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Abstract

Experiments and models suggest that climate affects mosquito-borne disease transmission. 

However, disease transmission involves complex nonlinear interactions between climate and 

population dynamics, which makes detecting climate drivers at the population level challenging. 

By analyzing incidence data, estimated susceptible population size, and climate data with methods 

based on nonlinear time series analysis (collectively referred to as empirical dynamic modeling), 

we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. 

Climatic forcing arose only when susceptible availability was high: temperature and rainfall had 

net positive and negative effects, respectively. By capturing mechanistic, nonlinear, and context-

dependent effects of population susceptibility, temperature, and rainfall on dengue transmission 

empirically, our model improves forecast skill over recent, state-of-the-art models for dengue 

incidence. Together, these results provide empirical evidence that the interdependence of host 

population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet 

predictable way.
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Graphical Abstract

Detecting climate drivers and describing their effects on dengue incidence at the population level 

is challenging due to nonlinear and state-dependent functional responses. We used long time series 

data, an inferred proxy for the susceptible population size, and empirical dynamic modeling to 

capture temperature and rainfall effects on dengue incidence in San Juan, Puerto Rico, which arose 

only when susceptible availability was above a certain threshold.

Keywords

Arbovirus; climate; dengue; empirical dynamic modeling; forecasting; vector-borne disease; 
rainfall; susceptible population size; temperature

INTRODUCTION

In concert with globalization and climate change, mosquito-borne diseases, and dengue in 

particular, are (re)emerging globally and spreading to higher latitudes (Kilpatrick & 

Randolph 2012; Ryan et al. 2019). Dengue virus—vectored primarily by urban Aedes 
aegypti (Kraemer et al. 2015)—places half of the global human population in 128 countries 

at risk of infection (Brady et al. 2012; Kraemer et al. 2019). In the absence of effective 

vaccines or treatments (Katzelnick et al. 2017a; Sridhar et al. 2018), public health agencies 

rely on vector control to reduce dengue transmission (Erlanger et al. 2008). Effective vector 

control interventions require understanding the mechanisms linking climate, vector ecology, 

disease transmission, and host population susceptibility to better predict disease outbreaks—

a major challenge.

Since Aedes spp. mosquitoes are sensitive to climate, including temperature and rainfall 

(Stewart Ibarra et al. 2013; Mordecai et al. 2019), we expect temperature and rainfall to be 

important drivers of dengue outbreaks. Although temperature affects mosquito and viral 

traits in laboratory experiments (Watts et al. 1987; Lambrechts et al. 2011; Mordecai et al. 
2017), the relationship between temperature and dengue incidence in the field has been 

ambiguous (Caldwell et al. 2020). Thus, temperature-dependent models have had mixed 

success predicting the timing and magnitudes of epidemics (Hii et al. 2012; Johansson et al. 
2016; Johnson et al. 2018). The rainfall–dengue relationship is also complex. Rainfall can 
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fill container-breeding habitats for mosquitoes, increasing mosquito abundance and dengue 

incidence (Stewart Ibarra et al. 2013). Low rainfall can also facilitate dengue transmission 

by promoting water storage that serves as standing-water habitat for mosquitoes (Pontes et 
al. 2000), while heavy rainfall can reduce mosquito abundance by flushing out larvae 

(Koenraadt & Harrington 2008). The net effect of climate on dengue depends on many 

different mechanisms and is highly context-dependent.

Disease incidence also depends nonlinearly on susceptible availability, because epidemic 

growth slows as the population of susceptible individuals is exhausted (Anderson & May 

1979; Dushoff et al. 2004; Mina et al. 2015; Pitzer et al. 2015; Rypdal & Sugihara 2019). 

Furthermore, susceptible availability may influence the effects of climate on dengue 

dynamics. However, such interactive effects are difficult to detect since susceptibility is 

difficult to observe, especially in endemic settings where multiple serotypes circulate and 

create a complex landscape of time-dependent and serotype-dependent immunity 

(Katzelnick et al. 2017b). Specifically, four serotypes of dengue regularly circulate in many 

regions: each provides long-term serotype-specific (homologous) immunity and short-term 

(heterologous) cross-protection against other serotypes (dos Santos et al. 2017; Jiménez-

Silva et al. 2018; Hamel et al. 2019). Following a brief period of cross-protection, antibodies 

at a mid-range of titers can cause antibody-dependent enhancement of disease following 

heterologous, secondary infection, until titers decay to the point of nearly full heterologous 

susceptibility (Katzelnick et al. 2017b). Given this complex and dynamic immune landscape, 

directly detecting population susceptibility to circulating dengue virus at any point in time is 

difficult without longitudinal serology studies, which are not widely available (Gordon et al. 
2013; Katzelnick et al. 2017b).

