by (2.9)

where A2, A3, C2, and B3 are arbitrary matrices with A2 and A3 being Hurwitz. We then

see that K̊b satisfies condition (i), or HX = R and (2.10) with Ξb := col(Ξ1,Ξ2,Ξ3), where

Ξ1 := Ξa, Ξ2 = 0, and Ξ3 is the unique solution to the Sylvester equation given by the last

row block of (2.10). The existence of Ξ3 is always guaranteed because A3 and Λ do not

share any common eigenvalues. Thus we have shown that there always exists Ξb satisfying

(i) when K̊b is a controller obtained by adding stable unobservable or uncontrollable modes

to K̊a. Finally, satisfaction of (ii) by K̊b can be shown in a similar manner to the previous

paragraph.

Lemma 3 shows us that the addition or removal of stable unobservable or uncontrollable

modes that are decoupled from unstable modes from a controller that solves Problem 1

results in another controller that also solves Problem 1. Combining Lemmas 2 and 3, we

can conclude that given any controller equivalent to one that solves Problem 1 must also
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solve Problem 1. This property will be very useful in parameterization the set of all feasible

controllers that solve Problem 1.

The following result shows that the controller eigenmatrix Ξ can be normalized for the

purpose of solving Problem 1.

Lemma 4 Suppose K̊a solves Problem 1 with Va := col(X,Ξa). Then there is a controller

K̊b equivalent to K̊a, that solves Problem 1 with eigenmatrix Vb := col(X,Ξb) where Ξb :=

col(I, 0).

Proof. Consider the case where K̊a in the statement is dynamic; the static case can

be shown similarly. Let xa be the state vector of K̊a, and define K̊c with state vector

xc := col(xa, xo) by adding stable unobservable modes

ẋo = Axo +Bu+G(Cxo − y)

to K̊a, where G is a matrix such that A + GC is Hurwitz. It can then be verified that

the closed-loop system (2.3) satisfies (2.8) with eigenmatrix Vc := col(X,Ξc) where Ξc :=

col(Ξa, X).

Now, since Va is a full column-rank matrix, Ξc also has full column rank. Hence, there

is a nonsingular matrix T that transforms Ξc into the form TΞc = Ξb := col(I, 0). Then,

defining K̊b with state vector xb := Txc by the coordinate transformation T on the controller

K̊c, one can verify that K̊b solves Problem 1 with Vb := col(X,Ξb).

By Lemma 4, V in (2.8) can be assumed to have the structure V = col(X,Ξo) with

X ∈ R
n×r and Ξo := col(Ir, 0) without loss of generality when searching for the controllers

that solve Problem 1. We will thus restrict our attention to the subset of feasible controllers

having this structure for the eigenmatrix.

2.2 Separation Principle and State Feedback

Separation principles hold for various control problems including stabilization and H2

optimal control, where the output feedback design reduces to independent designs of an
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observer and a state feedback gain. This section shows that a separation principle also holds

for the output feedback eigenstructure assignment, where the problem is broken down into a

standard observer design and a state feedback eigenstructure assignment. We will also show

how the state feedback problem can be solved, and discuss a subtlety unique to our problem.

To this end, let us first state the following.

Theorem 1 (Separation Principle) There exists an output feedback controller u = K̊y

that solves Problem 1 if and only if there exists a state feedback controller u = K̊sx that solves

Problem 1 with C = I. In particular, an output feedback controller that solves Problem 1 is

given by

u = K̊sx̂, ˙̂x = Ax̂+Bu+G(Cx̂− y), (2.11)

where G is a matrix such that A+GC is Hurwitz, and K̊s is a state feedback controller that

solves Problem 1 with C = I.

Proof. Suppose there exists an output feedback controller u = K̊oy that solves Problem

1. The closed-loop system is given by (2.3) with A = A + BKoC, where A = diag(A, 0),

B = diag(B, I), and C = diag(C, I), with identity and zero matrices of dimension equal to

the controller order. We then see that the state feedback controller u = K̊sx with Ks := KoC

solves Problem1. Thus, if there exists an output feedback controller that solves Problem 1,

then there exists a state feedback controller that solves Problem 1 with C = I.

To show the converse, suppose there exists a state feedback controller u = K̊sx that

solves Problem 1 with C = I, i.e., conditions (i) and (ii) of Lemma1 are satisfied for

A = As := A + BKs and some matrix V = Vs := col(X,Ξs). With this K̊sx, consider

the controller in (2.11) and the closed-loop system




ẋs

ė



 =




As ∗

0 A+GC








xs

e



 . (2.12)

where e := x̂ − x, xs := col(x, xs), and xs is the state vector associated with the dynamics

of K̊s. Because A := As satisfies conditions (i) and (ii) of Lemma1 and A+GC is Hurwitz,
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the closed-loop eigenvalues are the eigenvalues of Λ with the rest having negative real-parts.

Thus, condition (ii) is satisfied. Furthermore, the eigenvectors of (2.12) associated with Λ are

given by col(Vs, 0), implying that condition (i) is satisfied with eigenvector V := col(Vs, X)

for the closed-loop system with the original state coordinates x := col(xs, x̂).

Since the observer design is trivial, Problem 1 is essentially reduced to a state feedback

eigenstructure assignment. The following is the solution to the static state feedback case.

Theorem 2 (Static State Feedback) Consider Problem 1 with C = I. The following

statements are equivalent.

(i) There exists a static state feedback controller u = Kx that solves Problem 1.

(ii) There exist matrices F and full column-rank X satisfying

AX +BF = XΛ, HX = R. (2.13)

In this case, all such controllers are parametrized by

u = Kx, K := FX† + ZY †, (2.14)

where Z is an arbitrary matrix such that

eig(Y †AY + Y †BZ) ⊂ C−, (2.15)

and Y is the orthogonal complement of X.

Proof. Suppose (i) holds. Then the conditions in Lemma 1 are satisfied for A := A+BK,

H := H , and V = X with some full column-rank matrix X . Defining F = KX , the con-

ditions in (2.13) are satisfied. Thus, we have (i) ⇒ (ii). To see the converse, define a state

feedback controller by (2.14) and note that Z satisfying (2.15) always exists because stabiliz-

ability of (A,B) implies stabilizability of (Y †AY, Y †B). Applying a similarity transformation

to A+ BK, we have



X†

Y †



 (A+BK)
[

X Y
]

=




Λ ∗

0 Y †(AY +BZ)



 , (2.16)
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where ∗ denotes irrelevant entries. Because Y †(AY + BZ) is Hurwitz, we see that (2.14) is

a static controller that solves Problem 1 and therefore, (ii) ⇒ (i). It remains to show that

all feasible state feedback gains are given by (2.14) for some F and Z satisfying (2.13) and

(2.15). Let u = Kx be a controller solving Problem 1 with eigenmatrix X . Define F := KX

and Z := KY so that (2.14) holds. Then, F satisfies (2.13), which further implies that (2.16)

holds, and thus Z satisfies (2.15).

Condition (2.13) is similar to the regulator equation that gives solvability of the output

regulation problem [42], and has arisen in the context of eigenstructure assignment [35] and

output synchronization [1], topics associated with Problem1.

Solvability of Problem 1 under static feedback requires existence of F and full column-

rank X satisfying (2.13), but the full rank requirement is restrictive in general. Consider,

for example the case in which

A =




−1 0

0 −1



 , B =




0

1



 , H =




2 1

0 3



 , Λ =




0 1

0 0



 , R =




1 2

3 6



 .

The target trajectory is given by

ζ(t) = ReΛtη(0) = (a+ b t)




1

3



 ,
a := η1(0) + 2η2(0),

b := η2(0).

In this case, there is a unique solution (X,F ) satisfying (2.13):

X =




0 0

1 2



 , F =
[

1 3
]

.

The matrix X does not have full column rank, implying that there is no static state feedback

controller to achieve the output pattern formation. However, the existence of solution (X,F )

to (2.13) turns out to imply that the problem can be solved by a dynamic state feedback

controller. This is shown as a special case of the general result presented in the next section.
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2.3 General Solution

This section provides a general and complete solution to Problem 1 with no assumptions

on the controller structure (e.g. observer-based). The following result gives a necessary

and sufficient condition for solvability of Problem 1, and a parametrization of all feasible

controllers.

Theorem 3 (General Dynamic Output Feedback) The following statements are equiv-

alent.

(i) There exists a controller that solves Problem 1.

(ii) There exist matrices F and X such that (2.13) holds.

In this case, all such controllers are captured as those equivalent to the class of controllers

parametrized by



u

ξ̇



 =




F

Λ



 ξ + Q̊(y − CXξ). (2.17)

where matrices F and X satisfy (2.13), and Q̊ stabilizes the augmented plant (A,B, C) where

B :=
[

B −X
]

.

Proof. See Appendix C.

The controller in (2.17) is illustrated in Fig. 2.5. We see that the internal model of the tar-

geted eigenstructure is embedded in the controller. The mechanisms underlying the pattern

formation is most evident when the plant is stable. In this situation, choosing Q̊ to be zero

makes the transfer function from y to u zero and reduces (2.17) to the open-loop control

u = Fξ, ξ̇ = Λξ,

and the control input u to the plant is nonzero when ξ(0) 6= 0 because of the internal model.

With this controller, the closed-loop system satisfies the eigenstructure condition



A BF

0 Λ








X

I



 =




X

I



Λ, HX = R,
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and the reference signal Fξ drives the stable plant as

ẋ = Ax+BFξ

⇒ ẋ = Ax+ (XΛ−AX)ξ

⇒ ẋ−Xξ̇ = A(x−Xξ)

⇒ ‖x(t)−Xξ(t)‖ → 0

⇒ z(t) = Hx(t) → HXeΛtξ(0) = ReΛtξ(0).

Thus the rate of convergence z(t) → ζ(t) is determined by A. In the general case with

nonzero Q̊, we have similar equations:

ẋ−Xξ̇ = (A+BQ̊C)(x−Xξ), (2.18)

ξ̇ = Λξ + Q̊2C(x−Xξ),

where Q̊ = col(Q̊1, Q̊2), and the rate of convergence is dictated by the dynamics of A+BQ̊C

instead of A.

Figure 2.5: Block diagram of controller in (2.17.) where Υ(s) := (sI − Λ)−1

Given the parameterization in (2.17), the maximum controller order necessary to solve

Problem 1 is determined as sum of the dimension of ξ(t) ∈ R
r, and the order of the system

Q̊ that stabilizes the augmented plant. Under state feedback, Q̊ can be a static gain, and

the controller order is r. Under output feedback, there always exists a stabilizing controller

of order less than or equal to the plant order, n, so Problem 1 can be solved with a controller

of order less than or equal to n + r.
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In these cases, the internal model explicitly appears in the controller (2.17), accounting

for part of the controller state space of dimension r. However, when X is full column-rank,

the internal model can be made implicit by embedding it as part of the plant or observer

state space, thereby reducing the controller order. In particular, Problem 1 can be solved

with a static gain under state feedback (Theorem 2) or an observer-based controller of the

plant order under output feedback (Theorem 1). These results are special cases of Theorem

3.

The state feedback result in Theorem 2 is obtained by setting Q̊ to be a static gain of

the form col(K, J) in Theorem3. Let K be chosen as in (2.14), and J be any matrix that

makes Λ − JX Hurwitz. This choice of Q̊ stabilizes the augmented plant with C = I, and

reduces the controller in (2.17) to

u = Kx, ξ̇ = Λξ + J(x−Xξ).

The dynamics of ξ are made stable by J , and are unobservable from u. Therefore, ξ can

be removed to yield the static control u = Kx. Note that the internal model (Λ, X) is no

longer explicit but is embedded in the plant state space as in (2.16).

The observer-based controller (combination of Theorems 1 and 2) can also be parame-

terized by (2.17) with a specific choice of Q̊. In particular, q = Q̊w is a dynamic system of

the form

ẋq = Y †(A +BK +GC)Y xq − Y †Gw

q =




KY

X†(A+ BK +GC)Y



 xq −




0

X†G



w

where observer gain G and state feedback gain K are specified as in Theorems 1 and 2. It

can be shown that this Q̊ of order n − r stabilizes the augmented plant. Under a change

of coordinates defined by x̂ = Xξ + Y xq on the state col(ξ, xq) of (2.17), we can obtain the

controller in (2.11) with K̊s := K.
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2.4 Further Separation for Natural Eigenstructure Assignment

Consider the case where the target eigenstructure (R,Λ) is already embedded in the plant

as part of its natural dynamics:

AX = XΛ, HX = R, (2.19)

with some full column-rank X . The goal is to stabilize the remaining dynamics without

affecting the natural eigenstructure. Since solvability (2.13) is confirmed with F = 0, The-

orem 3 can be used to solve Problem 1. However, property (2.19) turns out to permit an

additional separation principle. We start with the simplest case of full control (B = I), state

feedback (C = I).

Lemma 5 (Full Control, State Feedback) Consider Problem 1 with B = C = I. Sup-

pose there exists a full column-rank matrix X satisfying (2.19). Then, the controller u = −Lx

solves Problem 1 if L is chosen such that LX = 0 and A−L has eigenvalues eig(Λ) with the

rest having negative real parts.

Proof. Noting that the closed-loop system satisfies

(A− L)X = XΛ,

the result follows directly from Lemma1.

The following result shows a separation principle for the state feedback case where Prob-

lem 1 is reduced to a standard state feedback stabilization and an eigenstructure assignment

with full control, state feedback.

Lemma 6 Consider Problem 1 with state feedback (C = I) and suppose there exists a full

column-rank matrix X satisfying (2.19). Let K be a state feedback gain to stabilize A+BK,

and introduce the pre-compensator

u = Kxs, ẋs = Axs +Bu+ v, (2.20)
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such that the augmented plant is described by

ε̇ = Aε+ v, ε := x− xs,

where v is the new control input. Then, the controller (2.20) with v = −Lε solves Problem

1 if L is a static gain satisfying the conditions in Lemma5.

Proof. The closed-loop system can be written as



ẋ

ẋs



 =




A BK

L A+BK − L








x

xs



 .

By Lemma5, we have LX = 0 and the above system satisfies condition (i) of Lemma1 with

eigenmatrix V := col(X, 0).

Defining es = x− xs, the system can be rewritten as



ės

ẋs



 =




A− L 0

L A+BK








es

xs



 .

By definition, A + BK is Hurwitz and the eigenvalues of A − L not shared by Λ are also

stable. Thus, condition (ii) of Lemma1 is satisfied and the controller solves Problem1.

The controller in Lemma6 is a dynamic state feedback controller with an observer-based

structure:

u = Kxs, ẋs = Axs +Bu+ L(x− xs). (2.21)

While a state observer within a state feedback controller is unusual, this control architecture

is beneficial for the eigenstructure assignment. In fact, the xs dynamics do not constitute an

observer in a strict sense; xs does not converge to x since the eigenvalues of Λ are embedded

in the error dynamics ės = (A − L)es. Using the core idea from Lemma6, let us state the

general separation result for the output feedback case.

Theorem 4 ( Separation with Double Observers) Consider Problem 1 and suppose there

exists a full column-rank matrix X satisfying (2.19). Then, a feasible controller is given by

u = Kxs, ẋs = Axs +Bu+ L(xo − xs),

ẋo = Axo +Bu+G(Cxo − y),
(2.22)
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where K and G stabilize A + BK and A + GC, and u = −Lx solves Problem 1 with

B = C = I.

Proof. The result follows directly from an application of Theorem 1 and Lemma 6.

Theorem 4 shows that the output feedback problem can be separated into three inde-

pendent designs; state feedback stabilization with K, standard observer with G, and state

feedback, full control eigenstructure assignment with L. The resulting controller has a dou-

ble observer structure, and is not of minimal order due to the dynamics associated with

xs. Although the natural eigenstructure assignment can be solved without the xs dynamics

by choosing the static gain K from Theorem 2, the use of an additional observer shifts the

search for a controller that solves Problem 1 for the general plant (A,B,C) to a search for

a controller that solves Problem 1 for the plant with B = C = I. The controller gain, L

is not restricted by the plant input/output structure, permitting flexibility in the controller

structure. The benefit of this property becomes apparent when it is applied to multi-agent

problems for which a communication topology is a common constraint. The basic idea is to

use block-diagonal K and G to stabilize the agents by local minor feedback, and then add

inter-agent coupling through L to achieve coordination between agents. We will explore this

idea in the next section.
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CHAPTER 3

Structured Eigenstructure Assignment

for Multi-agent Systems

The multi-agent pattern formation problem falls under a special case of our eigenstructure

assignment framework for which a structured controller is designed for a structured plant.

We consider the design of feedback controllers for linear heterogeneous agents with the

objective that selected outputs of the kth agent exponentially converge to Rke
Λtηo for some

ηo, where information is exchanged between selected agents. Synchronization occurs in a

special case where the same Rk is used for all agents. Our approach utilizes our general

eigenstructure theory and separation principles to design local controllers that assign the

desired dynamics to “homogenize” the modified agents, sharing the same spirit as in [38].

We then apply a standard result for synchronization of homogeneous agents [34] to achieve

the desired formation between agents. Unlike the previous results, our controller solves the

pattern formation problem with no restrictions on the agent dynamics, exploiting sensory

feedback from neighboring agents.

In this chapter, we will consider a special class of the eigenstructure assignment prob-

lem; the design of a structured controller for pattern formation between heterogeneous linear

agents. In particular, the control objective is to make selected outputs of every agent converge

to desired trajectories described by (2.4). We assume that agents must respect communi-

cation constraints; the control input to a specific agent may depend only on information

from itself and neighboring agents. A general controller that requires no assumptions on

plant dynamics is provided to solve the heterogeneous multi-agent pattern formation prob-

lem and various special cases for controller order reduction are discussed. Three examples

are provided to demonstrate how the eigenstructure theory can be utilized for structured
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controller design. In the first example, we consider a multi-agent system where the desired

steady-state behavior is described by a single eigenvalue/eigenvector pair; this will illustrate

how the controller complexity can be greatly simplified when the plant and assigned eigen-

structure satisfies certain properties. In the second example, we juxtapose the performance

of our general pattern formation controller with the one proposed by [1], specifically noting

the difference in synchronization behavior between the two controllers when subjected to

a disturbance. Finally, in the third example, we touch on the possiblity of extending the

linear pattern formation problem by considering the addition of a nonlinearity to the control

input of a single agent in order to lock the amplitude of a multi-agent design for coordinated

oscillations.

3.1 General Multi-Agent Pattern Formation Theory

Let us first consider the set of N introspective agents, where the dynamics of the kth

agent are given by

ẋk = Akxk +Bkuk, yk = Ckxk, zk = Hkxk, (3.1)

for k ∈ IN , where (Ak, Bk) is stabilizable, (Hk, Ak) and (Ck, Ak) are detectable, and nk is

the dimension of state xk. The system can be described by (2.1) with x and A defined by

x := col(x1, . . . , xN ), A = diag(A1, . . . , AN), (3.2)

and other signals and matrices are defined similarly.1 Let a matrix with non-negative eigen-

values Λ ∈ Rr×r, matrices Rk ∈ Rhk×r, and sets of integers Nk ⊆ IN for k ∈ IN be given,

where Nk specifies the neighbors of agent k, from which information may be communicated,

and by definition k 6∈ Nk. We will design a distributed controller of the form



uk

εk



 = K̊k




yk

vk



 , v = −Lε, (3.3)

1For the remainder of this chapter, we will use this notation. That is, when constants and signals are
defined by capital and lower case letters with subscripts k ∈ IN (e.g., Ak and xk), the same symbols without
the subscripts (e.g., A and x) denote the corresponding block-diagonal matrix and the column vector defined
similarly to (3.2). This notation is used whenever a symbol appears with and without the subscript k, except
for R, X and F that are defined by stacking Rk, Xk and Fk, respectively, in a column.
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where L provides the inter-agent coupling, such that the outputs of the agents satisfy zk(t) →

Rke
Λtηo for some ηo ∈ Rr depending on the initial state. More precisely, we will solve Problem

1 with the block-diagonal plant (3.1) to find the structured controller (3.3) that assigns

the eigenstructure (Λ, R) with R := col(R1, . . . , RN). This is a general pattern formation

problem on the outputs zk; when Rk = Ro for all k ∈ IN , we obtain a consensus problem.

We define L ⊂ R
N×N as the set of Laplacian matrices L for directed graphs, containing

a spanning tree, with positive weights. That is, L ∈ L if and only if L satisfies the following

properties: (a) the row sum is equal to zero, (b) all the off-diagonal entries are nonpositive,

and (c) at least one of the cofactors is nonzero. It is well known that such L ∈ L has a simple

eigenvalue at the origin, and the rest of the eigenvalues are in the open right-half plane [30].

For a given Λ ∈ Rr×r, we denote by LΛ the set of L ∈ L such that the smallest real-part of

the nonzero eigenvalues of L is greater than the largest real part of the eigenvalues of Λ. For

the control design, we assume that the directed graph specified by Nk contains a spanning

tree, and consider the Laplacian L ∈ L satisfying

Lkℓ ≤ 0 for ℓ ∈ Nk,

Lkℓ = 0 for ℓ 6∈ Nk ∪ {k},
Lkk = −

∑

ℓ∈Nk

Lkℓ. (3.4)

where the digraph topology is specified by Nk for k ∈ IN .

The following result is instrumental for later developments.

Lemma 7 Let Λ ∈ Rr×r and L ∈ LΛ be given. Then

(Λ− L)I = IΛ, (3.5)

Λ := IN ⊗ Λ, L := L⊗ Ir, I := col(Ir, . . . , Ir)

holds, and the eigenvalues of Λ − L other than those of Λ have negative real parts. Conse-

quently, we have

ε̇ = (Λ− L)ε ⇒ ε(t) → IeΛtc (3.6)

for some constant vector c dependent on ε(0).
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Proof.

The following lemmas are useful.

Lemma 8 [43] For square matrices A and B of dimensions n and m, the eigenvalues of

A ⊗ B are given by λiµj with i ∈ In and j ∈ Im, where λi and µi are the eigenvalues of A

and B, respectively.

Lemma 9 [30] The Laplacian, L, of a directed graph with a directed spanning tree and

adjacency matrix with non-negative weights has a simple eigenvalue at the origin with the

rest in the open right-half plane.

Lemma 10 [44] If matrices A,B ∈ C
n×n commute, then they can be simultaneously tri-

angularized. That is, there exists a U ∈ Cn×n such that both U−1AU and U−1BU are upper

triangular matrices.

We now prove Lemma7. Equation (3.5) is verified by noting that ΛI = IΛ and LI = 0.

By Lemma 8, the eigenvalues of L are those of L with each having a multiplicity of r.

Furthermore, Lemma 9 implies that L has r eigenvalues at the origin with the others having

strictly positive real part. Additionally, the eigenvalues of Λ are those of Λ, each repeated

N times. By Lemma 10 we can define a U such that U−1
ΛU and U−1LU are both upper

triangular since Λ and L commute. This implies that the eigenvalues of Λ − L are the

difference of the eigenvalues of Λ and L, i.e., λi − µj with λi for i ∈ Ir from Λ and µj for

j ∈ IN from L. Thus, r eigenvalues of Λ − L coincide with those of Λ, and the remaining

have strictly negative real parts due to L ∈ LΛ. Finally, (3.6) follows from a standard linear

system theory.

This result is directly useful for solving the pattern formation problem for multi-agents with

homogeneous dynamics.

Lemma 11 (Homogeneous Multi-agents) Consider Problem 1 for the multi-agent plant

given by (3.1). Suppose Ak = Λ and Ck = Hk = Rk = I for all k ∈ IN . Then the controller

28



(2.21) solves Problem 1 if

K := diag(K1, . . . , KN), L := L⊗ I,

where L ∈ LΛ and Λ +BkKk is Hurwitz.

Proof. Define a controller by (2.21). The closed-loop system can be written as



ẋ

ẋs



 =




Λ BK

L Λ+BK − L








x

xs



 ,

where Λ = IN ⊗Λ. Due to the structure of L, we note that LI = 0 where I = col(Ir, . . . , Ir)

and moreover,



Λ BK

L Λ+BK − L








I

0



 =




I

0



Λ,

which implies that (i) is satisfied for V = col(I, 0). Under a coordinate transformation,

es = x− xs, the system can be rewritten as



ės

ẋs



 =




Λ− L 0

L Λ+BK








es

xs



 .

It is clear that the eigenvalues of this system are the union of the eigenvalues of Λ− L and

the eigenvalues of Λ + BK. By definition, Λ + BK is Hurwitz and from Lemma 7, Λ− L

shares eigenvalues with Λ, and the rest in the open left-half plane. Thus we can conclude

that the controller (2.21)solves Problem 1 when the conditions in (11) are satisfied.

The essential part of the result has appeared in [34]. Our contribution is to explicitly show

the underlying principles for the control law within the framework of natural eigenstructure

assignment. More importantly, this result is essential for the heterogeneous multi-agent

pattern formation problem because the general heterogeneous problem can be reduced to a

homogeneous one through local feedback as we show below.

Theorem 5 Consider Problem 1 for the multi-agent plant given by (3.1) with signals and

matrices defined as in (3.2). The following statements are equivalent.
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(i) Problem 1 is solvable by a controller (2.2).

(ii) There exist Fk and Xk such that

AkXk +BkFk = XkΛ, HkXk = Rk, k ∈ IN . (3.7)

Suppose these conditions hold, let L ∈ LΛ be given, and for each k ∈ IN , let Gk, Φk, Kk,

and Jk be chosen to make the following three matrices Hurwitz:

Ak +GkCk, Λ + ΓkΦk, Ωk := Ak +BkKk −XkJk, (3.8)

where Γk is defined using the unique solution Mk to the Sylvester equation:

ΛMk −MkΩk = Jk, Γk =
[

MkBk I −MkXk

]

.

Then the distributed controller given by

˙̂xk = Akx̂k + Bkuk +Gk(Ckx̂k − yk) (3.9)

˙̂ηk = Λη̂k + Γkwk + vk, wk = Φkη̂k, εk = η̂k − ηk, (3.10)







ηk

uk

ξ̇k







=








I

Fk

Λ







ξk +








Mk

Kk

Jk







(x̂k −Xkξk) +








0 0

I 0

0 I







wk, (3.11)

v = −Lε, L = L⊗ Ir, (3.12)

solves Problem 1, where k ∈ IN .

Proof.

The equivalence (i) ⇔ (ii) follows directly from Theorem3. It remains to show that if

the conditions in (3.7) hold, the controller presented in (3.9)- (3.12) yields the closed-loop

system satisfying the conditions in Lemma1 and solves Problem 1. In view of Theorem1, it

suffices to show that the state feedback controller u = K̊x with K̊ specified by (3.10)-(3.12)

with x̂k replaced by xk solves Problem 1.
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The closed-loop system in (2.3) is given by








ẋ

ξ̇

˙̂η







=








A+BK B(F −KX) BO

J Λ− JX P

LM L(I −MX) Λ+ ΓΦ− L















x

ξ

η̂








where F, X, O, and P are block diagonal matrices with Fk, Xk, Ok, and Pk on the diagonal,

respectively, and Ok and Pk are defined by Φk = col(Ok,Pk). It can readily be verified

through direct calculations that the system satisfies condition (i) of Lemma1 with V =

col(X, I, 0), where we note that LI = 0, ΛJ = JΛ, FI = F , and XI = X .