Previous prediction models of dengue outbreaks used phenomenological (Johansson et al. 
2009b; Hii et al. 2012; Johnson et al. 2018) and mechanistic equation-based approaches 

(Tran et al. 2013; Liu-Helmersson et al. 2014; Morin et al. 2015; Mordecai et al. 2017), 

which may not fully capture interdependence between climate and susceptible availability. 

Phenomenological models may underperform when extrapolating past observed contexts, 

and equation-based mechanistic models rely on parameter estimates from laboratory studies 

engineered to isolate single mechanisms producing separate relationships between drivers 

and outcome, eliminating the complex interdependence at the population level. While 

laboratory studies provide robust validation of mechanisms (Lambrechts et al. 2011), the 

fixed relationships obtained from them do not necessarily translate into robust causal 

understanding for the complexity of field systems (Sugihara et al. 2012). Even if causality 

exists between two variables in such a system, their correlation can switch signs during 

different time periods, resulting in a net correlation of zero (Deyle et al. 2016b). This 

temporal variation in the direction of correlation results from the nonlinear, state-dependent 

relationship between the variables. Conversely, even if two variables are consistently 

correlated, the association could be spurious due to a confounder.

To overcome these challenges, we used empirical dynamic modeling (EDM) (Sugihara et al. 
2012)—a mechanistic, equation-free, data-driven approach that accounts for the context-

dependence of ecological drivers—to identify and model mechanisms driving dengue 

epidemics. EDM is based on reconstructing system dynamics evident in time series, without 
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assuming fixed relationships. Relationships among variables can change through time if 

interactions among variables are context-dependent. EDM does not require assumptions 

about the functional form of the model, but instead derives dynamic relationships 

empirically by constructing an attractor—a geometric object (i.e., curve or manifold) that 

embodies the rules for how relationships among variables change with respect to each other 

through time depending on system state (location on the attractor)—from time-series 

observations. Like a set of equations, the attractor encompasses the dynamics of a system, 

and thus can provide a mechanistic understanding of the system that is derived empirically, 

without requiring an a priori assumed set of equations.

Here, we used EDM and a proxy for susceptible population size (Rypdal & Sugihara 2019) 

to answer three questions: (1) Do temperature, rainfall, and/or inferred susceptible 

availability drive population-level dengue incidence? (2) Can we predict dengue dynamics 

using temperature and rainfall data and inferred susceptible availability? (3) What is the 

functional form of each climate–dengue relationship at the population level, and how is this 

relationship influenced by susceptible availability?

METHODS

Time-series data

We obtained time series of weekly observations of dengue incidence (total number of new 

cases of all serotypes), average temperature (℃), and total rainfall (mm) in San Juan, Puerto 

Rico, for 19 seasons (1990/1991–2008/2009) spanning calendar week 18, 1990 to week 17, 

2009 (Fig. 1a–c) from the National Oceanic and Atmospheric Administration in November 

2016 (http://dengueforecasting.noaa.gov/). We obtained data for four additional seasons 

(2009/2010–2012/2013) from Johnson et al. (2018) in April 2020 (https://github.com/

lrjohnson0/vbdcast). Although dengue incidence data were also available for Iquitos, Peru 

(Johansson et al. 2019), we chose to focus on San Juan because the time series was longer, 

and therefore more amenable to EDM analyses (Munch et al. 2020).

Direct measurements of susceptible availability are not available, so from weekly incidence 

data I(t), we estimated time-dependent growth rates: λ = I(t + Δt) / I(t). The growth rate, λ, 

is proportional to the effective reproduction number, Reff, and equivalent to Reff if Δt equals 

the average time between primary and secondary host infections. Vector-borne disease 

models show that Reff is proportional to the geometric mean of the susceptible host 

population and the susceptible vector population: Reff = ShSv R0, where R0 is the basic 

reproduction number (Zhao et al. 2020). Hence, λ ∝ ShSv  and λ can be used as a proxy for 

the susceptible population size at least during inter-outbreak periods where the transmission 

rate and R0 can be assumed to vary very little (Rypdal & Sugihara 2019).

We estimated λ by linear regression using the model I(t + Δt) = λ I(t) for 12 time points in a 

12-week running window (Δt = 1 week). The model is robust to the window size (Rypdal & 

Sugihara 2019). In the discrete case, when λ < 1 the system is stable (inter-outbreak period) 

and when λ ≥ 1 then the system is unstable (outbreak period) (Supporting Information). We 

treated the resulting time series of λ, hereafter “susceptibles index” (Fig. 1d), as a proxy for 
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the susceptible population size when λ < 1, and a proxy for the combined effects of 

susceptible availability and R0 when λ ≥ 1.