Using a coordinate transformation (x, ξ, η̂) ↔ (η, e, ε), the closed-loop system can be

rewritten as







η̇

ė

ε̇







=








Λ+ ΓΦ 0 ΓΦ

BΦ Ω BΦ

0 0 Λ− L















η

e

ε







,

η := ξ +Me,

e := x− Xξ,

ε := η̂ − η.

where B is the block diagonal matrix with Bk := [ Bk − Xk ] on the diagonal. We then

see that condition (ii) of Lemma 1 is satisfied due to the Hurwitz requirement for (3.8) and

Lemma7.

The pattern formation mechanism underlying the controller in Theorem 5 is best illus-

trated in Figs. 3.1, 3.2, and 3.3 and works in two distinct steps; the first is a local controller

design (Figs. 3.1 and 3.2) to assign the eigenstructure of the desired dynamics to each agent

and homogenize the group, and the second is the inter-agent coupling to reach the desired

formation through information exchange between neighboring agents (Fig. 3.3). To better

see this, consider the case in which full-state feedback is available (Ck = I) and the ob-

server in (3.9) is replaced by x̂k = xk. We first apply Theorem3 to assign the eigenstructure

(Λ, Xk) to each agent with Qk := col(Kk, Jk) and introduce an auxiliary input wk. This local

controller is given by (3.11) with each agent under minor feedback described by




ẋk

ξ̇k



 =




Ak +BkKk Bk(Fk −KkXk)

Jk Λ− JkXk








xk

ξk



+ Bkwk.
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where Bk := diag(Bk, I). By applying a coordinate transformation (see Lemma12 in the

appendix) defined by




ηk

θk



 =




Mk I −MkXk

I −Xk








xk

ξk



 ,

dynamics for desired formation and the rest are decoupled as




η̇k

θ̇k



 =




Λ 0

0 Ωk








ηk

θk



+




Γk

Bk



wk,

where Bk := [ Bk − Xk ]. Leaving the stable dynamics θk unobservable, the agent with

the local controller is given by S̊k in Fig. 3.1. The modified agents now share homoge-

Figure 3.1: Local feedback for quasi-homogeneous state feedback agents

neous dynamics Λ. Using the idea in Lemma6 to achieve separation, we introduce the

pre-compensator in (3.10) and obtain the augmented agents S̊o as in Fig. 3.2. At this point,

the agents S̊o are set up so that zk(t) → Rke
Λtεo holds if εk(t) → −eΛtεo for some εo. We

now see that the original problem with heterogeneous agents reduced to a problem with full

control, state feedback, homogeneous agents S̊o. By Lemma7, this problem can be solved

by a constant Laplacian gain control L, giving inter-agent coupling (Fig. 3.3).
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Figure 3.2: Local feedback for homogeneous full control, state feedback agents

Figure 3.3: Inter-agent coupling for coordination

3.2 Special Cases

Using the idea of equivalence, some of the dynamics of the controller in Theorem 5 can

be removed if certain conditions are satisfied, as we will briefly cover in the following three

corollaries.

Corollary 1 If Ck=I, then the observer dynamics in (3.9) can be replaced by x̂k := xk.

Proof. Let the controller in Theorem 5 be described by (3.9) and uk = K̊kx̂k, where K̊k

contains (3.10) and (3.11). Suppose Ck = I and define ek = x̂k − xk. Then

ėk = (Ak +Gk)ek, uk = K̊k(ek + xk).

By Lemma 3, since the dynamics for ek are stable and uncontrollable, we can remove them

from the controller. Thus, the controller becomes uk = K̊kxk.
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Corollary 2 If Γk is full row-rank, then (3.10) can be replaced by

wk = −Γ†
kvk, εk = −ηk, (3.13)

where vk = −Lkε and Lk is the row block of L associated with agent k.

Proof. See Appendix D.

Corollary 3 If Xk is full column-rank, then (3.11) can be replaced by

ηk =Mkx̂k, uk = Kkx̂k +
[

I 0
]

wk.

where Kk is defined by (2.14) with subscript k added.

Proof. Suppose Xk is full column rank, and define Kk as described. Then there exists Jk

that makes Ωk Hurwitz. In particular, it can be shown through a transformation like (2.16)

that Ωk is Hurwitz if and only if Λ − JkXk is Hurwitz. Moreover, Ak + BkKk contains the

desired eigenstructure (Xk,Λ) and the rest of the eigenvalues are in the open left-half plane.

Therefore Ak + BkKk can be block-diagonalized into diag(Λ, Hk) for some Hurwitz matrix

Hk via a similarity transformation of the form [ Xk ∗ ]. Let Mk be the matrix formed by

the first r rows of the inverse of this transformation matrix. Then it can be verified that

Mk is the unique solution to the Sylvester equation in Theorem5, and yields ηk = Mkx̂k in

(3.11) due to MkXk = I. Since uk does not directly depend on ξk due to Fk = KkXk, we see

that ξk has stable, unobservable dynamics which can be removed from the controller.

Moreover, if every agent satisfies the conditions in the previous three corollaries, then

the heterogeneous multi-agent pattern formation problem can be solved with a structured

static feedback.

Corollary 4 In Theorem5, suppose Xk is full column-rank and Γk has full row-rank for

all k ∈ IN . Then Problem 1 can be solved by a static gain under state feedback, or by an

observer-based controller under output feedback:

˙̂xk = Akx̂k +Bkuk +Gk(Ckx̂k − yk), k ∈ IN (3.14)

u = Kx̂, K := K − (MB)†LM, L = L⊗ Ir (3.15)
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where L, Gk, Xk, Fk, and Ωk are specified in Theorem5, Yk is the orthogonal complement

of Xk, Zk is chosen such that Y †
k℧k is Hurwitz, and

Mk := X†
k + TkY

†
k , ℧k := AkYk +BkZk,

ΛTk − TkΩk = X†
k℧k, Kk := FkX

†
k + ZkY

†
k .

Proof. We will show that if the conditions in (3.7) hold, then the controller presented

in (3.14) and (3.15) satisfies the conditions of Lemma1 and solves Problem 1. In view of

Theorem1, it suffices to show that the state feedback controller u = Kx with K specified by

(3.15) solves Problem 1.

Suppose there exist Fk, and Xk satisfying (3.7). Define a controller u = Kx by (3.15)

and the subsequent definitions in Corollary 4. The closed-loop system of the N agents with

the controller satisfies

(A+BK)X = AX +BKX = AX +BF = XΛ,

where we note that LMX = LI = 0 for I := col(I, . . . , I), and X :=col(X1, . . . , XN) and

F :=col(F1, . . . , FN). Thus, condition (i) of Lemma 1 holds for V = X . To confirm that all

other eigenvalues are in the open left half plane, define X, Y, M , Π, and Ω̃ to be the block

diagonal matrices with Xk, Yk, Mk, Πk, and Y
†℧ on the diagonal, where Πk := Yk −XkTk.

Then applying a similarity transformation, we obtain




M

Y
†



 (A+BK)
[

X Π
]

=




Λ− L 0

0 Ω̃





where we note that MB has full row rank since Γk has full row rank, and




X
†

Y
†





[

X Y

]

= I ⇒




M

Y
†





[

X Π
]

= I.

By Lemma 7, we can conclude that with a Laplacian, L ∈ LΛ, the matrix Λ − L has

eigenvalues in the open left half plane except for one set of eigenvalues at at Λ. Because

Y †
k℧k is Hurwitz, then Ω̃ is implicitly Hurwitz and we now see that condition (ii) of Lemma
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1 is satisfied. Therefore, we conclude that the controller provided by in Corollary 4 solves

Problem 1.

Condition (3.7) for solvability of the multi-agent pattern formation problem has been

obtained in a slightly different setting outside of the eigenstructure assignment framework [1].

The condition was interpreted as the internal model of a virtual exosystem embedded in

the dynamics of each agent through local feedback. Our contributions beyond [1] include

the general controller formula fully supported by analytical understanding of the controller

architecture as described earlier. In fact, the main result (Theorem 5) of [1] can be seen as

a special case of the controller from Theorem 5.

To reproduce their controller, we set Jk = 0, which results in Mk = 0 and ηk = ξk. Let

Φk have the form col(0,Pk). Then the dynamics of η̂ and ξ reduce to




ε̇

˙̂η



 =




Λ− L 0

−L Λ+ P








ε

η̂



 , Λ := I ⊗ Λ. (3.16)

The dynamics of η̂ can be removed from the controller because

εk(t) → eΛtc, Lε(t) → 0, η̂(t) → 0,

as seen from Lemma7 and stability of Λ + Pk, and the resulting controller is given by the

observer (3.9) and

ε̇ = (Λ− L)ε, uk = Fkεk +Kk(x̂k −Xkεk), (3.17)

where εk is redefined as −εk, giving the controller in [1].

In this controller, the reference trajectory ε is generated by copies of local internal models

ε̇k = Λεk, interacting with each other through the Laplacian coupling L to achieve coordi-

nation εk(t) → εℓ(t) for all k, ℓ ∈ IN . The observer-based local feedback makes xk track

Xkεk by a mechanism similar to (2.18) so that z(t) → ReΛtc. Unlike the general controller

from Theorem 5, the reference generator receives no feedback which prevents the reference

command from being adjusted in real time, possibly leading to undesirable results.
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3.3 Design Examples

To illustrate the utility of the proposed theory, we apply the result of Theorem 5 and

Corollary 4 to the multi-agent system and consider three design objectives. The first is

the design of a distributed controller to reach consensus between multiple heterogeneous

agents to a trajectory described by a single eigenvalue. The second is the consensus of all

agents towards a constant velocity and linearly growing displacement. The response of the

controller in Theorem 5 is compared with the controller (3.17) proposed by [1] when the

plant is subjected to a disturbance. The third is on coordinated displacement oscillations

with prescribed frequency, amplitudes, and relative phases. A stable limit cycle is obtained

by adding a nonlinearity to the distributed controller at a root of the directed graph. In all

examples, the graph is designed with nearest neighbor coupling and uniform connectivity

weights, Li,i+1 = Li+1,i = −µ for i ∈ IN−1, with µ = 0.25 in the first example, µ = 5 in the

second, and µ = 10 in the third.

For the design examples in this section, we consider a system of N linear heterogeneous

agents, each of which consists of point masses connected in series by linear springs, con-

strained to move along a straight, frictionless line. For k ∈ IN , we define the kth agent to be

k+1 masses connected by k springs, actuated by a horizontal force, u1k, on the first mass and

another horizontal force, u2k, on the last mass (Fig. 3.4). With uniform mass m and stiffness

σ, the equations of motion for agent k is given by

mκ̈
1
k = −σ(κ1

k − κ
2
k) + u1k,

mκ̈
i
k = σ(κi−1

k − 2κi
k + κ

i+1
k ), i ∈ Ik \ {1},

mκ̈
k+1
k = −σ(κk+1

k − κ
k
k) + u2k

where κ
i
k is the displacement of the ith mass in the kth agent. This spring-mass system

can be visualized in Fig. 3.4. Let the system be described by the first equation in (3.1)

with state vector xk := col(κk, κ̇k) ∈ R2(k+1), and consider the state feedback case Ck = I

with (σ,m) = (1, 1) for the first example, and (σ,m) = (2, 1) for the remaining examples.

Additionally, for the second and third example, we consider the same spring-mass system,

but set u2k = 0 for the controller design.
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Figure 3.4: The kth agent.

3.3.1 Example 1: Controller Design for Assigning Scalar Λ

We first consider a design example in which the eigenstructure assigned is a single eigen-

value/eigenvector pair. This type of example is of interest specifically because such an

assignment implicitly satisfies the conditions for Corollary 4. What this further implies is

that any heterogeneous multi-agent system that has a desired trajectory that is described by

a single eigenvalue can always be solved with a structured static gain under state-feedback

or a structured observer-based controller under output feedback.

The goal of the controller design is to achieve consensus in the sense that all agents

converge to the same position as specified by the first and last masses. We set Λ = 0, Rk =

col(1, 2) and define Hk such that zk is equal to col(κ1
k,κ

k+1
k ) for agent k. The specification

on Rk ensures that the first mass of every agent converges to the same position and the last

mass converges to the displacement twice that of the first mass. We allow nearest neighbor

coupling, i.e. agent k can only communicate with agents k+1 and k−1 when k ∈ IN\{1, N},

and agents 1 and N communicate with agents 2 and N − 1, respectively. Correspondingly,

the Laplacian matrix has a tri-diagonal structure.

From a physical standpoint, (3.7) characterizes the unique equilibrium state xk(t) ≡ Xk,

representing the positions and velocities of the k th mass-spring system, and the correspond-

ing constant force input col(u1k(t), u
2
k(t)) ≡ Fk such that zk(t) ≡ Rk, i.e., the displacement of

the last mass is twice that of the first mass. We see that in the steady-state the masses are

equidistant between x1 and xk+1 and the velocities are zero, while the forces (two entries in

Fk) are in opposite directions with magnitude σ/k.

A distributed controller is obtained through Corollary 4, where uniform connectivity
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weight 0.25 for the directed graph was selected to set the Laplacian matrix. This value

gives weak inter-agent coupling when compared with the coupling of the local controllers

with each agent. Figure 3.5 gives a numerical simulation of the the positions of the first and

last mass of every agent in the closed-loop system, starting at zero initial states with the

exception of the masses of agent 1 which were given equal, nonzero velocities. We see that

the outputs zk all converge to col(η, 2η) with η = 0.166 as desired.
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Figure 3.5: Trajectories of first and last masses on the zk-plane for 5 heterogeneous agents,

all starting from zk = 0 and converging to zk = col(0.166, 0.332).