Empirical dynamic modeling (EDM)

EDM infers a system’s mechanistic underpinnings and predicts its dynamics using time-

series data of one or more variables to construct an attractor in state space (Fig. S1). This 

procedure is called univariate (using lagged versions of a single variable time series) or 

multivariate state-space reconstruction (SSR). Properties of the attractor are assessed to 

examine characteristics of the system (Deyle & Sugihara 2011). We normalized each time 

series to zero mean and unit variance to remove measurement unit bias, ensuring the 

variables would be comparable and the attractor would not be distorted. All analyses were 

conducted in R version 3.5.1 (R Core Team 2018) and all EDM analyses were performed 

using package rEDM (Park et al. 2020).

To infer mechanisms, EDM should be applied in systems where there is evidence of 

underlying low-dimensional deterministic dynamics (Cummins et al. 2015). EDM 

assumptions are met when stochasticity is present (e.g., due to measurement noise, 

stochastic drivers, or unexplained variability) (Cenci et al. 2019; Munch et al. 2020), but the 

system cannot be entirely stochastic. To test for low-dimensional deterministic dynamics we 

performed univariate SSR for each variable, and used simplex projection (Sugihara & May 

1990)—a type of nearest neighbor regression performed on an attractor—to check whether 

the system is forecastable beyond the skill of an autoregressive model—an indicator of 

underlying deterministic dynamics (Fig. S2a and S4; Supporting Information). To test for 

nonlinear state dependence of a variable—the motivation behind EDM—we used the S-map 
test for nonlinearity (Sugihara 1994) (Fig. S2b, c and S5; Supporting Information).

EDM: Convergent cross-mapping

We used an EDM approach called convergent cross-mapping (CCM) (Sugihara et al. 2012) 

to identify drivers of dengue incidence. If two variables are causally related, then a 

multivariate attractor—where each variable in the system represents a dimension that traces 

the dynamics of the system—can be reconstructed (up to a practical limit) using lagged 

versions of just one of the variables (Fig. S1). Based on Takens’ Theorem, this univariate 

“shadow attractor” preserves the structural and dynamic properties of the original 

multivariate attractor (Takens 1981; Sugihara et al. 2012). The concept behind CCM is that 

if temperature causes dengue incidence, then information about past temperature will be 

embedded in the dynamics of dengue, such that the shadow attractor produced using only 

incidence data allows us to accurately reconstruct temperature in the past. However, the 

converse scenario would not be true: since dengue does not cause temperature, the shadow 

attractor constructed using temperature data should not contain information to accurately 

reconstruct past dengue incidence (Supporting Information).

The critical criterion for estimating causal (directional) associations between two variables 

using CCM is checking that the cross-mapping skill (i.e., Pearson’s correlation coefficient, 

ρ, between predicted driver values using the univariate SSR of the response variable, and the 

observed driver values) monotonically increases and plateaus (i.e., converges) with the 
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length of the response variable time series used in cross-mapping. We used the Kendall’s τ 
test as a significance test for monotonic increasing of cross-mapping skill using the Kendall 

package (McLeod 2011). If cross-mapping skill plateaus and τ > 0 then there is convergence 

(Grziwotz et al. 2018).

We performed pairwise cross-correlations on the time series to investigate time-lagged 

relationships between potential drivers (i.e., temperature, rainfall, and susceptibles index) 

and dengue incidence using the tseries package (Trapletti & Hornik 2018). Based on these 

analyses (Fig. S6), we applied a 9-week time lag between temperature and incidence, an 

averaged lag of 3–9 weeks for rainfall (i.e., the average rainfall over the preceding 3–9 

weeks) to resemble standing water as mosquito breeding habitat over a longer time period, 

and a 5-week lag for the susceptibles index. These lags are proxies for the time delays of 

potential cause-and-effects and are consistent with results from field studies (Chen et al. 
2010; Stewart Ibarra et al. 2013).

We assessed the strength of evidence for effects of potential drivers on dengue by comparing 

the CCM performance using the data with the performance of two null models that control 

for the seasonal trend (i.e., interannual mean) observed in all variables (Fig. 2). These null 

models address the sensitivity of CCM to periodic fluctuations (i.e., seasonality), which can 

make two variables appear to be causally linked when instead they are simply synchronized 

by a seasonal confounder (Cobey & Baskerville 2016; Deyle et al. 2016a). In the first 

“seasonal” null model, we preserved the seasonal signal, but randomized the interannual 

anomalies (Deyle et al. 2016a). In the second, more conservative “Ebisuzaki” null model, we 

conserved any periodicity (beyond seasonal) and randomized the phases of Fourier-

transformed time series (Ebisuzaki 1997). We tested for statistically significant differences 

in cross-mapping skill between the model that used the data versus the null models by 

performing Kolmogorov-Smirnov (K-S) tests after convergence.