One interesting behavior to note is that the agents first approach the line zk = Rkη with

η ∈ R before moving along the line to reach consensus. This is because the inter-agent

coupling was chosen to be much weaker than the intra-agent coupling between each agent

and the local controller. The strong intra-agent coupling through Kk in (3.15) places the

eigenvalues of Ak+BkKk in the left half plane far from the origin, except for the one at λ = 0.

These nonzero eigenvalues provide the fast convergence of zk to Rkηk for some ηk ∈ R. The

additional inter-agent coupling through L in (3.15) moves N − 1 out of the N eigenvalues at

λ = 0 placed by Kk, slightly to the left to achieve consensus (i.e., a common value for ηk for

all k ∈ IN). These eigenvalues give slow convergence under the weak inter-agent coupling.
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3.3.2 Example 2: Control for Consensus

In our second example, we consider a consensus problem, where the design goal is to

make the first masses of all the agents move together at a constant speed, i.e., zk(t) →

col(γvt + γp, γv) for some constants γp and γv, where zk := col(κ1
k, κ̇

1
k). The corresponding

desired dynamics are described by (2.4) with Λ in (2.7) and

Rk = I2, Hk =




1 01×k 0 01×k

0 01×k 1 01×k



 , k ∈ I4.

where 01×k is the 1× k zero vector.

We design two consensus controllers, one by Theorem5 and another by (3.17) from [1].

To ensure parity between the controllers, we used the same Xk and Fk (minimum norm

solution to (3.7)) in both controllers as well as the same Laplacian matrix L. The only

remaining freedom was in the choice of static gains Φk and col(Kk, Jk) for our controller and

Kk (with Jk = 0) for the controller (3.17) in [1], to stabilize the matrices in (3.8). For each

gain, the problem is in the form of state feedback stabilization to choose control gain K to

make A+BK Hurwitz. We used the optimal LQR gain, Ko, that minimizes the cost function
∫∞

0
(‖x(t)‖2 + ‖u(t)‖2/103) dt for the modified plant ẋ = (A + I)x +Bu. The identity was

added to A to ensure that the eigenvalues of A+BK have real-part less than −1 to increase

the rate of convergence.

We tested the two controllers by simulations of the closed-loop systems, starting with

randomly generated initial conditions. The numerical experiments were conducted for 10,000

random initial conditions with values uniformly distributed between -1 and 1. We compared

the two with respect to settling time, ts, and the maximum input, umax, which are defined

by

ts := min to s.t. max
k∈I4

|κ̇1
k(t)− γv| ≤ 0.05 ∀ t ≥ to,

umax := max
k∈I4, t≥0

|u1k(t)|,

where γv is the steady state velocity. The results of the 10,000 simulations for each case are

shown in Fig. 3.6 with additional information on averages given in Table 3.1.
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Figure 3.6: Settling time versus max input for Theorem 5 (Blue) and [1] (Red).

Table 3.1: Comparison of average settling time, t̄s, and max input, ūmax.

Controller t̄s ūmax

Wieland et al. 2011 [1] 7.08 11116

Theorem 5 7.65 3̇656

We see that the settling times for both controllers are comparable, with a slight advantage

(roughly 8% on average) to the controller by [1]. The primary difference is the amount of

control effort required to reach consensus. The controller from Theorem5 outperforms the

controller from [1] by a factor of 3. We attribute this difference to the use of feedback in the

controller from Theorem 5. Because the reference generator from [1] receives no feedback,

the target consensus trajectory is determined only by the initial conditions of the controller.

In contrast, the controller from Theorem5 reaches the target consensus trajectory through

distributed communications based on the sensory feedback from the plant.

The advantage of feedback in our controller is best exemplified when there is a disturbance

that pushes the states exactly onto a consensus trajectory. Because the agents are not

subjected to friction, the control input is nonzero only when the agents are not in consensus.

If the agents have reached consensus, then the masses remain in consensus when subjected

to equal forcing. Without feedback, the reference generator of [1] is unaware of this and

the controller attempts to return to the same reference trajectory determined by initial
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conditions, requiring nontrivial control inputs. On the other hand, when there is feedback

as in Theorem 5, the controller recognizes that the agents are still in consensus after the

disturbance, requiring little effort to remain in consensus.

To illustrate this case, we chose the initial conditions so that the states for both closed-

loop systems initially converge to similar consensus trajectories; the velocities of the agents

converge to γv = −0.0235 and −0.0257 for the controllers in Theorem 5 and [1], respectively

(Fig. 3.7). After reaching consensus, an impulse disturbance of 0.05 Newtons was applied at

t = 9 s to every mass of each agent in the same direction; essentially an addition of equal

velocity to every mass. Since this is a consensus trajectory satisfying (2.4), the controller in

Theorem5 does (almost) nothing as seen in Fig. 3.8. In contrast, the controller from [1] does

not notice the disturbance due to the lack of feedback, and insists on the original trajectory

at γv = −0.0257. This results in the large transient, especially in the control input which

spikes to over 1800 in amplitude.

This example illustrates the importance of having feedback in a consensus controller so

that the controller allows the agents to adapt their reference trajectories in real-time.

3.3.3 Example 3: Control for Coordinated Oscillations

In the second example, we design a controller using Theorem 5 so that the first mass

of every agent oscillates with a specified frequency, amplitude, and relative phase between

agents. We use the specification in (2.6) with

ω = 5, ak = 5− k, bk = (π/3)(k − 1),

Hk =
[

1 01×(2k+1)

]

, k ∈ I4.

This choice of Λ and R leads to oscillations of the form (2.5) with αk = γaak and

βk = bk + γb where (γa, γb) are constants determined by the initial condition. Since the

closed-loop system is linear, it is impossible to regulate absolute amplitudes and phases. To

remedy this, we added a local nonlinear feedback to the control of the first agent’s first mass:

u11 = ũ1 + c(α2
1 − α̃2

1)κ̇
1
1 , α̃2

1 = (κ1
1)

2 − (κ̇1
1/ω)

2,
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Figure 3.7: Position comparison of controller in Theorem 5 (left) and controller proposed

by [1] (right) subjected to a disturbance at t = 9 s.
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Figure 3.8: Control input comparison of controller in Theorem 5 (left) and controller pro-

posed by [1] (right) subjected to a disturbance at t = 9 s.

where c and α1 are positive constants, and ũ1 is the force input generated by the original

linear controller from Theorem5. α̃1 is the amplitude of oscillation of the first agent at

a given time which results from our specification that κ1
1 is sinusoidal. This nonlinearity

does not affect the structure of the controller because it requires only information already

available to the first agent. The additional feedback stabilize the amplitude of κ1
1 to α1

with nonlinear damping that is positive when α̃1 < α1 and negative when α̃1 > α1; this

amplitude regulation propagates to the other agents through proper inter-agent coupling so

43



that αk = (ak/a1)α1. In general, this nonlinearity must be applied on an agent which is a

root of a spanning tree of the graph, otherwise, there will be an agent that does not receive

information about the desired amplitude.
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Figure 3.9: Limit cycle entrainment with the addition of a nonlinearity.

The closed-loop simulation result with c = 20 is shown in Fig. 3.9. In setting α1 = 2,

the amplitudes of oscillation for zk(t) are locked to αk = 2.5− 0.5k. We start at zero initial

state with the exception of a displacement of −1 on the first agent’s first mass. Figure 3.9

shows that the agents converge to the limit cycle of specified amplitudes and relative phases.

While we provide no rigorous proof to guarantee that the agents will converge to a limit cycle,

this example shows the potential for eigenstructure theory to encompass pattern formations

beyond the linear domain. It would be possible to expand these linear results to nonlinear

theories for pattern formation.
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CHAPTER 4

Controllers with CPG Architecture

The problem of designing feedback controllers to achieve specified coordinated oscillations

has not received as much attention as its utility would suggest. The ability to systematically

design a controller to achieve coordinated oscillations would be particularly attractive in

the field of robotics where repetitive motions are common and the ability to entrain to a

specified profile autonomously would be a desirable property. Previous work in this field

has primarily centered on the tracking of oscillatory inputs [45–47], but reference tracking

may be too strong as a requirement in certain applications because the trajectory of the

system will attempt to converge to the reference value specified at each time rather than

remain on a specified oscillation orbit (a closed curve in the state space). If the timing is

not important for the design, it would be more preferable to design feedback controllers to

achieve coordinated oscillations as the projection of a stable limit cycle of the closed-loop

system.

A limit cycle is a self-sustaining oscillation that arises from nonlinear dynamics and it can

be structurally stable, i.e., the trajectory starting from an initial point in the neighborhood

of the periodic orbit approaches the orbit. Limit cycles are well-studied and there are

established methods to analyze and predict their existence [48–53]. Presently, there have

not been many general theories for the design of feedback controllers to achieve stable limit

cycles with prescribed amplitudes, phases, and frequencies. Classical dynamical system

theories have been used to design coupled oscillators to achieve specified phases [54,55] and

PD controllers have been used in conjunction with coupled nonlinear oscillators to induce

limit cycle behavior in robots [56, 57]. However, a general theory has yet to be developed

to enable design of feedback controllers for dynamical systems to achieve stable limit cycles
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with prescribed oscillation profiles. The central pattern generator (CPG) provides a solution

to this design problem in the context of biological control systems, and has a potential to

provide a basis for such general theory for engineering applications.

The CPG is a collection of interconnected neurons responsible for the repetitive move-

ments of animal locomotion [58–63]. By itself, the CPG is a nonlinear oscillator and, when

isolated from the body dynamics, the CPG will exhibit coordinated oscillation patterns sim-

ilar to that of the observed body movements [64–67]. When placed in a closed-loop with

animal body dynamics, the CPG creates various periodic body motions observed in differ-

ent environments [68]. Because the CPG has been extensively studied and functions as a

biological controller for rhythmic motions, it is one practical choice for the architecture of

controllers to achieve coordinated oscillations [69].

Mathematical modeling and analyses of CPGs have concluded that both the stability of

oscillation as well as the profile itself is intimately connected to the eigenvalue/eigenvectors

of the neuronal interconnection matrix. More specifically, the frequency and phases of the

CPG oscillation can be predicted by the maximal eigenvalue and corresponding eigenvector,

respectively [28, 70]. In a similar manner, when the CPG is used as a controller in feedback

with a plant, the control design for closed-loop oscillation can be posed as an eigenstructure

assignment problem [29]. Within this framework, much research has been done with a focus

on CPG-based controller design for entrainment to resonance modes [71–74]. However, these

results only cover a subset of possible oscillation profiles, and the full potential of CPG control

has yet to be explored to achieve closed-loop oscillations with an arbitrary profile.

In this chapter, we present a solution to the problem of designing a CPG-based con-

troller to achieve closed-loop oscillations with prescribed amplitudes, phases, and frequency.

We consider the linear time-invariant plant and the nonlinear feedback controller based on

the CPG architecture. The controller is represented as the interconnection of multiple neu-

rons, each with identical dynamics described by a first-order low-pass filter followed by a

static nonlinearity. In our approach, the nonlinear problem is first reduced to a tractable

quasi-linear form by approximating the nonlinearity by a describing function. The method

of harmonic balance [28] then predicts that the original nonlinear closed-loop system has
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a prescribed stable limit cycle if the quasi-linear system is marginally stable with only one

pair of conjugate eigenvalues on the imaginary axis corresponding to the frequency, and the

respective eigenvectors specifying the phases and amplitudes. The aforementioned problem

can thus be formulated as an eigenstructure assignment problem for which the solution in

Chapter 2 is applicable. We further consider the design of a single controller to achieve

different eigenstructures for different plants. We demonstrate the efficacy of the proposed

design method through an example of a three-link mechanical arm to achieve an arbitrarily

specified oscillation and additionally, the design of a single controller to achieve two differ-

ent oscillations for a leech in order to emulate a change in a gait due to a change in the

environment.

4.1 Oscillation Control Problem

We consider a linear system described by

ẋ = Ax+Bu, y = Cx (4.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, and y(t) ∈ Rp is the measured

output. Denote by P (s) the transfer function from u to y. A general oscillation control

problem can be stated as follows:

Problem 2. Let a linear plant (4.1) and a desired oscillation profile for xi(t) be given, where

the latter is specified in terms of the frequency ω, amplitude ai, phase bi, and shape σi (2π-

periodic function with a normalized amplitude). Find a nonlinear dynamic output-feedback

controller such that the closed-loop system has an orbitally stable limit cycle on which

xi(t) = aiσi(ωt+ bi) holds for all i ∈ In.

The orbital stability mentioned in Problem 2 is a property of a limit cycle which means

that trajectories with initial conditions sufficiently close to the limit cycle orbit converges

to the orbit. Since the plant is assumed linear, it would be necessary to have a nonlinear

controller or else orbital stability could never be achieved due to the lack of structural

stability for any periodic orbit of a linear system. To make the control design tractable,
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we will fix the nonlinear architecture of the controller and search for the design parameters.

In particular, we choose the CPG control structure because the CPG has been extensively

studied in biology as a nonlinear oscillator that is known to generate stable limit cycles when

used in a feedback loop.

A CPG is a neuronal circuit responsible for controlling rhythmic body movements during

animal locomotion. By itself, it is a nonlinear oscillator and its oscillation profile is similar

to (but not quite the same as) observed body motion. The CPG is placed in a feedback

loop with the body so that the closed-loop system has a stable limit cycle whose projection

onto the body variable space gives a gait. It is often represented mathematically as a set

of interconnected neuron models, each of which is composed of a linear filter and static

nonlinearity. More specifically, a CPG of nc interconnected neurons can be represented by

vi = ψ(qi), qi = f(s)wi, wi =
nc∑

j=1

µijvj

for i ∈ Inc
, where wi is the input into the cell, µij represents the strength and type (either

inhibitory or excitatory) of connection from neuron j to neuron i, qi is the internal variable,

vi is the output, f(s) is a transfer function that captures time lag or adaptation properties

observed in neuronal dynamics, and ψ is the static nonlinearity that captures the threshold

property also observed in biology [75]. Although alternative choices for ψ and f(s) exist, the

work in this chapter will use

ψ(x) = tanh(x), f(s) =
1

1 + τs

where τ is the time constant for neuronal information processing and we assume that each

neuron has identical dynamics, thereby sharing the same f(s).

For compactness, the CPG can also be represented in vector form as

q = F (s)MΨ(q), v = Ψ(q), w =Mv

where q(t), v(t), and w(t) are nc-dimensional vectors,M is the interconnectivity matrix which

has µij as its (i, j)
th entry, Ψ(q) is a vector that has ψ(qi) as its i

th entry, and F (s) = f(s)I.
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In order to utilize the CPG as a feedback controller, it is necessary to insert an input-

output interface to the CPG model. Let such a form be represented by

q = F (s)(MΨ(q) +Hy), u = GΨ(q) + Ly, (4.2)

where G, H , and L are constant matrices [68]. This can be visualized through the block

diagram in Fig. 4.1.

Figure 4.1: Closed-Loop System of CPG and Plant

The closed-loop system can be represented by




ẋ

ξ̇



 =




A 0

0 Af








x

ξ



+




B 0

0 Bf








L G

H M








C 0

0 I








x

Ψ(q)



 (4.3)

where q = Cfξ, and (Af , Bf , Cf) is a minimal state space realization of F (s) with state

vector ξ. Within this framework, the control design parameters are L, G, H , M , and τ , and

we search for these parameters to satisfy the design requirements described in Problem 2.

Since τ is just a scalar and can be determined by a line search, we consider τ to be fixed in

the theoretical development and discuss its effect later in a numerical example. In the rest of

the chapter, we assume that the targeted oscillations for xi are identical and sinusoidal, i.e.,

σi(θ) := sin θ. Because Problem 2 is difficult to solve exactly, we will use the multivariable

harmonic balance (MHB) method [28] to reduce it to an approximate but tractable problem.
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4.2 The Multivariate Harmonic Balance

Consider the class of systems described as a feedback connection of a linear time-invariant

system and static nonlinearities:

ẋ = Ax+ Bw, z = Cx, w = Ψ(z) (4.4)

where w and z are vectors and the ith entry of Ψ(z) is assumed to depend only on the ith

entry of z. Note that the closed-loop system in Fig. 4.1 is just a special case of this type of

system with z := q.

In order to simplify the analysis or design of oscillations for the closed-loop system, it

would be useful to eliminate the nonlinearity. To this end, we place the system in a quasi-

linear form by approximating the static nonlinearity by its describing function,

Ψ(z) ∼= K(α)z for zi = αi sin(ωt),

where α is a vector with ith entry αi, andK(α) is a diagonal matrix such thatK(α)z coincides

with the first harmonic of Ψ(z). The resulting quasi-linearized system becomes

ẋ = Ax+ Bw, z = Cx, w = K(α)z. (4.5)

Previous MHB analysis [28] has concluded that the nonlinear system in (4.4) is expected

to have a stable limit cycle when the quasi-linear system in (4.5) is marginally stable for

some vector α, with a pair of eigenvalues of

A := A+ BK(α)C

on the imaginary axis and all the others in the open left half plane. Furthermore, the

oscillation profile for the limit cycle is predicted as

xi(t) ∼= γi sin(ωt+ δi), (4.6)

where ω, γi, and δi satisfy the MHB equation

(jωI −A)x̂ = 0, x̂i = γie
jδi,
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and |ẑi| = αi with ẑ := Cx̂. Here, x̂ is a phasor representation of the sinusoid in (4.6), which

can also be written as ℑ[x̂ejωt]. Note that the eigenvalue jω on the imaginary axis specifies

the oscillation frequency, and the eigenvector x̂ specifies the amplitudes and phases. Solving

the MHB equation for (ω, x) is nontrivial due to the coupling of A and x through α.

4.3 Reduction to Eigenstructure Assignment

We now apply the MHB method to the closed-loop system in (4.3) and approximately

reformulate Problem 2 in a more tractable form. Suppose q(t) oscillates as

qi(t) ∼= αi sin(ωt+ βi)

when the desired limit cycle is achieved for the closed-loop system. Let q̂ be the corresponding

phasor, i.e., q̂i = αie
jβi. Approximating the nonlinearity Ψ(q) by its describing function

K(α)q, the closed-loop system (4.3) can be simplified to




ẋ

ξ̇



 =




A 0

0 Af








x

ξ



+




B 0

0 Bf








L GK(α)

H MK(α)








C 0

0 Cf








x

ξ



 . (4.7)

Let us introduce the change of variables (L,G,H,M) ↔ (Ac, Bc, Cc, Dc) defined by



Dc Cc

Bc Ac



 =




0 0

0 Af



+




I 0

0 Bf








L GK(α)

H MK(α)








I 0

0 Cf



 , (4.8)

where the mapping is invertible because Bf and Cf are square invertible for the first order

low pass filter f(s). The system (4.7) can then be expressed as



ẋ

ξ̇



 = Acl




x

ξ



 , (4.9)

where

Acl = A+ BKC, A =




A 0

0 0



 , B =




B 0

0 I



 , C =




C 0

0 I



 , K =




Dc Cc

Bc Ac



 .

Note that the system (4.9) is of the form that arises from the standard output feedback

problem with plant C(sI − A)−1B and controller Cc(sI − Ac)
−1Bc +Dc.
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Based on the MHB analysis in the previous section, the nonlinear closed-loop system

(4.3) is expected to have a stable limit cycle on which xi(t) ∼= ai sin(ωt+ bi) if

(jωI − Acl)




x̂

ξ̂



 = 0 (4.10)

holds for x̂i = aie
jbi and for some complex vector ξ̂, and all the eigenvalues of Acl other

than ±jω are in the open left-half plane. Here, ξ̂ is the phasor of ξ(t), and is constrained by

|q̂i| = αi for q̂ := Cf ξ̂. The design problem has now reduced to the search for real matrices

(Ac, Bc, Cc, Dc), complex vector ξ̂, and real scalar αi, satisfying |Cf ξ̂| = α and (4.10), the

eigenvalue (marginal stability) condition. Note that αi appears only in the latter constraint

since the design freedom associated with αi in (4.10) is absorbed into the new parameters

(Ac, Bc, Cc, Dc) during the change of variables in (4.8). Consequently, the essential problem

is to find K := (Ac, Bc, Cc, Dc) and ξ̂ satisfying (4.10) and the marginal stability requirement

since the parameter αi can always be chosen as αi := |q̂i| after the design. This is an

eigenstructure assignment problem.

4.4 Further Reformulation

The eigenstructure assignment problem has two specifications: one is the MHB condition

(4.10) on the eigenvalue/eigenvector pair specifying the desired oscillation, and the other is

on the location of the rest of the eigenvalues aiming at orbital stability of the oscillation.

It would be beneficial for the design to isolate the eigenspaces associated with those on the

imaginary axis and the rest.

To this end, let

V :=




X

Ξ



 , Λ :=




0 ω

−ω 0



 , X :=
[

ℜ(x̂) ℑ(x̂)
]

, Ξ :=
[

ℜ(ξ̂) ℑ(ξ̂)
]

.

Then (4.10) becomes

AclV = VΛ. (4.11)
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Note that, for the oscillation control problem, V is necessarily full column-rank because if V

were rank-deficient, then (4.11) would imply ω = 0 or x̂ = 0, leading to a trivial solution to

the MHB equation. Since V is full column-rank, there exists a matrix N such that
[

V N
]

is square nonsingular. Furthermore, matrices W and U can be uniquely defined by




UT

W T





[

V N
]

= I. (4.12)

Below, (N,U,W ) denotes any one of such matrix triples determined from V as described

above. Then, when (4.11) is satisfied, the similarity transformation




UT

W T



Acl

[

V N
]

=




Λ UTAclN

0 W TAclN



 (4.13)

shows that the eigenvalues of Acl are those of Λ and W TAclN . Hence, the eigenstructure

assignment problem can be restated as follows:

Problem 3. Let a linear time-invariant plant of order n be given in terms of the state space

realization (A,B,C) and let a desired oscillation profile be specified by X ∈ Rn×2 and

Λ ∈ R2×2. Find a controller K of order nc and Ξ ∈ Rnc×2 such that a state-space realization

of K exists to satisfy

(a) AclV = VΛ,

(b) eig(W TAclN)⊂C−,

where matrix Acl is defined below (4.9) and matrices U , V, andW are defined in the preceding

paragraph.

With this reformulation, it becomes clear that the limit cycle design problem with a

CPG-based controller reduces to the eigenstructure assignment problem defined in Chapter

2. In this case, we specify the oscillation as in (2.6) with Hk = I and by Lemma 4, V can be

assumed to have the structure V = col(X,Ξo) where Ξo := col(Ir, 0). Since the value of Ξ is

fixed, the choices of α and β in the oscillation profile of q(t) have also been fixed.
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The only remaining parameter is τ in f(s), which is an important design parameter that

affects both the convergence rate and accuracy of x(t). Specifically, a smaller τ decreases

the rate of convergence, but improves the accuracy in matching up to the desired profile.

Once V and the time constant in f(s) have been set, then Problem 3 reduces to the

search for an F to satisfy (2.13) and an output-feedback controller, Q̊, to stabilize (A,B, C)

where B :=
[

B −X
]

. We can then map F and Q̊ back to K through




Dc Cc

Bc Ac



 =




F Dq Cq

0 Bq Aq












0 I 0

I −CX 0

0 0 I







,

F =




F

Λ



 , Q :=




Dq Cq

Bq Aq



 .

Finally, we obtain the matrices (L,G,H,M) for the CPG-based controller in (4.7) by

using the mapping in (4.8).

4.5 Design Example for a Single Limit Cycle

In order to illustrate the utility of the CPG control theory developed here, we apply the

procedure described above to the design of a controller to achieve coordinated oscillations

for a three link mechanical arm [72].

The plant is described by

Jθ̈ +Dθ̇ +Kθ = Bu, y = B
Tθ, (4.14)

where θ(t) ∈ R3 is the link angles with respect to the inertial frame, y(t) ∈ R3 is the angular

displacements of the three joints connecting the links in series, and u(t) ∈ R3 is the joint

torque inputs. Assuming identical links, the coefficient matrices are given by

J = (ml2)(I/3 + LTL), K = kBBT, D = ρK,
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B =








1 −1 0

0 1 −1

0 0 1







, L =








1 0 0

2 1 0

2 2 1








with parameter values

l = 0.5, k = 1.0, m = 1.0, ρ = 0.1.

We set the target oscillation profile as follows:

θi(t) ∼= ai sin(ωt+ bi),

where

a =








20

35

60







deg, b =








0

120

240







deg, ω = 3 rad/s.

We set the time constant in the neuronal dynamics, f(s), to τ = 10 because it gave us a

fairly quick convergence rate without significantly affecting how well the resulting oscillation

profile of the plant matched the desired specifications.

Recall that the problem centers around enforcing marginal stability of the quasi-linear

system with one pair of conjugate eigenvalues on the imaginary axis at ±jω, where ω is the

oscillation frequency of the desired profile. Thus we would anticipate seeing this property

satisfied for the closed-loop, quasi-linear system (4.9).

According to the eigenvalues of the closed-loop system displayed in Fig. 4.2, the marginal

stability condition is satisfied and the eigenvalues on the imaginary axis have the correct

values ±j3. This marginal stability of the quasi-linear closed-loop system is also expected

to result in the orbital stability of the nonlinear closed-loop system. As a test of this, we

let the closed-loop system start with initial conditions away from the designed limit cycle

and see that it converges to the desired profile. We see from Fig. 4.3 and similar simulation

results for various initial conditions (not shown) that the marginal stability condition for the

quasi-linear system resulted in orbital stability of the targeted limit cycle for the nonlinear
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Figure 4.2: Eigenvalue Plot
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Figure 4.3: Oscillation Profile for Unstructured Single-Oscillation Design

system. Table 4.1 gives a quantitative summary of how closely the nonlinear control system

satisfies the design specifications. Although the numerically simulated oscillations in Fig.

4.3 are not sinusoidal due to the nonlinearities in the CPG control, Fourier analysis on the

results show that the amplitudes, phases, and frequency of the first harmonic component are

very close to those of the target oscillations. Thus, the approximation through the use of the
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Table 4.1: Single Oscillation Profile

θ1 θ2 θ3

Target Amplitude [deg] 20 35 60

Closed-Loop Amplitude [deg] 19.2 33.8 57.6

Target Phase [deg] 0 120 240

Closed-Loop Phase [deg] 0 120.2 240.4

Target Frequency=3 rad/s, Simulated Frequency= 2.99 rad/s

describing function did not significantly alter the resulting trajectory of the nonlinear closed-

loop system with respect to the original specifications. Moreover, due to the invertibility of

B, we could assign any limit cycle in the linear system and for almost every oscillation profile

we designed, the eigenstructure condition was a highly reliable indicator that the nonlinear-

closed loop system would have the specified oscillation profile as a limit cycle. Thus, it is fair

to conclude that even without a rigorous mathematical proof that satisfaction of the MHB

and stability equations will result in a limit cycle in the nonlinear closed-loop, the CPG

architecture combined with the eigenstructure result is a very effective method for designing

a limit cycle for an arbitrary LTI system.