We also repeated CCM in the nonsensical, reverse-causal direction (e.g., to test whether 

incidence drives climate) as a control for potential spurious relationships generated by non-

causal covariation (e.g., due to seasonality). This addresses the issue of synchrony, in which 

CCM can indicate bidirectional causality when one direction is false or nonsensical 

(Baskerville & Cobey 2017; Sugihara et al. 2017).

EDM: Forecast improvement

We examined the predictive power of the drivers on dengue incidence by assessing how well 

we can predict dengue dynamics using temperature, rainfall, susceptibles index, and their 

combined effects. We used a combination of univariate SSR (i.e., with incidence data) and 

multivariate SSR to build forecasting models and to determine the improvement of 

forecasting using simplex projection when including different combinations of drivers 

(Deyle et al. 2013, 2016a) (Supporting Information). We built the SSR forecasting models/

attractors using the 1990/1991–2008/2009 season data (Fig. 1) and made forecasts 8 weeks 

ahead. We assessed model forecasting performance using leave-one-out cross-validation.

Next, we evaluated out-of-sample forecasting performance of these models using testing 

data from four additional seasons (2009/2010–2012/2013). Predictions made on week zero 
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for the first forecast of the 2009/2010–2012/2013 period (8 weeks ahead) came only from 

SSR using the 1990/1991–2008/2009 data. All subsequent weekly forecasts (8 weeks ahead) 

were made from updated SSR using all previous data, including past observations from the 

testing dataset.

Forecast uncertainty was evaluated by taking the density and morphology of the attractor 

into account. The more compact a simplex was and the less its starting position on the 

attractor mattered for the simplex projection, the more certain we were about our point 

estimate. Forecast variance was obtained from a distribution of weighted nearest neighbor 

regression from edges of simplexes constructed at various starting positions in the past.

Finally, we compared our top model performance with performance of previous models 

from 16 teams that participated in a dengue forecasting challenge (Johansson et al. 2019) 

and had access to the same data. To make a fair comparison, we followed the procedure as 

directed in the challenge (Supporting Information).

EDM: Scenario exploration

In nonlinear systems, drivers generally have an effect that is state-dependent: the strength 

and direction of the effect depends on the current state of the system. Scenario exploration 

with multivariate EDM allowed us to assess the effect of a small change in temperature or 

rainfall on dengue incidence, across different states of the system. The outcome of these 

small changes allowed us to deduce the relationship between each climate driver and dengue 

incidence and how they depend on the system state. For each time step t we used S-maps 

(Sugihara 1994; Deyle et al. 2016a) to predict dengue incidence using a small increase 

(+ΔX) and a small decrease (–ΔX) of the observed value of driver X(t) (temperature or 

rainfall). For each putative climate driver, the difference in dengue predictions between these 

small changes is ΔY = Y t + 1 X t + ΔX t
2 − Y t + 1 X t − ΔX t

2 , where Y(t + 1) is a 

function of X and all other state variables, and we used ΔY/ΔX to approximate the effect of 

driver X at time t. We repeated this over all time steps in our time series for both temperature 

and rainfall to recover their approximate relationships with dengue incidence at different 

states of the system. Scenario exploration analyses were repeated across several model 

parameterizations to address potential sensitivity to parameter settings (Supporting 

Information).

RESULTS

Drivers of dengue dynamics

EDM showed that temperature, rainfall, and the susceptibles index drive dengue incidence 

since the convergence criterion was met (Kendall’s τ > 0, P < 0.01) for all drivers (Fig. 3). 

Rainfall and susceptibles index were significant drivers of dengue incidence beyond 

seasonality, as their effects were distinguishable from seasonal and Ebisuzaki null models 

(Fig. 3b–c and S8b–c; K-S P < 0.001). This implies statistically significant effects of both 

rainfall and the susceptibles index on dengue, which are not obscured by a periodic 

confounder. However, temperature was not a significant driver beyond seasonality (Fig. 3a 

and S8a; K-S P = 0.9). We cannot rule out the possibility that the apparent forcing of 
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temperature on dengue is due to a seasonal confounder. However, if no such confounder 

exists, then the seasonal trend in temperature, which accounts for most temperature variation 

in San Juan, drives the seasonal trend observed in dengue incidence. Compared to the other 

drivers, the converging cross-mapping skill of the temperature null models were relatively 

high (Fig. 3 and S8), suggesting that temperature seasonality in each null model was a strong 

driver. Thus, seasonal temperature may be driving dengue dynamics, a result consistent with 

other studies (Huber et al. 2018; Robert et al. 2019).

As expected, EDM tests for putative causality in the nonsensical directions—incidence 

driving temperature or rainfall—were not significant (i.e., no convergence; Fig. S7, black 

lines). This result further supports the finding that temperature and rainfall drive dengue 

incidence, because their causal relationships were not confounded by spurious 

bidirectionality. The null models for the nonsensical directions of causality (Fig. S7, grey 

lines) also displayed no convergence (completely flat). As expected, seasonality of dengue 

incidence does not drive seasonality of temperature or rainfall. However, seasonality (or any 

periodicity) of temperature, rainfall and susceptibles index drive dengue dynamics, shown 

by convergence of the seasonal and Ebisuzaki null models (grey lines in Fig. 3 and S8).

Predictive power of drivers

The multivariate SSR model using only temperature and rainfall data did not predict dengue 

incidence very well (ρ = 0.3839, RMSE = 47.72) although it captured the seasonality of the 

epidemics (Fig. 4a). Forecast skill doubled when the susceptibles index was included along 

with rainfall and temperature (ρ = 0.7547, RMSE = 37.40; Fig. 4c), where timing and 

magnitude of epidemics were captured reasonably well. Dengue incidence prediction 

improved even further when incidence was added into the model with all drivers (ρ = 

0.7662, RMSE = 37.14; Fig. 4e). Dengue incidence was somewhat predictable using 

univariate SSR of incidence data alone (ρ = 0.4459, RMSE = 46.75; Fig. 4g), suggesting that 

the dengue incidence time series contains information about its drivers, although limited. 

This points to some additional value of including the driver variables.

We also evaluated the performance of the SSR models (Fig. 4a, c, e, g) constructed using 

data from seasons 1990/1991–2008/2009 on external, testing data from 2009/2010–

2012/2013 that were not used in SSR (Fig. 4b, d, f, h). The average out-of-sample forecast 

skill for each model for the testing seasons was higher than that of the 1990/1991–

2008/2009 forecasts, although the errors were larger. The model using only temperature and 

rainfall displayed predictability (ρ = 0.8989, RMSE = 52.30; Fig. 4b), the model that also 

included the susceptibles index improved predictions (ρ = 0.9475, RMSE = 52.12; Fig. 4d), 

and the model that also included past incidence made highly accurate predictions (ρ = 

0.9697, RMSE = 46.75; Fig. 4f). The model that only included dengue incidence without the 

drivers was also predictive, although more error-prone (ρ = 0.9044, RMSE = 57.34; Fig. 4h). 

All SSR models (Fig. 4a–h) had significant forecast skill (ρ) values (Fisher’s z-

transformation P < 0.001).

The model with the highest prediction skill for the testing seasons (2009/2010–2012/2013), 

which included past climate, susceptibles index, and incidence data as predictors (Fig. 4f), 

also outperformed models from the dengue forecasting challenge, including the ensemble 

Nova et al. Page 8

Ecol Lett. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model (Johansson et al. 2019) for predicting peak incidence, peak week, and seasonal 

incidence for all seasons on average (Tables S1–S2, Fig. S9–S12). This demonstrates the 

benefit of the EDM approach for capturing the mechanistic, nonlinear, interdependent 

relationships among drivers over both equation-based mechanistic models and 

phenomenological models.

State-dependent functional responses

We found state-dependent effects of temperature and rainfall with non-zero median effects. 

Temperature had a small positive median effect (2.88 cases/°C, Wilcox P < 0.001) on dengue 

incidence (Fig. 5a). A positive effect is expected for the temperature range in Puerto Rico 

(Mordecai et al. 2017) (Fig. 6e, black dashed lines), although the effect was occasionally 

much stronger, both positive and negative (Fig. 5a, b). The large negative effects occurred 

only at the highest temperature values (as predicted by mechanistic models of temperature-

dependent transmission), reinforced by a lower quantile regression with a strongly negative 

slope (Fig. 5b, bottom dashed red line). However, positive effects occurred across the whole 

temperature range, which is limited to temperatures below the 29°C optimal temperature for 

transmission estimated from mathematical models and laboratory data (Mordecai et al. 
2017).