4.6 Assignment of Multiple Limit Cycles

We now shift our focus to the design of a single set of controller parameters (L,G,H,M)

to assign different limit cycles for different plants.1 If we interpret each assigned limit cycle

as a different gait for a mechanical system and different plants as variations in the en-

vironment, then the design of a single controller that can achieve different limit cycles for

different plants would imply an autonomous adaptation property embedded in the controller.

1For the remainer of this chapter, we define the design of a single controller as the search for (L,G,H,M)
from (4.2) to satisfy the specified eigenstructure conditions.
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4.6.1 The Multi-Oscillation Problem

Consider equation (4.2) and simplify the nonlinear term using the describing function.

Noting that because f(s) is a first order low pass filter and thereby invertible, we can rewrite

the MHB equation as




ûi

q̂i/f(s)





︸ ︷︷ ︸

r̂i

=




L G

H M








x̂i

Kiq̂i





︸ ︷︷ ︸

ẑi

→ Ri = KZi,

Ri =
[

ℜ(r̂i) ℑ(r̂i)
]

, Zi =
[

ℜ(ẑi) ℑ(ẑi)
]

, i = 1, 2,

where ûi and q̂i are as specified in the previous sections.

With this formulation, the set of K that satisfy the MHB equation are given by

K = RZ† + K(I − ZZ†), R =
[

R1 R2

]

, Z =
[

Z1 Z2

]

. (4.15)

To formulate the stability conditions, first define UT

i , W
T

i , and Ni by




UT

i

W T

i





[

Vi Ni

]

= I, i = 1, 2,

then the stability conditions are given by

W T

i (Ai + BiKTiCi)Ni = Hurwitz.

Substituting in the definition of K from (4.15), we obtain

W T

i (Ai + Bi(RZ
† + K(I − ZZ†))TiCi)Ni = Hurwitz.

or equivalently, a simultaneous static output feedback stabilization problem of the form

W T

i (Ai + BiRZ
†TiCi)Ni

︸ ︷︷ ︸
Ai

+W T

i Bi
︸ ︷︷ ︸

Bi

K (I − ZZ†)TiCiNi
︸ ︷︷ ︸

Ci

= Hurwitz, i = 1, 2.

The simultaneous static output feedback stabilization problem is a very difficult one to

solve in general and to the extent of our knowledge, there is no known solution to solve

the simultaneous static output feedback stabilization problem. Thus, we will apply the
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structured static output feedback stabilization approach described in Appendix E to reduce

the problem to a set of LMIs given by

min
Xi,Yi,K

tr(XY) s.t.




Xi I + εi(Ai + BiKCi)

I + εi(Ai + BiKCi)
T Yi



 > 0,




Xi I

I Yi



 ≥ 0,

where i = 1, 2 and X = diag(X1, X2) and Y = diag(Y1, Y2). If a solution exists, then this

problem can be practically solved by the linearization algorithm by El Ghaoui [76].

4.6.2 An Alternative Formulation for Structured Controller Design

The multiple limit cycle controller design problem reduced to a simultaneous stabilization

problem in the previous section after the controller was parameterized in terms of all possible

controllers that satisfy the MHB equation and the stabilization was performed over the

freedom in that parameterization. One disadvantage of this formulation is that the controller

structure cannot be dictated because it never appears in the LMIs. An alternative to this

would be to have both the stability conditions and MHB conditions inside the LMI itself. In

this case, the equations that would need to be satisfied are

Ri = KZi, W T

i (Ai + BiKTiCi)Ni = Hurwitz, i = 1, 2.

This translates to the LMI conditions

min
Xi,Yi,K

tr(XY) s.t.




ǫ R −KZ

(R −KZ)T ǫ



 ≥ 0,




Xi I

I Yi



 ≥ 0,




Xi I + εi(W

T

i AiNi +W T

i BiKTiCiNi)

I + εi(W
T

i AiNi +W T

i BiKTiCiNi)
T Yi



 > 0,

for i = 1, 2 where X = diag(X1, X2), Y = diag(Y1, Y2), R =
[

R1 R2

]

, Z =
[

Z1 Z2

]

and ǫ

is a number sufficiently close to zero. Notice that the MHB conditions have been enforced

in the LMIs by bounding the maximum singular value of R−KZ by the scalar term ǫ.
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4.6.3 Design Example for Multiple Limit Cycles

4.6.3.1 Link-chain Model and Fluid Parameters

We consider a link-chain model of a leech provided by [77] with n = 6 links that are

actuated at each joint and the fluid model given by [78]. For the physical properties of

the link-chain model, we use the typical properties of a leech defined as a ribbon of length

ℓ = 10cm, width d = 1cm, and weight m = 1g. Since each link is assumed to be identical,

each individual link has half length lo = l/(2n) and mass mo = m/n. Let θ(t) ∈ Rn be

the link angles, u(t) ∈ Rn−1 be the joint torque inputs, and v(t) ∈ R be the velocity of the

CG of the whole body along the x-axis. With the assumption that link angles θi and the y

component of the CG velocity are small, the equations of motion can be given by

Jθ̈ +Dθ̇ + (vΛ+K)θ = Bu, (4.16)

mv̇ + (nct + co||θ||
2)v + θ̇TΛθ = 0 (4.17)

where with o being the n− 1 dimensional zero vector,

M = moI, L = loI, BT =
[

I o
]

−
[

o I
]

, AT =
[

I o
]

+
[

o I
]

,

cn = CPρdlo|VN |+ 4lo
√

ρµdVN , ct = 5.4CT lo
√

ρµVNd, co = cn − ct,

Cn = cnI, Ct = ctI, Co = coI, Jo = mol
2
o/3, J = Jo + F TMF,

F =M−1B(BTM−1B)−1ATL, D = LCnL/3 + F TCnF, Λ = F TCo, K = BkoB
T,

and the spring constant for each joint ko = 4.2624 (mN-cm)/rad. This spring stiffness was

chosen such that the plant would have a natural frequency at 3 Hz.

We consider two different fluid enviroments with the same density: water and a high

viscosity fluid (methyl cellulose). In the two different fluid environments, the fluid parameters

are given by

µ = 0.01poise, ρ = 1g/cm3, CP = 3, CT = 0.6.

and

µ = 4poise, ρ = 1g/cm3, CP = 3, CT = 0.6.
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for the water and methyl cellulose, respectively. Additionally, we specify the average normal

velocity of the links to be VN = 3 cm/s in water and VN = 0.047 cm/s in the high viscosity

fluid.

Let us consider a transformation from the absolute link angles θ to the joint angles

φ ∈ Rn−1 and the orientation angle θo ∈ R,



φ

θo



 :=




BT

eT/n



 θ =W−1θ.

Define

W TJW :=




J11 J12

J21 J22



 , W TDW :=




D11 D12

D21 D22



 , W TΛW :=




Λ11 Λ12

Λ21 Λ22



 .

Then (4.16) becomes



J11 J12

J21 J22








φ̈

θ̈o



+




D11 D12

D21 D22








φ̇

θ̇o



+



v




Λ11 Λ12

Λ21 Λ22



+




koI 0

0 0












φ

θo



 =




u

0



 .

(4.18)

Defining another coordinate transformation by

ϕ := θo + hTφ, h := J12J
−1
22 ,

we obtain

J̃11φ̈+ D̃11φ̇+ (vΛ̃11 + koI)φ = u, (4.19)

J22ϕ̈+D22ϕ̇+ vΛ̃21φ = 0,

where

J̃11 = J11 − J12J
−1
22 J21, D̃11 = (cn/mo)J̃11, Λ̃11 = Λ11 − hΛ21, Λ̃21 = Λ21 − Λ22h

T.

We will use (4.19) for our design. In particular, we can determine the necessary û for a given

φ̂ with û = (−ω2J̃11+ jωD̃11+(v0Λ̃11+koI))φ̂. Note that v was replaced with v0 in order to

simplify the controller design. In general v will be an oscillatory state governed by equation

(4.17). However, the controller will be designed with a constant velocity v0 which stands for

the nominal value of v.
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4.6.4 Desired Oscillation Profiles for Gait and Controller

We base the design of the desired oscillation profile for the link-chain system on obser-

vational data from real leeches swimming in water and methyl cellulose [68]. Additionally,

we consider two different gaits, φ1(t) ∼= a1 sin(ω1t+ b1) for water and φ2(t) ∼= a2 sin(ω2t+ b2)

for the high viscosity fluid. In the water environment, we set the target oscillation profile as

a1 =














34

32.75

31.5

30.25

29














deg, b1 =














0

60

120

180

240














deg, ω1 = 3 Hz, v0,1 = 15.6cm/s.

In the high viscosity environment, the target oscillation profile is given by

a2 =














34

32.75

31.5

30.25

29














deg, b2 =














0

90

180

270

360














deg, ω1 = 2 Hz v0,2 = 0.244cm/s.

Given these oscillation profiles and nominal velocities, we can calculate the desired oscillation

for û in each of the environments using the phasor form of equation (4.19). In particular

û1 =














−65.01 + 178.66j

−57.16− 48.29j

128.03− 194.11j

293.83− 135.95j

276.65 + 40.80j














, û2 =














249.35− 7.42i

3.99 + 221.98i

−214.54− 18.82i

19.64− 227.52i

221.49 + 03.35i














.

Specifying the oscillation profiles for the joint angles only assigns the portion of the

eigenvectors associated with the plant. Since we are using a dynamic controller with a

CPG architecture, we must specify the oscillation profile of the controller states as well.

For simplicity, we impose no structure on the neuronal connections and assume that all the

62



neurons have the same dynamics. We define the dynamics of each neuron by a low-pass filter

with time constant τ = 0.2s in water and τ = 0.3s in methyl cellulose, which are typical

time constants for neuronal processes.

We define q̂ using the concept of segmental oscillators. In a segmental oscillator, each

actuator is driven by a set of neurons that oscillate together with specified phase differences.

For this example, we will consider the case in each actuator is driven by 4 neurons that

oscillate with the same amplitude with evenly distributed phases. That is, given û ∈ C5 and

ûi being the ith entry of û, we define q̂, by

q̂ = col(p̂1, . . . , p̂m), p̂i = γr∠ûi, r = col(e0, ejϕ, ej2ϕ, ej3ϕ), ϕ = π/2,

where we define γ = 1.5 in order to obtain a fair approximation of the desired oscillation

while remaining in the nonlinear zone of the describing function. Defining q̂1 for û1 and q̂2

for û2 in the manner described above, we can further see that the oscillation of the controller

is given as ξ̂i = C−1
f q̂i for i = 1, 2. Now that we have the desired oscillation profiles, we

can proceed to search for a feasible controller using the formulation described in Subsection

4.6.1.

4.6.5 Unstructured Multi-gait Design Example

For this design example, we apply the formulation in subsection 4.6.1 to obtain a feasible

controller to achieve the oscillation profiles for the link-chain model in water and the high

viscosity fluid. Fig. 4.4 shows the ideal oscillation profile on the left and the simulated

oscillation profile in the steady-state on the right.

While the oscillation profile does not match exactly with respect to amplitude, the fre-

quency of oscillation and phases match almost exactly to the ideal situation. Even in the

case of amplitude, all the amplitudes are within 15% of desired and share a similar pattern

of decreasing amplitudes from head to tail. The amplitudes, phases, and frequency of the

first harmonic component obtained through Fourier analysis are described below in Table

4.2.

Moreover, although the controller design was performed assuming a constant desired
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Figure 4.4: φ(t) for ideal oscillation (L) and simulated nonlinear limit cycle (R) in water

environment.

Table 4.2: Oscillation Profile inside Water Environment

φ1 φ2 φ3 φ4 φ5

Target Amplitude [deg] 34 32.75 31.5 30.25 29

Closed-Loop Amplitude [deg] 30.02 27.07 25.3 23.92 24.91

Target Phase [deg] 0 60 120 180 240

Closed-Loop Phase [deg] 0 61.7 119.5 176.5 233.7

Target Frequency=3 Hz, Simulated Frequency= 3.13 Hz

velocity v0,1, the simulation was performed with a nonconstant velocity governed by equation

(4.17). The results of simulating the velocity are given in Fig. 4.5. The nominal velocity

obtained through simulating (4.17) is lower than the desired nominal velocity of 15.6 cm/s

by roughly 10% at 14 cm/s. It is reasonable to say that the controller designed roughly

approximates the desired specifications for the link-chain system in water. The controller

functions even better in the case where the link-chain system is placed in a higher viscosity

fluid as evidenced in Fig.4.6.

Using the same controller and changing the plant to replicate a change in the environment,

the oscillation profile changes to match the one prescribed for the higher viscosity fluid. The

amplitudes, phases, and frequency of the first harmonic component obtained through Fourier
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Figure 4.5: Simulated velocity in water environment.
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Figure 4.6: φ(t) for ideal oscillation (L) and simulated nonlinear oscillation (R) in the high

viscosity environment.

analysis are described below in Table 4.3.

We can see that the controller achieves the prescribed oscillation better in the high

viscosity fluid than in water. Every amplitude is within 5% of the desired value with the

phases and frequency of oscillation following a similar trend. Because the oscillation profile
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Table 4.3: Oscillation Profile inside the High Viscosity Environment

φ1 φ2 φ3 φ4 φ5

Target Amplitude [deg] 34 32.75 31.5 30.25 29

Closed-Loop Amplitude [deg] 33.83 31.32 30.83 29.1 27.69

Target Phase [deg] 0 90 180 270 360

Closed-Loop Phase [deg] 0 88.2 180.5 269.6 360.2

Target Frequency=2 Hz, Simulated Frequency= 2.01 Hz

of the nonlinear simulation so closely matches that of the designed profile, it is expected that

the simulated velocity would also oscillate about a value close to v0,2. Fig. 4.7 confirms that

this is the case.
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Figure 4.7: Simulated velocity in the high viscosity environment.

With a desired steady state nominal velocity of v0,2 = 0.244 cm/s, the simulated velocity

is within 8% of the desired steady state nominal velocity at roughly 0.225 cm/s. Snapshots

for the body shape of each of these gaits over one period is given in Fig. 4.8.

In the previous examples, we applied one controller to two different systems for which two

different oscillation profiles were designed. In each simulation, we set the initial conditions
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Figure 4.8: Snapshots of one cycle of the leech gait in water (L) and high viscosity fluid (R).

to be the desired oscillation profile for that given system; essentially, we started close to

the desired limit cycle in the nonlinear simulation. However, in a real system, starting on

a desired profile is impractical as conditions can change at any moment, thereby leading to

an initial condition away from the desired. To test this, we first simulated the controller

applied to the link-chain system in water and then, after the profile reached steady-state,

we changed the plant to the one representing the high viscosity environment and applied

the final steady state condition of the first simulation as the initial condition to the new

simulation to emulate a change in environment. We then repeated the process in the other

direction, changing the plant from the one used for the high viscosity environment to the

one for water. The results of this simulation are given in Fig. 4.9.

In Fig. 4.9, the plant is changed from the one used in water to the high viscosity fluid at 15

seconds and from high viscosity fluid to water at 30 seconds. For each of these switches, the

controller immediately changes the oscillation profile to the one designed for the respective

plant. This situation is also observed in the simulated velocity given in Fig. 4.10.
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Figure 4.9: Simulated changes in gait in reponse to environment changes from water to the

high viscosity fluid at 15s and the high viscosity fluid to water at 30s.
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Figure 4.10: Simulated changes in velocity in reponse to environment changes from water to

the high viscosity fluid at 15s and the high viscosity fluid to water at 30s.

From this example, it is clear that the proposed eigenstructure assignment method can

be applied to the design of a single controller that can change gaits depending on the plant.

Moreover, since a variation in the plant can represent a change in the environment, this

switching ability signifies a method for the controller to autonomously change gaits depending

on variations in environments. Although a comprehensive theory was not developed for the
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case of multi-gait eigenstructure assignment, the example provided above shows that the

problem is certainly feasible and it gives a potential direction for future research.

4.6.6 Structured Multi-gait Design Example

In this example, we design the controller to achieve the same limit cycles as in the

previous section, but with the added condition that the interconnections of the neurons in

the segmental oscillator, M , have a nearest neighbor structure of the form

M =














Mo M1 M2 0 0

M3 Mo M1 M2 0

M4 M3 Mo M1 M2

0 M4 M3 Mo M1

0 0 M4 M3 Mo














,

where Mo specifies the interconnections the neurons within one segmental oscillator andM1,

M2, M3, and M4 specify the interconnection between the segmental oscillators. We utilize

the formulation in subsection 4.6.2 to obtain a feasible controller.

Fig. 4.11 shows the steady state oscillations with a controller that solves the problem

stated above with the structured M .

For Fig. 4.11, the simulations were performed by only simulating equation (4.16) where

v was replaced by a constantly velocity (v0,1 or v0,2). Although the conditions were satisfied

with the structured controller, simulating (4.16) with (4.17) resulting in convergence to a

different limit cycle for the water environment. Tables 4.5 and 4.4 give the amplitudes,

phases, and frequency of the first harmonic component found through a Fourier analysis of

the φ oscillation in each environment.

Like the unstructured case, the limit cycles were very close in each aspect to the designed

oscillation profiles. In the case of the water environment, the amplitudes were all within

3% of the designed and phases within 2%. Similarly, in the high viscosity environment, the

nonlinear simulated amplitudes were all within 13% of the desired amplitudes and phases

were within 3% of the desired. In both cases, the frequencies were almost exactly as designed.
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Figure 4.11: φ(t) from simulating (4.16) in water (L) and the high viscosity (R) environment

using controller with structured M .

Table 4.4: Oscillation Profile inside Water Environment using Controller with Structured M

φ1 φ2 φ3 φ4 φ5

Target Amplitude [deg] 34 32.75 31.5 30.25 29

Closed-Loop Amplitude [deg] 33.16 32.25 31.13 29.96 28.4

Target Phase [deg] 0 60 120 180 240

Closed-Loop Phase [deg] 0 59.1 119.6 180.88 240.49

Target Frequency=3 Hz, Simulated Frequency= 2.99 Hz

Table 4.5: Oscillation Profile inside the High Viscosity Environment using Controller with

Structured M

φ1 φ2 φ3 φ4 φ5

Target Amplitude [deg] 34 32.75 31.5 30.25 29

Closed-Loop Amplitude [deg] 33.34 31.19 29.38 29.35 26.95

Target Phase [deg] 0 90 180 270 360

Closed-Loop Phase [deg] 0 91.56 180.27 275.67 361.68

Target Frequency=2 Hz, Simulated Frequency= 2 Hz

Although we were able to design a controller with a specified structure for the neuronal

interconnectivity matrix M that satisfied the eigenstructure conditions posed above, simu-
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lating the nonlinear controller with the velocity equation (4.17) resulted in an entrainment

to an unspecified limit cycle in the water environment as we show in Fig. 4.12.
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Figure 4.12: φ(t) from simulating (4.16) and (4.17) in water (L) and the high viscosity (R)

environment using controller with structured M .

While simulating both equations (4.16) and (4.17) achieved the prescribed trajectory in

the high viscosity environment, the prescribed profile was not achieved in water. Regardless,

this is a step forward in designing structured controllers with a CPG architecture that can

achieve and autonomously switch between multiple limit cycles. Ultimately, more research

remains in fully developing a more robust and rigorous theory for designing limit cycles using

the CPG-inspired controller.
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CHAPTER 5

Conclusions

We considered the problem of designing a controller such that selected outputs of a linear

plant exponentially converge to ReΛtηo for some vector ηo, with prescribed matrix, R, and

matrix with non-negative eigenvalues, Λ. We demonstrated the equivalence of this prob-

lem to that of an eigenstructure assignment problem and provided necessary and sufficient

conditions for solvability along with a parameterization of all feasible solutions. Using this

parameterization, we showed that under a mild condition and linear independence of the

eigenvectors associated with Λ, the problem could be solved with a static gain under state

feedback and a dynamic controller of plant order, n, under output feedback. Moreover, when

the condition for linear independence is not satisfied, the problem can be solved with a con-

troller of order less than or equal to n+ r, where r is the dimension of the desired dynamics

Λ.

Recognizing that the multi-agent pattern formation problem is a special case of the

eigenstructure assignment problem, we proceeded to apply the aforementioned result to

design a structured controller for pattern formation of heterogeneous agents. In our method,

we first performed a local controller design such that the desired eigenstructure was assigned

to each agent, and the heterogeneous agent dynamics were homogenized. The inter-agent

coupling is then designed by a Laplacian matrix representing a directed graph containing

a spanning tree, to achieve coordination through exchange of relative information. The

general result is shown to include an important existing result [1] as a special case, and have

an additional capability of adaptive pattern formation through reference generator placed

within the feedback loop.

To substantiate the utility of the proposed method for pattern formation control of mul-
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tiple heterogeneous agents, we provided three numerical examples. In the first example, we

designed a structured static state feedback gain to assign a trajectory described by a single

eigenvalue for a multi-agent system to demonstrate how satisfaction of certain properties can

greatly simplify the controller dynamics. In the second, our controller was compared to the

one proposed by [1] in order to assert the importance of feedback in reaching a consensus.

Finally, in the last example, we designed a linear distributed controller to achieve coordi-

nated phase-locked oscillations for heterogeneous agents, and further added a local nonlinear

feedback to lock the amplitudes of oscillation. The third example touched on the possibility

of further research in expanding the linear eigenstructure framework to nonlinear pattern

formation problems.

As a means of extending the linear eigenstructure framework to nonlinear pattern forma-

tion problems, we considered the design of a nonlinear controller for a linear time-invariant

plant to achieve a specified oscillation in the closed-loop. To this end, we based our controller

on the central pattern generator, a well-studied nonlinear oscillator in biology that can be

represented by an interconnection of neurons, each of which contains dynamics described by

a transfer function followed by a static nonlinearity. After simplifying the nonlinear prob-

lem via a describing function and the method of harmonic balance, we reduced the problem

to an eigenstructure assignment problem characterized by a single controller satisfying an

output-feedback problem and an eigenvalue/eigenvector equality relationship. We presented

a numerical example demonstrating the utility of eigenstructure assignment for the design

of CPG-based controller to achieve orbitally stable closed-loop oscillation.

We further considered the potential of designing a single CPG-based controller to achieve

two specified limit cycles for two different plants; this situation parallels that of an organism

changing gaits upon exposure to different environments. For this, we considered the swim-

ming gait of a leech in water and a high viscosity fluid. A heuristic algorithm was applied

to solve for a controller satisfying two pairs of eigenstructure assignments with a single con-

troller. A numerical simulation was presented in which the controller achieved each of the

limit cycles when applied to the respective plant. This example touches on the possiblity

of designing controllers to achieve specified gaits for a given locomotor that can adapt to
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different environments.

While a general theory and parameterization of all feasible controllers were presented to

solve the linear pattern formation problem and expanded to the special cases of structured

controller design for structured agents and nonlinear limit cycle design, there still remains

work to be done in these topics. In particular, while the quasi-linearization of the central

pattern generator inspired controller and satisfaction of the eigenstructure conditions were

a realiable indicator of the existence of the desired limit cycle in the nonlinear closed-loop

system, a proof to guarantee the existence of the limit cycle was not provided. Moreover,the

design of a single controller to satisfy multiple eigenstructure assignment conditions was

formulated and solutions found using heuristic algorithms, but necessary and sufficient con-

ditions for existence of such a controller with a parameterization of all feasible controllers

was outside of the scope of this dissertation; a complete solution to this problem would

greatly improve the ease of finding a solution without having to resort to heuristic algo-

rithms. Lastly, the proposed result for eigenstructure assignment is entirely a linear control

theory. We touched on the possibility of expanding this linear result to nonlinear pattern

formation problems with the design of limit cycles using a nonlinear damping term for multi-

agent systems and a CPG-inspired controller for the general case, but more research must be

done to extend the linear eigenstructure theory to encompass nonlinear pattern formation

problems.

This research covered a vast spectrum of pattern formation problems for linear time-

invariant systems. In showing that the general linear pattern formation problem is essentially

an eigenstructure assignment problem, we have established a framework that can provide

insight into the underlying principles governing problems such as multi-agent synchronization

and limit cycle generation. Moreover, by combining our parameterization of all feasible

controllers for eigenstructure assignment with a controller with CPG architecture, we have

developed a systematic method for designing controllers to achieve a specified limit cycle

for any arbitrary LTI system and further extended this by demonstrating the possibility

of designing a single controller to achieve two different limit cycles for different systems.

These developments not only brings us closer to the design of locomotors that can move in a
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manner similar to biological organisms, but also the design of locomotors that can alter their

behavior when placed in different environments. While there will always be more avenues

of research that can improve on these developments, the work provided in this dissertation

provides a solid foundation and framework for which future research can build.
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APPENDIX A

Block-diagonalizing Transformation

Lemma 12 Let matrices (A,B,C,D) and (X,Λ) be given. Suppose A, D, and Λ are square,

and




A B

C D








X

I



 =




X

I



Λ,
eig(Λ) ∩ eig(Ω) = ∅,

Ω := A−XC.

Then there exists a unique matrix M satisfying

ΛM −MΩ = C,

and the matrix can be block-diagonalized by the following similarity transformation




M I −MX

I −X








A B

C D








X I −XM

I −M



 =




Λ 0

0 Ω



 .

Proof. The result can be verified by direct calculations.
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APPENDIX B

Proof for Lemma 1

We prove the equivalence for the case in which A has at least one eigenvalue in each of the

open left-half plane (OLHP) and the closed right-half plane (CRHP). The proof is similar for

the case where all the eigenvalues are in the CRHP. If all the eigenvalues are in the OLHP,

the case is trivial since the specifications are violated. Since properties (a)–(c) and (i)–(ii)

are preserved under state coordinate transformations, we may assume that system (2.3) is

given in a Kalman canonical form,

A =




A11 A12

0 A



 , H =
[

0 H
]

, x =




x1

χ





where (H,A) is observable.

Suppose (a)–(c) hold. We will show that there exists a full column-rank matrix X such

that

AX = XΛ, HX = R (B.1)

and the eigenvalues of A except for those of Λ are in the OLHP. Given this, (i)–(ii) follow

by setting V := col(Y,X) and recognizing that A11 is Hurwitz due to detectability of (H,A),

where Y is the unique solution to the Sylvester equation

A11Y +A12X = YΛ.

To this end, let a spectral decomposition of A be given by

A =
[

Lu Ls

]




Λu 0

0 Λs








Ru

Rs



 ,




Ru

Rs





[

Lu Ls

]

= I,
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where Λu and Λs have eigenvalues in the CRHP and OLHP, respectively. Then the output

of (2.3) is given by

z(t) = HeAtχ(0) = HLue
ΛutRuχ(0) +HLse

ΛstRsχ(0).

We claim that z(t) → η(t) if and only if the persistent component of z(t) is exactly equal to

η(t), that is,

e(t) := HLue
ΛutRuχ(0)−ReΛtη(0) ≡ 0.

To see this, note that z(t) → η(t) holds if and only if e(t) → 0 since the second term in z(t)

associated with Λs converges to zero. Regarding e(t) as the output of a linear state-space

system with all eigenvalues in the CRHP, it can be verified that e(t) → 0 occurs if and only

if the state trajectory is entirely in the unobservable subspace, i.e., e(t) ≡ 0. Taking the

time derivatives of e(t) for p times and stacking them, we have

HLue
ΛutRuχ(0) = ReΛtη(0), (B.2)

H := col(H,HA, . . . ,HAp), R := col(R,RΛ, . . . , RΛp),

where p is large enough so that H and R are full column-rank due to observability. Let χ(0)

be the ith column of the identity matrix and ni be the corresponding η(0) to satisfy (B.2).