Rainfall had a small negative median effect (–0.12 cases/mm, Wilcox P < 0.001), but 

occasionally had very large negative effects (Fig. 5a, c). These large, negative effects of 

rainfall on dengue occurred when there was less than 100 mm of rain per week (Fig. 5c), 

consistent with expectations that drought could lead to a high number of dengue cases due to 

water storage, which can provide mosquito breeding habitat (Pontes et al. 2000). There are 

also small positive effects of rainfall on dengue (Fig. 5c), suggesting that overall the results 

showed competing effects of low to moderate rain providing standing water for mosquito 

breeding and humans storing water where mosquitoes can breed when there is drought or 

low rainfall.

These results suggest the strength and direction of the effects of climate on dengue dynamics 

depend on the state of the system. In addition to the nonlinear effects of climate drivers 

themselves on dengue incidence, another potential cause of state-dependent climate effects 

on dengue dynamics is the variation in the susceptible population size over time (Fig. 6a, b). 

Outbreaks do not occur when there are too few susceptible people in the population. As 

expected, when the susceptibles index was small (λ < 0.85) incidence was insensitive to 

climate (Fig. 6c, f). By contrast, when the susceptibles index was large (λ > 0.85), 

temperature and rainfall effects on dengue incidence appeared (Fig. 6d, g). The gradual 

increase and decrease of the rate of change of dengue as a function of temperature (Fig. 6d, 

red solid lines) aligned well with the changes in slope over the increasing part (Fig. 6e, black 

dashed lines representing the temperature range in our study) of the unimodal temperature 

response curve for dengue transmission by Ae. aegypti developed previously (Mordecai et 
al. 2017). This is an important finding, since evidence of climate functional responses for 

disease dynamics is rare due to the difficulty of obtaining appropriately informative field 

data. It is possible that if we had temperature data ranging across a larger spectrum—

possibly by assembling data across multiple climates—that the empirical functional 
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response derived from EDM would also look unimodal. Furthermore, when the susceptibles 

index was high, the slope of the relationship between rainfall and dengue incidence became 

more negative as rainfall increased, suggesting a concave-down effect of rainfall on 

incidence (Fig. 6g, h). This relationship has been difficult to characterize in the field because 

of multiple, possibly context-dependent and lagged, mechanisms linking rainfall to dengue.

DISCUSSION

High host susceptibility allows seasonal climate suitability to fuel large dengue epidemics in 

San Juan, Puerto Rico. The effects of climate and susceptibility are nonlinear, 

interdependent, and state-dependent, which makes inference from controlled experiments, 

equation-based mechanistic models, or phenomenological models difficult. EDM provides 

methods for identifying these drivers, quantifying their predictive power, and approximating 

their functional responses. In Puerto Rico, the causes of extensive interannual variability in 

dengue incidence have remained a mystery, despite hypotheses that climate and host 

susceptibility were involved. Here, we used EDM and a proxy for susceptible availability to 

disentangle nonlinear and interactive mechanisms driving disease dynamics.

We found that rainfall, susceptible availability, and plausibly temperature (via its 

seasonality) interact to drive dengue incidence. Combined, these three drivers predicted 

dengue incidence with high accuracy (Fig. 4c–d). The EDM-based forecasting model 

outperformed 16 models and an ensemble model in a recently published dengue forecasting 

challenge (Johansson et al. 2019), suggesting that it could enhance dengue control efforts if 

surveillance efforts continue to report weekly case data. Finally, as expected from 

epidemiological theory, climate effects on dengue only appeared when susceptible 

availability exceeded a threshold (λ > 0.85; Fig. 6).

The fact that climate effects are first observed when λ ≈ 0.85 (before the onset of an 

outbreak, λ = 1), suggests that rainfall, and possibly temperature, have an effect on the 

timing of an impending epidemic. Climate could drive the transmission rate, thus 

influencing λ (which is proportional to both susceptible population size and R0 when λ is 

close to 1), and therefore the timing of an outbreak could be attributed to the changes in 

transmission caused by seasonal climatic drivers (Rypdal & Sugihara 2019). The seasonality 

of temperature and rainfall had higher predictive skill than seasonality of the susceptibles 

index (Fig. 3, grey lines), further supporting that seasonality of incidence was associated 

more with climate. However, the susceptibles index was critical for predicting dengue 

epidemic magnitudes (Fig. 4c–f). Using the same data, Johnson et al. (2018) found that 

mechanistic models could predict the timing of seasonal epidemics, but that a 

phenomenological machine learning component was needed to capture interannual variation 

in epidemic magnitude. Our work suggests that the unobserved size of the susceptible 

population was a key missing link for predicting magnitude variation across years.