Define N as the matrix having ni as the i
th column. Then

HLue
ΛutRu = ReΛtN (B.3)

Similarly, let η(0) be the ith column of the r×r identity matrix and mi be the corresponding

χ(0) to satisfy (B.2). Define M as the matrix having mi as the i
th column. Then

HLue
ΛutRuM = ReΛt. (B.4)

From (B.3), using H
†
H = I, we have

H(eAt − Lse
ΛstRs) = ReΛtN, X := H

†
R, ⇒ eAt =

[

X Ls

]




eΛt 0

0 eΛst








N

Rs



 . (B.5)

78



Setting t = 0 in (B.3), (B.4), and the above equation, we have

HLuRu = RN,

HLuRuM = R,
I =

[

X Ls

]




N

Rs



 .

Due to R
†
R = I, the first two equations yield NM = I and NLs = 0. Then, these conditions

and the last equation imply that col(N,Rs) is square invertible. Hence, taking the time

derivative of (B.5), setting t = 0, and multiplying [ X Ls ] from the right, the spectral

decomposition of A is given by

A
[

X Ls

]

=
[

X Ls

]




Λ 0

0 Λs



 . (B.6)

Therefore, AX = XΛ holds for a full column-rank X and the eigenvalues of A are given by

those of Λ and Λs. Finally note from (B.4) at t = 0 that there exists a matrix Z such that

R = HZ. Then H
†
R = Z and

HX = HH
†R = HZ = R ⇒ HX = R.

Thus, we have shown (B.1) and conclude that (a)-(c) ⇒ (i)-(ii).

To show the converse, suppose (i) and (ii) hold. Note that

eAt → VeΛtU, z(t) = HeAt
x(0) → ReΛtUx(0),

where the rows of U span the left eigenspace corresponding to Λ, i.e., UA = ΛU, and

are normalized such that UV = I. Hence (a) holds for η(0) := Ux(0) and (b) holds for

x(0) := Vη(0). To show (c), let (λ, v) be an arbitrary eigenvalue/eigenvector pair of Λ. Then

(i) implies

(A− λI)(Vv) = 0, H(Vv) = Rv.

Since V has full column-rank and v 6= 0, we have Vv 6= 0. Moreover, since (R,Λ) is observable,

Rv 6= 0. Hence λ is an observable mode of (H,A), i.e., all the eigenvalues of A shared with

Λ are observable. Therefore, all the unobservable modes of (H,A) must be stable due to

(ii), proving detectability of (H,A). Thus we can conclude that (i)–(ii) ⇒ (a)-(c).
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APPENDIX C

Proof for Theorem 3

A controller solves Problem1 if and only if the closed-loop system satisfies conditions (i)

and (ii) in Lemma1. By Lemma 4 we can assume that V in condition (i) can be assumed

to have the structure V = col(X,Ξo) with X ∈ Rn and Ξo := col(I, 0, . . . , 0) without loss of

generality.

Suppose a dynamic controller in (2.2) solves Problem1, where (i) and (ii) in Lemma 1

are satisfied with V = col(X,Ξ) and Ξ = Ξo. Let Z be such that
[

Ξ Z
]

= I and define S

by

S =




S11 S12 S13

S21 S22 S23



 =




Dc Cc

Bc Ac








CX I 0

Ξ 0 Z



 . (C.1)

Then the first equation in (i) can be represented as

AV =




A 0

0 0








X

Ξ



+




B 0

0 I








S11

S21



 =




X

Ξ



Λ= VΛ. (C.2)

The first row block of (C.2) implies AX + BF = XΛ with F = S11, while the second

equation in condition (i) gives HX = R by noting that HV = HX . Thus we conclude that

the existence of a controller solving Problem 1 implies the existence of X and F satisfying

(2.13) in Theorem3.

We now show that the given controller can be expressed as (2.17) for some Q̊ that

stabilizes the augmented plant (A,
[

B −X
]

, C). Let Q̊ be defined by

Q =




Dq Cq

Bq Aq



 =




Dc Cc

Bc Ac








I 0

0 Z



 , (C.3)

80



where the dimensions of the square matrices Ac and Aq are nc and nc− r, respectively. Note

that the closed-loop system of Q̊ and the augmented plant (A,
[

B −X
]

, C) is given by

ẋq = Aqxq with

Aq :=




A 0

0 0



+




B −X 0

0 0 I



Q




C 0

0 I



 . (C.4)

To show that Aq is Hurwitz, let N be chosen such that
[

V N
]

is square invertible and

define W and U such that col(UT,W T)
[

V N
]

= I. One such combination would be

W T =




I −XΞT

0 ZT



 , N =




I 0

0 Z



 , UT =
[

0 ΞT

]

. (C.5)

It can then be verified using condition (i) of Lemma1 that



UT

W T



A
[

V N
]

=




Λ ∗

0 Aq



 (C.6)

holds where ∗ denotes irrelevant entries. Since the eigenvalues of A not associated with Λ

have negative real part by condition (ii), we conclude that Aq is Hurwitz and Q as defined

by (C.3) stabilizes (A,
[

B −X
]

, C). Finally, substitution of the state equation for Q̊ into

(2.17) yields







u

ξ̇

q̇







=








Dq1 F −Dq1CX Cq1

Dq2 Λ−Dq2CX Cq2

Bq −BqCX Aq















y

ξ

q








(C.7)

where Cqi and Dqi for i = 1, 2 are partitioned blocks of Cq and Dq, respectively, and q is the

state of Q̊. With Q in (C.3), conditions (C.1) and (C.2) imply that

(Ac, Bc, Cc, Dc) and (Aq, Bq, Cq, Dq) are related by




Dc Cc

Bc Ac



 =




F Dq Cq

0 Bq Aq












0 I 0

I −CX 0

0 0 I







, (C.8)

F =




F

Λ



 , Q :=




Dq Cq

Bq Aq



 , (C.9)
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. We then see that (C.7) is identical to (2.2) with xc := col(ξ, q).

To prove sufficiency, we now show that the controller (2.17) solves Problem 1 with V :=

col(X,Ξ) where Ξ := Ξo. Let the state space matrices for Q̊ be given by (C.9). Then the

controller (2.17) is described by the state space matrices given by (C.8). Define S by (C.1).

Then



S11 S12 S13

S21 S22 S23



 =




F Dq Cq

0 Bq Aq



 , F =




F

Λ



 ,

where S11 ∈ R
nu and F ∈ R

nu+r with nu being the dimension of u(t). We then see that (C.2)

holds. Thus condition (i) in Lemma1 is satisfied. To show condition (ii), define N , W , and

U by (C.5). The eigenvalues of A not associated with Λ are those of Aq := W TAN due to

(C.6), and Aq is given by (C.4). Since Q̊ is designed to stabilize (A,
[

B −X
]

, C). we can

conclude that Aq is Hurwitz. Thus, condition (ii) of Lemma1 holds.
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APPENDIX D

Proof for Corollary D

We first show that Theorem 5 holds when Φk that makes Λ + ΓkΦk Hurwitz is replaced

by Υ and Ψ that make Λ+ Γ(Υ + Ψ) Hurwitz and satisfy ΨI = 0, where I := col(I, . . . , I).

Suppose there exist Fk, and Xk satisfying (3.7). It suffices to prove the state feedback

case due to the separation principle. Let the controller be denoted by u = K̊x, where C = I

and (3.9) is replaced by x̂k = xk. We see that the closed-loop system, A = A + BKC, with

state col(x, ξ, η̂) satisfies condition (i) of Lemma 1 with V = col(X,Ξ, 0). That is,








A+B(K +ΨxM) B(F−KX+Ψx(I −MX)) BΦx

J +ΨξM Λ− JX+Ψξ(I −MX) Φξ

LM + ΓΨM L(I −MX) + ΓΨ(I −MX) Λ+ ΓΦ− L















X

Ξ

0







=








X

Ξ

0







Λ

where Φx and Φξ are the matrices obtained by stacking [ Ipk 0 ]Φk and [ 0 Ir ]Φk in a

column, respectively, with pk being the number of columns of Bk and Φk being the kth block

row matrix of Φ associated with agent k, Ψx and Ψξ are defined similarly, and

Ξ = I, X = diag(X1, . . . , XN), F = diag(F1, . . . , FN),

and we noted that LI = 0, FI = F , and XI = X . Thus, we see that condition (i) is satisfied.

Applying a similarity transformation defined by

T =








X I − XM 0

I −M 0

I 0 I







, T−1 =








M I −MX 0

I −X 0

−M −(I −MX) I







,
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we obtain

T−1
AT =








Λ+ Γ(Φ + Ψ) 0 ∗

∗ A +BK − XJ ∗

0 0 Λ− L







.

Since L ∈ LΛ, Λ− L will have eigenvalues in Λ with the rest in the open left-half plane.

Furthermore, because col(Kk, Jk), Φ, and Ψ were chosen such thatAk+
[

Bk −Xk

]

col(Kk, Jk)

and Λ+ Γ(Φ + Ψ) are Hurwitz, we can conclude that condition (ii) of Lemma 1 is satisfied

and the controller u = K̊x solves Problem 1.

We can thereby assume that w from (3.10) in Theorem 5 is defined by w = Φη̂ + Ψη

without loss of generality. We will now show that if agent k has the property that Γk is full

row-rank, then the agent’s homogeneous dynamics, η̂k, can be removed. Suppose k = 1 for

clarity, arbitrary k can be shown similarly.

Since Γ1 is full column rank, define Ψ1 = −Γ†
1L1, where L1 is defined as the rows of

L associated with agent 1 and Lo as the rows of L associated with all other agents. Let

Ψ = col(Ψ1, 0) and let Φ be chosen such that Λ+Γ(Φ+Ψ) is Hurwitz. To ensure satisfaction

of structural constraints, let Φ = −Ψ + Φo where Φo is a block-diagonal matrix such that

Λ+ ΓΦo is Hurwitz.

Then

˙̂η = Λ+ Γw + v,

= Λη̂ + Γ(Φη̂ +




Γ†
1L1

0



 η) + v,

= Λη̂ + Γ(Φη̂ −




Γ†
1L1

0



 (η̂ − ε))− Lε

= (Λ+ ΓΦ)η̂ −




L1

0



 η̂ −




0

Lo



 ε

= (Λ+ Γ(Φ + Ψ))η̂ −




0

Lo



 ε
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By definition, Λ + Γ(Φ + Ψ) is Hurwitz. Thus η̂1 has stable, uncontrollable dynamics

which can be removed. To see how to obtain (3.13), we once again show the case for k = 1

and note that

w1 = Φ1η̂ +Ψ1η,

= Φ1(ε+ η) + Ψ1η,

= Φ1ε+ (Φ1 +Ψ1)η.

Let Φ = −Ψ + Φo, where Φo is a block-diagonal matrix such that Λ + ΓΦo is Hurwitz. We

can write w1 by

w1 = (−Γ†
1L1 + Φo,1)ε+ (Φo,1)η,

where Φo,1 are the rows of Φo associated with agent 1. Since ε = η̂ − η, we have

w1 = −Γ†
1L1ε,

where we noted that Φo,1η̂ = 0 because η̂1 can be removed or set to zero and all other

elements of η̂ are multiplying zero due to the block diagonal structure of Φo. Thus, we verify

the replacement in equation (3.13).

85



APPENDIX E

Derivation for Structured Static Output Feedback

Suppose ẋ = Ax is stable. Then there exists X = XT > 0 such that

AX +XAT > 0.

In this case, there exists sufficiently small ε > 0 such that

εAXAT + AX +XAT < 0,

which is equivalent to

(I + εA)X(I + εA)T < X. (E.1)

By the Schur complement, this is further equivalent to




X I + εA

I + εAT Y



 > 0, X = Y −1 > 0.

Hence, a static output feedback control system

ẋ = Ax+Bu, y = Cx, u = Ky

is stable if and only if there exists X = XT > 0 and sufficient small ε > 0 such that




X I + ε(A+BKC)

I + ε(A+BKC)T Y



 > 0, X = Y −1 > 0. (E.2)

When ε > 0 is fixed, this condition holds if and only if the eigenvalues of A + BKC are

strictly inside the circle of radius 1/ε with center at −1/ε. This is easy to see once we notice

that (E.1) is a discrete-time Lyapunov inequality and gives a condition for |1+ελ| < 1 where

λ is an arbitrary eigenvalue of A+BKC.
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For a fixed value of ε > 0, the inequalities in (E.2) can be reformulated as

min
X,Y,K

tr(XY ) s.t.




X I + ε(A+BKC)

I + ε(A+BKC)T Y



 > 0,




X I

I Y



 ≥ 0.

Problem (E.2) is only feasible if and only if the minimum value is equal to n with

minimizer X = Y −1 > 0. This problem can be practically solved by the linearization

algorithm by El Ghaoui. It should be noted that a structural constraint on K can readily

be imposed within this framework. Moreover, with such structural constraint on K, one can

look for a control gain K such that each of the systems

ẋi = Aixi +Biui, yi = Cixi, ui = Kyi

with i = 1, . . . , ℓ, has eigenvalues in the circle of radius 1/εi with center at −1/εi by solving

min
Xi,Yi,K

tr(XY) s.t.




Xi I + εi(Ai + BiKCi)

I + εi(Ai + BiKCi)
T Yi



 > 0,




Xi I

I Yi



 ≥ 0,

where i = 1, . . . , ℓ and

X := diag(X1, . . . , Xℓ), Y := diag(Y1, . . . , Yℓ).
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