Previous studies have built models accounting for both susceptible availability and climate 

on dengue by reconstructing time series of susceptibles from a compartmental modeling 

framework (Metcalf et al. 2017). However, no previous studies on dengue have explored the 

interdependence between climate and susceptible population size. We showed that 
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susceptible availability modifies climate effects on dengue: climate has negligible effects 

unless the susceptible population size is large enough (Fig. 6). The interdependence of 

climate and population susceptibility has also been studied in diseases where the opposite 

effect was found. For example, climate effects on SARS-CoV-2 are expected to be negligible 

when susceptible availability is high in the early stage of the emerging pandemic (Baker et 
al. 2020). For influenza dynamics, population density in cities—potentially a proxy for 

susceptible availability—also modulated climate effects on disease transmission: climate 

effects were negligible in cities with high population densities (Dalziel et al. 2018).

Because dengue susceptibility is so complex—due to the serotype dynamics and time- and 

antibody titer-dependent cross-protection and enhancement (Katzelnick et al. 2017b)—total 

population density or size may not be a reasonable proxy for susceptible availability in 

dengue dynamics, and a direct mechanistic estimate of population susceptibility will likely 

never be widely available for most populations. Accordingly, it has been difficult for 

previous mechanistic models to capture susceptible dynamics for dengue and their 

interactions with climate. However, our approach provides a useful proxy that captures the 

susceptible population dynamics even in the absence of more detailed immunological 

information. By inferring the susceptibles index from incidence data, we were able to 

capture the strong influence of the susceptible availability on dengue dynamics, which in 

turn moderated the effect of climate on dengue dynamics. This result is expected from 

theory (Kermack & McKendrick 1927; Xu et al. 2017), but demonstrating it empirically is a 

unique contribution of this study.

Even when accounting for susceptible availability, the effects of temperature and rainfall on 

dengue were strongly state-dependent (Fig. 6d, g). This result is potentially due to nonlinear 

effects of each climate driver (Fig. 6e, h), interactions and correlations between temperature 

and rainfall, microclimate variation over space and time that is not captured by weekly 

averages, and complex lagged effects that are not captured by a single fixed lag (e.g., 9 

weeks). In Puerto Rico, mosquitoes also breed in septic tanks year-round, allowing 

transmission to occur independently from rainfall (Mackay et al. 2009), thus weakening the 

rainfall–dengue negative relationship (Fig. 6g). Some of this additional variation may be 

captured in the dengue incidence time series itself, which may explain why including it 

improves forecast skill over climate and susceptibility alone (Fig. 4e, f). Despite this 

additional variation, our results are consistent with previous studies suggesting that dengue 

dynamics in Puerto Rico are positively associated with temperature (Johansson et al. 2009b; 

Barrera et al. 2011; Morin et al. 2015), and possibly negatively associated with rainfall 

(Johansson et al. 2009a; Morin et al. 2015), since most Ae. aegypti pupae in Puerto Rico are 

produced in human-made containers during periods of drought (Barrera et al. 2011).

The climate and incidence data used here have been used in multiple forecasting efforts, 

where ensemble approaches and approaches that incorporated mechanisms outperformed 

purely statistical approaches (Johansson et al. 2019). However, even the high-performing 

forecasting methods using the same dataset, and including (experimentally-derived) assumed 

mechanisms for the joint influence of climate and susceptibility on dengue dynamics, are 

still error-prone to the timing (on the order of weeks) and the magnitude (on the order of 50 

cases) of intra-annual epidemics (Morin et al. 2015; Johansson et al. 2019). Mechanisms 
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isolated independently in controlled experiments do not necessarily scale up to the 

population level, and susceptible dynamics derived from compartmental models may be too 

simple to properly capture true susceptibility at the population level for dengue (Katzelnick 

et al. 2017b). EDM allowed us to infer mechanisms empirically from population-level data, 

and accounted for the population-level interdependence between climate and susceptible 

availability for forecasting, which probably contributed to our model outperforming previous 

forecasting models and ensembles (Table S1).

Connecting climate and dengue at the population level is challenging, because relationships 

are likely nonlinear and state-dependent. Rigorous methods for testing hypotheses, deriving 

mechanisms, and making predictions are essential for understanding disease dynamics. Our 

approach, using EDM and an inferred proxy for the susceptible population size, confirmed 

that climate has nonlinear, seasonal effects on dengue epidemics in San Juan, Puerto Rico, 

but only above a certain threshold of susceptible availability. EDM-derived mechanisms 

could be applied to predict ecological responses to changing environments in a world 

undergoing rapid environmental change.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Dengue incidence, climate, and susceptibles index data.
Time series (seasons 1990/1991–2008/2009) of (a) weekly dengue incidence (i.e., total 

number of cases per week), (b) weekly average temperature, (c) total weekly rainfall, and (d) 

a proxy for susceptible population size (see Supporting Information for details) in San Juan, 

Puerto Rico.
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Figure 2. Seasonal trends and lags of dengue incidence and its drivers.
The strong seasonal signal of dengue cases and other variables suggests potential causal lags 

between dengue incidence and temperature, rainfall, or a proxy for susceptible population 

size (λ). The lines represent interannual averages for each week of the year (i.e., calendar 

week) of dengue incidence (black), temperature shifted 9 weeks forward in time (red), 

average rainfall over the preceding 3–9 weeks and shifted 3 weeks forward in time (blue), 

and susceptibles index shifted 5 weeks forward in time (purple).
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Figure 3. Climate and susceptibles index drive dengue incidence.
Cross-mapping between dengue incidence and temperature (a; red), rainfall (b; blue), or 

susceptibles index (c; purple) display significant (Kendall’s τ > 0; P < 0.01) convergence in 

cross-mapping skill (i.e., ρ increases and reaches a horizontal asymptote) as the length of the 

time series increases (a signal of putative causality). Red, blue and purple shaded regions 

represent the 0.025 and 0.975 quantiles of bootstrapped time-series segments. Grey shaded 

regions represent the 0.025 and 0.975 quantiles of the seasonal null distributions obtained 

from 500 runs of randomized time series with conserved seasonal trends (Deyle et al. 
2016a). Solid lines represent medians of distributions. Rainfall and susceptibles index 

showed significant forcing above and beyond seasonal signal (K-S P < 0.001), because 

cross-mapping of the true time series (blue and purple) are distinguishable from their 

respective null models (grey), whereas temperature forcing was not distinguishable from the 

null (K-S P = 0.9).
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Figure 4. Predictive power of climate and susceptibles index (λ) on in-sample (left) and out-of-
sample (right) dengue incidence.
Forecasting results of incidence (8 weeks ahead) are shown in turquoise (solid lines 

represent the mean; shaded regions represent 90% confidence intervals) and observed 

incidence in black. Time series for seasons 1990/1991–2008/2009 were used to construct 

SSR models for forecasts using leave-one-out cross-validation (a, c, e, g). Data for seasons 

2009/2010–2012/2013 were used to evaluate the SSR models constructed in a, c, e, and g, 

respectively, for out-of-sample forecasts (b, d, f, h). All SSR models (a–h) had significant 

forecast skill (ρ) values (Fisher’s z-transformation P < 0.001).
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Figure 5. Temperature and rainfall show mixed effects on dengue incidence.
Scenario exploration quantified the variable effect of changes in drivers on dengue. Boxplots 

show that the median effects of rainfall (Rain) and temperature (Temp) are small (close to 

zero), but drivers occasionally have strong impacts (a). To investigate climate driver 

functional responses, we plotted the rate of change of dengue incidence as a function of 

temperature (b) and rainfall (c). Red and blue lines represent regression on the median for 

temperature and rainfall, respectively, in a quantile regression. The dashed red and blue lines 

represent regression on the 0.05 and 0.95 quantiles of temperature and rainfall, respectively. 

Temperature has an overall positive effect on dengue incidence (median regression line of 

the rate of change is positive), but can also have large negative and positive effects (a, b). 

Rainfall has an overall negative effect (median regression line of the rate of change is 

negative), but can also have small positive and large negative effects (a, c).
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Figure 6. Temperature and rainfall effects on dengue incidence vary depending on the 
susceptible population size (λ).
The effect of changes in temperature (a) and rainfall (b) against λ shows that driver effects 

are split around the threshold λ ≈ 0.85 (purple dashed line). Red and blue lines represent the 

median regression (dashed red and blue lines represent the 0.05 and 0.95 quantile 

regressions) of temperature and rainfall effects, respectively (a–d, f, g). Neither climate 

driver has an effect on dengue incidence when susceptible availability is low (λ < 0.85; c, f). 

However, when λ > 0.85 climate effects are observed: temperature has mostly a positive 

effect (d), possibly sigmoidal in that temperature range (e; between black dashed lines), and 

rainfall has a negative effect (g), and conceptually a concave down functional response (h). 

Slopes of tangents (black lines) represent rates of change (e, h). The effect of temperature on 

relative R0 of dengue assuming transmission via Aedes aegypti mosquitoes is unimodal 

(Mordecai et al. 2017) over a larger temperature range (e). Assuming that relative R0 is 

proportional to dengue incidence, our results suggest that the rate of change of dengue 
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incidence is increasing until reaching a maximum and then decreasing (d; red median 

regression lines).
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